Merge branches 'acpi-soc', 'acpi-wdat' and 'acpi-cppc'
[sfrench/cifs-2.6.git] / security / selinux / ss / services.c
1 /*
2  * Implementation of the security services.
3  *
4  * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8  *
9  *      Support for enhanced MLS infrastructure.
10  *      Support for context based audit filters.
11  *
12  * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13  *
14  *      Added conditional policy language extensions
15  *
16  * Updated: Hewlett-Packard <paul@paul-moore.com>
17  *
18  *      Added support for NetLabel
19  *      Added support for the policy capability bitmap
20  *
21  * Updated: Chad Sellers <csellers@tresys.com>
22  *
23  *  Added validation of kernel classes and permissions
24  *
25  * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26  *
27  *  Added support for bounds domain and audit messaged on masked permissions
28  *
29  * Updated: Guido Trentalancia <guido@trentalancia.com>
30  *
31  *  Added support for runtime switching of the policy type
32  *
33  * Copyright (C) 2008, 2009 NEC Corporation
34  * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35  * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36  * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38  *      This program is free software; you can redistribute it and/or modify
39  *      it under the terms of the GNU General Public License as published by
40  *      the Free Software Foundation, version 2.
41  */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72
73 /* Policy capability names */
74 char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
75         "network_peer_controls",
76         "open_perms",
77         "extended_socket_class",
78         "always_check_network",
79         "cgroup_seclabel"
80 };
81
82 int selinux_policycap_netpeer;
83 int selinux_policycap_openperm;
84 int selinux_policycap_extsockclass;
85 int selinux_policycap_alwaysnetwork;
86 int selinux_policycap_cgroupseclabel;
87
88 static DEFINE_RWLOCK(policy_rwlock);
89
90 static struct sidtab sidtab;
91 struct policydb policydb;
92 int ss_initialized;
93
94 /*
95  * The largest sequence number that has been used when
96  * providing an access decision to the access vector cache.
97  * The sequence number only changes when a policy change
98  * occurs.
99  */
100 static u32 latest_granting;
101
102 /* Forward declaration. */
103 static int context_struct_to_string(struct context *context, char **scontext,
104                                     u32 *scontext_len);
105
106 static void context_struct_compute_av(struct context *scontext,
107                                         struct context *tcontext,
108                                         u16 tclass,
109                                         struct av_decision *avd,
110                                         struct extended_perms *xperms);
111
112 struct selinux_mapping {
113         u16 value; /* policy value */
114         unsigned num_perms;
115         u32 perms[sizeof(u32) * 8];
116 };
117
118 static struct selinux_mapping *current_mapping;
119 static u16 current_mapping_size;
120
121 static int selinux_set_mapping(struct policydb *pol,
122                                struct security_class_mapping *map,
123                                struct selinux_mapping **out_map_p,
124                                u16 *out_map_size)
125 {
126         struct selinux_mapping *out_map = NULL;
127         size_t size = sizeof(struct selinux_mapping);
128         u16 i, j;
129         unsigned k;
130         bool print_unknown_handle = false;
131
132         /* Find number of classes in the input mapping */
133         if (!map)
134                 return -EINVAL;
135         i = 0;
136         while (map[i].name)
137                 i++;
138
139         /* Allocate space for the class records, plus one for class zero */
140         out_map = kcalloc(++i, size, GFP_ATOMIC);
141         if (!out_map)
142                 return -ENOMEM;
143
144         /* Store the raw class and permission values */
145         j = 0;
146         while (map[j].name) {
147                 struct security_class_mapping *p_in = map + (j++);
148                 struct selinux_mapping *p_out = out_map + j;
149
150                 /* An empty class string skips ahead */
151                 if (!strcmp(p_in->name, "")) {
152                         p_out->num_perms = 0;
153                         continue;
154                 }
155
156                 p_out->value = string_to_security_class(pol, p_in->name);
157                 if (!p_out->value) {
158                         printk(KERN_INFO
159                                "SELinux:  Class %s not defined in policy.\n",
160                                p_in->name);
161                         if (pol->reject_unknown)
162                                 goto err;
163                         p_out->num_perms = 0;
164                         print_unknown_handle = true;
165                         continue;
166                 }
167
168                 k = 0;
169                 while (p_in->perms[k]) {
170                         /* An empty permission string skips ahead */
171                         if (!*p_in->perms[k]) {
172                                 k++;
173                                 continue;
174                         }
175                         p_out->perms[k] = string_to_av_perm(pol, p_out->value,
176                                                             p_in->perms[k]);
177                         if (!p_out->perms[k]) {
178                                 printk(KERN_INFO
179                                        "SELinux:  Permission %s in class %s not defined in policy.\n",
180                                        p_in->perms[k], p_in->name);
181                                 if (pol->reject_unknown)
182                                         goto err;
183                                 print_unknown_handle = true;
184                         }
185
186                         k++;
187                 }
188                 p_out->num_perms = k;
189         }
190
191         if (print_unknown_handle)
192                 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
193                        pol->allow_unknown ? "allowed" : "denied");
194
195         *out_map_p = out_map;
196         *out_map_size = i;
197         return 0;
198 err:
199         kfree(out_map);
200         return -EINVAL;
201 }
202
203 /*
204  * Get real, policy values from mapped values
205  */
206
207 static u16 unmap_class(u16 tclass)
208 {
209         if (tclass < current_mapping_size)
210                 return current_mapping[tclass].value;
211
212         return tclass;
213 }
214
215 /*
216  * Get kernel value for class from its policy value
217  */
218 static u16 map_class(u16 pol_value)
219 {
220         u16 i;
221
222         for (i = 1; i < current_mapping_size; i++) {
223                 if (current_mapping[i].value == pol_value)
224                         return i;
225         }
226
227         return SECCLASS_NULL;
228 }
229
230 static void map_decision(u16 tclass, struct av_decision *avd,
231                          int allow_unknown)
232 {
233         if (tclass < current_mapping_size) {
234                 unsigned i, n = current_mapping[tclass].num_perms;
235                 u32 result;
236
237                 for (i = 0, result = 0; i < n; i++) {
238                         if (avd->allowed & current_mapping[tclass].perms[i])
239                                 result |= 1<<i;
240                         if (allow_unknown && !current_mapping[tclass].perms[i])
241                                 result |= 1<<i;
242                 }
243                 avd->allowed = result;
244
245                 for (i = 0, result = 0; i < n; i++)
246                         if (avd->auditallow & current_mapping[tclass].perms[i])
247                                 result |= 1<<i;
248                 avd->auditallow = result;
249
250                 for (i = 0, result = 0; i < n; i++) {
251                         if (avd->auditdeny & current_mapping[tclass].perms[i])
252                                 result |= 1<<i;
253                         if (!allow_unknown && !current_mapping[tclass].perms[i])
254                                 result |= 1<<i;
255                 }
256                 /*
257                  * In case the kernel has a bug and requests a permission
258                  * between num_perms and the maximum permission number, we
259                  * should audit that denial
260                  */
261                 for (; i < (sizeof(u32)*8); i++)
262                         result |= 1<<i;
263                 avd->auditdeny = result;
264         }
265 }
266
267 int security_mls_enabled(void)
268 {
269         return policydb.mls_enabled;
270 }
271
272 /*
273  * Return the boolean value of a constraint expression
274  * when it is applied to the specified source and target
275  * security contexts.
276  *
277  * xcontext is a special beast...  It is used by the validatetrans rules
278  * only.  For these rules, scontext is the context before the transition,
279  * tcontext is the context after the transition, and xcontext is the context
280  * of the process performing the transition.  All other callers of
281  * constraint_expr_eval should pass in NULL for xcontext.
282  */
283 static int constraint_expr_eval(struct context *scontext,
284                                 struct context *tcontext,
285                                 struct context *xcontext,
286                                 struct constraint_expr *cexpr)
287 {
288         u32 val1, val2;
289         struct context *c;
290         struct role_datum *r1, *r2;
291         struct mls_level *l1, *l2;
292         struct constraint_expr *e;
293         int s[CEXPR_MAXDEPTH];
294         int sp = -1;
295
296         for (e = cexpr; e; e = e->next) {
297                 switch (e->expr_type) {
298                 case CEXPR_NOT:
299                         BUG_ON(sp < 0);
300                         s[sp] = !s[sp];
301                         break;
302                 case CEXPR_AND:
303                         BUG_ON(sp < 1);
304                         sp--;
305                         s[sp] &= s[sp + 1];
306                         break;
307                 case CEXPR_OR:
308                         BUG_ON(sp < 1);
309                         sp--;
310                         s[sp] |= s[sp + 1];
311                         break;
312                 case CEXPR_ATTR:
313                         if (sp == (CEXPR_MAXDEPTH - 1))
314                                 return 0;
315                         switch (e->attr) {
316                         case CEXPR_USER:
317                                 val1 = scontext->user;
318                                 val2 = tcontext->user;
319                                 break;
320                         case CEXPR_TYPE:
321                                 val1 = scontext->type;
322                                 val2 = tcontext->type;
323                                 break;
324                         case CEXPR_ROLE:
325                                 val1 = scontext->role;
326                                 val2 = tcontext->role;
327                                 r1 = policydb.role_val_to_struct[val1 - 1];
328                                 r2 = policydb.role_val_to_struct[val2 - 1];
329                                 switch (e->op) {
330                                 case CEXPR_DOM:
331                                         s[++sp] = ebitmap_get_bit(&r1->dominates,
332                                                                   val2 - 1);
333                                         continue;
334                                 case CEXPR_DOMBY:
335                                         s[++sp] = ebitmap_get_bit(&r2->dominates,
336                                                                   val1 - 1);
337                                         continue;
338                                 case CEXPR_INCOMP:
339                                         s[++sp] = (!ebitmap_get_bit(&r1->dominates,
340                                                                     val2 - 1) &&
341                                                    !ebitmap_get_bit(&r2->dominates,
342                                                                     val1 - 1));
343                                         continue;
344                                 default:
345                                         break;
346                                 }
347                                 break;
348                         case CEXPR_L1L2:
349                                 l1 = &(scontext->range.level[0]);
350                                 l2 = &(tcontext->range.level[0]);
351                                 goto mls_ops;
352                         case CEXPR_L1H2:
353                                 l1 = &(scontext->range.level[0]);
354                                 l2 = &(tcontext->range.level[1]);
355                                 goto mls_ops;
356                         case CEXPR_H1L2:
357                                 l1 = &(scontext->range.level[1]);
358                                 l2 = &(tcontext->range.level[0]);
359                                 goto mls_ops;
360                         case CEXPR_H1H2:
361                                 l1 = &(scontext->range.level[1]);
362                                 l2 = &(tcontext->range.level[1]);
363                                 goto mls_ops;
364                         case CEXPR_L1H1:
365                                 l1 = &(scontext->range.level[0]);
366                                 l2 = &(scontext->range.level[1]);
367                                 goto mls_ops;
368                         case CEXPR_L2H2:
369                                 l1 = &(tcontext->range.level[0]);
370                                 l2 = &(tcontext->range.level[1]);
371                                 goto mls_ops;
372 mls_ops:
373                         switch (e->op) {
374                         case CEXPR_EQ:
375                                 s[++sp] = mls_level_eq(l1, l2);
376                                 continue;
377                         case CEXPR_NEQ:
378                                 s[++sp] = !mls_level_eq(l1, l2);
379                                 continue;
380                         case CEXPR_DOM:
381                                 s[++sp] = mls_level_dom(l1, l2);
382                                 continue;
383                         case CEXPR_DOMBY:
384                                 s[++sp] = mls_level_dom(l2, l1);
385                                 continue;
386                         case CEXPR_INCOMP:
387                                 s[++sp] = mls_level_incomp(l2, l1);
388                                 continue;
389                         default:
390                                 BUG();
391                                 return 0;
392                         }
393                         break;
394                         default:
395                                 BUG();
396                                 return 0;
397                         }
398
399                         switch (e->op) {
400                         case CEXPR_EQ:
401                                 s[++sp] = (val1 == val2);
402                                 break;
403                         case CEXPR_NEQ:
404                                 s[++sp] = (val1 != val2);
405                                 break;
406                         default:
407                                 BUG();
408                                 return 0;
409                         }
410                         break;
411                 case CEXPR_NAMES:
412                         if (sp == (CEXPR_MAXDEPTH-1))
413                                 return 0;
414                         c = scontext;
415                         if (e->attr & CEXPR_TARGET)
416                                 c = tcontext;
417                         else if (e->attr & CEXPR_XTARGET) {
418                                 c = xcontext;
419                                 if (!c) {
420                                         BUG();
421                                         return 0;
422                                 }
423                         }
424                         if (e->attr & CEXPR_USER)
425                                 val1 = c->user;
426                         else if (e->attr & CEXPR_ROLE)
427                                 val1 = c->role;
428                         else if (e->attr & CEXPR_TYPE)
429                                 val1 = c->type;
430                         else {
431                                 BUG();
432                                 return 0;
433                         }
434
435                         switch (e->op) {
436                         case CEXPR_EQ:
437                                 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
438                                 break;
439                         case CEXPR_NEQ:
440                                 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
441                                 break;
442                         default:
443                                 BUG();
444                                 return 0;
445                         }
446                         break;
447                 default:
448                         BUG();
449                         return 0;
450                 }
451         }
452
453         BUG_ON(sp != 0);
454         return s[0];
455 }
456
457 /*
458  * security_dump_masked_av - dumps masked permissions during
459  * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
460  */
461 static int dump_masked_av_helper(void *k, void *d, void *args)
462 {
463         struct perm_datum *pdatum = d;
464         char **permission_names = args;
465
466         BUG_ON(pdatum->value < 1 || pdatum->value > 32);
467
468         permission_names[pdatum->value - 1] = (char *)k;
469
470         return 0;
471 }
472
473 static void security_dump_masked_av(struct context *scontext,
474                                     struct context *tcontext,
475                                     u16 tclass,
476                                     u32 permissions,
477                                     const char *reason)
478 {
479         struct common_datum *common_dat;
480         struct class_datum *tclass_dat;
481         struct audit_buffer *ab;
482         char *tclass_name;
483         char *scontext_name = NULL;
484         char *tcontext_name = NULL;
485         char *permission_names[32];
486         int index;
487         u32 length;
488         bool need_comma = false;
489
490         if (!permissions)
491                 return;
492
493         tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
494         tclass_dat = policydb.class_val_to_struct[tclass - 1];
495         common_dat = tclass_dat->comdatum;
496
497         /* init permission_names */
498         if (common_dat &&
499             hashtab_map(common_dat->permissions.table,
500                         dump_masked_av_helper, permission_names) < 0)
501                 goto out;
502
503         if (hashtab_map(tclass_dat->permissions.table,
504                         dump_masked_av_helper, permission_names) < 0)
505                 goto out;
506
507         /* get scontext/tcontext in text form */
508         if (context_struct_to_string(scontext,
509                                      &scontext_name, &length) < 0)
510                 goto out;
511
512         if (context_struct_to_string(tcontext,
513                                      &tcontext_name, &length) < 0)
514                 goto out;
515
516         /* audit a message */
517         ab = audit_log_start(current->audit_context,
518                              GFP_ATOMIC, AUDIT_SELINUX_ERR);
519         if (!ab)
520                 goto out;
521
522         audit_log_format(ab, "op=security_compute_av reason=%s "
523                          "scontext=%s tcontext=%s tclass=%s perms=",
524                          reason, scontext_name, tcontext_name, tclass_name);
525
526         for (index = 0; index < 32; index++) {
527                 u32 mask = (1 << index);
528
529                 if ((mask & permissions) == 0)
530                         continue;
531
532                 audit_log_format(ab, "%s%s",
533                                  need_comma ? "," : "",
534                                  permission_names[index]
535                                  ? permission_names[index] : "????");
536                 need_comma = true;
537         }
538         audit_log_end(ab);
539 out:
540         /* release scontext/tcontext */
541         kfree(tcontext_name);
542         kfree(scontext_name);
543
544         return;
545 }
546
547 /*
548  * security_boundary_permission - drops violated permissions
549  * on boundary constraint.
550  */
551 static void type_attribute_bounds_av(struct context *scontext,
552                                      struct context *tcontext,
553                                      u16 tclass,
554                                      struct av_decision *avd)
555 {
556         struct context lo_scontext;
557         struct context lo_tcontext, *tcontextp = tcontext;
558         struct av_decision lo_avd;
559         struct type_datum *source;
560         struct type_datum *target;
561         u32 masked = 0;
562
563         source = flex_array_get_ptr(policydb.type_val_to_struct_array,
564                                     scontext->type - 1);
565         BUG_ON(!source);
566
567         if (!source->bounds)
568                 return;
569
570         target = flex_array_get_ptr(policydb.type_val_to_struct_array,
571                                     tcontext->type - 1);
572         BUG_ON(!target);
573
574         memset(&lo_avd, 0, sizeof(lo_avd));
575
576         memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
577         lo_scontext.type = source->bounds;
578
579         if (target->bounds) {
580                 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
581                 lo_tcontext.type = target->bounds;
582                 tcontextp = &lo_tcontext;
583         }
584
585         context_struct_compute_av(&lo_scontext,
586                                   tcontextp,
587                                   tclass,
588                                   &lo_avd,
589                                   NULL);
590
591         masked = ~lo_avd.allowed & avd->allowed;
592
593         if (likely(!masked))
594                 return;         /* no masked permission */
595
596         /* mask violated permissions */
597         avd->allowed &= ~masked;
598
599         /* audit masked permissions */
600         security_dump_masked_av(scontext, tcontext,
601                                 tclass, masked, "bounds");
602 }
603
604 /*
605  * flag which drivers have permissions
606  * only looking for ioctl based extended permssions
607  */
608 void services_compute_xperms_drivers(
609                 struct extended_perms *xperms,
610                 struct avtab_node *node)
611 {
612         unsigned int i;
613
614         if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
615                 /* if one or more driver has all permissions allowed */
616                 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
617                         xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
618         } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
619                 /* if allowing permissions within a driver */
620                 security_xperm_set(xperms->drivers.p,
621                                         node->datum.u.xperms->driver);
622         }
623
624         /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
625         if (node->key.specified & AVTAB_XPERMS_ALLOWED)
626                 xperms->len = 1;
627 }
628
629 /*
630  * Compute access vectors and extended permissions based on a context
631  * structure pair for the permissions in a particular class.
632  */
633 static void context_struct_compute_av(struct context *scontext,
634                                         struct context *tcontext,
635                                         u16 tclass,
636                                         struct av_decision *avd,
637                                         struct extended_perms *xperms)
638 {
639         struct constraint_node *constraint;
640         struct role_allow *ra;
641         struct avtab_key avkey;
642         struct avtab_node *node;
643         struct class_datum *tclass_datum;
644         struct ebitmap *sattr, *tattr;
645         struct ebitmap_node *snode, *tnode;
646         unsigned int i, j;
647
648         avd->allowed = 0;
649         avd->auditallow = 0;
650         avd->auditdeny = 0xffffffff;
651         if (xperms) {
652                 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
653                 xperms->len = 0;
654         }
655
656         if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
657                 if (printk_ratelimit())
658                         printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
659                 return;
660         }
661
662         tclass_datum = policydb.class_val_to_struct[tclass - 1];
663
664         /*
665          * If a specific type enforcement rule was defined for
666          * this permission check, then use it.
667          */
668         avkey.target_class = tclass;
669         avkey.specified = AVTAB_AV | AVTAB_XPERMS;
670         sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
671         BUG_ON(!sattr);
672         tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
673         BUG_ON(!tattr);
674         ebitmap_for_each_positive_bit(sattr, snode, i) {
675                 ebitmap_for_each_positive_bit(tattr, tnode, j) {
676                         avkey.source_type = i + 1;
677                         avkey.target_type = j + 1;
678                         for (node = avtab_search_node(&policydb.te_avtab, &avkey);
679                              node;
680                              node = avtab_search_node_next(node, avkey.specified)) {
681                                 if (node->key.specified == AVTAB_ALLOWED)
682                                         avd->allowed |= node->datum.u.data;
683                                 else if (node->key.specified == AVTAB_AUDITALLOW)
684                                         avd->auditallow |= node->datum.u.data;
685                                 else if (node->key.specified == AVTAB_AUDITDENY)
686                                         avd->auditdeny &= node->datum.u.data;
687                                 else if (xperms && (node->key.specified & AVTAB_XPERMS))
688                                         services_compute_xperms_drivers(xperms, node);
689                         }
690
691                         /* Check conditional av table for additional permissions */
692                         cond_compute_av(&policydb.te_cond_avtab, &avkey,
693                                         avd, xperms);
694
695                 }
696         }
697
698         /*
699          * Remove any permissions prohibited by a constraint (this includes
700          * the MLS policy).
701          */
702         constraint = tclass_datum->constraints;
703         while (constraint) {
704                 if ((constraint->permissions & (avd->allowed)) &&
705                     !constraint_expr_eval(scontext, tcontext, NULL,
706                                           constraint->expr)) {
707                         avd->allowed &= ~(constraint->permissions);
708                 }
709                 constraint = constraint->next;
710         }
711
712         /*
713          * If checking process transition permission and the
714          * role is changing, then check the (current_role, new_role)
715          * pair.
716          */
717         if (tclass == policydb.process_class &&
718             (avd->allowed & policydb.process_trans_perms) &&
719             scontext->role != tcontext->role) {
720                 for (ra = policydb.role_allow; ra; ra = ra->next) {
721                         if (scontext->role == ra->role &&
722                             tcontext->role == ra->new_role)
723                                 break;
724                 }
725                 if (!ra)
726                         avd->allowed &= ~policydb.process_trans_perms;
727         }
728
729         /*
730          * If the given source and target types have boundary
731          * constraint, lazy checks have to mask any violated
732          * permission and notice it to userspace via audit.
733          */
734         type_attribute_bounds_av(scontext, tcontext,
735                                  tclass, avd);
736 }
737
738 static int security_validtrans_handle_fail(struct context *ocontext,
739                                            struct context *ncontext,
740                                            struct context *tcontext,
741                                            u16 tclass)
742 {
743         char *o = NULL, *n = NULL, *t = NULL;
744         u32 olen, nlen, tlen;
745
746         if (context_struct_to_string(ocontext, &o, &olen))
747                 goto out;
748         if (context_struct_to_string(ncontext, &n, &nlen))
749                 goto out;
750         if (context_struct_to_string(tcontext, &t, &tlen))
751                 goto out;
752         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
753                   "op=security_validate_transition seresult=denied"
754                   " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
755                   o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
756 out:
757         kfree(o);
758         kfree(n);
759         kfree(t);
760
761         if (!selinux_enforcing)
762                 return 0;
763         return -EPERM;
764 }
765
766 static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
767                                           u16 orig_tclass, bool user)
768 {
769         struct context *ocontext;
770         struct context *ncontext;
771         struct context *tcontext;
772         struct class_datum *tclass_datum;
773         struct constraint_node *constraint;
774         u16 tclass;
775         int rc = 0;
776
777         if (!ss_initialized)
778                 return 0;
779
780         read_lock(&policy_rwlock);
781
782         if (!user)
783                 tclass = unmap_class(orig_tclass);
784         else
785                 tclass = orig_tclass;
786
787         if (!tclass || tclass > policydb.p_classes.nprim) {
788                 rc = -EINVAL;
789                 goto out;
790         }
791         tclass_datum = policydb.class_val_to_struct[tclass - 1];
792
793         ocontext = sidtab_search(&sidtab, oldsid);
794         if (!ocontext) {
795                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
796                         __func__, oldsid);
797                 rc = -EINVAL;
798                 goto out;
799         }
800
801         ncontext = sidtab_search(&sidtab, newsid);
802         if (!ncontext) {
803                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
804                         __func__, newsid);
805                 rc = -EINVAL;
806                 goto out;
807         }
808
809         tcontext = sidtab_search(&sidtab, tasksid);
810         if (!tcontext) {
811                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
812                         __func__, tasksid);
813                 rc = -EINVAL;
814                 goto out;
815         }
816
817         constraint = tclass_datum->validatetrans;
818         while (constraint) {
819                 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
820                                           constraint->expr)) {
821                         if (user)
822                                 rc = -EPERM;
823                         else
824                                 rc = security_validtrans_handle_fail(ocontext,
825                                                                      ncontext,
826                                                                      tcontext,
827                                                                      tclass);
828                         goto out;
829                 }
830                 constraint = constraint->next;
831         }
832
833 out:
834         read_unlock(&policy_rwlock);
835         return rc;
836 }
837
838 int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
839                                         u16 tclass)
840 {
841         return security_compute_validatetrans(oldsid, newsid, tasksid,
842                                                 tclass, true);
843 }
844
845 int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
846                                  u16 orig_tclass)
847 {
848         return security_compute_validatetrans(oldsid, newsid, tasksid,
849                                                 orig_tclass, false);
850 }
851
852 /*
853  * security_bounded_transition - check whether the given
854  * transition is directed to bounded, or not.
855  * It returns 0, if @newsid is bounded by @oldsid.
856  * Otherwise, it returns error code.
857  *
858  * @oldsid : current security identifier
859  * @newsid : destinated security identifier
860  */
861 int security_bounded_transition(u32 old_sid, u32 new_sid)
862 {
863         struct context *old_context, *new_context;
864         struct type_datum *type;
865         int index;
866         int rc;
867
868         read_lock(&policy_rwlock);
869
870         rc = -EINVAL;
871         old_context = sidtab_search(&sidtab, old_sid);
872         if (!old_context) {
873                 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
874                        __func__, old_sid);
875                 goto out;
876         }
877
878         rc = -EINVAL;
879         new_context = sidtab_search(&sidtab, new_sid);
880         if (!new_context) {
881                 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
882                        __func__, new_sid);
883                 goto out;
884         }
885
886         rc = 0;
887         /* type/domain unchanged */
888         if (old_context->type == new_context->type)
889                 goto out;
890
891         index = new_context->type;
892         while (true) {
893                 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
894                                           index - 1);
895                 BUG_ON(!type);
896
897                 /* not bounded anymore */
898                 rc = -EPERM;
899                 if (!type->bounds)
900                         break;
901
902                 /* @newsid is bounded by @oldsid */
903                 rc = 0;
904                 if (type->bounds == old_context->type)
905                         break;
906
907                 index = type->bounds;
908         }
909
910         if (rc) {
911                 char *old_name = NULL;
912                 char *new_name = NULL;
913                 u32 length;
914
915                 if (!context_struct_to_string(old_context,
916                                               &old_name, &length) &&
917                     !context_struct_to_string(new_context,
918                                               &new_name, &length)) {
919                         audit_log(current->audit_context,
920                                   GFP_ATOMIC, AUDIT_SELINUX_ERR,
921                                   "op=security_bounded_transition "
922                                   "seresult=denied "
923                                   "oldcontext=%s newcontext=%s",
924                                   old_name, new_name);
925                 }
926                 kfree(new_name);
927                 kfree(old_name);
928         }
929 out:
930         read_unlock(&policy_rwlock);
931
932         return rc;
933 }
934
935 static void avd_init(struct av_decision *avd)
936 {
937         avd->allowed = 0;
938         avd->auditallow = 0;
939         avd->auditdeny = 0xffffffff;
940         avd->seqno = latest_granting;
941         avd->flags = 0;
942 }
943
944 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
945                                         struct avtab_node *node)
946 {
947         unsigned int i;
948
949         if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
950                 if (xpermd->driver != node->datum.u.xperms->driver)
951                         return;
952         } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
953                 if (!security_xperm_test(node->datum.u.xperms->perms.p,
954                                         xpermd->driver))
955                         return;
956         } else {
957                 BUG();
958         }
959
960         if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
961                 xpermd->used |= XPERMS_ALLOWED;
962                 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
963                         memset(xpermd->allowed->p, 0xff,
964                                         sizeof(xpermd->allowed->p));
965                 }
966                 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
967                         for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
968                                 xpermd->allowed->p[i] |=
969                                         node->datum.u.xperms->perms.p[i];
970                 }
971         } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
972                 xpermd->used |= XPERMS_AUDITALLOW;
973                 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
974                         memset(xpermd->auditallow->p, 0xff,
975                                         sizeof(xpermd->auditallow->p));
976                 }
977                 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
978                         for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
979                                 xpermd->auditallow->p[i] |=
980                                         node->datum.u.xperms->perms.p[i];
981                 }
982         } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
983                 xpermd->used |= XPERMS_DONTAUDIT;
984                 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
985                         memset(xpermd->dontaudit->p, 0xff,
986                                         sizeof(xpermd->dontaudit->p));
987                 }
988                 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
989                         for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
990                                 xpermd->dontaudit->p[i] |=
991                                         node->datum.u.xperms->perms.p[i];
992                 }
993         } else {
994                 BUG();
995         }
996 }
997
998 void security_compute_xperms_decision(u32 ssid,
999                                 u32 tsid,
1000                                 u16 orig_tclass,
1001                                 u8 driver,
1002                                 struct extended_perms_decision *xpermd)
1003 {
1004         u16 tclass;
1005         struct context *scontext, *tcontext;
1006         struct avtab_key avkey;
1007         struct avtab_node *node;
1008         struct ebitmap *sattr, *tattr;
1009         struct ebitmap_node *snode, *tnode;
1010         unsigned int i, j;
1011
1012         xpermd->driver = driver;
1013         xpermd->used = 0;
1014         memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1015         memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1016         memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1017
1018         read_lock(&policy_rwlock);
1019         if (!ss_initialized)
1020                 goto allow;
1021
1022         scontext = sidtab_search(&sidtab, ssid);
1023         if (!scontext) {
1024                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1025                        __func__, ssid);
1026                 goto out;
1027         }
1028
1029         tcontext = sidtab_search(&sidtab, tsid);
1030         if (!tcontext) {
1031                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1032                        __func__, tsid);
1033                 goto out;
1034         }
1035
1036         tclass = unmap_class(orig_tclass);
1037         if (unlikely(orig_tclass && !tclass)) {
1038                 if (policydb.allow_unknown)
1039                         goto allow;
1040                 goto out;
1041         }
1042
1043
1044         if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1045                 pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1046                 goto out;
1047         }
1048
1049         avkey.target_class = tclass;
1050         avkey.specified = AVTAB_XPERMS;
1051         sattr = flex_array_get(policydb.type_attr_map_array,
1052                                 scontext->type - 1);
1053         BUG_ON(!sattr);
1054         tattr = flex_array_get(policydb.type_attr_map_array,
1055                                 tcontext->type - 1);
1056         BUG_ON(!tattr);
1057         ebitmap_for_each_positive_bit(sattr, snode, i) {
1058                 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1059                         avkey.source_type = i + 1;
1060                         avkey.target_type = j + 1;
1061                         for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1062                              node;
1063                              node = avtab_search_node_next(node, avkey.specified))
1064                                 services_compute_xperms_decision(xpermd, node);
1065
1066                         cond_compute_xperms(&policydb.te_cond_avtab,
1067                                                 &avkey, xpermd);
1068                 }
1069         }
1070 out:
1071         read_unlock(&policy_rwlock);
1072         return;
1073 allow:
1074         memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1075         goto out;
1076 }
1077
1078 /**
1079  * security_compute_av - Compute access vector decisions.
1080  * @ssid: source security identifier
1081  * @tsid: target security identifier
1082  * @tclass: target security class
1083  * @avd: access vector decisions
1084  * @xperms: extended permissions
1085  *
1086  * Compute a set of access vector decisions based on the
1087  * SID pair (@ssid, @tsid) for the permissions in @tclass.
1088  */
1089 void security_compute_av(u32 ssid,
1090                          u32 tsid,
1091                          u16 orig_tclass,
1092                          struct av_decision *avd,
1093                          struct extended_perms *xperms)
1094 {
1095         u16 tclass;
1096         struct context *scontext = NULL, *tcontext = NULL;
1097
1098         read_lock(&policy_rwlock);
1099         avd_init(avd);
1100         xperms->len = 0;
1101         if (!ss_initialized)
1102                 goto allow;
1103
1104         scontext = sidtab_search(&sidtab, ssid);
1105         if (!scontext) {
1106                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1107                        __func__, ssid);
1108                 goto out;
1109         }
1110
1111         /* permissive domain? */
1112         if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1113                 avd->flags |= AVD_FLAGS_PERMISSIVE;
1114
1115         tcontext = sidtab_search(&sidtab, tsid);
1116         if (!tcontext) {
1117                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1118                        __func__, tsid);
1119                 goto out;
1120         }
1121
1122         tclass = unmap_class(orig_tclass);
1123         if (unlikely(orig_tclass && !tclass)) {
1124                 if (policydb.allow_unknown)
1125                         goto allow;
1126                 goto out;
1127         }
1128         context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1129         map_decision(orig_tclass, avd, policydb.allow_unknown);
1130 out:
1131         read_unlock(&policy_rwlock);
1132         return;
1133 allow:
1134         avd->allowed = 0xffffffff;
1135         goto out;
1136 }
1137
1138 void security_compute_av_user(u32 ssid,
1139                               u32 tsid,
1140                               u16 tclass,
1141                               struct av_decision *avd)
1142 {
1143         struct context *scontext = NULL, *tcontext = NULL;
1144
1145         read_lock(&policy_rwlock);
1146         avd_init(avd);
1147         if (!ss_initialized)
1148                 goto allow;
1149
1150         scontext = sidtab_search(&sidtab, ssid);
1151         if (!scontext) {
1152                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1153                        __func__, ssid);
1154                 goto out;
1155         }
1156
1157         /* permissive domain? */
1158         if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1159                 avd->flags |= AVD_FLAGS_PERMISSIVE;
1160
1161         tcontext = sidtab_search(&sidtab, tsid);
1162         if (!tcontext) {
1163                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1164                        __func__, tsid);
1165                 goto out;
1166         }
1167
1168         if (unlikely(!tclass)) {
1169                 if (policydb.allow_unknown)
1170                         goto allow;
1171                 goto out;
1172         }
1173
1174         context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1175  out:
1176         read_unlock(&policy_rwlock);
1177         return;
1178 allow:
1179         avd->allowed = 0xffffffff;
1180         goto out;
1181 }
1182
1183 /*
1184  * Write the security context string representation of
1185  * the context structure `context' into a dynamically
1186  * allocated string of the correct size.  Set `*scontext'
1187  * to point to this string and set `*scontext_len' to
1188  * the length of the string.
1189  */
1190 static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1191 {
1192         char *scontextp;
1193
1194         if (scontext)
1195                 *scontext = NULL;
1196         *scontext_len = 0;
1197
1198         if (context->len) {
1199                 *scontext_len = context->len;
1200                 if (scontext) {
1201                         *scontext = kstrdup(context->str, GFP_ATOMIC);
1202                         if (!(*scontext))
1203                                 return -ENOMEM;
1204                 }
1205                 return 0;
1206         }
1207
1208         /* Compute the size of the context. */
1209         *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1210         *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1211         *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1212         *scontext_len += mls_compute_context_len(context);
1213
1214         if (!scontext)
1215                 return 0;
1216
1217         /* Allocate space for the context; caller must free this space. */
1218         scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1219         if (!scontextp)
1220                 return -ENOMEM;
1221         *scontext = scontextp;
1222
1223         /*
1224          * Copy the user name, role name and type name into the context.
1225          */
1226         scontextp += sprintf(scontextp, "%s:%s:%s",
1227                 sym_name(&policydb, SYM_USERS, context->user - 1),
1228                 sym_name(&policydb, SYM_ROLES, context->role - 1),
1229                 sym_name(&policydb, SYM_TYPES, context->type - 1));
1230
1231         mls_sid_to_context(context, &scontextp);
1232
1233         *scontextp = 0;
1234
1235         return 0;
1236 }
1237
1238 #include "initial_sid_to_string.h"
1239
1240 const char *security_get_initial_sid_context(u32 sid)
1241 {
1242         if (unlikely(sid > SECINITSID_NUM))
1243                 return NULL;
1244         return initial_sid_to_string[sid];
1245 }
1246
1247 static int security_sid_to_context_core(u32 sid, char **scontext,
1248                                         u32 *scontext_len, int force)
1249 {
1250         struct context *context;
1251         int rc = 0;
1252
1253         if (scontext)
1254                 *scontext = NULL;
1255         *scontext_len  = 0;
1256
1257         if (!ss_initialized) {
1258                 if (sid <= SECINITSID_NUM) {
1259                         char *scontextp;
1260
1261                         *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1262                         if (!scontext)
1263                                 goto out;
1264                         scontextp = kmemdup(initial_sid_to_string[sid],
1265                                             *scontext_len, GFP_ATOMIC);
1266                         if (!scontextp) {
1267                                 rc = -ENOMEM;
1268                                 goto out;
1269                         }
1270                         *scontext = scontextp;
1271                         goto out;
1272                 }
1273                 printk(KERN_ERR "SELinux: %s:  called before initial "
1274                        "load_policy on unknown SID %d\n", __func__, sid);
1275                 rc = -EINVAL;
1276                 goto out;
1277         }
1278         read_lock(&policy_rwlock);
1279         if (force)
1280                 context = sidtab_search_force(&sidtab, sid);
1281         else
1282                 context = sidtab_search(&sidtab, sid);
1283         if (!context) {
1284                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1285                         __func__, sid);
1286                 rc = -EINVAL;
1287                 goto out_unlock;
1288         }
1289         rc = context_struct_to_string(context, scontext, scontext_len);
1290 out_unlock:
1291         read_unlock(&policy_rwlock);
1292 out:
1293         return rc;
1294
1295 }
1296
1297 /**
1298  * security_sid_to_context - Obtain a context for a given SID.
1299  * @sid: security identifier, SID
1300  * @scontext: security context
1301  * @scontext_len: length in bytes
1302  *
1303  * Write the string representation of the context associated with @sid
1304  * into a dynamically allocated string of the correct size.  Set @scontext
1305  * to point to this string and set @scontext_len to the length of the string.
1306  */
1307 int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1308 {
1309         return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1310 }
1311
1312 int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1313 {
1314         return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1315 }
1316
1317 /*
1318  * Caveat:  Mutates scontext.
1319  */
1320 static int string_to_context_struct(struct policydb *pol,
1321                                     struct sidtab *sidtabp,
1322                                     char *scontext,
1323                                     u32 scontext_len,
1324                                     struct context *ctx,
1325                                     u32 def_sid)
1326 {
1327         struct role_datum *role;
1328         struct type_datum *typdatum;
1329         struct user_datum *usrdatum;
1330         char *scontextp, *p, oldc;
1331         int rc = 0;
1332
1333         context_init(ctx);
1334
1335         /* Parse the security context. */
1336
1337         rc = -EINVAL;
1338         scontextp = (char *) scontext;
1339
1340         /* Extract the user. */
1341         p = scontextp;
1342         while (*p && *p != ':')
1343                 p++;
1344
1345         if (*p == 0)
1346                 goto out;
1347
1348         *p++ = 0;
1349
1350         usrdatum = hashtab_search(pol->p_users.table, scontextp);
1351         if (!usrdatum)
1352                 goto out;
1353
1354         ctx->user = usrdatum->value;
1355
1356         /* Extract role. */
1357         scontextp = p;
1358         while (*p && *p != ':')
1359                 p++;
1360
1361         if (*p == 0)
1362                 goto out;
1363
1364         *p++ = 0;
1365
1366         role = hashtab_search(pol->p_roles.table, scontextp);
1367         if (!role)
1368                 goto out;
1369         ctx->role = role->value;
1370
1371         /* Extract type. */
1372         scontextp = p;
1373         while (*p && *p != ':')
1374                 p++;
1375         oldc = *p;
1376         *p++ = 0;
1377
1378         typdatum = hashtab_search(pol->p_types.table, scontextp);
1379         if (!typdatum || typdatum->attribute)
1380                 goto out;
1381
1382         ctx->type = typdatum->value;
1383
1384         rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1385         if (rc)
1386                 goto out;
1387
1388         rc = -EINVAL;
1389         if ((p - scontext) < scontext_len)
1390                 goto out;
1391
1392         /* Check the validity of the new context. */
1393         if (!policydb_context_isvalid(pol, ctx))
1394                 goto out;
1395         rc = 0;
1396 out:
1397         if (rc)
1398                 context_destroy(ctx);
1399         return rc;
1400 }
1401
1402 static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1403                                         u32 *sid, u32 def_sid, gfp_t gfp_flags,
1404                                         int force)
1405 {
1406         char *scontext2, *str = NULL;
1407         struct context context;
1408         int rc = 0;
1409
1410         /* An empty security context is never valid. */
1411         if (!scontext_len)
1412                 return -EINVAL;
1413
1414         if (!ss_initialized) {
1415                 int i;
1416
1417                 for (i = 1; i < SECINITSID_NUM; i++) {
1418                         if (!strcmp(initial_sid_to_string[i], scontext)) {
1419                                 *sid = i;
1420                                 return 0;
1421                         }
1422                 }
1423                 *sid = SECINITSID_KERNEL;
1424                 return 0;
1425         }
1426         *sid = SECSID_NULL;
1427
1428         /* Copy the string so that we can modify the copy as we parse it. */
1429         scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1430         if (!scontext2)
1431                 return -ENOMEM;
1432         memcpy(scontext2, scontext, scontext_len);
1433         scontext2[scontext_len] = 0;
1434
1435         if (force) {
1436                 /* Save another copy for storing in uninterpreted form */
1437                 rc = -ENOMEM;
1438                 str = kstrdup(scontext2, gfp_flags);
1439                 if (!str)
1440                         goto out;
1441         }
1442
1443         read_lock(&policy_rwlock);
1444         rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1445                                       scontext_len, &context, def_sid);
1446         if (rc == -EINVAL && force) {
1447                 context.str = str;
1448                 context.len = scontext_len;
1449                 str = NULL;
1450         } else if (rc)
1451                 goto out_unlock;
1452         rc = sidtab_context_to_sid(&sidtab, &context, sid);
1453         context_destroy(&context);
1454 out_unlock:
1455         read_unlock(&policy_rwlock);
1456 out:
1457         kfree(scontext2);
1458         kfree(str);
1459         return rc;
1460 }
1461
1462 /**
1463  * security_context_to_sid - Obtain a SID for a given security context.
1464  * @scontext: security context
1465  * @scontext_len: length in bytes
1466  * @sid: security identifier, SID
1467  * @gfp: context for the allocation
1468  *
1469  * Obtains a SID associated with the security context that
1470  * has the string representation specified by @scontext.
1471  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1472  * memory is available, or 0 on success.
1473  */
1474 int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1475                             gfp_t gfp)
1476 {
1477         return security_context_to_sid_core(scontext, scontext_len,
1478                                             sid, SECSID_NULL, gfp, 0);
1479 }
1480
1481 int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1482 {
1483         return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
1484 }
1485
1486 /**
1487  * security_context_to_sid_default - Obtain a SID for a given security context,
1488  * falling back to specified default if needed.
1489  *
1490  * @scontext: security context
1491  * @scontext_len: length in bytes
1492  * @sid: security identifier, SID
1493  * @def_sid: default SID to assign on error
1494  *
1495  * Obtains a SID associated with the security context that
1496  * has the string representation specified by @scontext.
1497  * The default SID is passed to the MLS layer to be used to allow
1498  * kernel labeling of the MLS field if the MLS field is not present
1499  * (for upgrading to MLS without full relabel).
1500  * Implicitly forces adding of the context even if it cannot be mapped yet.
1501  * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1502  * memory is available, or 0 on success.
1503  */
1504 int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1505                                     u32 *sid, u32 def_sid, gfp_t gfp_flags)
1506 {
1507         return security_context_to_sid_core(scontext, scontext_len,
1508                                             sid, def_sid, gfp_flags, 1);
1509 }
1510
1511 int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1512                                   u32 *sid)
1513 {
1514         return security_context_to_sid_core(scontext, scontext_len,
1515                                             sid, SECSID_NULL, GFP_KERNEL, 1);
1516 }
1517
1518 static int compute_sid_handle_invalid_context(
1519         struct context *scontext,
1520         struct context *tcontext,
1521         u16 tclass,
1522         struct context *newcontext)
1523 {
1524         char *s = NULL, *t = NULL, *n = NULL;
1525         u32 slen, tlen, nlen;
1526
1527         if (context_struct_to_string(scontext, &s, &slen))
1528                 goto out;
1529         if (context_struct_to_string(tcontext, &t, &tlen))
1530                 goto out;
1531         if (context_struct_to_string(newcontext, &n, &nlen))
1532                 goto out;
1533         audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1534                   "op=security_compute_sid invalid_context=%s"
1535                   " scontext=%s"
1536                   " tcontext=%s"
1537                   " tclass=%s",
1538                   n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1539 out:
1540         kfree(s);
1541         kfree(t);
1542         kfree(n);
1543         if (!selinux_enforcing)
1544                 return 0;
1545         return -EACCES;
1546 }
1547
1548 static void filename_compute_type(struct policydb *p, struct context *newcontext,
1549                                   u32 stype, u32 ttype, u16 tclass,
1550                                   const char *objname)
1551 {
1552         struct filename_trans ft;
1553         struct filename_trans_datum *otype;
1554
1555         /*
1556          * Most filename trans rules are going to live in specific directories
1557          * like /dev or /var/run.  This bitmap will quickly skip rule searches
1558          * if the ttype does not contain any rules.
1559          */
1560         if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1561                 return;
1562
1563         ft.stype = stype;
1564         ft.ttype = ttype;
1565         ft.tclass = tclass;
1566         ft.name = objname;
1567
1568         otype = hashtab_search(p->filename_trans, &ft);
1569         if (otype)
1570                 newcontext->type = otype->otype;
1571 }
1572
1573 static int security_compute_sid(u32 ssid,
1574                                 u32 tsid,
1575                                 u16 orig_tclass,
1576                                 u32 specified,
1577                                 const char *objname,
1578                                 u32 *out_sid,
1579                                 bool kern)
1580 {
1581         struct class_datum *cladatum = NULL;
1582         struct context *scontext = NULL, *tcontext = NULL, newcontext;
1583         struct role_trans *roletr = NULL;
1584         struct avtab_key avkey;
1585         struct avtab_datum *avdatum;
1586         struct avtab_node *node;
1587         u16 tclass;
1588         int rc = 0;
1589         bool sock;
1590
1591         if (!ss_initialized) {
1592                 switch (orig_tclass) {
1593                 case SECCLASS_PROCESS: /* kernel value */
1594                         *out_sid = ssid;
1595                         break;
1596                 default:
1597                         *out_sid = tsid;
1598                         break;
1599                 }
1600                 goto out;
1601         }
1602
1603         context_init(&newcontext);
1604
1605         read_lock(&policy_rwlock);
1606
1607         if (kern) {
1608                 tclass = unmap_class(orig_tclass);
1609                 sock = security_is_socket_class(orig_tclass);
1610         } else {
1611                 tclass = orig_tclass;
1612                 sock = security_is_socket_class(map_class(tclass));
1613         }
1614
1615         scontext = sidtab_search(&sidtab, ssid);
1616         if (!scontext) {
1617                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1618                        __func__, ssid);
1619                 rc = -EINVAL;
1620                 goto out_unlock;
1621         }
1622         tcontext = sidtab_search(&sidtab, tsid);
1623         if (!tcontext) {
1624                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1625                        __func__, tsid);
1626                 rc = -EINVAL;
1627                 goto out_unlock;
1628         }
1629
1630         if (tclass && tclass <= policydb.p_classes.nprim)
1631                 cladatum = policydb.class_val_to_struct[tclass - 1];
1632
1633         /* Set the user identity. */
1634         switch (specified) {
1635         case AVTAB_TRANSITION:
1636         case AVTAB_CHANGE:
1637                 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1638                         newcontext.user = tcontext->user;
1639                 } else {
1640                         /* notice this gets both DEFAULT_SOURCE and unset */
1641                         /* Use the process user identity. */
1642                         newcontext.user = scontext->user;
1643                 }
1644                 break;
1645         case AVTAB_MEMBER:
1646                 /* Use the related object owner. */
1647                 newcontext.user = tcontext->user;
1648                 break;
1649         }
1650
1651         /* Set the role to default values. */
1652         if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1653                 newcontext.role = scontext->role;
1654         } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1655                 newcontext.role = tcontext->role;
1656         } else {
1657                 if ((tclass == policydb.process_class) || (sock == true))
1658                         newcontext.role = scontext->role;
1659                 else
1660                         newcontext.role = OBJECT_R_VAL;
1661         }
1662
1663         /* Set the type to default values. */
1664         if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1665                 newcontext.type = scontext->type;
1666         } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1667                 newcontext.type = tcontext->type;
1668         } else {
1669                 if ((tclass == policydb.process_class) || (sock == true)) {
1670                         /* Use the type of process. */
1671                         newcontext.type = scontext->type;
1672                 } else {
1673                         /* Use the type of the related object. */
1674                         newcontext.type = tcontext->type;
1675                 }
1676         }
1677
1678         /* Look for a type transition/member/change rule. */
1679         avkey.source_type = scontext->type;
1680         avkey.target_type = tcontext->type;
1681         avkey.target_class = tclass;
1682         avkey.specified = specified;
1683         avdatum = avtab_search(&policydb.te_avtab, &avkey);
1684
1685         /* If no permanent rule, also check for enabled conditional rules */
1686         if (!avdatum) {
1687                 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1688                 for (; node; node = avtab_search_node_next(node, specified)) {
1689                         if (node->key.specified & AVTAB_ENABLED) {
1690                                 avdatum = &node->datum;
1691                                 break;
1692                         }
1693                 }
1694         }
1695
1696         if (avdatum) {
1697                 /* Use the type from the type transition/member/change rule. */
1698                 newcontext.type = avdatum->u.data;
1699         }
1700
1701         /* if we have a objname this is a file trans check so check those rules */
1702         if (objname)
1703                 filename_compute_type(&policydb, &newcontext, scontext->type,
1704                                       tcontext->type, tclass, objname);
1705
1706         /* Check for class-specific changes. */
1707         if (specified & AVTAB_TRANSITION) {
1708                 /* Look for a role transition rule. */
1709                 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1710                         if ((roletr->role == scontext->role) &&
1711                             (roletr->type == tcontext->type) &&
1712                             (roletr->tclass == tclass)) {
1713                                 /* Use the role transition rule. */
1714                                 newcontext.role = roletr->new_role;
1715                                 break;
1716                         }
1717                 }
1718         }
1719
1720         /* Set the MLS attributes.
1721            This is done last because it may allocate memory. */
1722         rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1723                              &newcontext, sock);
1724         if (rc)
1725                 goto out_unlock;
1726
1727         /* Check the validity of the context. */
1728         if (!policydb_context_isvalid(&policydb, &newcontext)) {
1729                 rc = compute_sid_handle_invalid_context(scontext,
1730                                                         tcontext,
1731                                                         tclass,
1732                                                         &newcontext);
1733                 if (rc)
1734                         goto out_unlock;
1735         }
1736         /* Obtain the sid for the context. */
1737         rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1738 out_unlock:
1739         read_unlock(&policy_rwlock);
1740         context_destroy(&newcontext);
1741 out:
1742         return rc;
1743 }
1744
1745 /**
1746  * security_transition_sid - Compute the SID for a new subject/object.
1747  * @ssid: source security identifier
1748  * @tsid: target security identifier
1749  * @tclass: target security class
1750  * @out_sid: security identifier for new subject/object
1751  *
1752  * Compute a SID to use for labeling a new subject or object in the
1753  * class @tclass based on a SID pair (@ssid, @tsid).
1754  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1755  * if insufficient memory is available, or %0 if the new SID was
1756  * computed successfully.
1757  */
1758 int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1759                             const struct qstr *qstr, u32 *out_sid)
1760 {
1761         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1762                                     qstr ? qstr->name : NULL, out_sid, true);
1763 }
1764
1765 int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1766                                  const char *objname, u32 *out_sid)
1767 {
1768         return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1769                                     objname, out_sid, false);
1770 }
1771
1772 /**
1773  * security_member_sid - Compute the SID for member selection.
1774  * @ssid: source security identifier
1775  * @tsid: target security identifier
1776  * @tclass: target security class
1777  * @out_sid: security identifier for selected member
1778  *
1779  * Compute a SID to use when selecting a member of a polyinstantiated
1780  * object of class @tclass based on a SID pair (@ssid, @tsid).
1781  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1782  * if insufficient memory is available, or %0 if the SID was
1783  * computed successfully.
1784  */
1785 int security_member_sid(u32 ssid,
1786                         u32 tsid,
1787                         u16 tclass,
1788                         u32 *out_sid)
1789 {
1790         return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1791                                     out_sid, false);
1792 }
1793
1794 /**
1795  * security_change_sid - Compute the SID for object relabeling.
1796  * @ssid: source security identifier
1797  * @tsid: target security identifier
1798  * @tclass: target security class
1799  * @out_sid: security identifier for selected member
1800  *
1801  * Compute a SID to use for relabeling an object of class @tclass
1802  * based on a SID pair (@ssid, @tsid).
1803  * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1804  * if insufficient memory is available, or %0 if the SID was
1805  * computed successfully.
1806  */
1807 int security_change_sid(u32 ssid,
1808                         u32 tsid,
1809                         u16 tclass,
1810                         u32 *out_sid)
1811 {
1812         return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1813                                     out_sid, false);
1814 }
1815
1816 /* Clone the SID into the new SID table. */
1817 static int clone_sid(u32 sid,
1818                      struct context *context,
1819                      void *arg)
1820 {
1821         struct sidtab *s = arg;
1822
1823         if (sid > SECINITSID_NUM)
1824                 return sidtab_insert(s, sid, context);
1825         else
1826                 return 0;
1827 }
1828
1829 static inline int convert_context_handle_invalid_context(struct context *context)
1830 {
1831         char *s;
1832         u32 len;
1833
1834         if (selinux_enforcing)
1835                 return -EINVAL;
1836
1837         if (!context_struct_to_string(context, &s, &len)) {
1838                 printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
1839                 kfree(s);
1840         }
1841         return 0;
1842 }
1843
1844 struct convert_context_args {
1845         struct policydb *oldp;
1846         struct policydb *newp;
1847 };
1848
1849 /*
1850  * Convert the values in the security context
1851  * structure `c' from the values specified
1852  * in the policy `p->oldp' to the values specified
1853  * in the policy `p->newp'.  Verify that the
1854  * context is valid under the new policy.
1855  */
1856 static int convert_context(u32 key,
1857                            struct context *c,
1858                            void *p)
1859 {
1860         struct convert_context_args *args;
1861         struct context oldc;
1862         struct ocontext *oc;
1863         struct mls_range *range;
1864         struct role_datum *role;
1865         struct type_datum *typdatum;
1866         struct user_datum *usrdatum;
1867         char *s;
1868         u32 len;
1869         int rc = 0;
1870
1871         if (key <= SECINITSID_NUM)
1872                 goto out;
1873
1874         args = p;
1875
1876         if (c->str) {
1877                 struct context ctx;
1878
1879                 rc = -ENOMEM;
1880                 s = kstrdup(c->str, GFP_KERNEL);
1881                 if (!s)
1882                         goto out;
1883
1884                 rc = string_to_context_struct(args->newp, NULL, s,
1885                                               c->len, &ctx, SECSID_NULL);
1886                 kfree(s);
1887                 if (!rc) {
1888                         printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1889                                c->str);
1890                         /* Replace string with mapped representation. */
1891                         kfree(c->str);
1892                         memcpy(c, &ctx, sizeof(*c));
1893                         goto out;
1894                 } else if (rc == -EINVAL) {
1895                         /* Retain string representation for later mapping. */
1896                         rc = 0;
1897                         goto out;
1898                 } else {
1899                         /* Other error condition, e.g. ENOMEM. */
1900                         printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1901                                c->str, -rc);
1902                         goto out;
1903                 }
1904         }
1905
1906         rc = context_cpy(&oldc, c);
1907         if (rc)
1908                 goto out;
1909
1910         /* Convert the user. */
1911         rc = -EINVAL;
1912         usrdatum = hashtab_search(args->newp->p_users.table,
1913                                   sym_name(args->oldp, SYM_USERS, c->user - 1));
1914         if (!usrdatum)
1915                 goto bad;
1916         c->user = usrdatum->value;
1917
1918         /* Convert the role. */
1919         rc = -EINVAL;
1920         role = hashtab_search(args->newp->p_roles.table,
1921                               sym_name(args->oldp, SYM_ROLES, c->role - 1));
1922         if (!role)
1923                 goto bad;
1924         c->role = role->value;
1925
1926         /* Convert the type. */
1927         rc = -EINVAL;
1928         typdatum = hashtab_search(args->newp->p_types.table,
1929                                   sym_name(args->oldp, SYM_TYPES, c->type - 1));
1930         if (!typdatum)
1931                 goto bad;
1932         c->type = typdatum->value;
1933
1934         /* Convert the MLS fields if dealing with MLS policies */
1935         if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1936                 rc = mls_convert_context(args->oldp, args->newp, c);
1937                 if (rc)
1938                         goto bad;
1939         } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1940                 /*
1941                  * Switching between MLS and non-MLS policy:
1942                  * free any storage used by the MLS fields in the
1943                  * context for all existing entries in the sidtab.
1944                  */
1945                 mls_context_destroy(c);
1946         } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1947                 /*
1948                  * Switching between non-MLS and MLS policy:
1949                  * ensure that the MLS fields of the context for all
1950                  * existing entries in the sidtab are filled in with a
1951                  * suitable default value, likely taken from one of the
1952                  * initial SIDs.
1953                  */
1954                 oc = args->newp->ocontexts[OCON_ISID];
1955                 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1956                         oc = oc->next;
1957                 rc = -EINVAL;
1958                 if (!oc) {
1959                         printk(KERN_ERR "SELinux:  unable to look up"
1960                                 " the initial SIDs list\n");
1961                         goto bad;
1962                 }
1963                 range = &oc->context[0].range;
1964                 rc = mls_range_set(c, range);
1965                 if (rc)
1966                         goto bad;
1967         }
1968
1969         /* Check the validity of the new context. */
1970         if (!policydb_context_isvalid(args->newp, c)) {
1971                 rc = convert_context_handle_invalid_context(&oldc);
1972                 if (rc)
1973                         goto bad;
1974         }
1975
1976         context_destroy(&oldc);
1977
1978         rc = 0;
1979 out:
1980         return rc;
1981 bad:
1982         /* Map old representation to string and save it. */
1983         rc = context_struct_to_string(&oldc, &s, &len);
1984         if (rc)
1985                 return rc;
1986         context_destroy(&oldc);
1987         context_destroy(c);
1988         c->str = s;
1989         c->len = len;
1990         printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1991                c->str);
1992         rc = 0;
1993         goto out;
1994 }
1995
1996 static void security_load_policycaps(void)
1997 {
1998         unsigned int i;
1999         struct ebitmap_node *node;
2000
2001         selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
2002                                                   POLICYDB_CAPABILITY_NETPEER);
2003         selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
2004                                                   POLICYDB_CAPABILITY_OPENPERM);
2005         selinux_policycap_extsockclass = ebitmap_get_bit(&policydb.policycaps,
2006                                           POLICYDB_CAPABILITY_EXTSOCKCLASS);
2007         selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2008                                                   POLICYDB_CAPABILITY_ALWAYSNETWORK);
2009         selinux_policycap_cgroupseclabel =
2010                 ebitmap_get_bit(&policydb.policycaps,
2011                                 POLICYDB_CAPABILITY_CGROUPSECLABEL);
2012
2013         for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2014                 pr_info("SELinux:  policy capability %s=%d\n",
2015                         selinux_policycap_names[i],
2016                         ebitmap_get_bit(&policydb.policycaps, i));
2017
2018         ebitmap_for_each_positive_bit(&policydb.policycaps, node, i) {
2019                 if (i >= ARRAY_SIZE(selinux_policycap_names))
2020                         pr_info("SELinux:  unknown policy capability %u\n",
2021                                 i);
2022         }
2023 }
2024
2025 static int security_preserve_bools(struct policydb *p);
2026
2027 /**
2028  * security_load_policy - Load a security policy configuration.
2029  * @data: binary policy data
2030  * @len: length of data in bytes
2031  *
2032  * Load a new set of security policy configuration data,
2033  * validate it and convert the SID table as necessary.
2034  * This function will flush the access vector cache after
2035  * loading the new policy.
2036  */
2037 int security_load_policy(void *data, size_t len)
2038 {
2039         struct policydb *oldpolicydb, *newpolicydb;
2040         struct sidtab oldsidtab, newsidtab;
2041         struct selinux_mapping *oldmap, *map = NULL;
2042         struct convert_context_args args;
2043         u32 seqno;
2044         u16 map_size;
2045         int rc = 0;
2046         struct policy_file file = { data, len }, *fp = &file;
2047
2048         oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2049         if (!oldpolicydb) {
2050                 rc = -ENOMEM;
2051                 goto out;
2052         }
2053         newpolicydb = oldpolicydb + 1;
2054
2055         if (!ss_initialized) {
2056                 avtab_cache_init();
2057                 ebitmap_cache_init();
2058                 rc = policydb_read(&policydb, fp);
2059                 if (rc) {
2060                         avtab_cache_destroy();
2061                         ebitmap_cache_destroy();
2062                         goto out;
2063                 }
2064
2065                 policydb.len = len;
2066                 rc = selinux_set_mapping(&policydb, secclass_map,
2067                                          &current_mapping,
2068                                          &current_mapping_size);
2069                 if (rc) {
2070                         policydb_destroy(&policydb);
2071                         avtab_cache_destroy();
2072                         ebitmap_cache_destroy();
2073                         goto out;
2074                 }
2075
2076                 rc = policydb_load_isids(&policydb, &sidtab);
2077                 if (rc) {
2078                         policydb_destroy(&policydb);
2079                         avtab_cache_destroy();
2080                         ebitmap_cache_destroy();
2081                         goto out;
2082                 }
2083
2084                 security_load_policycaps();
2085                 ss_initialized = 1;
2086                 seqno = ++latest_granting;
2087                 selinux_complete_init();
2088                 avc_ss_reset(seqno);
2089                 selnl_notify_policyload(seqno);
2090                 selinux_status_update_policyload(seqno);
2091                 selinux_netlbl_cache_invalidate();
2092                 selinux_xfrm_notify_policyload();
2093                 goto out;
2094         }
2095
2096 #if 0
2097         sidtab_hash_eval(&sidtab, "sids");
2098 #endif
2099
2100         rc = policydb_read(newpolicydb, fp);
2101         if (rc)
2102                 goto out;
2103
2104         newpolicydb->len = len;
2105         /* If switching between different policy types, log MLS status */
2106         if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2107                 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2108         else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2109                 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2110
2111         rc = policydb_load_isids(newpolicydb, &newsidtab);
2112         if (rc) {
2113                 printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2114                 policydb_destroy(newpolicydb);
2115                 goto out;
2116         }
2117
2118         rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2119         if (rc)
2120                 goto err;
2121
2122         rc = security_preserve_bools(newpolicydb);
2123         if (rc) {
2124                 printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2125                 goto err;
2126         }
2127
2128         /* Clone the SID table. */
2129         sidtab_shutdown(&sidtab);
2130
2131         rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2132         if (rc)
2133                 goto err;
2134
2135         /*
2136          * Convert the internal representations of contexts
2137          * in the new SID table.
2138          */
2139         args.oldp = &policydb;
2140         args.newp = newpolicydb;
2141         rc = sidtab_map(&newsidtab, convert_context, &args);
2142         if (rc) {
2143                 printk(KERN_ERR "SELinux:  unable to convert the internal"
2144                         " representation of contexts in the new SID"
2145                         " table\n");
2146                 goto err;
2147         }
2148
2149         /* Save the old policydb and SID table to free later. */
2150         memcpy(oldpolicydb, &policydb, sizeof(policydb));
2151         sidtab_set(&oldsidtab, &sidtab);
2152
2153         /* Install the new policydb and SID table. */
2154         write_lock_irq(&policy_rwlock);
2155         memcpy(&policydb, newpolicydb, sizeof(policydb));
2156         sidtab_set(&sidtab, &newsidtab);
2157         security_load_policycaps();
2158         oldmap = current_mapping;
2159         current_mapping = map;
2160         current_mapping_size = map_size;
2161         seqno = ++latest_granting;
2162         write_unlock_irq(&policy_rwlock);
2163
2164         /* Free the old policydb and SID table. */
2165         policydb_destroy(oldpolicydb);
2166         sidtab_destroy(&oldsidtab);
2167         kfree(oldmap);
2168
2169         avc_ss_reset(seqno);
2170         selnl_notify_policyload(seqno);
2171         selinux_status_update_policyload(seqno);
2172         selinux_netlbl_cache_invalidate();
2173         selinux_xfrm_notify_policyload();
2174
2175         rc = 0;
2176         goto out;
2177
2178 err:
2179         kfree(map);
2180         sidtab_destroy(&newsidtab);
2181         policydb_destroy(newpolicydb);
2182
2183 out:
2184         kfree(oldpolicydb);
2185         return rc;
2186 }
2187
2188 size_t security_policydb_len(void)
2189 {
2190         size_t len;
2191
2192         read_lock(&policy_rwlock);
2193         len = policydb.len;
2194         read_unlock(&policy_rwlock);
2195
2196         return len;
2197 }
2198
2199 /**
2200  * security_port_sid - Obtain the SID for a port.
2201  * @protocol: protocol number
2202  * @port: port number
2203  * @out_sid: security identifier
2204  */
2205 int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2206 {
2207         struct ocontext *c;
2208         int rc = 0;
2209
2210         read_lock(&policy_rwlock);
2211
2212         c = policydb.ocontexts[OCON_PORT];
2213         while (c) {
2214                 if (c->u.port.protocol == protocol &&
2215                     c->u.port.low_port <= port &&
2216                     c->u.port.high_port >= port)
2217                         break;
2218                 c = c->next;
2219         }
2220
2221         if (c) {
2222                 if (!c->sid[0]) {
2223                         rc = sidtab_context_to_sid(&sidtab,
2224                                                    &c->context[0],
2225                                                    &c->sid[0]);
2226                         if (rc)
2227                                 goto out;
2228                 }
2229                 *out_sid = c->sid[0];
2230         } else {
2231                 *out_sid = SECINITSID_PORT;
2232         }
2233
2234 out:
2235         read_unlock(&policy_rwlock);
2236         return rc;
2237 }
2238
2239 /**
2240  * security_pkey_sid - Obtain the SID for a pkey.
2241  * @subnet_prefix: Subnet Prefix
2242  * @pkey_num: pkey number
2243  * @out_sid: security identifier
2244  */
2245 int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2246 {
2247         struct ocontext *c;
2248         int rc = 0;
2249
2250         read_lock(&policy_rwlock);
2251
2252         c = policydb.ocontexts[OCON_IBPKEY];
2253         while (c) {
2254                 if (c->u.ibpkey.low_pkey <= pkey_num &&
2255                     c->u.ibpkey.high_pkey >= pkey_num &&
2256                     c->u.ibpkey.subnet_prefix == subnet_prefix)
2257                         break;
2258
2259                 c = c->next;
2260         }
2261
2262         if (c) {
2263                 if (!c->sid[0]) {
2264                         rc = sidtab_context_to_sid(&sidtab,
2265                                                    &c->context[0],
2266                                                    &c->sid[0]);
2267                         if (rc)
2268                                 goto out;
2269                 }
2270                 *out_sid = c->sid[0];
2271         } else
2272                 *out_sid = SECINITSID_UNLABELED;
2273
2274 out:
2275         read_unlock(&policy_rwlock);
2276         return rc;
2277 }
2278
2279 /**
2280  * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2281  * @dev_name: device name
2282  * @port: port number
2283  * @out_sid: security identifier
2284  */
2285 int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2286 {
2287         struct ocontext *c;
2288         int rc = 0;
2289
2290         read_lock(&policy_rwlock);
2291
2292         c = policydb.ocontexts[OCON_IBENDPORT];
2293         while (c) {
2294                 if (c->u.ibendport.port == port_num &&
2295                     !strncmp(c->u.ibendport.dev_name,
2296                              dev_name,
2297                              IB_DEVICE_NAME_MAX))
2298                         break;
2299
2300                 c = c->next;
2301         }
2302
2303         if (c) {
2304                 if (!c->sid[0]) {
2305                         rc = sidtab_context_to_sid(&sidtab,
2306                                                    &c->context[0],
2307                                                    &c->sid[0]);
2308                         if (rc)
2309                                 goto out;
2310                 }
2311                 *out_sid = c->sid[0];
2312         } else
2313                 *out_sid = SECINITSID_UNLABELED;
2314
2315 out:
2316         read_unlock(&policy_rwlock);
2317         return rc;
2318 }
2319
2320 /**
2321  * security_netif_sid - Obtain the SID for a network interface.
2322  * @name: interface name
2323  * @if_sid: interface SID
2324  */
2325 int security_netif_sid(char *name, u32 *if_sid)
2326 {
2327         int rc = 0;
2328         struct ocontext *c;
2329
2330         read_lock(&policy_rwlock);
2331
2332         c = policydb.ocontexts[OCON_NETIF];
2333         while (c) {
2334                 if (strcmp(name, c->u.name) == 0)
2335                         break;
2336                 c = c->next;
2337         }
2338
2339         if (c) {
2340                 if (!c->sid[0] || !c->sid[1]) {
2341                         rc = sidtab_context_to_sid(&sidtab,
2342                                                   &c->context[0],
2343                                                   &c->sid[0]);
2344                         if (rc)
2345                                 goto out;
2346                         rc = sidtab_context_to_sid(&sidtab,
2347                                                    &c->context[1],
2348                                                    &c->sid[1]);
2349                         if (rc)
2350                                 goto out;
2351                 }
2352                 *if_sid = c->sid[0];
2353         } else
2354                 *if_sid = SECINITSID_NETIF;
2355
2356 out:
2357         read_unlock(&policy_rwlock);
2358         return rc;
2359 }
2360
2361 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2362 {
2363         int i, fail = 0;
2364
2365         for (i = 0; i < 4; i++)
2366                 if (addr[i] != (input[i] & mask[i])) {
2367                         fail = 1;
2368                         break;
2369                 }
2370
2371         return !fail;
2372 }
2373
2374 /**
2375  * security_node_sid - Obtain the SID for a node (host).
2376  * @domain: communication domain aka address family
2377  * @addrp: address
2378  * @addrlen: address length in bytes
2379  * @out_sid: security identifier
2380  */
2381 int security_node_sid(u16 domain,
2382                       void *addrp,
2383                       u32 addrlen,
2384                       u32 *out_sid)
2385 {
2386         int rc;
2387         struct ocontext *c;
2388
2389         read_lock(&policy_rwlock);
2390
2391         switch (domain) {
2392         case AF_INET: {
2393                 u32 addr;
2394
2395                 rc = -EINVAL;
2396                 if (addrlen != sizeof(u32))
2397                         goto out;
2398
2399                 addr = *((u32 *)addrp);
2400
2401                 c = policydb.ocontexts[OCON_NODE];
2402                 while (c) {
2403                         if (c->u.node.addr == (addr & c->u.node.mask))
2404                                 break;
2405                         c = c->next;
2406                 }
2407                 break;
2408         }
2409
2410         case AF_INET6:
2411                 rc = -EINVAL;
2412                 if (addrlen != sizeof(u64) * 2)
2413                         goto out;
2414                 c = policydb.ocontexts[OCON_NODE6];
2415                 while (c) {
2416                         if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2417                                                 c->u.node6.mask))
2418                                 break;
2419                         c = c->next;
2420                 }
2421                 break;
2422
2423         default:
2424                 rc = 0;
2425                 *out_sid = SECINITSID_NODE;
2426                 goto out;
2427         }
2428
2429         if (c) {
2430                 if (!c->sid[0]) {
2431                         rc = sidtab_context_to_sid(&sidtab,
2432                                                    &c->context[0],
2433                                                    &c->sid[0]);
2434                         if (rc)
2435                                 goto out;
2436                 }
2437                 *out_sid = c->sid[0];
2438         } else {
2439                 *out_sid = SECINITSID_NODE;
2440         }
2441
2442         rc = 0;
2443 out:
2444         read_unlock(&policy_rwlock);
2445         return rc;
2446 }
2447
2448 #define SIDS_NEL 25
2449
2450 /**
2451  * security_get_user_sids - Obtain reachable SIDs for a user.
2452  * @fromsid: starting SID
2453  * @username: username
2454  * @sids: array of reachable SIDs for user
2455  * @nel: number of elements in @sids
2456  *
2457  * Generate the set of SIDs for legal security contexts
2458  * for a given user that can be reached by @fromsid.
2459  * Set *@sids to point to a dynamically allocated
2460  * array containing the set of SIDs.  Set *@nel to the
2461  * number of elements in the array.
2462  */
2463
2464 int security_get_user_sids(u32 fromsid,
2465                            char *username,
2466                            u32 **sids,
2467                            u32 *nel)
2468 {
2469         struct context *fromcon, usercon;
2470         u32 *mysids = NULL, *mysids2, sid;
2471         u32 mynel = 0, maxnel = SIDS_NEL;
2472         struct user_datum *user;
2473         struct role_datum *role;
2474         struct ebitmap_node *rnode, *tnode;
2475         int rc = 0, i, j;
2476
2477         *sids = NULL;
2478         *nel = 0;
2479
2480         if (!ss_initialized)
2481                 goto out;
2482
2483         read_lock(&policy_rwlock);
2484
2485         context_init(&usercon);
2486
2487         rc = -EINVAL;
2488         fromcon = sidtab_search(&sidtab, fromsid);
2489         if (!fromcon)
2490                 goto out_unlock;
2491
2492         rc = -EINVAL;
2493         user = hashtab_search(policydb.p_users.table, username);
2494         if (!user)
2495                 goto out_unlock;
2496
2497         usercon.user = user->value;
2498
2499         rc = -ENOMEM;
2500         mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2501         if (!mysids)
2502                 goto out_unlock;
2503
2504         ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2505                 role = policydb.role_val_to_struct[i];
2506                 usercon.role = i + 1;
2507                 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2508                         usercon.type = j + 1;
2509
2510                         if (mls_setup_user_range(fromcon, user, &usercon))
2511                                 continue;
2512
2513                         rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2514                         if (rc)
2515                                 goto out_unlock;
2516                         if (mynel < maxnel) {
2517                                 mysids[mynel++] = sid;
2518                         } else {
2519                                 rc = -ENOMEM;
2520                                 maxnel += SIDS_NEL;
2521                                 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2522                                 if (!mysids2)
2523                                         goto out_unlock;
2524                                 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2525                                 kfree(mysids);
2526                                 mysids = mysids2;
2527                                 mysids[mynel++] = sid;
2528                         }
2529                 }
2530         }
2531         rc = 0;
2532 out_unlock:
2533         read_unlock(&policy_rwlock);
2534         if (rc || !mynel) {
2535                 kfree(mysids);
2536                 goto out;
2537         }
2538
2539         rc = -ENOMEM;
2540         mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2541         if (!mysids2) {
2542                 kfree(mysids);
2543                 goto out;
2544         }
2545         for (i = 0, j = 0; i < mynel; i++) {
2546                 struct av_decision dummy_avd;
2547                 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2548                                           SECCLASS_PROCESS, /* kernel value */
2549                                           PROCESS__TRANSITION, AVC_STRICT,
2550                                           &dummy_avd);
2551                 if (!rc)
2552                         mysids2[j++] = mysids[i];
2553                 cond_resched();
2554         }
2555         rc = 0;
2556         kfree(mysids);
2557         *sids = mysids2;
2558         *nel = j;
2559 out:
2560         return rc;
2561 }
2562
2563 /**
2564  * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2565  * @fstype: filesystem type
2566  * @path: path from root of mount
2567  * @sclass: file security class
2568  * @sid: SID for path
2569  *
2570  * Obtain a SID to use for a file in a filesystem that
2571  * cannot support xattr or use a fixed labeling behavior like
2572  * transition SIDs or task SIDs.
2573  *
2574  * The caller must acquire the policy_rwlock before calling this function.
2575  */
2576 static inline int __security_genfs_sid(const char *fstype,
2577                                        char *path,
2578                                        u16 orig_sclass,
2579                                        u32 *sid)
2580 {
2581         int len;
2582         u16 sclass;
2583         struct genfs *genfs;
2584         struct ocontext *c;
2585         int rc, cmp = 0;
2586
2587         while (path[0] == '/' && path[1] == '/')
2588                 path++;
2589
2590         sclass = unmap_class(orig_sclass);
2591         *sid = SECINITSID_UNLABELED;
2592
2593         for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2594                 cmp = strcmp(fstype, genfs->fstype);
2595                 if (cmp <= 0)
2596                         break;
2597         }
2598
2599         rc = -ENOENT;
2600         if (!genfs || cmp)
2601                 goto out;
2602
2603         for (c = genfs->head; c; c = c->next) {
2604                 len = strlen(c->u.name);
2605                 if ((!c->v.sclass || sclass == c->v.sclass) &&
2606                     (strncmp(c->u.name, path, len) == 0))
2607                         break;
2608         }
2609
2610         rc = -ENOENT;
2611         if (!c)
2612                 goto out;
2613
2614         if (!c->sid[0]) {
2615                 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2616                 if (rc)
2617                         goto out;
2618         }
2619
2620         *sid = c->sid[0];
2621         rc = 0;
2622 out:
2623         return rc;
2624 }
2625
2626 /**
2627  * security_genfs_sid - Obtain a SID for a file in a filesystem
2628  * @fstype: filesystem type
2629  * @path: path from root of mount
2630  * @sclass: file security class
2631  * @sid: SID for path
2632  *
2633  * Acquire policy_rwlock before calling __security_genfs_sid() and release
2634  * it afterward.
2635  */
2636 int security_genfs_sid(const char *fstype,
2637                        char *path,
2638                        u16 orig_sclass,
2639                        u32 *sid)
2640 {
2641         int retval;
2642
2643         read_lock(&policy_rwlock);
2644         retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2645         read_unlock(&policy_rwlock);
2646         return retval;
2647 }
2648
2649 /**
2650  * security_fs_use - Determine how to handle labeling for a filesystem.
2651  * @sb: superblock in question
2652  */
2653 int security_fs_use(struct super_block *sb)
2654 {
2655         int rc = 0;
2656         struct ocontext *c;
2657         struct superblock_security_struct *sbsec = sb->s_security;
2658         const char *fstype = sb->s_type->name;
2659
2660         read_lock(&policy_rwlock);
2661
2662         c = policydb.ocontexts[OCON_FSUSE];
2663         while (c) {
2664                 if (strcmp(fstype, c->u.name) == 0)
2665                         break;
2666                 c = c->next;
2667         }
2668
2669         if (c) {
2670                 sbsec->behavior = c->v.behavior;
2671                 if (!c->sid[0]) {
2672                         rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2673                                                    &c->sid[0]);
2674                         if (rc)
2675                                 goto out;
2676                 }
2677                 sbsec->sid = c->sid[0];
2678         } else {
2679                 rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2680                                           &sbsec->sid);
2681                 if (rc) {
2682                         sbsec->behavior = SECURITY_FS_USE_NONE;
2683                         rc = 0;
2684                 } else {
2685                         sbsec->behavior = SECURITY_FS_USE_GENFS;
2686                 }
2687         }
2688
2689 out:
2690         read_unlock(&policy_rwlock);
2691         return rc;
2692 }
2693
2694 int security_get_bools(int *len, char ***names, int **values)
2695 {
2696         int i, rc;
2697
2698         read_lock(&policy_rwlock);
2699         *names = NULL;
2700         *values = NULL;
2701
2702         rc = 0;
2703         *len = policydb.p_bools.nprim;
2704         if (!*len)
2705                 goto out;
2706
2707         rc = -ENOMEM;
2708         *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2709         if (!*names)
2710                 goto err;
2711
2712         rc = -ENOMEM;
2713         *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2714         if (!*values)
2715                 goto err;
2716
2717         for (i = 0; i < *len; i++) {
2718                 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2719
2720                 rc = -ENOMEM;
2721                 (*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
2722                 if (!(*names)[i])
2723                         goto err;
2724         }
2725         rc = 0;
2726 out:
2727         read_unlock(&policy_rwlock);
2728         return rc;
2729 err:
2730         if (*names) {
2731                 for (i = 0; i < *len; i++)
2732                         kfree((*names)[i]);
2733         }
2734         kfree(*values);
2735         goto out;
2736 }
2737
2738
2739 int security_set_bools(int len, int *values)
2740 {
2741         int i, rc;
2742         int lenp, seqno = 0;
2743         struct cond_node *cur;
2744
2745         write_lock_irq(&policy_rwlock);
2746
2747         rc = -EFAULT;
2748         lenp = policydb.p_bools.nprim;
2749         if (len != lenp)
2750                 goto out;
2751
2752         for (i = 0; i < len; i++) {
2753                 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2754                         audit_log(current->audit_context, GFP_ATOMIC,
2755                                 AUDIT_MAC_CONFIG_CHANGE,
2756                                 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2757                                 sym_name(&policydb, SYM_BOOLS, i),
2758                                 !!values[i],
2759                                 policydb.bool_val_to_struct[i]->state,
2760                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2761                                 audit_get_sessionid(current));
2762                 }
2763                 if (values[i])
2764                         policydb.bool_val_to_struct[i]->state = 1;
2765                 else
2766                         policydb.bool_val_to_struct[i]->state = 0;
2767         }
2768
2769         for (cur = policydb.cond_list; cur; cur = cur->next) {
2770                 rc = evaluate_cond_node(&policydb, cur);
2771                 if (rc)
2772                         goto out;
2773         }
2774
2775         seqno = ++latest_granting;
2776         rc = 0;
2777 out:
2778         write_unlock_irq(&policy_rwlock);
2779         if (!rc) {
2780                 avc_ss_reset(seqno);
2781                 selnl_notify_policyload(seqno);
2782                 selinux_status_update_policyload(seqno);
2783                 selinux_xfrm_notify_policyload();
2784         }
2785         return rc;
2786 }
2787
2788 int security_get_bool_value(int index)
2789 {
2790         int rc;
2791         int len;
2792
2793         read_lock(&policy_rwlock);
2794
2795         rc = -EFAULT;
2796         len = policydb.p_bools.nprim;
2797         if (index >= len)
2798                 goto out;
2799
2800         rc = policydb.bool_val_to_struct[index]->state;
2801 out:
2802         read_unlock(&policy_rwlock);
2803         return rc;
2804 }
2805
2806 static int security_preserve_bools(struct policydb *p)
2807 {
2808         int rc, nbools = 0, *bvalues = NULL, i;
2809         char **bnames = NULL;
2810         struct cond_bool_datum *booldatum;
2811         struct cond_node *cur;
2812
2813         rc = security_get_bools(&nbools, &bnames, &bvalues);
2814         if (rc)
2815                 goto out;
2816         for (i = 0; i < nbools; i++) {
2817                 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2818                 if (booldatum)
2819                         booldatum->state = bvalues[i];
2820         }
2821         for (cur = p->cond_list; cur; cur = cur->next) {
2822                 rc = evaluate_cond_node(p, cur);
2823                 if (rc)
2824                         goto out;
2825         }
2826
2827 out:
2828         if (bnames) {
2829                 for (i = 0; i < nbools; i++)
2830                         kfree(bnames[i]);
2831         }
2832         kfree(bnames);
2833         kfree(bvalues);
2834         return rc;
2835 }
2836
2837 /*
2838  * security_sid_mls_copy() - computes a new sid based on the given
2839  * sid and the mls portion of mls_sid.
2840  */
2841 int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2842 {
2843         struct context *context1;
2844         struct context *context2;
2845         struct context newcon;
2846         char *s;
2847         u32 len;
2848         int rc;
2849
2850         rc = 0;
2851         if (!ss_initialized || !policydb.mls_enabled) {
2852                 *new_sid = sid;
2853                 goto out;
2854         }
2855
2856         context_init(&newcon);
2857
2858         read_lock(&policy_rwlock);
2859
2860         rc = -EINVAL;
2861         context1 = sidtab_search(&sidtab, sid);
2862         if (!context1) {
2863                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2864                         __func__, sid);
2865                 goto out_unlock;
2866         }
2867
2868         rc = -EINVAL;
2869         context2 = sidtab_search(&sidtab, mls_sid);
2870         if (!context2) {
2871                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2872                         __func__, mls_sid);
2873                 goto out_unlock;
2874         }
2875
2876         newcon.user = context1->user;
2877         newcon.role = context1->role;
2878         newcon.type = context1->type;
2879         rc = mls_context_cpy(&newcon, context2);
2880         if (rc)
2881                 goto out_unlock;
2882
2883         /* Check the validity of the new context. */
2884         if (!policydb_context_isvalid(&policydb, &newcon)) {
2885                 rc = convert_context_handle_invalid_context(&newcon);
2886                 if (rc) {
2887                         if (!context_struct_to_string(&newcon, &s, &len)) {
2888                                 audit_log(current->audit_context,
2889                                           GFP_ATOMIC, AUDIT_SELINUX_ERR,
2890                                           "op=security_sid_mls_copy "
2891                                           "invalid_context=%s", s);
2892                                 kfree(s);
2893                         }
2894                         goto out_unlock;
2895                 }
2896         }
2897
2898         rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2899 out_unlock:
2900         read_unlock(&policy_rwlock);
2901         context_destroy(&newcon);
2902 out:
2903         return rc;
2904 }
2905
2906 /**
2907  * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2908  * @nlbl_sid: NetLabel SID
2909  * @nlbl_type: NetLabel labeling protocol type
2910  * @xfrm_sid: XFRM SID
2911  *
2912  * Description:
2913  * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2914  * resolved into a single SID it is returned via @peer_sid and the function
2915  * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2916  * returns a negative value.  A table summarizing the behavior is below:
2917  *
2918  *                                 | function return |      @sid
2919  *   ------------------------------+-----------------+-----------------
2920  *   no peer labels                |        0        |    SECSID_NULL
2921  *   single peer label             |        0        |    <peer_label>
2922  *   multiple, consistent labels   |        0        |    <peer_label>
2923  *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2924  *
2925  */
2926 int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2927                                  u32 xfrm_sid,
2928                                  u32 *peer_sid)
2929 {
2930         int rc;
2931         struct context *nlbl_ctx;
2932         struct context *xfrm_ctx;
2933
2934         *peer_sid = SECSID_NULL;
2935
2936         /* handle the common (which also happens to be the set of easy) cases
2937          * right away, these two if statements catch everything involving a
2938          * single or absent peer SID/label */
2939         if (xfrm_sid == SECSID_NULL) {
2940                 *peer_sid = nlbl_sid;
2941                 return 0;
2942         }
2943         /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2944          * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2945          * is present */
2946         if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2947                 *peer_sid = xfrm_sid;
2948                 return 0;
2949         }
2950
2951         /* we don't need to check ss_initialized here since the only way both
2952          * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2953          * security server was initialized and ss_initialized was true */
2954         if (!policydb.mls_enabled)
2955                 return 0;
2956
2957         read_lock(&policy_rwlock);
2958
2959         rc = -EINVAL;
2960         nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2961         if (!nlbl_ctx) {
2962                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2963                        __func__, nlbl_sid);
2964                 goto out;
2965         }
2966         rc = -EINVAL;
2967         xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2968         if (!xfrm_ctx) {
2969                 printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2970                        __func__, xfrm_sid);
2971                 goto out;
2972         }
2973         rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2974         if (rc)
2975                 goto out;
2976
2977         /* at present NetLabel SIDs/labels really only carry MLS
2978          * information so if the MLS portion of the NetLabel SID
2979          * matches the MLS portion of the labeled XFRM SID/label
2980          * then pass along the XFRM SID as it is the most
2981          * expressive */
2982         *peer_sid = xfrm_sid;
2983 out:
2984         read_unlock(&policy_rwlock);
2985         return rc;
2986 }
2987
2988 static int get_classes_callback(void *k, void *d, void *args)
2989 {
2990         struct class_datum *datum = d;
2991         char *name = k, **classes = args;
2992         int value = datum->value - 1;
2993
2994         classes[value] = kstrdup(name, GFP_ATOMIC);
2995         if (!classes[value])
2996                 return -ENOMEM;
2997
2998         return 0;
2999 }
3000
3001 int security_get_classes(char ***classes, int *nclasses)
3002 {
3003         int rc;
3004
3005         read_lock(&policy_rwlock);
3006
3007         rc = -ENOMEM;
3008         *nclasses = policydb.p_classes.nprim;
3009         *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3010         if (!*classes)
3011                 goto out;
3012
3013         rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
3014                         *classes);
3015         if (rc) {
3016                 int i;
3017                 for (i = 0; i < *nclasses; i++)
3018                         kfree((*classes)[i]);
3019                 kfree(*classes);
3020         }
3021
3022 out:
3023         read_unlock(&policy_rwlock);
3024         return rc;
3025 }
3026
3027 static int get_permissions_callback(void *k, void *d, void *args)
3028 {
3029         struct perm_datum *datum = d;
3030         char *name = k, **perms = args;
3031         int value = datum->value - 1;
3032
3033         perms[value] = kstrdup(name, GFP_ATOMIC);
3034         if (!perms[value])
3035                 return -ENOMEM;
3036
3037         return 0;
3038 }
3039
3040 int security_get_permissions(char *class, char ***perms, int *nperms)
3041 {
3042         int rc, i;
3043         struct class_datum *match;
3044
3045         read_lock(&policy_rwlock);
3046
3047         rc = -EINVAL;
3048         match = hashtab_search(policydb.p_classes.table, class);
3049         if (!match) {
3050                 printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
3051                         __func__, class);
3052                 goto out;
3053         }
3054
3055         rc = -ENOMEM;
3056         *nperms = match->permissions.nprim;
3057         *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3058         if (!*perms)
3059                 goto out;
3060
3061         if (match->comdatum) {
3062                 rc = hashtab_map(match->comdatum->permissions.table,
3063                                 get_permissions_callback, *perms);
3064                 if (rc)
3065                         goto err;
3066         }
3067
3068         rc = hashtab_map(match->permissions.table, get_permissions_callback,
3069                         *perms);
3070         if (rc)
3071                 goto err;
3072
3073 out:
3074         read_unlock(&policy_rwlock);
3075         return rc;
3076
3077 err:
3078         read_unlock(&policy_rwlock);
3079         for (i = 0; i < *nperms; i++)
3080                 kfree((*perms)[i]);
3081         kfree(*perms);
3082         return rc;
3083 }
3084
3085 int security_get_reject_unknown(void)
3086 {
3087         return policydb.reject_unknown;
3088 }
3089
3090 int security_get_allow_unknown(void)
3091 {
3092         return policydb.allow_unknown;
3093 }
3094
3095 /**
3096  * security_policycap_supported - Check for a specific policy capability
3097  * @req_cap: capability
3098  *
3099  * Description:
3100  * This function queries the currently loaded policy to see if it supports the
3101  * capability specified by @req_cap.  Returns true (1) if the capability is
3102  * supported, false (0) if it isn't supported.
3103  *
3104  */
3105 int security_policycap_supported(unsigned int req_cap)
3106 {
3107         int rc;
3108
3109         read_lock(&policy_rwlock);
3110         rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3111         read_unlock(&policy_rwlock);
3112
3113         return rc;
3114 }
3115
3116 struct selinux_audit_rule {
3117         u32 au_seqno;
3118         struct context au_ctxt;
3119 };
3120
3121 void selinux_audit_rule_free(void *vrule)
3122 {
3123         struct selinux_audit_rule *rule = vrule;
3124
3125         if (rule) {
3126                 context_destroy(&rule->au_ctxt);
3127                 kfree(rule);
3128         }
3129 }
3130
3131 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3132 {
3133         struct selinux_audit_rule *tmprule;
3134         struct role_datum *roledatum;
3135         struct type_datum *typedatum;
3136         struct user_datum *userdatum;
3137         struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3138         int rc = 0;
3139
3140         *rule = NULL;
3141
3142         if (!ss_initialized)
3143                 return -EOPNOTSUPP;
3144
3145         switch (field) {
3146         case AUDIT_SUBJ_USER:
3147         case AUDIT_SUBJ_ROLE:
3148         case AUDIT_SUBJ_TYPE:
3149         case AUDIT_OBJ_USER:
3150         case AUDIT_OBJ_ROLE:
3151         case AUDIT_OBJ_TYPE:
3152                 /* only 'equals' and 'not equals' fit user, role, and type */
3153                 if (op != Audit_equal && op != Audit_not_equal)
3154                         return -EINVAL;
3155                 break;
3156         case AUDIT_SUBJ_SEN:
3157         case AUDIT_SUBJ_CLR:
3158         case AUDIT_OBJ_LEV_LOW:
3159         case AUDIT_OBJ_LEV_HIGH:
3160                 /* we do not allow a range, indicated by the presence of '-' */
3161                 if (strchr(rulestr, '-'))
3162                         return -EINVAL;
3163                 break;
3164         default:
3165                 /* only the above fields are valid */
3166                 return -EINVAL;
3167         }
3168
3169         tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3170         if (!tmprule)
3171                 return -ENOMEM;
3172
3173         context_init(&tmprule->au_ctxt);
3174
3175         read_lock(&policy_rwlock);
3176
3177         tmprule->au_seqno = latest_granting;
3178
3179         switch (field) {
3180         case AUDIT_SUBJ_USER:
3181         case AUDIT_OBJ_USER:
3182                 rc = -EINVAL;
3183                 userdatum = hashtab_search(policydb.p_users.table, rulestr);
3184                 if (!userdatum)
3185                         goto out;
3186                 tmprule->au_ctxt.user = userdatum->value;
3187                 break;
3188         case AUDIT_SUBJ_ROLE:
3189         case AUDIT_OBJ_ROLE:
3190                 rc = -EINVAL;
3191                 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3192                 if (!roledatum)
3193                         goto out;
3194                 tmprule->au_ctxt.role = roledatum->value;
3195                 break;
3196         case AUDIT_SUBJ_TYPE:
3197         case AUDIT_OBJ_TYPE:
3198                 rc = -EINVAL;
3199                 typedatum = hashtab_search(policydb.p_types.table, rulestr);
3200                 if (!typedatum)
3201                         goto out;
3202                 tmprule->au_ctxt.type = typedatum->value;
3203                 break;
3204         case AUDIT_SUBJ_SEN:
3205         case AUDIT_SUBJ_CLR:
3206         case AUDIT_OBJ_LEV_LOW:
3207         case AUDIT_OBJ_LEV_HIGH:
3208                 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3209                 if (rc)
3210                         goto out;
3211                 break;
3212         }
3213         rc = 0;
3214 out:
3215         read_unlock(&policy_rwlock);
3216
3217         if (rc) {
3218                 selinux_audit_rule_free(tmprule);
3219                 tmprule = NULL;
3220         }
3221
3222         *rule = tmprule;
3223
3224         return rc;
3225 }
3226
3227 /* Check to see if the rule contains any selinux fields */
3228 int selinux_audit_rule_known(struct audit_krule *rule)
3229 {
3230         int i;
3231
3232         for (i = 0; i < rule->field_count; i++) {
3233                 struct audit_field *f = &rule->fields[i];
3234                 switch (f->type) {
3235                 case AUDIT_SUBJ_USER:
3236                 case AUDIT_SUBJ_ROLE:
3237                 case AUDIT_SUBJ_TYPE:
3238                 case AUDIT_SUBJ_SEN:
3239                 case AUDIT_SUBJ_CLR:
3240                 case AUDIT_OBJ_USER:
3241                 case AUDIT_OBJ_ROLE:
3242                 case AUDIT_OBJ_TYPE:
3243                 case AUDIT_OBJ_LEV_LOW:
3244                 case AUDIT_OBJ_LEV_HIGH:
3245                         return 1;
3246                 }
3247         }
3248
3249         return 0;
3250 }
3251
3252 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3253                              struct audit_context *actx)
3254 {
3255         struct context *ctxt;
3256         struct mls_level *level;
3257         struct selinux_audit_rule *rule = vrule;
3258         int match = 0;
3259
3260         if (unlikely(!rule)) {
3261                 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3262                 return -ENOENT;
3263         }
3264
3265         read_lock(&policy_rwlock);
3266
3267         if (rule->au_seqno < latest_granting) {
3268                 match = -ESTALE;
3269                 goto out;
3270         }
3271
3272         ctxt = sidtab_search(&sidtab, sid);
3273         if (unlikely(!ctxt)) {
3274                 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3275                           sid);
3276                 match = -ENOENT;
3277                 goto out;
3278         }
3279
3280         /* a field/op pair that is not caught here will simply fall through
3281            without a match */
3282         switch (field) {
3283         case AUDIT_SUBJ_USER:
3284         case AUDIT_OBJ_USER:
3285                 switch (op) {
3286                 case Audit_equal:
3287                         match = (ctxt->user == rule->au_ctxt.user);
3288                         break;
3289                 case Audit_not_equal:
3290                         match = (ctxt->user != rule->au_ctxt.user);
3291                         break;
3292                 }
3293                 break;
3294         case AUDIT_SUBJ_ROLE:
3295         case AUDIT_OBJ_ROLE:
3296                 switch (op) {
3297                 case Audit_equal:
3298                         match = (ctxt->role == rule->au_ctxt.role);
3299                         break;
3300                 case Audit_not_equal:
3301                         match = (ctxt->role != rule->au_ctxt.role);
3302                         break;
3303                 }
3304                 break;
3305         case AUDIT_SUBJ_TYPE:
3306         case AUDIT_OBJ_TYPE:
3307                 switch (op) {
3308                 case Audit_equal:
3309                         match = (ctxt->type == rule->au_ctxt.type);
3310                         break;
3311                 case Audit_not_equal:
3312                         match = (ctxt->type != rule->au_ctxt.type);
3313                         break;
3314                 }
3315                 break;
3316         case AUDIT_SUBJ_SEN:
3317         case AUDIT_SUBJ_CLR:
3318         case AUDIT_OBJ_LEV_LOW:
3319         case AUDIT_OBJ_LEV_HIGH:
3320                 level = ((field == AUDIT_SUBJ_SEN ||
3321                           field == AUDIT_OBJ_LEV_LOW) ?
3322                          &ctxt->range.level[0] : &ctxt->range.level[1]);
3323                 switch (op) {
3324                 case Audit_equal:
3325                         match = mls_level_eq(&rule->au_ctxt.range.level[0],
3326                                              level);
3327                         break;
3328                 case Audit_not_equal:
3329                         match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3330                                               level);
3331                         break;
3332                 case Audit_lt:
3333                         match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3334                                                level) &&
3335                                  !mls_level_eq(&rule->au_ctxt.range.level[0],
3336                                                level));
3337                         break;
3338                 case Audit_le:
3339                         match = mls_level_dom(&rule->au_ctxt.range.level[0],
3340                                               level);
3341                         break;
3342                 case Audit_gt:
3343                         match = (mls_level_dom(level,
3344                                               &rule->au_ctxt.range.level[0]) &&
3345                                  !mls_level_eq(level,
3346                                                &rule->au_ctxt.range.level[0]));
3347                         break;
3348                 case Audit_ge:
3349                         match = mls_level_dom(level,
3350                                               &rule->au_ctxt.range.level[0]);
3351                         break;
3352                 }
3353         }
3354
3355 out:
3356         read_unlock(&policy_rwlock);
3357         return match;
3358 }
3359
3360 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3361
3362 static int aurule_avc_callback(u32 event)
3363 {
3364         int err = 0;
3365
3366         if (event == AVC_CALLBACK_RESET && aurule_callback)
3367                 err = aurule_callback();
3368         return err;
3369 }
3370
3371 static int __init aurule_init(void)
3372 {
3373         int err;
3374
3375         err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3376         if (err)
3377                 panic("avc_add_callback() failed, error %d\n", err);
3378
3379         return err;
3380 }
3381 __initcall(aurule_init);
3382
3383 #ifdef CONFIG_NETLABEL
3384 /**
3385  * security_netlbl_cache_add - Add an entry to the NetLabel cache
3386  * @secattr: the NetLabel packet security attributes
3387  * @sid: the SELinux SID
3388  *
3389  * Description:
3390  * Attempt to cache the context in @ctx, which was derived from the packet in
3391  * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3392  * already been initialized.
3393  *
3394  */
3395 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3396                                       u32 sid)
3397 {
3398         u32 *sid_cache;
3399
3400         sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3401         if (sid_cache == NULL)
3402                 return;
3403         secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3404         if (secattr->cache == NULL) {
3405                 kfree(sid_cache);
3406                 return;
3407         }
3408
3409         *sid_cache = sid;
3410         secattr->cache->free = kfree;
3411         secattr->cache->data = sid_cache;
3412         secattr->flags |= NETLBL_SECATTR_CACHE;
3413 }
3414
3415 /**
3416  * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3417  * @secattr: the NetLabel packet security attributes
3418  * @sid: the SELinux SID
3419  *
3420  * Description:
3421  * Convert the given NetLabel security attributes in @secattr into a
3422  * SELinux SID.  If the @secattr field does not contain a full SELinux
3423  * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3424  * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3425  * allow the @secattr to be used by NetLabel to cache the secattr to SID
3426  * conversion for future lookups.  Returns zero on success, negative values on
3427  * failure.
3428  *
3429  */
3430 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3431                                    u32 *sid)
3432 {
3433         int rc;
3434         struct context *ctx;
3435         struct context ctx_new;
3436
3437         if (!ss_initialized) {
3438                 *sid = SECSID_NULL;
3439                 return 0;
3440         }
3441
3442         read_lock(&policy_rwlock);
3443
3444         if (secattr->flags & NETLBL_SECATTR_CACHE)
3445                 *sid = *(u32 *)secattr->cache->data;
3446         else if (secattr->flags & NETLBL_SECATTR_SECID)
3447                 *sid = secattr->attr.secid;
3448         else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3449                 rc = -EIDRM;
3450                 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3451                 if (ctx == NULL)
3452                         goto out;
3453
3454                 context_init(&ctx_new);
3455                 ctx_new.user = ctx->user;
3456                 ctx_new.role = ctx->role;
3457                 ctx_new.type = ctx->type;
3458                 mls_import_netlbl_lvl(&ctx_new, secattr);
3459                 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3460                         rc = mls_import_netlbl_cat(&ctx_new, secattr);
3461                         if (rc)
3462                                 goto out;
3463                 }
3464                 rc = -EIDRM;
3465                 if (!mls_context_isvalid(&policydb, &ctx_new))
3466                         goto out_free;
3467
3468                 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3469                 if (rc)
3470                         goto out_free;
3471
3472                 security_netlbl_cache_add(secattr, *sid);
3473
3474                 ebitmap_destroy(&ctx_new.range.level[0].cat);
3475         } else
3476                 *sid = SECSID_NULL;
3477
3478         read_unlock(&policy_rwlock);
3479         return 0;
3480 out_free:
3481         ebitmap_destroy(&ctx_new.range.level[0].cat);
3482 out:
3483         read_unlock(&policy_rwlock);
3484         return rc;
3485 }
3486
3487 /**
3488  * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3489  * @sid: the SELinux SID
3490  * @secattr: the NetLabel packet security attributes
3491  *
3492  * Description:
3493  * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3494  * Returns zero on success, negative values on failure.
3495  *
3496  */
3497 int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3498 {
3499         int rc;
3500         struct context *ctx;
3501
3502         if (!ss_initialized)
3503                 return 0;
3504
3505         read_lock(&policy_rwlock);
3506
3507         rc = -ENOENT;
3508         ctx = sidtab_search(&sidtab, sid);
3509         if (ctx == NULL)
3510                 goto out;
3511
3512         rc = -ENOMEM;
3513         secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3514                                   GFP_ATOMIC);
3515         if (secattr->domain == NULL)
3516                 goto out;
3517
3518         secattr->attr.secid = sid;
3519         secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3520         mls_export_netlbl_lvl(ctx, secattr);
3521         rc = mls_export_netlbl_cat(ctx, secattr);
3522 out:
3523         read_unlock(&policy_rwlock);
3524         return rc;
3525 }
3526 #endif /* CONFIG_NETLABEL */
3527
3528 /**
3529  * security_read_policy - read the policy.
3530  * @data: binary policy data
3531  * @len: length of data in bytes
3532  *
3533  */
3534 int security_read_policy(void **data, size_t *len)
3535 {
3536         int rc;
3537         struct policy_file fp;
3538
3539         if (!ss_initialized)
3540                 return -EINVAL;
3541
3542         *len = security_policydb_len();
3543
3544         *data = vmalloc_user(*len);
3545         if (!*data)
3546                 return -ENOMEM;
3547
3548         fp.data = *data;
3549         fp.len = *len;
3550
3551         read_lock(&policy_rwlock);
3552         rc = policydb_write(&policydb, &fp);
3553         read_unlock(&policy_rwlock);
3554
3555         if (rc)
3556                 return rc;
3557
3558         *len = (unsigned long)fp.data - (unsigned long)*data;
3559         return 0;
3560
3561 }