Merge branch 'xen/xenbus' into upstream/xen
[sfrench/cifs-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *                                         Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *                          <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *      Paul Moore <paul.moore@hp.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *      This program is free software; you can redistribute it and/or modify
22  *      it under the terms of the GNU General Public License version 2,
23  *      as published by the Free Software Foundation.
24  */
25
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/tracehook.h>
29 #include <linux/errno.h>
30 #include <linux/sched.h>
31 #include <linux/security.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/swap.h>
40 #include <linux/spinlock.h>
41 #include <linux/syscalls.h>
42 #include <linux/file.h>
43 #include <linux/fdtable.h>
44 #include <linux/namei.h>
45 #include <linux/mount.h>
46 #include <linux/proc_fs.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <net/net_namespace.h>
54 #include <net/netlabel.h>
55 #include <linux/uaccess.h>
56 #include <asm/ioctls.h>
57 #include <asm/atomic.h>
58 #include <linux/bitops.h>
59 #include <linux/interrupt.h>
60 #include <linux/netdevice.h>    /* for network interface checks */
61 #include <linux/netlink.h>
62 #include <linux/tcp.h>
63 #include <linux/udp.h>
64 #include <linux/dccp.h>
65 #include <linux/quota.h>
66 #include <linux/un.h>           /* for Unix socket types */
67 #include <net/af_unix.h>        /* for Unix socket types */
68 #include <linux/parser.h>
69 #include <linux/nfs_mount.h>
70 #include <net/ipv6.h>
71 #include <linux/hugetlb.h>
72 #include <linux/personality.h>
73 #include <linux/sysctl.h>
74 #include <linux/audit.h>
75 #include <linux/string.h>
76 #include <linux/selinux.h>
77 #include <linux/mutex.h>
78 #include <linux/posix-timers.h>
79 #include <linux/syslog.h>
80
81 #include "avc.h"
82 #include "objsec.h"
83 #include "netif.h"
84 #include "netnode.h"
85 #include "netport.h"
86 #include "xfrm.h"
87 #include "netlabel.h"
88 #include "audit.h"
89
90 #define XATTR_SELINUX_SUFFIX "selinux"
91 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
92
93 #define NUM_SEL_MNT_OPTS 5
94
95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96 extern struct security_operations *security_ops;
97
98 /* SECMARK reference count */
99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102 int selinux_enforcing;
103
104 static int __init enforcing_setup(char *str)
105 {
106         unsigned long enforcing;
107         if (!strict_strtoul(str, 0, &enforcing))
108                 selinux_enforcing = enforcing ? 1 : 0;
109         return 1;
110 }
111 __setup("enforcing=", enforcing_setup);
112 #endif
113
114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117 static int __init selinux_enabled_setup(char *str)
118 {
119         unsigned long enabled;
120         if (!strict_strtoul(str, 0, &enabled))
121                 selinux_enabled = enabled ? 1 : 0;
122         return 1;
123 }
124 __setup("selinux=", selinux_enabled_setup);
125 #else
126 int selinux_enabled = 1;
127 #endif
128
129 static struct kmem_cache *sel_inode_cache;
130
131 /**
132  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133  *
134  * Description:
135  * This function checks the SECMARK reference counter to see if any SECMARK
136  * targets are currently configured, if the reference counter is greater than
137  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
138  * enabled, false (0) if SECMARK is disabled.
139  *
140  */
141 static int selinux_secmark_enabled(void)
142 {
143         return (atomic_read(&selinux_secmark_refcount) > 0);
144 }
145
146 /*
147  * initialise the security for the init task
148  */
149 static void cred_init_security(void)
150 {
151         struct cred *cred = (struct cred *) current->real_cred;
152         struct task_security_struct *tsec;
153
154         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
155         if (!tsec)
156                 panic("SELinux:  Failed to initialize initial task.\n");
157
158         tsec->osid = tsec->sid = SECINITSID_KERNEL;
159         cred->security = tsec;
160 }
161
162 /*
163  * get the security ID of a set of credentials
164  */
165 static inline u32 cred_sid(const struct cred *cred)
166 {
167         const struct task_security_struct *tsec;
168
169         tsec = cred->security;
170         return tsec->sid;
171 }
172
173 /*
174  * get the objective security ID of a task
175  */
176 static inline u32 task_sid(const struct task_struct *task)
177 {
178         u32 sid;
179
180         rcu_read_lock();
181         sid = cred_sid(__task_cred(task));
182         rcu_read_unlock();
183         return sid;
184 }
185
186 /*
187  * get the subjective security ID of the current task
188  */
189 static inline u32 current_sid(void)
190 {
191         const struct task_security_struct *tsec = current_cred()->security;
192
193         return tsec->sid;
194 }
195
196 /* Allocate and free functions for each kind of security blob. */
197
198 static int inode_alloc_security(struct inode *inode)
199 {
200         struct inode_security_struct *isec;
201         u32 sid = current_sid();
202
203         isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
204         if (!isec)
205                 return -ENOMEM;
206
207         mutex_init(&isec->lock);
208         INIT_LIST_HEAD(&isec->list);
209         isec->inode = inode;
210         isec->sid = SECINITSID_UNLABELED;
211         isec->sclass = SECCLASS_FILE;
212         isec->task_sid = sid;
213         inode->i_security = isec;
214
215         return 0;
216 }
217
218 static void inode_free_security(struct inode *inode)
219 {
220         struct inode_security_struct *isec = inode->i_security;
221         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
222
223         spin_lock(&sbsec->isec_lock);
224         if (!list_empty(&isec->list))
225                 list_del_init(&isec->list);
226         spin_unlock(&sbsec->isec_lock);
227
228         inode->i_security = NULL;
229         kmem_cache_free(sel_inode_cache, isec);
230 }
231
232 static int file_alloc_security(struct file *file)
233 {
234         struct file_security_struct *fsec;
235         u32 sid = current_sid();
236
237         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
238         if (!fsec)
239                 return -ENOMEM;
240
241         fsec->sid = sid;
242         fsec->fown_sid = sid;
243         file->f_security = fsec;
244
245         return 0;
246 }
247
248 static void file_free_security(struct file *file)
249 {
250         struct file_security_struct *fsec = file->f_security;
251         file->f_security = NULL;
252         kfree(fsec);
253 }
254
255 static int superblock_alloc_security(struct super_block *sb)
256 {
257         struct superblock_security_struct *sbsec;
258
259         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
260         if (!sbsec)
261                 return -ENOMEM;
262
263         mutex_init(&sbsec->lock);
264         INIT_LIST_HEAD(&sbsec->isec_head);
265         spin_lock_init(&sbsec->isec_lock);
266         sbsec->sb = sb;
267         sbsec->sid = SECINITSID_UNLABELED;
268         sbsec->def_sid = SECINITSID_FILE;
269         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
270         sb->s_security = sbsec;
271
272         return 0;
273 }
274
275 static void superblock_free_security(struct super_block *sb)
276 {
277         struct superblock_security_struct *sbsec = sb->s_security;
278         sb->s_security = NULL;
279         kfree(sbsec);
280 }
281
282 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
283 {
284         struct sk_security_struct *sksec;
285
286         sksec = kzalloc(sizeof(*sksec), priority);
287         if (!sksec)
288                 return -ENOMEM;
289
290         sksec->peer_sid = SECINITSID_UNLABELED;
291         sksec->sid = SECINITSID_UNLABELED;
292         sk->sk_security = sksec;
293
294         selinux_netlbl_sk_security_reset(sksec);
295
296         return 0;
297 }
298
299 static void sk_free_security(struct sock *sk)
300 {
301         struct sk_security_struct *sksec = sk->sk_security;
302
303         sk->sk_security = NULL;
304         selinux_netlbl_sk_security_free(sksec);
305         kfree(sksec);
306 }
307
308 /* The security server must be initialized before
309    any labeling or access decisions can be provided. */
310 extern int ss_initialized;
311
312 /* The file system's label must be initialized prior to use. */
313
314 static const char *labeling_behaviors[6] = {
315         "uses xattr",
316         "uses transition SIDs",
317         "uses task SIDs",
318         "uses genfs_contexts",
319         "not configured for labeling",
320         "uses mountpoint labeling",
321 };
322
323 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
324
325 static inline int inode_doinit(struct inode *inode)
326 {
327         return inode_doinit_with_dentry(inode, NULL);
328 }
329
330 enum {
331         Opt_error = -1,
332         Opt_context = 1,
333         Opt_fscontext = 2,
334         Opt_defcontext = 3,
335         Opt_rootcontext = 4,
336         Opt_labelsupport = 5,
337 };
338
339 static const match_table_t tokens = {
340         {Opt_context, CONTEXT_STR "%s"},
341         {Opt_fscontext, FSCONTEXT_STR "%s"},
342         {Opt_defcontext, DEFCONTEXT_STR "%s"},
343         {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
344         {Opt_labelsupport, LABELSUPP_STR},
345         {Opt_error, NULL},
346 };
347
348 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
349
350 static int may_context_mount_sb_relabel(u32 sid,
351                         struct superblock_security_struct *sbsec,
352                         const struct cred *cred)
353 {
354         const struct task_security_struct *tsec = cred->security;
355         int rc;
356
357         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358                           FILESYSTEM__RELABELFROM, NULL);
359         if (rc)
360                 return rc;
361
362         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
363                           FILESYSTEM__RELABELTO, NULL);
364         return rc;
365 }
366
367 static int may_context_mount_inode_relabel(u32 sid,
368                         struct superblock_security_struct *sbsec,
369                         const struct cred *cred)
370 {
371         const struct task_security_struct *tsec = cred->security;
372         int rc;
373         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
374                           FILESYSTEM__RELABELFROM, NULL);
375         if (rc)
376                 return rc;
377
378         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
379                           FILESYSTEM__ASSOCIATE, NULL);
380         return rc;
381 }
382
383 static int sb_finish_set_opts(struct super_block *sb)
384 {
385         struct superblock_security_struct *sbsec = sb->s_security;
386         struct dentry *root = sb->s_root;
387         struct inode *root_inode = root->d_inode;
388         int rc = 0;
389
390         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
391                 /* Make sure that the xattr handler exists and that no
392                    error other than -ENODATA is returned by getxattr on
393                    the root directory.  -ENODATA is ok, as this may be
394                    the first boot of the SELinux kernel before we have
395                    assigned xattr values to the filesystem. */
396                 if (!root_inode->i_op->getxattr) {
397                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
398                                "xattr support\n", sb->s_id, sb->s_type->name);
399                         rc = -EOPNOTSUPP;
400                         goto out;
401                 }
402                 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
403                 if (rc < 0 && rc != -ENODATA) {
404                         if (rc == -EOPNOTSUPP)
405                                 printk(KERN_WARNING "SELinux: (dev %s, type "
406                                        "%s) has no security xattr handler\n",
407                                        sb->s_id, sb->s_type->name);
408                         else
409                                 printk(KERN_WARNING "SELinux: (dev %s, type "
410                                        "%s) getxattr errno %d\n", sb->s_id,
411                                        sb->s_type->name, -rc);
412                         goto out;
413                 }
414         }
415
416         sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
417
418         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
419                 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
420                        sb->s_id, sb->s_type->name);
421         else
422                 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
423                        sb->s_id, sb->s_type->name,
424                        labeling_behaviors[sbsec->behavior-1]);
425
426         if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
427             sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
428             sbsec->behavior == SECURITY_FS_USE_NONE ||
429             sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
430                 sbsec->flags &= ~SE_SBLABELSUPP;
431
432         /* Special handling for sysfs. Is genfs but also has setxattr handler*/
433         if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
434                 sbsec->flags |= SE_SBLABELSUPP;
435
436         /* Initialize the root inode. */
437         rc = inode_doinit_with_dentry(root_inode, root);
438
439         /* Initialize any other inodes associated with the superblock, e.g.
440            inodes created prior to initial policy load or inodes created
441            during get_sb by a pseudo filesystem that directly
442            populates itself. */
443         spin_lock(&sbsec->isec_lock);
444 next_inode:
445         if (!list_empty(&sbsec->isec_head)) {
446                 struct inode_security_struct *isec =
447                                 list_entry(sbsec->isec_head.next,
448                                            struct inode_security_struct, list);
449                 struct inode *inode = isec->inode;
450                 spin_unlock(&sbsec->isec_lock);
451                 inode = igrab(inode);
452                 if (inode) {
453                         if (!IS_PRIVATE(inode))
454                                 inode_doinit(inode);
455                         iput(inode);
456                 }
457                 spin_lock(&sbsec->isec_lock);
458                 list_del_init(&isec->list);
459                 goto next_inode;
460         }
461         spin_unlock(&sbsec->isec_lock);
462 out:
463         return rc;
464 }
465
466 /*
467  * This function should allow an FS to ask what it's mount security
468  * options were so it can use those later for submounts, displaying
469  * mount options, or whatever.
470  */
471 static int selinux_get_mnt_opts(const struct super_block *sb,
472                                 struct security_mnt_opts *opts)
473 {
474         int rc = 0, i;
475         struct superblock_security_struct *sbsec = sb->s_security;
476         char *context = NULL;
477         u32 len;
478         char tmp;
479
480         security_init_mnt_opts(opts);
481
482         if (!(sbsec->flags & SE_SBINITIALIZED))
483                 return -EINVAL;
484
485         if (!ss_initialized)
486                 return -EINVAL;
487
488         tmp = sbsec->flags & SE_MNTMASK;
489         /* count the number of mount options for this sb */
490         for (i = 0; i < 8; i++) {
491                 if (tmp & 0x01)
492                         opts->num_mnt_opts++;
493                 tmp >>= 1;
494         }
495         /* Check if the Label support flag is set */
496         if (sbsec->flags & SE_SBLABELSUPP)
497                 opts->num_mnt_opts++;
498
499         opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
500         if (!opts->mnt_opts) {
501                 rc = -ENOMEM;
502                 goto out_free;
503         }
504
505         opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
506         if (!opts->mnt_opts_flags) {
507                 rc = -ENOMEM;
508                 goto out_free;
509         }
510
511         i = 0;
512         if (sbsec->flags & FSCONTEXT_MNT) {
513                 rc = security_sid_to_context(sbsec->sid, &context, &len);
514                 if (rc)
515                         goto out_free;
516                 opts->mnt_opts[i] = context;
517                 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
518         }
519         if (sbsec->flags & CONTEXT_MNT) {
520                 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
521                 if (rc)
522                         goto out_free;
523                 opts->mnt_opts[i] = context;
524                 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
525         }
526         if (sbsec->flags & DEFCONTEXT_MNT) {
527                 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
528                 if (rc)
529                         goto out_free;
530                 opts->mnt_opts[i] = context;
531                 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
532         }
533         if (sbsec->flags & ROOTCONTEXT_MNT) {
534                 struct inode *root = sbsec->sb->s_root->d_inode;
535                 struct inode_security_struct *isec = root->i_security;
536
537                 rc = security_sid_to_context(isec->sid, &context, &len);
538                 if (rc)
539                         goto out_free;
540                 opts->mnt_opts[i] = context;
541                 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
542         }
543         if (sbsec->flags & SE_SBLABELSUPP) {
544                 opts->mnt_opts[i] = NULL;
545                 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
546         }
547
548         BUG_ON(i != opts->num_mnt_opts);
549
550         return 0;
551
552 out_free:
553         security_free_mnt_opts(opts);
554         return rc;
555 }
556
557 static int bad_option(struct superblock_security_struct *sbsec, char flag,
558                       u32 old_sid, u32 new_sid)
559 {
560         char mnt_flags = sbsec->flags & SE_MNTMASK;
561
562         /* check if the old mount command had the same options */
563         if (sbsec->flags & SE_SBINITIALIZED)
564                 if (!(sbsec->flags & flag) ||
565                     (old_sid != new_sid))
566                         return 1;
567
568         /* check if we were passed the same options twice,
569          * aka someone passed context=a,context=b
570          */
571         if (!(sbsec->flags & SE_SBINITIALIZED))
572                 if (mnt_flags & flag)
573                         return 1;
574         return 0;
575 }
576
577 /*
578  * Allow filesystems with binary mount data to explicitly set mount point
579  * labeling information.
580  */
581 static int selinux_set_mnt_opts(struct super_block *sb,
582                                 struct security_mnt_opts *opts)
583 {
584         const struct cred *cred = current_cred();
585         int rc = 0, i;
586         struct superblock_security_struct *sbsec = sb->s_security;
587         const char *name = sb->s_type->name;
588         struct inode *inode = sbsec->sb->s_root->d_inode;
589         struct inode_security_struct *root_isec = inode->i_security;
590         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
591         u32 defcontext_sid = 0;
592         char **mount_options = opts->mnt_opts;
593         int *flags = opts->mnt_opts_flags;
594         int num_opts = opts->num_mnt_opts;
595
596         mutex_lock(&sbsec->lock);
597
598         if (!ss_initialized) {
599                 if (!num_opts) {
600                         /* Defer initialization until selinux_complete_init,
601                            after the initial policy is loaded and the security
602                            server is ready to handle calls. */
603                         goto out;
604                 }
605                 rc = -EINVAL;
606                 printk(KERN_WARNING "SELinux: Unable to set superblock options "
607                         "before the security server is initialized\n");
608                 goto out;
609         }
610
611         /*
612          * Binary mount data FS will come through this function twice.  Once
613          * from an explicit call and once from the generic calls from the vfs.
614          * Since the generic VFS calls will not contain any security mount data
615          * we need to skip the double mount verification.
616          *
617          * This does open a hole in which we will not notice if the first
618          * mount using this sb set explict options and a second mount using
619          * this sb does not set any security options.  (The first options
620          * will be used for both mounts)
621          */
622         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
623             && (num_opts == 0))
624                 goto out;
625
626         /*
627          * parse the mount options, check if they are valid sids.
628          * also check if someone is trying to mount the same sb more
629          * than once with different security options.
630          */
631         for (i = 0; i < num_opts; i++) {
632                 u32 sid;
633
634                 if (flags[i] == SE_SBLABELSUPP)
635                         continue;
636                 rc = security_context_to_sid(mount_options[i],
637                                              strlen(mount_options[i]), &sid);
638                 if (rc) {
639                         printk(KERN_WARNING "SELinux: security_context_to_sid"
640                                "(%s) failed for (dev %s, type %s) errno=%d\n",
641                                mount_options[i], sb->s_id, name, rc);
642                         goto out;
643                 }
644                 switch (flags[i]) {
645                 case FSCONTEXT_MNT:
646                         fscontext_sid = sid;
647
648                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
649                                         fscontext_sid))
650                                 goto out_double_mount;
651
652                         sbsec->flags |= FSCONTEXT_MNT;
653                         break;
654                 case CONTEXT_MNT:
655                         context_sid = sid;
656
657                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
658                                         context_sid))
659                                 goto out_double_mount;
660
661                         sbsec->flags |= CONTEXT_MNT;
662                         break;
663                 case ROOTCONTEXT_MNT:
664                         rootcontext_sid = sid;
665
666                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
667                                         rootcontext_sid))
668                                 goto out_double_mount;
669
670                         sbsec->flags |= ROOTCONTEXT_MNT;
671
672                         break;
673                 case DEFCONTEXT_MNT:
674                         defcontext_sid = sid;
675
676                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
677                                         defcontext_sid))
678                                 goto out_double_mount;
679
680                         sbsec->flags |= DEFCONTEXT_MNT;
681
682                         break;
683                 default:
684                         rc = -EINVAL;
685                         goto out;
686                 }
687         }
688
689         if (sbsec->flags & SE_SBINITIALIZED) {
690                 /* previously mounted with options, but not on this attempt? */
691                 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
692                         goto out_double_mount;
693                 rc = 0;
694                 goto out;
695         }
696
697         if (strcmp(sb->s_type->name, "proc") == 0)
698                 sbsec->flags |= SE_SBPROC;
699
700         /* Determine the labeling behavior to use for this filesystem type. */
701         rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
702         if (rc) {
703                 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
704                        __func__, sb->s_type->name, rc);
705                 goto out;
706         }
707
708         /* sets the context of the superblock for the fs being mounted. */
709         if (fscontext_sid) {
710                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
711                 if (rc)
712                         goto out;
713
714                 sbsec->sid = fscontext_sid;
715         }
716
717         /*
718          * Switch to using mount point labeling behavior.
719          * sets the label used on all file below the mountpoint, and will set
720          * the superblock context if not already set.
721          */
722         if (context_sid) {
723                 if (!fscontext_sid) {
724                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
725                                                           cred);
726                         if (rc)
727                                 goto out;
728                         sbsec->sid = context_sid;
729                 } else {
730                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
731                                                              cred);
732                         if (rc)
733                                 goto out;
734                 }
735                 if (!rootcontext_sid)
736                         rootcontext_sid = context_sid;
737
738                 sbsec->mntpoint_sid = context_sid;
739                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
740         }
741
742         if (rootcontext_sid) {
743                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
744                                                      cred);
745                 if (rc)
746                         goto out;
747
748                 root_isec->sid = rootcontext_sid;
749                 root_isec->initialized = 1;
750         }
751
752         if (defcontext_sid) {
753                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
754                         rc = -EINVAL;
755                         printk(KERN_WARNING "SELinux: defcontext option is "
756                                "invalid for this filesystem type\n");
757                         goto out;
758                 }
759
760                 if (defcontext_sid != sbsec->def_sid) {
761                         rc = may_context_mount_inode_relabel(defcontext_sid,
762                                                              sbsec, cred);
763                         if (rc)
764                                 goto out;
765                 }
766
767                 sbsec->def_sid = defcontext_sid;
768         }
769
770         rc = sb_finish_set_opts(sb);
771 out:
772         mutex_unlock(&sbsec->lock);
773         return rc;
774 out_double_mount:
775         rc = -EINVAL;
776         printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
777                "security settings for (dev %s, type %s)\n", sb->s_id, name);
778         goto out;
779 }
780
781 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
782                                         struct super_block *newsb)
783 {
784         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
785         struct superblock_security_struct *newsbsec = newsb->s_security;
786
787         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
788         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
789         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
790
791         /*
792          * if the parent was able to be mounted it clearly had no special lsm
793          * mount options.  thus we can safely deal with this superblock later
794          */
795         if (!ss_initialized)
796                 return;
797
798         /* how can we clone if the old one wasn't set up?? */
799         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
800
801         /* if fs is reusing a sb, just let its options stand... */
802         if (newsbsec->flags & SE_SBINITIALIZED)
803                 return;
804
805         mutex_lock(&newsbsec->lock);
806
807         newsbsec->flags = oldsbsec->flags;
808
809         newsbsec->sid = oldsbsec->sid;
810         newsbsec->def_sid = oldsbsec->def_sid;
811         newsbsec->behavior = oldsbsec->behavior;
812
813         if (set_context) {
814                 u32 sid = oldsbsec->mntpoint_sid;
815
816                 if (!set_fscontext)
817                         newsbsec->sid = sid;
818                 if (!set_rootcontext) {
819                         struct inode *newinode = newsb->s_root->d_inode;
820                         struct inode_security_struct *newisec = newinode->i_security;
821                         newisec->sid = sid;
822                 }
823                 newsbsec->mntpoint_sid = sid;
824         }
825         if (set_rootcontext) {
826                 const struct inode *oldinode = oldsb->s_root->d_inode;
827                 const struct inode_security_struct *oldisec = oldinode->i_security;
828                 struct inode *newinode = newsb->s_root->d_inode;
829                 struct inode_security_struct *newisec = newinode->i_security;
830
831                 newisec->sid = oldisec->sid;
832         }
833
834         sb_finish_set_opts(newsb);
835         mutex_unlock(&newsbsec->lock);
836 }
837
838 static int selinux_parse_opts_str(char *options,
839                                   struct security_mnt_opts *opts)
840 {
841         char *p;
842         char *context = NULL, *defcontext = NULL;
843         char *fscontext = NULL, *rootcontext = NULL;
844         int rc, num_mnt_opts = 0;
845
846         opts->num_mnt_opts = 0;
847
848         /* Standard string-based options. */
849         while ((p = strsep(&options, "|")) != NULL) {
850                 int token;
851                 substring_t args[MAX_OPT_ARGS];
852
853                 if (!*p)
854                         continue;
855
856                 token = match_token(p, tokens, args);
857
858                 switch (token) {
859                 case Opt_context:
860                         if (context || defcontext) {
861                                 rc = -EINVAL;
862                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
863                                 goto out_err;
864                         }
865                         context = match_strdup(&args[0]);
866                         if (!context) {
867                                 rc = -ENOMEM;
868                                 goto out_err;
869                         }
870                         break;
871
872                 case Opt_fscontext:
873                         if (fscontext) {
874                                 rc = -EINVAL;
875                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
876                                 goto out_err;
877                         }
878                         fscontext = match_strdup(&args[0]);
879                         if (!fscontext) {
880                                 rc = -ENOMEM;
881                                 goto out_err;
882                         }
883                         break;
884
885                 case Opt_rootcontext:
886                         if (rootcontext) {
887                                 rc = -EINVAL;
888                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
889                                 goto out_err;
890                         }
891                         rootcontext = match_strdup(&args[0]);
892                         if (!rootcontext) {
893                                 rc = -ENOMEM;
894                                 goto out_err;
895                         }
896                         break;
897
898                 case Opt_defcontext:
899                         if (context || defcontext) {
900                                 rc = -EINVAL;
901                                 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
902                                 goto out_err;
903                         }
904                         defcontext = match_strdup(&args[0]);
905                         if (!defcontext) {
906                                 rc = -ENOMEM;
907                                 goto out_err;
908                         }
909                         break;
910                 case Opt_labelsupport:
911                         break;
912                 default:
913                         rc = -EINVAL;
914                         printk(KERN_WARNING "SELinux:  unknown mount option\n");
915                         goto out_err;
916
917                 }
918         }
919
920         rc = -ENOMEM;
921         opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
922         if (!opts->mnt_opts)
923                 goto out_err;
924
925         opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
926         if (!opts->mnt_opts_flags) {
927                 kfree(opts->mnt_opts);
928                 goto out_err;
929         }
930
931         if (fscontext) {
932                 opts->mnt_opts[num_mnt_opts] = fscontext;
933                 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
934         }
935         if (context) {
936                 opts->mnt_opts[num_mnt_opts] = context;
937                 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
938         }
939         if (rootcontext) {
940                 opts->mnt_opts[num_mnt_opts] = rootcontext;
941                 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
942         }
943         if (defcontext) {
944                 opts->mnt_opts[num_mnt_opts] = defcontext;
945                 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
946         }
947
948         opts->num_mnt_opts = num_mnt_opts;
949         return 0;
950
951 out_err:
952         kfree(context);
953         kfree(defcontext);
954         kfree(fscontext);
955         kfree(rootcontext);
956         return rc;
957 }
958 /*
959  * string mount options parsing and call set the sbsec
960  */
961 static int superblock_doinit(struct super_block *sb, void *data)
962 {
963         int rc = 0;
964         char *options = data;
965         struct security_mnt_opts opts;
966
967         security_init_mnt_opts(&opts);
968
969         if (!data)
970                 goto out;
971
972         BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
973
974         rc = selinux_parse_opts_str(options, &opts);
975         if (rc)
976                 goto out_err;
977
978 out:
979         rc = selinux_set_mnt_opts(sb, &opts);
980
981 out_err:
982         security_free_mnt_opts(&opts);
983         return rc;
984 }
985
986 static void selinux_write_opts(struct seq_file *m,
987                                struct security_mnt_opts *opts)
988 {
989         int i;
990         char *prefix;
991
992         for (i = 0; i < opts->num_mnt_opts; i++) {
993                 char *has_comma;
994
995                 if (opts->mnt_opts[i])
996                         has_comma = strchr(opts->mnt_opts[i], ',');
997                 else
998                         has_comma = NULL;
999
1000                 switch (opts->mnt_opts_flags[i]) {
1001                 case CONTEXT_MNT:
1002                         prefix = CONTEXT_STR;
1003                         break;
1004                 case FSCONTEXT_MNT:
1005                         prefix = FSCONTEXT_STR;
1006                         break;
1007                 case ROOTCONTEXT_MNT:
1008                         prefix = ROOTCONTEXT_STR;
1009                         break;
1010                 case DEFCONTEXT_MNT:
1011                         prefix = DEFCONTEXT_STR;
1012                         break;
1013                 case SE_SBLABELSUPP:
1014                         seq_putc(m, ',');
1015                         seq_puts(m, LABELSUPP_STR);
1016                         continue;
1017                 default:
1018                         BUG();
1019                 };
1020                 /* we need a comma before each option */
1021                 seq_putc(m, ',');
1022                 seq_puts(m, prefix);
1023                 if (has_comma)
1024                         seq_putc(m, '\"');
1025                 seq_puts(m, opts->mnt_opts[i]);
1026                 if (has_comma)
1027                         seq_putc(m, '\"');
1028         }
1029 }
1030
1031 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1032 {
1033         struct security_mnt_opts opts;
1034         int rc;
1035
1036         rc = selinux_get_mnt_opts(sb, &opts);
1037         if (rc) {
1038                 /* before policy load we may get EINVAL, don't show anything */
1039                 if (rc == -EINVAL)
1040                         rc = 0;
1041                 return rc;
1042         }
1043
1044         selinux_write_opts(m, &opts);
1045
1046         security_free_mnt_opts(&opts);
1047
1048         return rc;
1049 }
1050
1051 static inline u16 inode_mode_to_security_class(umode_t mode)
1052 {
1053         switch (mode & S_IFMT) {
1054         case S_IFSOCK:
1055                 return SECCLASS_SOCK_FILE;
1056         case S_IFLNK:
1057                 return SECCLASS_LNK_FILE;
1058         case S_IFREG:
1059                 return SECCLASS_FILE;
1060         case S_IFBLK:
1061                 return SECCLASS_BLK_FILE;
1062         case S_IFDIR:
1063                 return SECCLASS_DIR;
1064         case S_IFCHR:
1065                 return SECCLASS_CHR_FILE;
1066         case S_IFIFO:
1067                 return SECCLASS_FIFO_FILE;
1068
1069         }
1070
1071         return SECCLASS_FILE;
1072 }
1073
1074 static inline int default_protocol_stream(int protocol)
1075 {
1076         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1077 }
1078
1079 static inline int default_protocol_dgram(int protocol)
1080 {
1081         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1082 }
1083
1084 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1085 {
1086         switch (family) {
1087         case PF_UNIX:
1088                 switch (type) {
1089                 case SOCK_STREAM:
1090                 case SOCK_SEQPACKET:
1091                         return SECCLASS_UNIX_STREAM_SOCKET;
1092                 case SOCK_DGRAM:
1093                         return SECCLASS_UNIX_DGRAM_SOCKET;
1094                 }
1095                 break;
1096         case PF_INET:
1097         case PF_INET6:
1098                 switch (type) {
1099                 case SOCK_STREAM:
1100                         if (default_protocol_stream(protocol))
1101                                 return SECCLASS_TCP_SOCKET;
1102                         else
1103                                 return SECCLASS_RAWIP_SOCKET;
1104                 case SOCK_DGRAM:
1105                         if (default_protocol_dgram(protocol))
1106                                 return SECCLASS_UDP_SOCKET;
1107                         else
1108                                 return SECCLASS_RAWIP_SOCKET;
1109                 case SOCK_DCCP:
1110                         return SECCLASS_DCCP_SOCKET;
1111                 default:
1112                         return SECCLASS_RAWIP_SOCKET;
1113                 }
1114                 break;
1115         case PF_NETLINK:
1116                 switch (protocol) {
1117                 case NETLINK_ROUTE:
1118                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1119                 case NETLINK_FIREWALL:
1120                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
1121                 case NETLINK_INET_DIAG:
1122                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1123                 case NETLINK_NFLOG:
1124                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1125                 case NETLINK_XFRM:
1126                         return SECCLASS_NETLINK_XFRM_SOCKET;
1127                 case NETLINK_SELINUX:
1128                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1129                 case NETLINK_AUDIT:
1130                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1131                 case NETLINK_IP6_FW:
1132                         return SECCLASS_NETLINK_IP6FW_SOCKET;
1133                 case NETLINK_DNRTMSG:
1134                         return SECCLASS_NETLINK_DNRT_SOCKET;
1135                 case NETLINK_KOBJECT_UEVENT:
1136                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1137                 default:
1138                         return SECCLASS_NETLINK_SOCKET;
1139                 }
1140         case PF_PACKET:
1141                 return SECCLASS_PACKET_SOCKET;
1142         case PF_KEY:
1143                 return SECCLASS_KEY_SOCKET;
1144         case PF_APPLETALK:
1145                 return SECCLASS_APPLETALK_SOCKET;
1146         }
1147
1148         return SECCLASS_SOCKET;
1149 }
1150
1151 #ifdef CONFIG_PROC_FS
1152 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1153                                 u16 tclass,
1154                                 u32 *sid)
1155 {
1156         int buflen, rc;
1157         char *buffer, *path, *end;
1158
1159         buffer = (char *)__get_free_page(GFP_KERNEL);
1160         if (!buffer)
1161                 return -ENOMEM;
1162
1163         buflen = PAGE_SIZE;
1164         end = buffer+buflen;
1165         *--end = '\0';
1166         buflen--;
1167         path = end-1;
1168         *path = '/';
1169         while (de && de != de->parent) {
1170                 buflen -= de->namelen + 1;
1171                 if (buflen < 0)
1172                         break;
1173                 end -= de->namelen;
1174                 memcpy(end, de->name, de->namelen);
1175                 *--end = '/';
1176                 path = end;
1177                 de = de->parent;
1178         }
1179         rc = security_genfs_sid("proc", path, tclass, sid);
1180         free_page((unsigned long)buffer);
1181         return rc;
1182 }
1183 #else
1184 static int selinux_proc_get_sid(struct proc_dir_entry *de,
1185                                 u16 tclass,
1186                                 u32 *sid)
1187 {
1188         return -EINVAL;
1189 }
1190 #endif
1191
1192 /* The inode's security attributes must be initialized before first use. */
1193 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1194 {
1195         struct superblock_security_struct *sbsec = NULL;
1196         struct inode_security_struct *isec = inode->i_security;
1197         u32 sid;
1198         struct dentry *dentry;
1199 #define INITCONTEXTLEN 255
1200         char *context = NULL;
1201         unsigned len = 0;
1202         int rc = 0;
1203
1204         if (isec->initialized)
1205                 goto out;
1206
1207         mutex_lock(&isec->lock);
1208         if (isec->initialized)
1209                 goto out_unlock;
1210
1211         sbsec = inode->i_sb->s_security;
1212         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1213                 /* Defer initialization until selinux_complete_init,
1214                    after the initial policy is loaded and the security
1215                    server is ready to handle calls. */
1216                 spin_lock(&sbsec->isec_lock);
1217                 if (list_empty(&isec->list))
1218                         list_add(&isec->list, &sbsec->isec_head);
1219                 spin_unlock(&sbsec->isec_lock);
1220                 goto out_unlock;
1221         }
1222
1223         switch (sbsec->behavior) {
1224         case SECURITY_FS_USE_XATTR:
1225                 if (!inode->i_op->getxattr) {
1226                         isec->sid = sbsec->def_sid;
1227                         break;
1228                 }
1229
1230                 /* Need a dentry, since the xattr API requires one.
1231                    Life would be simpler if we could just pass the inode. */
1232                 if (opt_dentry) {
1233                         /* Called from d_instantiate or d_splice_alias. */
1234                         dentry = dget(opt_dentry);
1235                 } else {
1236                         /* Called from selinux_complete_init, try to find a dentry. */
1237                         dentry = d_find_alias(inode);
1238                 }
1239                 if (!dentry) {
1240                         /*
1241                          * this is can be hit on boot when a file is accessed
1242                          * before the policy is loaded.  When we load policy we
1243                          * may find inodes that have no dentry on the
1244                          * sbsec->isec_head list.  No reason to complain as these
1245                          * will get fixed up the next time we go through
1246                          * inode_doinit with a dentry, before these inodes could
1247                          * be used again by userspace.
1248                          */
1249                         goto out_unlock;
1250                 }
1251
1252                 len = INITCONTEXTLEN;
1253                 context = kmalloc(len+1, GFP_NOFS);
1254                 if (!context) {
1255                         rc = -ENOMEM;
1256                         dput(dentry);
1257                         goto out_unlock;
1258                 }
1259                 context[len] = '\0';
1260                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1261                                            context, len);
1262                 if (rc == -ERANGE) {
1263                         kfree(context);
1264
1265                         /* Need a larger buffer.  Query for the right size. */
1266                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1267                                                    NULL, 0);
1268                         if (rc < 0) {
1269                                 dput(dentry);
1270                                 goto out_unlock;
1271                         }
1272                         len = rc;
1273                         context = kmalloc(len+1, GFP_NOFS);
1274                         if (!context) {
1275                                 rc = -ENOMEM;
1276                                 dput(dentry);
1277                                 goto out_unlock;
1278                         }
1279                         context[len] = '\0';
1280                         rc = inode->i_op->getxattr(dentry,
1281                                                    XATTR_NAME_SELINUX,
1282                                                    context, len);
1283                 }
1284                 dput(dentry);
1285                 if (rc < 0) {
1286                         if (rc != -ENODATA) {
1287                                 printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1288                                        "%d for dev=%s ino=%ld\n", __func__,
1289                                        -rc, inode->i_sb->s_id, inode->i_ino);
1290                                 kfree(context);
1291                                 goto out_unlock;
1292                         }
1293                         /* Map ENODATA to the default file SID */
1294                         sid = sbsec->def_sid;
1295                         rc = 0;
1296                 } else {
1297                         rc = security_context_to_sid_default(context, rc, &sid,
1298                                                              sbsec->def_sid,
1299                                                              GFP_NOFS);
1300                         if (rc) {
1301                                 char *dev = inode->i_sb->s_id;
1302                                 unsigned long ino = inode->i_ino;
1303
1304                                 if (rc == -EINVAL) {
1305                                         if (printk_ratelimit())
1306                                                 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1307                                                         "context=%s.  This indicates you may need to relabel the inode or the "
1308                                                         "filesystem in question.\n", ino, dev, context);
1309                                 } else {
1310                                         printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1311                                                "returned %d for dev=%s ino=%ld\n",
1312                                                __func__, context, -rc, dev, ino);
1313                                 }
1314                                 kfree(context);
1315                                 /* Leave with the unlabeled SID */
1316                                 rc = 0;
1317                                 break;
1318                         }
1319                 }
1320                 kfree(context);
1321                 isec->sid = sid;
1322                 break;
1323         case SECURITY_FS_USE_TASK:
1324                 isec->sid = isec->task_sid;
1325                 break;
1326         case SECURITY_FS_USE_TRANS:
1327                 /* Default to the fs SID. */
1328                 isec->sid = sbsec->sid;
1329
1330                 /* Try to obtain a transition SID. */
1331                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1332                 rc = security_transition_sid(isec->task_sid,
1333                                              sbsec->sid,
1334                                              isec->sclass,
1335                                              &sid);
1336                 if (rc)
1337                         goto out_unlock;
1338                 isec->sid = sid;
1339                 break;
1340         case SECURITY_FS_USE_MNTPOINT:
1341                 isec->sid = sbsec->mntpoint_sid;
1342                 break;
1343         default:
1344                 /* Default to the fs superblock SID. */
1345                 isec->sid = sbsec->sid;
1346
1347                 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1348                         struct proc_inode *proci = PROC_I(inode);
1349                         if (proci->pde) {
1350                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1351                                 rc = selinux_proc_get_sid(proci->pde,
1352                                                           isec->sclass,
1353                                                           &sid);
1354                                 if (rc)
1355                                         goto out_unlock;
1356                                 isec->sid = sid;
1357                         }
1358                 }
1359                 break;
1360         }
1361
1362         isec->initialized = 1;
1363
1364 out_unlock:
1365         mutex_unlock(&isec->lock);
1366 out:
1367         if (isec->sclass == SECCLASS_FILE)
1368                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1369         return rc;
1370 }
1371
1372 /* Convert a Linux signal to an access vector. */
1373 static inline u32 signal_to_av(int sig)
1374 {
1375         u32 perm = 0;
1376
1377         switch (sig) {
1378         case SIGCHLD:
1379                 /* Commonly granted from child to parent. */
1380                 perm = PROCESS__SIGCHLD;
1381                 break;
1382         case SIGKILL:
1383                 /* Cannot be caught or ignored */
1384                 perm = PROCESS__SIGKILL;
1385                 break;
1386         case SIGSTOP:
1387                 /* Cannot be caught or ignored */
1388                 perm = PROCESS__SIGSTOP;
1389                 break;
1390         default:
1391                 /* All other signals. */
1392                 perm = PROCESS__SIGNAL;
1393                 break;
1394         }
1395
1396         return perm;
1397 }
1398
1399 /*
1400  * Check permission between a pair of credentials
1401  * fork check, ptrace check, etc.
1402  */
1403 static int cred_has_perm(const struct cred *actor,
1404                          const struct cred *target,
1405                          u32 perms)
1406 {
1407         u32 asid = cred_sid(actor), tsid = cred_sid(target);
1408
1409         return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1410 }
1411
1412 /*
1413  * Check permission between a pair of tasks, e.g. signal checks,
1414  * fork check, ptrace check, etc.
1415  * tsk1 is the actor and tsk2 is the target
1416  * - this uses the default subjective creds of tsk1
1417  */
1418 static int task_has_perm(const struct task_struct *tsk1,
1419                          const struct task_struct *tsk2,
1420                          u32 perms)
1421 {
1422         const struct task_security_struct *__tsec1, *__tsec2;
1423         u32 sid1, sid2;
1424
1425         rcu_read_lock();
1426         __tsec1 = __task_cred(tsk1)->security;  sid1 = __tsec1->sid;
1427         __tsec2 = __task_cred(tsk2)->security;  sid2 = __tsec2->sid;
1428         rcu_read_unlock();
1429         return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1430 }
1431
1432 /*
1433  * Check permission between current and another task, e.g. signal checks,
1434  * fork check, ptrace check, etc.
1435  * current is the actor and tsk2 is the target
1436  * - this uses current's subjective creds
1437  */
1438 static int current_has_perm(const struct task_struct *tsk,
1439                             u32 perms)
1440 {
1441         u32 sid, tsid;
1442
1443         sid = current_sid();
1444         tsid = task_sid(tsk);
1445         return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1446 }
1447
1448 #if CAP_LAST_CAP > 63
1449 #error Fix SELinux to handle capabilities > 63.
1450 #endif
1451
1452 /* Check whether a task is allowed to use a capability. */
1453 static int task_has_capability(struct task_struct *tsk,
1454                                const struct cred *cred,
1455                                int cap, int audit)
1456 {
1457         struct common_audit_data ad;
1458         struct av_decision avd;
1459         u16 sclass;
1460         u32 sid = cred_sid(cred);
1461         u32 av = CAP_TO_MASK(cap);
1462         int rc;
1463
1464         COMMON_AUDIT_DATA_INIT(&ad, CAP);
1465         ad.tsk = tsk;
1466         ad.u.cap = cap;
1467
1468         switch (CAP_TO_INDEX(cap)) {
1469         case 0:
1470                 sclass = SECCLASS_CAPABILITY;
1471                 break;
1472         case 1:
1473                 sclass = SECCLASS_CAPABILITY2;
1474                 break;
1475         default:
1476                 printk(KERN_ERR
1477                        "SELinux:  out of range capability %d\n", cap);
1478                 BUG();
1479         }
1480
1481         rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1482         if (audit == SECURITY_CAP_AUDIT)
1483                 avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1484         return rc;
1485 }
1486
1487 /* Check whether a task is allowed to use a system operation. */
1488 static int task_has_system(struct task_struct *tsk,
1489                            u32 perms)
1490 {
1491         u32 sid = task_sid(tsk);
1492
1493         return avc_has_perm(sid, SECINITSID_KERNEL,
1494                             SECCLASS_SYSTEM, perms, NULL);
1495 }
1496
1497 /* Check whether a task has a particular permission to an inode.
1498    The 'adp' parameter is optional and allows other audit
1499    data to be passed (e.g. the dentry). */
1500 static int inode_has_perm(const struct cred *cred,
1501                           struct inode *inode,
1502                           u32 perms,
1503                           struct common_audit_data *adp)
1504 {
1505         struct inode_security_struct *isec;
1506         struct common_audit_data ad;
1507         u32 sid;
1508
1509         validate_creds(cred);
1510
1511         if (unlikely(IS_PRIVATE(inode)))
1512                 return 0;
1513
1514         sid = cred_sid(cred);
1515         isec = inode->i_security;
1516
1517         if (!adp) {
1518                 adp = &ad;
1519                 COMMON_AUDIT_DATA_INIT(&ad, FS);
1520                 ad.u.fs.inode = inode;
1521         }
1522
1523         return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1524 }
1525
1526 /* Same as inode_has_perm, but pass explicit audit data containing
1527    the dentry to help the auditing code to more easily generate the
1528    pathname if needed. */
1529 static inline int dentry_has_perm(const struct cred *cred,
1530                                   struct vfsmount *mnt,
1531                                   struct dentry *dentry,
1532                                   u32 av)
1533 {
1534         struct inode *inode = dentry->d_inode;
1535         struct common_audit_data ad;
1536
1537         COMMON_AUDIT_DATA_INIT(&ad, FS);
1538         ad.u.fs.path.mnt = mnt;
1539         ad.u.fs.path.dentry = dentry;
1540         return inode_has_perm(cred, inode, av, &ad);
1541 }
1542
1543 /* Check whether a task can use an open file descriptor to
1544    access an inode in a given way.  Check access to the
1545    descriptor itself, and then use dentry_has_perm to
1546    check a particular permission to the file.
1547    Access to the descriptor is implicitly granted if it
1548    has the same SID as the process.  If av is zero, then
1549    access to the file is not checked, e.g. for cases
1550    where only the descriptor is affected like seek. */
1551 static int file_has_perm(const struct cred *cred,
1552                          struct file *file,
1553                          u32 av)
1554 {
1555         struct file_security_struct *fsec = file->f_security;
1556         struct inode *inode = file->f_path.dentry->d_inode;
1557         struct common_audit_data ad;
1558         u32 sid = cred_sid(cred);
1559         int rc;
1560
1561         COMMON_AUDIT_DATA_INIT(&ad, FS);
1562         ad.u.fs.path = file->f_path;
1563
1564         if (sid != fsec->sid) {
1565                 rc = avc_has_perm(sid, fsec->sid,
1566                                   SECCLASS_FD,
1567                                   FD__USE,
1568                                   &ad);
1569                 if (rc)
1570                         goto out;
1571         }
1572
1573         /* av is zero if only checking access to the descriptor. */
1574         rc = 0;
1575         if (av)
1576                 rc = inode_has_perm(cred, inode, av, &ad);
1577
1578 out:
1579         return rc;
1580 }
1581
1582 /* Check whether a task can create a file. */
1583 static int may_create(struct inode *dir,
1584                       struct dentry *dentry,
1585                       u16 tclass)
1586 {
1587         const struct cred *cred = current_cred();
1588         const struct task_security_struct *tsec = cred->security;
1589         struct inode_security_struct *dsec;
1590         struct superblock_security_struct *sbsec;
1591         u32 sid, newsid;
1592         struct common_audit_data ad;
1593         int rc;
1594
1595         dsec = dir->i_security;
1596         sbsec = dir->i_sb->s_security;
1597
1598         sid = tsec->sid;
1599         newsid = tsec->create_sid;
1600
1601         COMMON_AUDIT_DATA_INIT(&ad, FS);
1602         ad.u.fs.path.dentry = dentry;
1603
1604         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1605                           DIR__ADD_NAME | DIR__SEARCH,
1606                           &ad);
1607         if (rc)
1608                 return rc;
1609
1610         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1611                 rc = security_transition_sid(sid, dsec->sid, tclass, &newsid);
1612                 if (rc)
1613                         return rc;
1614         }
1615
1616         rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1617         if (rc)
1618                 return rc;
1619
1620         return avc_has_perm(newsid, sbsec->sid,
1621                             SECCLASS_FILESYSTEM,
1622                             FILESYSTEM__ASSOCIATE, &ad);
1623 }
1624
1625 /* Check whether a task can create a key. */
1626 static int may_create_key(u32 ksid,
1627                           struct task_struct *ctx)
1628 {
1629         u32 sid = task_sid(ctx);
1630
1631         return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1632 }
1633
1634 #define MAY_LINK        0
1635 #define MAY_UNLINK      1
1636 #define MAY_RMDIR       2
1637
1638 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1639 static int may_link(struct inode *dir,
1640                     struct dentry *dentry,
1641                     int kind)
1642
1643 {
1644         struct inode_security_struct *dsec, *isec;
1645         struct common_audit_data ad;
1646         u32 sid = current_sid();
1647         u32 av;
1648         int rc;
1649
1650         dsec = dir->i_security;
1651         isec = dentry->d_inode->i_security;
1652
1653         COMMON_AUDIT_DATA_INIT(&ad, FS);
1654         ad.u.fs.path.dentry = dentry;
1655
1656         av = DIR__SEARCH;
1657         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1658         rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1659         if (rc)
1660                 return rc;
1661
1662         switch (kind) {
1663         case MAY_LINK:
1664                 av = FILE__LINK;
1665                 break;
1666         case MAY_UNLINK:
1667                 av = FILE__UNLINK;
1668                 break;
1669         case MAY_RMDIR:
1670                 av = DIR__RMDIR;
1671                 break;
1672         default:
1673                 printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1674                         __func__, kind);
1675                 return 0;
1676         }
1677
1678         rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1679         return rc;
1680 }
1681
1682 static inline int may_rename(struct inode *old_dir,
1683                              struct dentry *old_dentry,
1684                              struct inode *new_dir,
1685                              struct dentry *new_dentry)
1686 {
1687         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1688         struct common_audit_data ad;
1689         u32 sid = current_sid();
1690         u32 av;
1691         int old_is_dir, new_is_dir;
1692         int rc;
1693
1694         old_dsec = old_dir->i_security;
1695         old_isec = old_dentry->d_inode->i_security;
1696         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1697         new_dsec = new_dir->i_security;
1698
1699         COMMON_AUDIT_DATA_INIT(&ad, FS);
1700
1701         ad.u.fs.path.dentry = old_dentry;
1702         rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1703                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1704         if (rc)
1705                 return rc;
1706         rc = avc_has_perm(sid, old_isec->sid,
1707                           old_isec->sclass, FILE__RENAME, &ad);
1708         if (rc)
1709                 return rc;
1710         if (old_is_dir && new_dir != old_dir) {
1711                 rc = avc_has_perm(sid, old_isec->sid,
1712                                   old_isec->sclass, DIR__REPARENT, &ad);
1713                 if (rc)
1714                         return rc;
1715         }
1716
1717         ad.u.fs.path.dentry = new_dentry;
1718         av = DIR__ADD_NAME | DIR__SEARCH;
1719         if (new_dentry->d_inode)
1720                 av |= DIR__REMOVE_NAME;
1721         rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1722         if (rc)
1723                 return rc;
1724         if (new_dentry->d_inode) {
1725                 new_isec = new_dentry->d_inode->i_security;
1726                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1727                 rc = avc_has_perm(sid, new_isec->sid,
1728                                   new_isec->sclass,
1729                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1730                 if (rc)
1731                         return rc;
1732         }
1733
1734         return 0;
1735 }
1736
1737 /* Check whether a task can perform a filesystem operation. */
1738 static int superblock_has_perm(const struct cred *cred,
1739                                struct super_block *sb,
1740                                u32 perms,
1741                                struct common_audit_data *ad)
1742 {
1743         struct superblock_security_struct *sbsec;
1744         u32 sid = cred_sid(cred);
1745
1746         sbsec = sb->s_security;
1747         return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1748 }
1749
1750 /* Convert a Linux mode and permission mask to an access vector. */
1751 static inline u32 file_mask_to_av(int mode, int mask)
1752 {
1753         u32 av = 0;
1754
1755         if ((mode & S_IFMT) != S_IFDIR) {
1756                 if (mask & MAY_EXEC)
1757                         av |= FILE__EXECUTE;
1758                 if (mask & MAY_READ)
1759                         av |= FILE__READ;
1760
1761                 if (mask & MAY_APPEND)
1762                         av |= FILE__APPEND;
1763                 else if (mask & MAY_WRITE)
1764                         av |= FILE__WRITE;
1765
1766         } else {
1767                 if (mask & MAY_EXEC)
1768                         av |= DIR__SEARCH;
1769                 if (mask & MAY_WRITE)
1770                         av |= DIR__WRITE;
1771                 if (mask & MAY_READ)
1772                         av |= DIR__READ;
1773         }
1774
1775         return av;
1776 }
1777
1778 /* Convert a Linux file to an access vector. */
1779 static inline u32 file_to_av(struct file *file)
1780 {
1781         u32 av = 0;
1782
1783         if (file->f_mode & FMODE_READ)
1784                 av |= FILE__READ;
1785         if (file->f_mode & FMODE_WRITE) {
1786                 if (file->f_flags & O_APPEND)
1787                         av |= FILE__APPEND;
1788                 else
1789                         av |= FILE__WRITE;
1790         }
1791         if (!av) {
1792                 /*
1793                  * Special file opened with flags 3 for ioctl-only use.
1794                  */
1795                 av = FILE__IOCTL;
1796         }
1797
1798         return av;
1799 }
1800
1801 /*
1802  * Convert a file to an access vector and include the correct open
1803  * open permission.
1804  */
1805 static inline u32 open_file_to_av(struct file *file)
1806 {
1807         u32 av = file_to_av(file);
1808
1809         if (selinux_policycap_openperm) {
1810                 mode_t mode = file->f_path.dentry->d_inode->i_mode;
1811                 /*
1812                  * lnk files and socks do not really have an 'open'
1813                  */
1814                 if (S_ISREG(mode))
1815                         av |= FILE__OPEN;
1816                 else if (S_ISCHR(mode))
1817                         av |= CHR_FILE__OPEN;
1818                 else if (S_ISBLK(mode))
1819                         av |= BLK_FILE__OPEN;
1820                 else if (S_ISFIFO(mode))
1821                         av |= FIFO_FILE__OPEN;
1822                 else if (S_ISDIR(mode))
1823                         av |= DIR__OPEN;
1824                 else if (S_ISSOCK(mode))
1825                         av |= SOCK_FILE__OPEN;
1826                 else
1827                         printk(KERN_ERR "SELinux: WARNING: inside %s with "
1828                                 "unknown mode:%o\n", __func__, mode);
1829         }
1830         return av;
1831 }
1832
1833 /* Hook functions begin here. */
1834
1835 static int selinux_ptrace_access_check(struct task_struct *child,
1836                                      unsigned int mode)
1837 {
1838         int rc;
1839
1840         rc = cap_ptrace_access_check(child, mode);
1841         if (rc)
1842                 return rc;
1843
1844         if (mode == PTRACE_MODE_READ) {
1845                 u32 sid = current_sid();
1846                 u32 csid = task_sid(child);
1847                 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1848         }
1849
1850         return current_has_perm(child, PROCESS__PTRACE);
1851 }
1852
1853 static int selinux_ptrace_traceme(struct task_struct *parent)
1854 {
1855         int rc;
1856
1857         rc = cap_ptrace_traceme(parent);
1858         if (rc)
1859                 return rc;
1860
1861         return task_has_perm(parent, current, PROCESS__PTRACE);
1862 }
1863
1864 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1865                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1866 {
1867         int error;
1868
1869         error = current_has_perm(target, PROCESS__GETCAP);
1870         if (error)
1871                 return error;
1872
1873         return cap_capget(target, effective, inheritable, permitted);
1874 }
1875
1876 static int selinux_capset(struct cred *new, const struct cred *old,
1877                           const kernel_cap_t *effective,
1878                           const kernel_cap_t *inheritable,
1879                           const kernel_cap_t *permitted)
1880 {
1881         int error;
1882
1883         error = cap_capset(new, old,
1884                                       effective, inheritable, permitted);
1885         if (error)
1886                 return error;
1887
1888         return cred_has_perm(old, new, PROCESS__SETCAP);
1889 }
1890
1891 /*
1892  * (This comment used to live with the selinux_task_setuid hook,
1893  * which was removed).
1894  *
1895  * Since setuid only affects the current process, and since the SELinux
1896  * controls are not based on the Linux identity attributes, SELinux does not
1897  * need to control this operation.  However, SELinux does control the use of
1898  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1899  */
1900
1901 static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1902                            int cap, int audit)
1903 {
1904         int rc;
1905
1906         rc = cap_capable(tsk, cred, cap, audit);
1907         if (rc)
1908                 return rc;
1909
1910         return task_has_capability(tsk, cred, cap, audit);
1911 }
1912
1913 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid)
1914 {
1915         int buflen, rc;
1916         char *buffer, *path, *end;
1917
1918         rc = -ENOMEM;
1919         buffer = (char *)__get_free_page(GFP_KERNEL);
1920         if (!buffer)
1921                 goto out;
1922
1923         buflen = PAGE_SIZE;
1924         end = buffer+buflen;
1925         *--end = '\0';
1926         buflen--;
1927         path = end-1;
1928         *path = '/';
1929         while (table) {
1930                 const char *name = table->procname;
1931                 size_t namelen = strlen(name);
1932                 buflen -= namelen + 1;
1933                 if (buflen < 0)
1934                         goto out_free;
1935                 end -= namelen;
1936                 memcpy(end, name, namelen);
1937                 *--end = '/';
1938                 path = end;
1939                 table = table->parent;
1940         }
1941         buflen -= 4;
1942         if (buflen < 0)
1943                 goto out_free;
1944         end -= 4;
1945         memcpy(end, "/sys", 4);
1946         path = end;
1947         rc = security_genfs_sid("proc", path, tclass, sid);
1948 out_free:
1949         free_page((unsigned long)buffer);
1950 out:
1951         return rc;
1952 }
1953
1954 static int selinux_sysctl(ctl_table *table, int op)
1955 {
1956         int error = 0;
1957         u32 av;
1958         u32 tsid, sid;
1959         int rc;
1960
1961         sid = current_sid();
1962
1963         rc = selinux_sysctl_get_sid(table, (op == 0001) ?
1964                                     SECCLASS_DIR : SECCLASS_FILE, &tsid);
1965         if (rc) {
1966                 /* Default to the well-defined sysctl SID. */
1967                 tsid = SECINITSID_SYSCTL;
1968         }
1969
1970         /* The op values are "defined" in sysctl.c, thereby creating
1971          * a bad coupling between this module and sysctl.c */
1972         if (op == 001) {
1973                 error = avc_has_perm(sid, tsid,
1974                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1975         } else {
1976                 av = 0;
1977                 if (op & 004)
1978                         av |= FILE__READ;
1979                 if (op & 002)
1980                         av |= FILE__WRITE;
1981                 if (av)
1982                         error = avc_has_perm(sid, tsid,
1983                                              SECCLASS_FILE, av, NULL);
1984         }
1985
1986         return error;
1987 }
1988
1989 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1990 {
1991         const struct cred *cred = current_cred();
1992         int rc = 0;
1993
1994         if (!sb)
1995                 return 0;
1996
1997         switch (cmds) {
1998         case Q_SYNC:
1999         case Q_QUOTAON:
2000         case Q_QUOTAOFF:
2001         case Q_SETINFO:
2002         case Q_SETQUOTA:
2003                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2004                 break;
2005         case Q_GETFMT:
2006         case Q_GETINFO:
2007         case Q_GETQUOTA:
2008                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2009                 break;
2010         default:
2011                 rc = 0;  /* let the kernel handle invalid cmds */
2012                 break;
2013         }
2014         return rc;
2015 }
2016
2017 static int selinux_quota_on(struct dentry *dentry)
2018 {
2019         const struct cred *cred = current_cred();
2020
2021         return dentry_has_perm(cred, NULL, dentry, FILE__QUOTAON);
2022 }
2023
2024 static int selinux_syslog(int type, bool from_file)
2025 {
2026         int rc;
2027
2028         rc = cap_syslog(type, from_file);
2029         if (rc)
2030                 return rc;
2031
2032         switch (type) {
2033         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2034         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2035                 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2036                 break;
2037         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2038         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2039         /* Set level of messages printed to console */
2040         case SYSLOG_ACTION_CONSOLE_LEVEL:
2041                 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2042                 break;
2043         case SYSLOG_ACTION_CLOSE:       /* Close log */
2044         case SYSLOG_ACTION_OPEN:        /* Open log */
2045         case SYSLOG_ACTION_READ:        /* Read from log */
2046         case SYSLOG_ACTION_READ_CLEAR:  /* Read/clear last kernel messages */
2047         case SYSLOG_ACTION_CLEAR:       /* Clear ring buffer */
2048         default:
2049                 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2050                 break;
2051         }
2052         return rc;
2053 }
2054
2055 /*
2056  * Check that a process has enough memory to allocate a new virtual
2057  * mapping. 0 means there is enough memory for the allocation to
2058  * succeed and -ENOMEM implies there is not.
2059  *
2060  * Do not audit the selinux permission check, as this is applied to all
2061  * processes that allocate mappings.
2062  */
2063 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2064 {
2065         int rc, cap_sys_admin = 0;
2066
2067         rc = selinux_capable(current, current_cred(), CAP_SYS_ADMIN,
2068                              SECURITY_CAP_NOAUDIT);
2069         if (rc == 0)
2070                 cap_sys_admin = 1;
2071
2072         return __vm_enough_memory(mm, pages, cap_sys_admin);
2073 }
2074
2075 /* binprm security operations */
2076
2077 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2078 {
2079         const struct task_security_struct *old_tsec;
2080         struct task_security_struct *new_tsec;
2081         struct inode_security_struct *isec;
2082         struct common_audit_data ad;
2083         struct inode *inode = bprm->file->f_path.dentry->d_inode;
2084         int rc;
2085
2086         rc = cap_bprm_set_creds(bprm);
2087         if (rc)
2088                 return rc;
2089
2090         /* SELinux context only depends on initial program or script and not
2091          * the script interpreter */
2092         if (bprm->cred_prepared)
2093                 return 0;
2094
2095         old_tsec = current_security();
2096         new_tsec = bprm->cred->security;
2097         isec = inode->i_security;
2098
2099         /* Default to the current task SID. */
2100         new_tsec->sid = old_tsec->sid;
2101         new_tsec->osid = old_tsec->sid;
2102
2103         /* Reset fs, key, and sock SIDs on execve. */
2104         new_tsec->create_sid = 0;
2105         new_tsec->keycreate_sid = 0;
2106         new_tsec->sockcreate_sid = 0;
2107
2108         if (old_tsec->exec_sid) {
2109                 new_tsec->sid = old_tsec->exec_sid;
2110                 /* Reset exec SID on execve. */
2111                 new_tsec->exec_sid = 0;
2112         } else {
2113                 /* Check for a default transition on this program. */
2114                 rc = security_transition_sid(old_tsec->sid, isec->sid,
2115                                              SECCLASS_PROCESS, &new_tsec->sid);
2116                 if (rc)
2117                         return rc;
2118         }
2119
2120         COMMON_AUDIT_DATA_INIT(&ad, FS);
2121         ad.u.fs.path = bprm->file->f_path;
2122
2123         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2124                 new_tsec->sid = old_tsec->sid;
2125
2126         if (new_tsec->sid == old_tsec->sid) {
2127                 rc = avc_has_perm(old_tsec->sid, isec->sid,
2128                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2129                 if (rc)
2130                         return rc;
2131         } else {
2132                 /* Check permissions for the transition. */
2133                 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2134                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2135                 if (rc)
2136                         return rc;
2137
2138                 rc = avc_has_perm(new_tsec->sid, isec->sid,
2139                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2140                 if (rc)
2141                         return rc;
2142
2143                 /* Check for shared state */
2144                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2145                         rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2146                                           SECCLASS_PROCESS, PROCESS__SHARE,
2147                                           NULL);
2148                         if (rc)
2149                                 return -EPERM;
2150                 }
2151
2152                 /* Make sure that anyone attempting to ptrace over a task that
2153                  * changes its SID has the appropriate permit */
2154                 if (bprm->unsafe &
2155                     (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2156                         struct task_struct *tracer;
2157                         struct task_security_struct *sec;
2158                         u32 ptsid = 0;
2159
2160                         rcu_read_lock();
2161                         tracer = tracehook_tracer_task(current);
2162                         if (likely(tracer != NULL)) {
2163                                 sec = __task_cred(tracer)->security;
2164                                 ptsid = sec->sid;
2165                         }
2166                         rcu_read_unlock();
2167
2168                         if (ptsid != 0) {
2169                                 rc = avc_has_perm(ptsid, new_tsec->sid,
2170                                                   SECCLASS_PROCESS,
2171                                                   PROCESS__PTRACE, NULL);
2172                                 if (rc)
2173                                         return -EPERM;
2174                         }
2175                 }
2176
2177                 /* Clear any possibly unsafe personality bits on exec: */
2178                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2179         }
2180
2181         return 0;
2182 }
2183
2184 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2185 {
2186         const struct cred *cred = current_cred();
2187         const struct task_security_struct *tsec = cred->security;
2188         u32 sid, osid;
2189         int atsecure = 0;
2190
2191         sid = tsec->sid;
2192         osid = tsec->osid;
2193
2194         if (osid != sid) {
2195                 /* Enable secure mode for SIDs transitions unless
2196                    the noatsecure permission is granted between
2197                    the two SIDs, i.e. ahp returns 0. */
2198                 atsecure = avc_has_perm(osid, sid,
2199                                         SECCLASS_PROCESS,
2200                                         PROCESS__NOATSECURE, NULL);
2201         }
2202
2203         return (atsecure || cap_bprm_secureexec(bprm));
2204 }
2205
2206 extern struct vfsmount *selinuxfs_mount;
2207 extern struct dentry *selinux_null;
2208
2209 /* Derived from fs/exec.c:flush_old_files. */
2210 static inline void flush_unauthorized_files(const struct cred *cred,
2211                                             struct files_struct *files)
2212 {
2213         struct common_audit_data ad;
2214         struct file *file, *devnull = NULL;
2215         struct tty_struct *tty;
2216         struct fdtable *fdt;
2217         long j = -1;
2218         int drop_tty = 0;
2219
2220         tty = get_current_tty();
2221         if (tty) {
2222                 file_list_lock();
2223                 if (!list_empty(&tty->tty_files)) {
2224                         struct inode *inode;
2225
2226                         /* Revalidate access to controlling tty.
2227                            Use inode_has_perm on the tty inode directly rather
2228                            than using file_has_perm, as this particular open
2229                            file may belong to another process and we are only
2230                            interested in the inode-based check here. */
2231                         file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list);
2232                         inode = file->f_path.dentry->d_inode;
2233                         if (inode_has_perm(cred, inode,
2234                                            FILE__READ | FILE__WRITE, NULL)) {
2235                                 drop_tty = 1;
2236                         }
2237                 }
2238                 file_list_unlock();
2239                 tty_kref_put(tty);
2240         }
2241         /* Reset controlling tty. */
2242         if (drop_tty)
2243                 no_tty();
2244
2245         /* Revalidate access to inherited open files. */
2246
2247         COMMON_AUDIT_DATA_INIT(&ad, FS);
2248
2249         spin_lock(&files->file_lock);
2250         for (;;) {
2251                 unsigned long set, i;
2252                 int fd;
2253
2254                 j++;
2255                 i = j * __NFDBITS;
2256                 fdt = files_fdtable(files);
2257                 if (i >= fdt->max_fds)
2258                         break;
2259                 set = fdt->open_fds->fds_bits[j];
2260                 if (!set)
2261                         continue;
2262                 spin_unlock(&files->file_lock);
2263                 for ( ; set ; i++, set >>= 1) {
2264                         if (set & 1) {
2265                                 file = fget(i);
2266                                 if (!file)
2267                                         continue;
2268                                 if (file_has_perm(cred,
2269                                                   file,
2270                                                   file_to_av(file))) {
2271                                         sys_close(i);
2272                                         fd = get_unused_fd();
2273                                         if (fd != i) {
2274                                                 if (fd >= 0)
2275                                                         put_unused_fd(fd);
2276                                                 fput(file);
2277                                                 continue;
2278                                         }
2279                                         if (devnull) {
2280                                                 get_file(devnull);
2281                                         } else {
2282                                                 devnull = dentry_open(
2283                                                         dget(selinux_null),
2284                                                         mntget(selinuxfs_mount),
2285                                                         O_RDWR, cred);
2286                                                 if (IS_ERR(devnull)) {
2287                                                         devnull = NULL;
2288                                                         put_unused_fd(fd);
2289                                                         fput(file);
2290                                                         continue;
2291                                                 }
2292                                         }
2293                                         fd_install(fd, devnull);
2294                                 }
2295                                 fput(file);
2296                         }
2297                 }
2298                 spin_lock(&files->file_lock);
2299
2300         }
2301         spin_unlock(&files->file_lock);
2302 }
2303
2304 /*
2305  * Prepare a process for imminent new credential changes due to exec
2306  */
2307 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2308 {
2309         struct task_security_struct *new_tsec;
2310         struct rlimit *rlim, *initrlim;
2311         int rc, i;
2312
2313         new_tsec = bprm->cred->security;
2314         if (new_tsec->sid == new_tsec->osid)
2315                 return;
2316
2317         /* Close files for which the new task SID is not authorized. */
2318         flush_unauthorized_files(bprm->cred, current->files);
2319
2320         /* Always clear parent death signal on SID transitions. */
2321         current->pdeath_signal = 0;
2322
2323         /* Check whether the new SID can inherit resource limits from the old
2324          * SID.  If not, reset all soft limits to the lower of the current
2325          * task's hard limit and the init task's soft limit.
2326          *
2327          * Note that the setting of hard limits (even to lower them) can be
2328          * controlled by the setrlimit check.  The inclusion of the init task's
2329          * soft limit into the computation is to avoid resetting soft limits
2330          * higher than the default soft limit for cases where the default is
2331          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2332          */
2333         rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2334                           PROCESS__RLIMITINH, NULL);
2335         if (rc) {
2336                 for (i = 0; i < RLIM_NLIMITS; i++) {
2337                         rlim = current->signal->rlim + i;
2338                         initrlim = init_task.signal->rlim + i;
2339                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2340                 }
2341                 update_rlimit_cpu(current->signal->rlim[RLIMIT_CPU].rlim_cur);
2342         }
2343 }
2344
2345 /*
2346  * Clean up the process immediately after the installation of new credentials
2347  * due to exec
2348  */
2349 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2350 {
2351         const struct task_security_struct *tsec = current_security();
2352         struct itimerval itimer;
2353         u32 osid, sid;
2354         int rc, i;
2355
2356         osid = tsec->osid;
2357         sid = tsec->sid;
2358
2359         if (sid == osid)
2360                 return;
2361
2362         /* Check whether the new SID can inherit signal state from the old SID.
2363          * If not, clear itimers to avoid subsequent signal generation and
2364          * flush and unblock signals.
2365          *
2366          * This must occur _after_ the task SID has been updated so that any
2367          * kill done after the flush will be checked against the new SID.
2368          */
2369         rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2370         if (rc) {
2371                 memset(&itimer, 0, sizeof itimer);
2372                 for (i = 0; i < 3; i++)
2373                         do_setitimer(i, &itimer, NULL);
2374                 spin_lock_irq(&current->sighand->siglock);
2375                 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2376                         __flush_signals(current);
2377                         flush_signal_handlers(current, 1);
2378                         sigemptyset(&current->blocked);
2379                 }
2380                 spin_unlock_irq(&current->sighand->siglock);
2381         }
2382
2383         /* Wake up the parent if it is waiting so that it can recheck
2384          * wait permission to the new task SID. */
2385         read_lock(&tasklist_lock);
2386         __wake_up_parent(current, current->real_parent);
2387         read_unlock(&tasklist_lock);
2388 }
2389
2390 /* superblock security operations */
2391
2392 static int selinux_sb_alloc_security(struct super_block *sb)
2393 {
2394         return superblock_alloc_security(sb);
2395 }
2396
2397 static void selinux_sb_free_security(struct super_block *sb)
2398 {
2399         superblock_free_security(sb);
2400 }
2401
2402 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2403 {
2404         if (plen > olen)
2405                 return 0;
2406
2407         return !memcmp(prefix, option, plen);
2408 }
2409
2410 static inline int selinux_option(char *option, int len)
2411 {
2412         return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2413                 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2414                 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2415                 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2416                 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2417 }
2418
2419 static inline void take_option(char **to, char *from, int *first, int len)
2420 {
2421         if (!*first) {
2422                 **to = ',';
2423                 *to += 1;
2424         } else
2425                 *first = 0;
2426         memcpy(*to, from, len);
2427         *to += len;
2428 }
2429
2430 static inline void take_selinux_option(char **to, char *from, int *first,
2431                                        int len)
2432 {
2433         int current_size = 0;
2434
2435         if (!*first) {
2436                 **to = '|';
2437                 *to += 1;
2438         } else
2439                 *first = 0;
2440
2441         while (current_size < len) {
2442                 if (*from != '"') {
2443                         **to = *from;
2444                         *to += 1;
2445                 }
2446                 from += 1;
2447                 current_size += 1;
2448         }
2449 }
2450
2451 static int selinux_sb_copy_data(char *orig, char *copy)
2452 {
2453         int fnosec, fsec, rc = 0;
2454         char *in_save, *in_curr, *in_end;
2455         char *sec_curr, *nosec_save, *nosec;
2456         int open_quote = 0;
2457
2458         in_curr = orig;
2459         sec_curr = copy;
2460
2461         nosec = (char *)get_zeroed_page(GFP_KERNEL);
2462         if (!nosec) {
2463                 rc = -ENOMEM;
2464                 goto out;
2465         }
2466
2467         nosec_save = nosec;
2468         fnosec = fsec = 1;
2469         in_save = in_end = orig;
2470
2471         do {
2472                 if (*in_end == '"')
2473                         open_quote = !open_quote;
2474                 if ((*in_end == ',' && open_quote == 0) ||
2475                                 *in_end == '\0') {
2476                         int len = in_end - in_curr;
2477
2478                         if (selinux_option(in_curr, len))
2479                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2480                         else
2481                                 take_option(&nosec, in_curr, &fnosec, len);
2482
2483                         in_curr = in_end + 1;
2484                 }
2485         } while (*in_end++);
2486
2487         strcpy(in_save, nosec_save);
2488         free_page((unsigned long)nosec_save);
2489 out:
2490         return rc;
2491 }
2492
2493 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2494 {
2495         const struct cred *cred = current_cred();
2496         struct common_audit_data ad;
2497         int rc;
2498
2499         rc = superblock_doinit(sb, data);
2500         if (rc)
2501                 return rc;
2502
2503         /* Allow all mounts performed by the kernel */
2504         if (flags & MS_KERNMOUNT)
2505                 return 0;
2506
2507         COMMON_AUDIT_DATA_INIT(&ad, FS);
2508         ad.u.fs.path.dentry = sb->s_root;
2509         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2510 }
2511
2512 static int selinux_sb_statfs(struct dentry *dentry)
2513 {
2514         const struct cred *cred = current_cred();
2515         struct common_audit_data ad;
2516
2517         COMMON_AUDIT_DATA_INIT(&ad, FS);
2518         ad.u.fs.path.dentry = dentry->d_sb->s_root;
2519         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2520 }
2521
2522 static int selinux_mount(char *dev_name,
2523                          struct path *path,
2524                          char *type,
2525                          unsigned long flags,
2526                          void *data)
2527 {
2528         const struct cred *cred = current_cred();
2529
2530         if (flags & MS_REMOUNT)
2531                 return superblock_has_perm(cred, path->mnt->mnt_sb,
2532                                            FILESYSTEM__REMOUNT, NULL);
2533         else
2534                 return dentry_has_perm(cred, path->mnt, path->dentry,
2535                                        FILE__MOUNTON);
2536 }
2537
2538 static int selinux_umount(struct vfsmount *mnt, int flags)
2539 {
2540         const struct cred *cred = current_cred();
2541
2542         return superblock_has_perm(cred, mnt->mnt_sb,
2543                                    FILESYSTEM__UNMOUNT, NULL);
2544 }
2545
2546 /* inode security operations */
2547
2548 static int selinux_inode_alloc_security(struct inode *inode)
2549 {
2550         return inode_alloc_security(inode);
2551 }
2552
2553 static void selinux_inode_free_security(struct inode *inode)
2554 {
2555         inode_free_security(inode);
2556 }
2557
2558 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2559                                        char **name, void **value,
2560                                        size_t *len)
2561 {
2562         const struct cred *cred = current_cred();
2563         const struct task_security_struct *tsec = cred->security;
2564         struct inode_security_struct *dsec;
2565         struct superblock_security_struct *sbsec;
2566         u32 sid, newsid, clen;
2567         int rc;
2568         char *namep = NULL, *context;
2569
2570         dsec = dir->i_security;
2571         sbsec = dir->i_sb->s_security;
2572
2573         sid = tsec->sid;
2574         newsid = tsec->create_sid;
2575
2576         if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2577                 rc = security_transition_sid(sid, dsec->sid,
2578                                              inode_mode_to_security_class(inode->i_mode),
2579                                              &newsid);
2580                 if (rc) {
2581                         printk(KERN_WARNING "%s:  "
2582                                "security_transition_sid failed, rc=%d (dev=%s "
2583                                "ino=%ld)\n",
2584                                __func__,
2585                                -rc, inode->i_sb->s_id, inode->i_ino);
2586                         return rc;
2587                 }
2588         }
2589
2590         /* Possibly defer initialization to selinux_complete_init. */
2591         if (sbsec->flags & SE_SBINITIALIZED) {
2592                 struct inode_security_struct *isec = inode->i_security;
2593                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2594                 isec->sid = newsid;
2595                 isec->initialized = 1;
2596         }
2597
2598         if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2599                 return -EOPNOTSUPP;
2600
2601         if (name) {
2602                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2603                 if (!namep)
2604                         return -ENOMEM;
2605                 *name = namep;
2606         }
2607
2608         if (value && len) {
2609                 rc = security_sid_to_context_force(newsid, &context, &clen);
2610                 if (rc) {
2611                         kfree(namep);
2612                         return rc;
2613                 }
2614                 *value = context;
2615                 *len = clen;
2616         }
2617
2618         return 0;
2619 }
2620
2621 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2622 {
2623         return may_create(dir, dentry, SECCLASS_FILE);
2624 }
2625
2626 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2627 {
2628         return may_link(dir, old_dentry, MAY_LINK);
2629 }
2630
2631 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2632 {
2633         return may_link(dir, dentry, MAY_UNLINK);
2634 }
2635
2636 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2637 {
2638         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2639 }
2640
2641 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2642 {
2643         return may_create(dir, dentry, SECCLASS_DIR);
2644 }
2645
2646 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2647 {
2648         return may_link(dir, dentry, MAY_RMDIR);
2649 }
2650
2651 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2652 {
2653         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2654 }
2655
2656 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2657                                 struct inode *new_inode, struct dentry *new_dentry)
2658 {
2659         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2660 }
2661
2662 static int selinux_inode_readlink(struct dentry *dentry)
2663 {
2664         const struct cred *cred = current_cred();
2665
2666         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2667 }
2668
2669 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2670 {
2671         const struct cred *cred = current_cred();
2672
2673         return dentry_has_perm(cred, NULL, dentry, FILE__READ);
2674 }
2675
2676 static int selinux_inode_permission(struct inode *inode, int mask)
2677 {
2678         const struct cred *cred = current_cred();
2679
2680         if (!mask) {
2681                 /* No permission to check.  Existence test. */
2682                 return 0;
2683         }
2684
2685         return inode_has_perm(cred, inode,
2686                               file_mask_to_av(inode->i_mode, mask), NULL);
2687 }
2688
2689 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2690 {
2691         const struct cred *cred = current_cred();
2692         unsigned int ia_valid = iattr->ia_valid;
2693
2694         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2695         if (ia_valid & ATTR_FORCE) {
2696                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2697                               ATTR_FORCE);
2698                 if (!ia_valid)
2699                         return 0;
2700         }
2701
2702         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2703                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2704                 return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2705
2706         return dentry_has_perm(cred, NULL, dentry, FILE__WRITE);
2707 }
2708
2709 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2710 {
2711         const struct cred *cred = current_cred();
2712
2713         return dentry_has_perm(cred, mnt, dentry, FILE__GETATTR);
2714 }
2715
2716 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2717 {
2718         const struct cred *cred = current_cred();
2719
2720         if (!strncmp(name, XATTR_SECURITY_PREFIX,
2721                      sizeof XATTR_SECURITY_PREFIX - 1)) {
2722                 if (!strcmp(name, XATTR_NAME_CAPS)) {
2723                         if (!capable(CAP_SETFCAP))
2724                                 return -EPERM;
2725                 } else if (!capable(CAP_SYS_ADMIN)) {
2726                         /* A different attribute in the security namespace.
2727                            Restrict to administrator. */
2728                         return -EPERM;
2729                 }
2730         }
2731
2732         /* Not an attribute we recognize, so just check the
2733            ordinary setattr permission. */
2734         return dentry_has_perm(cred, NULL, dentry, FILE__SETATTR);
2735 }
2736
2737 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2738                                   const void *value, size_t size, int flags)
2739 {
2740         struct inode *inode = dentry->d_inode;
2741         struct inode_security_struct *isec = inode->i_security;
2742         struct superblock_security_struct *sbsec;
2743         struct common_audit_data ad;
2744         u32 newsid, sid = current_sid();
2745         int rc = 0;
2746
2747         if (strcmp(name, XATTR_NAME_SELINUX))
2748                 return selinux_inode_setotherxattr(dentry, name);
2749
2750         sbsec = inode->i_sb->s_security;
2751         if (!(sbsec->flags & SE_SBLABELSUPP))
2752                 return -EOPNOTSUPP;
2753
2754         if (!is_owner_or_cap(inode))
2755                 return -EPERM;
2756
2757         COMMON_AUDIT_DATA_INIT(&ad, FS);
2758         ad.u.fs.path.dentry = dentry;
2759
2760         rc = avc_has_perm(sid, isec->sid, isec->sclass,
2761                           FILE__RELABELFROM, &ad);
2762         if (rc)
2763                 return rc;
2764
2765         rc = security_context_to_sid(value, size, &newsid);
2766         if (rc == -EINVAL) {
2767                 if (!capable(CAP_MAC_ADMIN))
2768                         return rc;
2769                 rc = security_context_to_sid_force(value, size, &newsid);
2770         }
2771         if (rc)
2772                 return rc;
2773
2774         rc = avc_has_perm(sid, newsid, isec->sclass,
2775                           FILE__RELABELTO, &ad);
2776         if (rc)
2777                 return rc;
2778
2779         rc = security_validate_transition(isec->sid, newsid, sid,
2780                                           isec->sclass);
2781         if (rc)
2782                 return rc;
2783
2784         return avc_has_perm(newsid,
2785                             sbsec->sid,
2786                             SECCLASS_FILESYSTEM,
2787                             FILESYSTEM__ASSOCIATE,
2788                             &ad);
2789 }
2790
2791 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2792                                         const void *value, size_t size,
2793                                         int flags)
2794 {
2795         struct inode *inode = dentry->d_inode;
2796         struct inode_security_struct *isec = inode->i_security;
2797         u32 newsid;
2798         int rc;
2799
2800         if (strcmp(name, XATTR_NAME_SELINUX)) {
2801                 /* Not an attribute we recognize, so nothing to do. */
2802                 return;
2803         }
2804
2805         rc = security_context_to_sid_force(value, size, &newsid);
2806         if (rc) {
2807                 printk(KERN_ERR "SELinux:  unable to map context to SID"
2808                        "for (%s, %lu), rc=%d\n",
2809                        inode->i_sb->s_id, inode->i_ino, -rc);
2810                 return;
2811         }
2812
2813         isec->sid = newsid;
2814         return;
2815 }
2816
2817 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2818 {
2819         const struct cred *cred = current_cred();
2820
2821         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2822 }
2823
2824 static int selinux_inode_listxattr(struct dentry *dentry)
2825 {
2826         const struct cred *cred = current_cred();
2827
2828         return dentry_has_perm(cred, NULL, dentry, FILE__GETATTR);
2829 }
2830
2831 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2832 {
2833         if (strcmp(name, XATTR_NAME_SELINUX))
2834                 return selinux_inode_setotherxattr(dentry, name);
2835
2836         /* No one is allowed to remove a SELinux security label.
2837            You can change the label, but all data must be labeled. */
2838         return -EACCES;
2839 }
2840
2841 /*
2842  * Copy the inode security context value to the user.
2843  *
2844  * Permission check is handled by selinux_inode_getxattr hook.
2845  */
2846 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2847 {
2848         u32 size;
2849         int error;
2850         char *context = NULL;
2851         struct inode_security_struct *isec = inode->i_security;
2852
2853         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2854                 return -EOPNOTSUPP;
2855
2856         /*
2857          * If the caller has CAP_MAC_ADMIN, then get the raw context
2858          * value even if it is not defined by current policy; otherwise,
2859          * use the in-core value under current policy.
2860          * Use the non-auditing forms of the permission checks since
2861          * getxattr may be called by unprivileged processes commonly
2862          * and lack of permission just means that we fall back to the
2863          * in-core context value, not a denial.
2864          */
2865         error = selinux_capable(current, current_cred(), CAP_MAC_ADMIN,
2866                                 SECURITY_CAP_NOAUDIT);
2867         if (!error)
2868                 error = security_sid_to_context_force(isec->sid, &context,
2869                                                       &size);
2870         else
2871                 error = security_sid_to_context(isec->sid, &context, &size);
2872         if (error)
2873                 return error;
2874         error = size;
2875         if (alloc) {
2876                 *buffer = context;
2877                 goto out_nofree;
2878         }
2879         kfree(context);
2880 out_nofree:
2881         return error;
2882 }
2883
2884 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2885                                      const void *value, size_t size, int flags)
2886 {
2887         struct inode_security_struct *isec = inode->i_security;
2888         u32 newsid;
2889         int rc;
2890
2891         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2892                 return -EOPNOTSUPP;
2893
2894         if (!value || !size)
2895                 return -EACCES;
2896
2897         rc = security_context_to_sid((void *)value, size, &newsid);
2898         if (rc)
2899                 return rc;
2900
2901         isec->sid = newsid;
2902         isec->initialized = 1;
2903         return 0;
2904 }
2905
2906 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2907 {
2908         const int len = sizeof(XATTR_NAME_SELINUX);
2909         if (buffer && len <= buffer_size)
2910                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2911         return len;
2912 }
2913
2914 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2915 {
2916         struct inode_security_struct *isec = inode->i_security;
2917         *secid = isec->sid;
2918 }
2919
2920 /* file security operations */
2921
2922 static int selinux_revalidate_file_permission(struct file *file, int mask)
2923 {
2924         const struct cred *cred = current_cred();
2925         struct inode *inode = file->f_path.dentry->d_inode;
2926
2927         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2928         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2929                 mask |= MAY_APPEND;
2930
2931         return file_has_perm(cred, file,
2932                              file_mask_to_av(inode->i_mode, mask));
2933 }
2934
2935 static int selinux_file_permission(struct file *file, int mask)
2936 {
2937         struct inode *inode = file->f_path.dentry->d_inode;
2938         struct file_security_struct *fsec = file->f_security;
2939         struct inode_security_struct *isec = inode->i_security;
2940         u32 sid = current_sid();
2941
2942         if (!mask)
2943                 /* No permission to check.  Existence test. */
2944                 return 0;
2945
2946         if (sid == fsec->sid && fsec->isid == isec->sid &&
2947             fsec->pseqno == avc_policy_seqno())
2948                 /* No change since dentry_open check. */
2949                 return 0;
2950
2951         return selinux_revalidate_file_permission(file, mask);
2952 }
2953
2954 static int selinux_file_alloc_security(struct file *file)
2955 {
2956         return file_alloc_security(file);
2957 }
2958
2959 static void selinux_file_free_security(struct file *file)
2960 {
2961         file_free_security(file);
2962 }
2963
2964 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2965                               unsigned long arg)
2966 {
2967         const struct cred *cred = current_cred();
2968         u32 av = 0;
2969
2970         if (_IOC_DIR(cmd) & _IOC_WRITE)
2971                 av |= FILE__WRITE;
2972         if (_IOC_DIR(cmd) & _IOC_READ)
2973                 av |= FILE__READ;
2974         if (!av)
2975                 av = FILE__IOCTL;
2976
2977         return file_has_perm(cred, file, av);
2978 }
2979
2980 static int default_noexec;
2981
2982 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2983 {
2984         const struct cred *cred = current_cred();
2985         int rc = 0;
2986
2987         if (default_noexec &&
2988             (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2989                 /*
2990                  * We are making executable an anonymous mapping or a
2991                  * private file mapping that will also be writable.
2992                  * This has an additional check.
2993                  */
2994                 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
2995                 if (rc)
2996                         goto error;
2997         }
2998
2999         if (file) {
3000                 /* read access is always possible with a mapping */
3001                 u32 av = FILE__READ;
3002
3003                 /* write access only matters if the mapping is shared */
3004                 if (shared && (prot & PROT_WRITE))
3005                         av |= FILE__WRITE;
3006
3007                 if (prot & PROT_EXEC)
3008                         av |= FILE__EXECUTE;
3009
3010                 return file_has_perm(cred, file, av);
3011         }
3012
3013 error:
3014         return rc;
3015 }
3016
3017 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3018                              unsigned long prot, unsigned long flags,
3019                              unsigned long addr, unsigned long addr_only)
3020 {
3021         int rc = 0;
3022         u32 sid = current_sid();
3023
3024         /*
3025          * notice that we are intentionally putting the SELinux check before
3026          * the secondary cap_file_mmap check.  This is such a likely attempt
3027          * at bad behaviour/exploit that we always want to get the AVC, even
3028          * if DAC would have also denied the operation.
3029          */
3030         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3031                 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3032                                   MEMPROTECT__MMAP_ZERO, NULL);
3033                 if (rc)
3034                         return rc;
3035         }
3036
3037         /* do DAC check on address space usage */
3038         rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3039         if (rc || addr_only)
3040                 return rc;
3041
3042         if (selinux_checkreqprot)
3043                 prot = reqprot;
3044
3045         return file_map_prot_check(file, prot,
3046                                    (flags & MAP_TYPE) == MAP_SHARED);
3047 }
3048
3049 static int selinux_file_mprotect(struct vm_area_struct *vma,
3050                                  unsigned long reqprot,
3051                                  unsigned long prot)
3052 {
3053         const struct cred *cred = current_cred();
3054
3055         if (selinux_checkreqprot)
3056                 prot = reqprot;
3057
3058         if (default_noexec &&
3059             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3060                 int rc = 0;
3061                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3062                     vma->vm_end <= vma->vm_mm->brk) {
3063                         rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3064                 } else if (!vma->vm_file &&
3065                            vma->vm_start <= vma->vm_mm->start_stack &&
3066                            vma->vm_end >= vma->vm_mm->start_stack) {
3067                         rc = current_has_perm(current, PROCESS__EXECSTACK);
3068                 } else if (vma->vm_file && vma->anon_vma) {
3069                         /*
3070                          * We are making executable a file mapping that has
3071                          * had some COW done. Since pages might have been
3072                          * written, check ability to execute the possibly
3073                          * modified content.  This typically should only
3074                          * occur for text relocations.
3075                          */
3076                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3077                 }
3078                 if (rc)
3079                         return rc;
3080         }
3081
3082         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3083 }
3084
3085 static int selinux_file_lock(struct file *file, unsigned int cmd)
3086 {
3087         const struct cred *cred = current_cred();
3088
3089         return file_has_perm(cred, file, FILE__LOCK);
3090 }
3091
3092 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3093                               unsigned long arg)
3094 {
3095         const struct cred *cred = current_cred();
3096         int err = 0;
3097
3098         switch (cmd) {
3099         case F_SETFL:
3100                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3101                         err = -EINVAL;
3102                         break;
3103                 }
3104
3105                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3106                         err = file_has_perm(cred, file, FILE__WRITE);
3107                         break;
3108                 }
3109                 /* fall through */
3110         case F_SETOWN:
3111         case F_SETSIG:
3112         case F_GETFL:
3113         case F_GETOWN:
3114         case F_GETSIG:
3115                 /* Just check FD__USE permission */
3116                 err = file_has_perm(cred, file, 0);
3117                 break;
3118         case F_GETLK:
3119         case F_SETLK:
3120         case F_SETLKW:
3121 #if BITS_PER_LONG == 32
3122         case F_GETLK64:
3123         case F_SETLK64:
3124         case F_SETLKW64:
3125 #endif
3126                 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3127                         err = -EINVAL;
3128                         break;
3129                 }
3130                 err = file_has_perm(cred, file, FILE__LOCK);
3131                 break;
3132         }
3133
3134         return err;
3135 }
3136
3137 static int selinux_file_set_fowner(struct file *file)
3138 {
3139         struct file_security_struct *fsec;
3140
3141         fsec = file->f_security;
3142         fsec->fown_sid = current_sid();
3143
3144         return 0;
3145 }
3146
3147 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3148                                        struct fown_struct *fown, int signum)
3149 {
3150         struct file *file;
3151         u32 sid = task_sid(tsk);
3152         u32 perm;
3153         struct file_security_struct *fsec;
3154
3155         /* struct fown_struct is never outside the context of a struct file */
3156         file = container_of(fown, struct file, f_owner);
3157
3158         fsec = file->f_security;
3159
3160         if (!signum)
3161                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3162         else
3163                 perm = signal_to_av(signum);
3164
3165         return avc_has_perm(fsec->fown_sid, sid,
3166                             SECCLASS_PROCESS, perm, NULL);
3167 }
3168
3169 static int selinux_file_receive(struct file *file)
3170 {
3171         const struct cred *cred = current_cred();
3172
3173         return file_has_perm(cred, file, file_to_av(file));
3174 }
3175
3176 static int selinux_dentry_open(struct file *file, const struct cred *cred)
3177 {
3178         struct file_security_struct *fsec;
3179         struct inode *inode;
3180         struct inode_security_struct *isec;
3181
3182         inode = file->f_path.dentry->d_inode;
3183         fsec = file->f_security;
3184         isec = inode->i_security;
3185         /*
3186          * Save inode label and policy sequence number
3187          * at open-time so that selinux_file_permission
3188          * can determine whether revalidation is necessary.
3189          * Task label is already saved in the file security
3190          * struct as its SID.
3191          */
3192         fsec->isid = isec->sid;
3193         fsec->pseqno = avc_policy_seqno();
3194         /*
3195          * Since the inode label or policy seqno may have changed
3196          * between the selinux_inode_permission check and the saving
3197          * of state above, recheck that access is still permitted.
3198          * Otherwise, access might never be revalidated against the
3199          * new inode label or new policy.
3200          * This check is not redundant - do not remove.
3201          */
3202         return inode_has_perm(cred, inode, open_file_to_av(file), NULL);
3203 }
3204
3205 /* task security operations */
3206
3207 static int selinux_task_create(unsigned long clone_flags)
3208 {
3209         return current_has_perm(current, PROCESS__FORK);
3210 }
3211
3212 /*
3213  * allocate the SELinux part of blank credentials
3214  */
3215 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3216 {
3217         struct task_security_struct *tsec;
3218
3219         tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3220         if (!tsec)
3221                 return -ENOMEM;
3222
3223         cred->security = tsec;
3224         return 0;
3225 }
3226
3227 /*
3228  * detach and free the LSM part of a set of credentials
3229  */
3230 static void selinux_cred_free(struct cred *cred)
3231 {
3232         struct task_security_struct *tsec = cred->security;
3233
3234         BUG_ON((unsigned long) cred->security < PAGE_SIZE);
3235         cred->security = (void *) 0x7UL;
3236         kfree(tsec);
3237 }
3238
3239 /*
3240  * prepare a new set of credentials for modification
3241  */
3242 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3243                                 gfp_t gfp)
3244 {
3245         const struct task_security_struct *old_tsec;
3246         struct task_security_struct *tsec;
3247
3248         old_tsec = old->security;
3249
3250         tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3251         if (!tsec)
3252                 return -ENOMEM;
3253
3254         new->security = tsec;
3255         return 0;
3256 }
3257
3258 /*
3259  * transfer the SELinux data to a blank set of creds
3260  */
3261 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3262 {
3263         const struct task_security_struct *old_tsec = old->security;
3264         struct task_security_struct *tsec = new->security;
3265
3266         *tsec = *old_tsec;
3267 }
3268
3269 /*
3270  * set the security data for a kernel service
3271  * - all the creation contexts are set to unlabelled
3272  */
3273 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3274 {
3275         struct task_security_struct *tsec = new->security;
3276         u32 sid = current_sid();
3277         int ret;
3278
3279         ret = avc_has_perm(sid, secid,
3280                            SECCLASS_KERNEL_SERVICE,
3281                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3282                            NULL);
3283         if (ret == 0) {
3284                 tsec->sid = secid;
3285                 tsec->create_sid = 0;
3286                 tsec->keycreate_sid = 0;
3287                 tsec->sockcreate_sid = 0;
3288         }
3289         return ret;
3290 }
3291
3292 /*
3293  * set the file creation context in a security record to the same as the
3294  * objective context of the specified inode
3295  */
3296 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3297 {
3298         struct inode_security_struct *isec = inode->i_security;
3299         struct task_security_struct *tsec = new->security;
3300         u32 sid = current_sid();
3301         int ret;
3302
3303         ret = avc_has_perm(sid, isec->sid,
3304                            SECCLASS_KERNEL_SERVICE,
3305                            KERNEL_SERVICE__CREATE_FILES_AS,
3306                            NULL);
3307
3308         if (ret == 0)
3309                 tsec->create_sid = isec->sid;
3310         return ret;
3311 }
3312
3313 static int selinux_kernel_module_request(char *kmod_name)
3314 {
3315         u32 sid;
3316         struct common_audit_data ad;
3317
3318         sid = task_sid(current);
3319
3320         COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3321         ad.u.kmod_name = kmod_name;
3322
3323         return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3324                             SYSTEM__MODULE_REQUEST, &ad);
3325 }
3326
3327 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3328 {
3329         return current_has_perm(p, PROCESS__SETPGID);
3330 }
3331
3332 static int selinux_task_getpgid(struct task_struct *p)
3333 {
3334         return current_has_perm(p, PROCESS__GETPGID);
3335 }
3336
3337 static int selinux_task_getsid(struct task_struct *p)
3338 {
3339         return current_has_perm(p, PROCESS__GETSESSION);
3340 }
3341
3342 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3343 {
3344         *secid = task_sid(p);
3345 }
3346
3347 static int selinux_task_setnice(struct task_struct *p, int nice)
3348 {
3349         int rc;
3350
3351         rc = cap_task_setnice(p, nice);
3352         if (rc)
3353                 return rc;
3354
3355         return current_has_perm(p, PROCESS__SETSCHED);
3356 }
3357
3358 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3359 {
3360         int rc;
3361
3362         rc = cap_task_setioprio(p, ioprio);
3363         if (rc)
3364                 return rc;
3365
3366         return current_has_perm(p, PROCESS__SETSCHED);
3367 }
3368
3369 static int selinux_task_getioprio(struct task_struct *p)
3370 {
3371         return current_has_perm(p, PROCESS__GETSCHED);
3372 }
3373
3374 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
3375 {
3376         struct rlimit *old_rlim = current->signal->rlim + resource;
3377
3378         /* Control the ability to change the hard limit (whether
3379            lowering or raising it), so that the hard limit can
3380            later be used as a safe reset point for the soft limit
3381            upon context transitions.  See selinux_bprm_committing_creds. */
3382         if (old_rlim->rlim_max != new_rlim->rlim_max)
3383                 return current_has_perm(current, PROCESS__SETRLIMIT);
3384
3385         return 0;
3386 }
3387
3388 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
3389 {
3390         int rc;
3391
3392         rc = cap_task_setscheduler(p, policy, lp);
3393         if (rc)
3394                 return rc;
3395
3396         return current_has_perm(p, PROCESS__SETSCHED);
3397 }
3398
3399 static int selinux_task_getscheduler(struct task_struct *p)
3400 {
3401         return current_has_perm(p, PROCESS__GETSCHED);
3402 }
3403
3404 static int selinux_task_movememory(struct task_struct *p)
3405 {
3406         return current_has_perm(p, PROCESS__SETSCHED);
3407 }
3408
3409 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3410                                 int sig, u32 secid)
3411 {
3412         u32 perm;
3413         int rc;
3414
3415         if (!sig)
3416                 perm = PROCESS__SIGNULL; /* null signal; existence test */
3417         else
3418                 perm = signal_to_av(sig);
3419         if (secid)
3420                 rc = avc_has_perm(secid, task_sid(p),
3421                                   SECCLASS_PROCESS, perm, NULL);
3422         else
3423                 rc = current_has_perm(p, perm);
3424         return rc;
3425 }
3426
3427 static int selinux_task_wait(struct task_struct *p)
3428 {
3429         return task_has_perm(p, current, PROCESS__SIGCHLD);
3430 }
3431
3432 static void selinux_task_to_inode(struct task_struct *p,
3433                                   struct inode *inode)
3434 {
3435         struct inode_security_struct *isec = inode->i_security;
3436         u32 sid = task_sid(p);
3437
3438         isec->sid = sid;
3439         isec->initialized = 1;
3440 }
3441
3442 /* Returns error only if unable to parse addresses */
3443 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3444                         struct common_audit_data *ad, u8 *proto)
3445 {
3446         int offset, ihlen, ret = -EINVAL;
3447         struct iphdr _iph, *ih;
3448
3449         offset = skb_network_offset(skb);
3450         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3451         if (ih == NULL)
3452                 goto out;
3453
3454         ihlen = ih->ihl * 4;
3455         if (ihlen < sizeof(_iph))
3456                 goto out;
3457
3458         ad->u.net.v4info.saddr = ih->saddr;
3459         ad->u.net.v4info.daddr = ih->daddr;
3460         ret = 0;
3461
3462         if (proto)
3463                 *proto = ih->protocol;
3464
3465         switch (ih->protocol) {
3466         case IPPROTO_TCP: {
3467                 struct tcphdr _tcph, *th;
3468
3469                 if (ntohs(ih->frag_off) & IP_OFFSET)
3470                         break;
3471
3472                 offset += ihlen;
3473                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3474                 if (th == NULL)
3475                         break;
3476
3477                 ad->u.net.sport = th->source;
3478                 ad->u.net.dport = th->dest;
3479                 break;
3480         }
3481
3482         case IPPROTO_UDP: {
3483                 struct udphdr _udph, *uh;
3484
3485                 if (ntohs(ih->frag_off) & IP_OFFSET)
3486                         break;
3487
3488                 offset += ihlen;
3489                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3490                 if (uh == NULL)
3491                         break;
3492
3493                 ad->u.net.sport = uh->source;
3494                 ad->u.net.dport = uh->dest;
3495                 break;
3496         }
3497
3498         case IPPROTO_DCCP: {
3499                 struct dccp_hdr _dccph, *dh;
3500
3501                 if (ntohs(ih->frag_off) & IP_OFFSET)
3502                         break;
3503
3504                 offset += ihlen;
3505                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3506                 if (dh == NULL)
3507                         break;
3508
3509                 ad->u.net.sport = dh->dccph_sport;
3510                 ad->u.net.dport = dh->dccph_dport;
3511                 break;
3512         }
3513
3514         default:
3515                 break;
3516         }
3517 out:
3518         return ret;
3519 }
3520
3521 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3522
3523 /* Returns error only if unable to parse addresses */
3524 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3525                         struct common_audit_data *ad, u8 *proto)
3526 {
3527         u8 nexthdr;
3528         int ret = -EINVAL, offset;
3529         struct ipv6hdr _ipv6h, *ip6;
3530
3531         offset = skb_network_offset(skb);
3532         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3533         if (ip6 == NULL)
3534                 goto out;
3535
3536         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3537         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3538         ret = 0;
3539
3540         nexthdr = ip6->nexthdr;
3541         offset += sizeof(_ipv6h);
3542         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3543         if (offset < 0)
3544                 goto out;
3545
3546         if (proto)
3547                 *proto = nexthdr;
3548
3549         switch (nexthdr) {
3550         case IPPROTO_TCP: {
3551                 struct tcphdr _tcph, *th;
3552
3553                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3554                 if (th == NULL)
3555                         break;
3556
3557                 ad->u.net.sport = th->source;
3558                 ad->u.net.dport = th->dest;
3559                 break;
3560         }
3561
3562         case IPPROTO_UDP: {
3563                 struct udphdr _udph, *uh;
3564
3565                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3566                 if (uh == NULL)
3567                         break;
3568
3569                 ad->u.net.sport = uh->source;
3570                 ad->u.net.dport = uh->dest;
3571                 break;
3572         }
3573
3574         case IPPROTO_DCCP: {
3575                 struct dccp_hdr _dccph, *dh;
3576
3577                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3578                 if (dh == NULL)
3579                         break;
3580
3581                 ad->u.net.sport = dh->dccph_sport;
3582                 ad->u.net.dport = dh->dccph_dport;
3583                 break;
3584         }
3585
3586         /* includes fragments */
3587         default:
3588                 break;
3589         }
3590 out:
3591         return ret;
3592 }
3593
3594 #endif /* IPV6 */
3595
3596 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3597                              char **_addrp, int src, u8 *proto)
3598 {
3599         char *addrp;
3600         int ret;
3601
3602         switch (ad->u.net.family) {
3603         case PF_INET:
3604                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3605                 if (ret)
3606                         goto parse_error;
3607                 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3608                                        &ad->u.net.v4info.daddr);
3609                 goto okay;
3610
3611 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3612         case PF_INET6:
3613                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3614                 if (ret)
3615                         goto parse_error;
3616                 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3617                                        &ad->u.net.v6info.daddr);
3618                 goto okay;
3619 #endif  /* IPV6 */
3620         default:
3621                 addrp = NULL;
3622                 goto okay;
3623         }
3624
3625 parse_error:
3626         printk(KERN_WARNING
3627                "SELinux: failure in selinux_parse_skb(),"
3628                " unable to parse packet\n");
3629         return ret;
3630
3631 okay:
3632         if (_addrp)
3633                 *_addrp = addrp;
3634         return 0;
3635 }
3636
3637 /**
3638  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3639  * @skb: the packet
3640  * @family: protocol family
3641  * @sid: the packet's peer label SID
3642  *
3643  * Description:
3644  * Check the various different forms of network peer labeling and determine
3645  * the peer label/SID for the packet; most of the magic actually occurs in
3646  * the security server function security_net_peersid_cmp().  The function
3647  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3648  * or -EACCES if @sid is invalid due to inconsistencies with the different
3649  * peer labels.
3650  *
3651  */
3652 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3653 {
3654         int err;
3655         u32 xfrm_sid;
3656         u32 nlbl_sid;
3657         u32 nlbl_type;
3658
3659         selinux_skb_xfrm_sid(skb, &xfrm_sid);
3660         selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3661
3662         err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3663         if (unlikely(err)) {
3664                 printk(KERN_WARNING
3665                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
3666                        " unable to determine packet's peer label\n");
3667                 return -EACCES;
3668         }
3669
3670         return 0;
3671 }
3672
3673 /* socket security operations */
3674 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3675                            u32 perms)
3676 {
3677         struct inode_security_struct *isec;
3678         struct common_audit_data ad;
3679         u32 sid;
3680         int err = 0;
3681
3682         isec = SOCK_INODE(sock)->i_security;
3683
3684         if (isec->sid == SECINITSID_KERNEL)
3685                 goto out;
3686         sid = task_sid(task);
3687
3688         COMMON_AUDIT_DATA_INIT(&ad, NET);
3689         ad.u.net.sk = sock->sk;
3690         err = avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
3691
3692 out:
3693         return err;
3694 }
3695
3696 static int selinux_socket_create(int family, int type,
3697                                  int protocol, int kern)
3698 {
3699         const struct cred *cred = current_cred();
3700         const struct task_security_struct *tsec = cred->security;
3701         u32 sid, newsid;
3702         u16 secclass;
3703         int err = 0;
3704
3705         if (kern)
3706                 goto out;
3707
3708         sid = tsec->sid;
3709         newsid = tsec->sockcreate_sid ?: sid;
3710
3711         secclass = socket_type_to_security_class(family, type, protocol);
3712         err = avc_has_perm(sid, newsid, secclass, SOCKET__CREATE, NULL);
3713
3714 out:
3715         return err;
3716 }
3717
3718 static int selinux_socket_post_create(struct socket *sock, int family,
3719                                       int type, int protocol, int kern)
3720 {
3721         const struct cred *cred = current_cred();
3722         const struct task_security_struct *tsec = cred->security;
3723         struct inode_security_struct *isec;
3724         struct sk_security_struct *sksec;
3725         u32 sid, newsid;
3726         int err = 0;
3727
3728         sid = tsec->sid;
3729         newsid = tsec->sockcreate_sid;
3730
3731         isec = SOCK_INODE(sock)->i_security;
3732
3733         if (kern)
3734                 isec->sid = SECINITSID_KERNEL;
3735         else if (newsid)
3736                 isec->sid = newsid;
3737         else
3738                 isec->sid = sid;
3739
3740         isec->sclass = socket_type_to_security_class(family, type, protocol);
3741         isec->initialized = 1;
3742
3743         if (sock->sk) {
3744                 sksec = sock->sk->sk_security;
3745                 sksec->sid = isec->sid;
3746                 sksec->sclass = isec->sclass;
3747                 err = selinux_netlbl_socket_post_create(sock->sk, family);
3748         }
3749
3750         return err;
3751 }
3752
3753 /* Range of port numbers used to automatically bind.
3754    Need to determine whether we should perform a name_bind
3755    permission check between the socket and the port number. */
3756
3757 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3758 {
3759         u16 family;
3760         int err;
3761
3762         err = socket_has_perm(current, sock, SOCKET__BIND);
3763         if (err)
3764                 goto out;
3765
3766         /*
3767          * If PF_INET or PF_INET6, check name_bind permission for the port.
3768          * Multiple address binding for SCTP is not supported yet: we just
3769          * check the first address now.
3770          */
3771         family = sock->sk->sk_family;
3772         if (family == PF_INET || family == PF_INET6) {
3773                 char *addrp;
3774                 struct inode_security_struct *isec;
3775                 struct common_audit_data ad;
3776                 struct sockaddr_in *addr4 = NULL;
3777                 struct sockaddr_in6 *addr6 = NULL;
3778                 unsigned short snum;
3779                 struct sock *sk = sock->sk;
3780                 u32 sid, node_perm;
3781
3782                 isec = SOCK_INODE(sock)->i_security;
3783
3784                 if (family == PF_INET) {
3785                         addr4 = (struct sockaddr_in *)address;
3786                         snum = ntohs(addr4->sin_port);
3787                         addrp = (char *)&addr4->sin_addr.s_addr;
3788                 } else {
3789                         addr6 = (struct sockaddr_in6 *)address;
3790                         snum = ntohs(addr6->sin6_port);
3791                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3792                 }
3793
3794                 if (snum) {
3795                         int low, high;
3796
3797                         inet_get_local_port_range(&low, &high);
3798
3799                         if (snum < max(PROT_SOCK, low) || snum > high) {
3800                                 err = sel_netport_sid(sk->sk_protocol,
3801                                                       snum, &sid);
3802                                 if (err)
3803                                         goto out;
3804                                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3805                                 ad.u.net.sport = htons(snum);
3806                                 ad.u.net.family = family;
3807                                 err = avc_has_perm(isec->sid, sid,
3808                                                    isec->sclass,
3809                                                    SOCKET__NAME_BIND, &ad);
3810                                 if (err)
3811                                         goto out;
3812                         }
3813                 }
3814
3815                 switch (isec->sclass) {
3816                 case SECCLASS_TCP_SOCKET:
3817                         node_perm = TCP_SOCKET__NODE_BIND;
3818                         break;
3819
3820                 case SECCLASS_UDP_SOCKET:
3821                         node_perm = UDP_SOCKET__NODE_BIND;
3822                         break;
3823
3824                 case SECCLASS_DCCP_SOCKET:
3825                         node_perm = DCCP_SOCKET__NODE_BIND;
3826                         break;
3827
3828                 default:
3829                         node_perm = RAWIP_SOCKET__NODE_BIND;
3830                         break;
3831                 }
3832
3833                 err = sel_netnode_sid(addrp, family, &sid);
3834                 if (err)
3835                         goto out;
3836
3837                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3838                 ad.u.net.sport = htons(snum);
3839                 ad.u.net.family = family;
3840
3841                 if (family == PF_INET)
3842                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3843                 else
3844                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3845
3846                 err = avc_has_perm(isec->sid, sid,
3847                                    isec->sclass, node_perm, &ad);
3848                 if (err)
3849                         goto out;
3850         }
3851 out:
3852         return err;
3853 }
3854
3855 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3856 {
3857         struct sock *sk = sock->sk;
3858         struct inode_security_struct *isec;
3859         int err;
3860
3861         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3862         if (err)
3863                 return err;
3864
3865         /*
3866          * If a TCP or DCCP socket, check name_connect permission for the port.
3867          */
3868         isec = SOCK_INODE(sock)->i_security;
3869         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3870             isec->sclass == SECCLASS_DCCP_SOCKET) {
3871                 struct common_audit_data ad;
3872                 struct sockaddr_in *addr4 = NULL;
3873                 struct sockaddr_in6 *addr6 = NULL;
3874                 unsigned short snum;
3875                 u32 sid, perm;
3876
3877                 if (sk->sk_family == PF_INET) {
3878                         addr4 = (struct sockaddr_in *)address;
3879                         if (addrlen < sizeof(struct sockaddr_in))
3880                                 return -EINVAL;
3881                         snum = ntohs(addr4->sin_port);
3882                 } else {
3883                         addr6 = (struct sockaddr_in6 *)address;
3884                         if (addrlen < SIN6_LEN_RFC2133)
3885                                 return -EINVAL;
3886                         snum = ntohs(addr6->sin6_port);
3887                 }
3888
3889                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3890                 if (err)
3891                         goto out;
3892
3893                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3894                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3895
3896                 COMMON_AUDIT_DATA_INIT(&ad, NET);
3897                 ad.u.net.dport = htons(snum);
3898                 ad.u.net.family = sk->sk_family;
3899                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3900                 if (err)
3901                         goto out;
3902         }
3903
3904         err = selinux_netlbl_socket_connect(sk, address);
3905
3906 out:
3907         return err;
3908 }
3909
3910 static int selinux_socket_listen(struct socket *sock, int backlog)
3911 {
3912         return socket_has_perm(current, sock, SOCKET__LISTEN);
3913 }
3914
3915 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3916 {
3917         int err;
3918         struct inode_security_struct *isec;
3919         struct inode_security_struct *newisec;
3920
3921         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3922         if (err)
3923                 return err;
3924
3925         newisec = SOCK_INODE(newsock)->i_security;
3926
3927         isec = SOCK_INODE(sock)->i_security;
3928         newisec->sclass = isec->sclass;
3929         newisec->sid = isec->sid;
3930         newisec->initialized = 1;
3931
3932         return 0;
3933 }
3934
3935 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3936                                   int size)
3937 {
3938         return socket_has_perm(current, sock, SOCKET__WRITE);
3939 }
3940
3941 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3942                                   int size, int flags)
3943 {
3944         return socket_has_perm(current, sock, SOCKET__READ);
3945 }
3946
3947 static int selinux_socket_getsockname(struct socket *sock)
3948 {
3949         return socket_has_perm(current, sock, SOCKET__GETATTR);
3950 }
3951
3952 static int selinux_socket_getpeername(struct socket *sock)
3953 {
3954         return socket_has_perm(current, sock, SOCKET__GETATTR);
3955 }
3956
3957 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3958 {
3959         int err;
3960
3961         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3962         if (err)
3963                 return err;
3964
3965         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3966 }
3967
3968 static int selinux_socket_getsockopt(struct socket *sock, int level,
3969                                      int optname)
3970 {
3971         return socket_has_perm(current, sock, SOCKET__GETOPT);
3972 }
3973
3974 static int selinux_socket_shutdown(struct socket *sock, int how)
3975 {
3976         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3977 }
3978
3979 static int selinux_socket_unix_stream_connect(struct socket *sock,
3980                                               struct socket *other,
3981                                               struct sock *newsk)
3982 {
3983         struct sk_security_struct *sksec;
3984         struct inode_security_struct *isec;
3985         struct inode_security_struct *other_isec;
3986         struct common_audit_data ad;
3987         int err;
3988
3989         isec = SOCK_INODE(sock)->i_security;
3990         other_isec = SOCK_INODE(other)->i_security;
3991
3992         COMMON_AUDIT_DATA_INIT(&ad, NET);
3993         ad.u.net.sk = other->sk;
3994
3995         err = avc_has_perm(isec->sid, other_isec->sid,
3996                            isec->sclass,
3997                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3998         if (err)
3999                 return err;
4000
4001         /* connecting socket */
4002         sksec = sock->sk->sk_security;
4003         sksec->peer_sid = other_isec->sid;
4004
4005         /* server child socket */
4006         sksec = newsk->sk_security;
4007         sksec->peer_sid = isec->sid;
4008         err = security_sid_mls_copy(other_isec->sid, sksec->peer_sid, &sksec->sid);
4009
4010         return err;
4011 }
4012
4013 static int selinux_socket_unix_may_send(struct socket *sock,
4014                                         struct socket *other)
4015 {
4016         struct inode_security_struct *isec;
4017         struct inode_security_struct *other_isec;
4018         struct common_audit_data ad;
4019         int err;
4020
4021         isec = SOCK_INODE(sock)->i_security;
4022         other_isec = SOCK_INODE(other)->i_security;
4023
4024         COMMON_AUDIT_DATA_INIT(&ad, NET);
4025         ad.u.net.sk = other->sk;
4026
4027         err = avc_has_perm(isec->sid, other_isec->sid,
4028                            isec->sclass, SOCKET__SENDTO, &ad);
4029         if (err)
4030                 return err;
4031
4032         return 0;
4033 }
4034
4035 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4036                                     u32 peer_sid,
4037                                     struct common_audit_data *ad)
4038 {
4039         int err;
4040         u32 if_sid;
4041         u32 node_sid;
4042
4043         err = sel_netif_sid(ifindex, &if_sid);
4044         if (err)
4045                 return err;
4046         err = avc_has_perm(peer_sid, if_sid,
4047                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4048         if (err)
4049                 return err;
4050
4051         err = sel_netnode_sid(addrp, family, &node_sid);
4052         if (err)
4053                 return err;
4054         return avc_has_perm(peer_sid, node_sid,
4055                             SECCLASS_NODE, NODE__RECVFROM, ad);
4056 }
4057
4058 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4059                                        u16 family)
4060 {
4061         int err = 0;
4062         struct sk_security_struct *sksec = sk->sk_security;
4063         u32 peer_sid;
4064         u32 sk_sid = sksec->sid;
4065         struct common_audit_data ad;
4066         char *addrp;
4067
4068         COMMON_AUDIT_DATA_INIT(&ad, NET);
4069         ad.u.net.netif = skb->skb_iif;
4070         ad.u.net.family = family;
4071         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4072         if (err)
4073                 return err;
4074
4075         if (selinux_secmark_enabled()) {
4076                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4077                                    PACKET__RECV, &ad);
4078                 if (err)
4079                         return err;
4080         }
4081
4082         if (selinux_policycap_netpeer) {
4083                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4084                 if (err)
4085                         return err;
4086                 err = avc_has_perm(sk_sid, peer_sid,
4087                                    SECCLASS_PEER, PEER__RECV, &ad);
4088                 if (err)
4089                         selinux_netlbl_err(skb, err, 0);
4090         } else {
4091                 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4092                 if (err)
4093                         return err;
4094                 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4095         }
4096
4097         return err;
4098 }
4099
4100 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4101 {
4102         int err;
4103         struct sk_security_struct *sksec = sk->sk_security;
4104         u16 family = sk->sk_family;
4105         u32 sk_sid = sksec->sid;
4106         struct common_audit_data ad;
4107         char *addrp;
4108         u8 secmark_active;
4109         u8 peerlbl_active;
4110
4111         if (family != PF_INET && family != PF_INET6)
4112                 return 0;
4113
4114         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4115         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4116                 family = PF_INET;
4117
4118         /* If any sort of compatibility mode is enabled then handoff processing
4119          * to the selinux_sock_rcv_skb_compat() function to deal with the
4120          * special handling.  We do this in an attempt to keep this function
4121          * as fast and as clean as possible. */
4122         if (!selinux_policycap_netpeer)
4123                 return selinux_sock_rcv_skb_compat(sk, skb, family);
4124
4125         secmark_active = selinux_secmark_enabled();
4126         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4127         if (!secmark_active && !peerlbl_active)
4128                 return 0;
4129
4130         COMMON_AUDIT_DATA_INIT(&ad, NET);
4131         ad.u.net.netif = skb->skb_iif;
4132         ad.u.net.family = family;
4133         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4134         if (err)
4135                 return err;
4136
4137         if (peerlbl_active) {
4138                 u32 peer_sid;
4139
4140                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4141                 if (err)
4142                         return err;
4143                 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4144                                                peer_sid, &ad);
4145                 if (err) {
4146                         selinux_netlbl_err(skb, err, 0);
4147                         return err;
4148                 }
4149                 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4150                                    PEER__RECV, &ad);
4151                 if (err)
4152                         selinux_netlbl_err(skb, err, 0);
4153         }
4154
4155         if (secmark_active) {
4156                 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4157                                    PACKET__RECV, &ad);
4158                 if (err)
4159                         return err;
4160         }
4161
4162         return err;
4163 }
4164
4165 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4166                                             int __user *optlen, unsigned len)
4167 {
4168         int err = 0;
4169         char *scontext;
4170         u32 scontext_len;
4171         struct sk_security_struct *sksec;
4172         struct inode_security_struct *isec;
4173         u32 peer_sid = SECSID_NULL;
4174
4175         isec = SOCK_INODE(sock)->i_security;
4176
4177         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4178             isec->sclass == SECCLASS_TCP_SOCKET) {
4179                 sksec = sock->sk->sk_security;
4180                 peer_sid = sksec->peer_sid;
4181         }
4182         if (peer_sid == SECSID_NULL) {
4183                 err = -ENOPROTOOPT;
4184                 goto out;
4185         }
4186
4187         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4188
4189         if (err)
4190                 goto out;
4191
4192         if (scontext_len > len) {
4193                 err = -ERANGE;
4194                 goto out_len;
4195         }
4196
4197         if (copy_to_user(optval, scontext, scontext_len))
4198                 err = -EFAULT;
4199
4200 out_len:
4201         if (put_user(scontext_len, optlen))
4202                 err = -EFAULT;
4203
4204         kfree(scontext);
4205 out:
4206         return err;
4207 }
4208
4209 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4210 {
4211         u32 peer_secid = SECSID_NULL;
4212         u16 family;
4213
4214         if (skb && skb->protocol == htons(ETH_P_IP))
4215                 family = PF_INET;
4216         else if (skb && skb->protocol == htons(ETH_P_IPV6))
4217                 family = PF_INET6;
4218         else if (sock)
4219                 family = sock->sk->sk_family;
4220         else
4221                 goto out;
4222
4223         if (sock && family == PF_UNIX)
4224                 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4225         else if (skb)
4226                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4227
4228 out:
4229         *secid = peer_secid;
4230         if (peer_secid == SECSID_NULL)
4231                 return -EINVAL;
4232         return 0;
4233 }
4234
4235 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4236 {
4237         return sk_alloc_security(sk, family, priority);
4238 }
4239
4240 static void selinux_sk_free_security(struct sock *sk)
4241 {
4242         sk_free_security(sk);
4243 }
4244
4245 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4246 {
4247         struct sk_security_struct *sksec = sk->sk_security;
4248         struct sk_security_struct *newsksec = newsk->sk_security;
4249
4250         newsksec->sid = sksec->sid;
4251         newsksec->peer_sid = sksec->peer_sid;
4252         newsksec->sclass = sksec->sclass;
4253
4254         selinux_netlbl_sk_security_reset(newsksec);
4255 }
4256
4257 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4258 {
4259         if (!sk)
4260                 *secid = SECINITSID_ANY_SOCKET;
4261         else {
4262                 struct sk_security_struct *sksec = sk->sk_security;
4263
4264                 *secid = sksec->sid;
4265         }
4266 }
4267
4268 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4269 {
4270         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4271         struct sk_security_struct *sksec = sk->sk_security;
4272
4273         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4274             sk->sk_family == PF_UNIX)
4275                 isec->sid = sksec->sid;
4276         sksec->sclass = isec->sclass;
4277 }
4278
4279 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4280                                      struct request_sock *req)
4281 {
4282         struct sk_security_struct *sksec = sk->sk_security;
4283         int err;
4284         u16 family = sk->sk_family;
4285         u32 newsid;
4286         u32 peersid;
4287
4288         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4289         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4290                 family = PF_INET;
4291
4292         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4293         if (err)
4294                 return err;
4295         if (peersid == SECSID_NULL) {
4296                 req->secid = sksec->sid;
4297                 req->peer_secid = SECSID_NULL;
4298         } else {
4299                 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4300                 if (err)
4301                         return err;
4302                 req->secid = newsid;
4303                 req->peer_secid = peersid;
4304         }
4305
4306         return selinux_netlbl_inet_conn_request(req, family);
4307 }
4308
4309 static void selinux_inet_csk_clone(struct sock *newsk,
4310                                    const struct request_sock *req)
4311 {
4312         struct sk_security_struct *newsksec = newsk->sk_security;
4313
4314         newsksec->sid = req->secid;
4315         newsksec->peer_sid = req->peer_secid;
4316         /* NOTE: Ideally, we should also get the isec->sid for the
4317            new socket in sync, but we don't have the isec available yet.
4318            So we will wait until sock_graft to do it, by which
4319            time it will have been created and available. */
4320
4321         /* We don't need to take any sort of lock here as we are the only
4322          * thread with access to newsksec */
4323         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4324 }
4325
4326 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4327 {
4328         u16 family = sk->sk_family;
4329         struct sk_security_struct *sksec = sk->sk_security;
4330
4331         /* handle mapped IPv4 packets arriving via IPv6 sockets */
4332         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4333                 family = PF_INET;
4334
4335         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4336 }
4337
4338 static void selinux_req_classify_flow(const struct request_sock *req,
4339                                       struct flowi *fl)
4340 {
4341         fl->secid = req->secid;
4342 }
4343
4344 static int selinux_tun_dev_create(void)
4345 {
4346         u32 sid = current_sid();
4347
4348         /* we aren't taking into account the "sockcreate" SID since the socket
4349          * that is being created here is not a socket in the traditional sense,
4350          * instead it is a private sock, accessible only to the kernel, and
4351          * representing a wide range of network traffic spanning multiple
4352          * connections unlike traditional sockets - check the TUN driver to
4353          * get a better understanding of why this socket is special */
4354
4355         return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4356                             NULL);
4357 }
4358
4359 static void selinux_tun_dev_post_create(struct sock *sk)
4360 {
4361         struct sk_security_struct *sksec = sk->sk_security;
4362
4363         /* we don't currently perform any NetLabel based labeling here and it
4364          * isn't clear that we would want to do so anyway; while we could apply
4365          * labeling without the support of the TUN user the resulting labeled
4366          * traffic from the other end of the connection would almost certainly
4367          * cause confusion to the TUN user that had no idea network labeling
4368          * protocols were being used */
4369
4370         /* see the comments in selinux_tun_dev_create() about why we don't use
4371          * the sockcreate SID here */
4372
4373         sksec->sid = current_sid();
4374         sksec->sclass = SECCLASS_TUN_SOCKET;
4375 }
4376
4377 static int selinux_tun_dev_attach(struct sock *sk)
4378 {
4379         struct sk_security_struct *sksec = sk->sk_security;
4380         u32 sid = current_sid();
4381         int err;
4382
4383         err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4384                            TUN_SOCKET__RELABELFROM, NULL);
4385         if (err)
4386                 return err;
4387         err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4388                            TUN_SOCKET__RELABELTO, NULL);
4389         if (err)
4390                 return err;
4391
4392         sksec->sid = sid;
4393
4394         return 0;
4395 }
4396
4397 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4398 {
4399         int err = 0;
4400         u32 perm;
4401         struct nlmsghdr *nlh;
4402         struct socket *sock = sk->sk_socket;
4403         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
4404
4405         if (skb->len < NLMSG_SPACE(0)) {
4406                 err = -EINVAL;
4407                 goto out;
4408         }
4409         nlh = nlmsg_hdr(skb);
4410
4411         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
4412         if (err) {
4413                 if (err == -EINVAL) {
4414                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4415                                   "SELinux:  unrecognized netlink message"
4416                                   " type=%hu for sclass=%hu\n",
4417                                   nlh->nlmsg_type, isec->sclass);
4418                         if (!selinux_enforcing || security_get_allow_unknown())
4419                                 err = 0;
4420                 }
4421
4422                 /* Ignore */
4423                 if (err == -ENOENT)
4424                         err = 0;
4425                 goto out;
4426         }
4427
4428         err = socket_has_perm(current, sock, perm);
4429 out:
4430         return err;
4431 }
4432
4433 #ifdef CONFIG_NETFILTER
4434
4435 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4436                                        u16 family)
4437 {
4438         int err;
4439         char *addrp;
4440         u32 peer_sid;
4441         struct common_audit_data ad;
4442         u8 secmark_active;
4443         u8 netlbl_active;
4444         u8 peerlbl_active;
4445
4446         if (!selinux_policycap_netpeer)
4447                 return NF_ACCEPT;
4448
4449         secmark_active = selinux_secmark_enabled();
4450         netlbl_active = netlbl_enabled();
4451         peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4452         if (!secmark_active && !peerlbl_active)
4453                 return NF_ACCEPT;
4454
4455         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4456                 return NF_DROP;
4457
4458         COMMON_AUDIT_DATA_INIT(&ad, NET);
4459         ad.u.net.netif = ifindex;
4460         ad.u.net.family = family;
4461         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4462                 return NF_DROP;
4463
4464         if (peerlbl_active) {
4465                 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4466                                                peer_sid, &ad);
4467                 if (err) {
4468                         selinux_netlbl_err(skb, err, 1);
4469                         return NF_DROP;
4470                 }
4471         }
4472
4473         if (secmark_active)
4474                 if (avc_has_perm(peer_sid, skb->secmark,
4475                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4476                         return NF_DROP;
4477
4478         if (netlbl_active)
4479                 /* we do this in the FORWARD path and not the POST_ROUTING
4480                  * path because we want to make sure we apply the necessary
4481                  * labeling before IPsec is applied so we can leverage AH
4482                  * protection */
4483                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4484                         return NF_DROP;
4485
4486         return NF_ACCEPT;
4487 }
4488
4489 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4490                                          struct sk_buff *skb,
4491                                          const struct net_device *in,
4492                                          const struct net_device *out,
4493                                          int (*okfn)(struct sk_buff *))
4494 {
4495         return selinux_ip_forward(skb, in->ifindex, PF_INET);
4496 }
4497
4498 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4499 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4500                                          struct sk_buff *skb,
4501                                          const struct net_device *in,
4502                                          const struct net_device *out,
4503                                          int (*okfn)(struct sk_buff *))
4504 {
4505         return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4506 }
4507 #endif  /* IPV6 */
4508
4509 static unsigned int selinux_ip_output(struct sk_buff *skb,
4510                                       u16 family)
4511 {
4512         u32 sid;
4513
4514         if (!netlbl_enabled())
4515                 return NF_ACCEPT;
4516
4517         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4518          * because we want to make sure we apply the necessary labeling
4519          * before IPsec is applied so we can leverage AH protection */
4520         if (skb->sk) {
4521                 struct sk_security_struct *sksec = skb->sk->sk_security;
4522                 sid = sksec->sid;
4523         } else
4524                 sid = SECINITSID_KERNEL;
4525         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4526                 return NF_DROP;
4527
4528         return NF_ACCEPT;
4529 }
4530
4531 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4532                                         struct sk_buff *skb,
4533                                         const struct net_device *in,
4534                                         const struct net_device *out,
4535                                         int (*okfn)(struct sk_buff *))
4536 {
4537         return selinux_ip_output(skb, PF_INET);
4538 }
4539
4540 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4541                                                 int ifindex,
4542                                                 u16 family)
4543 {
4544         struct sock *sk = skb->sk;
4545         struct sk_security_struct *sksec;
4546         struct common_audit_data ad;
4547         char *addrp;
4548         u8 proto;
4549
4550         if (sk == NULL)
4551                 return NF_ACCEPT;
4552         sksec = sk->sk_security;
4553
4554         COMMON_AUDIT_DATA_INIT(&ad, NET);
4555         ad.u.net.netif = ifindex;
4556         ad.u.net.family = family;
4557         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4558                 return NF_DROP;
4559
4560         if (selinux_secmark_enabled())
4561                 if (avc_has_perm(sksec->sid, skb->secmark,
4562                                  SECCLASS_PACKET, PACKET__SEND, &ad))
4563                         return NF_DROP;
4564
4565         if (selinux_policycap_netpeer)
4566                 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4567                         return NF_DROP;
4568
4569         return NF_ACCEPT;
4570 }
4571
4572 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4573                                          u16 family)
4574 {
4575         u32 secmark_perm;
4576         u32 peer_sid;
4577         struct sock *sk;
4578         struct common_audit_data ad;
4579         char *addrp;
4580         u8 secmark_active;
4581         u8 peerlbl_active;
4582
4583         /* If any sort of compatibility mode is enabled then handoff processing
4584          * to the selinux_ip_postroute_compat() function to deal with the
4585          * special handling.  We do this in an attempt to keep this function
4586          * as fast and as clean as possible. */
4587         if (!selinux_policycap_netpeer)
4588                 return selinux_ip_postroute_compat(skb, ifindex, family);
4589 #ifdef CONFIG_XFRM
4590         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4591          * packet transformation so allow the packet to pass without any checks
4592          * since we'll have another chance to perform access control checks
4593          * when the packet is on it's final way out.
4594          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4595          *       is NULL, in this case go ahead and apply access control. */
4596         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4597                 return NF_ACCEPT;
4598 #endif
4599         secmark_active = selinux_secmark_enabled();
4600         peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4601         if (!secmark_active && !peerlbl_active)
4602                 return NF_ACCEPT;
4603
4604         /* if the packet is being forwarded then get the peer label from the
4605          * packet itself; otherwise check to see if it is from a local
4606          * application or the kernel, if from an application get the peer label
4607          * from the sending socket, otherwise use the kernel's sid */
4608         sk = skb->sk;
4609         if (sk == NULL) {
4610                 switch (family) {
4611                 case PF_INET:
4612                         if (IPCB(skb)->flags & IPSKB_FORWARDED)
4613                                 secmark_perm = PACKET__FORWARD_OUT;
4614                         else
4615                                 secmark_perm = PACKET__SEND;
4616                         break;
4617                 case PF_INET6:
4618                         if (IP6CB(skb)->flags & IP6SKB_FORWARDED)
4619                                 secmark_perm = PACKET__FORWARD_OUT;
4620                         else
4621                                 secmark_perm = PACKET__SEND;
4622                         break;
4623                 default:
4624                         return NF_DROP;
4625                 }
4626                 if (secmark_perm == PACKET__FORWARD_OUT) {
4627                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4628                                 return NF_DROP;
4629                 } else
4630                         peer_sid = SECINITSID_KERNEL;
4631         } else {
4632                 struct sk_security_struct *sksec = sk->sk_security;
4633                 peer_sid = sksec->sid;
4634                 secmark_perm = PACKET__SEND;
4635         }
4636
4637         COMMON_AUDIT_DATA_INIT(&ad, NET);
4638         ad.u.net.netif = ifindex;
4639         ad.u.net.family = family;
4640         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4641                 return NF_DROP;
4642
4643         if (secmark_active)
4644                 if (avc_has_perm(peer_sid, skb->secmark,
4645                                  SECCLASS_PACKET, secmark_perm, &ad))
4646                         return NF_DROP;
4647
4648         if (peerlbl_active) {
4649                 u32 if_sid;
4650                 u32 node_sid;
4651
4652                 if (sel_netif_sid(ifindex, &if_sid))
4653                         return NF_DROP;
4654                 if (avc_has_perm(peer_sid, if_sid,
4655                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
4656                         return NF_DROP;
4657
4658                 if (sel_netnode_sid(addrp, family, &node_sid))
4659                         return NF_DROP;
4660                 if (avc_has_perm(peer_sid, node_sid,
4661                                  SECCLASS_NODE, NODE__SENDTO, &ad))
4662                         return NF_DROP;
4663         }
4664
4665         return NF_ACCEPT;
4666 }
4667
4668 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4669                                            struct sk_buff *skb,
4670                                            const struct net_device *in,
4671                                            const struct net_device *out,
4672                                            int (*okfn)(struct sk_buff *))
4673 {
4674         return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4675 }
4676
4677 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4678 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4679                                            struct sk_buff *skb,
4680                                            const struct net_device *in,
4681                                            const struct net_device *out,
4682                                            int (*okfn)(struct sk_buff *))
4683 {
4684         return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4685 }
4686 #endif  /* IPV6 */
4687
4688 #endif  /* CONFIG_NETFILTER */
4689
4690 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4691 {
4692         int err;
4693
4694         err = cap_netlink_send(sk, skb);
4695         if (err)
4696                 return err;
4697
4698         return selinux_nlmsg_perm(sk, skb);
4699 }
4700
4701 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4702 {
4703         int err;
4704         struct common_audit_data ad;
4705
4706         err = cap_netlink_recv(skb, capability);
4707         if (err)
4708                 return err;
4709
4710         COMMON_AUDIT_DATA_INIT(&ad, CAP);
4711         ad.u.cap = capability;
4712
4713         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
4714                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
4715 }
4716
4717 static int ipc_alloc_security(struct task_struct *task,
4718                               struct kern_ipc_perm *perm,
4719                               u16 sclass)
4720 {
4721         struct ipc_security_struct *isec;
4722         u32 sid;
4723
4724         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4725         if (!isec)
4726                 return -ENOMEM;
4727
4728         sid = task_sid(task);
4729         isec->sclass = sclass;
4730         isec->sid = sid;
4731         perm->security = isec;
4732
4733         return 0;
4734 }
4735
4736 static void ipc_free_security(struct kern_ipc_perm *perm)
4737 {
4738         struct ipc_security_struct *isec = perm->security;
4739         perm->security = NULL;
4740         kfree(isec);
4741 }
4742
4743 static int msg_msg_alloc_security(struct msg_msg *msg)
4744 {
4745         struct msg_security_struct *msec;
4746
4747         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4748         if (!msec)
4749                 return -ENOMEM;
4750
4751         msec->sid = SECINITSID_UNLABELED;
4752         msg->security = msec;
4753
4754         return 0;
4755 }
4756
4757 static void msg_msg_free_security(struct msg_msg *msg)
4758 {
4759         struct msg_security_struct *msec = msg->security;
4760
4761         msg->security = NULL;
4762         kfree(msec);
4763 }
4764
4765 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4766                         u32 perms)
4767 {
4768         struct ipc_security_struct *isec;
4769         struct common_audit_data ad;
4770         u32 sid = current_sid();
4771
4772         isec = ipc_perms->security;
4773
4774         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4775         ad.u.ipc_id = ipc_perms->key;
4776
4777         return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4778 }
4779
4780 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4781 {
4782         return msg_msg_alloc_security(msg);
4783 }
4784
4785 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4786 {
4787         msg_msg_free_security(msg);
4788 }
4789
4790 /* message queue security operations */
4791 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4792 {
4793         struct ipc_security_struct *isec;
4794         struct common_audit_data ad;
4795         u32 sid = current_sid();
4796         int rc;
4797
4798         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4799         if (rc)
4800                 return rc;
4801
4802         isec = msq->q_perm.security;
4803
4804         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4805         ad.u.ipc_id = msq->q_perm.key;
4806
4807         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4808                           MSGQ__CREATE, &ad);
4809         if (rc) {
4810                 ipc_free_security(&msq->q_perm);
4811                 return rc;
4812         }
4813         return 0;
4814 }
4815
4816 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4817 {
4818         ipc_free_security(&msq->q_perm);
4819 }
4820
4821 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4822 {
4823         struct ipc_security_struct *isec;
4824         struct common_audit_data ad;
4825         u32 sid = current_sid();
4826
4827         isec = msq->q_perm.security;
4828
4829         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4830         ad.u.ipc_id = msq->q_perm.key;
4831
4832         return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4833                             MSGQ__ASSOCIATE, &ad);
4834 }
4835
4836 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4837 {
4838         int err;
4839         int perms;
4840
4841         switch (cmd) {
4842         case IPC_INFO:
4843         case MSG_INFO:
4844                 /* No specific object, just general system-wide information. */
4845                 return task_has_system(current, SYSTEM__IPC_INFO);
4846         case IPC_STAT:
4847         case MSG_STAT:
4848                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4849                 break;
4850         case IPC_SET:
4851                 perms = MSGQ__SETATTR;
4852                 break;
4853         case IPC_RMID:
4854                 perms = MSGQ__DESTROY;
4855                 break;
4856         default:
4857                 return 0;
4858         }
4859
4860         err = ipc_has_perm(&msq->q_perm, perms);
4861         return err;
4862 }
4863
4864 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4865 {
4866         struct ipc_security_struct *isec;
4867         struct msg_security_struct *msec;
4868         struct common_audit_data ad;
4869         u32 sid = current_sid();
4870         int rc;
4871
4872         isec = msq->q_perm.security;
4873         msec = msg->security;
4874
4875         /*
4876          * First time through, need to assign label to the message
4877          */
4878         if (msec->sid == SECINITSID_UNLABELED) {
4879                 /*
4880                  * Compute new sid based on current process and
4881                  * message queue this message will be stored in
4882                  */
4883                 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4884                                              &msec->sid);
4885                 if (rc)
4886                         return rc;
4887         }
4888
4889         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4890         ad.u.ipc_id = msq->q_perm.key;
4891
4892         /* Can this process write to the queue? */
4893         rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4894                           MSGQ__WRITE, &ad);
4895         if (!rc)
4896                 /* Can this process send the message */
4897                 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4898                                   MSG__SEND, &ad);
4899         if (!rc)
4900                 /* Can the message be put in the queue? */
4901                 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4902                                   MSGQ__ENQUEUE, &ad);
4903
4904         return rc;
4905 }
4906
4907 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4908                                     struct task_struct *target,
4909                                     long type, int mode)
4910 {
4911         struct ipc_security_struct *isec;
4912         struct msg_security_struct *msec;
4913         struct common_audit_data ad;
4914         u32 sid = task_sid(target);
4915         int rc;
4916
4917         isec = msq->q_perm.security;
4918         msec = msg->security;
4919
4920         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4921         ad.u.ipc_id = msq->q_perm.key;
4922
4923         rc = avc_has_perm(sid, isec->sid,
4924                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4925         if (!rc)
4926                 rc = avc_has_perm(sid, msec->sid,
4927                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4928         return rc;
4929 }
4930
4931 /* Shared Memory security operations */
4932 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4933 {
4934         struct ipc_security_struct *isec;
4935         struct common_audit_data ad;
4936         u32 sid = current_sid();
4937         int rc;
4938
4939         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4940         if (rc)
4941                 return rc;
4942
4943         isec = shp->shm_perm.security;
4944
4945         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4946         ad.u.ipc_id = shp->shm_perm.key;
4947
4948         rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4949                           SHM__CREATE, &ad);
4950         if (rc) {
4951                 ipc_free_security(&shp->shm_perm);
4952                 return rc;
4953         }
4954         return 0;
4955 }
4956
4957 static void selinux_shm_free_security(struct shmid_kernel *shp)
4958 {
4959         ipc_free_security(&shp->shm_perm);
4960 }
4961
4962 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4963 {
4964         struct ipc_security_struct *isec;
4965         struct common_audit_data ad;
4966         u32 sid = current_sid();
4967
4968         isec = shp->shm_perm.security;
4969
4970         COMMON_AUDIT_DATA_INIT(&ad, IPC);
4971         ad.u.ipc_id = shp->shm_perm.key;
4972
4973         return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4974                             SHM__ASSOCIATE, &ad);
4975 }
4976
4977 /* Note, at this point, shp is locked down */
4978 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4979 {
4980         int perms;
4981         int err;
4982
4983         switch (cmd) {
4984         case IPC_INFO:
4985         case SHM_INFO:
4986                 /* No specific object, just general system-wide information. */
4987                 return task_has_system(current, SYSTEM__IPC_INFO);
4988         case IPC_STAT:
4989         case SHM_STAT:
4990                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4991                 break;
4992         case IPC_SET:
4993                 perms = SHM__SETATTR;
4994                 break;
4995         case SHM_LOCK:
4996         case SHM_UNLOCK:
4997                 perms = SHM__LOCK;
4998                 break;
4999         case IPC_RMID:
5000                 perms = SHM__DESTROY;
5001                 break;
5002         default:
5003                 return 0;
5004         }
5005
5006         err = ipc_has_perm(&shp->shm_perm, perms);
5007         return err;
5008 }
5009
5010 static int selinux_shm_shmat(struct shmid_kernel *shp,
5011                              char __user *shmaddr, int shmflg)
5012 {
5013         u32 perms;
5014
5015         if (shmflg & SHM_RDONLY)
5016                 perms = SHM__READ;
5017         else
5018                 perms = SHM__READ | SHM__WRITE;
5019
5020         return ipc_has_perm(&shp->shm_perm, perms);
5021 }
5022
5023 /* Semaphore security operations */
5024 static int selinux_sem_alloc_security(struct sem_array *sma)
5025 {
5026         struct ipc_security_struct *isec;
5027         struct common_audit_data ad;
5028         u32 sid = current_sid();
5029         int rc;
5030
5031         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5032         if (rc)
5033                 return rc;
5034
5035         isec = sma->sem_perm.security;
5036
5037         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5038         ad.u.ipc_id = sma->sem_perm.key;
5039
5040         rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5041                           SEM__CREATE, &ad);
5042         if (rc) {
5043                 ipc_free_security(&sma->sem_perm);
5044                 return rc;
5045         }
5046         return 0;
5047 }
5048
5049 static void selinux_sem_free_security(struct sem_array *sma)
5050 {
5051         ipc_free_security(&sma->sem_perm);
5052 }
5053
5054 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5055 {
5056         struct ipc_security_struct *isec;
5057         struct common_audit_data ad;
5058         u32 sid = current_sid();
5059
5060         isec = sma->sem_perm.security;
5061
5062         COMMON_AUDIT_DATA_INIT(&ad, IPC);
5063         ad.u.ipc_id = sma->sem_perm.key;
5064
5065         return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5066                             SEM__ASSOCIATE, &ad);
5067 }
5068
5069 /* Note, at this point, sma is locked down */
5070 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5071 {
5072         int err;
5073         u32 perms;
5074
5075         switch (cmd) {
5076         case IPC_INFO:
5077         case SEM_INFO:
5078                 /* No specific object, just general system-wide information. */
5079                 return task_has_system(current, SYSTEM__IPC_INFO);
5080         case GETPID:
5081         case GETNCNT:
5082         case GETZCNT:
5083                 perms = SEM__GETATTR;
5084                 break;
5085         case GETVAL:
5086         case GETALL:
5087                 perms = SEM__READ;
5088                 break;
5089         case SETVAL:
5090         case SETALL:
5091                 perms = SEM__WRITE;
5092                 break;
5093         case IPC_RMID:
5094                 perms = SEM__DESTROY;
5095                 break;
5096         case IPC_SET:
5097                 perms = SEM__SETATTR;
5098                 break;
5099         case IPC_STAT:
5100         case SEM_STAT:
5101                 perms = SEM__GETATTR | SEM__ASSOCIATE;
5102                 break;
5103         default:
5104                 return 0;
5105         }
5106
5107         err = ipc_has_perm(&sma->sem_perm, perms);
5108         return err;
5109 }
5110
5111 static int selinux_sem_semop(struct sem_array *sma,
5112                              struct sembuf *sops, unsigned nsops, int alter)
5113 {
5114         u32 perms;
5115
5116         if (alter)
5117                 perms = SEM__READ | SEM__WRITE;
5118         else
5119                 perms = SEM__READ;
5120
5121         return ipc_has_perm(&sma->sem_perm, perms);
5122 }
5123
5124 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5125 {
5126         u32 av = 0;
5127
5128         av = 0;
5129         if (flag & S_IRUGO)
5130                 av |= IPC__UNIX_READ;
5131         if (flag & S_IWUGO)
5132                 av |= IPC__UNIX_WRITE;
5133
5134         if (av == 0)
5135                 return 0;
5136
5137         return ipc_has_perm(ipcp, av);
5138 }
5139
5140 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5141 {
5142         struct ipc_security_struct *isec = ipcp->security;
5143         *secid = isec->sid;
5144 }
5145
5146 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5147 {
5148         if (inode)
5149                 inode_doinit_with_dentry(inode, dentry);
5150 }
5151
5152 static int selinux_getprocattr(struct task_struct *p,
5153                                char *name, char **value)
5154 {
5155         const struct task_security_struct *__tsec;
5156         u32 sid;
5157         int error;
5158         unsigned len;
5159
5160         if (current != p) {
5161                 error = current_has_perm(p, PROCESS__GETATTR);
5162                 if (error)
5163                         return error;
5164         }
5165
5166         rcu_read_lock();
5167         __tsec = __task_cred(p)->security;
5168
5169         if (!strcmp(name, "current"))
5170                 sid = __tsec->sid;
5171         else if (!strcmp(name, "prev"))
5172                 sid = __tsec->osid;
5173         else if (!strcmp(name, "exec"))
5174                 sid = __tsec->exec_sid;
5175         else if (!strcmp(name, "fscreate"))
5176                 sid = __tsec->create_sid;
5177         else if (!strcmp(name, "keycreate"))
5178                 sid = __tsec->keycreate_sid;
5179         else if (!strcmp(name, "sockcreate"))
5180                 sid = __tsec->sockcreate_sid;
5181         else
5182                 goto invalid;
5183         rcu_read_unlock();
5184
5185         if (!sid)
5186                 return 0;
5187
5188         error = security_sid_to_context(sid, value, &len);
5189         if (error)
5190                 return error;
5191         return len;
5192
5193 invalid:
5194         rcu_read_unlock();
5195         return -EINVAL;
5196 }
5197
5198 static int selinux_setprocattr(struct task_struct *p,
5199                                char *name, void *value, size_t size)
5200 {
5201         struct task_security_struct *tsec;
5202         struct task_struct *tracer;
5203         struct cred *new;
5204         u32 sid = 0, ptsid;
5205         int error;
5206         char *str = value;
5207
5208         if (current != p) {
5209                 /* SELinux only allows a process to change its own
5210                    security attributes. */
5211                 return -EACCES;
5212         }
5213
5214         /*
5215          * Basic control over ability to set these attributes at all.
5216          * current == p, but we'll pass them separately in case the
5217          * above restriction is ever removed.
5218          */
5219         if (!strcmp(name, "exec"))
5220                 error = current_has_perm(p, PROCESS__SETEXEC);
5221         else if (!strcmp(name, "fscreate"))
5222                 error = current_has_perm(p, PROCESS__SETFSCREATE);
5223         else if (!strcmp(name, "keycreate"))
5224                 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5225         else if (!strcmp(name, "sockcreate"))
5226                 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5227         else if (!strcmp(name, "current"))
5228                 error = current_has_perm(p, PROCESS__SETCURRENT);
5229         else
5230                 error = -EINVAL;
5231         if (error)
5232                 return error;
5233
5234         /* Obtain a SID for the context, if one was specified. */
5235         if (size && str[1] && str[1] != '\n') {
5236                 if (str[size-1] == '\n') {
5237                         str[size-1] = 0;
5238                         size--;
5239                 }
5240                 error = security_context_to_sid(value, size, &sid);
5241                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5242                         if (!capable(CAP_MAC_ADMIN))
5243                                 return error;
5244                         error = security_context_to_sid_force(value, size,
5245                                                               &sid);
5246                 }
5247                 if (error)
5248                         return error;
5249         }
5250
5251         new = prepare_creds();
5252         if (!new)
5253                 return -ENOMEM;
5254
5255         /* Permission checking based on the specified context is
5256            performed during the actual operation (execve,
5257            open/mkdir/...), when we know the full context of the
5258            operation.  See selinux_bprm_set_creds for the execve
5259            checks and may_create for the file creation checks. The
5260            operation will then fail if the context is not permitted. */
5261         tsec = new->security;
5262         if (!strcmp(name, "exec")) {
5263                 tsec->exec_sid = sid;
5264         } else if (!strcmp(name, "fscreate")) {
5265                 tsec->create_sid = sid;
5266         } else if (!strcmp(name, "keycreate")) {
5267                 error = may_create_key(sid, p);
5268                 if (error)
5269                         goto abort_change;
5270                 tsec->keycreate_sid = sid;
5271         } else if (!strcmp(name, "sockcreate")) {
5272                 tsec->sockcreate_sid = sid;
5273         } else if (!strcmp(name, "current")) {
5274                 error = -EINVAL;
5275                 if (sid == 0)
5276                         goto abort_change;
5277
5278                 /* Only allow single threaded processes to change context */
5279                 error = -EPERM;
5280                 if (!current_is_single_threaded()) {
5281                         error = security_bounded_transition(tsec->sid, sid);
5282                         if (error)
5283                                 goto abort_change;
5284                 }
5285
5286                 /* Check permissions for the transition. */
5287                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5288                                      PROCESS__DYNTRANSITION, NULL);
5289                 if (error)
5290                         goto abort_change;
5291
5292                 /* Check for ptracing, and update the task SID if ok.
5293                    Otherwise, leave SID unchanged and fail. */
5294                 ptsid = 0;
5295                 task_lock(p);
5296                 tracer = tracehook_tracer_task(p);
5297                 if (tracer)
5298                         ptsid = task_sid(tracer);
5299                 task_unlock(p);
5300
5301                 if (tracer) {
5302                         error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5303                                              PROCESS__PTRACE, NULL);
5304                         if (error)
5305                                 goto abort_change;
5306                 }
5307
5308                 tsec->sid = sid;
5309         } else {
5310                 error = -EINVAL;
5311                 goto abort_change;
5312         }
5313
5314         commit_creds(new);
5315         return size;
5316
5317 abort_change:
5318         abort_creds(new);
5319         return error;
5320 }
5321
5322 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5323 {
5324         return security_sid_to_context(secid, secdata, seclen);
5325 }
5326
5327 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5328 {
5329         return security_context_to_sid(secdata, seclen, secid);
5330 }
5331
5332 static void selinux_release_secctx(char *secdata, u32 seclen)
5333 {
5334         kfree(secdata);
5335 }
5336
5337 /*
5338  *      called with inode->i_mutex locked
5339  */
5340 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5341 {
5342         return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5343 }
5344
5345 /*
5346  *      called with inode->i_mutex locked
5347  */
5348 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5349 {
5350         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5351 }
5352
5353 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5354 {
5355         int len = 0;
5356         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5357                                                 ctx, true);
5358         if (len < 0)
5359                 return len;
5360         *ctxlen = len;
5361         return 0;
5362 }
5363 #ifdef CONFIG_KEYS
5364
5365 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5366                              unsigned long flags)
5367 {
5368         const struct task_security_struct *tsec;
5369         struct key_security_struct *ksec;
5370
5371         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5372         if (!ksec)
5373                 return -ENOMEM;
5374
5375         tsec = cred->security;
5376         if (tsec->keycreate_sid)
5377                 ksec->sid = tsec->keycreate_sid;
5378         else
5379                 ksec->sid = tsec->sid;
5380
5381         k->security = ksec;
5382         return 0;
5383 }
5384
5385 static void selinux_key_free(struct key *k)
5386 {
5387         struct key_security_struct *ksec = k->security;
5388
5389         k->security = NULL;
5390         kfree(ksec);
5391 }
5392
5393 static int selinux_key_permission(key_ref_t key_ref,
5394                                   const struct cred *cred,
5395                                   key_perm_t perm)
5396 {
5397         struct key *key;
5398         struct key_security_struct *ksec;
5399         u32 sid;
5400
5401         /* if no specific permissions are requested, we skip the
5402            permission check. No serious, additional covert channels
5403            appear to be created. */
5404         if (perm == 0)
5405                 return 0;
5406
5407         sid = cred_sid(cred);
5408
5409         key = key_ref_to_ptr(key_ref);
5410         ksec = key->security;
5411
5412         return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5413 }
5414
5415 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5416 {
5417         struct key_security_struct *ksec = key->security;
5418         char *context = NULL;
5419         unsigned len;
5420         int rc;
5421
5422         rc = security_sid_to_context(ksec->sid, &context, &len);
5423         if (!rc)
5424                 rc = len;
5425         *_buffer = context;
5426         return rc;
5427 }
5428
5429 #endif
5430
5431 static struct security_operations selinux_ops = {
5432         .name =                         "selinux",
5433
5434         .ptrace_access_check =          selinux_ptrace_access_check,
5435         .ptrace_traceme =               selinux_ptrace_traceme,
5436         .capget =                       selinux_capget,
5437         .capset =                       selinux_capset,
5438         .sysctl =                       selinux_sysctl,
5439         .capable =                      selinux_capable,
5440         .quotactl =                     selinux_quotactl,
5441         .quota_on =                     selinux_quota_on,
5442         .syslog =                       selinux_syslog,
5443         .vm_enough_memory =             selinux_vm_enough_memory,
5444
5445         .netlink_send =                 selinux_netlink_send,
5446         .netlink_recv =                 selinux_netlink_recv,
5447
5448         .bprm_set_creds =               selinux_bprm_set_creds,
5449         .bprm_committing_creds =        selinux_bprm_committing_creds,
5450         .bprm_committed_creds =         selinux_bprm_committed_creds,
5451         .bprm_secureexec =              selinux_bprm_secureexec,
5452
5453         .sb_alloc_security =            selinux_sb_alloc_security,
5454         .sb_free_security =             selinux_sb_free_security,
5455         .sb_copy_data =                 selinux_sb_copy_data,
5456         .sb_kern_mount =                selinux_sb_kern_mount,
5457         .sb_show_options =              selinux_sb_show_options,
5458         .sb_statfs =                    selinux_sb_statfs,
5459         .sb_mount =                     selinux_mount,
5460         .sb_umount =                    selinux_umount,
5461         .sb_set_mnt_opts =              selinux_set_mnt_opts,
5462         .sb_clone_mnt_opts =            selinux_sb_clone_mnt_opts,
5463         .sb_parse_opts_str =            selinux_parse_opts_str,
5464
5465
5466         .inode_alloc_security =         selinux_inode_alloc_security,
5467         .inode_free_security =          selinux_inode_free_security,
5468         .inode_init_security =          selinux_inode_init_security,
5469         .inode_create =                 selinux_inode_create,
5470         .inode_link =                   selinux_inode_link,
5471         .inode_unlink =                 selinux_inode_unlink,
5472         .inode_symlink =                selinux_inode_symlink,
5473         .inode_mkdir =                  selinux_inode_mkdir,
5474         .inode_rmdir =                  selinux_inode_rmdir,
5475         .inode_mknod =                  selinux_inode_mknod,
5476         .inode_rename =                 selinux_inode_rename,
5477         .inode_readlink =               selinux_inode_readlink,
5478         .inode_follow_link =            selinux_inode_follow_link,
5479         .inode_permission =             selinux_inode_permission,
5480         .inode_setattr =                selinux_inode_setattr,
5481         .inode_getattr =                selinux_inode_getattr,
5482         .inode_setxattr =               selinux_inode_setxattr,
5483         .inode_post_setxattr =          selinux_inode_post_setxattr,
5484         .inode_getxattr =               selinux_inode_getxattr,
5485         .inode_listxattr =              selinux_inode_listxattr,
5486         .inode_removexattr =            selinux_inode_removexattr,
5487         .inode_getsecurity =            selinux_inode_getsecurity,
5488         .inode_setsecurity =            selinux_inode_setsecurity,
5489         .inode_listsecurity =           selinux_inode_listsecurity,
5490         .inode_getsecid =               selinux_inode_getsecid,
5491
5492         .file_permission =              selinux_file_permission,
5493         .file_alloc_security =          selinux_file_alloc_security,
5494         .file_free_security =           selinux_file_free_security,
5495         .file_ioctl =                   selinux_file_ioctl,
5496         .file_mmap =                    selinux_file_mmap,
5497         .file_mprotect =                selinux_file_mprotect,
5498         .file_lock =                    selinux_file_lock,
5499         .file_fcntl =                   selinux_file_fcntl,
5500         .file_set_fowner =              selinux_file_set_fowner,
5501         .file_send_sigiotask =          selinux_file_send_sigiotask,
5502         .file_receive =                 selinux_file_receive,
5503
5504         .dentry_open =                  selinux_dentry_open,
5505
5506         .task_create =                  selinux_task_create,
5507         .cred_alloc_blank =             selinux_cred_alloc_blank,
5508         .cred_free =                    selinux_cred_free,
5509         .cred_prepare =                 selinux_cred_prepare,
5510         .cred_transfer =                selinux_cred_transfer,
5511         .kernel_act_as =                selinux_kernel_act_as,
5512         .kernel_create_files_as =       selinux_kernel_create_files_as,
5513         .kernel_module_request =        selinux_kernel_module_request,
5514         .task_setpgid =                 selinux_task_setpgid,
5515         .task_getpgid =                 selinux_task_getpgid,
5516         .task_getsid =                  selinux_task_getsid,
5517         .task_getsecid =                selinux_task_getsecid,
5518         .task_setnice =                 selinux_task_setnice,
5519         .task_setioprio =               selinux_task_setioprio,
5520         .task_getioprio =               selinux_task_getioprio,
5521         .task_setrlimit =               selinux_task_setrlimit,
5522         .task_setscheduler =            selinux_task_setscheduler,
5523         .task_getscheduler =            selinux_task_getscheduler,
5524         .task_movememory =              selinux_task_movememory,
5525         .task_kill =                    selinux_task_kill,
5526         .task_wait =                    selinux_task_wait,
5527         .task_to_inode =                selinux_task_to_inode,
5528
5529         .ipc_permission =               selinux_ipc_permission,
5530         .ipc_getsecid =                 selinux_ipc_getsecid,
5531
5532         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
5533         .msg_msg_free_security =        selinux_msg_msg_free_security,
5534
5535         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
5536         .msg_queue_free_security =      selinux_msg_queue_free_security,
5537         .msg_queue_associate =          selinux_msg_queue_associate,
5538         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
5539         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
5540         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
5541
5542         .shm_alloc_security =           selinux_shm_alloc_security,
5543         .shm_free_security =            selinux_shm_free_security,
5544         .shm_associate =                selinux_shm_associate,
5545         .shm_shmctl =                   selinux_shm_shmctl,
5546         .shm_shmat =                    selinux_shm_shmat,
5547
5548         .sem_alloc_security =           selinux_sem_alloc_security,
5549         .sem_free_security =            selinux_sem_free_security,
5550         .sem_associate =                selinux_sem_associate,
5551         .sem_semctl =                   selinux_sem_semctl,
5552         .sem_semop =                    selinux_sem_semop,
5553
5554         .d_instantiate =                selinux_d_instantiate,
5555
5556         .getprocattr =                  selinux_getprocattr,
5557         .setprocattr =                  selinux_setprocattr,
5558
5559         .secid_to_secctx =              selinux_secid_to_secctx,
5560         .secctx_to_secid =              selinux_secctx_to_secid,
5561         .release_secctx =               selinux_release_secctx,
5562         .inode_notifysecctx =           selinux_inode_notifysecctx,
5563         .inode_setsecctx =              selinux_inode_setsecctx,
5564         .inode_getsecctx =              selinux_inode_getsecctx,
5565
5566         .unix_stream_connect =          selinux_socket_unix_stream_connect,
5567         .unix_may_send =                selinux_socket_unix_may_send,
5568
5569         .socket_create =                selinux_socket_create,
5570         .socket_post_create =           selinux_socket_post_create,
5571         .socket_bind =                  selinux_socket_bind,
5572         .socket_connect =               selinux_socket_connect,
5573         .socket_listen =                selinux_socket_listen,
5574         .socket_accept =                selinux_socket_accept,
5575         .socket_sendmsg =               selinux_socket_sendmsg,
5576         .socket_recvmsg =               selinux_socket_recvmsg,
5577         .socket_getsockname =           selinux_socket_getsockname,
5578         .socket_getpeername =           selinux_socket_getpeername,
5579         .socket_getsockopt =            selinux_socket_getsockopt,
5580         .socket_setsockopt =            selinux_socket_setsockopt,
5581         .socket_shutdown =              selinux_socket_shutdown,
5582         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
5583         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
5584         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
5585         .sk_alloc_security =            selinux_sk_alloc_security,
5586         .sk_free_security =             selinux_sk_free_security,
5587         .sk_clone_security =            selinux_sk_clone_security,
5588         .sk_getsecid =                  selinux_sk_getsecid,
5589         .sock_graft =                   selinux_sock_graft,
5590         .inet_conn_request =            selinux_inet_conn_request,
5591         .inet_csk_clone =               selinux_inet_csk_clone,
5592         .inet_conn_established =        selinux_inet_conn_established,
5593         .req_classify_flow =            selinux_req_classify_flow,
5594         .tun_dev_create =               selinux_tun_dev_create,
5595         .tun_dev_post_create =          selinux_tun_dev_post_create,
5596         .tun_dev_attach =               selinux_tun_dev_attach,
5597
5598 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5599         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
5600         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
5601         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
5602         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
5603         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
5604         .xfrm_state_free_security =     selinux_xfrm_state_free,
5605         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
5606         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
5607         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
5608         .xfrm_decode_session =          selinux_xfrm_decode_session,
5609 #endif
5610
5611 #ifdef CONFIG_KEYS
5612         .key_alloc =                    selinux_key_alloc,
5613         .key_free =                     selinux_key_free,
5614         .key_permission =               selinux_key_permission,
5615         .key_getsecurity =              selinux_key_getsecurity,
5616 #endif
5617
5618 #ifdef CONFIG_AUDIT
5619         .audit_rule_init =              selinux_audit_rule_init,
5620         .audit_rule_known =             selinux_audit_rule_known,
5621         .audit_rule_match =             selinux_audit_rule_match,
5622         .audit_rule_free =              selinux_audit_rule_free,
5623 #endif
5624 };
5625
5626 static __init int selinux_init(void)
5627 {
5628         if (!security_module_enable(&selinux_ops)) {
5629                 selinux_enabled = 0;
5630                 return 0;
5631         }
5632
5633         if (!selinux_enabled) {
5634                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5635                 return 0;
5636         }
5637
5638         printk(KERN_INFO "SELinux:  Initializing.\n");
5639
5640         /* Set the security state for the initial task. */
5641         cred_init_security();
5642
5643         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5644
5645         sel_inode_cache = kmem_cache_create("selinux_inode_security",
5646                                             sizeof(struct inode_security_struct),
5647                                             0, SLAB_PANIC, NULL);
5648         avc_init();
5649
5650         if (register_security(&selinux_ops))
5651                 panic("SELinux: Unable to register with kernel.\n");
5652
5653         if (selinux_enforcing)
5654                 printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5655         else
5656                 printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5657
5658         return 0;
5659 }
5660
5661 static void delayed_superblock_init(struct super_block *sb, void *unused)
5662 {
5663         superblock_doinit(sb, NULL);
5664 }
5665
5666 void selinux_complete_init(void)
5667 {
5668         printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5669
5670         /* Set up any superblocks initialized prior to the policy load. */
5671         printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5672         iterate_supers(delayed_superblock_init, NULL);
5673 }
5674
5675 /* SELinux requires early initialization in order to label
5676    all processes and objects when they are created. */
5677 security_initcall(selinux_init);
5678
5679 #if defined(CONFIG_NETFILTER)
5680
5681 static struct nf_hook_ops selinux_ipv4_ops[] = {
5682         {
5683                 .hook =         selinux_ipv4_postroute,
5684                 .owner =        THIS_MODULE,
5685                 .pf =           PF_INET,
5686                 .hooknum =      NF_INET_POST_ROUTING,
5687                 .priority =     NF_IP_PRI_SELINUX_LAST,
5688         },
5689         {
5690                 .hook =         selinux_ipv4_forward,
5691                 .owner =        THIS_MODULE,
5692                 .pf =           PF_INET,
5693                 .hooknum =      NF_INET_FORWARD,
5694                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5695         },
5696         {
5697                 .hook =         selinux_ipv4_output,
5698                 .owner =        THIS_MODULE,
5699                 .pf =           PF_INET,
5700                 .hooknum =      NF_INET_LOCAL_OUT,
5701                 .priority =     NF_IP_PRI_SELINUX_FIRST,
5702         }
5703 };
5704
5705 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5706
5707 static struct nf_hook_ops selinux_ipv6_ops[] = {
5708         {
5709                 .hook =         selinux_ipv6_postroute,
5710                 .owner =        THIS_MODULE,
5711                 .pf =           PF_INET6,
5712                 .hooknum =      NF_INET_POST_ROUTING,
5713                 .priority =     NF_IP6_PRI_SELINUX_LAST,
5714         },
5715         {
5716                 .hook =         selinux_ipv6_forward,
5717                 .owner =        THIS_MODULE,
5718                 .pf =           PF_INET6,
5719                 .hooknum =      NF_INET_FORWARD,
5720                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
5721         }
5722 };
5723
5724 #endif  /* IPV6 */
5725
5726 static int __init selinux_nf_ip_init(void)
5727 {
5728         int err = 0;
5729
5730         if (!selinux_enabled)
5731                 goto out;
5732
5733         printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5734
5735         err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5736         if (err)
5737                 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5738
5739 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5740         err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5741         if (err)
5742                 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5743 #endif  /* IPV6 */
5744
5745 out:
5746         return err;
5747 }
5748
5749 __initcall(selinux_nf_ip_init);
5750
5751 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5752 static void selinux_nf_ip_exit(void)
5753 {
5754         printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5755
5756         nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5757 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5758         nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5759 #endif  /* IPV6 */
5760 }
5761 #endif
5762
5763 #else /* CONFIG_NETFILTER */
5764
5765 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5766 #define selinux_nf_ip_exit()
5767 #endif
5768
5769 #endif /* CONFIG_NETFILTER */
5770
5771 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5772 static int selinux_disabled;
5773
5774 int selinux_disable(void)
5775 {
5776         extern void exit_sel_fs(void);
5777
5778         if (ss_initialized) {
5779                 /* Not permitted after initial policy load. */
5780                 return -EINVAL;
5781         }
5782
5783         if (selinux_disabled) {
5784                 /* Only do this once. */
5785                 return -EINVAL;
5786         }
5787
5788         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5789
5790         selinux_disabled = 1;
5791         selinux_enabled = 0;
5792
5793         reset_security_ops();
5794
5795         /* Try to destroy the avc node cache */
5796         avc_disable();
5797
5798         /* Unregister netfilter hooks. */
5799         selinux_nf_ip_exit();
5800
5801         /* Unregister selinuxfs. */
5802         exit_sel_fs();
5803
5804         return 0;
5805 }
5806 #endif