Merge branch 'omap-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tmlind...
[sfrench/cifs-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 #include <linux/syslog.h>
80
81 #include "avc.h"
82 #include "objsec.h"
83 #include "netif.h"
84 #include "netnode.h"
85 #include "netport.h"
86 #include "xfrm.h"
87 #include "netlabel.h"
88 #include "audit.h"
89
90 #define NUM_SEL_MNT_OPTS 5
91
92 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
93 extern struct security_operations *security_ops;
94
95 /* SECMARK reference count */
96 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
97
98 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
99 int selinux_enforcing;
100
101 static int __init enforcing_setup(char *str)
102 {
103         unsigned long enforcing;
104         if (!strict_strtoul(str, 0, &enforcing))
105                 selinux_enforcing = enforcing ? 1 : 0;
106         return 1;
107 }
108 __setup("enforcing=", enforcing_setup);
109 #endif
110
111 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
112 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
113
114 static int __init selinux_enabled_setup(char *str)
115 {
116         unsigned long enabled;
117         if (!strict_strtoul(str, 0, &enabled))
118                 selinux_enabled = enabled ? 1 : 0;
119         return 1;
120 }
121 __setup("selinux=", selinux_enabled_setup);
122 #else
123 int selinux_enabled = 1;
124 #endif
125
126 static struct kmem_cache *sel_inode_cache;
127
128 /**
129  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
130  *
131  * Description:
132  * This function checks the SECMARK reference counter to see if any SECMARK
133  * targets are currently configured, if the reference counter is greater than
134  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
135  * enabled, false (0) if SECMARK is disabled.
136  *
137  */
138 static int selinux_secmark_enabled(void)
139 {
140         return (atomic_read(&selinux_secmark_refcount) > 0);
141 }
142
143 /*
144  * initialise the security for the init task
145  */
146 static void cred_init_security(void)
147 {
148         struct cred *cred = (struct cred *) current->real_cred;
149         struct task_security_struct *tsec;
150
151         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
152         if (!tsec)
153                 panic("SELinux:  Failed to initialize initial task.\n");
154
155         tsec->osid = tsec->sid = SECINITSID_KERNEL;
156         cred->security = tsec;
157 }
158
159 /*
160  * get the security ID of a set of credentials
161  */
162 static inline u32 cred_sid(const struct cred *cred)
163 {
164         const struct task_security_struct *tsec;
165
166         tsec = cred->security;
167         return tsec->sid;
168 }
169
170 /*
171  * get the objective security ID of a task
172  */
173 static inline u32 task_sid(const struct task_struct *task)
174 {
175         u32 sid;
176
177         rcu_read_lock();
178         sid = cred_sid(__task_cred(task));
179         rcu_read_unlock();
180         return sid;
181 }
182
183 /*
184  * get the subjective security ID of the current task
185  */
186 static inline u32 current_sid(void)
187 {
188         const struct task_security_struct *tsec = current_security();
189
190         return tsec->sid;
191 }
192
193 /* Allocate and free functions for each kind of security blob. */
194
195 static int inode_alloc_security(struct inode *inode)
196 {
197         struct inode_security_struct *isec;
198         u32 sid = current_sid();
199
200         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
201         if (!isec)
202                 return -ENOMEM;
203
204         mutex_init(&isec->lock);
205         INIT_LIST_HEAD(&isec->list);
206         isec->inode = inode;
207         isec->sid = SECINITSID_UNLABELED;
208         isec->sclass = SECCLASS_FILE;
209         isec->task_sid = sid;
210         inode->i_security = isec;
211
212         return 0;
213 }
214
215 static void inode_free_security(struct inode *inode)
216 {
217         struct inode_security_struct *isec = inode->i_security;
218         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
219
220         spin_lock(&sbsec->isec_lock);
221         if (!list_empty(&isec->list))
222                 list_del_init(&isec->list);
223         spin_unlock(&sbsec->isec_lock);
224
225         inode->i_security = NULL;
226         kmem_cache_free(sel_inode_cache, isec);
227 }
228
229 static int file_alloc_security(struct file *file)
230 {
231         struct file_security_struct *fsec;
232         u32 sid = current_sid();
233
234         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
235         if (!fsec)
236                 return -ENOMEM;
237
238         fsec->sid = sid;
239         fsec->fown_sid = sid;
240         file->f_security = fsec;
241
242         return 0;
243 }
244
245 static void file_free_security(struct file *file)
246 {
247         struct file_security_struct *fsec = file->f_security;
248         file->f_security = NULL;
249         kfree(fsec);
250 }
251
252 static int superblock_alloc_security(struct super_block *sb)
253 {
254         struct superblock_security_struct *sbsec;
255
256         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
257         if (!sbsec)
258                 return -ENOMEM;
259
260         mutex_init(&sbsec->lock);
261         INIT_LIST_HEAD(&sbsec->isec_head);
262         spin_lock_init(&sbsec->isec_lock);
263         sbsec->sb = sb;
264         sbsec->sid = SECINITSID_UNLABELED;
265         sbsec->def_sid = SECINITSID_FILE;
266         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
267         sb->s_security = sbsec;
268
269         return 0;
270 }
271
272 static void superblock_free_security(struct super_block *sb)
273 {
274         struct superblock_security_struct *sbsec = sb->s_security;
275         sb->s_security = NULL;
276         kfree(sbsec);
277 }
278
279 /* The security server must be initialized before
280    any labeling or access decisions can be provided. */
281 extern int ss_initialized;
282
283 /* The file system's label must be initialized prior to use. */
284
285 static const char *labeling_behaviors[6] = {
286         "uses xattr",
287         "uses transition SIDs",
288         "uses task SIDs",
289         "uses genfs_contexts",
290         "not configured for labeling",
291         "uses mountpoint labeling",
292 };
293
294 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
295
296 static inline int inode_doinit(struct inode *inode)
297 {
298         return inode_doinit_with_dentry(inode, NULL);
299 }
300
301 enum {
302         Opt_error = -1,
303         Opt_context = 1,
304         Opt_fscontext = 2,
305         Opt_defcontext = 3,
306         Opt_rootcontext = 4,
307         Opt_labelsupport = 5,
308 };
309
310 static const match_table_t tokens = {
311         {Opt_context, CONTEXT_STR "%s"},
312         {Opt_fscontext, FSCONTEXT_STR "%s"},
313         {Opt_defcontext, DEFCONTEXT_STR "%s"},
314         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
315         {Opt_labelsupport, LABELSUPP_STR},
316         {Opt_error, NULL},
317 };
318
319 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
320
321 static int may_context_mount_sb_relabel(u32 sid,
322                         struct superblock_security_struct *sbsec,
323                         const struct cred *cred)
324 {
325         const struct task_security_struct *tsec = cred->security;
326         int rc;
327
328         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
329                           FILESYSTEM__RELABELFROM, NULL);
330         if (rc)
331                 return rc;
332
333         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
334                           FILESYSTEM__RELABELTO, NULL);
335         return rc;
336 }
337
338 static int may_context_mount_inode_relabel(u32 sid,
339                         struct superblock_security_struct *sbsec,
340                         const struct cred *cred)
341 {
342         const struct task_security_struct *tsec = cred->security;
343         int rc;
344         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
345                           FILESYSTEM__RELABELFROM, NULL);
346         if (rc)
347                 return rc;
348
349         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
350                           FILESYSTEM__ASSOCIATE, NULL);
351         return rc;
352 }
353
354 static int sb_finish_set_opts(struct super_block *sb)
355 {
356         struct superblock_security_struct *sbsec = sb->s_security;
357         struct dentry *root = sb->s_root;
358         struct inode *root_inode = root->d_inode;
359         int rc = 0;
360
361         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
362                 /* Make sure that the xattr handler exists and that no
363                    error other than -ENODATA is returned by getxattr on
364                    the root directory.  -ENODATA is ok, as this may be
365                    the first boot of the SELinux kernel before we have
366                    assigned xattr values to the filesystem. */
367                 if (!root_inode->i_op->getxattr) {
368                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
369                                "xattr support\n", sb->s_id, sb->s_type->name);
370                         rc = -EOPNOTSUPP;
371                         goto out;
372                 }
373                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
374                 if (rc < 0 && rc != -ENODATA) {
375                         if (rc == -EOPNOTSUPP)
376                                 printk(KERN_WARNING "SELinux: (dev %s, type "
377                                        "%s) has no security xattr handler\n",
378                                        sb->s_id, sb->s_type->name);
379                         else
380                                 printk(KERN_WARNING "SELinux: (dev %s, type "
381                                        "%s) getxattr errno %d\n", sb->s_id,
382                                        sb->s_type->name, -rc);
383                         goto out;
384                 }
385         }
386
387         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
388
389         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
390                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
391                        sb->s_id, sb->s_type->name);
392         else
393                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
394                        sb->s_id, sb->s_type->name,
395                        labeling_behaviors[sbsec->behavior-1]);
396
397         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
398             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
399             sbsec->behavior == SECURITY_FS_USE_NONE ||
400             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
401                 sbsec->flags &= ~SE_SBLABELSUPP;
402
403         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
404         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
405                 sbsec->flags |= SE_SBLABELSUPP;
406
407         /* Initialize the root inode. */
408         rc = inode_doinit_with_dentry(root_inode, root);
409
410         /* Initialize any other inodes associated with the superblock, e.g.
411            inodes created prior to initial policy load or inodes created
412            during get_sb by a pseudo filesystem that directly
413            populates itself. */
414         spin_lock(&sbsec->isec_lock);
415 next_inode:
416         if (!list_empty(&sbsec->isec_head)) {
417                 struct inode_security_struct *isec =
418                                 list_entry(sbsec->isec_head.next,
419                                            struct inode_security_struct, list);
420                 struct inode *inode = isec->inode;
421                 spin_unlock(&sbsec->isec_lock);
422                 inode = igrab(inode);
423                 if (inode) {
424                         if (!IS_PRIVATE(inode))
425                                 inode_doinit(inode);
426                         iput(inode);
427                 }
428                 spin_lock(&sbsec->isec_lock);
429                 list_del_init(&isec->list);
430                 goto next_inode;
431         }
432         spin_unlock(&sbsec->isec_lock);
433 out:
434         return rc;
435 }
436
437 /*
438  * This function should allow an FS to ask what it's mount security
439  * options were so it can use those later for submounts, displaying
440  * mount options, or whatever.
441  */
442 static int selinux_get_mnt_opts(const struct super_block *sb,
443                                 struct security_mnt_opts *opts)
444 {
445         int rc = 0, i;
446         struct superblock_security_struct *sbsec = sb->s_security;
447         char *context = NULL;
448         u32 len;
449         char tmp;
450
451         security_init_mnt_opts(opts);
452
453         if (!(sbsec->flags & SE_SBINITIALIZED))
454                 return -EINVAL;
455
456         if (!ss_initialized)
457                 return -EINVAL;
458
459         tmp = sbsec->flags & SE_MNTMASK;
460         /* count the number of mount options for this sb */
461         for (i = 0; i < 8; i++) {
462                 if (tmp & 0x01)
463                         opts->num_mnt_opts++;
464                 tmp >>= 1;
465         }
466         /* Check if the Label support flag is set */
467         if (sbsec->flags & SE_SBLABELSUPP)
468                 opts->num_mnt_opts++;
469
470         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
471         if (!opts->mnt_opts) {
472                 rc = -ENOMEM;
473                 goto out_free;
474         }
475
476         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
477         if (!opts->mnt_opts_flags) {
478                 rc = -ENOMEM;
479                 goto out_free;
480         }
481
482         i = 0;
483         if (sbsec->flags & FSCONTEXT_MNT) {
484                 rc = security_sid_to_context(sbsec->sid, &context, &len);
485                 if (rc)
486                         goto out_free;
487                 opts->mnt_opts[i] = context;
488                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
489         }
490         if (sbsec->flags & CONTEXT_MNT) {
491                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
492                 if (rc)
493                         goto out_free;
494                 opts->mnt_opts[i] = context;
495                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
496         }
497         if (sbsec->flags & DEFCONTEXT_MNT) {
498                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
499                 if (rc)
500                         goto out_free;
501                 opts->mnt_opts[i] = context;
502                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
503         }
504         if (sbsec->flags & ROOTCONTEXT_MNT) {
505                 struct inode *root = sbsec->sb->s_root->d_inode;
506                 struct inode_security_struct *isec = root->i_security;
507
508                 rc = security_sid_to_context(isec->sid, &context, &len);
509                 if (rc)
510                         goto out_free;
511                 opts->mnt_opts[i] = context;
512                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
513         }
514         if (sbsec->flags & SE_SBLABELSUPP) {
515                 opts->mnt_opts[i] = NULL;
516                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
517         }
518
519         BUG_ON(i != opts->num_mnt_opts);
520
521         return 0;
522
523 out_free:
524         security_free_mnt_opts(opts);
525         return rc;
526 }
527
528 static int bad_option(struct superblock_security_struct *sbsec, char flag,
529                       u32 old_sid, u32 new_sid)
530 {
531         char mnt_flags = sbsec->flags & SE_MNTMASK;
532
533         /* check if the old mount command had the same options */
534         if (sbsec->flags & SE_SBINITIALIZED)
535                 if (!(sbsec->flags & flag) ||
536                     (old_sid != new_sid))
537                         return 1;
538
539         /* check if we were passed the same options twice,
540          * aka someone passed context=a,context=b
541          */
542         if (!(sbsec->flags & SE_SBINITIALIZED))
543                 if (mnt_flags & flag)
544                         return 1;
545         return 0;
546 }
547
548 /*
549  * Allow filesystems with binary mount data to explicitly set mount point
550  * labeling information.
551  */
552 static int selinux_set_mnt_opts(struct super_block *sb,
553                                 struct security_mnt_opts *opts)
554 {
555         const struct cred *cred = current_cred();
556         int rc = 0, i;
557         struct superblock_security_struct *sbsec = sb->s_security;
558         const char *name = sb->s_type->name;
559         struct inode *inode = sbsec->sb->s_root->d_inode;
560         struct inode_security_struct *root_isec = inode->i_security;
561         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
562         u32 defcontext_sid = 0;
563         char **mount_options = opts->mnt_opts;
564         int *flags = opts->mnt_opts_flags;
565         int num_opts = opts->num_mnt_opts;
566
567         mutex_lock(&sbsec->lock);
568
569         if (!ss_initialized) {
570                 if (!num_opts) {
571                         /* Defer initialization until selinux_complete_init,
572                            after the initial policy is loaded and the security
573                            server is ready to handle calls. */
574                         goto out;
575                 }
576                 rc = -EINVAL;
577                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
578                         "before the security server is initialized\n");
579                 goto out;
580         }
581
582         /*
583          * Binary mount data FS will come through this function twice.  Once
584          * from an explicit call and once from the generic calls from the vfs.
585          * Since the generic VFS calls will not contain any security mount data
586          * we need to skip the double mount verification.
587          *
588          * This does open a hole in which we will not notice if the first
589          * mount using this sb set explict options and a second mount using
590          * this sb does not set any security options.  (The first options
591          * will be used for both mounts)
592          */
593         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
594             && (num_opts == 0))
595                 goto out;
596
597         /*
598          * parse the mount options, check if they are valid sids.
599          * also check if someone is trying to mount the same sb more
600          * than once with different security options.
601          */
602         for (i = 0; i < num_opts; i++) {
603                 u32 sid;
604
605                 if (flags[i] == SE_SBLABELSUPP)
606                         continue;
607                 rc = security_context_to_sid(mount_options[i],
608                                              strlen(mount_options[i]), &sid);
609                 if (rc) {
610                         printk(KERN_WARNING "SELinux: security_context_to_sid"
611                                "(%s) failed for (dev %s, type %s) errno=%d\n",
612                                mount_options[i], sb->s_id, name, rc);
613                         goto out;
614                 }
615                 switch (flags[i]) {
616                 case FSCONTEXT_MNT:
617                         fscontext_sid = sid;
618
619                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
620                                         fscontext_sid))
621                                 goto out_double_mount;
622
623                         sbsec->flags |= FSCONTEXT_MNT;
624                         break;
625                 case CONTEXT_MNT:
626                         context_sid = sid;
627
628                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
629                                         context_sid))
630                                 goto out_double_mount;
631
632                         sbsec->flags |= CONTEXT_MNT;
633                         break;
634                 case ROOTCONTEXT_MNT:
635                         rootcontext_sid = sid;
636
637                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
638                                         rootcontext_sid))
639                                 goto out_double_mount;
640
641                         sbsec->flags |= ROOTCONTEXT_MNT;
642
643                         break;
644                 case DEFCONTEXT_MNT:
645                         defcontext_sid = sid;
646
647                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
648                                         defcontext_sid))
649                                 goto out_double_mount;
650
651                         sbsec->flags |= DEFCONTEXT_MNT;
652
653                         break;
654                 default:
655                         rc = -EINVAL;
656                         goto out;
657                 }
658         }
659
660         if (sbsec->flags & SE_SBINITIALIZED) {
661                 /* previously mounted with options, but not on this attempt? */
662                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
663                         goto out_double_mount;
664                 rc = 0;
665                 goto out;
666         }
667
668         if (strcmp(sb->s_type->name, "proc") == 0)
669                 sbsec->flags |= SE_SBPROC;
670
671         /* Determine the labeling behavior to use for this filesystem type. */
672         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
673         if (rc) {
674                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
675                        __func__, sb->s_type->name, rc);
676                 goto out;
677         }
678
679         /* sets the context of the superblock for the fs being mounted. */
680         if (fscontext_sid) {
681                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
682                 if (rc)
683                         goto out;
684
685                 sbsec->sid = fscontext_sid;
686         }
687
688         /*
689          * Switch to using mount point labeling behavior.
690          * sets the label used on all file below the mountpoint, and will set
691          * the superblock context if not already set.
692          */
693         if (context_sid) {
694                 if (!fscontext_sid) {
695                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
696                                                           cred);
697                         if (rc)
698                                 goto out;
699                         sbsec->sid = context_sid;
700                 } else {
701                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
702                                                              cred);
703                         if (rc)
704                                 goto out;
705                 }
706                 if (!rootcontext_sid)
707                         rootcontext_sid = context_sid;
708
709                 sbsec->mntpoint_sid = context_sid;
710                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
711         }
712
713         if (rootcontext_sid) {
714                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
715                                                      cred);
716                 if (rc)
717                         goto out;
718
719                 root_isec->sid = rootcontext_sid;
720                 root_isec->initialized = 1;
721         }
722
723         if (defcontext_sid) {
724                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
725                         rc = -EINVAL;
726                         printk(KERN_WARNING "SELinux: defcontext option is "
727                                "invalid for this filesystem type\n");
728                         goto out;
729                 }
730
731                 if (defcontext_sid != sbsec->def_sid) {
732                         rc = may_context_mount_inode_relabel(defcontext_sid,
733                                                              sbsec, cred);
734                         if (rc)
735                                 goto out;
736                 }
737
738                 sbsec->def_sid = defcontext_sid;
739         }
740
741         rc = sb_finish_set_opts(sb);
742 out:
743         mutex_unlock(&sbsec->lock);
744         return rc;
745 out_double_mount:
746         rc = -EINVAL;
747         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
748                "security settings for (dev %s, type %s)\n", sb->s_id, name);
749         goto out;
750 }
751
752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
753                                         struct super_block *newsb)
754 {
755         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
756         struct superblock_security_struct *newsbsec = newsb->s_security;
757
758         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
759         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
760         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
761
762         /*
763          * if the parent was able to be mounted it clearly had no special lsm
764          * mount options.  thus we can safely deal with this superblock later
765          */
766         if (!ss_initialized)
767                 return;
768
769         /* how can we clone if the old one wasn't set up?? */
770         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
771
772         /* if fs is reusing a sb, just let its options stand... */
773         if (newsbsec->flags & SE_SBINITIALIZED)
774                 return;
775
776         mutex_lock(&newsbsec->lock);
777
778         newsbsec->flags = oldsbsec->flags;
779
780         newsbsec->sid = oldsbsec->sid;
781         newsbsec->def_sid = oldsbsec->def_sid;
782         newsbsec->behavior = oldsbsec->behavior;
783
784         if (set_context) {
785                 u32 sid = oldsbsec->mntpoint_sid;
786
787                 if (!set_fscontext)
788                         newsbsec->sid = sid;
789                 if (!set_rootcontext) {
790                         struct inode *newinode = newsb->s_root->d_inode;
791                         struct inode_security_struct *newisec = newinode->i_security;
792                         newisec->sid = sid;
793                 }
794                 newsbsec->mntpoint_sid = sid;
795         }
796         if (set_rootcontext) {
797                 const struct inode *oldinode = oldsb->s_root->d_inode;
798                 const struct inode_security_struct *oldisec = oldinode->i_security;
799                 struct inode *newinode = newsb->s_root->d_inode;
800                 struct inode_security_struct *newisec = newinode->i_security;
801
802                 newisec->sid = oldisec->sid;
803         }
804
805         sb_finish_set_opts(newsb);
806         mutex_unlock(&newsbsec->lock);
807 }
808
809 static int selinux_parse_opts_str(char *options,
810                                   struct security_mnt_opts *opts)
811 {
812         char *p;
813         char *context = NULL, *defcontext = NULL;
814         char *fscontext = NULL, *rootcontext = NULL;
815         int rc, num_mnt_opts = 0;
816
817         opts->num_mnt_opts = 0;
818
819         /* Standard string-based options. */
820         while ((p = strsep(&options, "|")) != NULL) {
821                 int token;
822                 substring_t args[MAX_OPT_ARGS];
823
824                 if (!*p)
825                         continue;
826
827                 token = match_token(p, tokens, args);
828
829                 switch (token) {
830                 case Opt_context:
831                         if (context || defcontext) {
832                                 rc = -EINVAL;
833                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
834                                 goto out_err;
835                         }
836                         context = match_strdup(&args[0]);
837                         if (!context) {
838                                 rc = -ENOMEM;
839                                 goto out_err;
840                         }
841                         break;
842
843                 case Opt_fscontext:
844                         if (fscontext) {
845                                 rc = -EINVAL;
846                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
847                                 goto out_err;
848                         }
849                         fscontext = match_strdup(&args[0]);
850                         if (!fscontext) {
851                                 rc = -ENOMEM;
852                                 goto out_err;
853                         }
854                         break;
855
856                 case Opt_rootcontext:
857                         if (rootcontext) {
858                                 rc = -EINVAL;
859                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
860                                 goto out_err;
861                         }
862                         rootcontext = match_strdup(&args[0]);
863                         if (!rootcontext) {
864                                 rc = -ENOMEM;
865                                 goto out_err;
866                         }
867                         break;
868
869                 case Opt_defcontext:
870                         if (context || defcontext) {
871                                 rc = -EINVAL;
872                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
873                                 goto out_err;
874                         }
875                         defcontext = match_strdup(&args[0]);
876                         if (!defcontext) {
877                                 rc = -ENOMEM;
878                                 goto out_err;
879                         }
880                         break;
881                 case Opt_labelsupport:
882                         break;
883                 default:
884                         rc = -EINVAL;
885                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
886                         goto out_err;
887
888                 }
889         }
890
891         rc = -ENOMEM;
892         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
893         if (!opts->mnt_opts)
894                 goto out_err;
895
896         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
897         if (!opts->mnt_opts_flags) {
898                 kfree(opts->mnt_opts);
899                 goto out_err;
900         }
901
902         if (fscontext) {
903                 opts->mnt_opts[num_mnt_opts] = fscontext;
904                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
905         }
906         if (context) {
907                 opts->mnt_opts[num_mnt_opts] = context;
908                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
909         }
910         if (rootcontext) {
911                 opts->mnt_opts[num_mnt_opts] = rootcontext;
912                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
913         }
914         if (defcontext) {
915                 opts->mnt_opts[num_mnt_opts] = defcontext;
916                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
917         }
918
919         opts->num_mnt_opts = num_mnt_opts;
920         return 0;
921
922 out_err:
923         kfree(context);
924         kfree(defcontext);
925         kfree(fscontext);
926         kfree(rootcontext);
927         return rc;
928 }
929 /*
930  * string mount options parsing and call set the sbsec
931  */
932 static int superblock_doinit(struct super_block *sb, void *data)
933 {
934         int rc = 0;
935         char *options = data;
936         struct security_mnt_opts opts;
937
938         security_init_mnt_opts(&opts);
939
940         if (!data)
941                 goto out;
942
943         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
944
945         rc = selinux_parse_opts_str(options, &opts);
946         if (rc)
947                 goto out_err;
948
949 out:
950         rc = selinux_set_mnt_opts(sb, &opts);
951
952 out_err:
953         security_free_mnt_opts(&opts);
954         return rc;
955 }
956
957 static void selinux_write_opts(struct seq_file *m,
958                                struct security_mnt_opts *opts)
959 {
960         int i;
961         char *prefix;
962
963         for (i = 0; i < opts->num_mnt_opts; i++) {
964                 char *has_comma;
965
966                 if (opts->mnt_opts[i])
967                         has_comma = strchr(opts->mnt_opts[i], ',');
968                 else
969                         has_comma = NULL;
970
971                 switch (opts->mnt_opts_flags[i]) {
972                 case CONTEXT_MNT:
973                         prefix = CONTEXT_STR;
974                         break;
975                 case FSCONTEXT_MNT:
976                         prefix = FSCONTEXT_STR;
977                         break;
978                 case ROOTCONTEXT_MNT:
979                         prefix = ROOTCONTEXT_STR;
980                         break;
981                 case DEFCONTEXT_MNT:
982                         prefix = DEFCONTEXT_STR;
983                         break;
984                 case SE_SBLABELSUPP:
985                         seq_putc(m, ',');
986                         seq_puts(m, LABELSUPP_STR);
987                         continue;
988                 default:
989                         BUG();
990                 };
991                 /* we need a comma before each option */
992                 seq_putc(m, ',');
993                 seq_puts(m, prefix);
994                 if (has_comma)
995                         seq_putc(m, '\"');
996                 seq_puts(m, opts->mnt_opts[i]);
997                 if (has_comma)
998                         seq_putc(m, '\"');
999         }
1000 }
1001
1002 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1003 {
1004         struct security_mnt_opts opts;
1005         int rc;
1006
1007         rc = selinux_get_mnt_opts(sb, &opts);
1008         if (rc) {
1009                 /* before policy load we may get EINVAL, don't show anything */
1010                 if (rc == -EINVAL)
1011                         rc = 0;
1012                 return rc;
1013         }
1014
1015         selinux_write_opts(m, &opts);
1016
1017         security_free_mnt_opts(&opts);
1018
1019         return rc;
1020 }
1021
1022 static inline u16 inode_mode_to_security_class(umode_t mode)
1023 {
1024         switch (mode & S_IFMT) {
1025         case S_IFSOCK:
1026                 return SECCLASS_SOCK_FILE;
1027         case S_IFLNK:
1028                 return SECCLASS_LNK_FILE;
1029         case S_IFREG:
1030                 return SECCLASS_FILE;
1031         case S_IFBLK:
1032                 return SECCLASS_BLK_FILE;
1033         case S_IFDIR:
1034                 return SECCLASS_DIR;
1035         case S_IFCHR:
1036                 return SECCLASS_CHR_FILE;
1037         case S_IFIFO:
1038                 return SECCLASS_FIFO_FILE;
1039
1040         }
1041
1042         return SECCLASS_FILE;
1043 }
1044
1045 static inline int default_protocol_stream(int protocol)
1046 {
1047         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1048 }
1049
1050 static inline int default_protocol_dgram(int protocol)
1051 {
1052         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1053 }
1054
1055 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1056 {
1057         switch (family) {
1058         case PF_UNIX:
1059                 switch (type) {
1060                 case SOCK_STREAM:
1061                 case SOCK_SEQPACKET:
1062                         return SECCLASS_UNIX_STREAM_SOCKET;
1063                 case SOCK_DGRAM:
1064                         return SECCLASS_UNIX_DGRAM_SOCKET;
1065                 }
1066                 break;
1067         case PF_INET:
1068         case PF_INET6:
1069                 switch (type) {
1070                 case SOCK_STREAM:
1071                         if (default_protocol_stream(protocol))
1072                                 return SECCLASS_TCP_SOCKET;
1073                         else
1074                                 return SECCLASS_RAWIP_SOCKET;
1075                 case SOCK_DGRAM:
1076                         if (default_protocol_dgram(protocol))
1077                                 return SECCLASS_UDP_SOCKET;
1078                         else
1079                                 return SECCLASS_RAWIP_SOCKET;
1080                 case SOCK_DCCP:
1081                         return SECCLASS_DCCP_SOCKET;
1082                 default:
1083                         return SECCLASS_RAWIP_SOCKET;
1084                 }
1085                 break;
1086         case PF_NETLINK:
1087                 switch (protocol) {
1088                 case NETLINK_ROUTE:
1089                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1090                 case NETLINK_FIREWALL:
1091                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1092                 case NETLINK_INET_DIAG:
1093                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1094                 case NETLINK_NFLOG:
1095                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1096                 case NETLINK_XFRM:
1097                         return SECCLASS_NETLINK_XFRM_SOCKET;
1098                 case NETLINK_SELINUX:
1099                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1100                 case NETLINK_AUDIT:
1101                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1102                 case NETLINK_IP6_FW:
1103                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1104                 case NETLINK_DNRTMSG:
1105                         return SECCLASS_NETLINK_DNRT_SOCKET;
1106                 case NETLINK_KOBJECT_UEVENT:
1107                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1108                 default:
1109                         return SECCLASS_NETLINK_SOCKET;
1110                 }
1111         case PF_PACKET:
1112                 return SECCLASS_PACKET_SOCKET;
1113         case PF_KEY:
1114                 return SECCLASS_KEY_SOCKET;
1115         case PF_APPLETALK:
1116                 return SECCLASS_APPLETALK_SOCKET;
1117         }
1118
1119         return SECCLASS_SOCKET;
1120 }
1121
1122 #ifdef CONFIG_PROC_FS
1123 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1124                                 u16 tclass,
1125                                 u32 *sid)
1126 {
1127         int buflen, rc;
1128         char *buffer, *path, *end;
1129
1130         buffer = (char *)__get_free_page(GFP_KERNEL);
1131         if (!buffer)
1132                 return -ENOMEM;
1133
1134         buflen = PAGE_SIZE;
1135         end = buffer+buflen;
1136         *--end = '\0';
1137         buflen--;
1138         path = end-1;
1139         *path = '/';
1140         while (de && de != de->parent) {
1141                 buflen -= de->namelen + 1;
1142                 if (buflen < 0)
1143                         break;
1144                 end -= de->namelen;
1145                 memcpy(end, de->name, de->namelen);
1146                 *--end = '/';
1147                 path = end;
1148                 de = de->parent;
1149         }
1150         rc = security_genfs_sid("proc", path, tclass, sid);
1151         free_page((unsigned long)buffer);
1152         return rc;
1153 }
1154 #else
1155 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1156                                 u16 tclass,
1157                                 u32 *sid)
1158 {
1159         return -EINVAL;
1160 }
1161 #endif
1162
1163 /* The inode's security attributes must be initialized before first use. */
1164 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1165 {
1166         struct superblock_security_struct *sbsec = NULL;
1167         struct inode_security_struct *isec = inode->i_security;
1168         u32 sid;
1169         struct dentry *dentry;
1170 #define INITCONTEXTLEN 255
1171         char *context = NULL;
1172         unsigned len = 0;
1173         int rc = 0;
1174
1175         if (isec->initialized)
1176                 goto out;
1177
1178         mutex_lock(&isec->lock);
1179         if (isec->initialized)
1180                 goto out_unlock;
1181
1182         sbsec = inode->i_sb->s_security;
1183         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1184                 /* Defer initialization until selinux_complete_init,
1185                    after the initial policy is loaded and the security
1186                    server is ready to handle calls. */
1187                 spin_lock(&sbsec->isec_lock);
1188                 if (list_empty(&isec->list))
1189                         list_add(&isec->list, &sbsec->isec_head);
1190                 spin_unlock(&sbsec->isec_lock);
1191                 goto out_unlock;
1192         }
1193
1194         switch (sbsec->behavior) {
1195         case SECURITY_FS_USE_XATTR:
1196                 if (!inode->i_op->getxattr) {
1197                         isec->sid = sbsec->def_sid;
1198                         break;
1199                 }
1200
1201                 /* Need a dentry, since the xattr API requires one.
1202                    Life would be simpler if we could just pass the inode. */
1203                 if (opt_dentry) {
1204                         /* Called from d_instantiate or d_splice_alias. */
1205                         dentry = dget(opt_dentry);
1206                 } else {
1207                         /* Called from selinux_complete_init, try to find a dentry. */
1208                         dentry = d_find_alias(inode);
1209                 }
1210                 if (!dentry) {
1211                         /*
1212                          * this is can be hit on boot when a file is accessed
1213                          * before the policy is loaded.  When we load policy we
1214                          * may find inodes that have no dentry on the
1215                          * sbsec->isec_head list.  No reason to complain as these
1216                          * will get fixed up the next time we go through
1217                          * inode_doinit with a dentry, before these inodes could
1218                          * be used again by userspace.
1219                          */
1220                         goto out_unlock;
1221                 }
1222
1223                 len = INITCONTEXTLEN;
1224                 context = kmalloc(len+1, GFP_NOFS);
1225                 if (!context) {
1226                         rc = -ENOMEM;
1227                         dput(dentry);
1228                         goto out_unlock;
1229                 }
1230                 context[len] = '\0';
1231                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1232                                            context, len);
1233                 if (rc == -ERANGE) {
1234                         kfree(context);
1235
1236                         /* Need a larger buffer.  Query for the right size. */
1237                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1238                                                    NULL, 0);
1239                         if (rc < 0) {
1240                                 dput(dentry);
1241                                 goto out_unlock;
1242                         }
1243                         len = rc;
1244                         context = kmalloc(len+1, GFP_NOFS);
1245                         if (!context) {
1246                                 rc = -ENOMEM;
1247                                 dput(dentry);
1248                                 goto out_unlock;
1249                         }
1250                         context[len] = '\0';
1251                         rc = inode->i_op->getxattr(dentry,
1252                                                    XATTR_NAME_SELINUX,
1253                                                    context, len);
1254                 }
1255                 dput(dentry);
1256                 if (rc < 0) {
1257                         if (rc != -ENODATA) {
1258                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1259                                        "%d for dev=%s ino=%ld\n", __func__,
1260                                        -rc, inode->i_sb->s_id, inode->i_ino);
1261                                 kfree(context);
1262                                 goto out_unlock;
1263                         }
1264                         /* Map ENODATA to the default file SID */
1265                         sid = sbsec->def_sid;
1266                         rc = 0;
1267                 } else {
1268                         rc = security_context_to_sid_default(context, rc, &sid,
1269                                                              sbsec->def_sid,
1270                                                              GFP_NOFS);
1271                         if (rc) {
1272                                 char *dev = inode->i_sb->s_id;
1273                                 unsigned long ino = inode->i_ino;
1274
1275                                 if (rc == -EINVAL) {
1276                                         if (printk_ratelimit())
1277                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1278                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1279                                                         "filesystem in question.\n", ino, dev, context);
1280                                 } else {
1281                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1282                                                "returned %d for dev=%s ino=%ld\n",
1283                                                __func__, context, -rc, dev, ino);
1284                                 }
1285                                 kfree(context);
1286                                 /* Leave with the unlabeled SID */
1287                                 rc = 0;
1288                                 break;
1289                         }
1290                 }
1291                 kfree(context);
1292                 isec->sid = sid;
1293                 break;
1294         case SECURITY_FS_USE_TASK:
1295                 isec->sid = isec->task_sid;
1296                 break;
1297         case SECURITY_FS_USE_TRANS:
1298                 /* Default to the fs SID. */
1299                 isec->sid = sbsec->sid;
1300
1301                 /* Try to obtain a transition SID. */
1302                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1303                 rc = security_transition_sid(isec->task_sid,
1304                                              sbsec->sid,
1305                                              isec->sclass,
1306                                              &sid);
1307                 if (rc)
1308                         goto out_unlock;
1309                 isec->sid = sid;
1310                 break;
1311         case SECURITY_FS_USE_MNTPOINT:
1312                 isec->sid = sbsec->mntpoint_sid;
1313                 break;
1314         default:
1315                 /* Default to the fs superblock SID. */
1316                 isec->sid = sbsec->sid;
1317
1318                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1319                         struct proc_inode *proci = PROC_I(inode);
1320                         if (proci->pde) {
1321                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1322                                 rc = selinux_proc_get_sid(proci->pde,
1323                                                           isec->sclass,
1324                                                           &sid);
1325                                 if (rc)
1326                                         goto out_unlock;
1327                                 isec->sid = sid;
1328                         }
1329                 }
1330                 break;
1331         }
1332
1333         isec->initialized = 1;
1334
1335 out_unlock:
1336         mutex_unlock(&isec->lock);
1337 out:
1338         if (isec->sclass == SECCLASS_FILE)
1339                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1340         return rc;
1341 }
1342
1343 /* Convert a Linux signal to an access vector. */
1344 static inline u32 signal_to_av(int sig)
1345 {
1346         u32 perm = 0;
1347
1348         switch (sig) {
1349         case SIGCHLD:
1350                 /* Commonly granted from child to parent. */
1351                 perm = PROCESS__SIGCHLD;
1352                 break;
1353         case SIGKILL:
1354                 /* Cannot be caught or ignored */
1355                 perm = PROCESS__SIGKILL;
1356                 break;
1357         case SIGSTOP:
1358                 /* Cannot be caught or ignored */
1359                 perm = PROCESS__SIGSTOP;
1360                 break;
1361         default:
1362                 /* All other signals. */
1363                 perm = PROCESS__SIGNAL;
1364                 break;
1365         }
1366
1367         return perm;
1368 }
1369
1370 /*
1371  * Check permission between a pair of credentials
1372  * fork check, ptrace check, etc.
1373  */
1374 static int cred_has_perm(const struct cred *actor,
1375                          const struct cred *target,
1376                          u32 perms)
1377 {
1378         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1379
1380         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1381 }
1382
1383 /*
1384  * Check permission between a pair of tasks, e.g. signal checks,
1385  * fork check, ptrace check, etc.
1386  * tsk1 is the actor and tsk2 is the target
1387  * - this uses the default subjective creds of tsk1
1388  */
1389 static int task_has_perm(const struct task_struct *tsk1,
1390                          const struct task_struct *tsk2,
1391                          u32 perms)
1392 {
1393         const struct task_security_struct *__tsec1, *__tsec2;
1394         u32 sid1, sid2;
1395
1396         rcu_read_lock();
1397         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1398         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1399         rcu_read_unlock();
1400         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1401 }
1402
1403 /*
1404  * Check permission between current and another task, e.g. signal checks,
1405  * fork check, ptrace check, etc.
1406  * current is the actor and tsk2 is the target
1407  * - this uses current's subjective creds
1408  */
1409 static int current_has_perm(const struct task_struct *tsk,
1410                             u32 perms)
1411 {
1412         u32 sid, tsid;
1413
1414         sid = current_sid();
1415         tsid = task_sid(tsk);
1416         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1417 }
1418
1419 #if CAP_LAST_CAP > 63
1420 #error Fix SELinux to handle capabilities > 63.
1421 #endif
1422
1423 /* Check whether a task is allowed to use a capability. */
1424 static int task_has_capability(struct task_struct *tsk,
1425                                const struct cred *cred,
1426                                int cap, int audit)
1427 {
1428         struct common_audit_data ad;
1429         struct av_decision avd;
1430         u16 sclass;
1431         u32 sid = cred_sid(cred);
1432         u32 av = CAP_TO_MASK(cap);
1433         int rc;
1434
1435         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1436         ad.tsk = tsk;
1437         ad.u.cap = cap;
1438
1439         switch (CAP_TO_INDEX(cap)) {
1440         case 0:
1441                 sclass = SECCLASS_CAPABILITY;
1442                 break;
1443         case 1:
1444                 sclass = SECCLASS_CAPABILITY2;
1445                 break;
1446         default:
1447                 printk(KERN_ERR
1448                        "SELinux:  out of range capability %d\n", cap);
1449                 BUG();
1450         }
1451
1452         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1453         if (audit == SECURITY_CAP_AUDIT)
1454                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1455         return rc;
1456 }
1457
1458 /* Check whether a task is allowed to use a system operation. */
1459 static int task_has_system(struct task_struct *tsk,
1460                            u32 perms)
1461 {
1462         u32 sid = task_sid(tsk);
1463
1464         return avc_has_perm(sid, SECINITSID_KERNEL,
1465                             SECCLASS_SYSTEM, perms, NULL);
1466 }
1467
1468 /* Check whether a task has a particular permission to an inode.
1469    The 'adp' parameter is optional and allows other audit
1470    data to be passed (e.g. the dentry). */
1471 static int inode_has_perm(const struct cred *cred,
1472                           struct inode *inode,
1473                           u32 perms,
1474                           struct common_audit_data *adp)
1475 {
1476         struct inode_security_struct *isec;
1477         struct common_audit_data ad;
1478         u32 sid;
1479
1480         validate_creds(cred);
1481
1482         if (unlikely(IS_PRIVATE(inode)))
1483                 return 0;
1484
1485         sid = cred_sid(cred);
1486         isec = inode->i_security;
1487
1488         if (!adp) {
1489                 adp = &ad;
1490                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1491                 ad.u.fs.inode = inode;
1492         }
1493
1494         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1495 }
1496
1497 /* Same as inode_has_perm, but pass explicit audit data containing
1498    the dentry to help the auditing code to more easily generate the
1499    pathname if needed. */
1500 static inline int dentry_has_perm(const struct cred *cred,
1501                                   struct vfsmount *mnt,
1502                                   struct dentry *dentry,
1503                                   u32 av)
1504 {
1505         struct inode *inode = dentry->d_inode;
1506         struct common_audit_data ad;
1507
1508         COMMON_AUDIT_DATA_INIT(&ad, FS);
1509         ad.u.fs.path.mnt = mnt;
1510         ad.u.fs.path.dentry = dentry;
1511         return inode_has_perm(cred, inode, av, &ad);
1512 }
1513
1514 /* Check whether a task can use an open file descriptor to
1515    access an inode in a given way.  Check access to the
1516    descriptor itself, and then use dentry_has_perm to
1517    check a particular permission to the file.
1518    Access to the descriptor is implicitly granted if it
1519    has the same SID as the process.  If av is zero, then
1520    access to the file is not checked, e.g. for cases
1521    where only the descriptor is affected like seek. */
1522 static int file_has_perm(const struct cred *cred,
1523                          struct file *file,
1524                          u32 av)
1525 {
1526         struct file_security_struct *fsec = file->f_security;
1527         struct inode *inode = file->f_path.dentry->d_inode;
1528         struct common_audit_data ad;
1529         u32 sid = cred_sid(cred);
1530         int rc;
1531
1532         COMMON_AUDIT_DATA_INIT(&ad, FS);
1533         ad.u.fs.path = file->f_path;
1534
1535         if (sid != fsec->sid) {
1536                 rc = avc_has_perm(sid, fsec->sid,
1537                                   SECCLASS_FD,
1538                                   FD__USE,
1539                                   &ad);
1540                 if (rc)
1541                         goto out;
1542         }
1543
1544         /* av is zero if only checking access to the descriptor. */
1545         rc = 0;
1546         if (av)
1547                 rc = inode_has_perm(cred, inode, av, &ad);
1548
1549 out:
1550         return rc;
1551 }
1552
1553 /* Check whether a task can create a file. */
1554 static int may_create(struct inode *dir,
1555                       struct dentry *dentry,
1556                       u16 tclass)
1557 {
1558         const struct task_security_struct *tsec = current_security();
1559         struct inode_security_struct *dsec;
1560         struct superblock_security_struct *sbsec;
1561         u32 sid, newsid;
1562         struct common_audit_data ad;
1563         int rc;
1564
1565         dsec = dir->i_security;
1566         sbsec = dir->i_sb->s_security;
1567
1568         sid = tsec->sid;
1569         newsid = tsec->create_sid;
1570
1571         COMMON_AUDIT_DATA_INIT(&ad, FS);
1572         ad.u.fs.path.dentry = dentry;
1573
1574         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1575                           DIR__ADD_NAME | DIR__SEARCH,
1576                           &ad);
1577         if (rc)
1578                 return rc;
1579
1580         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1581                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1582                 if (rc)
1583                         return rc;
1584         }
1585
1586         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1587         if (rc)
1588                 return rc;
1589
1590         return avc_has_perm(newsid, sbsec->sid,
1591                             SECCLASS_FILESYSTEM,
1592                             FILESYSTEM__ASSOCIATE, &ad);
1593 }
1594
1595 /* Check whether a task can create a key. */
1596 static int may_create_key(u32 ksid,
1597                           struct task_struct *ctx)
1598 {
1599         u32 sid = task_sid(ctx);
1600
1601         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1602 }
1603
1604 #define MAY_LINK        0
1605 #define MAY_UNLINK      1
1606 #define MAY_RMDIR       2
1607
1608 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1609 static int may_link(struct inode *dir,
1610                     struct dentry *dentry,
1611                     int kind)
1612
1613 {
1614         struct inode_security_struct *dsec, *isec;
1615         struct common_audit_data ad;
1616         u32 sid = current_sid();
1617         u32 av;
1618         int rc;
1619
1620         dsec = dir->i_security;
1621         isec = dentry->d_inode->i_security;
1622
1623         COMMON_AUDIT_DATA_INIT(&ad, FS);
1624         ad.u.fs.path.dentry = dentry;
1625
1626         av = DIR__SEARCH;
1627         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1628         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1629         if (rc)
1630                 return rc;
1631
1632         switch (kind) {
1633         case MAY_LINK:
1634                 av = FILE__LINK;
1635                 break;
1636         case MAY_UNLINK:
1637                 av = FILE__UNLINK;
1638                 break;
1639         case MAY_RMDIR:
1640                 av = DIR__RMDIR;
1641                 break;
1642         default:
1643                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1644                         __func__, kind);
1645                 return 0;
1646         }
1647
1648         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1649         return rc;
1650 }
1651
1652 static inline int may_rename(struct inode *old_dir,
1653                              struct dentry *old_dentry,
1654                              struct inode *new_dir,
1655                              struct dentry *new_dentry)
1656 {
1657         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1658         struct common_audit_data ad;
1659         u32 sid = current_sid();
1660         u32 av;
1661         int old_is_dir, new_is_dir;
1662         int rc;
1663
1664         old_dsec = old_dir->i_security;
1665         old_isec = old_dentry->d_inode->i_security;
1666         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1667         new_dsec = new_dir->i_security;
1668
1669         COMMON_AUDIT_DATA_INIT(&ad, FS);
1670
1671         ad.u.fs.path.dentry = old_dentry;
1672         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1673                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1674         if (rc)
1675                 return rc;
1676         rc = avc_has_perm(sid, old_isec->sid,
1677                           old_isec->sclass, FILE__RENAME, &ad);
1678         if (rc)
1679                 return rc;
1680         if (old_is_dir && new_dir != old_dir) {
1681                 rc = avc_has_perm(sid, old_isec->sid,
1682                                   old_isec->sclass, DIR__REPARENT, &ad);
1683                 if (rc)
1684                         return rc;
1685         }
1686
1687         ad.u.fs.path.dentry = new_dentry;
1688         av = DIR__ADD_NAME | DIR__SEARCH;
1689         if (new_dentry->d_inode)
1690                 av |= DIR__REMOVE_NAME;
1691         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1692         if (rc)
1693                 return rc;
1694         if (new_dentry->d_inode) {
1695                 new_isec = new_dentry->d_inode->i_security;
1696                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1697                 rc = avc_has_perm(sid, new_isec->sid,
1698                                   new_isec->sclass,
1699                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1700                 if (rc)
1701                         return rc;
1702         }
1703
1704         return 0;
1705 }
1706
1707 /* Check whether a task can perform a filesystem operation. */
1708 static int superblock_has_perm(const struct cred *cred,
1709                                struct super_block *sb,
1710                                u32 perms,
1711                                struct common_audit_data *ad)
1712 {
1713         struct superblock_security_struct *sbsec;
1714         u32 sid = cred_sid(cred);
1715
1716         sbsec = sb->s_security;
1717         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1718 }
1719
1720 /* Convert a Linux mode and permission mask to an access vector. */
1721 static inline u32 file_mask_to_av(int mode, int mask)
1722 {
1723         u32 av = 0;
1724
1725         if ((mode & S_IFMT) != S_IFDIR) {
1726                 if (mask & MAY_EXEC)
1727                         av |= FILE__EXECUTE;
1728                 if (mask & MAY_READ)
1729                         av |= FILE__READ;
1730
1731                 if (mask & MAY_APPEND)
1732                         av |= FILE__APPEND;
1733                 else if (mask & MAY_WRITE)
1734                         av |= FILE__WRITE;
1735
1736         } else {
1737                 if (mask & MAY_EXEC)
1738                         av |= DIR__SEARCH;
1739                 if (mask & MAY_WRITE)
1740                         av |= DIR__WRITE;
1741                 if (mask & MAY_READ)
1742                         av |= DIR__READ;
1743         }
1744
1745         return av;
1746 }
1747
1748 /* Convert a Linux file to an access vector. */
1749 static inline u32 file_to_av(struct file *file)
1750 {
1751         u32 av = 0;
1752
1753         if (file->f_mode & FMODE_READ)
1754                 av |= FILE__READ;
1755         if (file->f_mode & FMODE_WRITE) {
1756                 if (file->f_flags & O_APPEND)
1757                         av |= FILE__APPEND;
1758                 else
1759                         av |= FILE__WRITE;
1760         }
1761         if (!av) {
1762                 /*
1763                  * Special file opened with flags 3 for ioctl-only use.
1764                  */
1765                 av = FILE__IOCTL;
1766         }
1767
1768         return av;
1769 }
1770
1771 /*
1772  * Convert a file to an access vector and include the correct open
1773  * open permission.
1774  */
1775 static inline u32 open_file_to_av(struct file *file)
1776 {
1777         u32 av = file_to_av(file);
1778
1779         if (selinux_policycap_openperm)
1780                 av |= FILE__OPEN;
1781
1782         return av;
1783 }
1784
1785 /* Hook functions begin here. */
1786
1787 static int selinux_ptrace_access_check(struct task_struct *child,
1788                                      unsigned int mode)
1789 {
1790         int rc;
1791
1792         rc = cap_ptrace_access_check(child, mode);
1793         if (rc)
1794                 return rc;
1795
1796         if (mode == PTRACE_MODE_READ) {
1797                 u32 sid = current_sid();
1798                 u32 csid = task_sid(child);
1799                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1800         }
1801
1802         return current_has_perm(child, PROCESS__PTRACE);
1803 }
1804
1805 static int selinux_ptrace_traceme(struct task_struct *parent)
1806 {
1807         int rc;
1808
1809         rc = cap_ptrace_traceme(parent);
1810         if (rc)
1811                 return rc;
1812
1813         return task_has_perm(parent, current, PROCESS__PTRACE);
1814 }
1815
1816 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1817                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1818 {
1819         int error;
1820
1821         error = current_has_perm(target, PROCESS__GETCAP);
1822         if (error)
1823                 return error;
1824
1825         return cap_capget(target, effective, inheritable, permitted);
1826 }
1827
1828 static int selinux_capset(struct cred *new, const struct cred *old,
1829                           const kernel_cap_t *effective,
1830                           const kernel_cap_t *inheritable,
1831                           const kernel_cap_t *permitted)
1832 {
1833         int error;
1834
1835         error = cap_capset(new, old,
1836                                       effective, inheritable, permitted);
1837         if (error)
1838                 return error;
1839
1840         return cred_has_perm(old, new, PROCESS__SETCAP);
1841 }
1842
1843 /*
1844  * (This comment used to live with the selinux_task_setuid hook,
1845  * which was removed).
1846  *
1847  * Since setuid only affects the current process, and since the SELinux
1848  * controls are not based on the Linux identity attributes, SELinux does not
1849  * need to control this operation.  However, SELinux does control the use of
1850  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1851  */
1852
1853 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1854                            int cap, int audit)
1855 {
1856         int rc;
1857
1858         rc = cap_capable(tsk, cred, cap, audit);
1859         if (rc)
1860                 return rc;
1861
1862         return task_has_capability(tsk, cred, cap, audit);
1863 }
1864
1865 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1866 {
1867         int buflen, rc;
1868         char *buffer, *path, *end;
1869
1870         rc = -ENOMEM;
1871         buffer = (char *)__get_free_page(GFP_KERNEL);
1872         if (!buffer)
1873                 goto out;
1874
1875         buflen = PAGE_SIZE;
1876         end = buffer+buflen;
1877         *--end = '\0';
1878         buflen--;
1879         path = end-1;
1880         *path = '/';
1881         while (table) {
1882                 const char *name = table->procname;
1883                 size_t namelen = strlen(name);
1884                 buflen -= namelen + 1;
1885                 if (buflen < 0)
1886                         goto out_free;
1887                 end -= namelen;
1888                 memcpy(end, name, namelen);
1889                 *--end = '/';
1890                 path = end;
1891                 table = table->parent;
1892         }
1893         buflen -= 4;
1894         if (buflen < 0)
1895                 goto out_free;
1896         end -= 4;
1897         memcpy(end, "/sys", 4);
1898         path = end;
1899         rc = security_genfs_sid("proc", path, tclass, sid);
1900 out_free:
1901         free_page((unsigned long)buffer);
1902 out:
1903         return rc;
1904 }
1905
1906 static int selinux_sysctl(ctl_table *table, int op)
1907 {
1908         int error = 0;
1909         u32 av;
1910         u32 tsid, sid;
1911         int rc;
1912
1913         sid = current_sid();
1914
1915         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1916                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1917         if (rc) {
1918                 /* Default to the well-defined sysctl SID. */
1919                 tsid = SECINITSID_SYSCTL;
1920         }
1921
1922         /* The op values are "defined" in sysctl.c, thereby creating
1923          * a bad coupling between this module and sysctl.c */
1924         if (op == 001) {
1925                 error = avc_has_perm(sid, tsid,
1926                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1927         } else {
1928                 av = 0;
1929                 if (op & 004)
1930                         av |= FILE__READ;
1931                 if (op & 002)
1932                         av |= FILE__WRITE;
1933                 if (av)
1934                         error = avc_has_perm(sid, tsid,
1935                                              SECCLASS_FILE, av, NULL);
1936         }
1937
1938         return error;
1939 }
1940
1941 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1942 {
1943         const struct cred *cred = current_cred();
1944         int rc = 0;
1945
1946         if (!sb)
1947                 return 0;
1948
1949         switch (cmds) {
1950         case Q_SYNC:
1951         case Q_QUOTAON:
1952         case Q_QUOTAOFF:
1953         case Q_SETINFO:
1954         case Q_SETQUOTA:
1955                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1956                 break;
1957         case Q_GETFMT:
1958         case Q_GETINFO:
1959         case Q_GETQUOTA:
1960                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1961                 break;
1962         default:
1963                 rc = 0;  /* let the kernel handle invalid cmds */
1964                 break;
1965         }
1966         return rc;
1967 }
1968
1969 static int selinux_quota_on(struct dentry *dentry)
1970 {
1971         const struct cred *cred = current_cred();
1972
1973         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
1974 }
1975
1976 static int selinux_syslog(int type, bool from_file)
1977 {
1978         int rc;
1979
1980         rc = cap_syslog(type, from_file);
1981         if (rc)
1982                 return rc;
1983
1984         switch (type) {
1985         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
1986         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1987                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1988                 break;
1989         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1990         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
1991         /* Set level of messages printed to console */
1992         case SYSLOG_ACTION_CONSOLE_LEVEL:
1993                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1994                 break;
1995         case SYSLOG_ACTION_CLOSE:       /* Close log */
1996         case SYSLOG_ACTION_OPEN:        /* Open log */
1997         case SYSLOG_ACTION_READ:        /* Read from log */
1998         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
1999         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2000         default:
2001                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2002                 break;
2003         }
2004         return rc;
2005 }
2006
2007 /*
2008  * Check that a process has enough memory to allocate a new virtual
2009  * mapping. 0 means there is enough memory for the allocation to
2010  * succeed and -ENOMEM implies there is not.
2011  *
2012  * Do not audit the selinux permission check, as this is applied to all
2013  * processes that allocate mappings.
2014  */
2015 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2016 {
2017         int rc, cap_sys_admin = 0;
2018
2019         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2020                              SECURITY_CAP_NOAUDIT);
2021         if (rc == 0)
2022                 cap_sys_admin = 1;
2023
2024         return __vm_enough_memory(mm, pages, cap_sys_admin);
2025 }
2026
2027 /* binprm security operations */
2028
2029 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2030 {
2031         const struct task_security_struct *old_tsec;
2032         struct task_security_struct *new_tsec;
2033         struct inode_security_struct *isec;
2034         struct common_audit_data ad;
2035         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2036         int rc;
2037
2038         rc = cap_bprm_set_creds(bprm);
2039         if (rc)
2040                 return rc;
2041
2042         /* SELinux context only depends on initial program or script and not
2043          * the script interpreter */
2044         if (bprm->cred_prepared)
2045                 return 0;
2046
2047         old_tsec = current_security();
2048         new_tsec = bprm->cred->security;
2049         isec = inode->i_security;
2050
2051         /* Default to the current task SID. */
2052         new_tsec->sid = old_tsec->sid;
2053         new_tsec->osid = old_tsec->sid;
2054
2055         /* Reset fs, key, and sock SIDs on execve. */
2056         new_tsec->create_sid = 0;
2057         new_tsec->keycreate_sid = 0;
2058         new_tsec->sockcreate_sid = 0;
2059
2060         if (old_tsec->exec_sid) {
2061                 new_tsec->sid = old_tsec->exec_sid;
2062                 /* Reset exec SID on execve. */
2063                 new_tsec->exec_sid = 0;
2064         } else {
2065                 /* Check for a default transition on this program. */
2066                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2067                                              SECCLASS_PROCESS, &new_tsec->sid);
2068                 if (rc)
2069                         return rc;
2070         }
2071
2072         COMMON_AUDIT_DATA_INIT(&ad, FS);
2073         ad.u.fs.path = bprm->file->f_path;
2074
2075         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2076                 new_tsec->sid = old_tsec->sid;
2077
2078         if (new_tsec->sid == old_tsec->sid) {
2079                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2080                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2081                 if (rc)
2082                         return rc;
2083         } else {
2084                 /* Check permissions for the transition. */
2085                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2086                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2087                 if (rc)
2088                         return rc;
2089
2090                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2091                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2092                 if (rc)
2093                         return rc;
2094
2095                 /* Check for shared state */
2096                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2097                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2098                                           SECCLASS_PROCESS, PROCESS__SHARE,
2099                                           NULL);
2100                         if (rc)
2101                                 return -EPERM;
2102                 }
2103
2104                 /* Make sure that anyone attempting to ptrace over a task that
2105                  * changes its SID has the appropriate permit */
2106                 if (bprm->unsafe &
2107                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2108                         struct task_struct *tracer;
2109                         struct task_security_struct *sec;
2110                         u32 ptsid = 0;
2111
2112                         rcu_read_lock();
2113                         tracer = tracehook_tracer_task(current);
2114                         if (likely(tracer != NULL)) {
2115                                 sec = __task_cred(tracer)->security;
2116                                 ptsid = sec->sid;
2117                         }
2118                         rcu_read_unlock();
2119
2120                         if (ptsid != 0) {
2121                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2122                                                   SECCLASS_PROCESS,
2123                                                   PROCESS__PTRACE, NULL);
2124                                 if (rc)
2125                                         return -EPERM;
2126                         }
2127                 }
2128
2129                 /* Clear any possibly unsafe personality bits on exec: */
2130                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2131         }
2132
2133         return 0;
2134 }
2135
2136 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2137 {
2138         const struct task_security_struct *tsec = current_security();
2139         u32 sid, osid;
2140         int atsecure = 0;
2141
2142         sid = tsec->sid;
2143         osid = tsec->osid;
2144
2145         if (osid != sid) {
2146                 /* Enable secure mode for SIDs transitions unless
2147                    the noatsecure permission is granted between
2148                    the two SIDs, i.e. ahp returns 0. */
2149                 atsecure = avc_has_perm(osid, sid,
2150                                         SECCLASS_PROCESS,
2151                                         PROCESS__NOATSECURE, NULL);
2152         }
2153
2154         return (atsecure || cap_bprm_secureexec(bprm));
2155 }
2156
2157 extern struct vfsmount *selinuxfs_mount;
2158 extern struct dentry *selinux_null;
2159
2160 /* Derived from fs/exec.c:flush_old_files. */
2161 static inline void flush_unauthorized_files(const struct cred *cred,
2162                                             struct files_struct *files)
2163 {
2164         struct common_audit_data ad;
2165         struct file *file, *devnull = NULL;
2166         struct tty_struct *tty;
2167         struct fdtable *fdt;
2168         long j = -1;
2169         int drop_tty = 0;
2170
2171         tty = get_current_tty();
2172         if (tty) {
2173                 file_list_lock();
2174                 if (!list_empty(&tty->tty_files)) {
2175                         struct inode *inode;
2176
2177                         /* Revalidate access to controlling tty.
2178                            Use inode_has_perm on the tty inode directly rather
2179                            than using file_has_perm, as this particular open
2180                            file may belong to another process and we are only
2181                            interested in the inode-based check here. */
2182                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2183                         inode = file->f_path.dentry->d_inode;
2184                         if (inode_has_perm(cred, inode,
2185                                            FILE__READ | FILE__WRITE, NULL)) {
2186                                 drop_tty = 1;
2187                         }
2188                 }
2189                 file_list_unlock();
2190                 tty_kref_put(tty);
2191         }
2192         /* Reset controlling tty. */
2193         if (drop_tty)
2194                 no_tty();
2195
2196         /* Revalidate access to inherited open files. */
2197
2198         COMMON_AUDIT_DATA_INIT(&ad, FS);
2199
2200         spin_lock(&files->file_lock);
2201         for (;;) {
2202                 unsigned long set, i;
2203                 int fd;
2204
2205                 j++;
2206                 i = j * __NFDBITS;
2207                 fdt = files_fdtable(files);
2208                 if (i >= fdt->max_fds)
2209                         break;
2210                 set = fdt->open_fds->fds_bits[j];
2211                 if (!set)
2212                         continue;
2213                 spin_unlock(&files->file_lock);
2214                 for ( ; set ; i++, set >>= 1) {
2215                         if (set & 1) {
2216                                 file = fget(i);
2217                                 if (!file)
2218                                         continue;
2219                                 if (file_has_perm(cred,
2220                                                   file,
2221                                                   file_to_av(file))) {
2222                                         sys_close(i);
2223                                         fd = get_unused_fd();
2224                                         if (fd != i) {
2225                                                 if (fd >= 0)
2226                                                         put_unused_fd(fd);
2227                                                 fput(file);
2228                                                 continue;
2229                                         }
2230                                         if (devnull) {
2231                                                 get_file(devnull);
2232                                         } else {
2233                                                 devnull = dentry_open(
2234                                                         dget(selinux_null),
2235                                                         mntget(selinuxfs_mount),
2236                                                         O_RDWR, cred);
2237                                                 if (IS_ERR(devnull)) {
2238                                                         devnull = NULL;
2239                                                         put_unused_fd(fd);
2240                                                         fput(file);
2241                                                         continue;
2242                                                 }
2243                                         }
2244                                         fd_install(fd, devnull);
2245                                 }
2246                                 fput(file);
2247                         }
2248                 }
2249                 spin_lock(&files->file_lock);
2250
2251         }
2252         spin_unlock(&files->file_lock);
2253 }
2254
2255 /*
2256  * Prepare a process for imminent new credential changes due to exec
2257  */
2258 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2259 {
2260         struct task_security_struct *new_tsec;
2261         struct rlimit *rlim, *initrlim;
2262         int rc, i;
2263
2264         new_tsec = bprm->cred->security;
2265         if (new_tsec->sid == new_tsec->osid)
2266                 return;
2267
2268         /* Close files for which the new task SID is not authorized. */
2269         flush_unauthorized_files(bprm->cred, current->files);
2270
2271         /* Always clear parent death signal on SID transitions. */
2272         current->pdeath_signal = 0;
2273
2274         /* Check whether the new SID can inherit resource limits from the old
2275          * SID.  If not, reset all soft limits to the lower of the current
2276          * task's hard limit and the init task's soft limit.
2277          *
2278          * Note that the setting of hard limits (even to lower them) can be
2279          * controlled by the setrlimit check.  The inclusion of the init task's
2280          * soft limit into the computation is to avoid resetting soft limits
2281          * higher than the default soft limit for cases where the default is
2282          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2283          */
2284         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2285                           PROCESS__RLIMITINH, NULL);
2286         if (rc) {
2287                 for (i = 0; i < RLIM_NLIMITS; i++) {
2288                         rlim = current->signal->rlim + i;
2289                         initrlim = init_task.signal->rlim + i;
2290                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2291                 }
2292                 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur);
2293         }
2294 }
2295
2296 /*
2297  * Clean up the process immediately after the installation of new credentials
2298  * due to exec
2299  */
2300 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2301 {
2302         const struct task_security_struct *tsec = current_security();
2303         struct itimerval itimer;
2304         u32 osid, sid;
2305         int rc, i;
2306
2307         osid = tsec->osid;
2308         sid = tsec->sid;
2309
2310         if (sid == osid)
2311                 return;
2312
2313         /* Check whether the new SID can inherit signal state from the old SID.
2314          * If not, clear itimers to avoid subsequent signal generation and
2315          * flush and unblock signals.
2316          *
2317          * This must occur _after_ the task SID has been updated so that any
2318          * kill done after the flush will be checked against the new SID.
2319          */
2320         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2321         if (rc) {
2322                 memset(&itimer, 0, sizeof itimer);
2323                 for (i = 0; i < 3; i++)
2324                         do_setitimer(i, &itimer, NULL);
2325                 spin_lock_irq(&current->sighand->siglock);
2326                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2327                         __flush_signals(current);
2328                         flush_signal_handlers(current, 1);
2329                         sigemptyset(&current->blocked);
2330                 }
2331                 spin_unlock_irq(&current->sighand->siglock);
2332         }
2333
2334         /* Wake up the parent if it is waiting so that it can recheck
2335          * wait permission to the new task SID. */
2336         read_lock(&tasklist_lock);
2337         __wake_up_parent(current, current->real_parent);
2338         read_unlock(&tasklist_lock);
2339 }
2340
2341 /* superblock security operations */
2342
2343 static int selinux_sb_alloc_security(struct super_block *sb)
2344 {
2345         return superblock_alloc_security(sb);
2346 }
2347
2348 static void selinux_sb_free_security(struct super_block *sb)
2349 {
2350         superblock_free_security(sb);
2351 }
2352
2353 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2354 {
2355         if (plen > olen)
2356                 return 0;
2357
2358         return !memcmp(prefix, option, plen);
2359 }
2360
2361 static inline int selinux_option(char *option, int len)
2362 {
2363         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2364                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2365                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2366                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2367                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2368 }
2369
2370 static inline void take_option(char **to, char *from, int *first, int len)
2371 {
2372         if (!*first) {
2373                 **to = ',';
2374                 *to += 1;
2375         } else
2376                 *first = 0;
2377         memcpy(*to, from, len);
2378         *to += len;
2379 }
2380
2381 static inline void take_selinux_option(char **to, char *from, int *first,
2382                                        int len)
2383 {
2384         int current_size = 0;
2385
2386         if (!*first) {
2387                 **to = '|';
2388                 *to += 1;
2389         } else
2390                 *first = 0;
2391
2392         while (current_size < len) {
2393                 if (*from != '"') {
2394                         **to = *from;
2395                         *to += 1;
2396                 }
2397                 from += 1;
2398                 current_size += 1;
2399         }
2400 }
2401
2402 static int selinux_sb_copy_data(char *orig, char *copy)
2403 {
2404         int fnosec, fsec, rc = 0;
2405         char *in_save, *in_curr, *in_end;
2406         char *sec_curr, *nosec_save, *nosec;
2407         int open_quote = 0;
2408
2409         in_curr = orig;
2410         sec_curr = copy;
2411
2412         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2413         if (!nosec) {
2414                 rc = -ENOMEM;
2415                 goto out;
2416         }
2417
2418         nosec_save = nosec;
2419         fnosec = fsec = 1;
2420         in_save = in_end = orig;
2421
2422         do {
2423                 if (*in_end == '"')
2424                         open_quote = !open_quote;
2425                 if ((*in_end == ',' && open_quote == 0) ||
2426                                 *in_end == '\0') {
2427                         int len = in_end - in_curr;
2428
2429                         if (selinux_option(in_curr, len))
2430                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2431                         else
2432                                 take_option(&nosec, in_curr, &fnosec, len);
2433
2434                         in_curr = in_end + 1;
2435                 }
2436         } while (*in_end++);
2437
2438         strcpy(in_save, nosec_save);
2439         free_page((unsigned long)nosec_save);
2440 out:
2441         return rc;
2442 }
2443
2444 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2445 {
2446         const struct cred *cred = current_cred();
2447         struct common_audit_data ad;
2448         int rc;
2449
2450         rc = superblock_doinit(sb, data);
2451         if (rc)
2452                 return rc;
2453
2454         /* Allow all mounts performed by the kernel */
2455         if (flags & MS_KERNMOUNT)
2456                 return 0;
2457
2458         COMMON_AUDIT_DATA_INIT(&ad, FS);
2459         ad.u.fs.path.dentry = sb->s_root;
2460         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2461 }
2462
2463 static int selinux_sb_statfs(struct dentry *dentry)
2464 {
2465         const struct cred *cred = current_cred();
2466         struct common_audit_data ad;
2467
2468         COMMON_AUDIT_DATA_INIT(&ad, FS);
2469         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2470         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2471 }
2472
2473 static int selinux_mount(char *dev_name,
2474                          struct path *path,
2475                          char *type,
2476                          unsigned long flags,
2477                          void *data)
2478 {
2479         const struct cred *cred = current_cred();
2480
2481         if (flags & MS_REMOUNT)
2482                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2483                                            FILESYSTEM__REMOUNT, NULL);
2484         else
2485                 return dentry_has_perm(cred, path->mnt, path->dentry,
2486                                        FILE__MOUNTON);
2487 }
2488
2489 static int selinux_umount(struct vfsmount *mnt, int flags)
2490 {
2491         const struct cred *cred = current_cred();
2492
2493         return superblock_has_perm(cred, mnt->mnt_sb,
2494                                    FILESYSTEM__UNMOUNT, NULL);
2495 }
2496
2497 /* inode security operations */
2498
2499 static int selinux_inode_alloc_security(struct inode *inode)
2500 {
2501         return inode_alloc_security(inode);
2502 }
2503
2504 static void selinux_inode_free_security(struct inode *inode)
2505 {
2506         inode_free_security(inode);
2507 }
2508
2509 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2510                                        char **name, void **value,
2511                                        size_t *len)
2512 {
2513         const struct task_security_struct *tsec = current_security();
2514         struct inode_security_struct *dsec;
2515         struct superblock_security_struct *sbsec;
2516         u32 sid, newsid, clen;
2517         int rc;
2518         char *namep = NULL, *context;
2519
2520         dsec = dir->i_security;
2521         sbsec = dir->i_sb->s_security;
2522
2523         sid = tsec->sid;
2524         newsid = tsec->create_sid;
2525
2526         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2527                 rc = security_transition_sid(sid, dsec->sid,
2528                                              inode_mode_to_security_class(inode->i_mode),
2529                                              &newsid);
2530                 if (rc) {
2531                         printk(KERN_WARNING "%s:  "
2532                                "security_transition_sid failed, rc=%d (dev=%s "
2533                                "ino=%ld)\n",
2534                                __func__,
2535                                -rc, inode->i_sb->s_id, inode->i_ino);
2536                         return rc;
2537                 }
2538         }
2539
2540         /* Possibly defer initialization to selinux_complete_init. */
2541         if (sbsec->flags & SE_SBINITIALIZED) {
2542                 struct inode_security_struct *isec = inode->i_security;
2543                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2544                 isec->sid = newsid;
2545                 isec->initialized = 1;
2546         }
2547
2548         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2549                 return -EOPNOTSUPP;
2550
2551         if (name) {
2552                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2553                 if (!namep)
2554                         return -ENOMEM;
2555                 *name = namep;
2556         }
2557
2558         if (value && len) {
2559                 rc = security_sid_to_context_force(newsid, &context, &clen);
2560                 if (rc) {
2561                         kfree(namep);
2562                         return rc;
2563                 }
2564                 *value = context;
2565                 *len = clen;
2566         }
2567
2568         return 0;
2569 }
2570
2571 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2572 {
2573         return may_create(dir, dentry, SECCLASS_FILE);
2574 }
2575
2576 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2577 {
2578         return may_link(dir, old_dentry, MAY_LINK);
2579 }
2580
2581 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2582 {
2583         return may_link(dir, dentry, MAY_UNLINK);
2584 }
2585
2586 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2587 {
2588         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2589 }
2590
2591 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2592 {
2593         return may_create(dir, dentry, SECCLASS_DIR);
2594 }
2595
2596 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2597 {
2598         return may_link(dir, dentry, MAY_RMDIR);
2599 }
2600
2601 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2602 {
2603         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2604 }
2605
2606 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2607                                 struct inode *new_inode, struct dentry *new_dentry)
2608 {
2609         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2610 }
2611
2612 static int selinux_inode_readlink(struct dentry *dentry)
2613 {
2614         const struct cred *cred = current_cred();
2615
2616         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2617 }
2618
2619 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2620 {
2621         const struct cred *cred = current_cred();
2622
2623         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2624 }
2625
2626 static int selinux_inode_permission(struct inode *inode, int mask)
2627 {
2628         const struct cred *cred = current_cred();
2629         struct common_audit_data ad;
2630         u32 perms;
2631         bool from_access;
2632
2633         from_access = mask & MAY_ACCESS;
2634         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2635
2636         /* No permission to check.  Existence test. */
2637         if (!mask)
2638                 return 0;
2639
2640         COMMON_AUDIT_DATA_INIT(&ad, FS);
2641         ad.u.fs.inode = inode;
2642
2643         if (from_access)
2644                 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2645
2646         perms = file_mask_to_av(inode->i_mode, mask);
2647
2648         return inode_has_perm(cred, inode, perms, &ad);
2649 }
2650
2651 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2652 {
2653         const struct cred *cred = current_cred();
2654         unsigned int ia_valid = iattr->ia_valid;
2655
2656         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2657         if (ia_valid & ATTR_FORCE) {
2658                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2659                               ATTR_FORCE);
2660                 if (!ia_valid)
2661                         return 0;
2662         }
2663
2664         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2665                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2666                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2667
2668         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2669 }
2670
2671 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2672 {
2673         const struct cred *cred = current_cred();
2674
2675         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2676 }
2677
2678 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2679 {
2680         const struct cred *cred = current_cred();
2681
2682         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2683                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2684                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2685                         if (!capable(CAP_SETFCAP))
2686                                 return -EPERM;
2687                 } else if (!capable(CAP_SYS_ADMIN)) {
2688                         /* A different attribute in the security namespace.
2689                            Restrict to administrator. */
2690                         return -EPERM;
2691                 }
2692         }
2693
2694         /* Not an attribute we recognize, so just check the
2695            ordinary setattr permission. */
2696         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2697 }
2698
2699 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2700                                   const void *value, size_t size, int flags)
2701 {
2702         struct inode *inode = dentry->d_inode;
2703         struct inode_security_struct *isec = inode->i_security;
2704         struct superblock_security_struct *sbsec;
2705         struct common_audit_data ad;
2706         u32 newsid, sid = current_sid();
2707         int rc = 0;
2708
2709         if (strcmp(name, XATTR_NAME_SELINUX))
2710                 return selinux_inode_setotherxattr(dentry, name);
2711
2712         sbsec = inode->i_sb->s_security;
2713         if (!(sbsec->flags & SE_SBLABELSUPP))
2714                 return -EOPNOTSUPP;
2715
2716         if (!is_owner_or_cap(inode))
2717                 return -EPERM;
2718
2719         COMMON_AUDIT_DATA_INIT(&ad, FS);
2720         ad.u.fs.path.dentry = dentry;
2721
2722         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2723                           FILE__RELABELFROM, &ad);
2724         if (rc)
2725                 return rc;
2726
2727         rc = security_context_to_sid(value, size, &newsid);
2728         if (rc == -EINVAL) {
2729                 if (!capable(CAP_MAC_ADMIN))
2730                         return rc;
2731                 rc = security_context_to_sid_force(value, size, &newsid);
2732         }
2733         if (rc)
2734                 return rc;
2735
2736         rc = avc_has_perm(sid, newsid, isec->sclass,
2737                           FILE__RELABELTO, &ad);
2738         if (rc)
2739                 return rc;
2740
2741         rc = security_validate_transition(isec->sid, newsid, sid,
2742                                           isec->sclass);
2743         if (rc)
2744                 return rc;
2745
2746         return avc_has_perm(newsid,
2747                             sbsec->sid,
2748                             SECCLASS_FILESYSTEM,
2749                             FILESYSTEM__ASSOCIATE,
2750                             &ad);
2751 }
2752
2753 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2754                                         const void *value, size_t size,
2755                                         int flags)
2756 {
2757         struct inode *inode = dentry->d_inode;
2758         struct inode_security_struct *isec = inode->i_security;
2759         u32 newsid;
2760         int rc;
2761
2762         if (strcmp(name, XATTR_NAME_SELINUX)) {
2763                 /* Not an attribute we recognize, so nothing to do. */
2764                 return;
2765         }
2766
2767         rc = security_context_to_sid_force(value, size, &newsid);
2768         if (rc) {
2769                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2770                        "for (%s, %lu), rc=%d\n",
2771                        inode->i_sb->s_id, inode->i_ino, -rc);
2772                 return;
2773         }
2774
2775         isec->sid = newsid;
2776         return;
2777 }
2778
2779 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2780 {
2781         const struct cred *cred = current_cred();
2782
2783         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2784 }
2785
2786 static int selinux_inode_listxattr(struct dentry *dentry)
2787 {
2788         const struct cred *cred = current_cred();
2789
2790         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2791 }
2792
2793 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2794 {
2795         if (strcmp(name, XATTR_NAME_SELINUX))
2796                 return selinux_inode_setotherxattr(dentry, name);
2797
2798         /* No one is allowed to remove a SELinux security label.
2799            You can change the label, but all data must be labeled. */
2800         return -EACCES;
2801 }
2802
2803 /*
2804  * Copy the inode security context value to the user.
2805  *
2806  * Permission check is handled by selinux_inode_getxattr hook.
2807  */
2808 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2809 {
2810         u32 size;
2811         int error;
2812         char *context = NULL;
2813         struct inode_security_struct *isec = inode->i_security;
2814
2815         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2816                 return -EOPNOTSUPP;
2817
2818         /*
2819          * If the caller has CAP_MAC_ADMIN, then get the raw context
2820          * value even if it is not defined by current policy; otherwise,
2821          * use the in-core value under current policy.
2822          * Use the non-auditing forms of the permission checks since
2823          * getxattr may be called by unprivileged processes commonly
2824          * and lack of permission just means that we fall back to the
2825          * in-core context value, not a denial.
2826          */
2827         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2828                                 SECURITY_CAP_NOAUDIT);
2829         if (!error)
2830                 error = security_sid_to_context_force(isec->sid, &context,
2831                                                       &size);
2832         else
2833                 error = security_sid_to_context(isec->sid, &context, &size);
2834         if (error)
2835                 return error;
2836         error = size;
2837         if (alloc) {
2838                 *buffer = context;
2839                 goto out_nofree;
2840         }
2841         kfree(context);
2842 out_nofree:
2843         return error;
2844 }
2845
2846 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2847                                      const void *value, size_t size, int flags)
2848 {
2849         struct inode_security_struct *isec = inode->i_security;
2850         u32 newsid;
2851         int rc;
2852
2853         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2854                 return -EOPNOTSUPP;
2855
2856         if (!value || !size)
2857                 return -EACCES;
2858
2859         rc = security_context_to_sid((void *)value, size, &newsid);
2860         if (rc)
2861                 return rc;
2862
2863         isec->sid = newsid;
2864         isec->initialized = 1;
2865         return 0;
2866 }
2867
2868 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2869 {
2870         const int len = sizeof(XATTR_NAME_SELINUX);
2871         if (buffer && len <= buffer_size)
2872                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2873         return len;
2874 }
2875
2876 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2877 {
2878         struct inode_security_struct *isec = inode->i_security;
2879         *secid = isec->sid;
2880 }
2881
2882 /* file security operations */
2883
2884 static int selinux_revalidate_file_permission(struct file *file, int mask)
2885 {
2886         const struct cred *cred = current_cred();
2887         struct inode *inode = file->f_path.dentry->d_inode;
2888
2889         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2890         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2891                 mask |= MAY_APPEND;
2892
2893         return file_has_perm(cred, file,
2894                              file_mask_to_av(inode->i_mode, mask));
2895 }
2896
2897 static int selinux_file_permission(struct file *file, int mask)
2898 {
2899         struct inode *inode = file->f_path.dentry->d_inode;
2900         struct file_security_struct *fsec = file->f_security;
2901         struct inode_security_struct *isec = inode->i_security;
2902         u32 sid = current_sid();
2903
2904         if (!mask)
2905                 /* No permission to check.  Existence test. */
2906                 return 0;
2907
2908         if (sid == fsec->sid && fsec->isid == isec->sid &&
2909             fsec->pseqno == avc_policy_seqno())
2910                 /* No change since dentry_open check. */
2911                 return 0;
2912
2913         return selinux_revalidate_file_permission(file, mask);
2914 }
2915
2916 static int selinux_file_alloc_security(struct file *file)
2917 {
2918         return file_alloc_security(file);
2919 }
2920
2921 static void selinux_file_free_security(struct file *file)
2922 {
2923         file_free_security(file);
2924 }
2925
2926 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2927                               unsigned long arg)
2928 {
2929         const struct cred *cred = current_cred();
2930         u32 av = 0;
2931
2932         if (_IOC_DIR(cmd) & _IOC_WRITE)
2933                 av |= FILE__WRITE;
2934         if (_IOC_DIR(cmd) & _IOC_READ)
2935                 av |= FILE__READ;
2936         if (!av)
2937                 av = FILE__IOCTL;
2938
2939         return file_has_perm(cred, file, av);
2940 }
2941
2942 static int default_noexec;
2943
2944 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2945 {
2946         const struct cred *cred = current_cred();
2947         int rc = 0;
2948
2949         if (default_noexec &&
2950             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2951                 /*
2952                  * We are making executable an anonymous mapping or a
2953                  * private file mapping that will also be writable.
2954                  * This has an additional check.
2955                  */
2956                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
2957                 if (rc)
2958                         goto error;
2959         }
2960
2961         if (file) {
2962                 /* read access is always possible with a mapping */
2963                 u32 av = FILE__READ;
2964
2965                 /* write access only matters if the mapping is shared */
2966                 if (shared && (prot & PROT_WRITE))
2967                         av |= FILE__WRITE;
2968
2969                 if (prot & PROT_EXEC)
2970                         av |= FILE__EXECUTE;
2971
2972                 return file_has_perm(cred, file, av);
2973         }
2974
2975 error:
2976         return rc;
2977 }
2978
2979 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2980                              unsigned long prot, unsigned long flags,
2981                              unsigned long addr, unsigned long addr_only)
2982 {
2983         int rc = 0;
2984         u32 sid = current_sid();
2985
2986         /*
2987          * notice that we are intentionally putting the SELinux check before
2988          * the secondary cap_file_mmap check.  This is such a likely attempt
2989          * at bad behaviour/exploit that we always want to get the AVC, even
2990          * if DAC would have also denied the operation.
2991          */
2992         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
2993                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
2994                                   MEMPROTECT__MMAP_ZERO, NULL);
2995                 if (rc)
2996                         return rc;
2997         }
2998
2999         /* do DAC check on address space usage */
3000         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3001         if (rc || addr_only)
3002                 return rc;
3003
3004         if (selinux_checkreqprot)
3005                 prot = reqprot;
3006
3007         return file_map_prot_check(file, prot,
3008                                    (flags & MAP_TYPE) == MAP_SHARED);
3009 }
3010
3011 static int selinux_file_mprotect(struct vm_area_struct *vma,
3012                                  unsigned long reqprot,
3013                                  unsigned long prot)
3014 {
3015         const struct cred *cred = current_cred();
3016
3017         if (selinux_checkreqprot)
3018                 prot = reqprot;
3019
3020         if (default_noexec &&
3021             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3022                 int rc = 0;
3023                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3024                     vma->vm_end <= vma->vm_mm->brk) {
3025                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3026                 } else if (!vma->vm_file &&
3027                            vma->vm_start <= vma->vm_mm->start_stack &&
3028                            vma->vm_end >= vma->vm_mm->start_stack) {
3029                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3030                 } else if (vma->vm_file && vma->anon_vma) {
3031                         /*
3032                          * We are making executable a file mapping that has
3033                          * had some COW done. Since pages might have been
3034                          * written, check ability to execute the possibly
3035                          * modified content.  This typically should only
3036                          * occur for text relocations.
3037                          */
3038                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3039                 }
3040                 if (rc)
3041                         return rc;
3042         }
3043
3044         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3045 }
3046
3047 static int selinux_file_lock(struct file *file, unsigned int cmd)
3048 {
3049         const struct cred *cred = current_cred();
3050
3051         return file_has_perm(cred, file, FILE__LOCK);
3052 }
3053
3054 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3055                               unsigned long arg)
3056 {
3057         const struct cred *cred = current_cred();
3058         int err = 0;
3059
3060         switch (cmd) {
3061         case F_SETFL:
3062                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3063                         err = -EINVAL;
3064                         break;
3065                 }
3066
3067                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3068                         err = file_has_perm(cred, file, FILE__WRITE);
3069                         break;
3070                 }
3071                 /* fall through */
3072         case F_SETOWN:
3073         case F_SETSIG:
3074         case F_GETFL:
3075         case F_GETOWN:
3076         case F_GETSIG:
3077                 /* Just check FD__USE permission */
3078                 err = file_has_perm(cred, file, 0);
3079                 break;
3080         case F_GETLK:
3081         case F_SETLK:
3082         case F_SETLKW:
3083 #if BITS_PER_LONG == 32
3084         case F_GETLK64:
3085         case F_SETLK64:
3086         case F_SETLKW64:
3087 #endif
3088                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3089                         err = -EINVAL;
3090                         break;
3091                 }
3092                 err = file_has_perm(cred, file, FILE__LOCK);
3093                 break;
3094         }
3095
3096         return err;
3097 }
3098
3099 static int selinux_file_set_fowner(struct file *file)
3100 {
3101         struct file_security_struct *fsec;
3102
3103         fsec = file->f_security;
3104         fsec->fown_sid = current_sid();
3105
3106         return 0;
3107 }
3108
3109 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3110                                        struct fown_struct *fown, int signum)
3111 {
3112         struct file *file;
3113         u32 sid = task_sid(tsk);
3114         u32 perm;
3115         struct file_security_struct *fsec;
3116
3117         /* struct fown_struct is never outside the context of a struct file */
3118         file = container_of(fown, struct file, f_owner);
3119
3120         fsec = file->f_security;
3121
3122         if (!signum)
3123                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3124         else
3125                 perm = signal_to_av(signum);
3126
3127         return avc_has_perm(fsec->fown_sid, sid,
3128                             SECCLASS_PROCESS, perm, NULL);
3129 }
3130
3131 static int selinux_file_receive(struct file *file)
3132 {
3133         const struct cred *cred = current_cred();
3134
3135         return file_has_perm(cred, file, file_to_av(file));
3136 }
3137
3138 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3139 {
3140         struct file_security_struct *fsec;
3141         struct inode *inode;
3142         struct inode_security_struct *isec;
3143
3144         inode = file->f_path.dentry->d_inode;
3145         fsec = file->f_security;
3146         isec = inode->i_security;
3147         /*
3148          * Save inode label and policy sequence number
3149          * at open-time so that selinux_file_permission
3150          * can determine whether revalidation is necessary.
3151          * Task label is already saved in the file security
3152          * struct as its SID.
3153          */
3154         fsec->isid = isec->sid;
3155         fsec->pseqno = avc_policy_seqno();
3156         /*
3157          * Since the inode label or policy seqno may have changed
3158          * between the selinux_inode_permission check and the saving
3159          * of state above, recheck that access is still permitted.
3160          * Otherwise, access might never be revalidated against the
3161          * new inode label or new policy.
3162          * This check is not redundant - do not remove.
3163          */
3164         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3165 }
3166
3167 /* task security operations */
3168
3169 static int selinux_task_create(unsigned long clone_flags)
3170 {
3171         return current_has_perm(current, PROCESS__FORK);
3172 }
3173
3174 /*
3175  * allocate the SELinux part of blank credentials
3176  */
3177 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3178 {
3179         struct task_security_struct *tsec;
3180
3181         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3182         if (!tsec)
3183                 return -ENOMEM;
3184
3185         cred->security = tsec;
3186         return 0;
3187 }
3188
3189 /*
3190  * detach and free the LSM part of a set of credentials
3191  */
3192 static void selinux_cred_free(struct cred *cred)
3193 {
3194         struct task_security_struct *tsec = cred->security;
3195
3196         BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3197         cred->security = (void *) 0x7UL;
3198         kfree(tsec);
3199 }
3200
3201 /*
3202  * prepare a new set of credentials for modification
3203  */
3204 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3205                                 gfp_t gfp)
3206 {
3207         const struct task_security_struct *old_tsec;
3208         struct task_security_struct *tsec;
3209
3210         old_tsec = old->security;
3211
3212         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3213         if (!tsec)
3214                 return -ENOMEM;
3215
3216         new->security = tsec;
3217         return 0;
3218 }
3219
3220 /*
3221  * transfer the SELinux data to a blank set of creds
3222  */
3223 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3224 {
3225         const struct task_security_struct *old_tsec = old->security;
3226         struct task_security_struct *tsec = new->security;
3227
3228         *tsec = *old_tsec;
3229 }
3230
3231 /*
3232  * set the security data for a kernel service
3233  * - all the creation contexts are set to unlabelled
3234  */
3235 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3236 {
3237         struct task_security_struct *tsec = new->security;
3238         u32 sid = current_sid();
3239         int ret;
3240
3241         ret = avc_has_perm(sid, secid,
3242                            SECCLASS_KERNEL_SERVICE,
3243                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3244                            NULL);
3245         if (ret == 0) {
3246                 tsec->sid = secid;
3247                 tsec->create_sid = 0;
3248                 tsec->keycreate_sid = 0;
3249                 tsec->sockcreate_sid = 0;
3250         }
3251         return ret;
3252 }
3253
3254 /*
3255  * set the file creation context in a security record to the same as the
3256  * objective context of the specified inode
3257  */
3258 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3259 {
3260         struct inode_security_struct *isec = inode->i_security;
3261         struct task_security_struct *tsec = new->security;
3262         u32 sid = current_sid();
3263         int ret;
3264
3265         ret = avc_has_perm(sid, isec->sid,
3266                            SECCLASS_KERNEL_SERVICE,
3267                            KERNEL_SERVICE__CREATE_FILES_AS,
3268                            NULL);
3269
3270         if (ret == 0)
3271                 tsec->create_sid = isec->sid;
3272         return ret;
3273 }
3274
3275 static int selinux_kernel_module_request(char *kmod_name)
3276 {
3277         u32 sid;
3278         struct common_audit_data ad;
3279
3280         sid = task_sid(current);
3281
3282         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3283         ad.u.kmod_name = kmod_name;
3284
3285         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3286                             SYSTEM__MODULE_REQUEST, &ad);
3287 }
3288
3289 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3290 {
3291         return current_has_perm(p, PROCESS__SETPGID);
3292 }
3293
3294 static int selinux_task_getpgid(struct task_struct *p)
3295 {
3296         return current_has_perm(p, PROCESS__GETPGID);
3297 }
3298
3299 static int selinux_task_getsid(struct task_struct *p)
3300 {
3301         return current_has_perm(p, PROCESS__GETSESSION);
3302 }
3303
3304 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3305 {
3306         *secid = task_sid(p);
3307 }
3308
3309 static int selinux_task_setnice(struct task_struct *p, int nice)
3310 {
3311         int rc;
3312
3313         rc = cap_task_setnice(p, nice);
3314         if (rc)
3315                 return rc;
3316
3317         return current_has_perm(p, PROCESS__SETSCHED);
3318 }
3319
3320 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3321 {
3322         int rc;
3323
3324         rc = cap_task_setioprio(p, ioprio);
3325         if (rc)
3326                 return rc;
3327
3328         return current_has_perm(p, PROCESS__SETSCHED);
3329 }
3330
3331 static int selinux_task_getioprio(struct task_struct *p)
3332 {
3333         return current_has_perm(p, PROCESS__GETSCHED);
3334 }
3335
3336 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3337 {
3338         struct rlimit *old_rlim = current->signal->rlim + resource;
3339
3340         /* Control the ability to change the hard limit (whether
3341            lowering or raising it), so that the hard limit can
3342            later be used as a safe reset point for the soft limit
3343            upon context transitions.  See selinux_bprm_committing_creds. */
3344         if (old_rlim->rlim_max != new_rlim->rlim_max)
3345                 return current_has_perm(current, PROCESS__SETRLIMIT);
3346
3347         return 0;
3348 }
3349
3350 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3351 {
3352         int rc;
3353
3354         rc = cap_task_setscheduler(p, policy, lp);
3355         if (rc)
3356                 return rc;
3357
3358         return current_has_perm(p, PROCESS__SETSCHED);
3359 }
3360
3361 static int selinux_task_getscheduler(struct task_struct *p)
3362 {
3363         return current_has_perm(p, PROCESS__GETSCHED);
3364 }
3365
3366 static int selinux_task_movememory(struct task_struct *p)
3367 {
3368         return current_has_perm(p, PROCESS__SETSCHED);
3369 }
3370
3371 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3372                                 int sig, u32 secid)
3373 {
3374         u32 perm;
3375         int rc;
3376
3377         if (!sig)
3378                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3379         else
3380                 perm = signal_to_av(sig);
3381         if (secid)
3382                 rc = avc_has_perm(secid, task_sid(p),
3383                                   SECCLASS_PROCESS, perm, NULL);
3384         else
3385                 rc = current_has_perm(p, perm);
3386         return rc;
3387 }
3388
3389 static int selinux_task_wait(struct task_struct *p)
3390 {
3391         return task_has_perm(p, current, PROCESS__SIGCHLD);
3392 }
3393
3394 static void selinux_task_to_inode(struct task_struct *p,
3395                                   struct inode *inode)
3396 {
3397         struct inode_security_struct *isec = inode->i_security;
3398         u32 sid = task_sid(p);
3399
3400         isec->sid = sid;
3401         isec->initialized = 1;
3402 }
3403
3404 /* Returns error only if unable to parse addresses */
3405 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3406                         struct common_audit_data *ad, u8 *proto)
3407 {
3408         int offset, ihlen, ret = -EINVAL;
3409         struct iphdr _iph, *ih;
3410
3411         offset = skb_network_offset(skb);
3412         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3413         if (ih == NULL)
3414                 goto out;
3415
3416         ihlen = ih->ihl * 4;
3417         if (ihlen < sizeof(_iph))
3418                 goto out;
3419
3420         ad->u.net.v4info.saddr = ih->saddr;
3421         ad->u.net.v4info.daddr = ih->daddr;
3422         ret = 0;
3423
3424         if (proto)
3425                 *proto = ih->protocol;
3426
3427         switch (ih->protocol) {
3428         case IPPROTO_TCP: {
3429                 struct tcphdr _tcph, *th;
3430
3431                 if (ntohs(ih->frag_off) & IP_OFFSET)
3432                         break;
3433
3434                 offset += ihlen;
3435                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3436                 if (th == NULL)
3437                         break;
3438
3439                 ad->u.net.sport = th->source;
3440                 ad->u.net.dport = th->dest;
3441                 break;
3442         }
3443
3444         case IPPROTO_UDP: {
3445                 struct udphdr _udph, *uh;
3446
3447                 if (ntohs(ih->frag_off) & IP_OFFSET)
3448                         break;
3449
3450                 offset += ihlen;
3451                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3452                 if (uh == NULL)
3453                         break;
3454
3455                 ad->u.net.sport = uh->source;
3456                 ad->u.net.dport = uh->dest;
3457                 break;
3458         }
3459
3460         case IPPROTO_DCCP: {
3461                 struct dccp_hdr _dccph, *dh;
3462
3463                 if (ntohs(ih->frag_off) & IP_OFFSET)
3464                         break;
3465
3466                 offset += ihlen;
3467                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3468                 if (dh == NULL)
3469                         break;
3470
3471                 ad->u.net.sport = dh->dccph_sport;
3472                 ad->u.net.dport = dh->dccph_dport;
3473                 break;
3474         }
3475
3476         default:
3477                 break;
3478         }
3479 out:
3480         return ret;
3481 }
3482
3483 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3484
3485 /* Returns error only if unable to parse addresses */
3486 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3487                         struct common_audit_data *ad, u8 *proto)
3488 {
3489         u8 nexthdr;
3490         int ret = -EINVAL, offset;
3491         struct ipv6hdr _ipv6h, *ip6;
3492
3493         offset = skb_network_offset(skb);
3494         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3495         if (ip6 == NULL)
3496                 goto out;
3497
3498         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3499         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3500         ret = 0;
3501
3502         nexthdr = ip6->nexthdr;
3503         offset += sizeof(_ipv6h);
3504         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3505         if (offset < 0)
3506                 goto out;
3507
3508         if (proto)
3509                 *proto = nexthdr;
3510
3511         switch (nexthdr) {
3512         case IPPROTO_TCP: {
3513                 struct tcphdr _tcph, *th;
3514
3515                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3516                 if (th == NULL)
3517                         break;
3518
3519                 ad->u.net.sport = th->source;
3520                 ad->u.net.dport = th->dest;
3521                 break;
3522         }
3523
3524         case IPPROTO_UDP: {
3525                 struct udphdr _udph, *uh;
3526
3527                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3528                 if (uh == NULL)
3529                         break;
3530
3531                 ad->u.net.sport = uh->source;
3532                 ad->u.net.dport = uh->dest;
3533                 break;
3534         }
3535
3536         case IPPROTO_DCCP: {
3537                 struct dccp_hdr _dccph, *dh;
3538
3539                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3540                 if (dh == NULL)
3541                         break;
3542
3543                 ad->u.net.sport = dh->dccph_sport;
3544                 ad->u.net.dport = dh->dccph_dport;
3545                 break;
3546         }
3547
3548         /* includes fragments */
3549         default:
3550                 break;
3551         }
3552 out:
3553         return ret;
3554 }
3555
3556 #endif /* IPV6 */
3557
3558 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3559                              char **_addrp, int src, u8 *proto)
3560 {
3561         char *addrp;
3562         int ret;
3563
3564         switch (ad->u.net.family) {
3565         case PF_INET:
3566                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3567                 if (ret)
3568                         goto parse_error;
3569                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3570                                        &ad->u.net.v4info.daddr);
3571                 goto okay;
3572
3573 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3574         case PF_INET6:
3575                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3576                 if (ret)
3577                         goto parse_error;
3578                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3579                                        &ad->u.net.v6info.daddr);
3580                 goto okay;
3581 #endif  /* IPV6 */
3582         default:
3583                 addrp = NULL;
3584                 goto okay;
3585         }
3586
3587 parse_error:
3588         printk(KERN_WARNING
3589                "SELinux: failure in selinux_parse_skb(),"
3590                " unable to parse packet\n");
3591         return ret;
3592
3593 okay:
3594         if (_addrp)
3595                 *_addrp = addrp;
3596         return 0;
3597 }
3598
3599 /**
3600  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3601  * @skb: the packet
3602  * @family: protocol family
3603  * @sid: the packet's peer label SID
3604  *
3605  * Description:
3606  * Check the various different forms of network peer labeling and determine
3607  * the peer label/SID for the packet; most of the magic actually occurs in
3608  * the security server function security_net_peersid_cmp().  The function
3609  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3610  * or -EACCES if @sid is invalid due to inconsistencies with the different
3611  * peer labels.
3612  *
3613  */
3614 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3615 {
3616         int err;
3617         u32 xfrm_sid;
3618         u32 nlbl_sid;
3619         u32 nlbl_type;
3620
3621         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3622         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3623
3624         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3625         if (unlikely(err)) {
3626                 printk(KERN_WARNING
3627                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3628                        " unable to determine packet's peer label\n");
3629                 return -EACCES;
3630         }
3631
3632         return 0;
3633 }
3634
3635 /* socket security operations */
3636
3637 static u32 socket_sockcreate_sid(const struct task_security_struct *tsec)
3638 {
3639         return tsec->sockcreate_sid ? : tsec->sid;
3640 }
3641
3642 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3643 {
3644         struct sk_security_struct *sksec = sk->sk_security;
3645         struct common_audit_data ad;
3646         u32 tsid = task_sid(task);
3647
3648         if (sksec->sid == SECINITSID_KERNEL)
3649                 return 0;
3650
3651         COMMON_AUDIT_DATA_INIT(&ad, NET);
3652         ad.u.net.sk = sk;
3653
3654         return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3655 }
3656
3657 static int selinux_socket_create(int family, int type,
3658                                  int protocol, int kern)
3659 {
3660         const struct task_security_struct *tsec = current_security();
3661         u32 newsid;
3662         u16 secclass;
3663
3664         if (kern)
3665                 return 0;
3666
3667         newsid = socket_sockcreate_sid(tsec);
3668         secclass = socket_type_to_security_class(family, type, protocol);
3669         return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3670 }
3671
3672 static int selinux_socket_post_create(struct socket *sock, int family,
3673                                       int type, int protocol, int kern)
3674 {
3675         const struct task_security_struct *tsec = current_security();
3676         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3677         struct sk_security_struct *sksec;
3678         int err = 0;
3679
3680         if (kern)
3681                 isec->sid = SECINITSID_KERNEL;
3682         else
3683                 isec->sid = socket_sockcreate_sid(tsec);
3684
3685         isec->sclass = socket_type_to_security_class(family, type, protocol);
3686         isec->initialized = 1;
3687
3688         if (sock->sk) {
3689                 sksec = sock->sk->sk_security;
3690                 sksec->sid = isec->sid;
3691                 sksec->sclass = isec->sclass;
3692                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3693         }
3694
3695         return err;
3696 }
3697
3698 /* Range of port numbers used to automatically bind.
3699    Need to determine whether we should perform a name_bind
3700    permission check between the socket and the port number. */
3701
3702 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3703 {
3704         struct sock *sk = sock->sk;
3705         u16 family;
3706         int err;
3707
3708         err = sock_has_perm(current, sk, SOCKET__BIND);
3709         if (err)
3710                 goto out;
3711
3712         /*
3713          * If PF_INET or PF_INET6, check name_bind permission for the port.
3714          * Multiple address binding for SCTP is not supported yet: we just
3715          * check the first address now.
3716          */
3717         family = sk->sk_family;
3718         if (family == PF_INET || family == PF_INET6) {
3719                 char *addrp;
3720                 struct sk_security_struct *sksec = sk->sk_security;
3721                 struct common_audit_data ad;
3722                 struct sockaddr_in *addr4 = NULL;
3723                 struct sockaddr_in6 *addr6 = NULL;
3724                 unsigned short snum;
3725                 u32 sid, node_perm;
3726
3727                 if (family == PF_INET) {
3728                         addr4 = (struct sockaddr_in *)address;
3729                         snum = ntohs(addr4->sin_port);
3730                         addrp = (char *)&addr4->sin_addr.s_addr;
3731                 } else {
3732                         addr6 = (struct sockaddr_in6 *)address;
3733                         snum = ntohs(addr6->sin6_port);
3734                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3735                 }
3736
3737                 if (snum) {
3738                         int low, high;
3739
3740                         inet_get_local_port_range(&low, &high);
3741
3742                         if (snum < max(PROT_SOCK, low) || snum > high) {
3743                                 err = sel_netport_sid(sk->sk_protocol,
3744                                                       snum, &sid);
3745                                 if (err)
3746                                         goto out;
3747                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3748                                 ad.u.net.sport = htons(snum);
3749                                 ad.u.net.family = family;
3750                                 err = avc_has_perm(sksec->sid, sid,
3751                                                    sksec->sclass,
3752                                                    SOCKET__NAME_BIND, &ad);
3753                                 if (err)
3754                                         goto out;
3755                         }
3756                 }
3757
3758                 switch (sksec->sclass) {
3759                 case SECCLASS_TCP_SOCKET:
3760                         node_perm = TCP_SOCKET__NODE_BIND;
3761                         break;
3762
3763                 case SECCLASS_UDP_SOCKET:
3764                         node_perm = UDP_SOCKET__NODE_BIND;
3765                         break;
3766
3767                 case SECCLASS_DCCP_SOCKET:
3768                         node_perm = DCCP_SOCKET__NODE_BIND;
3769                         break;
3770
3771                 default:
3772                         node_perm = RAWIP_SOCKET__NODE_BIND;
3773                         break;
3774                 }
3775
3776                 err = sel_netnode_sid(addrp, family, &sid);
3777                 if (err)
3778                         goto out;
3779
3780                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3781                 ad.u.net.sport = htons(snum);
3782                 ad.u.net.family = family;
3783
3784                 if (family == PF_INET)
3785                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3786                 else
3787                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3788
3789                 err = avc_has_perm(sksec->sid, sid,
3790                                    sksec->sclass, node_perm, &ad);
3791                 if (err)
3792                         goto out;
3793         }
3794 out:
3795         return err;
3796 }
3797
3798 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3799 {
3800         struct sock *sk = sock->sk;
3801         struct sk_security_struct *sksec = sk->sk_security;
3802         int err;
3803
3804         err = sock_has_perm(current, sk, SOCKET__CONNECT);
3805         if (err)
3806                 return err;
3807
3808         /*
3809          * If a TCP or DCCP socket, check name_connect permission for the port.
3810          */
3811         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3812             sksec->sclass == SECCLASS_DCCP_SOCKET) {
3813                 struct common_audit_data ad;
3814                 struct sockaddr_in *addr4 = NULL;
3815                 struct sockaddr_in6 *addr6 = NULL;
3816                 unsigned short snum;
3817                 u32 sid, perm;
3818
3819                 if (sk->sk_family == PF_INET) {
3820                         addr4 = (struct sockaddr_in *)address;
3821                         if (addrlen < sizeof(struct sockaddr_in))
3822                                 return -EINVAL;
3823                         snum = ntohs(addr4->sin_port);
3824                 } else {
3825                         addr6 = (struct sockaddr_in6 *)address;
3826                         if (addrlen < SIN6_LEN_RFC2133)
3827                                 return -EINVAL;
3828                         snum = ntohs(addr6->sin6_port);
3829                 }
3830
3831                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3832                 if (err)
3833                         goto out;
3834
3835                 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3836                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3837
3838                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3839                 ad.u.net.dport = htons(snum);
3840                 ad.u.net.family = sk->sk_family;
3841                 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3842                 if (err)
3843                         goto out;
3844         }
3845
3846         err = selinux_netlbl_socket_connect(sk, address);
3847
3848 out:
3849         return err;
3850 }
3851
3852 static int selinux_socket_listen(struct socket *sock, int backlog)
3853 {
3854         return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3855 }
3856
3857 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3858 {
3859         int err;
3860         struct inode_security_struct *isec;
3861         struct inode_security_struct *newisec;
3862
3863         err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3864         if (err)
3865                 return err;
3866
3867         newisec = SOCK_INODE(newsock)->i_security;
3868
3869         isec = SOCK_INODE(sock)->i_security;
3870         newisec->sclass = isec->sclass;
3871         newisec->sid = isec->sid;
3872         newisec->initialized = 1;
3873
3874         return 0;
3875 }
3876
3877 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3878                                   int size)
3879 {
3880         return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3881 }
3882
3883 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3884                                   int size, int flags)
3885 {
3886         return sock_has_perm(current, sock->sk, SOCKET__READ);
3887 }
3888
3889 static int selinux_socket_getsockname(struct socket *sock)
3890 {
3891         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3892 }
3893
3894 static int selinux_socket_getpeername(struct socket *sock)
3895 {
3896         return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3897 }
3898
3899 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3900 {
3901         int err;
3902
3903         err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3904         if (err)
3905                 return err;
3906
3907         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3908 }
3909
3910 static int selinux_socket_getsockopt(struct socket *sock, int level,
3911                                      int optname)
3912 {
3913         return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
3914 }
3915
3916 static int selinux_socket_shutdown(struct socket *sock, int how)
3917 {
3918         return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
3919 }
3920
3921 static int selinux_socket_unix_stream_connect(struct socket *sock,
3922                                               struct socket *other,
3923                                               struct sock *newsk)
3924 {
3925         struct sk_security_struct *sksec_sock = sock->sk->sk_security;
3926         struct sk_security_struct *sksec_other = other->sk->sk_security;
3927         struct sk_security_struct *sksec_new = newsk->sk_security;
3928         struct common_audit_data ad;
3929         int err;
3930
3931         COMMON_AUDIT_DATA_INIT(&ad, NET);
3932         ad.u.net.sk = other->sk;
3933
3934         err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
3935                            sksec_other->sclass,
3936                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3937         if (err)
3938                 return err;
3939
3940         /* server child socket */
3941         sksec_new->peer_sid = sksec_sock->sid;
3942         err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
3943                                     &sksec_new->sid);
3944         if (err)
3945                 return err;
3946
3947         /* connecting socket */
3948         sksec_sock->peer_sid = sksec_new->sid;
3949
3950         return 0;
3951 }
3952
3953 static int selinux_socket_unix_may_send(struct socket *sock,
3954                                         struct socket *other)
3955 {
3956         struct sk_security_struct *ssec = sock->sk->sk_security;
3957         struct sk_security_struct *osec = other->sk->sk_security;
3958         struct common_audit_data ad;
3959
3960         COMMON_AUDIT_DATA_INIT(&ad, NET);
3961         ad.u.net.sk = other->sk;
3962
3963         return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
3964                             &ad);
3965 }
3966
3967 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
3968                                     u32 peer_sid,
3969                                     struct common_audit_data *ad)
3970 {
3971         int err;
3972         u32 if_sid;
3973         u32 node_sid;
3974
3975         err = sel_netif_sid(ifindex, &if_sid);
3976         if (err)
3977                 return err;
3978         err = avc_has_perm(peer_sid, if_sid,
3979                            SECCLASS_NETIF, NETIF__INGRESS, ad);
3980         if (err)
3981                 return err;
3982
3983         err = sel_netnode_sid(addrp, family, &node_sid);
3984         if (err)
3985                 return err;
3986         return avc_has_perm(peer_sid, node_sid,
3987                             SECCLASS_NODE, NODE__RECVFROM, ad);
3988 }
3989
3990 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3991                                        u16 family)
3992 {
3993         int err = 0;
3994         struct sk_security_struct *sksec = sk->sk_security;
3995         u32 peer_sid;
3996         u32 sk_sid = sksec->sid;
3997         struct common_audit_data ad;
3998         char *addrp;
3999
4000         COMMON_AUDIT_DATA_INIT(&ad, NET);
4001         ad.u.net.netif = skb->skb_iif;
4002         ad.u.net.family = family;
4003         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4004         if (err)
4005                 return err;
4006
4007         if (selinux_secmark_enabled()) {
4008                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4009                                    PACKET__RECV, &ad);
4010                 if (err)
4011                         return err;
4012         }
4013
4014         if (selinux_policycap_netpeer) {
4015                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4016                 if (err)
4017                         return err;
4018                 err = avc_has_perm(sk_sid, peer_sid,
4019                                    SECCLASS_PEER, PEER__RECV, &ad);
4020                 if (err)
4021                         selinux_netlbl_err(skb, err, 0);
4022         } else {
4023                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4024                 if (err)
4025                         return err;
4026                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4027         }
4028
4029         return err;
4030 }
4031
4032 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4033 {
4034         int err;
4035         struct sk_security_struct *sksec = sk->sk_security;
4036         u16 family = sk->sk_family;
4037         u32 sk_sid = sksec->sid;
4038         struct common_audit_data ad;
4039         char *addrp;
4040         u8 secmark_active;
4041         u8 peerlbl_active;
4042
4043         if (family != PF_INET && family != PF_INET6)
4044                 return 0;
4045
4046         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4047         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4048                 family = PF_INET;
4049
4050         /* If any sort of compatibility mode is enabled then handoff processing
4051          * to the selinux_sock_rcv_skb_compat() function to deal with the
4052          * special handling.  We do this in an attempt to keep this function
4053          * as fast and as clean as possible. */
4054         if (!selinux_policycap_netpeer)
4055                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4056
4057         secmark_active = selinux_secmark_enabled();
4058         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4059         if (!secmark_active && !peerlbl_active)
4060                 return 0;
4061
4062         COMMON_AUDIT_DATA_INIT(&ad, NET);
4063         ad.u.net.netif = skb->skb_iif;
4064         ad.u.net.family = family;
4065         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4066         if (err)
4067                 return err;
4068
4069         if (peerlbl_active) {
4070                 u32 peer_sid;
4071
4072                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4073                 if (err)
4074                         return err;
4075                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4076                                                peer_sid, &ad);
4077                 if (err) {
4078                         selinux_netlbl_err(skb, err, 0);
4079                         return err;
4080                 }
4081                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4082                                    PEER__RECV, &ad);
4083                 if (err)
4084                         selinux_netlbl_err(skb, err, 0);
4085         }
4086
4087         if (secmark_active) {
4088                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4089                                    PACKET__RECV, &ad);
4090                 if (err)
4091                         return err;
4092         }
4093
4094         return err;
4095 }
4096
4097 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4098                                             int __user *optlen, unsigned len)
4099 {
4100         int err = 0;
4101         char *scontext;
4102         u32 scontext_len;
4103         struct sk_security_struct *sksec = sock->sk->sk_security;
4104         u32 peer_sid = SECSID_NULL;
4105
4106         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4107             sksec->sclass == SECCLASS_TCP_SOCKET)
4108                 peer_sid = sksec->peer_sid;
4109         if (peer_sid == SECSID_NULL)
4110                 return -ENOPROTOOPT;
4111
4112         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4113         if (err)
4114                 return err;
4115
4116         if (scontext_len > len) {
4117                 err = -ERANGE;
4118                 goto out_len;
4119         }
4120
4121         if (copy_to_user(optval, scontext, scontext_len))
4122                 err = -EFAULT;
4123
4124 out_len:
4125         if (put_user(scontext_len, optlen))
4126                 err = -EFAULT;
4127         kfree(scontext);
4128         return err;
4129 }
4130
4131 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4132 {
4133         u32 peer_secid = SECSID_NULL;
4134         u16 family;
4135
4136         if (skb && skb->protocol == htons(ETH_P_IP))
4137                 family = PF_INET;
4138         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4139                 family = PF_INET6;
4140         else if (sock)
4141                 family = sock->sk->sk_family;
4142         else
4143                 goto out;
4144
4145         if (sock && family == PF_UNIX)
4146                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4147         else if (skb)
4148                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4149
4150 out:
4151         *secid = peer_secid;
4152         if (peer_secid == SECSID_NULL)
4153                 return -EINVAL;
4154         return 0;
4155 }
4156
4157 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4158 {
4159         struct sk_security_struct *sksec;
4160
4161         sksec = kzalloc(sizeof(*sksec), priority);
4162         if (!sksec)
4163                 return -ENOMEM;
4164
4165         sksec->peer_sid = SECINITSID_UNLABELED;
4166         sksec->sid = SECINITSID_UNLABELED;
4167         selinux_netlbl_sk_security_reset(sksec);
4168         sk->sk_security = sksec;
4169
4170         return 0;
4171 }
4172
4173 static void selinux_sk_free_security(struct sock *sk)
4174 {
4175         struct sk_security_struct *sksec = sk->sk_security;
4176
4177         sk->sk_security = NULL;
4178         selinux_netlbl_sk_security_free(sksec);
4179         kfree(sksec);
4180 }
4181
4182 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4183 {
4184         struct sk_security_struct *sksec = sk->sk_security;
4185         struct sk_security_struct *newsksec = newsk->sk_security;
4186
4187         newsksec->sid = sksec->sid;
4188         newsksec->peer_sid = sksec->peer_sid;
4189         newsksec->sclass = sksec->sclass;
4190
4191         selinux_netlbl_sk_security_reset(newsksec);
4192 }
4193
4194 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4195 {
4196         if (!sk)
4197                 *secid = SECINITSID_ANY_SOCKET;
4198         else {
4199                 struct sk_security_struct *sksec = sk->sk_security;
4200
4201                 *secid = sksec->sid;
4202         }
4203 }
4204
4205 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4206 {
4207         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4208         struct sk_security_struct *sksec = sk->sk_security;
4209
4210         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4211             sk->sk_family == PF_UNIX)
4212                 isec->sid = sksec->sid;
4213         sksec->sclass = isec->sclass;
4214 }
4215
4216 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4217                                      struct request_sock *req)
4218 {
4219         struct sk_security_struct *sksec = sk->sk_security;
4220         int err;
4221         u16 family = sk->sk_family;
4222         u32 newsid;
4223         u32 peersid;
4224
4225         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4226         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4227                 family = PF_INET;
4228
4229         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4230         if (err)
4231                 return err;
4232         if (peersid == SECSID_NULL) {
4233                 req->secid = sksec->sid;
4234                 req->peer_secid = SECSID_NULL;
4235         } else {
4236                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4237                 if (err)
4238                         return err;
4239                 req->secid = newsid;
4240                 req->peer_secid = peersid;
4241         }
4242
4243         return selinux_netlbl_inet_conn_request(req, family);
4244 }
4245
4246 static void selinux_inet_csk_clone(struct sock *newsk,
4247                                    const struct request_sock *req)
4248 {
4249         struct sk_security_struct *newsksec = newsk->sk_security;
4250
4251         newsksec->sid = req->secid;
4252         newsksec->peer_sid = req->peer_secid;
4253         /* NOTE: Ideally, we should also get the isec->sid for the
4254            new socket in sync, but we don't have the isec available yet.
4255            So we will wait until sock_graft to do it, by which
4256            time it will have been created and available. */
4257
4258         /* We don't need to take any sort of lock here as we are the only
4259          * thread with access to newsksec */
4260         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4261 }
4262
4263 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4264 {
4265         u16 family = sk->sk_family;
4266         struct sk_security_struct *sksec = sk->sk_security;
4267
4268         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4269         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4270                 family = PF_INET;
4271
4272         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4273 }
4274
4275 static void selinux_req_classify_flow(const struct request_sock *req,
4276                                       struct flowi *fl)
4277 {
4278         fl->secid = req->secid;
4279 }
4280
4281 static int selinux_tun_dev_create(void)
4282 {
4283         u32 sid = current_sid();
4284
4285         /* we aren't taking into account the "sockcreate" SID since the socket
4286          * that is being created here is not a socket in the traditional sense,
4287          * instead it is a private sock, accessible only to the kernel, and
4288          * representing a wide range of network traffic spanning multiple
4289          * connections unlike traditional sockets - check the TUN driver to
4290          * get a better understanding of why this socket is special */
4291
4292         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4293                             NULL);
4294 }
4295
4296 static void selinux_tun_dev_post_create(struct sock *sk)
4297 {
4298         struct sk_security_struct *sksec = sk->sk_security;
4299
4300         /* we don't currently perform any NetLabel based labeling here and it
4301          * isn't clear that we would want to do so anyway; while we could apply
4302          * labeling without the support of the TUN user the resulting labeled
4303          * traffic from the other end of the connection would almost certainly
4304          * cause confusion to the TUN user that had no idea network labeling
4305          * protocols were being used */
4306
4307         /* see the comments in selinux_tun_dev_create() about why we don't use
4308          * the sockcreate SID here */
4309
4310         sksec->sid = current_sid();
4311         sksec->sclass = SECCLASS_TUN_SOCKET;
4312 }
4313
4314 static int selinux_tun_dev_attach(struct sock *sk)
4315 {
4316         struct sk_security_struct *sksec = sk->sk_security;
4317         u32 sid = current_sid();
4318         int err;
4319
4320         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4321                            TUN_SOCKET__RELABELFROM, NULL);
4322         if (err)
4323                 return err;
4324         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4325                            TUN_SOCKET__RELABELTO, NULL);
4326         if (err)
4327                 return err;
4328
4329         sksec->sid = sid;
4330
4331         return 0;
4332 }
4333
4334 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4335 {
4336         int err = 0;
4337         u32 perm;
4338         struct nlmsghdr *nlh;
4339         struct sk_security_struct *sksec = sk->sk_security;
4340
4341         if (skb->len < NLMSG_SPACE(0)) {
4342                 err = -EINVAL;
4343                 goto out;
4344         }
4345         nlh = nlmsg_hdr(skb);
4346
4347         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4348         if (err) {
4349                 if (err == -EINVAL) {
4350                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4351                                   "SELinux:  unrecognized netlink message"
4352                                   " type=%hu for sclass=%hu\n",
4353                                   nlh->nlmsg_type, sksec->sclass);
4354                         if (!selinux_enforcing || security_get_allow_unknown())
4355                                 err = 0;
4356                 }
4357
4358                 /* Ignore */
4359                 if (err == -ENOENT)
4360                         err = 0;
4361                 goto out;
4362         }
4363
4364         err = sock_has_perm(current, sk, perm);
4365 out:
4366         return err;
4367 }
4368
4369 #ifdef CONFIG_NETFILTER
4370
4371 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4372                                        u16 family)
4373 {
4374         int err;
4375         char *addrp;
4376         u32 peer_sid;
4377         struct common_audit_data ad;
4378         u8 secmark_active;
4379         u8 netlbl_active;
4380         u8 peerlbl_active;
4381
4382         if (!selinux_policycap_netpeer)
4383                 return NF_ACCEPT;
4384
4385         secmark_active = selinux_secmark_enabled();
4386         netlbl_active = netlbl_enabled();
4387         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4388         if (!secmark_active && !peerlbl_active)
4389                 return NF_ACCEPT;
4390
4391         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4392                 return NF_DROP;
4393
4394         COMMON_AUDIT_DATA_INIT(&ad, NET);
4395         ad.u.net.netif = ifindex;
4396         ad.u.net.family = family;
4397         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4398                 return NF_DROP;
4399
4400         if (peerlbl_active) {
4401                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4402                                                peer_sid, &ad);
4403                 if (err) {
4404                         selinux_netlbl_err(skb, err, 1);
4405                         return NF_DROP;
4406                 }
4407         }
4408
4409         if (secmark_active)
4410                 if (avc_has_perm(peer_sid, skb->secmark,
4411                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4412                         return NF_DROP;
4413
4414         if (netlbl_active)
4415                 /* we do this in the FORWARD path and not the POST_ROUTING
4416                  * path because we want to make sure we apply the necessary
4417                  * labeling before IPsec is applied so we can leverage AH
4418                  * protection */
4419                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4420                         return NF_DROP;
4421
4422         return NF_ACCEPT;
4423 }
4424
4425 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4426                                          struct sk_buff *skb,
4427                                          const struct net_device *in,
4428                                          const struct net_device *out,
4429                                          int (*okfn)(struct sk_buff *))
4430 {
4431         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4432 }
4433
4434 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4435 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4436                                          struct sk_buff *skb,
4437                                          const struct net_device *in,
4438                                          const struct net_device *out,
4439                                          int (*okfn)(struct sk_buff *))
4440 {
4441         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4442 }
4443 #endif  /* IPV6 */
4444
4445 static unsigned int selinux_ip_output(struct sk_buff *skb,
4446                                       u16 family)
4447 {
4448         u32 sid;
4449
4450         if (!netlbl_enabled())
4451                 return NF_ACCEPT;
4452
4453         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4454          * because we want to make sure we apply the necessary labeling
4455          * before IPsec is applied so we can leverage AH protection */
4456         if (skb->sk) {
4457                 struct sk_security_struct *sksec = skb->sk->sk_security;
4458                 sid = sksec->sid;
4459         } else
4460                 sid = SECINITSID_KERNEL;
4461         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4462                 return NF_DROP;
4463
4464         return NF_ACCEPT;
4465 }
4466
4467 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4468                                         struct sk_buff *skb,
4469                                         const struct net_device *in,
4470                                         const struct net_device *out,
4471                                         int (*okfn)(struct sk_buff *))
4472 {
4473         return selinux_ip_output(skb, PF_INET);
4474 }
4475
4476 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4477                                                 int ifindex,
4478                                                 u16 family)
4479 {
4480         struct sock *sk = skb->sk;
4481         struct sk_security_struct *sksec;
4482         struct common_audit_data ad;
4483         char *addrp;
4484         u8 proto;
4485
4486         if (sk == NULL)
4487                 return NF_ACCEPT;
4488         sksec = sk->sk_security;
4489
4490         COMMON_AUDIT_DATA_INIT(&ad, NET);
4491         ad.u.net.netif = ifindex;
4492         ad.u.net.family = family;
4493         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4494                 return NF_DROP;
4495
4496         if (selinux_secmark_enabled())
4497                 if (avc_has_perm(sksec->sid, skb->secmark,
4498                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4499                         return NF_DROP;
4500
4501         if (selinux_policycap_netpeer)
4502                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4503                         return NF_DROP;
4504
4505         return NF_ACCEPT;
4506 }
4507
4508 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4509                                          u16 family)
4510 {
4511         u32 secmark_perm;
4512         u32 peer_sid;
4513         struct sock *sk;
4514         struct common_audit_data ad;
4515         char *addrp;
4516         u8 secmark_active;
4517         u8 peerlbl_active;
4518
4519         /* If any sort of compatibility mode is enabled then handoff processing
4520          * to the selinux_ip_postroute_compat() function to deal with the
4521          * special handling.  We do this in an attempt to keep this function
4522          * as fast and as clean as possible. */
4523         if (!selinux_policycap_netpeer)
4524                 return selinux_ip_postroute_compat(skb, ifindex, family);
4525 #ifdef CONFIG_XFRM
4526         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4527          * packet transformation so allow the packet to pass without any checks
4528          * since we'll have another chance to perform access control checks
4529          * when the packet is on it's final way out.
4530          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4531          *       is NULL, in this case go ahead and apply access control. */
4532         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4533                 return NF_ACCEPT;
4534 #endif
4535         secmark_active = selinux_secmark_enabled();
4536         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4537         if (!secmark_active && !peerlbl_active)
4538                 return NF_ACCEPT;
4539
4540         /* if the packet is being forwarded then get the peer label from the
4541          * packet itself; otherwise check to see if it is from a local
4542          * application or the kernel, if from an application get the peer label
4543          * from the sending socket, otherwise use the kernel's sid */
4544         sk = skb->sk;
4545         if (sk == NULL) {
4546                 switch (family) {
4547                 case PF_INET:
4548                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4549                                 secmark_perm = PACKET__FORWARD_OUT;
4550                         else
4551                                 secmark_perm = PACKET__SEND;
4552                         break;
4553                 case PF_INET6:
4554                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4555                                 secmark_perm = PACKET__FORWARD_OUT;
4556                         else
4557                                 secmark_perm = PACKET__SEND;
4558                         break;
4559                 default:
4560                         return NF_DROP;
4561                 }
4562                 if (secmark_perm == PACKET__FORWARD_OUT) {
4563                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4564                                 return NF_DROP;
4565                 } else
4566                         peer_sid = SECINITSID_KERNEL;
4567         } else {
4568                 struct sk_security_struct *sksec = sk->sk_security;
4569                 peer_sid = sksec->sid;
4570                 secmark_perm = PACKET__SEND;
4571         }
4572
4573         COMMON_AUDIT_DATA_INIT(&ad, NET);
4574         ad.u.net.netif = ifindex;
4575         ad.u.net.family = family;
4576         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4577                 return NF_DROP;
4578
4579         if (secmark_active)
4580                 if (avc_has_perm(peer_sid, skb->secmark,
4581                                  SECCLASS_PACKET, secmark_perm, &ad))
4582                         return NF_DROP;
4583
4584         if (peerlbl_active) {
4585                 u32 if_sid;
4586                 u32 node_sid;
4587
4588                 if (sel_netif_sid(ifindex, &if_sid))
4589                         return NF_DROP;
4590                 if (avc_has_perm(peer_sid, if_sid,
4591                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4592                         return NF_DROP;
4593
4594                 if (sel_netnode_sid(addrp, family, &node_sid))
4595                         return NF_DROP;
4596                 if (avc_has_perm(peer_sid, node_sid,
4597                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4598                         return NF_DROP;
4599         }
4600
4601         return NF_ACCEPT;
4602 }
4603
4604 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4605                                            struct sk_buff *skb,
4606                                            const struct net_device *in,
4607                                            const struct net_device *out,
4608                                            int (*okfn)(struct sk_buff *))
4609 {
4610         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4611 }
4612
4613 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4614 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4615                                            struct sk_buff *skb,
4616                                            const struct net_device *in,
4617                                            const struct net_device *out,
4618                                            int (*okfn)(struct sk_buff *))
4619 {
4620         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4621 }
4622 #endif  /* IPV6 */
4623
4624 #endif  /* CONFIG_NETFILTER */
4625
4626 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4627 {
4628         int err;
4629
4630         err = cap_netlink_send(sk, skb);
4631         if (err)
4632                 return err;
4633
4634         return selinux_nlmsg_perm(sk, skb);
4635 }
4636
4637 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4638 {
4639         int err;
4640         struct common_audit_data ad;
4641
4642         err = cap_netlink_recv(skb, capability);
4643         if (err)
4644                 return err;
4645
4646         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4647         ad.u.cap = capability;
4648
4649         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4650                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4651 }
4652
4653 static int ipc_alloc_security(struct task_struct *task,
4654                               struct kern_ipc_perm *perm,
4655                               u16 sclass)
4656 {
4657         struct ipc_security_struct *isec;
4658         u32 sid;
4659
4660         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4661         if (!isec)
4662                 return -ENOMEM;
4663
4664         sid = task_sid(task);
4665         isec->sclass = sclass;
4666         isec->sid = sid;
4667         perm->security = isec;
4668
4669         return 0;
4670 }
4671
4672 static void ipc_free_security(struct kern_ipc_perm *perm)
4673 {
4674         struct ipc_security_struct *isec = perm->security;
4675         perm->security = NULL;
4676         kfree(isec);
4677 }
4678
4679 static int msg_msg_alloc_security(struct msg_msg *msg)
4680 {
4681         struct msg_security_struct *msec;
4682
4683         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4684         if (!msec)
4685                 return -ENOMEM;
4686
4687         msec->sid = SECINITSID_UNLABELED;
4688         msg->security = msec;
4689
4690         return 0;
4691 }
4692
4693 static void msg_msg_free_security(struct msg_msg *msg)
4694 {
4695         struct msg_security_struct *msec = msg->security;
4696
4697         msg->security = NULL;
4698         kfree(msec);
4699 }
4700
4701 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4702                         u32 perms)
4703 {
4704         struct ipc_security_struct *isec;
4705         struct common_audit_data ad;
4706         u32 sid = current_sid();
4707
4708         isec = ipc_perms->security;
4709
4710         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4711         ad.u.ipc_id = ipc_perms->key;
4712
4713         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4714 }
4715
4716 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4717 {
4718         return msg_msg_alloc_security(msg);
4719 }
4720
4721 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4722 {
4723         msg_msg_free_security(msg);
4724 }
4725
4726 /* message queue security operations */
4727 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4728 {
4729         struct ipc_security_struct *isec;
4730         struct common_audit_data ad;
4731         u32 sid = current_sid();
4732         int rc;
4733
4734         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4735         if (rc)
4736                 return rc;
4737
4738         isec = msq->q_perm.security;
4739
4740         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4741         ad.u.ipc_id = msq->q_perm.key;
4742
4743         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4744                           MSGQ__CREATE, &ad);
4745         if (rc) {
4746                 ipc_free_security(&msq->q_perm);
4747                 return rc;
4748         }
4749         return 0;
4750 }
4751
4752 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4753 {
4754         ipc_free_security(&msq->q_perm);
4755 }
4756
4757 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4758 {
4759         struct ipc_security_struct *isec;
4760         struct common_audit_data ad;
4761         u32 sid = current_sid();
4762
4763         isec = msq->q_perm.security;
4764
4765         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4766         ad.u.ipc_id = msq->q_perm.key;
4767
4768         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4769                             MSGQ__ASSOCIATE, &ad);
4770 }
4771
4772 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4773 {
4774         int err;
4775         int perms;
4776
4777         switch (cmd) {
4778         case IPC_INFO:
4779         case MSG_INFO:
4780                 /* No specific object, just general system-wide information. */
4781                 return task_has_system(current, SYSTEM__IPC_INFO);
4782         case IPC_STAT:
4783         case MSG_STAT:
4784                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4785                 break;
4786         case IPC_SET:
4787                 perms = MSGQ__SETATTR;
4788                 break;
4789         case IPC_RMID:
4790                 perms = MSGQ__DESTROY;
4791                 break;
4792         default:
4793                 return 0;
4794         }
4795
4796         err = ipc_has_perm(&msq->q_perm, perms);
4797         return err;
4798 }
4799
4800 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4801 {
4802         struct ipc_security_struct *isec;
4803         struct msg_security_struct *msec;
4804         struct common_audit_data ad;
4805         u32 sid = current_sid();
4806         int rc;
4807
4808         isec = msq->q_perm.security;
4809         msec = msg->security;
4810
4811         /*
4812          * First time through, need to assign label to the message
4813          */
4814         if (msec->sid == SECINITSID_UNLABELED) {
4815                 /*
4816                  * Compute new sid based on current process and
4817                  * message queue this message will be stored in
4818                  */
4819                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4820                                              &msec->sid);
4821                 if (rc)
4822                         return rc;
4823         }
4824
4825         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4826         ad.u.ipc_id = msq->q_perm.key;
4827
4828         /* Can this process write to the queue? */
4829         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4830                           MSGQ__WRITE, &ad);
4831         if (!rc)
4832                 /* Can this process send the message */
4833                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4834                                   MSG__SEND, &ad);
4835         if (!rc)
4836                 /* Can the message be put in the queue? */
4837                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4838                                   MSGQ__ENQUEUE, &ad);
4839
4840         return rc;
4841 }
4842
4843 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4844                                     struct task_struct *target,
4845                                     long type, int mode)
4846 {
4847         struct ipc_security_struct *isec;
4848         struct msg_security_struct *msec;
4849         struct common_audit_data ad;
4850         u32 sid = task_sid(target);
4851         int rc;
4852
4853         isec = msq->q_perm.security;
4854         msec = msg->security;
4855
4856         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4857         ad.u.ipc_id = msq->q_perm.key;
4858
4859         rc = avc_has_perm(sid, isec->sid,
4860                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4861         if (!rc)
4862                 rc = avc_has_perm(sid, msec->sid,
4863                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4864         return rc;
4865 }
4866
4867 /* Shared Memory security operations */
4868 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4869 {
4870         struct ipc_security_struct *isec;
4871         struct common_audit_data ad;
4872         u32 sid = current_sid();
4873         int rc;
4874
4875         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4876         if (rc)
4877                 return rc;
4878
4879         isec = shp->shm_perm.security;
4880
4881         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4882         ad.u.ipc_id = shp->shm_perm.key;
4883
4884         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4885                           SHM__CREATE, &ad);
4886         if (rc) {
4887                 ipc_free_security(&shp->shm_perm);
4888                 return rc;
4889         }
4890         return 0;
4891 }
4892
4893 static void selinux_shm_free_security(struct shmid_kernel *shp)
4894 {
4895         ipc_free_security(&shp->shm_perm);
4896 }
4897
4898 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4899 {
4900         struct ipc_security_struct *isec;
4901         struct common_audit_data ad;
4902         u32 sid = current_sid();
4903
4904         isec = shp->shm_perm.security;
4905
4906         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4907         ad.u.ipc_id = shp->shm_perm.key;
4908
4909         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4910                             SHM__ASSOCIATE, &ad);
4911 }
4912
4913 /* Note, at this point, shp is locked down */
4914 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4915 {
4916         int perms;
4917         int err;
4918
4919         switch (cmd) {
4920         case IPC_INFO:
4921         case SHM_INFO:
4922                 /* No specific object, just general system-wide information. */
4923                 return task_has_system(current, SYSTEM__IPC_INFO);
4924         case IPC_STAT:
4925         case SHM_STAT:
4926                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4927                 break;
4928         case IPC_SET:
4929                 perms = SHM__SETATTR;
4930                 break;
4931         case SHM_LOCK:
4932         case SHM_UNLOCK:
4933                 perms = SHM__LOCK;
4934                 break;
4935         case IPC_RMID:
4936                 perms = SHM__DESTROY;
4937                 break;
4938         default:
4939                 return 0;
4940         }
4941
4942         err = ipc_has_perm(&shp->shm_perm, perms);
4943         return err;
4944 }
4945
4946 static int selinux_shm_shmat(struct shmid_kernel *shp,
4947                              char __user *shmaddr, int shmflg)
4948 {
4949         u32 perms;
4950
4951         if (shmflg & SHM_RDONLY)
4952                 perms = SHM__READ;
4953         else
4954                 perms = SHM__READ | SHM__WRITE;
4955
4956         return ipc_has_perm(&shp->shm_perm, perms);
4957 }
4958
4959 /* Semaphore security operations */
4960 static int selinux_sem_alloc_security(struct sem_array *sma)
4961 {
4962         struct ipc_security_struct *isec;
4963         struct common_audit_data ad;
4964         u32 sid = current_sid();
4965         int rc;
4966
4967         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4968         if (rc)
4969                 return rc;
4970
4971         isec = sma->sem_perm.security;
4972
4973         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4974         ad.u.ipc_id = sma->sem_perm.key;
4975
4976         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
4977                           SEM__CREATE, &ad);
4978         if (rc) {
4979                 ipc_free_security(&sma->sem_perm);
4980                 return rc;
4981         }
4982         return 0;
4983 }
4984
4985 static void selinux_sem_free_security(struct sem_array *sma)
4986 {
4987         ipc_free_security(&sma->sem_perm);
4988 }
4989
4990 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4991 {
4992         struct ipc_security_struct *isec;
4993         struct common_audit_data ad;
4994         u32 sid = current_sid();
4995
4996         isec = sma->sem_perm.security;
4997
4998         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4999         ad.u.ipc_id = sma->sem_perm.key;
5000
5001         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5002                             SEM__ASSOCIATE, &ad);
5003 }
5004
5005 /* Note, at this point, sma is locked down */
5006 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5007 {
5008         int err;
5009         u32 perms;
5010
5011         switch (cmd) {
5012         case IPC_INFO:
5013         case SEM_INFO:
5014                 /* No specific object, just general system-wide information. */
5015                 return task_has_system(current, SYSTEM__IPC_INFO);
5016         case GETPID:
5017         case GETNCNT:
5018         case GETZCNT:
5019                 perms = SEM__GETATTR;
5020                 break;
5021         case GETVAL:
5022         case GETALL:
5023                 perms = SEM__READ;
5024                 break;
5025         case SETVAL:
5026         case SETALL:
5027                 perms = SEM__WRITE;
5028                 break;
5029         case IPC_RMID:
5030                 perms = SEM__DESTROY;
5031                 break;
5032         case IPC_SET:
5033                 perms = SEM__SETATTR;
5034                 break;
5035         case IPC_STAT:
5036         case SEM_STAT:
5037                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5038                 break;
5039         default:
5040                 return 0;
5041         }
5042
5043         err = ipc_has_perm(&sma->sem_perm, perms);
5044         return err;
5045 }
5046
5047 static int selinux_sem_semop(struct sem_array *sma,
5048                              struct sembuf *sops, unsigned nsops, int alter)
5049 {
5050         u32 perms;
5051
5052         if (alter)
5053                 perms = SEM__READ | SEM__WRITE;
5054         else
5055                 perms = SEM__READ;
5056
5057         return ipc_has_perm(&sma->sem_perm, perms);
5058 }
5059
5060 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5061 {
5062         u32 av = 0;
5063
5064         av = 0;
5065         if (flag & S_IRUGO)
5066                 av |= IPC__UNIX_READ;
5067         if (flag & S_IWUGO)
5068                 av |= IPC__UNIX_WRITE;
5069
5070         if (av == 0)
5071                 return 0;
5072
5073         return ipc_has_perm(ipcp, av);
5074 }
5075
5076 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5077 {
5078         struct ipc_security_struct *isec = ipcp->security;
5079         *secid = isec->sid;
5080 }
5081
5082 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5083 {
5084         if (inode)
5085                 inode_doinit_with_dentry(inode, dentry);
5086 }
5087
5088 static int selinux_getprocattr(struct task_struct *p,
5089                                char *name, char **value)
5090 {
5091         const struct task_security_struct *__tsec;
5092         u32 sid;
5093         int error;
5094         unsigned len;
5095
5096         if (current != p) {
5097                 error = current_has_perm(p, PROCESS__GETATTR);
5098                 if (error)
5099                         return error;
5100         }
5101
5102         rcu_read_lock();
5103         __tsec = __task_cred(p)->security;
5104
5105         if (!strcmp(name, "current"))
5106                 sid = __tsec->sid;
5107         else if (!strcmp(name, "prev"))
5108                 sid = __tsec->osid;
5109         else if (!strcmp(name, "exec"))
5110                 sid = __tsec->exec_sid;
5111         else if (!strcmp(name, "fscreate"))
5112                 sid = __tsec->create_sid;
5113         else if (!strcmp(name, "keycreate"))
5114                 sid = __tsec->keycreate_sid;
5115         else if (!strcmp(name, "sockcreate"))
5116                 sid = __tsec->sockcreate_sid;
5117         else
5118                 goto invalid;
5119         rcu_read_unlock();
5120
5121         if (!sid)
5122                 return 0;
5123
5124         error = security_sid_to_context(sid, value, &len);
5125         if (error)
5126                 return error;
5127         return len;
5128
5129 invalid:
5130         rcu_read_unlock();
5131         return -EINVAL;
5132 }
5133
5134 static int selinux_setprocattr(struct task_struct *p,
5135                                char *name, void *value, size_t size)
5136 {
5137         struct task_security_struct *tsec;
5138         struct task_struct *tracer;
5139         struct cred *new;
5140         u32 sid = 0, ptsid;
5141         int error;
5142         char *str = value;
5143
5144         if (current != p) {
5145                 /* SELinux only allows a process to change its own
5146                    security attributes. */
5147                 return -EACCES;
5148         }
5149
5150         /*
5151          * Basic control over ability to set these attributes at all.
5152          * current == p, but we'll pass them separately in case the
5153          * above restriction is ever removed.
5154          */
5155         if (!strcmp(name, "exec"))
5156                 error = current_has_perm(p, PROCESS__SETEXEC);
5157         else if (!strcmp(name, "fscreate"))
5158                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5159         else if (!strcmp(name, "keycreate"))
5160                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5161         else if (!strcmp(name, "sockcreate"))
5162                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5163         else if (!strcmp(name, "current"))
5164                 error = current_has_perm(p, PROCESS__SETCURRENT);
5165         else
5166                 error = -EINVAL;
5167         if (error)
5168                 return error;
5169
5170         /* Obtain a SID for the context, if one was specified. */
5171         if (size && str[1] && str[1] != '\n') {
5172                 if (str[size-1] == '\n') {
5173                         str[size-1] = 0;
5174                         size--;
5175                 }
5176                 error = security_context_to_sid(value, size, &sid);
5177                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5178                         if (!capable(CAP_MAC_ADMIN))
5179                                 return error;
5180                         error = security_context_to_sid_force(value, size,
5181                                                               &sid);
5182                 }
5183                 if (error)
5184                         return error;
5185         }
5186
5187         new = prepare_creds();
5188         if (!new)
5189                 return -ENOMEM;
5190
5191         /* Permission checking based on the specified context is
5192            performed during the actual operation (execve,
5193            open/mkdir/...), when we know the full context of the
5194            operation.  See selinux_bprm_set_creds for the execve
5195            checks and may_create for the file creation checks. The
5196            operation will then fail if the context is not permitted. */
5197         tsec = new->security;
5198         if (!strcmp(name, "exec")) {
5199                 tsec->exec_sid = sid;
5200         } else if (!strcmp(name, "fscreate")) {
5201                 tsec->create_sid = sid;
5202         } else if (!strcmp(name, "keycreate")) {
5203                 error = may_create_key(sid, p);
5204                 if (error)
5205                         goto abort_change;
5206                 tsec->keycreate_sid = sid;
5207         } else if (!strcmp(name, "sockcreate")) {
5208                 tsec->sockcreate_sid = sid;
5209         } else if (!strcmp(name, "current")) {
5210                 error = -EINVAL;
5211                 if (sid == 0)
5212                         goto abort_change;
5213
5214                 /* Only allow single threaded processes to change context */
5215                 error = -EPERM;
5216                 if (!current_is_single_threaded()) {
5217                         error = security_bounded_transition(tsec->sid, sid);
5218                         if (error)
5219                                 goto abort_change;
5220                 }
5221
5222                 /* Check permissions for the transition. */
5223                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5224                                      PROCESS__DYNTRANSITION, NULL);
5225                 if (error)
5226                         goto abort_change;
5227
5228                 /* Check for ptracing, and update the task SID if ok.
5229                    Otherwise, leave SID unchanged and fail. */
5230                 ptsid = 0;
5231                 task_lock(p);
5232                 tracer = tracehook_tracer_task(p);
5233                 if (tracer)
5234                         ptsid = task_sid(tracer);
5235                 task_unlock(p);
5236
5237                 if (tracer) {
5238                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5239                                              PROCESS__PTRACE, NULL);
5240                         if (error)
5241                                 goto abort_change;
5242                 }
5243
5244                 tsec->sid = sid;
5245         } else {
5246                 error = -EINVAL;
5247                 goto abort_change;
5248         }
5249
5250         commit_creds(new);
5251         return size;
5252
5253 abort_change:
5254         abort_creds(new);
5255         return error;
5256 }
5257
5258 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5259 {
5260         return security_sid_to_context(secid, secdata, seclen);
5261 }
5262
5263 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5264 {
5265         return security_context_to_sid(secdata, seclen, secid);
5266 }
5267
5268 static void selinux_release_secctx(char *secdata, u32 seclen)
5269 {
5270         kfree(secdata);
5271 }
5272
5273 /*
5274  *      called with inode->i_mutex locked
5275  */
5276 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5277 {
5278         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5279 }
5280
5281 /*
5282  *      called with inode->i_mutex locked
5283  */
5284 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5285 {
5286         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5287 }
5288
5289 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5290 {
5291         int len = 0;
5292         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5293                                                 ctx, true);
5294         if (len < 0)
5295                 return len;
5296         *ctxlen = len;
5297         return 0;
5298 }
5299 #ifdef CONFIG_KEYS
5300
5301 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5302                              unsigned long flags)
5303 {
5304         const struct task_security_struct *tsec;
5305         struct key_security_struct *ksec;
5306
5307         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5308         if (!ksec)
5309                 return -ENOMEM;
5310
5311         tsec = cred->security;
5312         if (tsec->keycreate_sid)
5313                 ksec->sid = tsec->keycreate_sid;
5314         else
5315                 ksec->sid = tsec->sid;
5316
5317         k->security = ksec;
5318         return 0;
5319 }
5320
5321 static void selinux_key_free(struct key *k)
5322 {
5323         struct key_security_struct *ksec = k->security;
5324
5325         k->security = NULL;
5326         kfree(ksec);
5327 }
5328
5329 static int selinux_key_permission(key_ref_t key_ref,
5330                                   const struct cred *cred,
5331                                   key_perm_t perm)
5332 {
5333         struct key *key;
5334         struct key_security_struct *ksec;
5335         u32 sid;
5336
5337         /* if no specific permissions are requested, we skip the
5338            permission check. No serious, additional covert channels
5339            appear to be created. */
5340         if (perm == 0)
5341                 return 0;
5342
5343         sid = cred_sid(cred);
5344
5345         key = key_ref_to_ptr(key_ref);
5346         ksec = key->security;
5347
5348         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5349 }
5350
5351 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5352 {
5353         struct key_security_struct *ksec = key->security;
5354         char *context = NULL;
5355         unsigned len;
5356         int rc;
5357
5358         rc = security_sid_to_context(ksec->sid, &context, &len);
5359         if (!rc)
5360                 rc = len;
5361         *_buffer = context;
5362         return rc;
5363 }
5364
5365 #endif
5366
5367 static struct security_operations selinux_ops = {
5368         .name =                         "selinux",
5369
5370         .ptrace_access_check =          selinux_ptrace_access_check,
5371         .ptrace_traceme =               selinux_ptrace_traceme,
5372         .capget =                       selinux_capget,
5373         .capset =                       selinux_capset,
5374         .sysctl =                       selinux_sysctl,
5375         .capable =                      selinux_capable,
5376         .quotactl =                     selinux_quotactl,
5377         .quota_on =                     selinux_quota_on,
5378         .syslog =                       selinux_syslog,
5379         .vm_enough_memory =             selinux_vm_enough_memory,
5380
5381         .netlink_send =                 selinux_netlink_send,
5382         .netlink_recv =                 selinux_netlink_recv,
5383
5384         .bprm_set_creds =               selinux_bprm_set_creds,
5385         .bprm_committing_creds =        selinux_bprm_committing_creds,
5386         .bprm_committed_creds =         selinux_bprm_committed_creds,
5387         .bprm_secureexec =              selinux_bprm_secureexec,
5388
5389         .sb_alloc_security =            selinux_sb_alloc_security,
5390         .sb_free_security =             selinux_sb_free_security,
5391         .sb_copy_data =                 selinux_sb_copy_data,
5392         .sb_kern_mount =                selinux_sb_kern_mount,
5393         .sb_show_options =              selinux_sb_show_options,
5394         .sb_statfs =                    selinux_sb_statfs,
5395         .sb_mount =                     selinux_mount,
5396         .sb_umount =                    selinux_umount,
5397         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5398         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5399         .sb_parse_opts_str =            selinux_parse_opts_str,
5400
5401
5402         .inode_alloc_security =         selinux_inode_alloc_security,
5403         .inode_free_security =          selinux_inode_free_security,
5404         .inode_init_security =          selinux_inode_init_security,
5405         .inode_create =                 selinux_inode_create,
5406         .inode_link =                   selinux_inode_link,
5407         .inode_unlink =                 selinux_inode_unlink,
5408         .inode_symlink =                selinux_inode_symlink,
5409         .inode_mkdir =                  selinux_inode_mkdir,
5410         .inode_rmdir =                  selinux_inode_rmdir,
5411         .inode_mknod =                  selinux_inode_mknod,
5412         .inode_rename =                 selinux_inode_rename,
5413         .inode_readlink =               selinux_inode_readlink,
5414         .inode_follow_link =            selinux_inode_follow_link,
5415         .inode_permission =             selinux_inode_permission,
5416         .inode_setattr =                selinux_inode_setattr,
5417         .inode_getattr =                selinux_inode_getattr,
5418         .inode_setxattr =               selinux_inode_setxattr,
5419         .inode_post_setxattr =          selinux_inode_post_setxattr,
5420         .inode_getxattr =               selinux_inode_getxattr,
5421         .inode_listxattr =              selinux_inode_listxattr,
5422         .inode_removexattr =            selinux_inode_removexattr,
5423         .inode_getsecurity =            selinux_inode_getsecurity,
5424         .inode_setsecurity =            selinux_inode_setsecurity,
5425         .inode_listsecurity =           selinux_inode_listsecurity,
5426         .inode_getsecid =               selinux_inode_getsecid,
5427
5428         .file_permission =              selinux_file_permission,
5429         .file_alloc_security =          selinux_file_alloc_security,
5430         .file_free_security =           selinux_file_free_security,
5431         .file_ioctl =                   selinux_file_ioctl,
5432         .file_mmap =                    selinux_file_mmap,
5433         .file_mprotect =                selinux_file_mprotect,
5434         .file_lock =                    selinux_file_lock,
5435         .file_fcntl =                   selinux_file_fcntl,
5436         .file_set_fowner =              selinux_file_set_fowner,
5437         .file_send_sigiotask =          selinux_file_send_sigiotask,
5438         .file_receive =                 selinux_file_receive,
5439
5440         .dentry_open =                  selinux_dentry_open,
5441
5442         .task_create =                  selinux_task_create,
5443         .cred_alloc_blank =             selinux_cred_alloc_blank,
5444         .cred_free =                    selinux_cred_free,
5445         .cred_prepare =                 selinux_cred_prepare,
5446         .cred_transfer =                selinux_cred_transfer,
5447         .kernel_act_as =                selinux_kernel_act_as,
5448         .kernel_create_files_as =       selinux_kernel_create_files_as,
5449         .kernel_module_request =        selinux_kernel_module_request,
5450         .task_setpgid =                 selinux_task_setpgid,
5451         .task_getpgid =                 selinux_task_getpgid,
5452         .task_getsid =                  selinux_task_getsid,
5453         .task_getsecid =                selinux_task_getsecid,
5454         .task_setnice =                 selinux_task_setnice,
5455         .task_setioprio =               selinux_task_setioprio,
5456         .task_getioprio =               selinux_task_getioprio,
5457         .task_setrlimit =               selinux_task_setrlimit,
5458         .task_setscheduler =            selinux_task_setscheduler,
5459         .task_getscheduler =            selinux_task_getscheduler,
5460         .task_movememory =              selinux_task_movememory,
5461         .task_kill =                    selinux_task_kill,
5462         .task_wait =                    selinux_task_wait,
5463         .task_to_inode =                selinux_task_to_inode,
5464
5465         .ipc_permission =               selinux_ipc_permission,
5466         .ipc_getsecid =                 selinux_ipc_getsecid,
5467
5468         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5469         .msg_msg_free_security =        selinux_msg_msg_free_security,
5470
5471         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5472         .msg_queue_free_security =      selinux_msg_queue_free_security,
5473         .msg_queue_associate =          selinux_msg_queue_associate,
5474         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5475         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5476         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5477
5478         .shm_alloc_security =           selinux_shm_alloc_security,
5479         .shm_free_security =            selinux_shm_free_security,
5480         .shm_associate =                selinux_shm_associate,
5481         .shm_shmctl =                   selinux_shm_shmctl,
5482         .shm_shmat =                    selinux_shm_shmat,
5483
5484         .sem_alloc_security =           selinux_sem_alloc_security,
5485         .sem_free_security =            selinux_sem_free_security,
5486         .sem_associate =                selinux_sem_associate,
5487         .sem_semctl =                   selinux_sem_semctl,
5488         .sem_semop =                    selinux_sem_semop,
5489
5490         .d_instantiate =                selinux_d_instantiate,
5491
5492         .getprocattr =                  selinux_getprocattr,
5493         .setprocattr =                  selinux_setprocattr,
5494
5495         .secid_to_secctx =              selinux_secid_to_secctx,
5496         .secctx_to_secid =              selinux_secctx_to_secid,
5497         .release_secctx =               selinux_release_secctx,
5498         .inode_notifysecctx =           selinux_inode_notifysecctx,
5499         .inode_setsecctx =              selinux_inode_setsecctx,
5500         .inode_getsecctx =              selinux_inode_getsecctx,
5501
5502         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5503         .unix_may_send =                selinux_socket_unix_may_send,
5504
5505         .socket_create =                selinux_socket_create,
5506         .socket_post_create =           selinux_socket_post_create,
5507         .socket_bind =                  selinux_socket_bind,
5508         .socket_connect =               selinux_socket_connect,
5509         .socket_listen =                selinux_socket_listen,
5510         .socket_accept =                selinux_socket_accept,
5511         .socket_sendmsg =               selinux_socket_sendmsg,
5512         .socket_recvmsg =               selinux_socket_recvmsg,
5513         .socket_getsockname =           selinux_socket_getsockname,
5514         .socket_getpeername =           selinux_socket_getpeername,
5515         .socket_getsockopt =            selinux_socket_getsockopt,
5516         .socket_setsockopt =            selinux_socket_setsockopt,
5517         .socket_shutdown =              selinux_socket_shutdown,
5518         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5519         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5520         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5521         .sk_alloc_security =            selinux_sk_alloc_security,
5522         .sk_free_security =             selinux_sk_free_security,
5523         .sk_clone_security =            selinux_sk_clone_security,
5524         .sk_getsecid =                  selinux_sk_getsecid,
5525         .sock_graft =                   selinux_sock_graft,
5526         .inet_conn_request =            selinux_inet_conn_request,
5527         .inet_csk_clone =               selinux_inet_csk_clone,
5528         .inet_conn_established =        selinux_inet_conn_established,
5529         .req_classify_flow =            selinux_req_classify_flow,
5530         .tun_dev_create =               selinux_tun_dev_create,
5531         .tun_dev_post_create =          selinux_tun_dev_post_create,
5532         .tun_dev_attach =               selinux_tun_dev_attach,
5533
5534 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5535         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5536         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5537         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5538         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5539         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5540         .xfrm_state_free_security =     selinux_xfrm_state_free,
5541         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5542         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5543         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5544         .xfrm_decode_session =          selinux_xfrm_decode_session,
5545 #endif
5546
5547 #ifdef CONFIG_KEYS
5548         .key_alloc =                    selinux_key_alloc,
5549         .key_free =                     selinux_key_free,
5550         .key_permission =               selinux_key_permission,
5551         .key_getsecurity =              selinux_key_getsecurity,
5552 #endif
5553
5554 #ifdef CONFIG_AUDIT
5555         .audit_rule_init =              selinux_audit_rule_init,
5556         .audit_rule_known =             selinux_audit_rule_known,
5557         .audit_rule_match =             selinux_audit_rule_match,
5558         .audit_rule_free =              selinux_audit_rule_free,
5559 #endif
5560 };
5561
5562 static __init int selinux_init(void)
5563 {
5564         if (!security_module_enable(&selinux_ops)) {
5565                 selinux_enabled = 0;
5566                 return 0;
5567         }
5568
5569         if (!selinux_enabled) {
5570                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5571                 return 0;
5572         }
5573
5574         printk(KERN_INFO "SELinux:  Initializing.\n");
5575
5576         /* Set the security state for the initial task. */
5577         cred_init_security();
5578
5579         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5580
5581         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5582                                             sizeof(struct inode_security_struct),
5583                                             0, SLAB_PANIC, NULL);
5584         avc_init();
5585
5586         if (register_security(&selinux_ops))
5587                 panic("SELinux: Unable to register with kernel.\n");
5588
5589         if (selinux_enforcing)
5590                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5591         else
5592                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5593
5594         return 0;
5595 }
5596
5597 static void delayed_superblock_init(struct super_block *sb, void *unused)
5598 {
5599         superblock_doinit(sb, NULL);
5600 }
5601
5602 void selinux_complete_init(void)
5603 {
5604         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5605
5606         /* Set up any superblocks initialized prior to the policy load. */
5607         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5608         iterate_supers(delayed_superblock_init, NULL);
5609 }
5610
5611 /* SELinux requires early initialization in order to label
5612    all processes and objects when they are created. */
5613 security_initcall(selinux_init);
5614
5615 #if defined(CONFIG_NETFILTER)
5616
5617 static struct nf_hook_ops selinux_ipv4_ops[] = {
5618         {
5619                 .hook =         selinux_ipv4_postroute,
5620                 .owner =        THIS_MODULE,
5621                 .pf =           PF_INET,
5622                 .hooknum =      NF_INET_POST_ROUTING,
5623                 .priority =     NF_IP_PRI_SELINUX_LAST,
5624         },
5625         {
5626                 .hook =         selinux_ipv4_forward,
5627                 .owner =        THIS_MODULE,
5628                 .pf =           PF_INET,
5629                 .hooknum =      NF_INET_FORWARD,
5630                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5631         },
5632         {
5633                 .hook =         selinux_ipv4_output,
5634                 .owner =        THIS_MODULE,
5635                 .pf =           PF_INET,
5636                 .hooknum =      NF_INET_LOCAL_OUT,
5637                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5638         }
5639 };
5640
5641 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5642
5643 static struct nf_hook_ops selinux_ipv6_ops[] = {
5644         {
5645                 .hook =         selinux_ipv6_postroute,
5646                 .owner =        THIS_MODULE,
5647                 .pf =           PF_INET6,
5648                 .hooknum =      NF_INET_POST_ROUTING,
5649                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5650         },
5651         {
5652                 .hook =         selinux_ipv6_forward,
5653                 .owner =        THIS_MODULE,
5654                 .pf =           PF_INET6,
5655                 .hooknum =      NF_INET_FORWARD,
5656                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5657         }
5658 };
5659
5660 #endif  /* IPV6 */
5661
5662 static int __init selinux_nf_ip_init(void)
5663 {
5664         int err = 0;
5665
5666         if (!selinux_enabled)
5667                 goto out;
5668
5669         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5670
5671         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5672         if (err)
5673                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5674
5675 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5676         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5677         if (err)
5678                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5679 #endif  /* IPV6 */
5680
5681 out:
5682         return err;
5683 }
5684
5685 __initcall(selinux_nf_ip_init);
5686
5687 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5688 static void selinux_nf_ip_exit(void)
5689 {
5690         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5691
5692         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5693 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5694         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5695 #endif  /* IPV6 */
5696 }
5697 #endif
5698
5699 #else /* CONFIG_NETFILTER */
5700
5701 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5702 #define selinux_nf_ip_exit()
5703 #endif
5704
5705 #endif /* CONFIG_NETFILTER */
5706
5707 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5708 static int selinux_disabled;
5709
5710 int selinux_disable(void)
5711 {
5712         extern void exit_sel_fs(void);
5713
5714         if (ss_initialized) {
5715                 /* Not permitted after initial policy load. */
5716                 return -EINVAL;
5717         }
5718
5719         if (selinux_disabled) {
5720                 /* Only do this once. */
5721                 return -EINVAL;
5722         }
5723
5724         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5725
5726         selinux_disabled = 1;
5727         selinux_enabled = 0;
5728
5729         reset_security_ops();
5730
5731         /* Try to destroy the avc node cache */
5732         avc_disable();
5733
5734         /* Unregister netfilter hooks. */
5735         selinux_nf_ip_exit();
5736
5737         /* Unregister selinuxfs. */
5738         exit_sel_fs();
5739
5740         return 0;
5741 }
5742 #endif