Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mfashe...
[sfrench/cifs-2.6.git] / security / selinux / hooks.c
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *            Chris Vance, <cvance@nai.com>
8  *            Wayne Salamon, <wsalamon@nai.com>
9  *            James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
14  *                          <dgoeddel@trustedcs.com>
15  *  Copyright (C) 2006 Hewlett-Packard Development Company, L.P.
16  *                     Paul Moore, <paul.moore@hp.com>
17  *
18  *      This program is free software; you can redistribute it and/or modify
19  *      it under the terms of the GNU General Public License version 2,
20  *      as published by the Free Software Foundation.
21  */
22
23 #include <linux/module.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/errno.h>
28 #include <linux/sched.h>
29 #include <linux/security.h>
30 #include <linux/xattr.h>
31 #include <linux/capability.h>
32 #include <linux/unistd.h>
33 #include <linux/mm.h>
34 #include <linux/mman.h>
35 #include <linux/slab.h>
36 #include <linux/pagemap.h>
37 #include <linux/swap.h>
38 #include <linux/smp_lock.h>
39 #include <linux/spinlock.h>
40 #include <linux/syscalls.h>
41 #include <linux/file.h>
42 #include <linux/namei.h>
43 #include <linux/mount.h>
44 #include <linux/ext2_fs.h>
45 #include <linux/proc_fs.h>
46 #include <linux/kd.h>
47 #include <linux/netfilter_ipv4.h>
48 #include <linux/netfilter_ipv6.h>
49 #include <linux/tty.h>
50 #include <net/icmp.h>
51 #include <net/ip.h>             /* for sysctl_local_port_range[] */
52 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
53 #include <asm/uaccess.h>
54 #include <asm/ioctls.h>
55 #include <linux/bitops.h>
56 #include <linux/interrupt.h>
57 #include <linux/netdevice.h>    /* for network interface checks */
58 #include <linux/netlink.h>
59 #include <linux/tcp.h>
60 #include <linux/udp.h>
61 #include <linux/dccp.h>
62 #include <linux/quota.h>
63 #include <linux/un.h>           /* for Unix socket types */
64 #include <net/af_unix.h>        /* for Unix socket types */
65 #include <linux/parser.h>
66 #include <linux/nfs_mount.h>
67 #include <net/ipv6.h>
68 #include <linux/hugetlb.h>
69 #include <linux/personality.h>
70 #include <linux/sysctl.h>
71 #include <linux/audit.h>
72 #include <linux/string.h>
73 #include <linux/selinux.h>
74 #include <linux/mutex.h>
75
76 #include "avc.h"
77 #include "objsec.h"
78 #include "netif.h"
79 #include "xfrm.h"
80 #include "selinux_netlabel.h"
81
82 #define XATTR_SELINUX_SUFFIX "selinux"
83 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX
84
85 extern unsigned int policydb_loaded_version;
86 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
87 extern int selinux_compat_net;
88
89 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
90 int selinux_enforcing = 0;
91
92 static int __init enforcing_setup(char *str)
93 {
94         selinux_enforcing = simple_strtol(str,NULL,0);
95         return 1;
96 }
97 __setup("enforcing=", enforcing_setup);
98 #endif
99
100 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
101 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
102
103 static int __init selinux_enabled_setup(char *str)
104 {
105         selinux_enabled = simple_strtol(str, NULL, 0);
106         return 1;
107 }
108 __setup("selinux=", selinux_enabled_setup);
109 #else
110 int selinux_enabled = 1;
111 #endif
112
113 /* Original (dummy) security module. */
114 static struct security_operations *original_ops = NULL;
115
116 /* Minimal support for a secondary security module,
117    just to allow the use of the dummy or capability modules.
118    The owlsm module can alternatively be used as a secondary
119    module as long as CONFIG_OWLSM_FD is not enabled. */
120 static struct security_operations *secondary_ops = NULL;
121
122 /* Lists of inode and superblock security structures initialized
123    before the policy was loaded. */
124 static LIST_HEAD(superblock_security_head);
125 static DEFINE_SPINLOCK(sb_security_lock);
126
127 static struct kmem_cache *sel_inode_cache;
128
129 /* Return security context for a given sid or just the context 
130    length if the buffer is null or length is 0 */
131 static int selinux_getsecurity(u32 sid, void *buffer, size_t size)
132 {
133         char *context;
134         unsigned len;
135         int rc;
136
137         rc = security_sid_to_context(sid, &context, &len);
138         if (rc)
139                 return rc;
140
141         if (!buffer || !size)
142                 goto getsecurity_exit;
143
144         if (size < len) {
145                 len = -ERANGE;
146                 goto getsecurity_exit;
147         }
148         memcpy(buffer, context, len);
149
150 getsecurity_exit:
151         kfree(context);
152         return len;
153 }
154
155 /* Allocate and free functions for each kind of security blob. */
156
157 static int task_alloc_security(struct task_struct *task)
158 {
159         struct task_security_struct *tsec;
160
161         tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
162         if (!tsec)
163                 return -ENOMEM;
164
165         tsec->task = task;
166         tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED;
167         task->security = tsec;
168
169         return 0;
170 }
171
172 static void task_free_security(struct task_struct *task)
173 {
174         struct task_security_struct *tsec = task->security;
175         task->security = NULL;
176         kfree(tsec);
177 }
178
179 static int inode_alloc_security(struct inode *inode)
180 {
181         struct task_security_struct *tsec = current->security;
182         struct inode_security_struct *isec;
183
184         isec = kmem_cache_alloc(sel_inode_cache, GFP_KERNEL);
185         if (!isec)
186                 return -ENOMEM;
187
188         memset(isec, 0, sizeof(*isec));
189         mutex_init(&isec->lock);
190         INIT_LIST_HEAD(&isec->list);
191         isec->inode = inode;
192         isec->sid = SECINITSID_UNLABELED;
193         isec->sclass = SECCLASS_FILE;
194         isec->task_sid = tsec->sid;
195         inode->i_security = isec;
196
197         return 0;
198 }
199
200 static void inode_free_security(struct inode *inode)
201 {
202         struct inode_security_struct *isec = inode->i_security;
203         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
204
205         spin_lock(&sbsec->isec_lock);
206         if (!list_empty(&isec->list))
207                 list_del_init(&isec->list);
208         spin_unlock(&sbsec->isec_lock);
209
210         inode->i_security = NULL;
211         kmem_cache_free(sel_inode_cache, isec);
212 }
213
214 static int file_alloc_security(struct file *file)
215 {
216         struct task_security_struct *tsec = current->security;
217         struct file_security_struct *fsec;
218
219         fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
220         if (!fsec)
221                 return -ENOMEM;
222
223         fsec->file = file;
224         fsec->sid = tsec->sid;
225         fsec->fown_sid = tsec->sid;
226         file->f_security = fsec;
227
228         return 0;
229 }
230
231 static void file_free_security(struct file *file)
232 {
233         struct file_security_struct *fsec = file->f_security;
234         file->f_security = NULL;
235         kfree(fsec);
236 }
237
238 static int superblock_alloc_security(struct super_block *sb)
239 {
240         struct superblock_security_struct *sbsec;
241
242         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
243         if (!sbsec)
244                 return -ENOMEM;
245
246         mutex_init(&sbsec->lock);
247         INIT_LIST_HEAD(&sbsec->list);
248         INIT_LIST_HEAD(&sbsec->isec_head);
249         spin_lock_init(&sbsec->isec_lock);
250         sbsec->sb = sb;
251         sbsec->sid = SECINITSID_UNLABELED;
252         sbsec->def_sid = SECINITSID_FILE;
253         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
254         sb->s_security = sbsec;
255
256         return 0;
257 }
258
259 static void superblock_free_security(struct super_block *sb)
260 {
261         struct superblock_security_struct *sbsec = sb->s_security;
262
263         spin_lock(&sb_security_lock);
264         if (!list_empty(&sbsec->list))
265                 list_del_init(&sbsec->list);
266         spin_unlock(&sb_security_lock);
267
268         sb->s_security = NULL;
269         kfree(sbsec);
270 }
271
272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority)
273 {
274         struct sk_security_struct *ssec;
275
276         ssec = kzalloc(sizeof(*ssec), priority);
277         if (!ssec)
278                 return -ENOMEM;
279
280         ssec->sk = sk;
281         ssec->peer_sid = SECINITSID_UNLABELED;
282         ssec->sid = SECINITSID_UNLABELED;
283         sk->sk_security = ssec;
284
285         selinux_netlbl_sk_security_init(ssec, family);
286
287         return 0;
288 }
289
290 static void sk_free_security(struct sock *sk)
291 {
292         struct sk_security_struct *ssec = sk->sk_security;
293
294         sk->sk_security = NULL;
295         kfree(ssec);
296 }
297
298 /* The security server must be initialized before
299    any labeling or access decisions can be provided. */
300 extern int ss_initialized;
301
302 /* The file system's label must be initialized prior to use. */
303
304 static char *labeling_behaviors[6] = {
305         "uses xattr",
306         "uses transition SIDs",
307         "uses task SIDs",
308         "uses genfs_contexts",
309         "not configured for labeling",
310         "uses mountpoint labeling",
311 };
312
313 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
314
315 static inline int inode_doinit(struct inode *inode)
316 {
317         return inode_doinit_with_dentry(inode, NULL);
318 }
319
320 enum {
321         Opt_context = 1,
322         Opt_fscontext = 2,
323         Opt_defcontext = 4,
324         Opt_rootcontext = 8,
325 };
326
327 static match_table_t tokens = {
328         {Opt_context, "context=%s"},
329         {Opt_fscontext, "fscontext=%s"},
330         {Opt_defcontext, "defcontext=%s"},
331         {Opt_rootcontext, "rootcontext=%s"},
332 };
333
334 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
335
336 static int may_context_mount_sb_relabel(u32 sid,
337                         struct superblock_security_struct *sbsec,
338                         struct task_security_struct *tsec)
339 {
340         int rc;
341
342         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
343                           FILESYSTEM__RELABELFROM, NULL);
344         if (rc)
345                 return rc;
346
347         rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
348                           FILESYSTEM__RELABELTO, NULL);
349         return rc;
350 }
351
352 static int may_context_mount_inode_relabel(u32 sid,
353                         struct superblock_security_struct *sbsec,
354                         struct task_security_struct *tsec)
355 {
356         int rc;
357         rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
358                           FILESYSTEM__RELABELFROM, NULL);
359         if (rc)
360                 return rc;
361
362         rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
363                           FILESYSTEM__ASSOCIATE, NULL);
364         return rc;
365 }
366
367 static int try_context_mount(struct super_block *sb, void *data)
368 {
369         char *context = NULL, *defcontext = NULL;
370         char *fscontext = NULL, *rootcontext = NULL;
371         const char *name;
372         u32 sid;
373         int alloc = 0, rc = 0, seen = 0;
374         struct task_security_struct *tsec = current->security;
375         struct superblock_security_struct *sbsec = sb->s_security;
376
377         if (!data)
378                 goto out;
379
380         name = sb->s_type->name;
381
382         if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) {
383
384                 /* NFS we understand. */
385                 if (!strcmp(name, "nfs")) {
386                         struct nfs_mount_data *d = data;
387
388                         if (d->version <  NFS_MOUNT_VERSION)
389                                 goto out;
390
391                         if (d->context[0]) {
392                                 context = d->context;
393                                 seen |= Opt_context;
394                         }
395                 } else
396                         goto out;
397
398         } else {
399                 /* Standard string-based options. */
400                 char *p, *options = data;
401
402                 while ((p = strsep(&options, "|")) != NULL) {
403                         int token;
404                         substring_t args[MAX_OPT_ARGS];
405
406                         if (!*p)
407                                 continue;
408
409                         token = match_token(p, tokens, args);
410
411                         switch (token) {
412                         case Opt_context:
413                                 if (seen & (Opt_context|Opt_defcontext)) {
414                                         rc = -EINVAL;
415                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
416                                         goto out_free;
417                                 }
418                                 context = match_strdup(&args[0]);
419                                 if (!context) {
420                                         rc = -ENOMEM;
421                                         goto out_free;
422                                 }
423                                 if (!alloc)
424                                         alloc = 1;
425                                 seen |= Opt_context;
426                                 break;
427
428                         case Opt_fscontext:
429                                 if (seen & Opt_fscontext) {
430                                         rc = -EINVAL;
431                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
432                                         goto out_free;
433                                 }
434                                 fscontext = match_strdup(&args[0]);
435                                 if (!fscontext) {
436                                         rc = -ENOMEM;
437                                         goto out_free;
438                                 }
439                                 if (!alloc)
440                                         alloc = 1;
441                                 seen |= Opt_fscontext;
442                                 break;
443
444                         case Opt_rootcontext:
445                                 if (seen & Opt_rootcontext) {
446                                         rc = -EINVAL;
447                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
448                                         goto out_free;
449                                 }
450                                 rootcontext = match_strdup(&args[0]);
451                                 if (!rootcontext) {
452                                         rc = -ENOMEM;
453                                         goto out_free;
454                                 }
455                                 if (!alloc)
456                                         alloc = 1;
457                                 seen |= Opt_rootcontext;
458                                 break;
459
460                         case Opt_defcontext:
461                                 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
462                                         rc = -EINVAL;
463                                         printk(KERN_WARNING "SELinux:  "
464                                                "defcontext option is invalid "
465                                                "for this filesystem type\n");
466                                         goto out_free;
467                                 }
468                                 if (seen & (Opt_context|Opt_defcontext)) {
469                                         rc = -EINVAL;
470                                         printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
471                                         goto out_free;
472                                 }
473                                 defcontext = match_strdup(&args[0]);
474                                 if (!defcontext) {
475                                         rc = -ENOMEM;
476                                         goto out_free;
477                                 }
478                                 if (!alloc)
479                                         alloc = 1;
480                                 seen |= Opt_defcontext;
481                                 break;
482
483                         default:
484                                 rc = -EINVAL;
485                                 printk(KERN_WARNING "SELinux:  unknown mount "
486                                        "option\n");
487                                 goto out_free;
488
489                         }
490                 }
491         }
492
493         if (!seen)
494                 goto out;
495
496         /* sets the context of the superblock for the fs being mounted. */
497         if (fscontext) {
498                 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid);
499                 if (rc) {
500                         printk(KERN_WARNING "SELinux: security_context_to_sid"
501                                "(%s) failed for (dev %s, type %s) errno=%d\n",
502                                fscontext, sb->s_id, name, rc);
503                         goto out_free;
504                 }
505
506                 rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
507                 if (rc)
508                         goto out_free;
509
510                 sbsec->sid = sid;
511         }
512
513         /*
514          * Switch to using mount point labeling behavior.
515          * sets the label used on all file below the mountpoint, and will set
516          * the superblock context if not already set.
517          */
518         if (context) {
519                 rc = security_context_to_sid(context, strlen(context), &sid);
520                 if (rc) {
521                         printk(KERN_WARNING "SELinux: security_context_to_sid"
522                                "(%s) failed for (dev %s, type %s) errno=%d\n",
523                                context, sb->s_id, name, rc);
524                         goto out_free;
525                 }
526
527                 if (!fscontext) {
528                         rc = may_context_mount_sb_relabel(sid, sbsec, tsec);
529                         if (rc)
530                                 goto out_free;
531                         sbsec->sid = sid;
532                 } else {
533                         rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
534                         if (rc)
535                                 goto out_free;
536                 }
537                 sbsec->mntpoint_sid = sid;
538
539                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
540         }
541
542         if (rootcontext) {
543                 struct inode *inode = sb->s_root->d_inode;
544                 struct inode_security_struct *isec = inode->i_security;
545                 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid);
546                 if (rc) {
547                         printk(KERN_WARNING "SELinux: security_context_to_sid"
548                                "(%s) failed for (dev %s, type %s) errno=%d\n",
549                                rootcontext, sb->s_id, name, rc);
550                         goto out_free;
551                 }
552
553                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
554                 if (rc)
555                         goto out_free;
556
557                 isec->sid = sid;
558                 isec->initialized = 1;
559         }
560
561         if (defcontext) {
562                 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid);
563                 if (rc) {
564                         printk(KERN_WARNING "SELinux: security_context_to_sid"
565                                "(%s) failed for (dev %s, type %s) errno=%d\n",
566                                defcontext, sb->s_id, name, rc);
567                         goto out_free;
568                 }
569
570                 if (sid == sbsec->def_sid)
571                         goto out_free;
572
573                 rc = may_context_mount_inode_relabel(sid, sbsec, tsec);
574                 if (rc)
575                         goto out_free;
576
577                 sbsec->def_sid = sid;
578         }
579
580 out_free:
581         if (alloc) {
582                 kfree(context);
583                 kfree(defcontext);
584                 kfree(fscontext);
585                 kfree(rootcontext);
586         }
587 out:
588         return rc;
589 }
590
591 static int superblock_doinit(struct super_block *sb, void *data)
592 {
593         struct superblock_security_struct *sbsec = sb->s_security;
594         struct dentry *root = sb->s_root;
595         struct inode *inode = root->d_inode;
596         int rc = 0;
597
598         mutex_lock(&sbsec->lock);
599         if (sbsec->initialized)
600                 goto out;
601
602         if (!ss_initialized) {
603                 /* Defer initialization until selinux_complete_init,
604                    after the initial policy is loaded and the security
605                    server is ready to handle calls. */
606                 spin_lock(&sb_security_lock);
607                 if (list_empty(&sbsec->list))
608                         list_add(&sbsec->list, &superblock_security_head);
609                 spin_unlock(&sb_security_lock);
610                 goto out;
611         }
612
613         /* Determine the labeling behavior to use for this filesystem type. */
614         rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid);
615         if (rc) {
616                 printk(KERN_WARNING "%s:  security_fs_use(%s) returned %d\n",
617                        __FUNCTION__, sb->s_type->name, rc);
618                 goto out;
619         }
620
621         rc = try_context_mount(sb, data);
622         if (rc)
623                 goto out;
624
625         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
626                 /* Make sure that the xattr handler exists and that no
627                    error other than -ENODATA is returned by getxattr on
628                    the root directory.  -ENODATA is ok, as this may be
629                    the first boot of the SELinux kernel before we have
630                    assigned xattr values to the filesystem. */
631                 if (!inode->i_op->getxattr) {
632                         printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
633                                "xattr support\n", sb->s_id, sb->s_type->name);
634                         rc = -EOPNOTSUPP;
635                         goto out;
636                 }
637                 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
638                 if (rc < 0 && rc != -ENODATA) {
639                         if (rc == -EOPNOTSUPP)
640                                 printk(KERN_WARNING "SELinux: (dev %s, type "
641                                        "%s) has no security xattr handler\n",
642                                        sb->s_id, sb->s_type->name);
643                         else
644                                 printk(KERN_WARNING "SELinux: (dev %s, type "
645                                        "%s) getxattr errno %d\n", sb->s_id,
646                                        sb->s_type->name, -rc);
647                         goto out;
648                 }
649         }
650
651         if (strcmp(sb->s_type->name, "proc") == 0)
652                 sbsec->proc = 1;
653
654         sbsec->initialized = 1;
655
656         if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) {
657                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n",
658                        sb->s_id, sb->s_type->name);
659         }
660         else {
661                 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n",
662                        sb->s_id, sb->s_type->name,
663                        labeling_behaviors[sbsec->behavior-1]);
664         }
665
666         /* Initialize the root inode. */
667         rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root);
668
669         /* Initialize any other inodes associated with the superblock, e.g.
670            inodes created prior to initial policy load or inodes created
671            during get_sb by a pseudo filesystem that directly
672            populates itself. */
673         spin_lock(&sbsec->isec_lock);
674 next_inode:
675         if (!list_empty(&sbsec->isec_head)) {
676                 struct inode_security_struct *isec =
677                                 list_entry(sbsec->isec_head.next,
678                                            struct inode_security_struct, list);
679                 struct inode *inode = isec->inode;
680                 spin_unlock(&sbsec->isec_lock);
681                 inode = igrab(inode);
682                 if (inode) {
683                         if (!IS_PRIVATE (inode))
684                                 inode_doinit(inode);
685                         iput(inode);
686                 }
687                 spin_lock(&sbsec->isec_lock);
688                 list_del_init(&isec->list);
689                 goto next_inode;
690         }
691         spin_unlock(&sbsec->isec_lock);
692 out:
693         mutex_unlock(&sbsec->lock);
694         return rc;
695 }
696
697 static inline u16 inode_mode_to_security_class(umode_t mode)
698 {
699         switch (mode & S_IFMT) {
700         case S_IFSOCK:
701                 return SECCLASS_SOCK_FILE;
702         case S_IFLNK:
703                 return SECCLASS_LNK_FILE;
704         case S_IFREG:
705                 return SECCLASS_FILE;
706         case S_IFBLK:
707                 return SECCLASS_BLK_FILE;
708         case S_IFDIR:
709                 return SECCLASS_DIR;
710         case S_IFCHR:
711                 return SECCLASS_CHR_FILE;
712         case S_IFIFO:
713                 return SECCLASS_FIFO_FILE;
714
715         }
716
717         return SECCLASS_FILE;
718 }
719
720 static inline int default_protocol_stream(int protocol)
721 {
722         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
723 }
724
725 static inline int default_protocol_dgram(int protocol)
726 {
727         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
728 }
729
730 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
731 {
732         switch (family) {
733         case PF_UNIX:
734                 switch (type) {
735                 case SOCK_STREAM:
736                 case SOCK_SEQPACKET:
737                         return SECCLASS_UNIX_STREAM_SOCKET;
738                 case SOCK_DGRAM:
739                         return SECCLASS_UNIX_DGRAM_SOCKET;
740                 }
741                 break;
742         case PF_INET:
743         case PF_INET6:
744                 switch (type) {
745                 case SOCK_STREAM:
746                         if (default_protocol_stream(protocol))
747                                 return SECCLASS_TCP_SOCKET;
748                         else
749                                 return SECCLASS_RAWIP_SOCKET;
750                 case SOCK_DGRAM:
751                         if (default_protocol_dgram(protocol))
752                                 return SECCLASS_UDP_SOCKET;
753                         else
754                                 return SECCLASS_RAWIP_SOCKET;
755                 case SOCK_DCCP:
756                         return SECCLASS_DCCP_SOCKET;
757                 default:
758                         return SECCLASS_RAWIP_SOCKET;
759                 }
760                 break;
761         case PF_NETLINK:
762                 switch (protocol) {
763                 case NETLINK_ROUTE:
764                         return SECCLASS_NETLINK_ROUTE_SOCKET;
765                 case NETLINK_FIREWALL:
766                         return SECCLASS_NETLINK_FIREWALL_SOCKET;
767                 case NETLINK_INET_DIAG:
768                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
769                 case NETLINK_NFLOG:
770                         return SECCLASS_NETLINK_NFLOG_SOCKET;
771                 case NETLINK_XFRM:
772                         return SECCLASS_NETLINK_XFRM_SOCKET;
773                 case NETLINK_SELINUX:
774                         return SECCLASS_NETLINK_SELINUX_SOCKET;
775                 case NETLINK_AUDIT:
776                         return SECCLASS_NETLINK_AUDIT_SOCKET;
777                 case NETLINK_IP6_FW:
778                         return SECCLASS_NETLINK_IP6FW_SOCKET;
779                 case NETLINK_DNRTMSG:
780                         return SECCLASS_NETLINK_DNRT_SOCKET;
781                 case NETLINK_KOBJECT_UEVENT:
782                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
783                 default:
784                         return SECCLASS_NETLINK_SOCKET;
785                 }
786         case PF_PACKET:
787                 return SECCLASS_PACKET_SOCKET;
788         case PF_KEY:
789                 return SECCLASS_KEY_SOCKET;
790         case PF_APPLETALK:
791                 return SECCLASS_APPLETALK_SOCKET;
792         }
793
794         return SECCLASS_SOCKET;
795 }
796
797 #ifdef CONFIG_PROC_FS
798 static int selinux_proc_get_sid(struct proc_dir_entry *de,
799                                 u16 tclass,
800                                 u32 *sid)
801 {
802         int buflen, rc;
803         char *buffer, *path, *end;
804
805         buffer = (char*)__get_free_page(GFP_KERNEL);
806         if (!buffer)
807                 return -ENOMEM;
808
809         buflen = PAGE_SIZE;
810         end = buffer+buflen;
811         *--end = '\0';
812         buflen--;
813         path = end-1;
814         *path = '/';
815         while (de && de != de->parent) {
816                 buflen -= de->namelen + 1;
817                 if (buflen < 0)
818                         break;
819                 end -= de->namelen;
820                 memcpy(end, de->name, de->namelen);
821                 *--end = '/';
822                 path = end;
823                 de = de->parent;
824         }
825         rc = security_genfs_sid("proc", path, tclass, sid);
826         free_page((unsigned long)buffer);
827         return rc;
828 }
829 #else
830 static int selinux_proc_get_sid(struct proc_dir_entry *de,
831                                 u16 tclass,
832                                 u32 *sid)
833 {
834         return -EINVAL;
835 }
836 #endif
837
838 /* The inode's security attributes must be initialized before first use. */
839 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
840 {
841         struct superblock_security_struct *sbsec = NULL;
842         struct inode_security_struct *isec = inode->i_security;
843         u32 sid;
844         struct dentry *dentry;
845 #define INITCONTEXTLEN 255
846         char *context = NULL;
847         unsigned len = 0;
848         int rc = 0;
849
850         if (isec->initialized)
851                 goto out;
852
853         mutex_lock(&isec->lock);
854         if (isec->initialized)
855                 goto out_unlock;
856
857         sbsec = inode->i_sb->s_security;
858         if (!sbsec->initialized) {
859                 /* Defer initialization until selinux_complete_init,
860                    after the initial policy is loaded and the security
861                    server is ready to handle calls. */
862                 spin_lock(&sbsec->isec_lock);
863                 if (list_empty(&isec->list))
864                         list_add(&isec->list, &sbsec->isec_head);
865                 spin_unlock(&sbsec->isec_lock);
866                 goto out_unlock;
867         }
868
869         switch (sbsec->behavior) {
870         case SECURITY_FS_USE_XATTR:
871                 if (!inode->i_op->getxattr) {
872                         isec->sid = sbsec->def_sid;
873                         break;
874                 }
875
876                 /* Need a dentry, since the xattr API requires one.
877                    Life would be simpler if we could just pass the inode. */
878                 if (opt_dentry) {
879                         /* Called from d_instantiate or d_splice_alias. */
880                         dentry = dget(opt_dentry);
881                 } else {
882                         /* Called from selinux_complete_init, try to find a dentry. */
883                         dentry = d_find_alias(inode);
884                 }
885                 if (!dentry) {
886                         printk(KERN_WARNING "%s:  no dentry for dev=%s "
887                                "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id,
888                                inode->i_ino);
889                         goto out_unlock;
890                 }
891
892                 len = INITCONTEXTLEN;
893                 context = kmalloc(len, GFP_KERNEL);
894                 if (!context) {
895                         rc = -ENOMEM;
896                         dput(dentry);
897                         goto out_unlock;
898                 }
899                 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
900                                            context, len);
901                 if (rc == -ERANGE) {
902                         /* Need a larger buffer.  Query for the right size. */
903                         rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
904                                                    NULL, 0);
905                         if (rc < 0) {
906                                 dput(dentry);
907                                 goto out_unlock;
908                         }
909                         kfree(context);
910                         len = rc;
911                         context = kmalloc(len, GFP_KERNEL);
912                         if (!context) {
913                                 rc = -ENOMEM;
914                                 dput(dentry);
915                                 goto out_unlock;
916                         }
917                         rc = inode->i_op->getxattr(dentry,
918                                                    XATTR_NAME_SELINUX,
919                                                    context, len);
920                 }
921                 dput(dentry);
922                 if (rc < 0) {
923                         if (rc != -ENODATA) {
924                                 printk(KERN_WARNING "%s:  getxattr returned "
925                                        "%d for dev=%s ino=%ld\n", __FUNCTION__,
926                                        -rc, inode->i_sb->s_id, inode->i_ino);
927                                 kfree(context);
928                                 goto out_unlock;
929                         }
930                         /* Map ENODATA to the default file SID */
931                         sid = sbsec->def_sid;
932                         rc = 0;
933                 } else {
934                         rc = security_context_to_sid_default(context, rc, &sid,
935                                                              sbsec->def_sid);
936                         if (rc) {
937                                 printk(KERN_WARNING "%s:  context_to_sid(%s) "
938                                        "returned %d for dev=%s ino=%ld\n",
939                                        __FUNCTION__, context, -rc,
940                                        inode->i_sb->s_id, inode->i_ino);
941                                 kfree(context);
942                                 /* Leave with the unlabeled SID */
943                                 rc = 0;
944                                 break;
945                         }
946                 }
947                 kfree(context);
948                 isec->sid = sid;
949                 break;
950         case SECURITY_FS_USE_TASK:
951                 isec->sid = isec->task_sid;
952                 break;
953         case SECURITY_FS_USE_TRANS:
954                 /* Default to the fs SID. */
955                 isec->sid = sbsec->sid;
956
957                 /* Try to obtain a transition SID. */
958                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
959                 rc = security_transition_sid(isec->task_sid,
960                                              sbsec->sid,
961                                              isec->sclass,
962                                              &sid);
963                 if (rc)
964                         goto out_unlock;
965                 isec->sid = sid;
966                 break;
967         case SECURITY_FS_USE_MNTPOINT:
968                 isec->sid = sbsec->mntpoint_sid;
969                 break;
970         default:
971                 /* Default to the fs superblock SID. */
972                 isec->sid = sbsec->sid;
973
974                 if (sbsec->proc) {
975                         struct proc_inode *proci = PROC_I(inode);
976                         if (proci->pde) {
977                                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
978                                 rc = selinux_proc_get_sid(proci->pde,
979                                                           isec->sclass,
980                                                           &sid);
981                                 if (rc)
982                                         goto out_unlock;
983                                 isec->sid = sid;
984                         }
985                 }
986                 break;
987         }
988
989         isec->initialized = 1;
990
991 out_unlock:
992         mutex_unlock(&isec->lock);
993 out:
994         if (isec->sclass == SECCLASS_FILE)
995                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
996         return rc;
997 }
998
999 /* Convert a Linux signal to an access vector. */
1000 static inline u32 signal_to_av(int sig)
1001 {
1002         u32 perm = 0;
1003
1004         switch (sig) {
1005         case SIGCHLD:
1006                 /* Commonly granted from child to parent. */
1007                 perm = PROCESS__SIGCHLD;
1008                 break;
1009         case SIGKILL:
1010                 /* Cannot be caught or ignored */
1011                 perm = PROCESS__SIGKILL;
1012                 break;
1013         case SIGSTOP:
1014                 /* Cannot be caught or ignored */
1015                 perm = PROCESS__SIGSTOP;
1016                 break;
1017         default:
1018                 /* All other signals. */
1019                 perm = PROCESS__SIGNAL;
1020                 break;
1021         }
1022
1023         return perm;
1024 }
1025
1026 /* Check permission betweeen a pair of tasks, e.g. signal checks,
1027    fork check, ptrace check, etc. */
1028 static int task_has_perm(struct task_struct *tsk1,
1029                          struct task_struct *tsk2,
1030                          u32 perms)
1031 {
1032         struct task_security_struct *tsec1, *tsec2;
1033
1034         tsec1 = tsk1->security;
1035         tsec2 = tsk2->security;
1036         return avc_has_perm(tsec1->sid, tsec2->sid,
1037                             SECCLASS_PROCESS, perms, NULL);
1038 }
1039
1040 /* Check whether a task is allowed to use a capability. */
1041 static int task_has_capability(struct task_struct *tsk,
1042                                int cap)
1043 {
1044         struct task_security_struct *tsec;
1045         struct avc_audit_data ad;
1046
1047         tsec = tsk->security;
1048
1049         AVC_AUDIT_DATA_INIT(&ad,CAP);
1050         ad.tsk = tsk;
1051         ad.u.cap = cap;
1052
1053         return avc_has_perm(tsec->sid, tsec->sid,
1054                             SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad);
1055 }
1056
1057 /* Check whether a task is allowed to use a system operation. */
1058 static int task_has_system(struct task_struct *tsk,
1059                            u32 perms)
1060 {
1061         struct task_security_struct *tsec;
1062
1063         tsec = tsk->security;
1064
1065         return avc_has_perm(tsec->sid, SECINITSID_KERNEL,
1066                             SECCLASS_SYSTEM, perms, NULL);
1067 }
1068
1069 /* Check whether a task has a particular permission to an inode.
1070    The 'adp' parameter is optional and allows other audit
1071    data to be passed (e.g. the dentry). */
1072 static int inode_has_perm(struct task_struct *tsk,
1073                           struct inode *inode,
1074                           u32 perms,
1075                           struct avc_audit_data *adp)
1076 {
1077         struct task_security_struct *tsec;
1078         struct inode_security_struct *isec;
1079         struct avc_audit_data ad;
1080
1081         tsec = tsk->security;
1082         isec = inode->i_security;
1083
1084         if (!adp) {
1085                 adp = &ad;
1086                 AVC_AUDIT_DATA_INIT(&ad, FS);
1087                 ad.u.fs.inode = inode;
1088         }
1089
1090         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp);
1091 }
1092
1093 /* Same as inode_has_perm, but pass explicit audit data containing
1094    the dentry to help the auditing code to more easily generate the
1095    pathname if needed. */
1096 static inline int dentry_has_perm(struct task_struct *tsk,
1097                                   struct vfsmount *mnt,
1098                                   struct dentry *dentry,
1099                                   u32 av)
1100 {
1101         struct inode *inode = dentry->d_inode;
1102         struct avc_audit_data ad;
1103         AVC_AUDIT_DATA_INIT(&ad,FS);
1104         ad.u.fs.mnt = mnt;
1105         ad.u.fs.dentry = dentry;
1106         return inode_has_perm(tsk, inode, av, &ad);
1107 }
1108
1109 /* Check whether a task can use an open file descriptor to
1110    access an inode in a given way.  Check access to the
1111    descriptor itself, and then use dentry_has_perm to
1112    check a particular permission to the file.
1113    Access to the descriptor is implicitly granted if it
1114    has the same SID as the process.  If av is zero, then
1115    access to the file is not checked, e.g. for cases
1116    where only the descriptor is affected like seek. */
1117 static int file_has_perm(struct task_struct *tsk,
1118                                 struct file *file,
1119                                 u32 av)
1120 {
1121         struct task_security_struct *tsec = tsk->security;
1122         struct file_security_struct *fsec = file->f_security;
1123         struct vfsmount *mnt = file->f_path.mnt;
1124         struct dentry *dentry = file->f_path.dentry;
1125         struct inode *inode = dentry->d_inode;
1126         struct avc_audit_data ad;
1127         int rc;
1128
1129         AVC_AUDIT_DATA_INIT(&ad, FS);
1130         ad.u.fs.mnt = mnt;
1131         ad.u.fs.dentry = dentry;
1132
1133         if (tsec->sid != fsec->sid) {
1134                 rc = avc_has_perm(tsec->sid, fsec->sid,
1135                                   SECCLASS_FD,
1136                                   FD__USE,
1137                                   &ad);
1138                 if (rc)
1139                         return rc;
1140         }
1141
1142         /* av is zero if only checking access to the descriptor. */
1143         if (av)
1144                 return inode_has_perm(tsk, inode, av, &ad);
1145
1146         return 0;
1147 }
1148
1149 /* Check whether a task can create a file. */
1150 static int may_create(struct inode *dir,
1151                       struct dentry *dentry,
1152                       u16 tclass)
1153 {
1154         struct task_security_struct *tsec;
1155         struct inode_security_struct *dsec;
1156         struct superblock_security_struct *sbsec;
1157         u32 newsid;
1158         struct avc_audit_data ad;
1159         int rc;
1160
1161         tsec = current->security;
1162         dsec = dir->i_security;
1163         sbsec = dir->i_sb->s_security;
1164
1165         AVC_AUDIT_DATA_INIT(&ad, FS);
1166         ad.u.fs.dentry = dentry;
1167
1168         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR,
1169                           DIR__ADD_NAME | DIR__SEARCH,
1170                           &ad);
1171         if (rc)
1172                 return rc;
1173
1174         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
1175                 newsid = tsec->create_sid;
1176         } else {
1177                 rc = security_transition_sid(tsec->sid, dsec->sid, tclass,
1178                                              &newsid);
1179                 if (rc)
1180                         return rc;
1181         }
1182
1183         rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad);
1184         if (rc)
1185                 return rc;
1186
1187         return avc_has_perm(newsid, sbsec->sid,
1188                             SECCLASS_FILESYSTEM,
1189                             FILESYSTEM__ASSOCIATE, &ad);
1190 }
1191
1192 /* Check whether a task can create a key. */
1193 static int may_create_key(u32 ksid,
1194                           struct task_struct *ctx)
1195 {
1196         struct task_security_struct *tsec;
1197
1198         tsec = ctx->security;
1199
1200         return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1201 }
1202
1203 #define MAY_LINK   0
1204 #define MAY_UNLINK 1
1205 #define MAY_RMDIR  2
1206
1207 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1208 static int may_link(struct inode *dir,
1209                     struct dentry *dentry,
1210                     int kind)
1211
1212 {
1213         struct task_security_struct *tsec;
1214         struct inode_security_struct *dsec, *isec;
1215         struct avc_audit_data ad;
1216         u32 av;
1217         int rc;
1218
1219         tsec = current->security;
1220         dsec = dir->i_security;
1221         isec = dentry->d_inode->i_security;
1222
1223         AVC_AUDIT_DATA_INIT(&ad, FS);
1224         ad.u.fs.dentry = dentry;
1225
1226         av = DIR__SEARCH;
1227         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1228         rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad);
1229         if (rc)
1230                 return rc;
1231
1232         switch (kind) {
1233         case MAY_LINK:
1234                 av = FILE__LINK;
1235                 break;
1236         case MAY_UNLINK:
1237                 av = FILE__UNLINK;
1238                 break;
1239         case MAY_RMDIR:
1240                 av = DIR__RMDIR;
1241                 break;
1242         default:
1243                 printk(KERN_WARNING "may_link:  unrecognized kind %d\n", kind);
1244                 return 0;
1245         }
1246
1247         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad);
1248         return rc;
1249 }
1250
1251 static inline int may_rename(struct inode *old_dir,
1252                              struct dentry *old_dentry,
1253                              struct inode *new_dir,
1254                              struct dentry *new_dentry)
1255 {
1256         struct task_security_struct *tsec;
1257         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1258         struct avc_audit_data ad;
1259         u32 av;
1260         int old_is_dir, new_is_dir;
1261         int rc;
1262
1263         tsec = current->security;
1264         old_dsec = old_dir->i_security;
1265         old_isec = old_dentry->d_inode->i_security;
1266         old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1267         new_dsec = new_dir->i_security;
1268
1269         AVC_AUDIT_DATA_INIT(&ad, FS);
1270
1271         ad.u.fs.dentry = old_dentry;
1272         rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR,
1273                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1274         if (rc)
1275                 return rc;
1276         rc = avc_has_perm(tsec->sid, old_isec->sid,
1277                           old_isec->sclass, FILE__RENAME, &ad);
1278         if (rc)
1279                 return rc;
1280         if (old_is_dir && new_dir != old_dir) {
1281                 rc = avc_has_perm(tsec->sid, old_isec->sid,
1282                                   old_isec->sclass, DIR__REPARENT, &ad);
1283                 if (rc)
1284                         return rc;
1285         }
1286
1287         ad.u.fs.dentry = new_dentry;
1288         av = DIR__ADD_NAME | DIR__SEARCH;
1289         if (new_dentry->d_inode)
1290                 av |= DIR__REMOVE_NAME;
1291         rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1292         if (rc)
1293                 return rc;
1294         if (new_dentry->d_inode) {
1295                 new_isec = new_dentry->d_inode->i_security;
1296                 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1297                 rc = avc_has_perm(tsec->sid, new_isec->sid,
1298                                   new_isec->sclass,
1299                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1300                 if (rc)
1301                         return rc;
1302         }
1303
1304         return 0;
1305 }
1306
1307 /* Check whether a task can perform a filesystem operation. */
1308 static int superblock_has_perm(struct task_struct *tsk,
1309                                struct super_block *sb,
1310                                u32 perms,
1311                                struct avc_audit_data *ad)
1312 {
1313         struct task_security_struct *tsec;
1314         struct superblock_security_struct *sbsec;
1315
1316         tsec = tsk->security;
1317         sbsec = sb->s_security;
1318         return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
1319                             perms, ad);
1320 }
1321
1322 /* Convert a Linux mode and permission mask to an access vector. */
1323 static inline u32 file_mask_to_av(int mode, int mask)
1324 {
1325         u32 av = 0;
1326
1327         if ((mode & S_IFMT) != S_IFDIR) {
1328                 if (mask & MAY_EXEC)
1329                         av |= FILE__EXECUTE;
1330                 if (mask & MAY_READ)
1331                         av |= FILE__READ;
1332
1333                 if (mask & MAY_APPEND)
1334                         av |= FILE__APPEND;
1335                 else if (mask & MAY_WRITE)
1336                         av |= FILE__WRITE;
1337
1338         } else {
1339                 if (mask & MAY_EXEC)
1340                         av |= DIR__SEARCH;
1341                 if (mask & MAY_WRITE)
1342                         av |= DIR__WRITE;
1343                 if (mask & MAY_READ)
1344                         av |= DIR__READ;
1345         }
1346
1347         return av;
1348 }
1349
1350 /* Convert a Linux file to an access vector. */
1351 static inline u32 file_to_av(struct file *file)
1352 {
1353         u32 av = 0;
1354
1355         if (file->f_mode & FMODE_READ)
1356                 av |= FILE__READ;
1357         if (file->f_mode & FMODE_WRITE) {
1358                 if (file->f_flags & O_APPEND)
1359                         av |= FILE__APPEND;
1360                 else
1361                         av |= FILE__WRITE;
1362         }
1363
1364         return av;
1365 }
1366
1367 /* Hook functions begin here. */
1368
1369 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child)
1370 {
1371         struct task_security_struct *psec = parent->security;
1372         struct task_security_struct *csec = child->security;
1373         int rc;
1374
1375         rc = secondary_ops->ptrace(parent,child);
1376         if (rc)
1377                 return rc;
1378
1379         rc = task_has_perm(parent, child, PROCESS__PTRACE);
1380         /* Save the SID of the tracing process for later use in apply_creds. */
1381         if (!(child->ptrace & PT_PTRACED) && !rc)
1382                 csec->ptrace_sid = psec->sid;
1383         return rc;
1384 }
1385
1386 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1387                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
1388 {
1389         int error;
1390
1391         error = task_has_perm(current, target, PROCESS__GETCAP);
1392         if (error)
1393                 return error;
1394
1395         return secondary_ops->capget(target, effective, inheritable, permitted);
1396 }
1397
1398 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective,
1399                                 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1400 {
1401         int error;
1402
1403         error = secondary_ops->capset_check(target, effective, inheritable, permitted);
1404         if (error)
1405                 return error;
1406
1407         return task_has_perm(current, target, PROCESS__SETCAP);
1408 }
1409
1410 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective,
1411                                kernel_cap_t *inheritable, kernel_cap_t *permitted)
1412 {
1413         secondary_ops->capset_set(target, effective, inheritable, permitted);
1414 }
1415
1416 static int selinux_capable(struct task_struct *tsk, int cap)
1417 {
1418         int rc;
1419
1420         rc = secondary_ops->capable(tsk, cap);
1421         if (rc)
1422                 return rc;
1423
1424         return task_has_capability(tsk,cap);
1425 }
1426
1427 static int selinux_sysctl(ctl_table *table, int op)
1428 {
1429         int error = 0;
1430         u32 av;
1431         struct task_security_struct *tsec;
1432         u32 tsid;
1433         int rc;
1434
1435         rc = secondary_ops->sysctl(table, op);
1436         if (rc)
1437                 return rc;
1438
1439         tsec = current->security;
1440
1441         rc = selinux_proc_get_sid(table->de, (op == 001) ?
1442                                   SECCLASS_DIR : SECCLASS_FILE, &tsid);
1443         if (rc) {
1444                 /* Default to the well-defined sysctl SID. */
1445                 tsid = SECINITSID_SYSCTL;
1446         }
1447
1448         /* The op values are "defined" in sysctl.c, thereby creating
1449          * a bad coupling between this module and sysctl.c */
1450         if(op == 001) {
1451                 error = avc_has_perm(tsec->sid, tsid,
1452                                      SECCLASS_DIR, DIR__SEARCH, NULL);
1453         } else {
1454                 av = 0;
1455                 if (op & 004)
1456                         av |= FILE__READ;
1457                 if (op & 002)
1458                         av |= FILE__WRITE;
1459                 if (av)
1460                         error = avc_has_perm(tsec->sid, tsid,
1461                                              SECCLASS_FILE, av, NULL);
1462         }
1463
1464         return error;
1465 }
1466
1467 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1468 {
1469         int rc = 0;
1470
1471         if (!sb)
1472                 return 0;
1473
1474         switch (cmds) {
1475                 case Q_SYNC:
1476                 case Q_QUOTAON:
1477                 case Q_QUOTAOFF:
1478                 case Q_SETINFO:
1479                 case Q_SETQUOTA:
1480                         rc = superblock_has_perm(current,
1481                                                  sb,
1482                                                  FILESYSTEM__QUOTAMOD, NULL);
1483                         break;
1484                 case Q_GETFMT:
1485                 case Q_GETINFO:
1486                 case Q_GETQUOTA:
1487                         rc = superblock_has_perm(current,
1488                                                  sb,
1489                                                  FILESYSTEM__QUOTAGET, NULL);
1490                         break;
1491                 default:
1492                         rc = 0;  /* let the kernel handle invalid cmds */
1493                         break;
1494         }
1495         return rc;
1496 }
1497
1498 static int selinux_quota_on(struct dentry *dentry)
1499 {
1500         return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON);
1501 }
1502
1503 static int selinux_syslog(int type)
1504 {
1505         int rc;
1506
1507         rc = secondary_ops->syslog(type);
1508         if (rc)
1509                 return rc;
1510
1511         switch (type) {
1512                 case 3:         /* Read last kernel messages */
1513                 case 10:        /* Return size of the log buffer */
1514                         rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1515                         break;
1516                 case 6:         /* Disable logging to console */
1517                 case 7:         /* Enable logging to console */
1518                 case 8:         /* Set level of messages printed to console */
1519                         rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1520                         break;
1521                 case 0:         /* Close log */
1522                 case 1:         /* Open log */
1523                 case 2:         /* Read from log */
1524                 case 4:         /* Read/clear last kernel messages */
1525                 case 5:         /* Clear ring buffer */
1526                 default:
1527                         rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1528                         break;
1529         }
1530         return rc;
1531 }
1532
1533 /*
1534  * Check that a process has enough memory to allocate a new virtual
1535  * mapping. 0 means there is enough memory for the allocation to
1536  * succeed and -ENOMEM implies there is not.
1537  *
1538  * Note that secondary_ops->capable and task_has_perm_noaudit return 0
1539  * if the capability is granted, but __vm_enough_memory requires 1 if
1540  * the capability is granted.
1541  *
1542  * Do not audit the selinux permission check, as this is applied to all
1543  * processes that allocate mappings.
1544  */
1545 static int selinux_vm_enough_memory(long pages)
1546 {
1547         int rc, cap_sys_admin = 0;
1548         struct task_security_struct *tsec = current->security;
1549
1550         rc = secondary_ops->capable(current, CAP_SYS_ADMIN);
1551         if (rc == 0)
1552                 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid,
1553                                         SECCLASS_CAPABILITY,
1554                                         CAP_TO_MASK(CAP_SYS_ADMIN),
1555                                         NULL);
1556
1557         if (rc == 0)
1558                 cap_sys_admin = 1;
1559
1560         return __vm_enough_memory(pages, cap_sys_admin);
1561 }
1562
1563 /* binprm security operations */
1564
1565 static int selinux_bprm_alloc_security(struct linux_binprm *bprm)
1566 {
1567         struct bprm_security_struct *bsec;
1568
1569         bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL);
1570         if (!bsec)
1571                 return -ENOMEM;
1572
1573         bsec->bprm = bprm;
1574         bsec->sid = SECINITSID_UNLABELED;
1575         bsec->set = 0;
1576
1577         bprm->security = bsec;
1578         return 0;
1579 }
1580
1581 static int selinux_bprm_set_security(struct linux_binprm *bprm)
1582 {
1583         struct task_security_struct *tsec;
1584         struct inode *inode = bprm->file->f_path.dentry->d_inode;
1585         struct inode_security_struct *isec;
1586         struct bprm_security_struct *bsec;
1587         u32 newsid;
1588         struct avc_audit_data ad;
1589         int rc;
1590
1591         rc = secondary_ops->bprm_set_security(bprm);
1592         if (rc)
1593                 return rc;
1594
1595         bsec = bprm->security;
1596
1597         if (bsec->set)
1598                 return 0;
1599
1600         tsec = current->security;
1601         isec = inode->i_security;
1602
1603         /* Default to the current task SID. */
1604         bsec->sid = tsec->sid;
1605
1606         /* Reset fs, key, and sock SIDs on execve. */
1607         tsec->create_sid = 0;
1608         tsec->keycreate_sid = 0;
1609         tsec->sockcreate_sid = 0;
1610
1611         if (tsec->exec_sid) {
1612                 newsid = tsec->exec_sid;
1613                 /* Reset exec SID on execve. */
1614                 tsec->exec_sid = 0;
1615         } else {
1616                 /* Check for a default transition on this program. */
1617                 rc = security_transition_sid(tsec->sid, isec->sid,
1618                                              SECCLASS_PROCESS, &newsid);
1619                 if (rc)
1620                         return rc;
1621         }
1622
1623         AVC_AUDIT_DATA_INIT(&ad, FS);
1624         ad.u.fs.mnt = bprm->file->f_path.mnt;
1625         ad.u.fs.dentry = bprm->file->f_path.dentry;
1626
1627         if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1628                 newsid = tsec->sid;
1629
1630         if (tsec->sid == newsid) {
1631                 rc = avc_has_perm(tsec->sid, isec->sid,
1632                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
1633                 if (rc)
1634                         return rc;
1635         } else {
1636                 /* Check permissions for the transition. */
1637                 rc = avc_has_perm(tsec->sid, newsid,
1638                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
1639                 if (rc)
1640                         return rc;
1641
1642                 rc = avc_has_perm(newsid, isec->sid,
1643                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
1644                 if (rc)
1645                         return rc;
1646
1647                 /* Clear any possibly unsafe personality bits on exec: */
1648                 current->personality &= ~PER_CLEAR_ON_SETID;
1649
1650                 /* Set the security field to the new SID. */
1651                 bsec->sid = newsid;
1652         }
1653
1654         bsec->set = 1;
1655         return 0;
1656 }
1657
1658 static int selinux_bprm_check_security (struct linux_binprm *bprm)
1659 {
1660         return secondary_ops->bprm_check_security(bprm);
1661 }
1662
1663
1664 static int selinux_bprm_secureexec (struct linux_binprm *bprm)
1665 {
1666         struct task_security_struct *tsec = current->security;
1667         int atsecure = 0;
1668
1669         if (tsec->osid != tsec->sid) {
1670                 /* Enable secure mode for SIDs transitions unless
1671                    the noatsecure permission is granted between
1672                    the two SIDs, i.e. ahp returns 0. */
1673                 atsecure = avc_has_perm(tsec->osid, tsec->sid,
1674                                          SECCLASS_PROCESS,
1675                                          PROCESS__NOATSECURE, NULL);
1676         }
1677
1678         return (atsecure || secondary_ops->bprm_secureexec(bprm));
1679 }
1680
1681 static void selinux_bprm_free_security(struct linux_binprm *bprm)
1682 {
1683         kfree(bprm->security);
1684         bprm->security = NULL;
1685 }
1686
1687 extern struct vfsmount *selinuxfs_mount;
1688 extern struct dentry *selinux_null;
1689
1690 /* Derived from fs/exec.c:flush_old_files. */
1691 static inline void flush_unauthorized_files(struct files_struct * files)
1692 {
1693         struct avc_audit_data ad;
1694         struct file *file, *devnull = NULL;
1695         struct tty_struct *tty;
1696         struct fdtable *fdt;
1697         long j = -1;
1698         int drop_tty = 0;
1699
1700         mutex_lock(&tty_mutex);
1701         tty = get_current_tty();
1702         if (tty) {
1703                 file_list_lock();
1704                 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list);
1705                 if (file) {
1706                         /* Revalidate access to controlling tty.
1707                            Use inode_has_perm on the tty inode directly rather
1708                            than using file_has_perm, as this particular open
1709                            file may belong to another process and we are only
1710                            interested in the inode-based check here. */
1711                         struct inode *inode = file->f_path.dentry->d_inode;
1712                         if (inode_has_perm(current, inode,
1713                                            FILE__READ | FILE__WRITE, NULL)) {
1714                                 drop_tty = 1;
1715                         }
1716                 }
1717                 file_list_unlock();
1718
1719                 /* Reset controlling tty. */
1720                 if (drop_tty)
1721                         proc_set_tty(current, NULL);
1722         }
1723         mutex_unlock(&tty_mutex);
1724
1725         /* Revalidate access to inherited open files. */
1726
1727         AVC_AUDIT_DATA_INIT(&ad,FS);
1728
1729         spin_lock(&files->file_lock);
1730         for (;;) {
1731                 unsigned long set, i;
1732                 int fd;
1733
1734                 j++;
1735                 i = j * __NFDBITS;
1736                 fdt = files_fdtable(files);
1737                 if (i >= fdt->max_fds)
1738                         break;
1739                 set = fdt->open_fds->fds_bits[j];
1740                 if (!set)
1741                         continue;
1742                 spin_unlock(&files->file_lock);
1743                 for ( ; set ; i++,set >>= 1) {
1744                         if (set & 1) {
1745                                 file = fget(i);
1746                                 if (!file)
1747                                         continue;
1748                                 if (file_has_perm(current,
1749                                                   file,
1750                                                   file_to_av(file))) {
1751                                         sys_close(i);
1752                                         fd = get_unused_fd();
1753                                         if (fd != i) {
1754                                                 if (fd >= 0)
1755                                                         put_unused_fd(fd);
1756                                                 fput(file);
1757                                                 continue;
1758                                         }
1759                                         if (devnull) {
1760                                                 get_file(devnull);
1761                                         } else {
1762                                                 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR);
1763                                                 if (IS_ERR(devnull)) {
1764                                                         devnull = NULL;
1765                                                         put_unused_fd(fd);
1766                                                         fput(file);
1767                                                         continue;
1768                                                 }
1769                                         }
1770                                         fd_install(fd, devnull);
1771                                 }
1772                                 fput(file);
1773                         }
1774                 }
1775                 spin_lock(&files->file_lock);
1776
1777         }
1778         spin_unlock(&files->file_lock);
1779 }
1780
1781 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
1782 {
1783         struct task_security_struct *tsec;
1784         struct bprm_security_struct *bsec;
1785         u32 sid;
1786         int rc;
1787
1788         secondary_ops->bprm_apply_creds(bprm, unsafe);
1789
1790         tsec = current->security;
1791
1792         bsec = bprm->security;
1793         sid = bsec->sid;
1794
1795         tsec->osid = tsec->sid;
1796         bsec->unsafe = 0;
1797         if (tsec->sid != sid) {
1798                 /* Check for shared state.  If not ok, leave SID
1799                    unchanged and kill. */
1800                 if (unsafe & LSM_UNSAFE_SHARE) {
1801                         rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
1802                                         PROCESS__SHARE, NULL);
1803                         if (rc) {
1804                                 bsec->unsafe = 1;
1805                                 return;
1806                         }
1807                 }
1808
1809                 /* Check for ptracing, and update the task SID if ok.
1810                    Otherwise, leave SID unchanged and kill. */
1811                 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
1812                         rc = avc_has_perm(tsec->ptrace_sid, sid,
1813                                           SECCLASS_PROCESS, PROCESS__PTRACE,
1814                                           NULL);
1815                         if (rc) {
1816                                 bsec->unsafe = 1;
1817                                 return;
1818                         }
1819                 }
1820                 tsec->sid = sid;
1821         }
1822 }
1823
1824 /*
1825  * called after apply_creds without the task lock held
1826  */
1827 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm)
1828 {
1829         struct task_security_struct *tsec;
1830         struct rlimit *rlim, *initrlim;
1831         struct itimerval itimer;
1832         struct bprm_security_struct *bsec;
1833         int rc, i;
1834
1835         tsec = current->security;
1836         bsec = bprm->security;
1837
1838         if (bsec->unsafe) {
1839                 force_sig_specific(SIGKILL, current);
1840                 return;
1841         }
1842         if (tsec->osid == tsec->sid)
1843                 return;
1844
1845         /* Close files for which the new task SID is not authorized. */
1846         flush_unauthorized_files(current->files);
1847
1848         /* Check whether the new SID can inherit signal state
1849            from the old SID.  If not, clear itimers to avoid
1850            subsequent signal generation and flush and unblock
1851            signals. This must occur _after_ the task SID has
1852           been updated so that any kill done after the flush
1853           will be checked against the new SID. */
1854         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1855                           PROCESS__SIGINH, NULL);
1856         if (rc) {
1857                 memset(&itimer, 0, sizeof itimer);
1858                 for (i = 0; i < 3; i++)
1859                         do_setitimer(i, &itimer, NULL);
1860                 flush_signals(current);
1861                 spin_lock_irq(&current->sighand->siglock);
1862                 flush_signal_handlers(current, 1);
1863                 sigemptyset(&current->blocked);
1864                 recalc_sigpending();
1865                 spin_unlock_irq(&current->sighand->siglock);
1866         }
1867
1868         /* Check whether the new SID can inherit resource limits
1869            from the old SID.  If not, reset all soft limits to
1870            the lower of the current task's hard limit and the init
1871            task's soft limit.  Note that the setting of hard limits
1872            (even to lower them) can be controlled by the setrlimit
1873            check. The inclusion of the init task's soft limit into
1874            the computation is to avoid resetting soft limits higher
1875            than the default soft limit for cases where the default
1876            is lower than the hard limit, e.g. RLIMIT_CORE or
1877            RLIMIT_STACK.*/
1878         rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS,
1879                           PROCESS__RLIMITINH, NULL);
1880         if (rc) {
1881                 for (i = 0; i < RLIM_NLIMITS; i++) {
1882                         rlim = current->signal->rlim + i;
1883                         initrlim = init_task.signal->rlim+i;
1884                         rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur);
1885                 }
1886                 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1887                         /*
1888                          * This will cause RLIMIT_CPU calculations
1889                          * to be refigured.
1890                          */
1891                         current->it_prof_expires = jiffies_to_cputime(1);
1892                 }
1893         }
1894
1895         /* Wake up the parent if it is waiting so that it can
1896            recheck wait permission to the new task SID. */
1897         wake_up_interruptible(&current->parent->signal->wait_chldexit);
1898 }
1899
1900 /* superblock security operations */
1901
1902 static int selinux_sb_alloc_security(struct super_block *sb)
1903 {
1904         return superblock_alloc_security(sb);
1905 }
1906
1907 static void selinux_sb_free_security(struct super_block *sb)
1908 {
1909         superblock_free_security(sb);
1910 }
1911
1912 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
1913 {
1914         if (plen > olen)
1915                 return 0;
1916
1917         return !memcmp(prefix, option, plen);
1918 }
1919
1920 static inline int selinux_option(char *option, int len)
1921 {
1922         return (match_prefix("context=", sizeof("context=")-1, option, len) ||
1923                 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) ||
1924                 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) ||
1925                 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len));
1926 }
1927
1928 static inline void take_option(char **to, char *from, int *first, int len)
1929 {
1930         if (!*first) {
1931                 **to = ',';
1932                 *to += 1;
1933         } else
1934                 *first = 0;
1935         memcpy(*to, from, len);
1936         *to += len;
1937 }
1938
1939 static inline void take_selinux_option(char **to, char *from, int *first, 
1940                                        int len)
1941 {
1942         int current_size = 0;
1943
1944         if (!*first) {
1945                 **to = '|';
1946                 *to += 1;
1947         }
1948         else
1949                 *first = 0;
1950
1951         while (current_size < len) {
1952                 if (*from != '"') {
1953                         **to = *from;
1954                         *to += 1;
1955                 }
1956                 from += 1;
1957                 current_size += 1;
1958         }
1959 }
1960
1961 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
1962 {
1963         int fnosec, fsec, rc = 0;
1964         char *in_save, *in_curr, *in_end;
1965         char *sec_curr, *nosec_save, *nosec;
1966         int open_quote = 0;
1967
1968         in_curr = orig;
1969         sec_curr = copy;
1970
1971         /* Binary mount data: just copy */
1972         if (type->fs_flags & FS_BINARY_MOUNTDATA) {
1973                 copy_page(sec_curr, in_curr);
1974                 goto out;
1975         }
1976
1977         nosec = (char *)get_zeroed_page(GFP_KERNEL);
1978         if (!nosec) {
1979                 rc = -ENOMEM;
1980                 goto out;
1981         }
1982
1983         nosec_save = nosec;
1984         fnosec = fsec = 1;
1985         in_save = in_end = orig;
1986
1987         do {
1988                 if (*in_end == '"')
1989                         open_quote = !open_quote;
1990                 if ((*in_end == ',' && open_quote == 0) ||
1991                                 *in_end == '\0') {
1992                         int len = in_end - in_curr;
1993
1994                         if (selinux_option(in_curr, len))
1995                                 take_selinux_option(&sec_curr, in_curr, &fsec, len);
1996                         else
1997                                 take_option(&nosec, in_curr, &fnosec, len);
1998
1999                         in_curr = in_end + 1;
2000                 }
2001         } while (*in_end++);
2002
2003         strcpy(in_save, nosec_save);
2004         free_page((unsigned long)nosec_save);
2005 out:
2006         return rc;
2007 }
2008
2009 static int selinux_sb_kern_mount(struct super_block *sb, void *data)
2010 {
2011         struct avc_audit_data ad;
2012         int rc;
2013
2014         rc = superblock_doinit(sb, data);
2015         if (rc)
2016                 return rc;
2017
2018         AVC_AUDIT_DATA_INIT(&ad,FS);
2019         ad.u.fs.dentry = sb->s_root;
2020         return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad);
2021 }
2022
2023 static int selinux_sb_statfs(struct dentry *dentry)
2024 {
2025         struct avc_audit_data ad;
2026
2027         AVC_AUDIT_DATA_INIT(&ad,FS);
2028         ad.u.fs.dentry = dentry->d_sb->s_root;
2029         return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2030 }
2031
2032 static int selinux_mount(char * dev_name,
2033                          struct nameidata *nd,
2034                          char * type,
2035                          unsigned long flags,
2036                          void * data)
2037 {
2038         int rc;
2039
2040         rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data);
2041         if (rc)
2042                 return rc;
2043
2044         if (flags & MS_REMOUNT)
2045                 return superblock_has_perm(current, nd->mnt->mnt_sb,
2046                                            FILESYSTEM__REMOUNT, NULL);
2047         else
2048                 return dentry_has_perm(current, nd->mnt, nd->dentry,
2049                                        FILE__MOUNTON);
2050 }
2051
2052 static int selinux_umount(struct vfsmount *mnt, int flags)
2053 {
2054         int rc;
2055
2056         rc = secondary_ops->sb_umount(mnt, flags);
2057         if (rc)
2058                 return rc;
2059
2060         return superblock_has_perm(current,mnt->mnt_sb,
2061                                    FILESYSTEM__UNMOUNT,NULL);
2062 }
2063
2064 /* inode security operations */
2065
2066 static int selinux_inode_alloc_security(struct inode *inode)
2067 {
2068         return inode_alloc_security(inode);
2069 }
2070
2071 static void selinux_inode_free_security(struct inode *inode)
2072 {
2073         inode_free_security(inode);
2074 }
2075
2076 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2077                                        char **name, void **value,
2078                                        size_t *len)
2079 {
2080         struct task_security_struct *tsec;
2081         struct inode_security_struct *dsec;
2082         struct superblock_security_struct *sbsec;
2083         u32 newsid, clen;
2084         int rc;
2085         char *namep = NULL, *context;
2086
2087         tsec = current->security;
2088         dsec = dir->i_security;
2089         sbsec = dir->i_sb->s_security;
2090
2091         if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2092                 newsid = tsec->create_sid;
2093         } else {
2094                 rc = security_transition_sid(tsec->sid, dsec->sid,
2095                                              inode_mode_to_security_class(inode->i_mode),
2096                                              &newsid);
2097                 if (rc) {
2098                         printk(KERN_WARNING "%s:  "
2099                                "security_transition_sid failed, rc=%d (dev=%s "
2100                                "ino=%ld)\n",
2101                                __FUNCTION__,
2102                                -rc, inode->i_sb->s_id, inode->i_ino);
2103                         return rc;
2104                 }
2105         }
2106
2107         /* Possibly defer initialization to selinux_complete_init. */
2108         if (sbsec->initialized) {
2109                 struct inode_security_struct *isec = inode->i_security;
2110                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2111                 isec->sid = newsid;
2112                 isec->initialized = 1;
2113         }
2114
2115         if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2116                 return -EOPNOTSUPP;
2117
2118         if (name) {
2119                 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL);
2120                 if (!namep)
2121                         return -ENOMEM;
2122                 *name = namep;
2123         }
2124
2125         if (value && len) {
2126                 rc = security_sid_to_context(newsid, &context, &clen);
2127                 if (rc) {
2128                         kfree(namep);
2129                         return rc;
2130                 }
2131                 *value = context;
2132                 *len = clen;
2133         }
2134
2135         return 0;
2136 }
2137
2138 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2139 {
2140         return may_create(dir, dentry, SECCLASS_FILE);
2141 }
2142
2143 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2144 {
2145         int rc;
2146
2147         rc = secondary_ops->inode_link(old_dentry,dir,new_dentry);
2148         if (rc)
2149                 return rc;
2150         return may_link(dir, old_dentry, MAY_LINK);
2151 }
2152
2153 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2154 {
2155         int rc;
2156
2157         rc = secondary_ops->inode_unlink(dir, dentry);
2158         if (rc)
2159                 return rc;
2160         return may_link(dir, dentry, MAY_UNLINK);
2161 }
2162
2163 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2164 {
2165         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2166 }
2167
2168 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2169 {
2170         return may_create(dir, dentry, SECCLASS_DIR);
2171 }
2172
2173 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2174 {
2175         return may_link(dir, dentry, MAY_RMDIR);
2176 }
2177
2178 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2179 {
2180         int rc;
2181
2182         rc = secondary_ops->inode_mknod(dir, dentry, mode, dev);
2183         if (rc)
2184                 return rc;
2185
2186         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2187 }
2188
2189 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2190                                 struct inode *new_inode, struct dentry *new_dentry)
2191 {
2192         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2193 }
2194
2195 static int selinux_inode_readlink(struct dentry *dentry)
2196 {
2197         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2198 }
2199
2200 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2201 {
2202         int rc;
2203
2204         rc = secondary_ops->inode_follow_link(dentry,nameidata);
2205         if (rc)
2206                 return rc;
2207         return dentry_has_perm(current, NULL, dentry, FILE__READ);
2208 }
2209
2210 static int selinux_inode_permission(struct inode *inode, int mask,
2211                                     struct nameidata *nd)
2212 {
2213         int rc;
2214
2215         rc = secondary_ops->inode_permission(inode, mask, nd);
2216         if (rc)
2217                 return rc;
2218
2219         if (!mask) {
2220                 /* No permission to check.  Existence test. */
2221                 return 0;
2222         }
2223
2224         return inode_has_perm(current, inode,
2225                                file_mask_to_av(inode->i_mode, mask), NULL);
2226 }
2227
2228 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2229 {
2230         int rc;
2231
2232         rc = secondary_ops->inode_setattr(dentry, iattr);
2233         if (rc)
2234                 return rc;
2235
2236         if (iattr->ia_valid & ATTR_FORCE)
2237                 return 0;
2238
2239         if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2240                                ATTR_ATIME_SET | ATTR_MTIME_SET))
2241                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2242
2243         return dentry_has_perm(current, NULL, dentry, FILE__WRITE);
2244 }
2245
2246 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2247 {
2248         return dentry_has_perm(current, mnt, dentry, FILE__GETATTR);
2249 }
2250
2251 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags)
2252 {
2253         struct task_security_struct *tsec = current->security;
2254         struct inode *inode = dentry->d_inode;
2255         struct inode_security_struct *isec = inode->i_security;
2256         struct superblock_security_struct *sbsec;
2257         struct avc_audit_data ad;
2258         u32 newsid;
2259         int rc = 0;
2260
2261         if (strcmp(name, XATTR_NAME_SELINUX)) {
2262                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2263                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2264                     !capable(CAP_SYS_ADMIN)) {
2265                         /* A different attribute in the security namespace.
2266                            Restrict to administrator. */
2267                         return -EPERM;
2268                 }
2269
2270                 /* Not an attribute we recognize, so just check the
2271                    ordinary setattr permission. */
2272                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2273         }
2274
2275         sbsec = inode->i_sb->s_security;
2276         if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)
2277                 return -EOPNOTSUPP;
2278
2279         if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER))
2280                 return -EPERM;
2281
2282         AVC_AUDIT_DATA_INIT(&ad,FS);
2283         ad.u.fs.dentry = dentry;
2284
2285         rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass,
2286                           FILE__RELABELFROM, &ad);
2287         if (rc)
2288                 return rc;
2289
2290         rc = security_context_to_sid(value, size, &newsid);
2291         if (rc)
2292                 return rc;
2293
2294         rc = avc_has_perm(tsec->sid, newsid, isec->sclass,
2295                           FILE__RELABELTO, &ad);
2296         if (rc)
2297                 return rc;
2298
2299         rc = security_validate_transition(isec->sid, newsid, tsec->sid,
2300                                           isec->sclass);
2301         if (rc)
2302                 return rc;
2303
2304         return avc_has_perm(newsid,
2305                             sbsec->sid,
2306                             SECCLASS_FILESYSTEM,
2307                             FILESYSTEM__ASSOCIATE,
2308                             &ad);
2309 }
2310
2311 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name,
2312                                         void *value, size_t size, int flags)
2313 {
2314         struct inode *inode = dentry->d_inode;
2315         struct inode_security_struct *isec = inode->i_security;
2316         u32 newsid;
2317         int rc;
2318
2319         if (strcmp(name, XATTR_NAME_SELINUX)) {
2320                 /* Not an attribute we recognize, so nothing to do. */
2321                 return;
2322         }
2323
2324         rc = security_context_to_sid(value, size, &newsid);
2325         if (rc) {
2326                 printk(KERN_WARNING "%s:  unable to obtain SID for context "
2327                        "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc);
2328                 return;
2329         }
2330
2331         isec->sid = newsid;
2332         return;
2333 }
2334
2335 static int selinux_inode_getxattr (struct dentry *dentry, char *name)
2336 {
2337         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2338 }
2339
2340 static int selinux_inode_listxattr (struct dentry *dentry)
2341 {
2342         return dentry_has_perm(current, NULL, dentry, FILE__GETATTR);
2343 }
2344
2345 static int selinux_inode_removexattr (struct dentry *dentry, char *name)
2346 {
2347         if (strcmp(name, XATTR_NAME_SELINUX)) {
2348                 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2349                              sizeof XATTR_SECURITY_PREFIX - 1) &&
2350                     !capable(CAP_SYS_ADMIN)) {
2351                         /* A different attribute in the security namespace.
2352                            Restrict to administrator. */
2353                         return -EPERM;
2354                 }
2355
2356                 /* Not an attribute we recognize, so just check the
2357                    ordinary setattr permission. Might want a separate
2358                    permission for removexattr. */
2359                 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR);
2360         }
2361
2362         /* No one is allowed to remove a SELinux security label.
2363            You can change the label, but all data must be labeled. */
2364         return -EACCES;
2365 }
2366
2367 static const char *selinux_inode_xattr_getsuffix(void)
2368 {
2369       return XATTR_SELINUX_SUFFIX;
2370 }
2371
2372 /*
2373  * Copy the in-core inode security context value to the user.  If the
2374  * getxattr() prior to this succeeded, check to see if we need to
2375  * canonicalize the value to be finally returned to the user.
2376  *
2377  * Permission check is handled by selinux_inode_getxattr hook.
2378  */
2379 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
2380 {
2381         struct inode_security_struct *isec = inode->i_security;
2382
2383         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2384                 return -EOPNOTSUPP;
2385
2386         return selinux_getsecurity(isec->sid, buffer, size);
2387 }
2388
2389 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2390                                      const void *value, size_t size, int flags)
2391 {
2392         struct inode_security_struct *isec = inode->i_security;
2393         u32 newsid;
2394         int rc;
2395
2396         if (strcmp(name, XATTR_SELINUX_SUFFIX))
2397                 return -EOPNOTSUPP;
2398
2399         if (!value || !size)
2400                 return -EACCES;
2401
2402         rc = security_context_to_sid((void*)value, size, &newsid);
2403         if (rc)
2404                 return rc;
2405
2406         isec->sid = newsid;
2407         return 0;
2408 }
2409
2410 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2411 {
2412         const int len = sizeof(XATTR_NAME_SELINUX);
2413         if (buffer && len <= buffer_size)
2414                 memcpy(buffer, XATTR_NAME_SELINUX, len);
2415         return len;
2416 }
2417
2418 /* file security operations */
2419
2420 static int selinux_file_permission(struct file *file, int mask)
2421 {
2422         int rc;
2423         struct inode *inode = file->f_path.dentry->d_inode;
2424
2425         if (!mask) {
2426                 /* No permission to check.  Existence test. */
2427                 return 0;
2428         }
2429
2430         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2431         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2432                 mask |= MAY_APPEND;
2433
2434         rc = file_has_perm(current, file,
2435                            file_mask_to_av(inode->i_mode, mask));
2436         if (rc)
2437                 return rc;
2438
2439         return selinux_netlbl_inode_permission(inode, mask);
2440 }
2441
2442 static int selinux_file_alloc_security(struct file *file)
2443 {
2444         return file_alloc_security(file);
2445 }
2446
2447 static void selinux_file_free_security(struct file *file)
2448 {
2449         file_free_security(file);
2450 }
2451
2452 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2453                               unsigned long arg)
2454 {
2455         int error = 0;
2456
2457         switch (cmd) {
2458                 case FIONREAD:
2459                 /* fall through */
2460                 case FIBMAP:
2461                 /* fall through */
2462                 case FIGETBSZ:
2463                 /* fall through */
2464                 case EXT2_IOC_GETFLAGS:
2465                 /* fall through */
2466                 case EXT2_IOC_GETVERSION:
2467                         error = file_has_perm(current, file, FILE__GETATTR);
2468                         break;
2469
2470                 case EXT2_IOC_SETFLAGS:
2471                 /* fall through */
2472                 case EXT2_IOC_SETVERSION:
2473                         error = file_has_perm(current, file, FILE__SETATTR);
2474                         break;
2475
2476                 /* sys_ioctl() checks */
2477                 case FIONBIO:
2478                 /* fall through */
2479                 case FIOASYNC:
2480                         error = file_has_perm(current, file, 0);
2481                         break;
2482
2483                 case KDSKBENT:
2484                 case KDSKBSENT:
2485                         error = task_has_capability(current,CAP_SYS_TTY_CONFIG);
2486                         break;
2487
2488                 /* default case assumes that the command will go
2489                  * to the file's ioctl() function.
2490                  */
2491                 default:
2492                         error = file_has_perm(current, file, FILE__IOCTL);
2493
2494         }
2495         return error;
2496 }
2497
2498 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
2499 {
2500 #ifndef CONFIG_PPC32
2501         if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
2502                 /*
2503                  * We are making executable an anonymous mapping or a
2504                  * private file mapping that will also be writable.
2505                  * This has an additional check.
2506                  */
2507                 int rc = task_has_perm(current, current, PROCESS__EXECMEM);
2508                 if (rc)
2509                         return rc;
2510         }
2511 #endif
2512
2513         if (file) {
2514                 /* read access is always possible with a mapping */
2515                 u32 av = FILE__READ;
2516
2517                 /* write access only matters if the mapping is shared */
2518                 if (shared && (prot & PROT_WRITE))
2519                         av |= FILE__WRITE;
2520
2521                 if (prot & PROT_EXEC)
2522                         av |= FILE__EXECUTE;
2523
2524                 return file_has_perm(current, file, av);
2525         }
2526         return 0;
2527 }
2528
2529 static int selinux_file_mmap(struct file *file, unsigned long reqprot,
2530                              unsigned long prot, unsigned long flags)
2531 {
2532         int rc;
2533
2534         rc = secondary_ops->file_mmap(file, reqprot, prot, flags);
2535         if (rc)
2536                 return rc;
2537
2538         if (selinux_checkreqprot)
2539                 prot = reqprot;
2540
2541         return file_map_prot_check(file, prot,
2542                                    (flags & MAP_TYPE) == MAP_SHARED);
2543 }
2544
2545 static int selinux_file_mprotect(struct vm_area_struct *vma,
2546                                  unsigned long reqprot,
2547                                  unsigned long prot)
2548 {
2549         int rc;
2550
2551         rc = secondary_ops->file_mprotect(vma, reqprot, prot);
2552         if (rc)
2553                 return rc;
2554
2555         if (selinux_checkreqprot)
2556                 prot = reqprot;
2557
2558 #ifndef CONFIG_PPC32
2559         if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
2560                 rc = 0;
2561                 if (vma->vm_start >= vma->vm_mm->start_brk &&
2562                     vma->vm_end <= vma->vm_mm->brk) {
2563                         rc = task_has_perm(current, current,
2564                                            PROCESS__EXECHEAP);
2565                 } else if (!vma->vm_file &&
2566                            vma->vm_start <= vma->vm_mm->start_stack &&
2567                            vma->vm_end >= vma->vm_mm->start_stack) {
2568                         rc = task_has_perm(current, current, PROCESS__EXECSTACK);
2569                 } else if (vma->vm_file && vma->anon_vma) {
2570                         /*
2571                          * We are making executable a file mapping that has
2572                          * had some COW done. Since pages might have been
2573                          * written, check ability to execute the possibly
2574                          * modified content.  This typically should only
2575                          * occur for text relocations.
2576                          */
2577                         rc = file_has_perm(current, vma->vm_file,
2578                                            FILE__EXECMOD);
2579                 }
2580                 if (rc)
2581                         return rc;
2582         }
2583 #endif
2584
2585         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
2586 }
2587
2588 static int selinux_file_lock(struct file *file, unsigned int cmd)
2589 {
2590         return file_has_perm(current, file, FILE__LOCK);
2591 }
2592
2593 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
2594                               unsigned long arg)
2595 {
2596         int err = 0;
2597
2598         switch (cmd) {
2599                 case F_SETFL:
2600                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2601                                 err = -EINVAL;
2602                                 break;
2603                         }
2604
2605                         if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
2606                                 err = file_has_perm(current, file,FILE__WRITE);
2607                                 break;
2608                         }
2609                         /* fall through */
2610                 case F_SETOWN:
2611                 case F_SETSIG:
2612                 case F_GETFL:
2613                 case F_GETOWN:
2614                 case F_GETSIG:
2615                         /* Just check FD__USE permission */
2616                         err = file_has_perm(current, file, 0);
2617                         break;
2618                 case F_GETLK:
2619                 case F_SETLK:
2620                 case F_SETLKW:
2621 #if BITS_PER_LONG == 32
2622                 case F_GETLK64:
2623                 case F_SETLK64:
2624                 case F_SETLKW64:
2625 #endif
2626                         if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
2627                                 err = -EINVAL;
2628                                 break;
2629                         }
2630                         err = file_has_perm(current, file, FILE__LOCK);
2631                         break;
2632         }
2633
2634         return err;
2635 }
2636
2637 static int selinux_file_set_fowner(struct file *file)
2638 {
2639         struct task_security_struct *tsec;
2640         struct file_security_struct *fsec;
2641
2642         tsec = current->security;
2643         fsec = file->f_security;
2644         fsec->fown_sid = tsec->sid;
2645
2646         return 0;
2647 }
2648
2649 static int selinux_file_send_sigiotask(struct task_struct *tsk,
2650                                        struct fown_struct *fown, int signum)
2651 {
2652         struct file *file;
2653         u32 perm;
2654         struct task_security_struct *tsec;
2655         struct file_security_struct *fsec;
2656
2657         /* struct fown_struct is never outside the context of a struct file */
2658         file = (struct file *)((long)fown - offsetof(struct file,f_owner));
2659
2660         tsec = tsk->security;
2661         fsec = file->f_security;
2662
2663         if (!signum)
2664                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
2665         else
2666                 perm = signal_to_av(signum);
2667
2668         return avc_has_perm(fsec->fown_sid, tsec->sid,
2669                             SECCLASS_PROCESS, perm, NULL);
2670 }
2671
2672 static int selinux_file_receive(struct file *file)
2673 {
2674         return file_has_perm(current, file, file_to_av(file));
2675 }
2676
2677 /* task security operations */
2678
2679 static int selinux_task_create(unsigned long clone_flags)
2680 {
2681         int rc;
2682
2683         rc = secondary_ops->task_create(clone_flags);
2684         if (rc)
2685                 return rc;
2686
2687         return task_has_perm(current, current, PROCESS__FORK);
2688 }
2689
2690 static int selinux_task_alloc_security(struct task_struct *tsk)
2691 {
2692         struct task_security_struct *tsec1, *tsec2;
2693         int rc;
2694
2695         tsec1 = current->security;
2696
2697         rc = task_alloc_security(tsk);
2698         if (rc)
2699                 return rc;
2700         tsec2 = tsk->security;
2701
2702         tsec2->osid = tsec1->osid;
2703         tsec2->sid = tsec1->sid;
2704
2705         /* Retain the exec, fs, key, and sock SIDs across fork */
2706         tsec2->exec_sid = tsec1->exec_sid;
2707         tsec2->create_sid = tsec1->create_sid;
2708         tsec2->keycreate_sid = tsec1->keycreate_sid;
2709         tsec2->sockcreate_sid = tsec1->sockcreate_sid;
2710
2711         /* Retain ptracer SID across fork, if any.
2712            This will be reset by the ptrace hook upon any
2713            subsequent ptrace_attach operations. */
2714         tsec2->ptrace_sid = tsec1->ptrace_sid;
2715
2716         return 0;
2717 }
2718
2719 static void selinux_task_free_security(struct task_struct *tsk)
2720 {
2721         task_free_security(tsk);
2722 }
2723
2724 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2725 {
2726         /* Since setuid only affects the current process, and
2727            since the SELinux controls are not based on the Linux
2728            identity attributes, SELinux does not need to control
2729            this operation.  However, SELinux does control the use
2730            of the CAP_SETUID and CAP_SETGID capabilities using the
2731            capable hook. */
2732         return 0;
2733 }
2734
2735 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
2736 {
2737         return secondary_ops->task_post_setuid(id0,id1,id2,flags);
2738 }
2739
2740 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
2741 {
2742         /* See the comment for setuid above. */
2743         return 0;
2744 }
2745
2746 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
2747 {
2748         return task_has_perm(current, p, PROCESS__SETPGID);
2749 }
2750
2751 static int selinux_task_getpgid(struct task_struct *p)
2752 {
2753         return task_has_perm(current, p, PROCESS__GETPGID);
2754 }
2755
2756 static int selinux_task_getsid(struct task_struct *p)
2757 {
2758         return task_has_perm(current, p, PROCESS__GETSESSION);
2759 }
2760
2761 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
2762 {
2763         selinux_get_task_sid(p, secid);
2764 }
2765
2766 static int selinux_task_setgroups(struct group_info *group_info)
2767 {
2768         /* See the comment for setuid above. */
2769         return 0;
2770 }
2771
2772 static int selinux_task_setnice(struct task_struct *p, int nice)
2773 {
2774         int rc;
2775
2776         rc = secondary_ops->task_setnice(p, nice);
2777         if (rc)
2778                 return rc;
2779
2780         return task_has_perm(current,p, PROCESS__SETSCHED);
2781 }
2782
2783 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
2784 {
2785         return task_has_perm(current, p, PROCESS__SETSCHED);
2786 }
2787
2788 static int selinux_task_getioprio(struct task_struct *p)
2789 {
2790         return task_has_perm(current, p, PROCESS__GETSCHED);
2791 }
2792
2793 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
2794 {
2795         struct rlimit *old_rlim = current->signal->rlim + resource;
2796         int rc;
2797
2798         rc = secondary_ops->task_setrlimit(resource, new_rlim);
2799         if (rc)
2800                 return rc;
2801
2802         /* Control the ability to change the hard limit (whether
2803            lowering or raising it), so that the hard limit can
2804            later be used as a safe reset point for the soft limit
2805            upon context transitions. See selinux_bprm_apply_creds. */
2806         if (old_rlim->rlim_max != new_rlim->rlim_max)
2807                 return task_has_perm(current, current, PROCESS__SETRLIMIT);
2808
2809         return 0;
2810 }
2811
2812 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp)
2813 {
2814         return task_has_perm(current, p, PROCESS__SETSCHED);
2815 }
2816
2817 static int selinux_task_getscheduler(struct task_struct *p)
2818 {
2819         return task_has_perm(current, p, PROCESS__GETSCHED);
2820 }
2821
2822 static int selinux_task_movememory(struct task_struct *p)
2823 {
2824         return task_has_perm(current, p, PROCESS__SETSCHED);
2825 }
2826
2827 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
2828                                 int sig, u32 secid)
2829 {
2830         u32 perm;
2831         int rc;
2832         struct task_security_struct *tsec;
2833
2834         rc = secondary_ops->task_kill(p, info, sig, secid);
2835         if (rc)
2836                 return rc;
2837
2838         if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
2839                 return 0;
2840
2841         if (!sig)
2842                 perm = PROCESS__SIGNULL; /* null signal; existence test */
2843         else
2844                 perm = signal_to_av(sig);
2845         tsec = p->security;
2846         if (secid)
2847                 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL);
2848         else
2849                 rc = task_has_perm(current, p, perm);
2850         return rc;
2851 }
2852
2853 static int selinux_task_prctl(int option,
2854                               unsigned long arg2,
2855                               unsigned long arg3,
2856                               unsigned long arg4,
2857                               unsigned long arg5)
2858 {
2859         /* The current prctl operations do not appear to require
2860            any SELinux controls since they merely observe or modify
2861            the state of the current process. */
2862         return 0;
2863 }
2864
2865 static int selinux_task_wait(struct task_struct *p)
2866 {
2867         u32 perm;
2868
2869         perm = signal_to_av(p->exit_signal);
2870
2871         return task_has_perm(p, current, perm);
2872 }
2873
2874 static void selinux_task_reparent_to_init(struct task_struct *p)
2875 {
2876         struct task_security_struct *tsec;
2877
2878         secondary_ops->task_reparent_to_init(p);
2879
2880         tsec = p->security;
2881         tsec->osid = tsec->sid;
2882         tsec->sid = SECINITSID_KERNEL;
2883         return;
2884 }
2885
2886 static void selinux_task_to_inode(struct task_struct *p,
2887                                   struct inode *inode)
2888 {
2889         struct task_security_struct *tsec = p->security;
2890         struct inode_security_struct *isec = inode->i_security;
2891
2892         isec->sid = tsec->sid;
2893         isec->initialized = 1;
2894         return;
2895 }
2896
2897 /* Returns error only if unable to parse addresses */
2898 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
2899                         struct avc_audit_data *ad, u8 *proto)
2900 {
2901         int offset, ihlen, ret = -EINVAL;
2902         struct iphdr _iph, *ih;
2903
2904         offset = skb->nh.raw - skb->data;
2905         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
2906         if (ih == NULL)
2907                 goto out;
2908
2909         ihlen = ih->ihl * 4;
2910         if (ihlen < sizeof(_iph))
2911                 goto out;
2912
2913         ad->u.net.v4info.saddr = ih->saddr;
2914         ad->u.net.v4info.daddr = ih->daddr;
2915         ret = 0;
2916
2917         if (proto)
2918                 *proto = ih->protocol;
2919
2920         switch (ih->protocol) {
2921         case IPPROTO_TCP: {
2922                 struct tcphdr _tcph, *th;
2923
2924                 if (ntohs(ih->frag_off) & IP_OFFSET)
2925                         break;
2926
2927                 offset += ihlen;
2928                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
2929                 if (th == NULL)
2930                         break;
2931
2932                 ad->u.net.sport = th->source;
2933                 ad->u.net.dport = th->dest;
2934                 break;
2935         }
2936         
2937         case IPPROTO_UDP: {
2938                 struct udphdr _udph, *uh;
2939                 
2940                 if (ntohs(ih->frag_off) & IP_OFFSET)
2941                         break;
2942                         
2943                 offset += ihlen;
2944                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
2945                 if (uh == NULL)
2946                         break;  
2947
2948                 ad->u.net.sport = uh->source;
2949                 ad->u.net.dport = uh->dest;
2950                 break;
2951         }
2952
2953         case IPPROTO_DCCP: {
2954                 struct dccp_hdr _dccph, *dh;
2955
2956                 if (ntohs(ih->frag_off) & IP_OFFSET)
2957                         break;
2958
2959                 offset += ihlen;
2960                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
2961                 if (dh == NULL)
2962                         break;
2963
2964                 ad->u.net.sport = dh->dccph_sport;
2965                 ad->u.net.dport = dh->dccph_dport;
2966                 break;
2967         }
2968
2969         default:
2970                 break;
2971         }
2972 out:
2973         return ret;
2974 }
2975
2976 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2977
2978 /* Returns error only if unable to parse addresses */
2979 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
2980                         struct avc_audit_data *ad, u8 *proto)
2981 {
2982         u8 nexthdr;
2983         int ret = -EINVAL, offset;
2984         struct ipv6hdr _ipv6h, *ip6;
2985
2986         offset = skb->nh.raw - skb->data;
2987         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
2988         if (ip6 == NULL)
2989                 goto out;
2990
2991         ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
2992         ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
2993         ret = 0;
2994
2995         nexthdr = ip6->nexthdr;
2996         offset += sizeof(_ipv6h);
2997         offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
2998         if (offset < 0)
2999                 goto out;
3000
3001         if (proto)
3002                 *proto = nexthdr;
3003
3004         switch (nexthdr) {
3005         case IPPROTO_TCP: {
3006                 struct tcphdr _tcph, *th;
3007
3008                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3009                 if (th == NULL)
3010                         break;
3011
3012                 ad->u.net.sport = th->source;
3013                 ad->u.net.dport = th->dest;
3014                 break;
3015         }
3016
3017         case IPPROTO_UDP: {
3018                 struct udphdr _udph, *uh;
3019
3020                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3021                 if (uh == NULL)
3022                         break;
3023
3024                 ad->u.net.sport = uh->source;
3025                 ad->u.net.dport = uh->dest;
3026                 break;
3027         }
3028
3029         case IPPROTO_DCCP: {
3030                 struct dccp_hdr _dccph, *dh;
3031
3032                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3033                 if (dh == NULL)
3034                         break;
3035
3036                 ad->u.net.sport = dh->dccph_sport;
3037                 ad->u.net.dport = dh->dccph_dport;
3038                 break;
3039         }
3040
3041         /* includes fragments */
3042         default:
3043                 break;
3044         }
3045 out:
3046         return ret;
3047 }
3048
3049 #endif /* IPV6 */
3050
3051 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad,
3052                              char **addrp, int *len, int src, u8 *proto)
3053 {
3054         int ret = 0;
3055
3056         switch (ad->u.net.family) {
3057         case PF_INET:
3058                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3059                 if (ret || !addrp)
3060                         break;
3061                 *len = 4;
3062                 *addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3063                                         &ad->u.net.v4info.daddr);
3064                 break;
3065
3066 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3067         case PF_INET6:
3068                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3069                 if (ret || !addrp)
3070                         break;
3071                 *len = 16;
3072                 *addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3073                                         &ad->u.net.v6info.daddr);
3074                 break;
3075 #endif  /* IPV6 */
3076         default:
3077                 break;
3078         }
3079
3080         return ret;
3081 }
3082
3083 /* socket security operations */
3084 static int socket_has_perm(struct task_struct *task, struct socket *sock,
3085                            u32 perms)
3086 {
3087         struct inode_security_struct *isec;
3088         struct task_security_struct *tsec;
3089         struct avc_audit_data ad;
3090         int err = 0;
3091
3092         tsec = task->security;
3093         isec = SOCK_INODE(sock)->i_security;
3094
3095         if (isec->sid == SECINITSID_KERNEL)
3096                 goto out;
3097
3098         AVC_AUDIT_DATA_INIT(&ad,NET);
3099         ad.u.net.sk = sock->sk;
3100         err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
3101
3102 out:
3103         return err;
3104 }
3105
3106 static int selinux_socket_create(int family, int type,
3107                                  int protocol, int kern)
3108 {
3109         int err = 0;
3110         struct task_security_struct *tsec;
3111         u32 newsid;
3112
3113         if (kern)
3114                 goto out;
3115
3116         tsec = current->security;
3117         newsid = tsec->sockcreate_sid ? : tsec->sid;
3118         err = avc_has_perm(tsec->sid, newsid,
3119                            socket_type_to_security_class(family, type,
3120                            protocol), SOCKET__CREATE, NULL);
3121
3122 out:
3123         return err;
3124 }
3125
3126 static int selinux_socket_post_create(struct socket *sock, int family,
3127                                       int type, int protocol, int kern)
3128 {
3129         int err = 0;
3130         struct inode_security_struct *isec;
3131         struct task_security_struct *tsec;
3132         struct sk_security_struct *sksec;
3133         u32 newsid;
3134
3135         isec = SOCK_INODE(sock)->i_security;
3136
3137         tsec = current->security;
3138         newsid = tsec->sockcreate_sid ? : tsec->sid;
3139         isec->sclass = socket_type_to_security_class(family, type, protocol);
3140         isec->sid = kern ? SECINITSID_KERNEL : newsid;
3141         isec->initialized = 1;
3142
3143         if (sock->sk) {
3144                 sksec = sock->sk->sk_security;
3145                 sksec->sid = isec->sid;
3146                 err = selinux_netlbl_socket_post_create(sock);
3147         }
3148
3149         return err;
3150 }
3151
3152 /* Range of port numbers used to automatically bind.
3153    Need to determine whether we should perform a name_bind
3154    permission check between the socket and the port number. */
3155 #define ip_local_port_range_0 sysctl_local_port_range[0]
3156 #define ip_local_port_range_1 sysctl_local_port_range[1]
3157
3158 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3159 {
3160         u16 family;
3161         int err;
3162
3163         err = socket_has_perm(current, sock, SOCKET__BIND);
3164         if (err)
3165                 goto out;
3166
3167         /*
3168          * If PF_INET or PF_INET6, check name_bind permission for the port.
3169          * Multiple address binding for SCTP is not supported yet: we just
3170          * check the first address now.
3171          */
3172         family = sock->sk->sk_family;
3173         if (family == PF_INET || family == PF_INET6) {
3174                 char *addrp;
3175                 struct inode_security_struct *isec;
3176                 struct task_security_struct *tsec;
3177                 struct avc_audit_data ad;
3178                 struct sockaddr_in *addr4 = NULL;
3179                 struct sockaddr_in6 *addr6 = NULL;
3180                 unsigned short snum;
3181                 struct sock *sk = sock->sk;
3182                 u32 sid, node_perm, addrlen;
3183
3184                 tsec = current->security;
3185                 isec = SOCK_INODE(sock)->i_security;
3186
3187                 if (family == PF_INET) {
3188                         addr4 = (struct sockaddr_in *)address;
3189                         snum = ntohs(addr4->sin_port);
3190                         addrlen = sizeof(addr4->sin_addr.s_addr);
3191                         addrp = (char *)&addr4->sin_addr.s_addr;
3192                 } else {
3193                         addr6 = (struct sockaddr_in6 *)address;
3194                         snum = ntohs(addr6->sin6_port);
3195                         addrlen = sizeof(addr6->sin6_addr.s6_addr);
3196                         addrp = (char *)&addr6->sin6_addr.s6_addr;
3197                 }
3198
3199                 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) ||
3200                            snum > ip_local_port_range_1)) {
3201                         err = security_port_sid(sk->sk_family, sk->sk_type,
3202                                                 sk->sk_protocol, snum, &sid);
3203                         if (err)
3204                                 goto out;
3205                         AVC_AUDIT_DATA_INIT(&ad,NET);
3206                         ad.u.net.sport = htons(snum);
3207                         ad.u.net.family = family;
3208                         err = avc_has_perm(isec->sid, sid,
3209                                            isec->sclass,
3210                                            SOCKET__NAME_BIND, &ad);
3211                         if (err)
3212                                 goto out;
3213                 }
3214                 
3215                 switch(isec->sclass) {
3216                 case SECCLASS_TCP_SOCKET:
3217                         node_perm = TCP_SOCKET__NODE_BIND;
3218                         break;
3219                         
3220                 case SECCLASS_UDP_SOCKET:
3221                         node_perm = UDP_SOCKET__NODE_BIND;
3222                         break;
3223
3224                 case SECCLASS_DCCP_SOCKET:
3225                         node_perm = DCCP_SOCKET__NODE_BIND;
3226                         break;
3227
3228                 default:
3229                         node_perm = RAWIP_SOCKET__NODE_BIND;
3230                         break;
3231                 }
3232                 
3233                 err = security_node_sid(family, addrp, addrlen, &sid);
3234                 if (err)
3235                         goto out;
3236                 
3237                 AVC_AUDIT_DATA_INIT(&ad,NET);
3238                 ad.u.net.sport = htons(snum);
3239                 ad.u.net.family = family;
3240
3241                 if (family == PF_INET)
3242                         ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3243                 else
3244                         ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3245
3246                 err = avc_has_perm(isec->sid, sid,
3247                                    isec->sclass, node_perm, &ad);
3248                 if (err)
3249                         goto out;
3250         }
3251 out:
3252         return err;
3253 }
3254
3255 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3256 {
3257         struct inode_security_struct *isec;
3258         int err;
3259
3260         err = socket_has_perm(current, sock, SOCKET__CONNECT);
3261         if (err)
3262                 return err;
3263
3264         /*
3265          * If a TCP or DCCP socket, check name_connect permission for the port.
3266          */
3267         isec = SOCK_INODE(sock)->i_security;
3268         if (isec->sclass == SECCLASS_TCP_SOCKET ||
3269             isec->sclass == SECCLASS_DCCP_SOCKET) {
3270                 struct sock *sk = sock->sk;
3271                 struct avc_audit_data ad;
3272                 struct sockaddr_in *addr4 = NULL;
3273                 struct sockaddr_in6 *addr6 = NULL;
3274                 unsigned short snum;
3275                 u32 sid, perm;
3276
3277                 if (sk->sk_family == PF_INET) {
3278                         addr4 = (struct sockaddr_in *)address;
3279                         if (addrlen < sizeof(struct sockaddr_in))
3280                                 return -EINVAL;
3281                         snum = ntohs(addr4->sin_port);
3282                 } else {
3283                         addr6 = (struct sockaddr_in6 *)address;
3284                         if (addrlen < SIN6_LEN_RFC2133)
3285                                 return -EINVAL;
3286                         snum = ntohs(addr6->sin6_port);
3287                 }
3288
3289                 err = security_port_sid(sk->sk_family, sk->sk_type,
3290                                         sk->sk_protocol, snum, &sid);
3291                 if (err)
3292                         goto out;
3293
3294                 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ?
3295                        TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3296
3297                 AVC_AUDIT_DATA_INIT(&ad,NET);
3298                 ad.u.net.dport = htons(snum);
3299                 ad.u.net.family = sk->sk_family;
3300                 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad);
3301                 if (err)
3302                         goto out;
3303         }
3304
3305 out:
3306         return err;
3307 }
3308
3309 static int selinux_socket_listen(struct socket *sock, int backlog)
3310 {
3311         return socket_has_perm(current, sock, SOCKET__LISTEN);
3312 }
3313
3314 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3315 {
3316         int err;
3317         struct inode_security_struct *isec;
3318         struct inode_security_struct *newisec;
3319
3320         err = socket_has_perm(current, sock, SOCKET__ACCEPT);
3321         if (err)
3322                 return err;
3323
3324         newisec = SOCK_INODE(newsock)->i_security;
3325
3326         isec = SOCK_INODE(sock)->i_security;
3327         newisec->sclass = isec->sclass;
3328         newisec->sid = isec->sid;
3329         newisec->initialized = 1;
3330
3331         return 0;
3332 }
3333
3334 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3335                                   int size)
3336 {
3337         int rc;
3338
3339         rc = socket_has_perm(current, sock, SOCKET__WRITE);
3340         if (rc)
3341                 return rc;
3342
3343         return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE);
3344 }
3345
3346 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3347                                   int size, int flags)
3348 {
3349         return socket_has_perm(current, sock, SOCKET__READ);
3350 }
3351
3352 static int selinux_socket_getsockname(struct socket *sock)
3353 {
3354         return socket_has_perm(current, sock, SOCKET__GETATTR);
3355 }
3356
3357 static int selinux_socket_getpeername(struct socket *sock)
3358 {
3359         return socket_has_perm(current, sock, SOCKET__GETATTR);
3360 }
3361
3362 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname)
3363 {
3364         int err;
3365
3366         err = socket_has_perm(current, sock, SOCKET__SETOPT);
3367         if (err)
3368                 return err;
3369
3370         return selinux_netlbl_socket_setsockopt(sock, level, optname);
3371 }
3372
3373 static int selinux_socket_getsockopt(struct socket *sock, int level,
3374                                      int optname)
3375 {
3376         return socket_has_perm(current, sock, SOCKET__GETOPT);
3377 }
3378
3379 static int selinux_socket_shutdown(struct socket *sock, int how)
3380 {
3381         return socket_has_perm(current, sock, SOCKET__SHUTDOWN);
3382 }
3383
3384 static int selinux_socket_unix_stream_connect(struct socket *sock,
3385                                               struct socket *other,
3386                                               struct sock *newsk)
3387 {
3388         struct sk_security_struct *ssec;
3389         struct inode_security_struct *isec;
3390         struct inode_security_struct *other_isec;
3391         struct avc_audit_data ad;
3392         int err;
3393
3394         err = secondary_ops->unix_stream_connect(sock, other, newsk);
3395         if (err)
3396                 return err;
3397
3398         isec = SOCK_INODE(sock)->i_security;
3399         other_isec = SOCK_INODE(other)->i_security;
3400
3401         AVC_AUDIT_DATA_INIT(&ad,NET);
3402         ad.u.net.sk = other->sk;
3403
3404         err = avc_has_perm(isec->sid, other_isec->sid,
3405                            isec->sclass,
3406                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
3407         if (err)
3408                 return err;
3409
3410         /* connecting socket */
3411         ssec = sock->sk->sk_security;
3412         ssec->peer_sid = other_isec->sid;
3413         
3414         /* server child socket */
3415         ssec = newsk->sk_security;
3416         ssec->peer_sid = isec->sid;
3417         err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid);
3418
3419         return err;
3420 }
3421
3422 static int selinux_socket_unix_may_send(struct socket *sock,
3423                                         struct socket *other)
3424 {
3425         struct inode_security_struct *isec;
3426         struct inode_security_struct *other_isec;
3427         struct avc_audit_data ad;
3428         int err;
3429
3430         isec = SOCK_INODE(sock)->i_security;
3431         other_isec = SOCK_INODE(other)->i_security;
3432
3433         AVC_AUDIT_DATA_INIT(&ad,NET);
3434         ad.u.net.sk = other->sk;
3435
3436         err = avc_has_perm(isec->sid, other_isec->sid,
3437                            isec->sclass, SOCKET__SENDTO, &ad);
3438         if (err)
3439                 return err;
3440
3441         return 0;
3442 }
3443
3444 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
3445                 struct avc_audit_data *ad, u16 family, char *addrp, int len)
3446 {
3447         int err = 0;
3448         u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0;
3449         struct socket *sock;
3450         u16 sock_class = 0;
3451         u32 sock_sid = 0;
3452
3453         read_lock_bh(&sk->sk_callback_lock);
3454         sock = sk->sk_socket;
3455         if (sock) {
3456                 struct inode *inode;
3457                 inode = SOCK_INODE(sock);
3458                 if (inode) {
3459                         struct inode_security_struct *isec;
3460                         isec = inode->i_security;
3461                         sock_sid = isec->sid;
3462                         sock_class = isec->sclass;
3463                 }
3464         }
3465         read_unlock_bh(&sk->sk_callback_lock);
3466         if (!sock_sid)
3467                 goto out;
3468
3469         if (!skb->dev)
3470                 goto out;
3471
3472         err = sel_netif_sids(skb->dev, &if_sid, NULL);
3473         if (err)
3474                 goto out;
3475
3476         switch (sock_class) {
3477         case SECCLASS_UDP_SOCKET:
3478                 netif_perm = NETIF__UDP_RECV;
3479                 node_perm = NODE__UDP_RECV;
3480                 recv_perm = UDP_SOCKET__RECV_MSG;
3481                 break;
3482         
3483         case SECCLASS_TCP_SOCKET:
3484                 netif_perm = NETIF__TCP_RECV;
3485                 node_perm = NODE__TCP_RECV;
3486                 recv_perm = TCP_SOCKET__RECV_MSG;
3487                 break;
3488
3489         case SECCLASS_DCCP_SOCKET:
3490                 netif_perm = NETIF__DCCP_RECV;
3491                 node_perm = NODE__DCCP_RECV;
3492                 recv_perm = DCCP_SOCKET__RECV_MSG;
3493                 break;
3494
3495         default:
3496                 netif_perm = NETIF__RAWIP_RECV;
3497                 node_perm = NODE__RAWIP_RECV;
3498                 break;
3499         }
3500
3501         err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3502         if (err)
3503                 goto out;
3504         
3505         err = security_node_sid(family, addrp, len, &node_sid);
3506         if (err)
3507                 goto out;
3508         
3509         err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad);
3510         if (err)
3511                 goto out;
3512
3513         if (recv_perm) {
3514                 u32 port_sid;
3515
3516                 err = security_port_sid(sk->sk_family, sk->sk_type,
3517                                         sk->sk_protocol, ntohs(ad->u.net.sport),
3518                                         &port_sid);
3519                 if (err)
3520                         goto out;
3521
3522                 err = avc_has_perm(sock_sid, port_sid,
3523                                    sock_class, recv_perm, ad);
3524         }
3525
3526 out:
3527         return err;
3528 }
3529
3530 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
3531 {
3532         u16 family;
3533         char *addrp;
3534         int len, err = 0;
3535         struct avc_audit_data ad;
3536         struct sk_security_struct *sksec = sk->sk_security;
3537
3538         family = sk->sk_family;
3539         if (family != PF_INET && family != PF_INET6)
3540                 goto out;
3541
3542         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
3543         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
3544                 family = PF_INET;
3545
3546         AVC_AUDIT_DATA_INIT(&ad, NET);
3547         ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]";
3548         ad.u.net.family = family;
3549
3550         err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL);
3551         if (err)
3552                 goto out;
3553
3554         if (selinux_compat_net)
3555                 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family,
3556                                                   addrp, len);
3557         else
3558                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3559                                    PACKET__RECV, &ad);
3560         if (err)
3561                 goto out;
3562
3563         err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad);
3564         if (err)
3565                 goto out;
3566
3567         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
3568 out:    
3569         return err;
3570 }
3571
3572 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
3573                                             int __user *optlen, unsigned len)
3574 {
3575         int err = 0;
3576         char *scontext;
3577         u32 scontext_len;
3578         struct sk_security_struct *ssec;
3579         struct inode_security_struct *isec;
3580         u32 peer_sid = SECSID_NULL;
3581
3582         isec = SOCK_INODE(sock)->i_security;
3583
3584         if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
3585             isec->sclass == SECCLASS_TCP_SOCKET) {
3586                 ssec = sock->sk->sk_security;
3587                 peer_sid = ssec->peer_sid;
3588         }
3589         if (peer_sid == SECSID_NULL) {
3590                 err = -ENOPROTOOPT;
3591                 goto out;
3592         }
3593
3594         err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
3595
3596         if (err)
3597                 goto out;
3598
3599         if (scontext_len > len) {
3600                 err = -ERANGE;
3601                 goto out_len;
3602         }
3603
3604         if (copy_to_user(optval, scontext, scontext_len))
3605                 err = -EFAULT;
3606
3607 out_len:
3608         if (put_user(scontext_len, optlen))
3609                 err = -EFAULT;
3610
3611         kfree(scontext);
3612 out:    
3613         return err;
3614 }
3615
3616 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
3617 {
3618         u32 peer_secid = SECSID_NULL;
3619         int err = 0;
3620
3621         if (sock && sock->sk->sk_family == PF_UNIX)
3622                 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid);
3623         else if (skb)
3624                 security_skb_extlbl_sid(skb,
3625                                         SECINITSID_UNLABELED,
3626                                         &peer_secid);
3627
3628         if (peer_secid == SECSID_NULL)
3629                 err = -EINVAL;
3630         *secid = peer_secid;
3631
3632         return err;
3633 }
3634
3635 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
3636 {
3637         return sk_alloc_security(sk, family, priority);
3638 }
3639
3640 static void selinux_sk_free_security(struct sock *sk)
3641 {
3642         sk_free_security(sk);
3643 }
3644
3645 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
3646 {
3647         struct sk_security_struct *ssec = sk->sk_security;
3648         struct sk_security_struct *newssec = newsk->sk_security;
3649
3650         newssec->sid = ssec->sid;
3651         newssec->peer_sid = ssec->peer_sid;
3652
3653         selinux_netlbl_sk_security_clone(ssec, newssec);
3654 }
3655
3656 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
3657 {
3658         if (!sk)
3659                 *secid = SECINITSID_ANY_SOCKET;
3660         else {
3661                 struct sk_security_struct *sksec = sk->sk_security;
3662
3663                 *secid = sksec->sid;
3664         }
3665 }
3666
3667 static void selinux_sock_graft(struct sock* sk, struct socket *parent)
3668 {
3669         struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
3670         struct sk_security_struct *sksec = sk->sk_security;
3671
3672         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
3673             sk->sk_family == PF_UNIX)
3674                 isec->sid = sksec->sid;
3675
3676         selinux_netlbl_sock_graft(sk, parent);
3677 }
3678
3679 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
3680                                      struct request_sock *req)
3681 {
3682         struct sk_security_struct *sksec = sk->sk_security;
3683         int err;
3684         u32 newsid;
3685         u32 peersid;
3686
3687         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &peersid);
3688         if (peersid == SECSID_NULL) {
3689                 req->secid = sksec->sid;
3690                 req->peer_secid = SECSID_NULL;
3691                 return 0;
3692         }
3693
3694         err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
3695         if (err)
3696                 return err;
3697
3698         req->secid = newsid;
3699         req->peer_secid = peersid;
3700         return 0;
3701 }
3702
3703 static void selinux_inet_csk_clone(struct sock *newsk,
3704                                    const struct request_sock *req)
3705 {
3706         struct sk_security_struct *newsksec = newsk->sk_security;
3707
3708         newsksec->sid = req->secid;
3709         newsksec->peer_sid = req->peer_secid;
3710         /* NOTE: Ideally, we should also get the isec->sid for the
3711            new socket in sync, but we don't have the isec available yet.
3712            So we will wait until sock_graft to do it, by which
3713            time it will have been created and available. */
3714
3715         /* We don't need to take any sort of lock here as we are the only
3716          * thread with access to newsksec */
3717         selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family);
3718 }
3719
3720 static void selinux_inet_conn_established(struct sock *sk,
3721                                 struct sk_buff *skb)
3722 {
3723         struct sk_security_struct *sksec = sk->sk_security;
3724
3725         security_skb_extlbl_sid(skb, SECINITSID_UNLABELED, &sksec->peer_sid);
3726 }
3727
3728 static void selinux_req_classify_flow(const struct request_sock *req,
3729                                       struct flowi *fl)
3730 {
3731         fl->secid = req->secid;
3732 }
3733
3734 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
3735 {
3736         int err = 0;
3737         u32 perm;
3738         struct nlmsghdr *nlh;
3739         struct socket *sock = sk->sk_socket;
3740         struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3741         
3742         if (skb->len < NLMSG_SPACE(0)) {
3743                 err = -EINVAL;
3744                 goto out;
3745         }
3746         nlh = (struct nlmsghdr *)skb->data;
3747         
3748         err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm);
3749         if (err) {
3750                 if (err == -EINVAL) {
3751                         audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
3752                                   "SELinux:  unrecognized netlink message"
3753                                   " type=%hu for sclass=%hu\n",
3754                                   nlh->nlmsg_type, isec->sclass);
3755                         if (!selinux_enforcing)
3756                                 err = 0;
3757                 }
3758
3759                 /* Ignore */
3760                 if (err == -ENOENT)
3761                         err = 0;
3762                 goto out;
3763         }
3764
3765         err = socket_has_perm(current, sock, perm);
3766 out:
3767         return err;
3768 }
3769
3770 #ifdef CONFIG_NETFILTER
3771
3772 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev,
3773                                             struct avc_audit_data *ad,
3774                                             u16 family, char *addrp, int len)
3775 {
3776         int err = 0;
3777         u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0;
3778         struct socket *sock;
3779         struct inode *inode;
3780         struct inode_security_struct *isec;
3781
3782         sock = sk->sk_socket;
3783         if (!sock)
3784                 goto out;
3785
3786         inode = SOCK_INODE(sock);
3787         if (!inode)
3788                 goto out;
3789
3790         isec = inode->i_security;
3791         
3792         err = sel_netif_sids(dev, &if_sid, NULL);
3793         if (err)
3794                 goto out;
3795
3796         switch (isec->sclass) {
3797         case SECCLASS_UDP_SOCKET:
3798                 netif_perm = NETIF__UDP_SEND;
3799                 node_perm = NODE__UDP_SEND;
3800                 send_perm = UDP_SOCKET__SEND_MSG;
3801                 break;
3802         
3803         case SECCLASS_TCP_SOCKET:
3804                 netif_perm = NETIF__TCP_SEND;
3805                 node_perm = NODE__TCP_SEND;
3806                 send_perm = TCP_SOCKET__SEND_MSG;
3807                 break;
3808
3809         case SECCLASS_DCCP_SOCKET:
3810                 netif_perm = NETIF__DCCP_SEND;
3811                 node_perm = NODE__DCCP_SEND;
3812                 send_perm = DCCP_SOCKET__SEND_MSG;
3813                 break;
3814
3815         default:
3816                 netif_perm = NETIF__RAWIP_SEND;
3817                 node_perm = NODE__RAWIP_SEND;
3818                 break;
3819         }
3820
3821         err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad);
3822         if (err)
3823                 goto out;
3824                 
3825         err = security_node_sid(family, addrp, len, &node_sid);
3826         if (err)
3827                 goto out;
3828         
3829         err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad);
3830         if (err)
3831                 goto out;
3832
3833         if (send_perm) {
3834                 u32 port_sid;
3835                 
3836                 err = security_port_sid(sk->sk_family,
3837                                         sk->sk_type,
3838                                         sk->sk_protocol,
3839                                         ntohs(ad->u.net.dport),
3840                                         &port_sid);
3841                 if (err)
3842                         goto out;
3843
3844                 err = avc_has_perm(isec->sid, port_sid, isec->sclass,
3845                                    send_perm, ad);
3846         }
3847 out:
3848         return err;
3849 }
3850
3851 static unsigned int selinux_ip_postroute_last(unsigned int hooknum,
3852                                               struct sk_buff **pskb,
3853                                               const struct net_device *in,
3854                                               const struct net_device *out,
3855                                               int (*okfn)(struct sk_buff *),
3856                                               u16 family)
3857 {
3858         char *addrp;
3859         int len, err = 0;
3860         struct sock *sk;
3861         struct sk_buff *skb = *pskb;
3862         struct avc_audit_data ad;
3863         struct net_device *dev = (struct net_device *)out;
3864         struct sk_security_struct *sksec;
3865         u8 proto;
3866
3867         sk = skb->sk;
3868         if (!sk)
3869                 goto out;
3870
3871         sksec = sk->sk_security;
3872
3873         AVC_AUDIT_DATA_INIT(&ad, NET);
3874         ad.u.net.netif = dev->name;
3875         ad.u.net.family = family;
3876
3877         err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto);
3878         if (err)
3879                 goto out;
3880
3881         if (selinux_compat_net)
3882                 err = selinux_ip_postroute_last_compat(sk, dev, &ad,
3883                                                        family, addrp, len);
3884         else
3885                 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET,
3886                                    PACKET__SEND, &ad);
3887
3888         if (err)
3889                 goto out;
3890
3891         err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto);
3892 out:
3893         return err ? NF_DROP : NF_ACCEPT;
3894 }
3895
3896 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum,
3897                                                 struct sk_buff **pskb,
3898                                                 const struct net_device *in,
3899                                                 const struct net_device *out,
3900                                                 int (*okfn)(struct sk_buff *))
3901 {
3902         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET);
3903 }
3904
3905 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3906
3907 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum,
3908                                                 struct sk_buff **pskb,
3909                                                 const struct net_device *in,
3910                                                 const struct net_device *out,
3911                                                 int (*okfn)(struct sk_buff *))
3912 {
3913         return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6);
3914 }
3915
3916 #endif  /* IPV6 */
3917
3918 #endif  /* CONFIG_NETFILTER */
3919
3920 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
3921 {
3922         int err;
3923
3924         err = secondary_ops->netlink_send(sk, skb);
3925         if (err)
3926                 return err;
3927
3928         if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS)
3929                 err = selinux_nlmsg_perm(sk, skb);
3930
3931         return err;
3932 }
3933
3934 static int selinux_netlink_recv(struct sk_buff *skb, int capability)
3935 {
3936         int err;
3937         struct avc_audit_data ad;
3938
3939         err = secondary_ops->netlink_recv(skb, capability);
3940         if (err)
3941                 return err;
3942
3943         AVC_AUDIT_DATA_INIT(&ad, CAP);
3944         ad.u.cap = capability;
3945
3946         return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid,
3947                             SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad);
3948 }
3949
3950 static int ipc_alloc_security(struct task_struct *task,
3951                               struct kern_ipc_perm *perm,
3952                               u16 sclass)
3953 {
3954         struct task_security_struct *tsec = task->security;
3955         struct ipc_security_struct *isec;
3956
3957         isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
3958         if (!isec)
3959                 return -ENOMEM;
3960
3961         isec->sclass = sclass;
3962         isec->ipc_perm = perm;
3963         isec->sid = tsec->sid;
3964         perm->security = isec;
3965
3966         return 0;
3967 }
3968
3969 static void ipc_free_security(struct kern_ipc_perm *perm)
3970 {
3971         struct ipc_security_struct *isec = perm->security;
3972         perm->security = NULL;
3973         kfree(isec);
3974 }
3975
3976 static int msg_msg_alloc_security(struct msg_msg *msg)
3977 {
3978         struct msg_security_struct *msec;
3979
3980         msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
3981         if (!msec)
3982                 return -ENOMEM;
3983
3984         msec->msg = msg;
3985         msec->sid = SECINITSID_UNLABELED;
3986         msg->security = msec;
3987
3988         return 0;
3989 }
3990
3991 static void msg_msg_free_security(struct msg_msg *msg)
3992 {
3993         struct msg_security_struct *msec = msg->security;
3994
3995         msg->security = NULL;
3996         kfree(msec);
3997 }
3998
3999 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4000                         u32 perms)
4001 {
4002         struct task_security_struct *tsec;
4003         struct ipc_security_struct *isec;
4004         struct avc_audit_data ad;
4005
4006         tsec = current->security;
4007         isec = ipc_perms->security;
4008
4009         AVC_AUDIT_DATA_INIT(&ad, IPC);
4010         ad.u.ipc_id = ipc_perms->key;
4011
4012         return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad);
4013 }
4014
4015 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4016 {
4017         return msg_msg_alloc_security(msg);
4018 }
4019
4020 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4021 {
4022         msg_msg_free_security(msg);
4023 }
4024
4025 /* message queue security operations */
4026 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4027 {
4028         struct task_security_struct *tsec;
4029         struct ipc_security_struct *isec;
4030         struct avc_audit_data ad;
4031         int rc;
4032
4033         rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4034         if (rc)
4035                 return rc;
4036
4037         tsec = current->security;
4038         isec = msq->q_perm.security;
4039
4040         AVC_AUDIT_DATA_INIT(&ad, IPC);
4041         ad.u.ipc_id = msq->q_perm.key;
4042
4043         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4044                           MSGQ__CREATE, &ad);
4045         if (rc) {
4046                 ipc_free_security(&msq->q_perm);
4047                 return rc;
4048         }
4049         return 0;
4050 }
4051
4052 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4053 {
4054         ipc_free_security(&msq->q_perm);
4055 }
4056
4057 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4058 {
4059         struct task_security_struct *tsec;
4060         struct ipc_security_struct *isec;
4061         struct avc_audit_data ad;
4062
4063         tsec = current->security;
4064         isec = msq->q_perm.security;
4065
4066         AVC_AUDIT_DATA_INIT(&ad, IPC);
4067         ad.u.ipc_id = msq->q_perm.key;
4068
4069         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4070                             MSGQ__ASSOCIATE, &ad);
4071 }
4072
4073 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4074 {
4075         int err;
4076         int perms;
4077
4078         switch(cmd) {
4079         case IPC_INFO:
4080         case MSG_INFO:
4081                 /* No specific object, just general system-wide information. */
4082                 return task_has_system(current, SYSTEM__IPC_INFO);
4083         case IPC_STAT:
4084         case MSG_STAT:
4085                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4086                 break;
4087         case IPC_SET:
4088                 perms = MSGQ__SETATTR;
4089                 break;
4090         case IPC_RMID:
4091                 perms = MSGQ__DESTROY;
4092                 break;
4093         default:
4094                 return 0;
4095         }
4096
4097         err = ipc_has_perm(&msq->q_perm, perms);
4098         return err;
4099 }
4100
4101 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4102 {
4103         struct task_security_struct *tsec;
4104         struct ipc_security_struct *isec;
4105         struct msg_security_struct *msec;
4106         struct avc_audit_data ad;
4107         int rc;
4108
4109         tsec = current->security;
4110         isec = msq->q_perm.security;
4111         msec = msg->security;
4112
4113         /*
4114          * First time through, need to assign label to the message
4115          */
4116         if (msec->sid == SECINITSID_UNLABELED) {
4117                 /*
4118                  * Compute new sid based on current process and
4119                  * message queue this message will be stored in
4120                  */
4121                 rc = security_transition_sid(tsec->sid,
4122                                              isec->sid,
4123                                              SECCLASS_MSG,
4124                                              &msec->sid);
4125                 if (rc)
4126                         return rc;
4127         }
4128
4129         AVC_AUDIT_DATA_INIT(&ad, IPC);
4130         ad.u.ipc_id = msq->q_perm.key;
4131
4132         /* Can this process write to the queue? */
4133         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ,
4134                           MSGQ__WRITE, &ad);
4135         if (!rc)
4136                 /* Can this process send the message */
4137                 rc = avc_has_perm(tsec->sid, msec->sid,
4138                                   SECCLASS_MSG, MSG__SEND, &ad);
4139         if (!rc)
4140                 /* Can the message be put in the queue? */
4141                 rc = avc_has_perm(msec->sid, isec->sid,
4142                                   SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad);
4143
4144         return rc;
4145 }
4146
4147 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4148                                     struct task_struct *target,
4149                                     long type, int mode)
4150 {
4151         struct task_security_struct *tsec;
4152         struct ipc_security_struct *isec;
4153         struct msg_security_struct *msec;
4154         struct avc_audit_data ad;
4155         int rc;
4156
4157         tsec = target->security;
4158         isec = msq->q_perm.security;
4159         msec = msg->security;
4160
4161         AVC_AUDIT_DATA_INIT(&ad, IPC);
4162         ad.u.ipc_id = msq->q_perm.key;
4163
4164         rc = avc_has_perm(tsec->sid, isec->sid,
4165                           SECCLASS_MSGQ, MSGQ__READ, &ad);
4166         if (!rc)
4167                 rc = avc_has_perm(tsec->sid, msec->sid,
4168                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
4169         return rc;
4170 }
4171
4172 /* Shared Memory security operations */
4173 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4174 {
4175         struct task_security_struct *tsec;
4176         struct ipc_security_struct *isec;
4177         struct avc_audit_data ad;
4178         int rc;
4179
4180         rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4181         if (rc)
4182                 return rc;
4183
4184         tsec = current->security;
4185         isec = shp->shm_perm.security;
4186
4187         AVC_AUDIT_DATA_INIT(&ad, IPC);
4188         ad.u.ipc_id = shp->shm_perm.key;
4189
4190         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4191                           SHM__CREATE, &ad);
4192         if (rc) {
4193                 ipc_free_security(&shp->shm_perm);
4194                 return rc;
4195         }
4196         return 0;
4197 }
4198
4199 static void selinux_shm_free_security(struct shmid_kernel *shp)
4200 {
4201         ipc_free_security(&shp->shm_perm);
4202 }
4203
4204 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4205 {
4206         struct task_security_struct *tsec;
4207         struct ipc_security_struct *isec;
4208         struct avc_audit_data ad;
4209
4210         tsec = current->security;
4211         isec = shp->shm_perm.security;
4212
4213         AVC_AUDIT_DATA_INIT(&ad, IPC);
4214         ad.u.ipc_id = shp->shm_perm.key;
4215
4216         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM,
4217                             SHM__ASSOCIATE, &ad);
4218 }
4219
4220 /* Note, at this point, shp is locked down */
4221 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
4222 {
4223         int perms;
4224         int err;
4225
4226         switch(cmd) {
4227         case IPC_INFO:
4228         case SHM_INFO:
4229                 /* No specific object, just general system-wide information. */
4230                 return task_has_system(current, SYSTEM__IPC_INFO);
4231         case IPC_STAT:
4232         case SHM_STAT:
4233                 perms = SHM__GETATTR | SHM__ASSOCIATE;
4234                 break;
4235         case IPC_SET:
4236                 perms = SHM__SETATTR;
4237                 break;
4238         case SHM_LOCK:
4239         case SHM_UNLOCK:
4240                 perms = SHM__LOCK;
4241                 break;
4242         case IPC_RMID:
4243                 perms = SHM__DESTROY;
4244                 break;
4245         default:
4246                 return 0;
4247         }
4248
4249         err = ipc_has_perm(&shp->shm_perm, perms);
4250         return err;
4251 }
4252
4253 static int selinux_shm_shmat(struct shmid_kernel *shp,
4254                              char __user *shmaddr, int shmflg)
4255 {
4256         u32 perms;
4257         int rc;
4258
4259         rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg);
4260         if (rc)
4261                 return rc;
4262
4263         if (shmflg & SHM_RDONLY)
4264                 perms = SHM__READ;
4265         else
4266                 perms = SHM__READ | SHM__WRITE;
4267
4268         return ipc_has_perm(&shp->shm_perm, perms);
4269 }
4270
4271 /* Semaphore security operations */
4272 static int selinux_sem_alloc_security(struct sem_array *sma)
4273 {
4274         struct task_security_struct *tsec;
4275         struct ipc_security_struct *isec;
4276         struct avc_audit_data ad;
4277         int rc;
4278
4279         rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
4280         if (rc)
4281                 return rc;
4282
4283         tsec = current->security;
4284         isec = sma->sem_perm.security;
4285
4286         AVC_AUDIT_DATA_INIT(&ad, IPC);
4287         ad.u.ipc_id = sma->sem_perm.key;
4288
4289         rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4290                           SEM__CREATE, &ad);
4291         if (rc) {
4292                 ipc_free_security(&sma->sem_perm);
4293                 return rc;
4294         }
4295         return 0;
4296 }
4297
4298 static void selinux_sem_free_security(struct sem_array *sma)
4299 {
4300         ipc_free_security(&sma->sem_perm);
4301 }
4302
4303 static int selinux_sem_associate(struct sem_array *sma, int semflg)
4304 {
4305         struct task_security_struct *tsec;
4306         struct ipc_security_struct *isec;
4307         struct avc_audit_data ad;
4308
4309         tsec = current->security;
4310         isec = sma->sem_perm.security;
4311
4312         AVC_AUDIT_DATA_INIT(&ad, IPC);
4313         ad.u.ipc_id = sma->sem_perm.key;
4314
4315         return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM,
4316                             SEM__ASSOCIATE, &ad);
4317 }
4318
4319 /* Note, at this point, sma is locked down */
4320 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
4321 {
4322         int err;
4323         u32 perms;
4324
4325         switch(cmd) {
4326         case IPC_INFO:
4327         case SEM_INFO:
4328                 /* No specific object, just general system-wide information. */
4329                 return task_has_system(current, SYSTEM__IPC_INFO);
4330         case GETPID:
4331         case GETNCNT:
4332         case GETZCNT:
4333                 perms = SEM__GETATTR;
4334                 break;
4335         case GETVAL:
4336         case GETALL:
4337                 perms = SEM__READ;
4338                 break;
4339         case SETVAL:
4340         case SETALL:
4341                 perms = SEM__WRITE;
4342                 break;
4343         case IPC_RMID:
4344                 perms = SEM__DESTROY;
4345                 break;
4346         case IPC_SET:
4347                 perms = SEM__SETATTR;
4348                 break;
4349         case IPC_STAT:
4350         case SEM_STAT:
4351                 perms = SEM__GETATTR | SEM__ASSOCIATE;
4352                 break;
4353         default:
4354                 return 0;
4355         }
4356
4357         err = ipc_has_perm(&sma->sem_perm, perms);
4358         return err;
4359 }
4360
4361 static int selinux_sem_semop(struct sem_array *sma,
4362                              struct sembuf *sops, unsigned nsops, int alter)
4363 {
4364         u32 perms;
4365
4366         if (alter)
4367                 perms = SEM__READ | SEM__WRITE;
4368         else
4369                 perms = SEM__READ;
4370
4371         return ipc_has_perm(&sma->sem_perm, perms);
4372 }
4373
4374 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
4375 {
4376         u32 av = 0;
4377
4378         av = 0;
4379         if (flag & S_IRUGO)
4380                 av |= IPC__UNIX_READ;
4381         if (flag & S_IWUGO)
4382                 av |= IPC__UNIX_WRITE;
4383
4384         if (av == 0)
4385                 return 0;
4386
4387         return ipc_has_perm(ipcp, av);
4388 }
4389
4390 /* module stacking operations */
4391 static int selinux_register_security (const char *name, struct security_operations *ops)
4392 {
4393         if (secondary_ops != original_ops) {
4394                 printk(KERN_INFO "%s:  There is already a secondary security "
4395                        "module registered.\n", __FUNCTION__);
4396                 return -EINVAL;
4397         }
4398
4399         secondary_ops = ops;
4400
4401         printk(KERN_INFO "%s:  Registering secondary module %s\n",
4402                __FUNCTION__,
4403                name);
4404
4405         return 0;
4406 }
4407
4408 static int selinux_unregister_security (const char *name, struct security_operations *ops)
4409 {
4410         if (ops != secondary_ops) {
4411                 printk (KERN_INFO "%s:  trying to unregister a security module "
4412                         "that is not registered.\n", __FUNCTION__);
4413                 return -EINVAL;
4414         }
4415
4416         secondary_ops = original_ops;
4417
4418         return 0;
4419 }
4420
4421 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode)
4422 {
4423         if (inode)
4424                 inode_doinit_with_dentry(inode, dentry);
4425 }
4426
4427 static int selinux_getprocattr(struct task_struct *p,
4428                                char *name, void *value, size_t size)
4429 {
4430         struct task_security_struct *tsec;
4431         u32 sid;
4432         int error;
4433
4434         if (current != p) {
4435                 error = task_has_perm(current, p, PROCESS__GETATTR);
4436                 if (error)
4437                         return error;
4438         }
4439
4440         tsec = p->security;
4441
4442         if (!strcmp(name, "current"))
4443                 sid = tsec->sid;
4444         else if (!strcmp(name, "prev"))
4445                 sid = tsec->osid;
4446         else if (!strcmp(name, "exec"))
4447                 sid = tsec->exec_sid;
4448         else if (!strcmp(name, "fscreate"))
4449                 sid = tsec->create_sid;
4450         else if (!strcmp(name, "keycreate"))
4451                 sid = tsec->keycreate_sid;
4452         else if (!strcmp(name, "sockcreate"))
4453                 sid = tsec->sockcreate_sid;
4454         else
4455                 return -EINVAL;
4456
4457         if (!sid)
4458                 return 0;
4459
4460         return selinux_getsecurity(sid, value, size);
4461 }
4462
4463 static int selinux_setprocattr(struct task_struct *p,
4464                                char *name, void *value, size_t size)
4465 {
4466         struct task_security_struct *tsec;
4467         u32 sid = 0;
4468         int error;
4469         char *str = value;
4470
4471         if (current != p) {
4472                 /* SELinux only allows a process to change its own
4473                    security attributes. */
4474                 return -EACCES;
4475         }
4476
4477         /*
4478          * Basic control over ability to set these attributes at all.
4479          * current == p, but we'll pass them separately in case the
4480          * above restriction is ever removed.
4481          */
4482         if (!strcmp(name, "exec"))
4483                 error = task_has_perm(current, p, PROCESS__SETEXEC);
4484         else if (!strcmp(name, "fscreate"))
4485                 error = task_has_perm(current, p, PROCESS__SETFSCREATE);
4486         else if (!strcmp(name, "keycreate"))
4487                 error = task_has_perm(current, p, PROCESS__SETKEYCREATE);
4488         else if (!strcmp(name, "sockcreate"))
4489                 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE);
4490         else if (!strcmp(name, "current"))
4491                 error = task_has_perm(current, p, PROCESS__SETCURRENT);
4492         else
4493                 error = -EINVAL;
4494         if (error)
4495                 return error;
4496
4497         /* Obtain a SID for the context, if one was specified. */
4498         if (size && str[1] && str[1] != '\n') {
4499                 if (str[size-1] == '\n') {
4500                         str[size-1] = 0;
4501                         size--;
4502                 }
4503                 error = security_context_to_sid(value, size, &sid);
4504                 if (error)
4505                         return error;
4506         }
4507
4508         /* Permission checking based on the specified context is
4509            performed during the actual operation (execve,
4510            open/mkdir/...), when we know the full context of the
4511            operation.  See selinux_bprm_set_security for the execve
4512            checks and may_create for the file creation checks. The
4513            operation will then fail if the context is not permitted. */
4514         tsec = p->security;
4515         if (!strcmp(name, "exec"))
4516                 tsec->exec_sid = sid;
4517         else if (!strcmp(name, "fscreate"))
4518                 tsec->create_sid = sid;
4519         else if (!strcmp(name, "keycreate")) {
4520                 error = may_create_key(sid, p);
4521                 if (error)
4522                         return error;
4523                 tsec->keycreate_sid = sid;
4524         } else if (!strcmp(name, "sockcreate"))
4525                 tsec->sockcreate_sid = sid;
4526         else if (!strcmp(name, "current")) {
4527                 struct av_decision avd;
4528
4529                 if (sid == 0)
4530                         return -EINVAL;
4531
4532                 /* Only allow single threaded processes to change context */
4533                 if (atomic_read(&p->mm->mm_users) != 1) {
4534                         struct task_struct *g, *t;
4535                         struct mm_struct *mm = p->mm;
4536                         read_lock(&tasklist_lock);
4537                         do_each_thread(g, t)
4538                                 if (t->mm == mm && t != p) {
4539                                         read_unlock(&tasklist_lock);
4540                                         return -EPERM;
4541                                 }
4542                         while_each_thread(g, t);
4543                         read_unlock(&tasklist_lock);
4544                 }
4545
4546                 /* Check permissions for the transition. */
4547                 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
4548                                      PROCESS__DYNTRANSITION, NULL);
4549                 if (error)
4550                         return error;
4551
4552                 /* Check for ptracing, and update the task SID if ok.
4553                    Otherwise, leave SID unchanged and fail. */
4554                 task_lock(p);
4555                 if (p->ptrace & PT_PTRACED) {
4556                         error = avc_has_perm_noaudit(tsec->ptrace_sid, sid,
4557                                                      SECCLASS_PROCESS,
4558                                                      PROCESS__PTRACE, &avd);
4559                         if (!error)
4560                                 tsec->sid = sid;
4561                         task_unlock(p);
4562                         avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS,
4563                                   PROCESS__PTRACE, &avd, error, NULL);
4564                         if (error)
4565                                 return error;
4566                 } else {
4567                         tsec->sid = sid;
4568                         task_unlock(p);
4569                 }
4570         }
4571         else
4572                 return -EINVAL;
4573
4574         return size;
4575 }
4576
4577 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4578 {
4579         return security_sid_to_context(secid, secdata, seclen);
4580 }
4581
4582 static void selinux_release_secctx(char *secdata, u32 seclen)
4583 {
4584         if (secdata)
4585                 kfree(secdata);
4586 }
4587
4588 #ifdef CONFIG_KEYS
4589
4590 static int selinux_key_alloc(struct key *k, struct task_struct *tsk,
4591                              unsigned long flags)
4592 {
4593         struct task_security_struct *tsec = tsk->security;
4594         struct key_security_struct *ksec;
4595
4596         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
4597         if (!ksec)
4598                 return -ENOMEM;
4599
4600         ksec->obj = k;
4601         if (tsec->keycreate_sid)
4602                 ksec->sid = tsec->keycreate_sid;
4603         else
4604                 ksec->sid = tsec->sid;
4605         k->security = ksec;
4606
4607         return 0;
4608 }
4609
4610 static void selinux_key_free(struct key *k)
4611 {
4612         struct key_security_struct *ksec = k->security;
4613
4614         k->security = NULL;
4615         kfree(ksec);
4616 }
4617
4618 static int selinux_key_permission(key_ref_t key_ref,
4619                             struct task_struct *ctx,
4620                             key_perm_t perm)
4621 {
4622         struct key *key;
4623         struct task_security_struct *tsec;
4624         struct key_security_struct *ksec;
4625
4626         key = key_ref_to_ptr(key_ref);
4627
4628         tsec = ctx->security;
4629         ksec = key->security;
4630
4631         /* if no specific permissions are requested, we skip the
4632            permission check. No serious, additional covert channels
4633            appear to be created. */
4634         if (perm == 0)
4635                 return 0;
4636
4637         return avc_has_perm(tsec->sid, ksec->sid,
4638                             SECCLASS_KEY, perm, NULL);
4639 }
4640
4641 #endif
4642
4643 static struct security_operations selinux_ops = {
4644         .ptrace =                       selinux_ptrace,
4645         .capget =                       selinux_capget,
4646         .capset_check =                 selinux_capset_check,
4647         .capset_set =                   selinux_capset_set,
4648         .sysctl =                       selinux_sysctl,
4649         .capable =                      selinux_capable,
4650         .quotactl =                     selinux_quotactl,
4651         .quota_on =                     selinux_quota_on,
4652         .syslog =                       selinux_syslog,
4653         .vm_enough_memory =             selinux_vm_enough_memory,
4654
4655         .netlink_send =                 selinux_netlink_send,
4656         .netlink_recv =                 selinux_netlink_recv,
4657
4658         .bprm_alloc_security =          selinux_bprm_alloc_security,
4659         .bprm_free_security =           selinux_bprm_free_security,
4660         .bprm_apply_creds =             selinux_bprm_apply_creds,
4661         .bprm_post_apply_creds =        selinux_bprm_post_apply_creds,
4662         .bprm_set_security =            selinux_bprm_set_security,
4663         .bprm_check_security =          selinux_bprm_check_security,
4664         .bprm_secureexec =              selinux_bprm_secureexec,
4665
4666         .sb_alloc_security =            selinux_sb_alloc_security,
4667         .sb_free_security =             selinux_sb_free_security,
4668         .sb_copy_data =                 selinux_sb_copy_data,
4669         .sb_kern_mount =                selinux_sb_kern_mount,
4670         .sb_statfs =                    selinux_sb_statfs,
4671         .sb_mount =                     selinux_mount,
4672         .sb_umount =                    selinux_umount,
4673
4674         .inode_alloc_security =         selinux_inode_alloc_security,
4675         .inode_free_security =          selinux_inode_free_security,
4676         .inode_init_security =          selinux_inode_init_security,
4677         .inode_create =                 selinux_inode_create,
4678         .inode_link =                   selinux_inode_link,
4679         .inode_unlink =                 selinux_inode_unlink,
4680         .inode_symlink =                selinux_inode_symlink,
4681         .inode_mkdir =                  selinux_inode_mkdir,
4682         .inode_rmdir =                  selinux_inode_rmdir,
4683         .inode_mknod =                  selinux_inode_mknod,
4684         .inode_rename =                 selinux_inode_rename,
4685         .inode_readlink =               selinux_inode_readlink,
4686         .inode_follow_link =            selinux_inode_follow_link,
4687         .inode_permission =             selinux_inode_permission,
4688         .inode_setattr =                selinux_inode_setattr,
4689         .inode_getattr =                selinux_inode_getattr,
4690         .inode_setxattr =               selinux_inode_setxattr,
4691         .inode_post_setxattr =          selinux_inode_post_setxattr,
4692         .inode_getxattr =               selinux_inode_getxattr,
4693         .inode_listxattr =              selinux_inode_listxattr,
4694         .inode_removexattr =            selinux_inode_removexattr,
4695         .inode_xattr_getsuffix =        selinux_inode_xattr_getsuffix,
4696         .inode_getsecurity =            selinux_inode_getsecurity,
4697         .inode_setsecurity =            selinux_inode_setsecurity,
4698         .inode_listsecurity =           selinux_inode_listsecurity,
4699
4700         .file_permission =              selinux_file_permission,
4701         .file_alloc_security =          selinux_file_alloc_security,
4702         .file_free_security =           selinux_file_free_security,
4703         .file_ioctl =                   selinux_file_ioctl,
4704         .file_mmap =                    selinux_file_mmap,
4705         .file_mprotect =                selinux_file_mprotect,
4706         .file_lock =                    selinux_file_lock,
4707         .file_fcntl =                   selinux_file_fcntl,
4708         .file_set_fowner =              selinux_file_set_fowner,
4709         .file_send_sigiotask =          selinux_file_send_sigiotask,
4710         .file_receive =                 selinux_file_receive,
4711
4712         .task_create =                  selinux_task_create,
4713         .task_alloc_security =          selinux_task_alloc_security,
4714         .task_free_security =           selinux_task_free_security,
4715         .task_setuid =                  selinux_task_setuid,
4716         .task_post_setuid =             selinux_task_post_setuid,
4717         .task_setgid =                  selinux_task_setgid,
4718         .task_setpgid =                 selinux_task_setpgid,
4719         .task_getpgid =                 selinux_task_getpgid,
4720         .task_getsid =                  selinux_task_getsid,
4721         .task_getsecid =                selinux_task_getsecid,
4722         .task_setgroups =               selinux_task_setgroups,
4723         .task_setnice =                 selinux_task_setnice,
4724         .task_setioprio =               selinux_task_setioprio,
4725         .task_getioprio =               selinux_task_getioprio,
4726         .task_setrlimit =               selinux_task_setrlimit,
4727         .task_setscheduler =            selinux_task_setscheduler,
4728         .task_getscheduler =            selinux_task_getscheduler,
4729         .task_movememory =              selinux_task_movememory,
4730         .task_kill =                    selinux_task_kill,
4731         .task_wait =                    selinux_task_wait,
4732         .task_prctl =                   selinux_task_prctl,
4733         .task_reparent_to_init =        selinux_task_reparent_to_init,
4734         .task_to_inode =                selinux_task_to_inode,
4735
4736         .ipc_permission =               selinux_ipc_permission,
4737
4738         .msg_msg_alloc_security =       selinux_msg_msg_alloc_security,
4739         .msg_msg_free_security =        selinux_msg_msg_free_security,
4740
4741         .msg_queue_alloc_security =     selinux_msg_queue_alloc_security,
4742         .msg_queue_free_security =      selinux_msg_queue_free_security,
4743         .msg_queue_associate =          selinux_msg_queue_associate,
4744         .msg_queue_msgctl =             selinux_msg_queue_msgctl,
4745         .msg_queue_msgsnd =             selinux_msg_queue_msgsnd,
4746         .msg_queue_msgrcv =             selinux_msg_queue_msgrcv,
4747
4748         .shm_alloc_security =           selinux_shm_alloc_security,
4749         .shm_free_security =            selinux_shm_free_security,
4750         .shm_associate =                selinux_shm_associate,
4751         .shm_shmctl =                   selinux_shm_shmctl,
4752         .shm_shmat =                    selinux_shm_shmat,
4753
4754         .sem_alloc_security =           selinux_sem_alloc_security,
4755         .sem_free_security =            selinux_sem_free_security,
4756         .sem_associate =                selinux_sem_associate,
4757         .sem_semctl =                   selinux_sem_semctl,
4758         .sem_semop =                    selinux_sem_semop,
4759
4760         .register_security =            selinux_register_security,
4761         .unregister_security =          selinux_unregister_security,
4762
4763         .d_instantiate =                selinux_d_instantiate,
4764
4765         .getprocattr =                  selinux_getprocattr,
4766         .setprocattr =                  selinux_setprocattr,
4767
4768         .secid_to_secctx =              selinux_secid_to_secctx,
4769         .release_secctx =               selinux_release_secctx,
4770
4771         .unix_stream_connect =          selinux_socket_unix_stream_connect,
4772         .unix_may_send =                selinux_socket_unix_may_send,
4773
4774         .socket_create =                selinux_socket_create,
4775         .socket_post_create =           selinux_socket_post_create,
4776         .socket_bind =                  selinux_socket_bind,
4777         .socket_connect =               selinux_socket_connect,
4778         .socket_listen =                selinux_socket_listen,
4779         .socket_accept =                selinux_socket_accept,
4780         .socket_sendmsg =               selinux_socket_sendmsg,
4781         .socket_recvmsg =               selinux_socket_recvmsg,
4782         .socket_getsockname =           selinux_socket_getsockname,
4783         .socket_getpeername =           selinux_socket_getpeername,
4784         .socket_getsockopt =            selinux_socket_getsockopt,
4785         .socket_setsockopt =            selinux_socket_setsockopt,
4786         .socket_shutdown =              selinux_socket_shutdown,
4787         .socket_sock_rcv_skb =          selinux_socket_sock_rcv_skb,
4788         .socket_getpeersec_stream =     selinux_socket_getpeersec_stream,
4789         .socket_getpeersec_dgram =      selinux_socket_getpeersec_dgram,
4790         .sk_alloc_security =            selinux_sk_alloc_security,
4791         .sk_free_security =             selinux_sk_free_security,
4792         .sk_clone_security =            selinux_sk_clone_security,
4793         .sk_getsecid =                  selinux_sk_getsecid,
4794         .sock_graft =                   selinux_sock_graft,
4795         .inet_conn_request =            selinux_inet_conn_request,
4796         .inet_csk_clone =               selinux_inet_csk_clone,
4797         .inet_conn_established =        selinux_inet_conn_established,
4798         .req_classify_flow =            selinux_req_classify_flow,
4799
4800 #ifdef CONFIG_SECURITY_NETWORK_XFRM
4801         .xfrm_policy_alloc_security =   selinux_xfrm_policy_alloc,
4802         .xfrm_policy_clone_security =   selinux_xfrm_policy_clone,
4803         .xfrm_policy_free_security =    selinux_xfrm_policy_free,
4804         .xfrm_policy_delete_security =  selinux_xfrm_policy_delete,
4805         .xfrm_state_alloc_security =    selinux_xfrm_state_alloc,
4806         .xfrm_state_free_security =     selinux_xfrm_state_free,
4807         .xfrm_state_delete_security =   selinux_xfrm_state_delete,
4808         .xfrm_policy_lookup =           selinux_xfrm_policy_lookup,
4809         .xfrm_state_pol_flow_match =    selinux_xfrm_state_pol_flow_match,
4810         .xfrm_decode_session =          selinux_xfrm_decode_session,
4811 #endif
4812
4813 #ifdef CONFIG_KEYS
4814         .key_alloc =                    selinux_key_alloc,
4815         .key_free =                     selinux_key_free,
4816         .key_permission =               selinux_key_permission,
4817 #endif
4818 };
4819
4820 static __init int selinux_init(void)
4821 {
4822         struct task_security_struct *tsec;
4823
4824         if (!selinux_enabled) {
4825                 printk(KERN_INFO "SELinux:  Disabled at boot.\n");
4826                 return 0;
4827         }
4828
4829         printk(KERN_INFO "SELinux:  Initializing.\n");
4830
4831         /* Set the security state for the initial task. */
4832         if (task_alloc_security(current))
4833                 panic("SELinux:  Failed to initialize initial task.\n");
4834         tsec = current->security;
4835         tsec->osid = tsec->sid = SECINITSID_KERNEL;
4836
4837         sel_inode_cache = kmem_cache_create("selinux_inode_security",
4838                                             sizeof(struct inode_security_struct),
4839                                             0, SLAB_PANIC, NULL, NULL);
4840         avc_init();
4841
4842         original_ops = secondary_ops = security_ops;
4843         if (!secondary_ops)
4844                 panic ("SELinux: No initial security operations\n");
4845         if (register_security (&selinux_ops))
4846                 panic("SELinux: Unable to register with kernel.\n");
4847
4848         if (selinux_enforcing) {
4849                 printk(KERN_INFO "SELinux:  Starting in enforcing mode\n");
4850         } else {
4851                 printk(KERN_INFO "SELinux:  Starting in permissive mode\n");
4852         }
4853
4854 #ifdef CONFIG_KEYS
4855         /* Add security information to initial keyrings */
4856         selinux_key_alloc(&root_user_keyring, current,
4857                           KEY_ALLOC_NOT_IN_QUOTA);
4858         selinux_key_alloc(&root_session_keyring, current,
4859                           KEY_ALLOC_NOT_IN_QUOTA);
4860 #endif
4861
4862         return 0;
4863 }
4864
4865 void selinux_complete_init(void)
4866 {
4867         printk(KERN_INFO "SELinux:  Completing initialization.\n");
4868
4869         /* Set up any superblocks initialized prior to the policy load. */
4870         printk(KERN_INFO "SELinux:  Setting up existing superblocks.\n");
4871         spin_lock(&sb_lock);
4872         spin_lock(&sb_security_lock);
4873 next_sb:
4874         if (!list_empty(&superblock_security_head)) {
4875                 struct superblock_security_struct *sbsec =
4876                                 list_entry(superblock_security_head.next,
4877                                            struct superblock_security_struct,
4878                                            list);
4879                 struct super_block *sb = sbsec->sb;
4880                 sb->s_count++;
4881                 spin_unlock(&sb_security_lock);
4882                 spin_unlock(&sb_lock);
4883                 down_read(&sb->s_umount);
4884                 if (sb->s_root)
4885                         superblock_doinit(sb, NULL);
4886                 drop_super(sb);
4887                 spin_lock(&sb_lock);
4888                 spin_lock(&sb_security_lock);
4889                 list_del_init(&sbsec->list);
4890                 goto next_sb;
4891         }
4892         spin_unlock(&sb_security_lock);
4893         spin_unlock(&sb_lock);
4894 }
4895
4896 /* SELinux requires early initialization in order to label
4897    all processes and objects when they are created. */
4898 security_initcall(selinux_init);
4899
4900 #if defined(CONFIG_NETFILTER)
4901
4902 static struct nf_hook_ops selinux_ipv4_op = {
4903         .hook =         selinux_ipv4_postroute_last,
4904         .owner =        THIS_MODULE,
4905         .pf =           PF_INET,
4906         .hooknum =      NF_IP_POST_ROUTING,
4907         .priority =     NF_IP_PRI_SELINUX_LAST,
4908 };
4909
4910 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4911
4912 static struct nf_hook_ops selinux_ipv6_op = {
4913         .hook =         selinux_ipv6_postroute_last,
4914         .owner =        THIS_MODULE,
4915         .pf =           PF_INET6,
4916         .hooknum =      NF_IP6_POST_ROUTING,
4917         .priority =     NF_IP6_PRI_SELINUX_LAST,
4918 };
4919
4920 #endif  /* IPV6 */
4921
4922 static int __init selinux_nf_ip_init(void)
4923 {
4924         int err = 0;
4925
4926         if (!selinux_enabled)
4927                 goto out;
4928                 
4929         printk(KERN_INFO "SELinux:  Registering netfilter hooks\n");
4930         
4931         err = nf_register_hook(&selinux_ipv4_op);
4932         if (err)
4933                 panic("SELinux: nf_register_hook for IPv4: error %d\n", err);
4934
4935 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4936
4937         err = nf_register_hook(&selinux_ipv6_op);
4938         if (err)
4939                 panic("SELinux: nf_register_hook for IPv6: error %d\n", err);
4940
4941 #endif  /* IPV6 */
4942
4943 out:
4944         return err;
4945 }
4946
4947 __initcall(selinux_nf_ip_init);
4948
4949 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4950 static void selinux_nf_ip_exit(void)
4951 {
4952         printk(KERN_INFO "SELinux:  Unregistering netfilter hooks\n");
4953
4954         nf_unregister_hook(&selinux_ipv4_op);
4955 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4956         nf_unregister_hook(&selinux_ipv6_op);
4957 #endif  /* IPV6 */
4958 }
4959 #endif
4960
4961 #else /* CONFIG_NETFILTER */
4962
4963 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4964 #define selinux_nf_ip_exit()
4965 #endif
4966
4967 #endif /* CONFIG_NETFILTER */
4968
4969 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
4970 int selinux_disable(void)
4971 {
4972         extern void exit_sel_fs(void);
4973         static int selinux_disabled = 0;
4974
4975         if (ss_initialized) {
4976                 /* Not permitted after initial policy load. */
4977                 return -EINVAL;
4978         }
4979
4980         if (selinux_disabled) {
4981                 /* Only do this once. */
4982                 return -EINVAL;
4983         }
4984
4985         printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
4986
4987         selinux_disabled = 1;
4988         selinux_enabled = 0;
4989
4990         /* Reset security_ops to the secondary module, dummy or capability. */
4991         security_ops = secondary_ops;
4992
4993         /* Unregister netfilter hooks. */
4994         selinux_nf_ip_exit();
4995
4996         /* Unregister selinuxfs. */
4997         exit_sel_fs();
4998
4999         return 0;
5000 }
5001 #endif
5002
5003