Merge tag 'mediatek-drm-fixes-5.9' of https://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / security / selinux / hooks.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *            Chris Vance, <cvance@nai.com>
9  *            Wayne Salamon, <wsalamon@nai.com>
10  *            James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *                                         Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *                          <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *      Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/tracehook.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>             /* for local_port_range[] */
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>    /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>           /* for Unix socket types */
73 #include <net/af_unix.h>        /* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 #include <linux/kernfs.h>
90 #include <linux/stringhash.h>   /* for hashlen_string() */
91 #include <uapi/linux/mount.h>
92 #include <linux/fsnotify.h>
93 #include <linux/fanotify.h>
94
95 #include "avc.h"
96 #include "objsec.h"
97 #include "netif.h"
98 #include "netnode.h"
99 #include "netport.h"
100 #include "ibpkey.h"
101 #include "xfrm.h"
102 #include "netlabel.h"
103 #include "audit.h"
104 #include "avc_ss.h"
105
106 struct selinux_state selinux_state;
107
108 /* SECMARK reference count */
109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110
111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112 static int selinux_enforcing_boot __initdata;
113
114 static int __init enforcing_setup(char *str)
115 {
116         unsigned long enforcing;
117         if (!kstrtoul(str, 0, &enforcing))
118                 selinux_enforcing_boot = enforcing ? 1 : 0;
119         return 1;
120 }
121 __setup("enforcing=", enforcing_setup);
122 #else
123 #define selinux_enforcing_boot 1
124 #endif
125
126 int selinux_enabled_boot __initdata = 1;
127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128 static int __init selinux_enabled_setup(char *str)
129 {
130         unsigned long enabled;
131         if (!kstrtoul(str, 0, &enabled))
132                 selinux_enabled_boot = enabled ? 1 : 0;
133         return 1;
134 }
135 __setup("selinux=", selinux_enabled_setup);
136 #endif
137
138 static unsigned int selinux_checkreqprot_boot =
139         CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141 static int __init checkreqprot_setup(char *str)
142 {
143         unsigned long checkreqprot;
144
145         if (!kstrtoul(str, 0, &checkreqprot)) {
146                 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147                 if (checkreqprot)
148                         pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
149         }
150         return 1;
151 }
152 __setup("checkreqprot=", checkreqprot_setup);
153
154 /**
155  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156  *
157  * Description:
158  * This function checks the SECMARK reference counter to see if any SECMARK
159  * targets are currently configured, if the reference counter is greater than
160  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
161  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
162  * policy capability is enabled, SECMARK is always considered enabled.
163  *
164  */
165 static int selinux_secmark_enabled(void)
166 {
167         return (selinux_policycap_alwaysnetwork() ||
168                 atomic_read(&selinux_secmark_refcount));
169 }
170
171 /**
172  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173  *
174  * Description:
175  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
176  * (1) if any are enabled or false (0) if neither are enabled.  If the
177  * always_check_network policy capability is enabled, peer labeling
178  * is always considered enabled.
179  *
180  */
181 static int selinux_peerlbl_enabled(void)
182 {
183         return (selinux_policycap_alwaysnetwork() ||
184                 netlbl_enabled() || selinux_xfrm_enabled());
185 }
186
187 static int selinux_netcache_avc_callback(u32 event)
188 {
189         if (event == AVC_CALLBACK_RESET) {
190                 sel_netif_flush();
191                 sel_netnode_flush();
192                 sel_netport_flush();
193                 synchronize_net();
194         }
195         return 0;
196 }
197
198 static int selinux_lsm_notifier_avc_callback(u32 event)
199 {
200         if (event == AVC_CALLBACK_RESET) {
201                 sel_ib_pkey_flush();
202                 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203         }
204
205         return 0;
206 }
207
208 /*
209  * initialise the security for the init task
210  */
211 static void cred_init_security(void)
212 {
213         struct cred *cred = (struct cred *) current->real_cred;
214         struct task_security_struct *tsec;
215
216         tsec = selinux_cred(cred);
217         tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225         const struct task_security_struct *tsec;
226
227         tsec = selinux_cred(cred);
228         return tsec->sid;
229 }
230
231 /*
232  * get the objective security ID of a task
233  */
234 static inline u32 task_sid(const struct task_struct *task)
235 {
236         u32 sid;
237
238         rcu_read_lock();
239         sid = cred_sid(__task_cred(task));
240         rcu_read_unlock();
241         return sid;
242 }
243
244 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
245
246 /*
247  * Try reloading inode security labels that have been marked as invalid.  The
248  * @may_sleep parameter indicates when sleeping and thus reloading labels is
249  * allowed; when set to false, returns -ECHILD when the label is
250  * invalid.  The @dentry parameter should be set to a dentry of the inode.
251  */
252 static int __inode_security_revalidate(struct inode *inode,
253                                        struct dentry *dentry,
254                                        bool may_sleep)
255 {
256         struct inode_security_struct *isec = selinux_inode(inode);
257
258         might_sleep_if(may_sleep);
259
260         if (selinux_initialized(&selinux_state) &&
261             isec->initialized != LABEL_INITIALIZED) {
262                 if (!may_sleep)
263                         return -ECHILD;
264
265                 /*
266                  * Try reloading the inode security label.  This will fail if
267                  * @opt_dentry is NULL and no dentry for this inode can be
268                  * found; in that case, continue using the old label.
269                  */
270                 inode_doinit_with_dentry(inode, dentry);
271         }
272         return 0;
273 }
274
275 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
276 {
277         return selinux_inode(inode);
278 }
279
280 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
281 {
282         int error;
283
284         error = __inode_security_revalidate(inode, NULL, !rcu);
285         if (error)
286                 return ERR_PTR(error);
287         return selinux_inode(inode);
288 }
289
290 /*
291  * Get the security label of an inode.
292  */
293 static struct inode_security_struct *inode_security(struct inode *inode)
294 {
295         __inode_security_revalidate(inode, NULL, true);
296         return selinux_inode(inode);
297 }
298
299 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
300 {
301         struct inode *inode = d_backing_inode(dentry);
302
303         return selinux_inode(inode);
304 }
305
306 /*
307  * Get the security label of a dentry's backing inode.
308  */
309 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
310 {
311         struct inode *inode = d_backing_inode(dentry);
312
313         __inode_security_revalidate(inode, dentry, true);
314         return selinux_inode(inode);
315 }
316
317 static void inode_free_security(struct inode *inode)
318 {
319         struct inode_security_struct *isec = selinux_inode(inode);
320         struct superblock_security_struct *sbsec;
321
322         if (!isec)
323                 return;
324         sbsec = inode->i_sb->s_security;
325         /*
326          * As not all inode security structures are in a list, we check for
327          * empty list outside of the lock to make sure that we won't waste
328          * time taking a lock doing nothing.
329          *
330          * The list_del_init() function can be safely called more than once.
331          * It should not be possible for this function to be called with
332          * concurrent list_add(), but for better safety against future changes
333          * in the code, we use list_empty_careful() here.
334          */
335         if (!list_empty_careful(&isec->list)) {
336                 spin_lock(&sbsec->isec_lock);
337                 list_del_init(&isec->list);
338                 spin_unlock(&sbsec->isec_lock);
339         }
340 }
341
342 static void superblock_free_security(struct super_block *sb)
343 {
344         struct superblock_security_struct *sbsec = sb->s_security;
345         sb->s_security = NULL;
346         kfree(sbsec);
347 }
348
349 struct selinux_mnt_opts {
350         const char *fscontext, *context, *rootcontext, *defcontext;
351 };
352
353 static void selinux_free_mnt_opts(void *mnt_opts)
354 {
355         struct selinux_mnt_opts *opts = mnt_opts;
356         kfree(opts->fscontext);
357         kfree(opts->context);
358         kfree(opts->rootcontext);
359         kfree(opts->defcontext);
360         kfree(opts);
361 }
362
363 enum {
364         Opt_error = -1,
365         Opt_context = 0,
366         Opt_defcontext = 1,
367         Opt_fscontext = 2,
368         Opt_rootcontext = 3,
369         Opt_seclabel = 4,
370 };
371
372 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
373 static struct {
374         const char *name;
375         int len;
376         int opt;
377         bool has_arg;
378 } tokens[] = {
379         A(context, true),
380         A(fscontext, true),
381         A(defcontext, true),
382         A(rootcontext, true),
383         A(seclabel, false),
384 };
385 #undef A
386
387 static int match_opt_prefix(char *s, int l, char **arg)
388 {
389         int i;
390
391         for (i = 0; i < ARRAY_SIZE(tokens); i++) {
392                 size_t len = tokens[i].len;
393                 if (len > l || memcmp(s, tokens[i].name, len))
394                         continue;
395                 if (tokens[i].has_arg) {
396                         if (len == l || s[len] != '=')
397                                 continue;
398                         *arg = s + len + 1;
399                 } else if (len != l)
400                         continue;
401                 return tokens[i].opt;
402         }
403         return Opt_error;
404 }
405
406 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
407
408 static int may_context_mount_sb_relabel(u32 sid,
409                         struct superblock_security_struct *sbsec,
410                         const struct cred *cred)
411 {
412         const struct task_security_struct *tsec = selinux_cred(cred);
413         int rc;
414
415         rc = avc_has_perm(&selinux_state,
416                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
417                           FILESYSTEM__RELABELFROM, NULL);
418         if (rc)
419                 return rc;
420
421         rc = avc_has_perm(&selinux_state,
422                           tsec->sid, sid, SECCLASS_FILESYSTEM,
423                           FILESYSTEM__RELABELTO, NULL);
424         return rc;
425 }
426
427 static int may_context_mount_inode_relabel(u32 sid,
428                         struct superblock_security_struct *sbsec,
429                         const struct cred *cred)
430 {
431         const struct task_security_struct *tsec = selinux_cred(cred);
432         int rc;
433         rc = avc_has_perm(&selinux_state,
434                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
435                           FILESYSTEM__RELABELFROM, NULL);
436         if (rc)
437                 return rc;
438
439         rc = avc_has_perm(&selinux_state,
440                           sid, sbsec->sid, SECCLASS_FILESYSTEM,
441                           FILESYSTEM__ASSOCIATE, NULL);
442         return rc;
443 }
444
445 static int selinux_is_genfs_special_handling(struct super_block *sb)
446 {
447         /* Special handling. Genfs but also in-core setxattr handler */
448         return  !strcmp(sb->s_type->name, "sysfs") ||
449                 !strcmp(sb->s_type->name, "pstore") ||
450                 !strcmp(sb->s_type->name, "debugfs") ||
451                 !strcmp(sb->s_type->name, "tracefs") ||
452                 !strcmp(sb->s_type->name, "rootfs") ||
453                 (selinux_policycap_cgroupseclabel() &&
454                  (!strcmp(sb->s_type->name, "cgroup") ||
455                   !strcmp(sb->s_type->name, "cgroup2")));
456 }
457
458 static int selinux_is_sblabel_mnt(struct super_block *sb)
459 {
460         struct superblock_security_struct *sbsec = sb->s_security;
461
462         /*
463          * IMPORTANT: Double-check logic in this function when adding a new
464          * SECURITY_FS_USE_* definition!
465          */
466         BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
467
468         switch (sbsec->behavior) {
469         case SECURITY_FS_USE_XATTR:
470         case SECURITY_FS_USE_TRANS:
471         case SECURITY_FS_USE_TASK:
472         case SECURITY_FS_USE_NATIVE:
473                 return 1;
474
475         case SECURITY_FS_USE_GENFS:
476                 return selinux_is_genfs_special_handling(sb);
477
478         /* Never allow relabeling on context mounts */
479         case SECURITY_FS_USE_MNTPOINT:
480         case SECURITY_FS_USE_NONE:
481         default:
482                 return 0;
483         }
484 }
485
486 static int sb_finish_set_opts(struct super_block *sb)
487 {
488         struct superblock_security_struct *sbsec = sb->s_security;
489         struct dentry *root = sb->s_root;
490         struct inode *root_inode = d_backing_inode(root);
491         int rc = 0;
492
493         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
494                 /* Make sure that the xattr handler exists and that no
495                    error other than -ENODATA is returned by getxattr on
496                    the root directory.  -ENODATA is ok, as this may be
497                    the first boot of the SELinux kernel before we have
498                    assigned xattr values to the filesystem. */
499                 if (!(root_inode->i_opflags & IOP_XATTR)) {
500                         pr_warn("SELinux: (dev %s, type %s) has no "
501                                "xattr support\n", sb->s_id, sb->s_type->name);
502                         rc = -EOPNOTSUPP;
503                         goto out;
504                 }
505
506                 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
507                 if (rc < 0 && rc != -ENODATA) {
508                         if (rc == -EOPNOTSUPP)
509                                 pr_warn("SELinux: (dev %s, type "
510                                        "%s) has no security xattr handler\n",
511                                        sb->s_id, sb->s_type->name);
512                         else
513                                 pr_warn("SELinux: (dev %s, type "
514                                        "%s) getxattr errno %d\n", sb->s_id,
515                                        sb->s_type->name, -rc);
516                         goto out;
517                 }
518         }
519
520         sbsec->flags |= SE_SBINITIALIZED;
521
522         /*
523          * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
524          * leave the flag untouched because sb_clone_mnt_opts might be handing
525          * us a superblock that needs the flag to be cleared.
526          */
527         if (selinux_is_sblabel_mnt(sb))
528                 sbsec->flags |= SBLABEL_MNT;
529         else
530                 sbsec->flags &= ~SBLABEL_MNT;
531
532         /* Initialize the root inode. */
533         rc = inode_doinit_with_dentry(root_inode, root);
534
535         /* Initialize any other inodes associated with the superblock, e.g.
536            inodes created prior to initial policy load or inodes created
537            during get_sb by a pseudo filesystem that directly
538            populates itself. */
539         spin_lock(&sbsec->isec_lock);
540         while (!list_empty(&sbsec->isec_head)) {
541                 struct inode_security_struct *isec =
542                                 list_first_entry(&sbsec->isec_head,
543                                            struct inode_security_struct, list);
544                 struct inode *inode = isec->inode;
545                 list_del_init(&isec->list);
546                 spin_unlock(&sbsec->isec_lock);
547                 inode = igrab(inode);
548                 if (inode) {
549                         if (!IS_PRIVATE(inode))
550                                 inode_doinit_with_dentry(inode, NULL);
551                         iput(inode);
552                 }
553                 spin_lock(&sbsec->isec_lock);
554         }
555         spin_unlock(&sbsec->isec_lock);
556 out:
557         return rc;
558 }
559
560 static int bad_option(struct superblock_security_struct *sbsec, char flag,
561                       u32 old_sid, u32 new_sid)
562 {
563         char mnt_flags = sbsec->flags & SE_MNTMASK;
564
565         /* check if the old mount command had the same options */
566         if (sbsec->flags & SE_SBINITIALIZED)
567                 if (!(sbsec->flags & flag) ||
568                     (old_sid != new_sid))
569                         return 1;
570
571         /* check if we were passed the same options twice,
572          * aka someone passed context=a,context=b
573          */
574         if (!(sbsec->flags & SE_SBINITIALIZED))
575                 if (mnt_flags & flag)
576                         return 1;
577         return 0;
578 }
579
580 static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
581 {
582         int rc = security_context_str_to_sid(&selinux_state, s,
583                                              sid, GFP_KERNEL);
584         if (rc)
585                 pr_warn("SELinux: security_context_str_to_sid"
586                        "(%s) failed for (dev %s, type %s) errno=%d\n",
587                        s, sb->s_id, sb->s_type->name, rc);
588         return rc;
589 }
590
591 /*
592  * Allow filesystems with binary mount data to explicitly set mount point
593  * labeling information.
594  */
595 static int selinux_set_mnt_opts(struct super_block *sb,
596                                 void *mnt_opts,
597                                 unsigned long kern_flags,
598                                 unsigned long *set_kern_flags)
599 {
600         const struct cred *cred = current_cred();
601         struct superblock_security_struct *sbsec = sb->s_security;
602         struct dentry *root = sbsec->sb->s_root;
603         struct selinux_mnt_opts *opts = mnt_opts;
604         struct inode_security_struct *root_isec;
605         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606         u32 defcontext_sid = 0;
607         int rc = 0;
608
609         mutex_lock(&sbsec->lock);
610
611         if (!selinux_initialized(&selinux_state)) {
612                 if (!opts) {
613                         /* Defer initialization until selinux_complete_init,
614                            after the initial policy is loaded and the security
615                            server is ready to handle calls. */
616                         goto out;
617                 }
618                 rc = -EINVAL;
619                 pr_warn("SELinux: Unable to set superblock options "
620                         "before the security server is initialized\n");
621                 goto out;
622         }
623         if (kern_flags && !set_kern_flags) {
624                 /* Specifying internal flags without providing a place to
625                  * place the results is not allowed */
626                 rc = -EINVAL;
627                 goto out;
628         }
629
630         /*
631          * Binary mount data FS will come through this function twice.  Once
632          * from an explicit call and once from the generic calls from the vfs.
633          * Since the generic VFS calls will not contain any security mount data
634          * we need to skip the double mount verification.
635          *
636          * This does open a hole in which we will not notice if the first
637          * mount using this sb set explict options and a second mount using
638          * this sb does not set any security options.  (The first options
639          * will be used for both mounts)
640          */
641         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642             && !opts)
643                 goto out;
644
645         root_isec = backing_inode_security_novalidate(root);
646
647         /*
648          * parse the mount options, check if they are valid sids.
649          * also check if someone is trying to mount the same sb more
650          * than once with different security options.
651          */
652         if (opts) {
653                 if (opts->fscontext) {
654                         rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
655                         if (rc)
656                                 goto out;
657                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
658                                         fscontext_sid))
659                                 goto out_double_mount;
660                         sbsec->flags |= FSCONTEXT_MNT;
661                 }
662                 if (opts->context) {
663                         rc = parse_sid(sb, opts->context, &context_sid);
664                         if (rc)
665                                 goto out;
666                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
667                                         context_sid))
668                                 goto out_double_mount;
669                         sbsec->flags |= CONTEXT_MNT;
670                 }
671                 if (opts->rootcontext) {
672                         rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
673                         if (rc)
674                                 goto out;
675                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
676                                         rootcontext_sid))
677                                 goto out_double_mount;
678                         sbsec->flags |= ROOTCONTEXT_MNT;
679                 }
680                 if (opts->defcontext) {
681                         rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
682                         if (rc)
683                                 goto out;
684                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
685                                         defcontext_sid))
686                                 goto out_double_mount;
687                         sbsec->flags |= DEFCONTEXT_MNT;
688                 }
689         }
690
691         if (sbsec->flags & SE_SBINITIALIZED) {
692                 /* previously mounted with options, but not on this attempt? */
693                 if ((sbsec->flags & SE_MNTMASK) && !opts)
694                         goto out_double_mount;
695                 rc = 0;
696                 goto out;
697         }
698
699         if (strcmp(sb->s_type->name, "proc") == 0)
700                 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
701
702         if (!strcmp(sb->s_type->name, "debugfs") ||
703             !strcmp(sb->s_type->name, "tracefs") ||
704             !strcmp(sb->s_type->name, "binder") ||
705             !strcmp(sb->s_type->name, "bpf") ||
706             !strcmp(sb->s_type->name, "pstore"))
707                 sbsec->flags |= SE_SBGENFS;
708
709         if (!strcmp(sb->s_type->name, "sysfs") ||
710             !strcmp(sb->s_type->name, "cgroup") ||
711             !strcmp(sb->s_type->name, "cgroup2"))
712                 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
713
714         if (!sbsec->behavior) {
715                 /*
716                  * Determine the labeling behavior to use for this
717                  * filesystem type.
718                  */
719                 rc = security_fs_use(&selinux_state, sb);
720                 if (rc) {
721                         pr_warn("%s: security_fs_use(%s) returned %d\n",
722                                         __func__, sb->s_type->name, rc);
723                         goto out;
724                 }
725         }
726
727         /*
728          * If this is a user namespace mount and the filesystem type is not
729          * explicitly whitelisted, then no contexts are allowed on the command
730          * line and security labels must be ignored.
731          */
732         if (sb->s_user_ns != &init_user_ns &&
733             strcmp(sb->s_type->name, "tmpfs") &&
734             strcmp(sb->s_type->name, "ramfs") &&
735             strcmp(sb->s_type->name, "devpts")) {
736                 if (context_sid || fscontext_sid || rootcontext_sid ||
737                     defcontext_sid) {
738                         rc = -EACCES;
739                         goto out;
740                 }
741                 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
742                         sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
743                         rc = security_transition_sid(&selinux_state,
744                                                      current_sid(),
745                                                      current_sid(),
746                                                      SECCLASS_FILE, NULL,
747                                                      &sbsec->mntpoint_sid);
748                         if (rc)
749                                 goto out;
750                 }
751                 goto out_set_opts;
752         }
753
754         /* sets the context of the superblock for the fs being mounted. */
755         if (fscontext_sid) {
756                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
757                 if (rc)
758                         goto out;
759
760                 sbsec->sid = fscontext_sid;
761         }
762
763         /*
764          * Switch to using mount point labeling behavior.
765          * sets the label used on all file below the mountpoint, and will set
766          * the superblock context if not already set.
767          */
768         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
769                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
770                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
771         }
772
773         if (context_sid) {
774                 if (!fscontext_sid) {
775                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
776                                                           cred);
777                         if (rc)
778                                 goto out;
779                         sbsec->sid = context_sid;
780                 } else {
781                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
782                                                              cred);
783                         if (rc)
784                                 goto out;
785                 }
786                 if (!rootcontext_sid)
787                         rootcontext_sid = context_sid;
788
789                 sbsec->mntpoint_sid = context_sid;
790                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
791         }
792
793         if (rootcontext_sid) {
794                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
795                                                      cred);
796                 if (rc)
797                         goto out;
798
799                 root_isec->sid = rootcontext_sid;
800                 root_isec->initialized = LABEL_INITIALIZED;
801         }
802
803         if (defcontext_sid) {
804                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
805                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
806                         rc = -EINVAL;
807                         pr_warn("SELinux: defcontext option is "
808                                "invalid for this filesystem type\n");
809                         goto out;
810                 }
811
812                 if (defcontext_sid != sbsec->def_sid) {
813                         rc = may_context_mount_inode_relabel(defcontext_sid,
814                                                              sbsec, cred);
815                         if (rc)
816                                 goto out;
817                 }
818
819                 sbsec->def_sid = defcontext_sid;
820         }
821
822 out_set_opts:
823         rc = sb_finish_set_opts(sb);
824 out:
825         mutex_unlock(&sbsec->lock);
826         return rc;
827 out_double_mount:
828         rc = -EINVAL;
829         pr_warn("SELinux: mount invalid.  Same superblock, different "
830                "security settings for (dev %s, type %s)\n", sb->s_id,
831                sb->s_type->name);
832         goto out;
833 }
834
835 static int selinux_cmp_sb_context(const struct super_block *oldsb,
836                                     const struct super_block *newsb)
837 {
838         struct superblock_security_struct *old = oldsb->s_security;
839         struct superblock_security_struct *new = newsb->s_security;
840         char oldflags = old->flags & SE_MNTMASK;
841         char newflags = new->flags & SE_MNTMASK;
842
843         if (oldflags != newflags)
844                 goto mismatch;
845         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
846                 goto mismatch;
847         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
848                 goto mismatch;
849         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
850                 goto mismatch;
851         if (oldflags & ROOTCONTEXT_MNT) {
852                 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
853                 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
854                 if (oldroot->sid != newroot->sid)
855                         goto mismatch;
856         }
857         return 0;
858 mismatch:
859         pr_warn("SELinux: mount invalid.  Same superblock, "
860                             "different security settings for (dev %s, "
861                             "type %s)\n", newsb->s_id, newsb->s_type->name);
862         return -EBUSY;
863 }
864
865 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
866                                         struct super_block *newsb,
867                                         unsigned long kern_flags,
868                                         unsigned long *set_kern_flags)
869 {
870         int rc = 0;
871         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
872         struct superblock_security_struct *newsbsec = newsb->s_security;
873
874         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
875         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
876         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
877
878         /*
879          * if the parent was able to be mounted it clearly had no special lsm
880          * mount options.  thus we can safely deal with this superblock later
881          */
882         if (!selinux_initialized(&selinux_state))
883                 return 0;
884
885         /*
886          * Specifying internal flags without providing a place to
887          * place the results is not allowed.
888          */
889         if (kern_flags && !set_kern_flags)
890                 return -EINVAL;
891
892         /* how can we clone if the old one wasn't set up?? */
893         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
894
895         /* if fs is reusing a sb, make sure that the contexts match */
896         if (newsbsec->flags & SE_SBINITIALIZED) {
897                 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
898                         *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
899                 return selinux_cmp_sb_context(oldsb, newsb);
900         }
901
902         mutex_lock(&newsbsec->lock);
903
904         newsbsec->flags = oldsbsec->flags;
905
906         newsbsec->sid = oldsbsec->sid;
907         newsbsec->def_sid = oldsbsec->def_sid;
908         newsbsec->behavior = oldsbsec->behavior;
909
910         if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
911                 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
912                 rc = security_fs_use(&selinux_state, newsb);
913                 if (rc)
914                         goto out;
915         }
916
917         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
918                 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
919                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
920         }
921
922         if (set_context) {
923                 u32 sid = oldsbsec->mntpoint_sid;
924
925                 if (!set_fscontext)
926                         newsbsec->sid = sid;
927                 if (!set_rootcontext) {
928                         struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
929                         newisec->sid = sid;
930                 }
931                 newsbsec->mntpoint_sid = sid;
932         }
933         if (set_rootcontext) {
934                 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
935                 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
936
937                 newisec->sid = oldisec->sid;
938         }
939
940         sb_finish_set_opts(newsb);
941 out:
942         mutex_unlock(&newsbsec->lock);
943         return rc;
944 }
945
946 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
947 {
948         struct selinux_mnt_opts *opts = *mnt_opts;
949
950         if (token == Opt_seclabel)      /* eaten and completely ignored */
951                 return 0;
952
953         if (!opts) {
954                 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
955                 if (!opts)
956                         return -ENOMEM;
957                 *mnt_opts = opts;
958         }
959         if (!s)
960                 return -ENOMEM;
961         switch (token) {
962         case Opt_context:
963                 if (opts->context || opts->defcontext)
964                         goto Einval;
965                 opts->context = s;
966                 break;
967         case Opt_fscontext:
968                 if (opts->fscontext)
969                         goto Einval;
970                 opts->fscontext = s;
971                 break;
972         case Opt_rootcontext:
973                 if (opts->rootcontext)
974                         goto Einval;
975                 opts->rootcontext = s;
976                 break;
977         case Opt_defcontext:
978                 if (opts->context || opts->defcontext)
979                         goto Einval;
980                 opts->defcontext = s;
981                 break;
982         }
983         return 0;
984 Einval:
985         pr_warn(SEL_MOUNT_FAIL_MSG);
986         return -EINVAL;
987 }
988
989 static int selinux_add_mnt_opt(const char *option, const char *val, int len,
990                                void **mnt_opts)
991 {
992         int token = Opt_error;
993         int rc, i;
994
995         for (i = 0; i < ARRAY_SIZE(tokens); i++) {
996                 if (strcmp(option, tokens[i].name) == 0) {
997                         token = tokens[i].opt;
998                         break;
999                 }
1000         }
1001
1002         if (token == Opt_error)
1003                 return -EINVAL;
1004
1005         if (token != Opt_seclabel) {
1006                 val = kmemdup_nul(val, len, GFP_KERNEL);
1007                 if (!val) {
1008                         rc = -ENOMEM;
1009                         goto free_opt;
1010                 }
1011         }
1012         rc = selinux_add_opt(token, val, mnt_opts);
1013         if (unlikely(rc)) {
1014                 kfree(val);
1015                 goto free_opt;
1016         }
1017         return rc;
1018
1019 free_opt:
1020         if (*mnt_opts) {
1021                 selinux_free_mnt_opts(*mnt_opts);
1022                 *mnt_opts = NULL;
1023         }
1024         return rc;
1025 }
1026
1027 static int show_sid(struct seq_file *m, u32 sid)
1028 {
1029         char *context = NULL;
1030         u32 len;
1031         int rc;
1032
1033         rc = security_sid_to_context(&selinux_state, sid,
1034                                              &context, &len);
1035         if (!rc) {
1036                 bool has_comma = context && strchr(context, ',');
1037
1038                 seq_putc(m, '=');
1039                 if (has_comma)
1040                         seq_putc(m, '\"');
1041                 seq_escape(m, context, "\"\n\\");
1042                 if (has_comma)
1043                         seq_putc(m, '\"');
1044         }
1045         kfree(context);
1046         return rc;
1047 }
1048
1049 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1050 {
1051         struct superblock_security_struct *sbsec = sb->s_security;
1052         int rc;
1053
1054         if (!(sbsec->flags & SE_SBINITIALIZED))
1055                 return 0;
1056
1057         if (!selinux_initialized(&selinux_state))
1058                 return 0;
1059
1060         if (sbsec->flags & FSCONTEXT_MNT) {
1061                 seq_putc(m, ',');
1062                 seq_puts(m, FSCONTEXT_STR);
1063                 rc = show_sid(m, sbsec->sid);
1064                 if (rc)
1065                         return rc;
1066         }
1067         if (sbsec->flags & CONTEXT_MNT) {
1068                 seq_putc(m, ',');
1069                 seq_puts(m, CONTEXT_STR);
1070                 rc = show_sid(m, sbsec->mntpoint_sid);
1071                 if (rc)
1072                         return rc;
1073         }
1074         if (sbsec->flags & DEFCONTEXT_MNT) {
1075                 seq_putc(m, ',');
1076                 seq_puts(m, DEFCONTEXT_STR);
1077                 rc = show_sid(m, sbsec->def_sid);
1078                 if (rc)
1079                         return rc;
1080         }
1081         if (sbsec->flags & ROOTCONTEXT_MNT) {
1082                 struct dentry *root = sbsec->sb->s_root;
1083                 struct inode_security_struct *isec = backing_inode_security(root);
1084                 seq_putc(m, ',');
1085                 seq_puts(m, ROOTCONTEXT_STR);
1086                 rc = show_sid(m, isec->sid);
1087                 if (rc)
1088                         return rc;
1089         }
1090         if (sbsec->flags & SBLABEL_MNT) {
1091                 seq_putc(m, ',');
1092                 seq_puts(m, SECLABEL_STR);
1093         }
1094         return 0;
1095 }
1096
1097 static inline u16 inode_mode_to_security_class(umode_t mode)
1098 {
1099         switch (mode & S_IFMT) {
1100         case S_IFSOCK:
1101                 return SECCLASS_SOCK_FILE;
1102         case S_IFLNK:
1103                 return SECCLASS_LNK_FILE;
1104         case S_IFREG:
1105                 return SECCLASS_FILE;
1106         case S_IFBLK:
1107                 return SECCLASS_BLK_FILE;
1108         case S_IFDIR:
1109                 return SECCLASS_DIR;
1110         case S_IFCHR:
1111                 return SECCLASS_CHR_FILE;
1112         case S_IFIFO:
1113                 return SECCLASS_FIFO_FILE;
1114
1115         }
1116
1117         return SECCLASS_FILE;
1118 }
1119
1120 static inline int default_protocol_stream(int protocol)
1121 {
1122         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1123 }
1124
1125 static inline int default_protocol_dgram(int protocol)
1126 {
1127         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1128 }
1129
1130 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1131 {
1132         int extsockclass = selinux_policycap_extsockclass();
1133
1134         switch (family) {
1135         case PF_UNIX:
1136                 switch (type) {
1137                 case SOCK_STREAM:
1138                 case SOCK_SEQPACKET:
1139                         return SECCLASS_UNIX_STREAM_SOCKET;
1140                 case SOCK_DGRAM:
1141                 case SOCK_RAW:
1142                         return SECCLASS_UNIX_DGRAM_SOCKET;
1143                 }
1144                 break;
1145         case PF_INET:
1146         case PF_INET6:
1147                 switch (type) {
1148                 case SOCK_STREAM:
1149                 case SOCK_SEQPACKET:
1150                         if (default_protocol_stream(protocol))
1151                                 return SECCLASS_TCP_SOCKET;
1152                         else if (extsockclass && protocol == IPPROTO_SCTP)
1153                                 return SECCLASS_SCTP_SOCKET;
1154                         else
1155                                 return SECCLASS_RAWIP_SOCKET;
1156                 case SOCK_DGRAM:
1157                         if (default_protocol_dgram(protocol))
1158                                 return SECCLASS_UDP_SOCKET;
1159                         else if (extsockclass && (protocol == IPPROTO_ICMP ||
1160                                                   protocol == IPPROTO_ICMPV6))
1161                                 return SECCLASS_ICMP_SOCKET;
1162                         else
1163                                 return SECCLASS_RAWIP_SOCKET;
1164                 case SOCK_DCCP:
1165                         return SECCLASS_DCCP_SOCKET;
1166                 default:
1167                         return SECCLASS_RAWIP_SOCKET;
1168                 }
1169                 break;
1170         case PF_NETLINK:
1171                 switch (protocol) {
1172                 case NETLINK_ROUTE:
1173                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1174                 case NETLINK_SOCK_DIAG:
1175                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1176                 case NETLINK_NFLOG:
1177                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1178                 case NETLINK_XFRM:
1179                         return SECCLASS_NETLINK_XFRM_SOCKET;
1180                 case NETLINK_SELINUX:
1181                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1182                 case NETLINK_ISCSI:
1183                         return SECCLASS_NETLINK_ISCSI_SOCKET;
1184                 case NETLINK_AUDIT:
1185                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1186                 case NETLINK_FIB_LOOKUP:
1187                         return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1188                 case NETLINK_CONNECTOR:
1189                         return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1190                 case NETLINK_NETFILTER:
1191                         return SECCLASS_NETLINK_NETFILTER_SOCKET;
1192                 case NETLINK_DNRTMSG:
1193                         return SECCLASS_NETLINK_DNRT_SOCKET;
1194                 case NETLINK_KOBJECT_UEVENT:
1195                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1196                 case NETLINK_GENERIC:
1197                         return SECCLASS_NETLINK_GENERIC_SOCKET;
1198                 case NETLINK_SCSITRANSPORT:
1199                         return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1200                 case NETLINK_RDMA:
1201                         return SECCLASS_NETLINK_RDMA_SOCKET;
1202                 case NETLINK_CRYPTO:
1203                         return SECCLASS_NETLINK_CRYPTO_SOCKET;
1204                 default:
1205                         return SECCLASS_NETLINK_SOCKET;
1206                 }
1207         case PF_PACKET:
1208                 return SECCLASS_PACKET_SOCKET;
1209         case PF_KEY:
1210                 return SECCLASS_KEY_SOCKET;
1211         case PF_APPLETALK:
1212                 return SECCLASS_APPLETALK_SOCKET;
1213         }
1214
1215         if (extsockclass) {
1216                 switch (family) {
1217                 case PF_AX25:
1218                         return SECCLASS_AX25_SOCKET;
1219                 case PF_IPX:
1220                         return SECCLASS_IPX_SOCKET;
1221                 case PF_NETROM:
1222                         return SECCLASS_NETROM_SOCKET;
1223                 case PF_ATMPVC:
1224                         return SECCLASS_ATMPVC_SOCKET;
1225                 case PF_X25:
1226                         return SECCLASS_X25_SOCKET;
1227                 case PF_ROSE:
1228                         return SECCLASS_ROSE_SOCKET;
1229                 case PF_DECnet:
1230                         return SECCLASS_DECNET_SOCKET;
1231                 case PF_ATMSVC:
1232                         return SECCLASS_ATMSVC_SOCKET;
1233                 case PF_RDS:
1234                         return SECCLASS_RDS_SOCKET;
1235                 case PF_IRDA:
1236                         return SECCLASS_IRDA_SOCKET;
1237                 case PF_PPPOX:
1238                         return SECCLASS_PPPOX_SOCKET;
1239                 case PF_LLC:
1240                         return SECCLASS_LLC_SOCKET;
1241                 case PF_CAN:
1242                         return SECCLASS_CAN_SOCKET;
1243                 case PF_TIPC:
1244                         return SECCLASS_TIPC_SOCKET;
1245                 case PF_BLUETOOTH:
1246                         return SECCLASS_BLUETOOTH_SOCKET;
1247                 case PF_IUCV:
1248                         return SECCLASS_IUCV_SOCKET;
1249                 case PF_RXRPC:
1250                         return SECCLASS_RXRPC_SOCKET;
1251                 case PF_ISDN:
1252                         return SECCLASS_ISDN_SOCKET;
1253                 case PF_PHONET:
1254                         return SECCLASS_PHONET_SOCKET;
1255                 case PF_IEEE802154:
1256                         return SECCLASS_IEEE802154_SOCKET;
1257                 case PF_CAIF:
1258                         return SECCLASS_CAIF_SOCKET;
1259                 case PF_ALG:
1260                         return SECCLASS_ALG_SOCKET;
1261                 case PF_NFC:
1262                         return SECCLASS_NFC_SOCKET;
1263                 case PF_VSOCK:
1264                         return SECCLASS_VSOCK_SOCKET;
1265                 case PF_KCM:
1266                         return SECCLASS_KCM_SOCKET;
1267                 case PF_QIPCRTR:
1268                         return SECCLASS_QIPCRTR_SOCKET;
1269                 case PF_SMC:
1270                         return SECCLASS_SMC_SOCKET;
1271                 case PF_XDP:
1272                         return SECCLASS_XDP_SOCKET;
1273 #if PF_MAX > 45
1274 #error New address family defined, please update this function.
1275 #endif
1276                 }
1277         }
1278
1279         return SECCLASS_SOCKET;
1280 }
1281
1282 static int selinux_genfs_get_sid(struct dentry *dentry,
1283                                  u16 tclass,
1284                                  u16 flags,
1285                                  u32 *sid)
1286 {
1287         int rc;
1288         struct super_block *sb = dentry->d_sb;
1289         char *buffer, *path;
1290
1291         buffer = (char *)__get_free_page(GFP_KERNEL);
1292         if (!buffer)
1293                 return -ENOMEM;
1294
1295         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1296         if (IS_ERR(path))
1297                 rc = PTR_ERR(path);
1298         else {
1299                 if (flags & SE_SBPROC) {
1300                         /* each process gets a /proc/PID/ entry. Strip off the
1301                          * PID part to get a valid selinux labeling.
1302                          * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1303                         while (path[1] >= '0' && path[1] <= '9') {
1304                                 path[1] = '/';
1305                                 path++;
1306                         }
1307                 }
1308                 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1309                                         path, tclass, sid);
1310                 if (rc == -ENOENT) {
1311                         /* No match in policy, mark as unlabeled. */
1312                         *sid = SECINITSID_UNLABELED;
1313                         rc = 0;
1314                 }
1315         }
1316         free_page((unsigned long)buffer);
1317         return rc;
1318 }
1319
1320 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1321                                   u32 def_sid, u32 *sid)
1322 {
1323 #define INITCONTEXTLEN 255
1324         char *context;
1325         unsigned int len;
1326         int rc;
1327
1328         len = INITCONTEXTLEN;
1329         context = kmalloc(len + 1, GFP_NOFS);
1330         if (!context)
1331                 return -ENOMEM;
1332
1333         context[len] = '\0';
1334         rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1335         if (rc == -ERANGE) {
1336                 kfree(context);
1337
1338                 /* Need a larger buffer.  Query for the right size. */
1339                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1340                 if (rc < 0)
1341                         return rc;
1342
1343                 len = rc;
1344                 context = kmalloc(len + 1, GFP_NOFS);
1345                 if (!context)
1346                         return -ENOMEM;
1347
1348                 context[len] = '\0';
1349                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1350                                     context, len);
1351         }
1352         if (rc < 0) {
1353                 kfree(context);
1354                 if (rc != -ENODATA) {
1355                         pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1356                                 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1357                         return rc;
1358                 }
1359                 *sid = def_sid;
1360                 return 0;
1361         }
1362
1363         rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1364                                              def_sid, GFP_NOFS);
1365         if (rc) {
1366                 char *dev = inode->i_sb->s_id;
1367                 unsigned long ino = inode->i_ino;
1368
1369                 if (rc == -EINVAL) {
1370                         pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1371                                               ino, dev, context);
1372                 } else {
1373                         pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1374                                 __func__, context, -rc, dev, ino);
1375                 }
1376         }
1377         kfree(context);
1378         return 0;
1379 }
1380
1381 /* The inode's security attributes must be initialized before first use. */
1382 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1383 {
1384         struct superblock_security_struct *sbsec = NULL;
1385         struct inode_security_struct *isec = selinux_inode(inode);
1386         u32 task_sid, sid = 0;
1387         u16 sclass;
1388         struct dentry *dentry;
1389         int rc = 0;
1390
1391         if (isec->initialized == LABEL_INITIALIZED)
1392                 return 0;
1393
1394         spin_lock(&isec->lock);
1395         if (isec->initialized == LABEL_INITIALIZED)
1396                 goto out_unlock;
1397
1398         if (isec->sclass == SECCLASS_FILE)
1399                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1400
1401         sbsec = inode->i_sb->s_security;
1402         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1403                 /* Defer initialization until selinux_complete_init,
1404                    after the initial policy is loaded and the security
1405                    server is ready to handle calls. */
1406                 spin_lock(&sbsec->isec_lock);
1407                 if (list_empty(&isec->list))
1408                         list_add(&isec->list, &sbsec->isec_head);
1409                 spin_unlock(&sbsec->isec_lock);
1410                 goto out_unlock;
1411         }
1412
1413         sclass = isec->sclass;
1414         task_sid = isec->task_sid;
1415         sid = isec->sid;
1416         isec->initialized = LABEL_PENDING;
1417         spin_unlock(&isec->lock);
1418
1419         switch (sbsec->behavior) {
1420         case SECURITY_FS_USE_NATIVE:
1421                 break;
1422         case SECURITY_FS_USE_XATTR:
1423                 if (!(inode->i_opflags & IOP_XATTR)) {
1424                         sid = sbsec->def_sid;
1425                         break;
1426                 }
1427                 /* Need a dentry, since the xattr API requires one.
1428                    Life would be simpler if we could just pass the inode. */
1429                 if (opt_dentry) {
1430                         /* Called from d_instantiate or d_splice_alias. */
1431                         dentry = dget(opt_dentry);
1432                 } else {
1433                         /*
1434                          * Called from selinux_complete_init, try to find a dentry.
1435                          * Some filesystems really want a connected one, so try
1436                          * that first.  We could split SECURITY_FS_USE_XATTR in
1437                          * two, depending upon that...
1438                          */
1439                         dentry = d_find_alias(inode);
1440                         if (!dentry)
1441                                 dentry = d_find_any_alias(inode);
1442                 }
1443                 if (!dentry) {
1444                         /*
1445                          * this is can be hit on boot when a file is accessed
1446                          * before the policy is loaded.  When we load policy we
1447                          * may find inodes that have no dentry on the
1448                          * sbsec->isec_head list.  No reason to complain as these
1449                          * will get fixed up the next time we go through
1450                          * inode_doinit with a dentry, before these inodes could
1451                          * be used again by userspace.
1452                          */
1453                         goto out;
1454                 }
1455
1456                 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1457                                             &sid);
1458                 dput(dentry);
1459                 if (rc)
1460                         goto out;
1461                 break;
1462         case SECURITY_FS_USE_TASK:
1463                 sid = task_sid;
1464                 break;
1465         case SECURITY_FS_USE_TRANS:
1466                 /* Default to the fs SID. */
1467                 sid = sbsec->sid;
1468
1469                 /* Try to obtain a transition SID. */
1470                 rc = security_transition_sid(&selinux_state, task_sid, sid,
1471                                              sclass, NULL, &sid);
1472                 if (rc)
1473                         goto out;
1474                 break;
1475         case SECURITY_FS_USE_MNTPOINT:
1476                 sid = sbsec->mntpoint_sid;
1477                 break;
1478         default:
1479                 /* Default to the fs superblock SID. */
1480                 sid = sbsec->sid;
1481
1482                 if ((sbsec->flags & SE_SBGENFS) &&
1483                      (!S_ISLNK(inode->i_mode) ||
1484                       selinux_policycap_genfs_seclabel_symlinks())) {
1485                         /* We must have a dentry to determine the label on
1486                          * procfs inodes */
1487                         if (opt_dentry) {
1488                                 /* Called from d_instantiate or
1489                                  * d_splice_alias. */
1490                                 dentry = dget(opt_dentry);
1491                         } else {
1492                                 /* Called from selinux_complete_init, try to
1493                                  * find a dentry.  Some filesystems really want
1494                                  * a connected one, so try that first.
1495                                  */
1496                                 dentry = d_find_alias(inode);
1497                                 if (!dentry)
1498                                         dentry = d_find_any_alias(inode);
1499                         }
1500                         /*
1501                          * This can be hit on boot when a file is accessed
1502                          * before the policy is loaded.  When we load policy we
1503                          * may find inodes that have no dentry on the
1504                          * sbsec->isec_head list.  No reason to complain as
1505                          * these will get fixed up the next time we go through
1506                          * inode_doinit() with a dentry, before these inodes
1507                          * could be used again by userspace.
1508                          */
1509                         if (!dentry)
1510                                 goto out;
1511                         rc = selinux_genfs_get_sid(dentry, sclass,
1512                                                    sbsec->flags, &sid);
1513                         if (rc) {
1514                                 dput(dentry);
1515                                 goto out;
1516                         }
1517
1518                         if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1519                             (inode->i_opflags & IOP_XATTR)) {
1520                                 rc = inode_doinit_use_xattr(inode, dentry,
1521                                                             sid, &sid);
1522                                 if (rc) {
1523                                         dput(dentry);
1524                                         goto out;
1525                                 }
1526                         }
1527                         dput(dentry);
1528                 }
1529                 break;
1530         }
1531
1532 out:
1533         spin_lock(&isec->lock);
1534         if (isec->initialized == LABEL_PENDING) {
1535                 if (!sid || rc) {
1536                         isec->initialized = LABEL_INVALID;
1537                         goto out_unlock;
1538                 }
1539
1540                 isec->initialized = LABEL_INITIALIZED;
1541                 isec->sid = sid;
1542         }
1543
1544 out_unlock:
1545         spin_unlock(&isec->lock);
1546         return rc;
1547 }
1548
1549 /* Convert a Linux signal to an access vector. */
1550 static inline u32 signal_to_av(int sig)
1551 {
1552         u32 perm = 0;
1553
1554         switch (sig) {
1555         case SIGCHLD:
1556                 /* Commonly granted from child to parent. */
1557                 perm = PROCESS__SIGCHLD;
1558                 break;
1559         case SIGKILL:
1560                 /* Cannot be caught or ignored */
1561                 perm = PROCESS__SIGKILL;
1562                 break;
1563         case SIGSTOP:
1564                 /* Cannot be caught or ignored */
1565                 perm = PROCESS__SIGSTOP;
1566                 break;
1567         default:
1568                 /* All other signals. */
1569                 perm = PROCESS__SIGNAL;
1570                 break;
1571         }
1572
1573         return perm;
1574 }
1575
1576 #if CAP_LAST_CAP > 63
1577 #error Fix SELinux to handle capabilities > 63.
1578 #endif
1579
1580 /* Check whether a task is allowed to use a capability. */
1581 static int cred_has_capability(const struct cred *cred,
1582                                int cap, unsigned int opts, bool initns)
1583 {
1584         struct common_audit_data ad;
1585         struct av_decision avd;
1586         u16 sclass;
1587         u32 sid = cred_sid(cred);
1588         u32 av = CAP_TO_MASK(cap);
1589         int rc;
1590
1591         ad.type = LSM_AUDIT_DATA_CAP;
1592         ad.u.cap = cap;
1593
1594         switch (CAP_TO_INDEX(cap)) {
1595         case 0:
1596                 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1597                 break;
1598         case 1:
1599                 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1600                 break;
1601         default:
1602                 pr_err("SELinux:  out of range capability %d\n", cap);
1603                 BUG();
1604                 return -EINVAL;
1605         }
1606
1607         rc = avc_has_perm_noaudit(&selinux_state,
1608                                   sid, sid, sclass, av, 0, &avd);
1609         if (!(opts & CAP_OPT_NOAUDIT)) {
1610                 int rc2 = avc_audit(&selinux_state,
1611                                     sid, sid, sclass, av, &avd, rc, &ad, 0);
1612                 if (rc2)
1613                         return rc2;
1614         }
1615         return rc;
1616 }
1617
1618 /* Check whether a task has a particular permission to an inode.
1619    The 'adp' parameter is optional and allows other audit
1620    data to be passed (e.g. the dentry). */
1621 static int inode_has_perm(const struct cred *cred,
1622                           struct inode *inode,
1623                           u32 perms,
1624                           struct common_audit_data *adp)
1625 {
1626         struct inode_security_struct *isec;
1627         u32 sid;
1628
1629         validate_creds(cred);
1630
1631         if (unlikely(IS_PRIVATE(inode)))
1632                 return 0;
1633
1634         sid = cred_sid(cred);
1635         isec = selinux_inode(inode);
1636
1637         return avc_has_perm(&selinux_state,
1638                             sid, isec->sid, isec->sclass, perms, adp);
1639 }
1640
1641 /* Same as inode_has_perm, but pass explicit audit data containing
1642    the dentry to help the auditing code to more easily generate the
1643    pathname if needed. */
1644 static inline int dentry_has_perm(const struct cred *cred,
1645                                   struct dentry *dentry,
1646                                   u32 av)
1647 {
1648         struct inode *inode = d_backing_inode(dentry);
1649         struct common_audit_data ad;
1650
1651         ad.type = LSM_AUDIT_DATA_DENTRY;
1652         ad.u.dentry = dentry;
1653         __inode_security_revalidate(inode, dentry, true);
1654         return inode_has_perm(cred, inode, av, &ad);
1655 }
1656
1657 /* Same as inode_has_perm, but pass explicit audit data containing
1658    the path to help the auditing code to more easily generate the
1659    pathname if needed. */
1660 static inline int path_has_perm(const struct cred *cred,
1661                                 const struct path *path,
1662                                 u32 av)
1663 {
1664         struct inode *inode = d_backing_inode(path->dentry);
1665         struct common_audit_data ad;
1666
1667         ad.type = LSM_AUDIT_DATA_PATH;
1668         ad.u.path = *path;
1669         __inode_security_revalidate(inode, path->dentry, true);
1670         return inode_has_perm(cred, inode, av, &ad);
1671 }
1672
1673 /* Same as path_has_perm, but uses the inode from the file struct. */
1674 static inline int file_path_has_perm(const struct cred *cred,
1675                                      struct file *file,
1676                                      u32 av)
1677 {
1678         struct common_audit_data ad;
1679
1680         ad.type = LSM_AUDIT_DATA_FILE;
1681         ad.u.file = file;
1682         return inode_has_perm(cred, file_inode(file), av, &ad);
1683 }
1684
1685 #ifdef CONFIG_BPF_SYSCALL
1686 static int bpf_fd_pass(struct file *file, u32 sid);
1687 #endif
1688
1689 /* Check whether a task can use an open file descriptor to
1690    access an inode in a given way.  Check access to the
1691    descriptor itself, and then use dentry_has_perm to
1692    check a particular permission to the file.
1693    Access to the descriptor is implicitly granted if it
1694    has the same SID as the process.  If av is zero, then
1695    access to the file is not checked, e.g. for cases
1696    where only the descriptor is affected like seek. */
1697 static int file_has_perm(const struct cred *cred,
1698                          struct file *file,
1699                          u32 av)
1700 {
1701         struct file_security_struct *fsec = selinux_file(file);
1702         struct inode *inode = file_inode(file);
1703         struct common_audit_data ad;
1704         u32 sid = cred_sid(cred);
1705         int rc;
1706
1707         ad.type = LSM_AUDIT_DATA_FILE;
1708         ad.u.file = file;
1709
1710         if (sid != fsec->sid) {
1711                 rc = avc_has_perm(&selinux_state,
1712                                   sid, fsec->sid,
1713                                   SECCLASS_FD,
1714                                   FD__USE,
1715                                   &ad);
1716                 if (rc)
1717                         goto out;
1718         }
1719
1720 #ifdef CONFIG_BPF_SYSCALL
1721         rc = bpf_fd_pass(file, cred_sid(cred));
1722         if (rc)
1723                 return rc;
1724 #endif
1725
1726         /* av is zero if only checking access to the descriptor. */
1727         rc = 0;
1728         if (av)
1729                 rc = inode_has_perm(cred, inode, av, &ad);
1730
1731 out:
1732         return rc;
1733 }
1734
1735 /*
1736  * Determine the label for an inode that might be unioned.
1737  */
1738 static int
1739 selinux_determine_inode_label(const struct task_security_struct *tsec,
1740                                  struct inode *dir,
1741                                  const struct qstr *name, u16 tclass,
1742                                  u32 *_new_isid)
1743 {
1744         const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1745
1746         if ((sbsec->flags & SE_SBINITIALIZED) &&
1747             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1748                 *_new_isid = sbsec->mntpoint_sid;
1749         } else if ((sbsec->flags & SBLABEL_MNT) &&
1750                    tsec->create_sid) {
1751                 *_new_isid = tsec->create_sid;
1752         } else {
1753                 const struct inode_security_struct *dsec = inode_security(dir);
1754                 return security_transition_sid(&selinux_state, tsec->sid,
1755                                                dsec->sid, tclass,
1756                                                name, _new_isid);
1757         }
1758
1759         return 0;
1760 }
1761
1762 /* Check whether a task can create a file. */
1763 static int may_create(struct inode *dir,
1764                       struct dentry *dentry,
1765                       u16 tclass)
1766 {
1767         const struct task_security_struct *tsec = selinux_cred(current_cred());
1768         struct inode_security_struct *dsec;
1769         struct superblock_security_struct *sbsec;
1770         u32 sid, newsid;
1771         struct common_audit_data ad;
1772         int rc;
1773
1774         dsec = inode_security(dir);
1775         sbsec = dir->i_sb->s_security;
1776
1777         sid = tsec->sid;
1778
1779         ad.type = LSM_AUDIT_DATA_DENTRY;
1780         ad.u.dentry = dentry;
1781
1782         rc = avc_has_perm(&selinux_state,
1783                           sid, dsec->sid, SECCLASS_DIR,
1784                           DIR__ADD_NAME | DIR__SEARCH,
1785                           &ad);
1786         if (rc)
1787                 return rc;
1788
1789         rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1790                                            &newsid);
1791         if (rc)
1792                 return rc;
1793
1794         rc = avc_has_perm(&selinux_state,
1795                           sid, newsid, tclass, FILE__CREATE, &ad);
1796         if (rc)
1797                 return rc;
1798
1799         return avc_has_perm(&selinux_state,
1800                             newsid, sbsec->sid,
1801                             SECCLASS_FILESYSTEM,
1802                             FILESYSTEM__ASSOCIATE, &ad);
1803 }
1804
1805 #define MAY_LINK        0
1806 #define MAY_UNLINK      1
1807 #define MAY_RMDIR       2
1808
1809 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1810 static int may_link(struct inode *dir,
1811                     struct dentry *dentry,
1812                     int kind)
1813
1814 {
1815         struct inode_security_struct *dsec, *isec;
1816         struct common_audit_data ad;
1817         u32 sid = current_sid();
1818         u32 av;
1819         int rc;
1820
1821         dsec = inode_security(dir);
1822         isec = backing_inode_security(dentry);
1823
1824         ad.type = LSM_AUDIT_DATA_DENTRY;
1825         ad.u.dentry = dentry;
1826
1827         av = DIR__SEARCH;
1828         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1829         rc = avc_has_perm(&selinux_state,
1830                           sid, dsec->sid, SECCLASS_DIR, av, &ad);
1831         if (rc)
1832                 return rc;
1833
1834         switch (kind) {
1835         case MAY_LINK:
1836                 av = FILE__LINK;
1837                 break;
1838         case MAY_UNLINK:
1839                 av = FILE__UNLINK;
1840                 break;
1841         case MAY_RMDIR:
1842                 av = DIR__RMDIR;
1843                 break;
1844         default:
1845                 pr_warn("SELinux: %s:  unrecognized kind %d\n",
1846                         __func__, kind);
1847                 return 0;
1848         }
1849
1850         rc = avc_has_perm(&selinux_state,
1851                           sid, isec->sid, isec->sclass, av, &ad);
1852         return rc;
1853 }
1854
1855 static inline int may_rename(struct inode *old_dir,
1856                              struct dentry *old_dentry,
1857                              struct inode *new_dir,
1858                              struct dentry *new_dentry)
1859 {
1860         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1861         struct common_audit_data ad;
1862         u32 sid = current_sid();
1863         u32 av;
1864         int old_is_dir, new_is_dir;
1865         int rc;
1866
1867         old_dsec = inode_security(old_dir);
1868         old_isec = backing_inode_security(old_dentry);
1869         old_is_dir = d_is_dir(old_dentry);
1870         new_dsec = inode_security(new_dir);
1871
1872         ad.type = LSM_AUDIT_DATA_DENTRY;
1873
1874         ad.u.dentry = old_dentry;
1875         rc = avc_has_perm(&selinux_state,
1876                           sid, old_dsec->sid, SECCLASS_DIR,
1877                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1878         if (rc)
1879                 return rc;
1880         rc = avc_has_perm(&selinux_state,
1881                           sid, old_isec->sid,
1882                           old_isec->sclass, FILE__RENAME, &ad);
1883         if (rc)
1884                 return rc;
1885         if (old_is_dir && new_dir != old_dir) {
1886                 rc = avc_has_perm(&selinux_state,
1887                                   sid, old_isec->sid,
1888                                   old_isec->sclass, DIR__REPARENT, &ad);
1889                 if (rc)
1890                         return rc;
1891         }
1892
1893         ad.u.dentry = new_dentry;
1894         av = DIR__ADD_NAME | DIR__SEARCH;
1895         if (d_is_positive(new_dentry))
1896                 av |= DIR__REMOVE_NAME;
1897         rc = avc_has_perm(&selinux_state,
1898                           sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1899         if (rc)
1900                 return rc;
1901         if (d_is_positive(new_dentry)) {
1902                 new_isec = backing_inode_security(new_dentry);
1903                 new_is_dir = d_is_dir(new_dentry);
1904                 rc = avc_has_perm(&selinux_state,
1905                                   sid, new_isec->sid,
1906                                   new_isec->sclass,
1907                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1908                 if (rc)
1909                         return rc;
1910         }
1911
1912         return 0;
1913 }
1914
1915 /* Check whether a task can perform a filesystem operation. */
1916 static int superblock_has_perm(const struct cred *cred,
1917                                struct super_block *sb,
1918                                u32 perms,
1919                                struct common_audit_data *ad)
1920 {
1921         struct superblock_security_struct *sbsec;
1922         u32 sid = cred_sid(cred);
1923
1924         sbsec = sb->s_security;
1925         return avc_has_perm(&selinux_state,
1926                             sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1927 }
1928
1929 /* Convert a Linux mode and permission mask to an access vector. */
1930 static inline u32 file_mask_to_av(int mode, int mask)
1931 {
1932         u32 av = 0;
1933
1934         if (!S_ISDIR(mode)) {
1935                 if (mask & MAY_EXEC)
1936                         av |= FILE__EXECUTE;
1937                 if (mask & MAY_READ)
1938                         av |= FILE__READ;
1939
1940                 if (mask & MAY_APPEND)
1941                         av |= FILE__APPEND;
1942                 else if (mask & MAY_WRITE)
1943                         av |= FILE__WRITE;
1944
1945         } else {
1946                 if (mask & MAY_EXEC)
1947                         av |= DIR__SEARCH;
1948                 if (mask & MAY_WRITE)
1949                         av |= DIR__WRITE;
1950                 if (mask & MAY_READ)
1951                         av |= DIR__READ;
1952         }
1953
1954         return av;
1955 }
1956
1957 /* Convert a Linux file to an access vector. */
1958 static inline u32 file_to_av(struct file *file)
1959 {
1960         u32 av = 0;
1961
1962         if (file->f_mode & FMODE_READ)
1963                 av |= FILE__READ;
1964         if (file->f_mode & FMODE_WRITE) {
1965                 if (file->f_flags & O_APPEND)
1966                         av |= FILE__APPEND;
1967                 else
1968                         av |= FILE__WRITE;
1969         }
1970         if (!av) {
1971                 /*
1972                  * Special file opened with flags 3 for ioctl-only use.
1973                  */
1974                 av = FILE__IOCTL;
1975         }
1976
1977         return av;
1978 }
1979
1980 /*
1981  * Convert a file to an access vector and include the correct open
1982  * open permission.
1983  */
1984 static inline u32 open_file_to_av(struct file *file)
1985 {
1986         u32 av = file_to_av(file);
1987         struct inode *inode = file_inode(file);
1988
1989         if (selinux_policycap_openperm() &&
1990             inode->i_sb->s_magic != SOCKFS_MAGIC)
1991                 av |= FILE__OPEN;
1992
1993         return av;
1994 }
1995
1996 /* Hook functions begin here. */
1997
1998 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1999 {
2000         u32 mysid = current_sid();
2001         u32 mgrsid = task_sid(mgr);
2002
2003         return avc_has_perm(&selinux_state,
2004                             mysid, mgrsid, SECCLASS_BINDER,
2005                             BINDER__SET_CONTEXT_MGR, NULL);
2006 }
2007
2008 static int selinux_binder_transaction(struct task_struct *from,
2009                                       struct task_struct *to)
2010 {
2011         u32 mysid = current_sid();
2012         u32 fromsid = task_sid(from);
2013         u32 tosid = task_sid(to);
2014         int rc;
2015
2016         if (mysid != fromsid) {
2017                 rc = avc_has_perm(&selinux_state,
2018                                   mysid, fromsid, SECCLASS_BINDER,
2019                                   BINDER__IMPERSONATE, NULL);
2020                 if (rc)
2021                         return rc;
2022         }
2023
2024         return avc_has_perm(&selinux_state,
2025                             fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2026                             NULL);
2027 }
2028
2029 static int selinux_binder_transfer_binder(struct task_struct *from,
2030                                           struct task_struct *to)
2031 {
2032         u32 fromsid = task_sid(from);
2033         u32 tosid = task_sid(to);
2034
2035         return avc_has_perm(&selinux_state,
2036                             fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2037                             NULL);
2038 }
2039
2040 static int selinux_binder_transfer_file(struct task_struct *from,
2041                                         struct task_struct *to,
2042                                         struct file *file)
2043 {
2044         u32 sid = task_sid(to);
2045         struct file_security_struct *fsec = selinux_file(file);
2046         struct dentry *dentry = file->f_path.dentry;
2047         struct inode_security_struct *isec;
2048         struct common_audit_data ad;
2049         int rc;
2050
2051         ad.type = LSM_AUDIT_DATA_PATH;
2052         ad.u.path = file->f_path;
2053
2054         if (sid != fsec->sid) {
2055                 rc = avc_has_perm(&selinux_state,
2056                                   sid, fsec->sid,
2057                                   SECCLASS_FD,
2058                                   FD__USE,
2059                                   &ad);
2060                 if (rc)
2061                         return rc;
2062         }
2063
2064 #ifdef CONFIG_BPF_SYSCALL
2065         rc = bpf_fd_pass(file, sid);
2066         if (rc)
2067                 return rc;
2068 #endif
2069
2070         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2071                 return 0;
2072
2073         isec = backing_inode_security(dentry);
2074         return avc_has_perm(&selinux_state,
2075                             sid, isec->sid, isec->sclass, file_to_av(file),
2076                             &ad);
2077 }
2078
2079 static int selinux_ptrace_access_check(struct task_struct *child,
2080                                      unsigned int mode)
2081 {
2082         u32 sid = current_sid();
2083         u32 csid = task_sid(child);
2084
2085         if (mode & PTRACE_MODE_READ)
2086                 return avc_has_perm(&selinux_state,
2087                                     sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2088
2089         return avc_has_perm(&selinux_state,
2090                             sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2091 }
2092
2093 static int selinux_ptrace_traceme(struct task_struct *parent)
2094 {
2095         return avc_has_perm(&selinux_state,
2096                             task_sid(parent), current_sid(), SECCLASS_PROCESS,
2097                             PROCESS__PTRACE, NULL);
2098 }
2099
2100 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2101                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
2102 {
2103         return avc_has_perm(&selinux_state,
2104                             current_sid(), task_sid(target), SECCLASS_PROCESS,
2105                             PROCESS__GETCAP, NULL);
2106 }
2107
2108 static int selinux_capset(struct cred *new, const struct cred *old,
2109                           const kernel_cap_t *effective,
2110                           const kernel_cap_t *inheritable,
2111                           const kernel_cap_t *permitted)
2112 {
2113         return avc_has_perm(&selinux_state,
2114                             cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2115                             PROCESS__SETCAP, NULL);
2116 }
2117
2118 /*
2119  * (This comment used to live with the selinux_task_setuid hook,
2120  * which was removed).
2121  *
2122  * Since setuid only affects the current process, and since the SELinux
2123  * controls are not based on the Linux identity attributes, SELinux does not
2124  * need to control this operation.  However, SELinux does control the use of
2125  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2126  */
2127
2128 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2129                            int cap, unsigned int opts)
2130 {
2131         return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2132 }
2133
2134 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2135 {
2136         const struct cred *cred = current_cred();
2137         int rc = 0;
2138
2139         if (!sb)
2140                 return 0;
2141
2142         switch (cmds) {
2143         case Q_SYNC:
2144         case Q_QUOTAON:
2145         case Q_QUOTAOFF:
2146         case Q_SETINFO:
2147         case Q_SETQUOTA:
2148         case Q_XQUOTAOFF:
2149         case Q_XQUOTAON:
2150         case Q_XSETQLIM:
2151                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2152                 break;
2153         case Q_GETFMT:
2154         case Q_GETINFO:
2155         case Q_GETQUOTA:
2156         case Q_XGETQUOTA:
2157         case Q_XGETQSTAT:
2158         case Q_XGETQSTATV:
2159         case Q_XGETNEXTQUOTA:
2160                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2161                 break;
2162         default:
2163                 rc = 0;  /* let the kernel handle invalid cmds */
2164                 break;
2165         }
2166         return rc;
2167 }
2168
2169 static int selinux_quota_on(struct dentry *dentry)
2170 {
2171         const struct cred *cred = current_cred();
2172
2173         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2174 }
2175
2176 static int selinux_syslog(int type)
2177 {
2178         switch (type) {
2179         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2180         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2181                 return avc_has_perm(&selinux_state,
2182                                     current_sid(), SECINITSID_KERNEL,
2183                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2184         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2185         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2186         /* Set level of messages printed to console */
2187         case SYSLOG_ACTION_CONSOLE_LEVEL:
2188                 return avc_has_perm(&selinux_state,
2189                                     current_sid(), SECINITSID_KERNEL,
2190                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2191                                     NULL);
2192         }
2193         /* All other syslog types */
2194         return avc_has_perm(&selinux_state,
2195                             current_sid(), SECINITSID_KERNEL,
2196                             SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2197 }
2198
2199 /*
2200  * Check that a process has enough memory to allocate a new virtual
2201  * mapping. 0 means there is enough memory for the allocation to
2202  * succeed and -ENOMEM implies there is not.
2203  *
2204  * Do not audit the selinux permission check, as this is applied to all
2205  * processes that allocate mappings.
2206  */
2207 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2208 {
2209         int rc, cap_sys_admin = 0;
2210
2211         rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2212                                  CAP_OPT_NOAUDIT, true);
2213         if (rc == 0)
2214                 cap_sys_admin = 1;
2215
2216         return cap_sys_admin;
2217 }
2218
2219 /* binprm security operations */
2220
2221 static u32 ptrace_parent_sid(void)
2222 {
2223         u32 sid = 0;
2224         struct task_struct *tracer;
2225
2226         rcu_read_lock();
2227         tracer = ptrace_parent(current);
2228         if (tracer)
2229                 sid = task_sid(tracer);
2230         rcu_read_unlock();
2231
2232         return sid;
2233 }
2234
2235 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2236                             const struct task_security_struct *old_tsec,
2237                             const struct task_security_struct *new_tsec)
2238 {
2239         int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2240         int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2241         int rc;
2242         u32 av;
2243
2244         if (!nnp && !nosuid)
2245                 return 0; /* neither NNP nor nosuid */
2246
2247         if (new_tsec->sid == old_tsec->sid)
2248                 return 0; /* No change in credentials */
2249
2250         /*
2251          * If the policy enables the nnp_nosuid_transition policy capability,
2252          * then we permit transitions under NNP or nosuid if the
2253          * policy allows the corresponding permission between
2254          * the old and new contexts.
2255          */
2256         if (selinux_policycap_nnp_nosuid_transition()) {
2257                 av = 0;
2258                 if (nnp)
2259                         av |= PROCESS2__NNP_TRANSITION;
2260                 if (nosuid)
2261                         av |= PROCESS2__NOSUID_TRANSITION;
2262                 rc = avc_has_perm(&selinux_state,
2263                                   old_tsec->sid, new_tsec->sid,
2264                                   SECCLASS_PROCESS2, av, NULL);
2265                 if (!rc)
2266                         return 0;
2267         }
2268
2269         /*
2270          * We also permit NNP or nosuid transitions to bounded SIDs,
2271          * i.e. SIDs that are guaranteed to only be allowed a subset
2272          * of the permissions of the current SID.
2273          */
2274         rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2275                                          new_tsec->sid);
2276         if (!rc)
2277                 return 0;
2278
2279         /*
2280          * On failure, preserve the errno values for NNP vs nosuid.
2281          * NNP:  Operation not permitted for caller.
2282          * nosuid:  Permission denied to file.
2283          */
2284         if (nnp)
2285                 return -EPERM;
2286         return -EACCES;
2287 }
2288
2289 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2290 {
2291         const struct task_security_struct *old_tsec;
2292         struct task_security_struct *new_tsec;
2293         struct inode_security_struct *isec;
2294         struct common_audit_data ad;
2295         struct inode *inode = file_inode(bprm->file);
2296         int rc;
2297
2298         /* SELinux context only depends on initial program or script and not
2299          * the script interpreter */
2300
2301         old_tsec = selinux_cred(current_cred());
2302         new_tsec = selinux_cred(bprm->cred);
2303         isec = inode_security(inode);
2304
2305         /* Default to the current task SID. */
2306         new_tsec->sid = old_tsec->sid;
2307         new_tsec->osid = old_tsec->sid;
2308
2309         /* Reset fs, key, and sock SIDs on execve. */
2310         new_tsec->create_sid = 0;
2311         new_tsec->keycreate_sid = 0;
2312         new_tsec->sockcreate_sid = 0;
2313
2314         if (old_tsec->exec_sid) {
2315                 new_tsec->sid = old_tsec->exec_sid;
2316                 /* Reset exec SID on execve. */
2317                 new_tsec->exec_sid = 0;
2318
2319                 /* Fail on NNP or nosuid if not an allowed transition. */
2320                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2321                 if (rc)
2322                         return rc;
2323         } else {
2324                 /* Check for a default transition on this program. */
2325                 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2326                                              isec->sid, SECCLASS_PROCESS, NULL,
2327                                              &new_tsec->sid);
2328                 if (rc)
2329                         return rc;
2330
2331                 /*
2332                  * Fallback to old SID on NNP or nosuid if not an allowed
2333                  * transition.
2334                  */
2335                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336                 if (rc)
2337                         new_tsec->sid = old_tsec->sid;
2338         }
2339
2340         ad.type = LSM_AUDIT_DATA_FILE;
2341         ad.u.file = bprm->file;
2342
2343         if (new_tsec->sid == old_tsec->sid) {
2344                 rc = avc_has_perm(&selinux_state,
2345                                   old_tsec->sid, isec->sid,
2346                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2347                 if (rc)
2348                         return rc;
2349         } else {
2350                 /* Check permissions for the transition. */
2351                 rc = avc_has_perm(&selinux_state,
2352                                   old_tsec->sid, new_tsec->sid,
2353                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2354                 if (rc)
2355                         return rc;
2356
2357                 rc = avc_has_perm(&selinux_state,
2358                                   new_tsec->sid, isec->sid,
2359                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2360                 if (rc)
2361                         return rc;
2362
2363                 /* Check for shared state */
2364                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2365                         rc = avc_has_perm(&selinux_state,
2366                                           old_tsec->sid, new_tsec->sid,
2367                                           SECCLASS_PROCESS, PROCESS__SHARE,
2368                                           NULL);
2369                         if (rc)
2370                                 return -EPERM;
2371                 }
2372
2373                 /* Make sure that anyone attempting to ptrace over a task that
2374                  * changes its SID has the appropriate permit */
2375                 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2376                         u32 ptsid = ptrace_parent_sid();
2377                         if (ptsid != 0) {
2378                                 rc = avc_has_perm(&selinux_state,
2379                                                   ptsid, new_tsec->sid,
2380                                                   SECCLASS_PROCESS,
2381                                                   PROCESS__PTRACE, NULL);
2382                                 if (rc)
2383                                         return -EPERM;
2384                         }
2385                 }
2386
2387                 /* Clear any possibly unsafe personality bits on exec: */
2388                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2389
2390                 /* Enable secure mode for SIDs transitions unless
2391                    the noatsecure permission is granted between
2392                    the two SIDs, i.e. ahp returns 0. */
2393                 rc = avc_has_perm(&selinux_state,
2394                                   old_tsec->sid, new_tsec->sid,
2395                                   SECCLASS_PROCESS, PROCESS__NOATSECURE,
2396                                   NULL);
2397                 bprm->secureexec |= !!rc;
2398         }
2399
2400         return 0;
2401 }
2402
2403 static int match_file(const void *p, struct file *file, unsigned fd)
2404 {
2405         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2406 }
2407
2408 /* Derived from fs/exec.c:flush_old_files. */
2409 static inline void flush_unauthorized_files(const struct cred *cred,
2410                                             struct files_struct *files)
2411 {
2412         struct file *file, *devnull = NULL;
2413         struct tty_struct *tty;
2414         int drop_tty = 0;
2415         unsigned n;
2416
2417         tty = get_current_tty();
2418         if (tty) {
2419                 spin_lock(&tty->files_lock);
2420                 if (!list_empty(&tty->tty_files)) {
2421                         struct tty_file_private *file_priv;
2422
2423                         /* Revalidate access to controlling tty.
2424                            Use file_path_has_perm on the tty path directly
2425                            rather than using file_has_perm, as this particular
2426                            open file may belong to another process and we are
2427                            only interested in the inode-based check here. */
2428                         file_priv = list_first_entry(&tty->tty_files,
2429                                                 struct tty_file_private, list);
2430                         file = file_priv->file;
2431                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2432                                 drop_tty = 1;
2433                 }
2434                 spin_unlock(&tty->files_lock);
2435                 tty_kref_put(tty);
2436         }
2437         /* Reset controlling tty. */
2438         if (drop_tty)
2439                 no_tty();
2440
2441         /* Revalidate access to inherited open files. */
2442         n = iterate_fd(files, 0, match_file, cred);
2443         if (!n) /* none found? */
2444                 return;
2445
2446         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2447         if (IS_ERR(devnull))
2448                 devnull = NULL;
2449         /* replace all the matching ones with this */
2450         do {
2451                 replace_fd(n - 1, devnull, 0);
2452         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2453         if (devnull)
2454                 fput(devnull);
2455 }
2456
2457 /*
2458  * Prepare a process for imminent new credential changes due to exec
2459  */
2460 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2461 {
2462         struct task_security_struct *new_tsec;
2463         struct rlimit *rlim, *initrlim;
2464         int rc, i;
2465
2466         new_tsec = selinux_cred(bprm->cred);
2467         if (new_tsec->sid == new_tsec->osid)
2468                 return;
2469
2470         /* Close files for which the new task SID is not authorized. */
2471         flush_unauthorized_files(bprm->cred, current->files);
2472
2473         /* Always clear parent death signal on SID transitions. */
2474         current->pdeath_signal = 0;
2475
2476         /* Check whether the new SID can inherit resource limits from the old
2477          * SID.  If not, reset all soft limits to the lower of the current
2478          * task's hard limit and the init task's soft limit.
2479          *
2480          * Note that the setting of hard limits (even to lower them) can be
2481          * controlled by the setrlimit check.  The inclusion of the init task's
2482          * soft limit into the computation is to avoid resetting soft limits
2483          * higher than the default soft limit for cases where the default is
2484          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2485          */
2486         rc = avc_has_perm(&selinux_state,
2487                           new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2488                           PROCESS__RLIMITINH, NULL);
2489         if (rc) {
2490                 /* protect against do_prlimit() */
2491                 task_lock(current);
2492                 for (i = 0; i < RLIM_NLIMITS; i++) {
2493                         rlim = current->signal->rlim + i;
2494                         initrlim = init_task.signal->rlim + i;
2495                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2496                 }
2497                 task_unlock(current);
2498                 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2499                         update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2500         }
2501 }
2502
2503 /*
2504  * Clean up the process immediately after the installation of new credentials
2505  * due to exec
2506  */
2507 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2508 {
2509         const struct task_security_struct *tsec = selinux_cred(current_cred());
2510         u32 osid, sid;
2511         int rc;
2512
2513         osid = tsec->osid;
2514         sid = tsec->sid;
2515
2516         if (sid == osid)
2517                 return;
2518
2519         /* Check whether the new SID can inherit signal state from the old SID.
2520          * If not, clear itimers to avoid subsequent signal generation and
2521          * flush and unblock signals.
2522          *
2523          * This must occur _after_ the task SID has been updated so that any
2524          * kill done after the flush will be checked against the new SID.
2525          */
2526         rc = avc_has_perm(&selinux_state,
2527                           osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2528         if (rc) {
2529                 clear_itimer();
2530
2531                 spin_lock_irq(&current->sighand->siglock);
2532                 if (!fatal_signal_pending(current)) {
2533                         flush_sigqueue(&current->pending);
2534                         flush_sigqueue(&current->signal->shared_pending);
2535                         flush_signal_handlers(current, 1);
2536                         sigemptyset(&current->blocked);
2537                         recalc_sigpending();
2538                 }
2539                 spin_unlock_irq(&current->sighand->siglock);
2540         }
2541
2542         /* Wake up the parent if it is waiting so that it can recheck
2543          * wait permission to the new task SID. */
2544         read_lock(&tasklist_lock);
2545         __wake_up_parent(current, current->real_parent);
2546         read_unlock(&tasklist_lock);
2547 }
2548
2549 /* superblock security operations */
2550
2551 static int selinux_sb_alloc_security(struct super_block *sb)
2552 {
2553         struct superblock_security_struct *sbsec;
2554
2555         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
2556         if (!sbsec)
2557                 return -ENOMEM;
2558
2559         mutex_init(&sbsec->lock);
2560         INIT_LIST_HEAD(&sbsec->isec_head);
2561         spin_lock_init(&sbsec->isec_lock);
2562         sbsec->sb = sb;
2563         sbsec->sid = SECINITSID_UNLABELED;
2564         sbsec->def_sid = SECINITSID_FILE;
2565         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2566         sb->s_security = sbsec;
2567
2568         return 0;
2569 }
2570
2571 static void selinux_sb_free_security(struct super_block *sb)
2572 {
2573         superblock_free_security(sb);
2574 }
2575
2576 static inline int opt_len(const char *s)
2577 {
2578         bool open_quote = false;
2579         int len;
2580         char c;
2581
2582         for (len = 0; (c = s[len]) != '\0'; len++) {
2583                 if (c == '"')
2584                         open_quote = !open_quote;
2585                 if (c == ',' && !open_quote)
2586                         break;
2587         }
2588         return len;
2589 }
2590
2591 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2592 {
2593         char *from = options;
2594         char *to = options;
2595         bool first = true;
2596         int rc;
2597
2598         while (1) {
2599                 int len = opt_len(from);
2600                 int token;
2601                 char *arg = NULL;
2602
2603                 token = match_opt_prefix(from, len, &arg);
2604
2605                 if (token != Opt_error) {
2606                         char *p, *q;
2607
2608                         /* strip quotes */
2609                         if (arg) {
2610                                 for (p = q = arg; p < from + len; p++) {
2611                                         char c = *p;
2612                                         if (c != '"')
2613                                                 *q++ = c;
2614                                 }
2615                                 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2616                                 if (!arg) {
2617                                         rc = -ENOMEM;
2618                                         goto free_opt;
2619                                 }
2620                         }
2621                         rc = selinux_add_opt(token, arg, mnt_opts);
2622                         if (unlikely(rc)) {
2623                                 kfree(arg);
2624                                 goto free_opt;
2625                         }
2626                 } else {
2627                         if (!first) {   // copy with preceding comma
2628                                 from--;
2629                                 len++;
2630                         }
2631                         if (to != from)
2632                                 memmove(to, from, len);
2633                         to += len;
2634                         first = false;
2635                 }
2636                 if (!from[len])
2637                         break;
2638                 from += len + 1;
2639         }
2640         *to = '\0';
2641         return 0;
2642
2643 free_opt:
2644         if (*mnt_opts) {
2645                 selinux_free_mnt_opts(*mnt_opts);
2646                 *mnt_opts = NULL;
2647         }
2648         return rc;
2649 }
2650
2651 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2652 {
2653         struct selinux_mnt_opts *opts = mnt_opts;
2654         struct superblock_security_struct *sbsec = sb->s_security;
2655         u32 sid;
2656         int rc;
2657
2658         if (!(sbsec->flags & SE_SBINITIALIZED))
2659                 return 0;
2660
2661         if (!opts)
2662                 return 0;
2663
2664         if (opts->fscontext) {
2665                 rc = parse_sid(sb, opts->fscontext, &sid);
2666                 if (rc)
2667                         return rc;
2668                 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2669                         goto out_bad_option;
2670         }
2671         if (opts->context) {
2672                 rc = parse_sid(sb, opts->context, &sid);
2673                 if (rc)
2674                         return rc;
2675                 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2676                         goto out_bad_option;
2677         }
2678         if (opts->rootcontext) {
2679                 struct inode_security_struct *root_isec;
2680                 root_isec = backing_inode_security(sb->s_root);
2681                 rc = parse_sid(sb, opts->rootcontext, &sid);
2682                 if (rc)
2683                         return rc;
2684                 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2685                         goto out_bad_option;
2686         }
2687         if (opts->defcontext) {
2688                 rc = parse_sid(sb, opts->defcontext, &sid);
2689                 if (rc)
2690                         return rc;
2691                 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2692                         goto out_bad_option;
2693         }
2694         return 0;
2695
2696 out_bad_option:
2697         pr_warn("SELinux: unable to change security options "
2698                "during remount (dev %s, type=%s)\n", sb->s_id,
2699                sb->s_type->name);
2700         return -EINVAL;
2701 }
2702
2703 static int selinux_sb_kern_mount(struct super_block *sb)
2704 {
2705         const struct cred *cred = current_cred();
2706         struct common_audit_data ad;
2707
2708         ad.type = LSM_AUDIT_DATA_DENTRY;
2709         ad.u.dentry = sb->s_root;
2710         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2711 }
2712
2713 static int selinux_sb_statfs(struct dentry *dentry)
2714 {
2715         const struct cred *cred = current_cred();
2716         struct common_audit_data ad;
2717
2718         ad.type = LSM_AUDIT_DATA_DENTRY;
2719         ad.u.dentry = dentry->d_sb->s_root;
2720         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2721 }
2722
2723 static int selinux_mount(const char *dev_name,
2724                          const struct path *path,
2725                          const char *type,
2726                          unsigned long flags,
2727                          void *data)
2728 {
2729         const struct cred *cred = current_cred();
2730
2731         if (flags & MS_REMOUNT)
2732                 return superblock_has_perm(cred, path->dentry->d_sb,
2733                                            FILESYSTEM__REMOUNT, NULL);
2734         else
2735                 return path_has_perm(cred, path, FILE__MOUNTON);
2736 }
2737
2738 static int selinux_move_mount(const struct path *from_path,
2739                               const struct path *to_path)
2740 {
2741         const struct cred *cred = current_cred();
2742
2743         return path_has_perm(cred, to_path, FILE__MOUNTON);
2744 }
2745
2746 static int selinux_umount(struct vfsmount *mnt, int flags)
2747 {
2748         const struct cred *cred = current_cred();
2749
2750         return superblock_has_perm(cred, mnt->mnt_sb,
2751                                    FILESYSTEM__UNMOUNT, NULL);
2752 }
2753
2754 static int selinux_fs_context_dup(struct fs_context *fc,
2755                                   struct fs_context *src_fc)
2756 {
2757         const struct selinux_mnt_opts *src = src_fc->security;
2758         struct selinux_mnt_opts *opts;
2759
2760         if (!src)
2761                 return 0;
2762
2763         fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2764         if (!fc->security)
2765                 return -ENOMEM;
2766
2767         opts = fc->security;
2768
2769         if (src->fscontext) {
2770                 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2771                 if (!opts->fscontext)
2772                         return -ENOMEM;
2773         }
2774         if (src->context) {
2775                 opts->context = kstrdup(src->context, GFP_KERNEL);
2776                 if (!opts->context)
2777                         return -ENOMEM;
2778         }
2779         if (src->rootcontext) {
2780                 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2781                 if (!opts->rootcontext)
2782                         return -ENOMEM;
2783         }
2784         if (src->defcontext) {
2785                 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2786                 if (!opts->defcontext)
2787                         return -ENOMEM;
2788         }
2789         return 0;
2790 }
2791
2792 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2793         fsparam_string(CONTEXT_STR,     Opt_context),
2794         fsparam_string(DEFCONTEXT_STR,  Opt_defcontext),
2795         fsparam_string(FSCONTEXT_STR,   Opt_fscontext),
2796         fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2797         fsparam_flag  (SECLABEL_STR,    Opt_seclabel),
2798         {}
2799 };
2800
2801 static int selinux_fs_context_parse_param(struct fs_context *fc,
2802                                           struct fs_parameter *param)
2803 {
2804         struct fs_parse_result result;
2805         int opt, rc;
2806
2807         opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2808         if (opt < 0)
2809                 return opt;
2810
2811         rc = selinux_add_opt(opt, param->string, &fc->security);
2812         if (!rc) {
2813                 param->string = NULL;
2814                 rc = 1;
2815         }
2816         return rc;
2817 }
2818
2819 /* inode security operations */
2820
2821 static int selinux_inode_alloc_security(struct inode *inode)
2822 {
2823         struct inode_security_struct *isec = selinux_inode(inode);
2824         u32 sid = current_sid();
2825
2826         spin_lock_init(&isec->lock);
2827         INIT_LIST_HEAD(&isec->list);
2828         isec->inode = inode;
2829         isec->sid = SECINITSID_UNLABELED;
2830         isec->sclass = SECCLASS_FILE;
2831         isec->task_sid = sid;
2832         isec->initialized = LABEL_INVALID;
2833
2834         return 0;
2835 }
2836
2837 static void selinux_inode_free_security(struct inode *inode)
2838 {
2839         inode_free_security(inode);
2840 }
2841
2842 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2843                                         const struct qstr *name, void **ctx,
2844                                         u32 *ctxlen)
2845 {
2846         u32 newsid;
2847         int rc;
2848
2849         rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2850                                            d_inode(dentry->d_parent), name,
2851                                            inode_mode_to_security_class(mode),
2852                                            &newsid);
2853         if (rc)
2854                 return rc;
2855
2856         return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2857                                        ctxlen);
2858 }
2859
2860 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2861                                           struct qstr *name,
2862                                           const struct cred *old,
2863                                           struct cred *new)
2864 {
2865         u32 newsid;
2866         int rc;
2867         struct task_security_struct *tsec;
2868
2869         rc = selinux_determine_inode_label(selinux_cred(old),
2870                                            d_inode(dentry->d_parent), name,
2871                                            inode_mode_to_security_class(mode),
2872                                            &newsid);
2873         if (rc)
2874                 return rc;
2875
2876         tsec = selinux_cred(new);
2877         tsec->create_sid = newsid;
2878         return 0;
2879 }
2880
2881 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2882                                        const struct qstr *qstr,
2883                                        const char **name,
2884                                        void **value, size_t *len)
2885 {
2886         const struct task_security_struct *tsec = selinux_cred(current_cred());
2887         struct superblock_security_struct *sbsec;
2888         u32 newsid, clen;
2889         int rc;
2890         char *context;
2891
2892         sbsec = dir->i_sb->s_security;
2893
2894         newsid = tsec->create_sid;
2895
2896         rc = selinux_determine_inode_label(tsec, dir, qstr,
2897                 inode_mode_to_security_class(inode->i_mode),
2898                 &newsid);
2899         if (rc)
2900                 return rc;
2901
2902         /* Possibly defer initialization to selinux_complete_init. */
2903         if (sbsec->flags & SE_SBINITIALIZED) {
2904                 struct inode_security_struct *isec = selinux_inode(inode);
2905                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2906                 isec->sid = newsid;
2907                 isec->initialized = LABEL_INITIALIZED;
2908         }
2909
2910         if (!selinux_initialized(&selinux_state) ||
2911             !(sbsec->flags & SBLABEL_MNT))
2912                 return -EOPNOTSUPP;
2913
2914         if (name)
2915                 *name = XATTR_SELINUX_SUFFIX;
2916
2917         if (value && len) {
2918                 rc = security_sid_to_context_force(&selinux_state, newsid,
2919                                                    &context, &clen);
2920                 if (rc)
2921                         return rc;
2922                 *value = context;
2923                 *len = clen;
2924         }
2925
2926         return 0;
2927 }
2928
2929 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2930 {
2931         return may_create(dir, dentry, SECCLASS_FILE);
2932 }
2933
2934 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2935 {
2936         return may_link(dir, old_dentry, MAY_LINK);
2937 }
2938
2939 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2940 {
2941         return may_link(dir, dentry, MAY_UNLINK);
2942 }
2943
2944 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2945 {
2946         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2947 }
2948
2949 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2950 {
2951         return may_create(dir, dentry, SECCLASS_DIR);
2952 }
2953
2954 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2955 {
2956         return may_link(dir, dentry, MAY_RMDIR);
2957 }
2958
2959 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2960 {
2961         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2962 }
2963
2964 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2965                                 struct inode *new_inode, struct dentry *new_dentry)
2966 {
2967         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2968 }
2969
2970 static int selinux_inode_readlink(struct dentry *dentry)
2971 {
2972         const struct cred *cred = current_cred();
2973
2974         return dentry_has_perm(cred, dentry, FILE__READ);
2975 }
2976
2977 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2978                                      bool rcu)
2979 {
2980         const struct cred *cred = current_cred();
2981         struct common_audit_data ad;
2982         struct inode_security_struct *isec;
2983         u32 sid;
2984
2985         validate_creds(cred);
2986
2987         ad.type = LSM_AUDIT_DATA_DENTRY;
2988         ad.u.dentry = dentry;
2989         sid = cred_sid(cred);
2990         isec = inode_security_rcu(inode, rcu);
2991         if (IS_ERR(isec))
2992                 return PTR_ERR(isec);
2993
2994         return avc_has_perm_flags(&selinux_state,
2995                                   sid, isec->sid, isec->sclass, FILE__READ, &ad,
2996                                   rcu ? MAY_NOT_BLOCK : 0);
2997 }
2998
2999 static noinline int audit_inode_permission(struct inode *inode,
3000                                            u32 perms, u32 audited, u32 denied,
3001                                            int result)
3002 {
3003         struct common_audit_data ad;
3004         struct inode_security_struct *isec = selinux_inode(inode);
3005         int rc;
3006
3007         ad.type = LSM_AUDIT_DATA_INODE;
3008         ad.u.inode = inode;
3009
3010         rc = slow_avc_audit(&selinux_state,
3011                             current_sid(), isec->sid, isec->sclass, perms,
3012                             audited, denied, result, &ad);
3013         if (rc)
3014                 return rc;
3015         return 0;
3016 }
3017
3018 static int selinux_inode_permission(struct inode *inode, int mask)
3019 {
3020         const struct cred *cred = current_cred();
3021         u32 perms;
3022         bool from_access;
3023         bool no_block = mask & MAY_NOT_BLOCK;
3024         struct inode_security_struct *isec;
3025         u32 sid;
3026         struct av_decision avd;
3027         int rc, rc2;
3028         u32 audited, denied;
3029
3030         from_access = mask & MAY_ACCESS;
3031         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3032
3033         /* No permission to check.  Existence test. */
3034         if (!mask)
3035                 return 0;
3036
3037         validate_creds(cred);
3038
3039         if (unlikely(IS_PRIVATE(inode)))
3040                 return 0;
3041
3042         perms = file_mask_to_av(inode->i_mode, mask);
3043
3044         sid = cred_sid(cred);
3045         isec = inode_security_rcu(inode, no_block);
3046         if (IS_ERR(isec))
3047                 return PTR_ERR(isec);
3048
3049         rc = avc_has_perm_noaudit(&selinux_state,
3050                                   sid, isec->sid, isec->sclass, perms,
3051                                   no_block ? AVC_NONBLOCKING : 0,
3052                                   &avd);
3053         audited = avc_audit_required(perms, &avd, rc,
3054                                      from_access ? FILE__AUDIT_ACCESS : 0,
3055                                      &denied);
3056         if (likely(!audited))
3057                 return rc;
3058
3059         /* fall back to ref-walk if we have to generate audit */
3060         if (no_block)
3061                 return -ECHILD;
3062
3063         rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3064         if (rc2)
3065                 return rc2;
3066         return rc;
3067 }
3068
3069 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3070 {
3071         const struct cred *cred = current_cred();
3072         struct inode *inode = d_backing_inode(dentry);
3073         unsigned int ia_valid = iattr->ia_valid;
3074         __u32 av = FILE__WRITE;
3075
3076         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3077         if (ia_valid & ATTR_FORCE) {
3078                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3079                               ATTR_FORCE);
3080                 if (!ia_valid)
3081                         return 0;
3082         }
3083
3084         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3085                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3086                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3087
3088         if (selinux_policycap_openperm() &&
3089             inode->i_sb->s_magic != SOCKFS_MAGIC &&
3090             (ia_valid & ATTR_SIZE) &&
3091             !(ia_valid & ATTR_FILE))
3092                 av |= FILE__OPEN;
3093
3094         return dentry_has_perm(cred, dentry, av);
3095 }
3096
3097 static int selinux_inode_getattr(const struct path *path)
3098 {
3099         return path_has_perm(current_cred(), path, FILE__GETATTR);
3100 }
3101
3102 static bool has_cap_mac_admin(bool audit)
3103 {
3104         const struct cred *cred = current_cred();
3105         unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3106
3107         if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3108                 return false;
3109         if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3110                 return false;
3111         return true;
3112 }
3113
3114 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115                                   const void *value, size_t size, int flags)
3116 {
3117         struct inode *inode = d_backing_inode(dentry);
3118         struct inode_security_struct *isec;
3119         struct superblock_security_struct *sbsec;
3120         struct common_audit_data ad;
3121         u32 newsid, sid = current_sid();
3122         int rc = 0;
3123
3124         if (strcmp(name, XATTR_NAME_SELINUX)) {
3125                 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3126                 if (rc)
3127                         return rc;
3128
3129                 /* Not an attribute we recognize, so just check the
3130                    ordinary setattr permission. */
3131                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3132         }
3133
3134         if (!selinux_initialized(&selinux_state))
3135                 return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3136
3137         sbsec = inode->i_sb->s_security;
3138         if (!(sbsec->flags & SBLABEL_MNT))
3139                 return -EOPNOTSUPP;
3140
3141         if (!inode_owner_or_capable(inode))
3142                 return -EPERM;
3143
3144         ad.type = LSM_AUDIT_DATA_DENTRY;
3145         ad.u.dentry = dentry;
3146
3147         isec = backing_inode_security(dentry);
3148         rc = avc_has_perm(&selinux_state,
3149                           sid, isec->sid, isec->sclass,
3150                           FILE__RELABELFROM, &ad);
3151         if (rc)
3152                 return rc;
3153
3154         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3155                                      GFP_KERNEL);
3156         if (rc == -EINVAL) {
3157                 if (!has_cap_mac_admin(true)) {
3158                         struct audit_buffer *ab;
3159                         size_t audit_size;
3160
3161                         /* We strip a nul only if it is at the end, otherwise the
3162                          * context contains a nul and we should audit that */
3163                         if (value) {
3164                                 const char *str = value;
3165
3166                                 if (str[size - 1] == '\0')
3167                                         audit_size = size - 1;
3168                                 else
3169                                         audit_size = size;
3170                         } else {
3171                                 audit_size = 0;
3172                         }
3173                         ab = audit_log_start(audit_context(),
3174                                              GFP_ATOMIC, AUDIT_SELINUX_ERR);
3175                         audit_log_format(ab, "op=setxattr invalid_context=");
3176                         audit_log_n_untrustedstring(ab, value, audit_size);
3177                         audit_log_end(ab);
3178
3179                         return rc;
3180                 }
3181                 rc = security_context_to_sid_force(&selinux_state, value,
3182                                                    size, &newsid);
3183         }
3184         if (rc)
3185                 return rc;
3186
3187         rc = avc_has_perm(&selinux_state,
3188                           sid, newsid, isec->sclass,
3189                           FILE__RELABELTO, &ad);
3190         if (rc)
3191                 return rc;
3192
3193         rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3194                                           sid, isec->sclass);
3195         if (rc)
3196                 return rc;
3197
3198         return avc_has_perm(&selinux_state,
3199                             newsid,
3200                             sbsec->sid,
3201                             SECCLASS_FILESYSTEM,
3202                             FILESYSTEM__ASSOCIATE,
3203                             &ad);
3204 }
3205
3206 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3207                                         const void *value, size_t size,
3208                                         int flags)
3209 {
3210         struct inode *inode = d_backing_inode(dentry);
3211         struct inode_security_struct *isec;
3212         u32 newsid;
3213         int rc;
3214
3215         if (strcmp(name, XATTR_NAME_SELINUX)) {
3216                 /* Not an attribute we recognize, so nothing to do. */
3217                 return;
3218         }
3219
3220         if (!selinux_initialized(&selinux_state)) {
3221                 /* If we haven't even been initialized, then we can't validate
3222                  * against a policy, so leave the label as invalid. It may
3223                  * resolve to a valid label on the next revalidation try if
3224                  * we've since initialized.
3225                  */
3226                 return;
3227         }
3228
3229         rc = security_context_to_sid_force(&selinux_state, value, size,
3230                                            &newsid);
3231         if (rc) {
3232                 pr_err("SELinux:  unable to map context to SID"
3233                        "for (%s, %lu), rc=%d\n",
3234                        inode->i_sb->s_id, inode->i_ino, -rc);
3235                 return;
3236         }
3237
3238         isec = backing_inode_security(dentry);
3239         spin_lock(&isec->lock);
3240         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3241         isec->sid = newsid;
3242         isec->initialized = LABEL_INITIALIZED;
3243         spin_unlock(&isec->lock);
3244
3245         return;
3246 }
3247
3248 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3249 {
3250         const struct cred *cred = current_cred();
3251
3252         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3253 }
3254
3255 static int selinux_inode_listxattr(struct dentry *dentry)
3256 {
3257         const struct cred *cred = current_cred();
3258
3259         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3260 }
3261
3262 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3263 {
3264         if (strcmp(name, XATTR_NAME_SELINUX)) {
3265                 int rc = cap_inode_removexattr(dentry, name);
3266                 if (rc)
3267                         return rc;
3268
3269                 /* Not an attribute we recognize, so just check the
3270                    ordinary setattr permission. */
3271                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3272         }
3273
3274         /* No one is allowed to remove a SELinux security label.
3275            You can change the label, but all data must be labeled. */
3276         return -EACCES;
3277 }
3278
3279 static int selinux_path_notify(const struct path *path, u64 mask,
3280                                                 unsigned int obj_type)
3281 {
3282         int ret;
3283         u32 perm;
3284
3285         struct common_audit_data ad;
3286
3287         ad.type = LSM_AUDIT_DATA_PATH;
3288         ad.u.path = *path;
3289
3290         /*
3291          * Set permission needed based on the type of mark being set.
3292          * Performs an additional check for sb watches.
3293          */
3294         switch (obj_type) {
3295         case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3296                 perm = FILE__WATCH_MOUNT;
3297                 break;
3298         case FSNOTIFY_OBJ_TYPE_SB:
3299                 perm = FILE__WATCH_SB;
3300                 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3301                                                 FILESYSTEM__WATCH, &ad);
3302                 if (ret)
3303                         return ret;
3304                 break;
3305         case FSNOTIFY_OBJ_TYPE_INODE:
3306                 perm = FILE__WATCH;
3307                 break;
3308         default:
3309                 return -EINVAL;
3310         }
3311
3312         /* blocking watches require the file:watch_with_perm permission */
3313         if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3314                 perm |= FILE__WATCH_WITH_PERM;
3315
3316         /* watches on read-like events need the file:watch_reads permission */
3317         if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3318                 perm |= FILE__WATCH_READS;
3319
3320         return path_has_perm(current_cred(), path, perm);
3321 }
3322
3323 /*
3324  * Copy the inode security context value to the user.
3325  *
3326  * Permission check is handled by selinux_inode_getxattr hook.
3327  */
3328 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3329 {
3330         u32 size;
3331         int error;
3332         char *context = NULL;
3333         struct inode_security_struct *isec;
3334
3335         /*
3336          * If we're not initialized yet, then we can't validate contexts, so
3337          * just let vfs_getxattr fall back to using the on-disk xattr.
3338          */
3339         if (!selinux_initialized(&selinux_state) ||
3340             strcmp(name, XATTR_SELINUX_SUFFIX))
3341                 return -EOPNOTSUPP;
3342
3343         /*
3344          * If the caller has CAP_MAC_ADMIN, then get the raw context
3345          * value even if it is not defined by current policy; otherwise,
3346          * use the in-core value under current policy.
3347          * Use the non-auditing forms of the permission checks since
3348          * getxattr may be called by unprivileged processes commonly
3349          * and lack of permission just means that we fall back to the
3350          * in-core context value, not a denial.
3351          */
3352         isec = inode_security(inode);
3353         if (has_cap_mac_admin(false))
3354                 error = security_sid_to_context_force(&selinux_state,
3355                                                       isec->sid, &context,
3356                                                       &size);
3357         else
3358                 error = security_sid_to_context(&selinux_state, isec->sid,
3359                                                 &context, &size);
3360         if (error)
3361                 return error;
3362         error = size;
3363         if (alloc) {
3364                 *buffer = context;
3365                 goto out_nofree;
3366         }
3367         kfree(context);
3368 out_nofree:
3369         return error;
3370 }
3371
3372 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3373                                      const void *value, size_t size, int flags)
3374 {
3375         struct inode_security_struct *isec = inode_security_novalidate(inode);
3376         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3377         u32 newsid;
3378         int rc;
3379
3380         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3381                 return -EOPNOTSUPP;
3382
3383         if (!(sbsec->flags & SBLABEL_MNT))
3384                 return -EOPNOTSUPP;
3385
3386         if (!value || !size)
3387                 return -EACCES;
3388
3389         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3390                                      GFP_KERNEL);
3391         if (rc)
3392                 return rc;
3393
3394         spin_lock(&isec->lock);
3395         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3396         isec->sid = newsid;
3397         isec->initialized = LABEL_INITIALIZED;
3398         spin_unlock(&isec->lock);
3399         return 0;
3400 }
3401
3402 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3403 {
3404         const int len = sizeof(XATTR_NAME_SELINUX);
3405         if (buffer && len <= buffer_size)
3406                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3407         return len;
3408 }
3409
3410 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3411 {
3412         struct inode_security_struct *isec = inode_security_novalidate(inode);
3413         *secid = isec->sid;
3414 }
3415
3416 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3417 {
3418         u32 sid;
3419         struct task_security_struct *tsec;
3420         struct cred *new_creds = *new;
3421
3422         if (new_creds == NULL) {
3423                 new_creds = prepare_creds();
3424                 if (!new_creds)
3425                         return -ENOMEM;
3426         }
3427
3428         tsec = selinux_cred(new_creds);
3429         /* Get label from overlay inode and set it in create_sid */
3430         selinux_inode_getsecid(d_inode(src), &sid);
3431         tsec->create_sid = sid;
3432         *new = new_creds;
3433         return 0;
3434 }
3435
3436 static int selinux_inode_copy_up_xattr(const char *name)
3437 {
3438         /* The copy_up hook above sets the initial context on an inode, but we
3439          * don't then want to overwrite it by blindly copying all the lower
3440          * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3441          */
3442         if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3443                 return 1; /* Discard */
3444         /*
3445          * Any other attribute apart from SELINUX is not claimed, supported
3446          * by selinux.
3447          */
3448         return -EOPNOTSUPP;
3449 }
3450
3451 /* kernfs node operations */
3452
3453 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3454                                         struct kernfs_node *kn)
3455 {
3456         const struct task_security_struct *tsec = selinux_cred(current_cred());
3457         u32 parent_sid, newsid, clen;
3458         int rc;
3459         char *context;
3460
3461         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3462         if (rc == -ENODATA)
3463                 return 0;
3464         else if (rc < 0)
3465                 return rc;
3466
3467         clen = (u32)rc;
3468         context = kmalloc(clen, GFP_KERNEL);
3469         if (!context)
3470                 return -ENOMEM;
3471
3472         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3473         if (rc < 0) {
3474                 kfree(context);
3475                 return rc;
3476         }
3477
3478         rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3479                                      GFP_KERNEL);
3480         kfree(context);
3481         if (rc)
3482                 return rc;
3483
3484         if (tsec->create_sid) {
3485                 newsid = tsec->create_sid;
3486         } else {
3487                 u16 secclass = inode_mode_to_security_class(kn->mode);
3488                 struct qstr q;
3489
3490                 q.name = kn->name;
3491                 q.hash_len = hashlen_string(kn_dir, kn->name);
3492
3493                 rc = security_transition_sid(&selinux_state, tsec->sid,
3494                                              parent_sid, secclass, &q,
3495                                              &newsid);
3496                 if (rc)
3497                         return rc;
3498         }
3499
3500         rc = security_sid_to_context_force(&selinux_state, newsid,
3501                                            &context, &clen);
3502         if (rc)
3503                 return rc;
3504
3505         rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3506                               XATTR_CREATE);
3507         kfree(context);
3508         return rc;
3509 }
3510
3511
3512 /* file security operations */
3513
3514 static int selinux_revalidate_file_permission(struct file *file, int mask)
3515 {
3516         const struct cred *cred = current_cred();
3517         struct inode *inode = file_inode(file);
3518
3519         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3520         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3521                 mask |= MAY_APPEND;
3522
3523         return file_has_perm(cred, file,
3524                              file_mask_to_av(inode->i_mode, mask));
3525 }
3526
3527 static int selinux_file_permission(struct file *file, int mask)
3528 {
3529         struct inode *inode = file_inode(file);
3530         struct file_security_struct *fsec = selinux_file(file);
3531         struct inode_security_struct *isec;
3532         u32 sid = current_sid();
3533
3534         if (!mask)
3535                 /* No permission to check.  Existence test. */
3536                 return 0;
3537
3538         isec = inode_security(inode);
3539         if (sid == fsec->sid && fsec->isid == isec->sid &&
3540             fsec->pseqno == avc_policy_seqno(&selinux_state))
3541                 /* No change since file_open check. */
3542                 return 0;
3543
3544         return selinux_revalidate_file_permission(file, mask);
3545 }
3546
3547 static int selinux_file_alloc_security(struct file *file)
3548 {
3549         struct file_security_struct *fsec = selinux_file(file);
3550         u32 sid = current_sid();
3551
3552         fsec->sid = sid;
3553         fsec->fown_sid = sid;
3554
3555         return 0;
3556 }
3557
3558 /*
3559  * Check whether a task has the ioctl permission and cmd
3560  * operation to an inode.
3561  */
3562 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3563                 u32 requested, u16 cmd)
3564 {
3565         struct common_audit_data ad;
3566         struct file_security_struct *fsec = selinux_file(file);
3567         struct inode *inode = file_inode(file);
3568         struct inode_security_struct *isec;
3569         struct lsm_ioctlop_audit ioctl;
3570         u32 ssid = cred_sid(cred);
3571         int rc;
3572         u8 driver = cmd >> 8;
3573         u8 xperm = cmd & 0xff;
3574
3575         ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3576         ad.u.op = &ioctl;
3577         ad.u.op->cmd = cmd;
3578         ad.u.op->path = file->f_path;
3579
3580         if (ssid != fsec->sid) {
3581                 rc = avc_has_perm(&selinux_state,
3582                                   ssid, fsec->sid,
3583                                 SECCLASS_FD,
3584                                 FD__USE,
3585                                 &ad);
3586                 if (rc)
3587                         goto out;
3588         }
3589
3590         if (unlikely(IS_PRIVATE(inode)))
3591                 return 0;
3592
3593         isec = inode_security(inode);
3594         rc = avc_has_extended_perms(&selinux_state,
3595                                     ssid, isec->sid, isec->sclass,
3596                                     requested, driver, xperm, &ad);
3597 out:
3598         return rc;
3599 }
3600
3601 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3602                               unsigned long arg)
3603 {
3604         const struct cred *cred = current_cred();
3605         int error = 0;
3606
3607         switch (cmd) {
3608         case FIONREAD:
3609         case FIBMAP:
3610         case FIGETBSZ:
3611         case FS_IOC_GETFLAGS:
3612         case FS_IOC_GETVERSION:
3613                 error = file_has_perm(cred, file, FILE__GETATTR);
3614                 break;
3615
3616         case FS_IOC_SETFLAGS:
3617         case FS_IOC_SETVERSION:
3618                 error = file_has_perm(cred, file, FILE__SETATTR);
3619                 break;
3620
3621         /* sys_ioctl() checks */
3622         case FIONBIO:
3623         case FIOASYNC:
3624                 error = file_has_perm(cred, file, 0);
3625                 break;
3626
3627         case KDSKBENT:
3628         case KDSKBSENT:
3629                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3630                                             CAP_OPT_NONE, true);
3631                 break;
3632
3633         /* default case assumes that the command will go
3634          * to the file's ioctl() function.
3635          */
3636         default:
3637                 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3638         }
3639         return error;
3640 }
3641
3642 static int default_noexec __ro_after_init;
3643
3644 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3645 {
3646         const struct cred *cred = current_cred();
3647         u32 sid = cred_sid(cred);
3648         int rc = 0;
3649
3650         if (default_noexec &&
3651             (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3652                                    (!shared && (prot & PROT_WRITE)))) {
3653                 /*
3654                  * We are making executable an anonymous mapping or a
3655                  * private file mapping that will also be writable.
3656                  * This has an additional check.
3657                  */
3658                 rc = avc_has_perm(&selinux_state,
3659                                   sid, sid, SECCLASS_PROCESS,
3660                                   PROCESS__EXECMEM, NULL);
3661                 if (rc)
3662                         goto error;
3663         }
3664
3665         if (file) {
3666                 /* read access is always possible with a mapping */
3667                 u32 av = FILE__READ;
3668
3669                 /* write access only matters if the mapping is shared */
3670                 if (shared && (prot & PROT_WRITE))
3671                         av |= FILE__WRITE;
3672
3673                 if (prot & PROT_EXEC)
3674                         av |= FILE__EXECUTE;
3675
3676                 return file_has_perm(cred, file, av);
3677         }
3678
3679 error:
3680         return rc;
3681 }
3682
3683 static int selinux_mmap_addr(unsigned long addr)
3684 {
3685         int rc = 0;
3686
3687         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3688                 u32 sid = current_sid();
3689                 rc = avc_has_perm(&selinux_state,
3690                                   sid, sid, SECCLASS_MEMPROTECT,
3691                                   MEMPROTECT__MMAP_ZERO, NULL);
3692         }
3693
3694         return rc;
3695 }
3696
3697 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3698                              unsigned long prot, unsigned long flags)
3699 {
3700         struct common_audit_data ad;
3701         int rc;
3702
3703         if (file) {
3704                 ad.type = LSM_AUDIT_DATA_FILE;
3705                 ad.u.file = file;
3706                 rc = inode_has_perm(current_cred(), file_inode(file),
3707                                     FILE__MAP, &ad);
3708                 if (rc)
3709                         return rc;
3710         }
3711
3712         if (selinux_state.checkreqprot)
3713                 prot = reqprot;
3714
3715         return file_map_prot_check(file, prot,
3716                                    (flags & MAP_TYPE) == MAP_SHARED);
3717 }
3718
3719 static int selinux_file_mprotect(struct vm_area_struct *vma,
3720                                  unsigned long reqprot,
3721                                  unsigned long prot)
3722 {
3723         const struct cred *cred = current_cred();
3724         u32 sid = cred_sid(cred);
3725
3726         if (selinux_state.checkreqprot)
3727                 prot = reqprot;
3728
3729         if (default_noexec &&
3730             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3731                 int rc = 0;
3732                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3733                     vma->vm_end <= vma->vm_mm->brk) {
3734                         rc = avc_has_perm(&selinux_state,
3735                                           sid, sid, SECCLASS_PROCESS,
3736                                           PROCESS__EXECHEAP, NULL);
3737                 } else if (!vma->vm_file &&
3738                            ((vma->vm_start <= vma->vm_mm->start_stack &&
3739                              vma->vm_end >= vma->vm_mm->start_stack) ||
3740                             vma_is_stack_for_current(vma))) {
3741                         rc = avc_has_perm(&selinux_state,
3742                                           sid, sid, SECCLASS_PROCESS,
3743                                           PROCESS__EXECSTACK, NULL);
3744                 } else if (vma->vm_file && vma->anon_vma) {
3745                         /*
3746                          * We are making executable a file mapping that has
3747                          * had some COW done. Since pages might have been
3748                          * written, check ability to execute the possibly
3749                          * modified content.  This typically should only
3750                          * occur for text relocations.
3751                          */
3752                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3753                 }
3754                 if (rc)
3755                         return rc;
3756         }
3757
3758         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3759 }
3760
3761 static int selinux_file_lock(struct file *file, unsigned int cmd)
3762 {
3763         const struct cred *cred = current_cred();
3764
3765         return file_has_perm(cred, file, FILE__LOCK);
3766 }
3767
3768 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3769                               unsigned long arg)
3770 {
3771         const struct cred *cred = current_cred();
3772         int err = 0;
3773
3774         switch (cmd) {
3775         case F_SETFL:
3776                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3777                         err = file_has_perm(cred, file, FILE__WRITE);
3778                         break;
3779                 }
3780                 fallthrough;
3781         case F_SETOWN:
3782         case F_SETSIG:
3783         case F_GETFL:
3784         case F_GETOWN:
3785         case F_GETSIG:
3786         case F_GETOWNER_UIDS:
3787                 /* Just check FD__USE permission */
3788                 err = file_has_perm(cred, file, 0);
3789                 break;
3790         case F_GETLK:
3791         case F_SETLK:
3792         case F_SETLKW:
3793         case F_OFD_GETLK:
3794         case F_OFD_SETLK:
3795         case F_OFD_SETLKW:
3796 #if BITS_PER_LONG == 32
3797         case F_GETLK64:
3798         case F_SETLK64:
3799         case F_SETLKW64:
3800 #endif
3801                 err = file_has_perm(cred, file, FILE__LOCK);
3802                 break;
3803         }
3804
3805         return err;
3806 }
3807
3808 static void selinux_file_set_fowner(struct file *file)
3809 {
3810         struct file_security_struct *fsec;
3811
3812         fsec = selinux_file(file);
3813         fsec->fown_sid = current_sid();
3814 }
3815
3816 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3817                                        struct fown_struct *fown, int signum)
3818 {
3819         struct file *file;
3820         u32 sid = task_sid(tsk);
3821         u32 perm;
3822         struct file_security_struct *fsec;
3823
3824         /* struct fown_struct is never outside the context of a struct file */
3825         file = container_of(fown, struct file, f_owner);
3826
3827         fsec = selinux_file(file);
3828
3829         if (!signum)
3830                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3831         else
3832                 perm = signal_to_av(signum);
3833
3834         return avc_has_perm(&selinux_state,
3835                             fsec->fown_sid, sid,
3836                             SECCLASS_PROCESS, perm, NULL);
3837 }
3838
3839 static int selinux_file_receive(struct file *file)
3840 {
3841         const struct cred *cred = current_cred();
3842
3843         return file_has_perm(cred, file, file_to_av(file));
3844 }
3845
3846 static int selinux_file_open(struct file *file)
3847 {
3848         struct file_security_struct *fsec;
3849         struct inode_security_struct *isec;
3850
3851         fsec = selinux_file(file);
3852         isec = inode_security(file_inode(file));
3853         /*
3854          * Save inode label and policy sequence number
3855          * at open-time so that selinux_file_permission
3856          * can determine whether revalidation is necessary.
3857          * Task label is already saved in the file security
3858          * struct as its SID.
3859          */
3860         fsec->isid = isec->sid;
3861         fsec->pseqno = avc_policy_seqno(&selinux_state);
3862         /*
3863          * Since the inode label or policy seqno may have changed
3864          * between the selinux_inode_permission check and the saving
3865          * of state above, recheck that access is still permitted.
3866          * Otherwise, access might never be revalidated against the
3867          * new inode label or new policy.
3868          * This check is not redundant - do not remove.
3869          */
3870         return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3871 }
3872
3873 /* task security operations */
3874
3875 static int selinux_task_alloc(struct task_struct *task,
3876                               unsigned long clone_flags)
3877 {
3878         u32 sid = current_sid();
3879
3880         return avc_has_perm(&selinux_state,
3881                             sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3882 }
3883
3884 /*
3885  * prepare a new set of credentials for modification
3886  */
3887 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3888                                 gfp_t gfp)
3889 {
3890         const struct task_security_struct *old_tsec = selinux_cred(old);
3891         struct task_security_struct *tsec = selinux_cred(new);
3892
3893         *tsec = *old_tsec;
3894         return 0;
3895 }
3896
3897 /*
3898  * transfer the SELinux data to a blank set of creds
3899  */
3900 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3901 {
3902         const struct task_security_struct *old_tsec = selinux_cred(old);
3903         struct task_security_struct *tsec = selinux_cred(new);
3904
3905         *tsec = *old_tsec;
3906 }
3907
3908 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3909 {
3910         *secid = cred_sid(c);
3911 }
3912
3913 /*
3914  * set the security data for a kernel service
3915  * - all the creation contexts are set to unlabelled
3916  */
3917 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3918 {
3919         struct task_security_struct *tsec = selinux_cred(new);
3920         u32 sid = current_sid();
3921         int ret;
3922
3923         ret = avc_has_perm(&selinux_state,
3924                            sid, secid,
3925                            SECCLASS_KERNEL_SERVICE,
3926                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3927                            NULL);
3928         if (ret == 0) {
3929                 tsec->sid = secid;
3930                 tsec->create_sid = 0;
3931                 tsec->keycreate_sid = 0;
3932                 tsec->sockcreate_sid = 0;
3933         }
3934         return ret;
3935 }
3936
3937 /*
3938  * set the file creation context in a security record to the same as the
3939  * objective context of the specified inode
3940  */
3941 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3942 {
3943         struct inode_security_struct *isec = inode_security(inode);
3944         struct task_security_struct *tsec = selinux_cred(new);
3945         u32 sid = current_sid();
3946         int ret;
3947
3948         ret = avc_has_perm(&selinux_state,
3949                            sid, isec->sid,
3950                            SECCLASS_KERNEL_SERVICE,
3951                            KERNEL_SERVICE__CREATE_FILES_AS,
3952                            NULL);
3953
3954         if (ret == 0)
3955                 tsec->create_sid = isec->sid;
3956         return ret;
3957 }
3958
3959 static int selinux_kernel_module_request(char *kmod_name)
3960 {
3961         struct common_audit_data ad;
3962
3963         ad.type = LSM_AUDIT_DATA_KMOD;
3964         ad.u.kmod_name = kmod_name;
3965
3966         return avc_has_perm(&selinux_state,
3967                             current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3968                             SYSTEM__MODULE_REQUEST, &ad);
3969 }
3970
3971 static int selinux_kernel_module_from_file(struct file *file)
3972 {
3973         struct common_audit_data ad;
3974         struct inode_security_struct *isec;
3975         struct file_security_struct *fsec;
3976         u32 sid = current_sid();
3977         int rc;
3978
3979         /* init_module */
3980         if (file == NULL)
3981                 return avc_has_perm(&selinux_state,
3982                                     sid, sid, SECCLASS_SYSTEM,
3983                                         SYSTEM__MODULE_LOAD, NULL);
3984
3985         /* finit_module */
3986
3987         ad.type = LSM_AUDIT_DATA_FILE;
3988         ad.u.file = file;
3989
3990         fsec = selinux_file(file);
3991         if (sid != fsec->sid) {
3992                 rc = avc_has_perm(&selinux_state,
3993                                   sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3994                 if (rc)
3995                         return rc;
3996         }
3997
3998         isec = inode_security(file_inode(file));
3999         return avc_has_perm(&selinux_state,
4000                             sid, isec->sid, SECCLASS_SYSTEM,
4001                                 SYSTEM__MODULE_LOAD, &ad);
4002 }
4003
4004 static int selinux_kernel_read_file(struct file *file,
4005                                     enum kernel_read_file_id id)
4006 {
4007         int rc = 0;
4008
4009         switch (id) {
4010         case READING_MODULE:
4011                 rc = selinux_kernel_module_from_file(file);
4012                 break;
4013         default:
4014                 break;
4015         }
4016
4017         return rc;
4018 }
4019
4020 static int selinux_kernel_load_data(enum kernel_load_data_id id)
4021 {
4022         int rc = 0;
4023
4024         switch (id) {
4025         case LOADING_MODULE:
4026                 rc = selinux_kernel_module_from_file(NULL);
4027         default:
4028                 break;
4029         }
4030
4031         return rc;
4032 }
4033
4034 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4035 {
4036         return avc_has_perm(&selinux_state,
4037                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4038                             PROCESS__SETPGID, NULL);
4039 }
4040
4041 static int selinux_task_getpgid(struct task_struct *p)
4042 {
4043         return avc_has_perm(&selinux_state,
4044                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4045                             PROCESS__GETPGID, NULL);
4046 }
4047
4048 static int selinux_task_getsid(struct task_struct *p)
4049 {
4050         return avc_has_perm(&selinux_state,
4051                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4052                             PROCESS__GETSESSION, NULL);
4053 }
4054
4055 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4056 {
4057         *secid = task_sid(p);
4058 }
4059
4060 static int selinux_task_setnice(struct task_struct *p, int nice)
4061 {
4062         return avc_has_perm(&selinux_state,
4063                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4064                             PROCESS__SETSCHED, NULL);
4065 }
4066
4067 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4068 {
4069         return avc_has_perm(&selinux_state,
4070                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4071                             PROCESS__SETSCHED, NULL);
4072 }
4073
4074 static int selinux_task_getioprio(struct task_struct *p)
4075 {
4076         return avc_has_perm(&selinux_state,
4077                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4078                             PROCESS__GETSCHED, NULL);
4079 }
4080
4081 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4082                                 unsigned int flags)
4083 {
4084         u32 av = 0;
4085
4086         if (!flags)
4087                 return 0;
4088         if (flags & LSM_PRLIMIT_WRITE)
4089                 av |= PROCESS__SETRLIMIT;
4090         if (flags & LSM_PRLIMIT_READ)
4091                 av |= PROCESS__GETRLIMIT;
4092         return avc_has_perm(&selinux_state,
4093                             cred_sid(cred), cred_sid(tcred),
4094                             SECCLASS_PROCESS, av, NULL);
4095 }
4096
4097 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4098                 struct rlimit *new_rlim)
4099 {
4100         struct rlimit *old_rlim = p->signal->rlim + resource;
4101
4102         /* Control the ability to change the hard limit (whether
4103            lowering or raising it), so that the hard limit can
4104            later be used as a safe reset point for the soft limit
4105            upon context transitions.  See selinux_bprm_committing_creds. */
4106         if (old_rlim->rlim_max != new_rlim->rlim_max)
4107                 return avc_has_perm(&selinux_state,
4108                                     current_sid(), task_sid(p),
4109                                     SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4110
4111         return 0;
4112 }
4113
4114 static int selinux_task_setscheduler(struct task_struct *p)
4115 {
4116         return avc_has_perm(&selinux_state,
4117                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4118                             PROCESS__SETSCHED, NULL);
4119 }
4120
4121 static int selinux_task_getscheduler(struct task_struct *p)
4122 {
4123         return avc_has_perm(&selinux_state,
4124                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4125                             PROCESS__GETSCHED, NULL);
4126 }
4127
4128 static int selinux_task_movememory(struct task_struct *p)
4129 {
4130         return avc_has_perm(&selinux_state,
4131                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4132                             PROCESS__SETSCHED, NULL);
4133 }
4134
4135 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4136                                 int sig, const struct cred *cred)
4137 {
4138         u32 secid;
4139         u32 perm;
4140
4141         if (!sig)
4142                 perm = PROCESS__SIGNULL; /* null signal; existence test */
4143         else
4144                 perm = signal_to_av(sig);
4145         if (!cred)
4146                 secid = current_sid();
4147         else
4148                 secid = cred_sid(cred);
4149         return avc_has_perm(&selinux_state,
4150                             secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4151 }
4152
4153 static void selinux_task_to_inode(struct task_struct *p,
4154                                   struct inode *inode)
4155 {
4156         struct inode_security_struct *isec = selinux_inode(inode);
4157         u32 sid = task_sid(p);
4158
4159         spin_lock(&isec->lock);
4160         isec->sclass = inode_mode_to_security_class(inode->i_mode);
4161         isec->sid = sid;
4162         isec->initialized = LABEL_INITIALIZED;
4163         spin_unlock(&isec->lock);
4164 }
4165
4166 /* Returns error only if unable to parse addresses */
4167 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4168                         struct common_audit_data *ad, u8 *proto)
4169 {
4170         int offset, ihlen, ret = -EINVAL;
4171         struct iphdr _iph, *ih;
4172
4173         offset = skb_network_offset(skb);
4174         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4175         if (ih == NULL)
4176                 goto out;
4177
4178         ihlen = ih->ihl * 4;
4179         if (ihlen < sizeof(_iph))
4180                 goto out;
4181
4182         ad->u.net->v4info.saddr = ih->saddr;
4183         ad->u.net->v4info.daddr = ih->daddr;
4184         ret = 0;
4185
4186         if (proto)
4187                 *proto = ih->protocol;
4188
4189         switch (ih->protocol) {
4190         case IPPROTO_TCP: {
4191                 struct tcphdr _tcph, *th;
4192
4193                 if (ntohs(ih->frag_off) & IP_OFFSET)
4194                         break;
4195
4196                 offset += ihlen;
4197                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4198                 if (th == NULL)
4199                         break;
4200
4201                 ad->u.net->sport = th->source;
4202                 ad->u.net->dport = th->dest;
4203                 break;
4204         }
4205
4206         case IPPROTO_UDP: {
4207                 struct udphdr _udph, *uh;
4208
4209                 if (ntohs(ih->frag_off) & IP_OFFSET)
4210                         break;
4211
4212                 offset += ihlen;
4213                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4214                 if (uh == NULL)
4215                         break;
4216
4217                 ad->u.net->sport = uh->source;
4218                 ad->u.net->dport = uh->dest;
4219                 break;
4220         }
4221
4222         case IPPROTO_DCCP: {
4223                 struct dccp_hdr _dccph, *dh;
4224
4225                 if (ntohs(ih->frag_off) & IP_OFFSET)
4226                         break;
4227
4228                 offset += ihlen;
4229                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4230                 if (dh == NULL)
4231                         break;
4232
4233                 ad->u.net->sport = dh->dccph_sport;
4234                 ad->u.net->dport = dh->dccph_dport;
4235                 break;
4236         }
4237
4238 #if IS_ENABLED(CONFIG_IP_SCTP)
4239         case IPPROTO_SCTP: {
4240                 struct sctphdr _sctph, *sh;
4241
4242                 if (ntohs(ih->frag_off) & IP_OFFSET)
4243                         break;
4244
4245                 offset += ihlen;
4246                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4247                 if (sh == NULL)
4248                         break;
4249
4250                 ad->u.net->sport = sh->source;
4251                 ad->u.net->dport = sh->dest;
4252                 break;
4253         }
4254 #endif
4255         default:
4256                 break;
4257         }
4258 out:
4259         return ret;
4260 }
4261
4262 #if IS_ENABLED(CONFIG_IPV6)
4263
4264 /* Returns error only if unable to parse addresses */
4265 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4266                         struct common_audit_data *ad, u8 *proto)
4267 {
4268         u8 nexthdr;
4269         int ret = -EINVAL, offset;
4270         struct ipv6hdr _ipv6h, *ip6;
4271         __be16 frag_off;
4272
4273         offset = skb_network_offset(skb);
4274         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4275         if (ip6 == NULL)
4276                 goto out;
4277
4278         ad->u.net->v6info.saddr = ip6->saddr;
4279         ad->u.net->v6info.daddr = ip6->daddr;
4280         ret = 0;
4281
4282         nexthdr = ip6->nexthdr;
4283         offset += sizeof(_ipv6h);
4284         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4285         if (offset < 0)
4286                 goto out;
4287
4288         if (proto)
4289                 *proto = nexthdr;
4290
4291         switch (nexthdr) {
4292         case IPPROTO_TCP: {
4293                 struct tcphdr _tcph, *th;
4294
4295                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4296                 if (th == NULL)
4297                         break;
4298
4299                 ad->u.net->sport = th->source;
4300                 ad->u.net->dport = th->dest;
4301                 break;
4302         }
4303
4304         case IPPROTO_UDP: {
4305                 struct udphdr _udph, *uh;
4306
4307                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4308                 if (uh == NULL)
4309                         break;
4310
4311                 ad->u.net->sport = uh->source;
4312                 ad->u.net->dport = uh->dest;
4313                 break;
4314         }
4315
4316         case IPPROTO_DCCP: {
4317                 struct dccp_hdr _dccph, *dh;
4318
4319                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4320                 if (dh == NULL)
4321                         break;
4322
4323                 ad->u.net->sport = dh->dccph_sport;
4324                 ad->u.net->dport = dh->dccph_dport;
4325                 break;
4326         }
4327
4328 #if IS_ENABLED(CONFIG_IP_SCTP)
4329         case IPPROTO_SCTP: {
4330                 struct sctphdr _sctph, *sh;
4331
4332                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333                 if (sh == NULL)
4334                         break;
4335
4336                 ad->u.net->sport = sh->source;
4337                 ad->u.net->dport = sh->dest;
4338                 break;
4339         }
4340 #endif
4341         /* includes fragments */
4342         default:
4343                 break;
4344         }
4345 out:
4346         return ret;
4347 }
4348
4349 #endif /* IPV6 */
4350
4351 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4352                              char **_addrp, int src, u8 *proto)
4353 {
4354         char *addrp;
4355         int ret;
4356
4357         switch (ad->u.net->family) {
4358         case PF_INET:
4359                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4360                 if (ret)
4361                         goto parse_error;
4362                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4363                                        &ad->u.net->v4info.daddr);
4364                 goto okay;
4365
4366 #if IS_ENABLED(CONFIG_IPV6)
4367         case PF_INET6:
4368                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4369                 if (ret)
4370                         goto parse_error;
4371                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4372                                        &ad->u.net->v6info.daddr);
4373                 goto okay;
4374 #endif  /* IPV6 */
4375         default:
4376                 addrp = NULL;
4377                 goto okay;
4378         }
4379
4380 parse_error:
4381         pr_warn(
4382                "SELinux: failure in selinux_parse_skb(),"
4383                " unable to parse packet\n");
4384         return ret;
4385
4386 okay:
4387         if (_addrp)
4388                 *_addrp = addrp;
4389         return 0;
4390 }
4391
4392 /**
4393  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4394  * @skb: the packet
4395  * @family: protocol family
4396  * @sid: the packet's peer label SID
4397  *
4398  * Description:
4399  * Check the various different forms of network peer labeling and determine
4400  * the peer label/SID for the packet; most of the magic actually occurs in
4401  * the security server function security_net_peersid_cmp().  The function
4402  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4403  * or -EACCES if @sid is invalid due to inconsistencies with the different
4404  * peer labels.
4405  *
4406  */
4407 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4408 {
4409         int err;
4410         u32 xfrm_sid;
4411         u32 nlbl_sid;
4412         u32 nlbl_type;
4413
4414         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4415         if (unlikely(err))
4416                 return -EACCES;
4417         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4418         if (unlikely(err))
4419                 return -EACCES;
4420
4421         err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4422                                            nlbl_type, xfrm_sid, sid);
4423         if (unlikely(err)) {
4424                 pr_warn(
4425                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
4426                        " unable to determine packet's peer label\n");
4427                 return -EACCES;
4428         }
4429
4430         return 0;
4431 }
4432
4433 /**
4434  * selinux_conn_sid - Determine the child socket label for a connection
4435  * @sk_sid: the parent socket's SID
4436  * @skb_sid: the packet's SID
4437  * @conn_sid: the resulting connection SID
4438  *
4439  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4440  * combined with the MLS information from @skb_sid in order to create
4441  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4442  * of @sk_sid.  Returns zero on success, negative values on failure.
4443  *
4444  */
4445 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4446 {
4447         int err = 0;
4448
4449         if (skb_sid != SECSID_NULL)
4450                 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4451                                             conn_sid);
4452         else
4453                 *conn_sid = sk_sid;
4454
4455         return err;
4456 }
4457
4458 /* socket security operations */
4459
4460 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4461                                  u16 secclass, u32 *socksid)
4462 {
4463         if (tsec->sockcreate_sid > SECSID_NULL) {
4464                 *socksid = tsec->sockcreate_sid;
4465                 return 0;
4466         }
4467
4468         return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4469                                        secclass, NULL, socksid);
4470 }
4471
4472 static int sock_has_perm(struct sock *sk, u32 perms)
4473 {
4474         struct sk_security_struct *sksec = sk->sk_security;
4475         struct common_audit_data ad;
4476         struct lsm_network_audit net = {0,};
4477
4478         if (sksec->sid == SECINITSID_KERNEL)
4479                 return 0;
4480
4481         ad.type = LSM_AUDIT_DATA_NET;
4482         ad.u.net = &net;
4483         ad.u.net->sk = sk;
4484
4485         return avc_has_perm(&selinux_state,
4486                             current_sid(), sksec->sid, sksec->sclass, perms,
4487                             &ad);
4488 }
4489
4490 static int selinux_socket_create(int family, int type,
4491                                  int protocol, int kern)
4492 {
4493         const struct task_security_struct *tsec = selinux_cred(current_cred());
4494         u32 newsid;
4495         u16 secclass;
4496         int rc;
4497
4498         if (kern)
4499                 return 0;
4500
4501         secclass = socket_type_to_security_class(family, type, protocol);
4502         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4503         if (rc)
4504                 return rc;
4505
4506         return avc_has_perm(&selinux_state,
4507                             tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4508 }
4509
4510 static int selinux_socket_post_create(struct socket *sock, int family,
4511                                       int type, int protocol, int kern)
4512 {
4513         const struct task_security_struct *tsec = selinux_cred(current_cred());
4514         struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4515         struct sk_security_struct *sksec;
4516         u16 sclass = socket_type_to_security_class(family, type, protocol);
4517         u32 sid = SECINITSID_KERNEL;
4518         int err = 0;
4519
4520         if (!kern) {
4521                 err = socket_sockcreate_sid(tsec, sclass, &sid);
4522                 if (err)
4523                         return err;
4524         }
4525
4526         isec->sclass = sclass;
4527         isec->sid = sid;
4528         isec->initialized = LABEL_INITIALIZED;
4529
4530         if (sock->sk) {
4531                 sksec = sock->sk->sk_security;
4532                 sksec->sclass = sclass;
4533                 sksec->sid = sid;
4534                 /* Allows detection of the first association on this socket */
4535                 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4536                         sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4537
4538                 err = selinux_netlbl_socket_post_create(sock->sk, family);
4539         }
4540
4541         return err;
4542 }
4543
4544 static int selinux_socket_socketpair(struct socket *socka,
4545                                      struct socket *sockb)
4546 {
4547         struct sk_security_struct *sksec_a = socka->sk->sk_security;
4548         struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4549
4550         sksec_a->peer_sid = sksec_b->sid;
4551         sksec_b->peer_sid = sksec_a->sid;
4552
4553         return 0;
4554 }
4555
4556 /* Range of port numbers used to automatically bind.
4557    Need to determine whether we should perform a name_bind
4558    permission check between the socket and the port number. */
4559
4560 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4561 {
4562         struct sock *sk = sock->sk;
4563         struct sk_security_struct *sksec = sk->sk_security;
4564         u16 family;
4565         int err;
4566
4567         err = sock_has_perm(sk, SOCKET__BIND);
4568         if (err)
4569                 goto out;
4570
4571         /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4572         family = sk->sk_family;
4573         if (family == PF_INET || family == PF_INET6) {
4574                 char *addrp;
4575                 struct common_audit_data ad;
4576                 struct lsm_network_audit net = {0,};
4577                 struct sockaddr_in *addr4 = NULL;
4578                 struct sockaddr_in6 *addr6 = NULL;
4579                 u16 family_sa;
4580                 unsigned short snum;
4581                 u32 sid, node_perm;
4582
4583                 /*
4584                  * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4585                  * that validates multiple binding addresses. Because of this
4586                  * need to check address->sa_family as it is possible to have
4587                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4588                  */
4589                 if (addrlen < offsetofend(struct sockaddr, sa_family))
4590                         return -EINVAL;
4591                 family_sa = address->sa_family;
4592                 switch (family_sa) {
4593                 case AF_UNSPEC:
4594                 case AF_INET:
4595                         if (addrlen < sizeof(struct sockaddr_in))
4596                                 return -EINVAL;
4597                         addr4 = (struct sockaddr_in *)address;
4598                         if (family_sa == AF_UNSPEC) {
4599                                 /* see __inet_bind(), we only want to allow
4600                                  * AF_UNSPEC if the address is INADDR_ANY
4601                                  */
4602                                 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4603                                         goto err_af;
4604                                 family_sa = AF_INET;
4605                         }
4606                         snum = ntohs(addr4->sin_port);
4607                         addrp = (char *)&addr4->sin_addr.s_addr;
4608                         break;
4609                 case AF_INET6:
4610                         if (addrlen < SIN6_LEN_RFC2133)
4611                                 return -EINVAL;
4612                         addr6 = (struct sockaddr_in6 *)address;
4613                         snum = ntohs(addr6->sin6_port);
4614                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4615                         break;
4616                 default:
4617                         goto err_af;
4618                 }
4619
4620                 ad.type = LSM_AUDIT_DATA_NET;
4621                 ad.u.net = &net;
4622                 ad.u.net->sport = htons(snum);
4623                 ad.u.net->family = family_sa;
4624
4625                 if (snum) {
4626                         int low, high;
4627
4628                         inet_get_local_port_range(sock_net(sk), &low, &high);
4629
4630                         if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4631                             snum < low || snum > high) {
4632                                 err = sel_netport_sid(sk->sk_protocol,
4633                                                       snum, &sid);
4634                                 if (err)
4635                                         goto out;
4636                                 err = avc_has_perm(&selinux_state,
4637                                                    sksec->sid, sid,
4638                                                    sksec->sclass,
4639                                                    SOCKET__NAME_BIND, &ad);
4640                                 if (err)
4641                                         goto out;
4642                         }
4643                 }
4644
4645                 switch (sksec->sclass) {
4646                 case SECCLASS_TCP_SOCKET:
4647                         node_perm = TCP_SOCKET__NODE_BIND;
4648                         break;
4649
4650                 case SECCLASS_UDP_SOCKET:
4651                         node_perm = UDP_SOCKET__NODE_BIND;
4652                         break;
4653
4654                 case SECCLASS_DCCP_SOCKET:
4655                         node_perm = DCCP_SOCKET__NODE_BIND;
4656                         break;
4657
4658                 case SECCLASS_SCTP_SOCKET:
4659                         node_perm = SCTP_SOCKET__NODE_BIND;
4660                         break;
4661
4662                 default:
4663                         node_perm = RAWIP_SOCKET__NODE_BIND;
4664                         break;
4665                 }
4666
4667                 err = sel_netnode_sid(addrp, family_sa, &sid);
4668                 if (err)
4669                         goto out;
4670
4671                 if (family_sa == AF_INET)
4672                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4673                 else
4674                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4675
4676                 err = avc_has_perm(&selinux_state,
4677                                    sksec->sid, sid,
4678                                    sksec->sclass, node_perm, &ad);
4679                 if (err)
4680                         goto out;
4681         }
4682 out:
4683         return err;
4684 err_af:
4685         /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4686         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4687                 return -EINVAL;
4688         return -EAFNOSUPPORT;
4689 }
4690
4691 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4692  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4693  */
4694 static int selinux_socket_connect_helper(struct socket *sock,
4695                                          struct sockaddr *address, int addrlen)
4696 {
4697         struct sock *sk = sock->sk;
4698         struct sk_security_struct *sksec = sk->sk_security;
4699         int err;
4700
4701         err = sock_has_perm(sk, SOCKET__CONNECT);
4702         if (err)
4703                 return err;
4704         if (addrlen < offsetofend(struct sockaddr, sa_family))
4705                 return -EINVAL;
4706
4707         /* connect(AF_UNSPEC) has special handling, as it is a documented
4708          * way to disconnect the socket
4709          */
4710         if (address->sa_family == AF_UNSPEC)
4711                 return 0;
4712
4713         /*
4714          * If a TCP, DCCP or SCTP socket, check name_connect permission
4715          * for the port.
4716          */
4717         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4718             sksec->sclass == SECCLASS_DCCP_SOCKET ||
4719             sksec->sclass == SECCLASS_SCTP_SOCKET) {
4720                 struct common_audit_data ad;
4721                 struct lsm_network_audit net = {0,};
4722                 struct sockaddr_in *addr4 = NULL;
4723                 struct sockaddr_in6 *addr6 = NULL;
4724                 unsigned short snum;
4725                 u32 sid, perm;
4726
4727                 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4728                  * that validates multiple connect addresses. Because of this
4729                  * need to check address->sa_family as it is possible to have
4730                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4731                  */
4732                 switch (address->sa_family) {
4733                 case AF_INET:
4734                         addr4 = (struct sockaddr_in *)address;
4735                         if (addrlen < sizeof(struct sockaddr_in))
4736                                 return -EINVAL;
4737                         snum = ntohs(addr4->sin_port);
4738                         break;
4739                 case AF_INET6:
4740                         addr6 = (struct sockaddr_in6 *)address;
4741                         if (addrlen < SIN6_LEN_RFC2133)
4742                                 return -EINVAL;
4743                         snum = ntohs(addr6->sin6_port);
4744                         break;
4745                 default:
4746                         /* Note that SCTP services expect -EINVAL, whereas
4747                          * others expect -EAFNOSUPPORT.
4748                          */
4749                         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4750                                 return -EINVAL;
4751                         else
4752                                 return -EAFNOSUPPORT;
4753                 }
4754
4755                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4756                 if (err)
4757                         return err;
4758
4759                 switch (sksec->sclass) {
4760                 case SECCLASS_TCP_SOCKET:
4761                         perm = TCP_SOCKET__NAME_CONNECT;
4762                         break;
4763                 case SECCLASS_DCCP_SOCKET:
4764                         perm = DCCP_SOCKET__NAME_CONNECT;
4765                         break;
4766                 case SECCLASS_SCTP_SOCKET:
4767                         perm = SCTP_SOCKET__NAME_CONNECT;
4768                         break;
4769                 }
4770
4771                 ad.type = LSM_AUDIT_DATA_NET;
4772                 ad.u.net = &net;
4773                 ad.u.net->dport = htons(snum);
4774                 ad.u.net->family = address->sa_family;
4775                 err = avc_has_perm(&selinux_state,
4776                                    sksec->sid, sid, sksec->sclass, perm, &ad);
4777                 if (err)
4778                         return err;
4779         }
4780
4781         return 0;
4782 }
4783
4784 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4785 static int selinux_socket_connect(struct socket *sock,
4786                                   struct sockaddr *address, int addrlen)
4787 {
4788         int err;
4789         struct sock *sk = sock->sk;
4790
4791         err = selinux_socket_connect_helper(sock, address, addrlen);
4792         if (err)
4793                 return err;
4794
4795         return selinux_netlbl_socket_connect(sk, address);
4796 }
4797
4798 static int selinux_socket_listen(struct socket *sock, int backlog)
4799 {
4800         return sock_has_perm(sock->sk, SOCKET__LISTEN);
4801 }
4802
4803 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4804 {
4805         int err;
4806         struct inode_security_struct *isec;
4807         struct inode_security_struct *newisec;
4808         u16 sclass;
4809         u32 sid;
4810
4811         err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4812         if (err)
4813                 return err;
4814
4815         isec = inode_security_novalidate(SOCK_INODE(sock));
4816         spin_lock(&isec->lock);
4817         sclass = isec->sclass;
4818         sid = isec->sid;
4819         spin_unlock(&isec->lock);
4820
4821         newisec = inode_security_novalidate(SOCK_INODE(newsock));
4822         newisec->sclass = sclass;
4823         newisec->sid = sid;
4824         newisec->initialized = LABEL_INITIALIZED;
4825
4826         return 0;
4827 }
4828
4829 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4830                                   int size)
4831 {
4832         return sock_has_perm(sock->sk, SOCKET__WRITE);
4833 }
4834
4835 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4836                                   int size, int flags)
4837 {
4838         return sock_has_perm(sock->sk, SOCKET__READ);
4839 }
4840
4841 static int selinux_socket_getsockname(struct socket *sock)
4842 {
4843         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4844 }
4845
4846 static int selinux_socket_getpeername(struct socket *sock)
4847 {
4848         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4849 }
4850
4851 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4852 {
4853         int err;
4854
4855         err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4856         if (err)
4857                 return err;
4858
4859         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4860 }
4861
4862 static int selinux_socket_getsockopt(struct socket *sock, int level,
4863                                      int optname)
4864 {
4865         return sock_has_perm(sock->sk, SOCKET__GETOPT);
4866 }
4867
4868 static int selinux_socket_shutdown(struct socket *sock, int how)
4869 {
4870         return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4871 }
4872
4873 static int selinux_socket_unix_stream_connect(struct sock *sock,
4874                                               struct sock *other,
4875                                               struct sock *newsk)
4876 {
4877         struct sk_security_struct *sksec_sock = sock->sk_security;
4878         struct sk_security_struct *sksec_other = other->sk_security;
4879         struct sk_security_struct *sksec_new = newsk->sk_security;
4880         struct common_audit_data ad;
4881         struct lsm_network_audit net = {0,};
4882         int err;
4883
4884         ad.type = LSM_AUDIT_DATA_NET;
4885         ad.u.net = &net;
4886         ad.u.net->sk = other;
4887
4888         err = avc_has_perm(&selinux_state,
4889                            sksec_sock->sid, sksec_other->sid,
4890                            sksec_other->sclass,
4891                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4892         if (err)
4893                 return err;
4894
4895         /* server child socket */
4896         sksec_new->peer_sid = sksec_sock->sid;
4897         err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4898                                     sksec_sock->sid, &sksec_new->sid);
4899         if (err)
4900                 return err;
4901
4902         /* connecting socket */
4903         sksec_sock->peer_sid = sksec_new->sid;
4904
4905         return 0;
4906 }
4907
4908 static int selinux_socket_unix_may_send(struct socket *sock,
4909                                         struct socket *other)
4910 {
4911         struct sk_security_struct *ssec = sock->sk->sk_security;
4912         struct sk_security_struct *osec = other->sk->sk_security;
4913         struct common_audit_data ad;
4914         struct lsm_network_audit net = {0,};
4915
4916         ad.type = LSM_AUDIT_DATA_NET;
4917         ad.u.net = &net;
4918         ad.u.net->sk = other->sk;
4919
4920         return avc_has_perm(&selinux_state,
4921                             ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4922                             &ad);
4923 }
4924
4925 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4926                                     char *addrp, u16 family, u32 peer_sid,
4927                                     struct common_audit_data *ad)
4928 {
4929         int err;
4930         u32 if_sid;
4931         u32 node_sid;
4932
4933         err = sel_netif_sid(ns, ifindex, &if_sid);
4934         if (err)
4935                 return err;
4936         err = avc_has_perm(&selinux_state,
4937                            peer_sid, if_sid,
4938                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4939         if (err)
4940                 return err;
4941
4942         err = sel_netnode_sid(addrp, family, &node_sid);
4943         if (err)
4944                 return err;
4945         return avc_has_perm(&selinux_state,
4946                             peer_sid, node_sid,
4947                             SECCLASS_NODE, NODE__RECVFROM, ad);
4948 }
4949
4950 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4951                                        u16 family)
4952 {
4953         int err = 0;
4954         struct sk_security_struct *sksec = sk->sk_security;
4955         u32 sk_sid = sksec->sid;
4956         struct common_audit_data ad;
4957         struct lsm_network_audit net = {0,};
4958         char *addrp;
4959
4960         ad.type = LSM_AUDIT_DATA_NET;
4961         ad.u.net = &net;
4962         ad.u.net->netif = skb->skb_iif;
4963         ad.u.net->family = family;
4964         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4965         if (err)
4966                 return err;
4967
4968         if (selinux_secmark_enabled()) {
4969                 err = avc_has_perm(&selinux_state,
4970                                    sk_sid, skb->secmark, SECCLASS_PACKET,
4971                                    PACKET__RECV, &ad);
4972                 if (err)
4973                         return err;
4974         }
4975
4976         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4977         if (err)
4978                 return err;
4979         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4980
4981         return err;
4982 }
4983
4984 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4985 {
4986         int err;
4987         struct sk_security_struct *sksec = sk->sk_security;
4988         u16 family = sk->sk_family;
4989         u32 sk_sid = sksec->sid;
4990         struct common_audit_data ad;
4991         struct lsm_network_audit net = {0,};
4992         char *addrp;
4993         u8 secmark_active;
4994         u8 peerlbl_active;
4995
4996         if (family != PF_INET && family != PF_INET6)
4997                 return 0;
4998
4999         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5000         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5001                 family = PF_INET;
5002
5003         /* If any sort of compatibility mode is enabled then handoff processing
5004          * to the selinux_sock_rcv_skb_compat() function to deal with the
5005          * special handling.  We do this in an attempt to keep this function
5006          * as fast and as clean as possible. */
5007         if (!selinux_policycap_netpeer())
5008                 return selinux_sock_rcv_skb_compat(sk, skb, family);
5009
5010         secmark_active = selinux_secmark_enabled();
5011         peerlbl_active = selinux_peerlbl_enabled();
5012         if (!secmark_active && !peerlbl_active)
5013                 return 0;
5014
5015         ad.type = LSM_AUDIT_DATA_NET;
5016         ad.u.net = &net;
5017         ad.u.net->netif = skb->skb_iif;
5018         ad.u.net->family = family;
5019         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5020         if (err)
5021                 return err;
5022
5023         if (peerlbl_active) {
5024                 u32 peer_sid;
5025
5026                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5027                 if (err)
5028                         return err;
5029                 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5030                                                addrp, family, peer_sid, &ad);
5031                 if (err) {
5032                         selinux_netlbl_err(skb, family, err, 0);
5033                         return err;
5034                 }
5035                 err = avc_has_perm(&selinux_state,
5036                                    sk_sid, peer_sid, SECCLASS_PEER,
5037                                    PEER__RECV, &ad);
5038                 if (err) {
5039                         selinux_netlbl_err(skb, family, err, 0);
5040                         return err;
5041                 }
5042         }
5043
5044         if (secmark_active) {
5045                 err = avc_has_perm(&selinux_state,
5046                                    sk_sid, skb->secmark, SECCLASS_PACKET,
5047                                    PACKET__RECV, &ad);
5048                 if (err)
5049                         return err;
5050         }
5051
5052         return err;
5053 }
5054
5055 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5056                                             int __user *optlen, unsigned len)
5057 {
5058         int err = 0;
5059         char *scontext;
5060         u32 scontext_len;
5061         struct sk_security_struct *sksec = sock->sk->sk_security;
5062         u32 peer_sid = SECSID_NULL;
5063
5064         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5065             sksec->sclass == SECCLASS_TCP_SOCKET ||
5066             sksec->sclass == SECCLASS_SCTP_SOCKET)
5067                 peer_sid = sksec->peer_sid;
5068         if (peer_sid == SECSID_NULL)
5069                 return -ENOPROTOOPT;
5070
5071         err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5072                                       &scontext_len);
5073         if (err)
5074                 return err;
5075
5076         if (scontext_len > len) {
5077                 err = -ERANGE;
5078                 goto out_len;
5079         }
5080
5081         if (copy_to_user(optval, scontext, scontext_len))
5082                 err = -EFAULT;
5083
5084 out_len:
5085         if (put_user(scontext_len, optlen))
5086                 err = -EFAULT;
5087         kfree(scontext);
5088         return err;
5089 }
5090
5091 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5092 {
5093         u32 peer_secid = SECSID_NULL;
5094         u16 family;
5095         struct inode_security_struct *isec;
5096
5097         if (skb && skb->protocol == htons(ETH_P_IP))
5098                 family = PF_INET;
5099         else if (skb && skb->protocol == htons(ETH_P_IPV6))
5100                 family = PF_INET6;
5101         else if (sock)
5102                 family = sock->sk->sk_family;
5103         else
5104                 goto out;
5105
5106         if (sock && family == PF_UNIX) {
5107                 isec = inode_security_novalidate(SOCK_INODE(sock));
5108                 peer_secid = isec->sid;
5109         } else if (skb)
5110                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5111
5112 out:
5113         *secid = peer_secid;
5114         if (peer_secid == SECSID_NULL)
5115                 return -EINVAL;
5116         return 0;
5117 }
5118
5119 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5120 {
5121         struct sk_security_struct *sksec;
5122
5123         sksec = kzalloc(sizeof(*sksec), priority);
5124         if (!sksec)
5125                 return -ENOMEM;
5126
5127         sksec->peer_sid = SECINITSID_UNLABELED;
5128         sksec->sid = SECINITSID_UNLABELED;
5129         sksec->sclass = SECCLASS_SOCKET;
5130         selinux_netlbl_sk_security_reset(sksec);
5131         sk->sk_security = sksec;
5132
5133         return 0;
5134 }
5135
5136 static void selinux_sk_free_security(struct sock *sk)
5137 {
5138         struct sk_security_struct *sksec = sk->sk_security;
5139
5140         sk->sk_security = NULL;
5141         selinux_netlbl_sk_security_free(sksec);
5142         kfree(sksec);
5143 }
5144
5145 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5146 {
5147         struct sk_security_struct *sksec = sk->sk_security;
5148         struct sk_security_struct *newsksec = newsk->sk_security;
5149
5150         newsksec->sid = sksec->sid;
5151         newsksec->peer_sid = sksec->peer_sid;
5152         newsksec->sclass = sksec->sclass;
5153
5154         selinux_netlbl_sk_security_reset(newsksec);
5155 }
5156
5157 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5158 {
5159         if (!sk)
5160                 *secid = SECINITSID_ANY_SOCKET;
5161         else {
5162                 struct sk_security_struct *sksec = sk->sk_security;
5163
5164                 *secid = sksec->sid;
5165         }
5166 }
5167
5168 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5169 {
5170         struct inode_security_struct *isec =
5171                 inode_security_novalidate(SOCK_INODE(parent));
5172         struct sk_security_struct *sksec = sk->sk_security;
5173
5174         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5175             sk->sk_family == PF_UNIX)
5176                 isec->sid = sksec->sid;
5177         sksec->sclass = isec->sclass;
5178 }
5179
5180 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5181  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5182  * already present).
5183  */
5184 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5185                                       struct sk_buff *skb)
5186 {
5187         struct sk_security_struct *sksec = ep->base.sk->sk_security;
5188         struct common_audit_data ad;
5189         struct lsm_network_audit net = {0,};
5190         u8 peerlbl_active;
5191         u32 peer_sid = SECINITSID_UNLABELED;
5192         u32 conn_sid;
5193         int err = 0;
5194
5195         if (!selinux_policycap_extsockclass())
5196                 return 0;
5197
5198         peerlbl_active = selinux_peerlbl_enabled();
5199
5200         if (peerlbl_active) {
5201                 /* This will return peer_sid = SECSID_NULL if there are
5202                  * no peer labels, see security_net_peersid_resolve().
5203                  */
5204                 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5205                                               &peer_sid);
5206                 if (err)
5207                         return err;
5208
5209                 if (peer_sid == SECSID_NULL)
5210                         peer_sid = SECINITSID_UNLABELED;
5211         }
5212
5213         if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5214                 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5215
5216                 /* Here as first association on socket. As the peer SID
5217                  * was allowed by peer recv (and the netif/node checks),
5218                  * then it is approved by policy and used as the primary
5219                  * peer SID for getpeercon(3).
5220                  */
5221                 sksec->peer_sid = peer_sid;
5222         } else if  (sksec->peer_sid != peer_sid) {
5223                 /* Other association peer SIDs are checked to enforce
5224                  * consistency among the peer SIDs.
5225                  */
5226                 ad.type = LSM_AUDIT_DATA_NET;
5227                 ad.u.net = &net;
5228                 ad.u.net->sk = ep->base.sk;
5229                 err = avc_has_perm(&selinux_state,
5230                                    sksec->peer_sid, peer_sid, sksec->sclass,
5231                                    SCTP_SOCKET__ASSOCIATION, &ad);
5232                 if (err)
5233                         return err;
5234         }
5235
5236         /* Compute the MLS component for the connection and store
5237          * the information in ep. This will be used by SCTP TCP type
5238          * sockets and peeled off connections as they cause a new
5239          * socket to be generated. selinux_sctp_sk_clone() will then
5240          * plug this into the new socket.
5241          */
5242         err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5243         if (err)
5244                 return err;
5245
5246         ep->secid = conn_sid;
5247         ep->peer_secid = peer_sid;
5248
5249         /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5250         return selinux_netlbl_sctp_assoc_request(ep, skb);
5251 }
5252
5253 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5254  * based on their @optname.
5255  */
5256 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5257                                      struct sockaddr *address,
5258                                      int addrlen)
5259 {
5260         int len, err = 0, walk_size = 0;
5261         void *addr_buf;
5262         struct sockaddr *addr;
5263         struct socket *sock;
5264
5265         if (!selinux_policycap_extsockclass())
5266                 return 0;
5267
5268         /* Process one or more addresses that may be IPv4 or IPv6 */
5269         sock = sk->sk_socket;
5270         addr_buf = address;
5271
5272         while (walk_size < addrlen) {
5273                 if (walk_size + sizeof(sa_family_t) > addrlen)
5274                         return -EINVAL;
5275
5276                 addr = addr_buf;
5277                 switch (addr->sa_family) {
5278                 case AF_UNSPEC:
5279                 case AF_INET:
5280                         len = sizeof(struct sockaddr_in);
5281                         break;
5282                 case AF_INET6:
5283                         len = sizeof(struct sockaddr_in6);
5284                         break;
5285                 default:
5286                         return -EINVAL;
5287                 }
5288
5289                 if (walk_size + len > addrlen)
5290                         return -EINVAL;
5291
5292                 err = -EINVAL;
5293                 switch (optname) {
5294                 /* Bind checks */
5295                 case SCTP_PRIMARY_ADDR:
5296                 case SCTP_SET_PEER_PRIMARY_ADDR:
5297                 case SCTP_SOCKOPT_BINDX_ADD:
5298                         err = selinux_socket_bind(sock, addr, len);
5299                         break;
5300                 /* Connect checks */
5301                 case SCTP_SOCKOPT_CONNECTX:
5302                 case SCTP_PARAM_SET_PRIMARY:
5303                 case SCTP_PARAM_ADD_IP:
5304                 case SCTP_SENDMSG_CONNECT:
5305                         err = selinux_socket_connect_helper(sock, addr, len);
5306                         if (err)
5307                                 return err;
5308
5309                         /* As selinux_sctp_bind_connect() is called by the
5310                          * SCTP protocol layer, the socket is already locked,
5311                          * therefore selinux_netlbl_socket_connect_locked() is
5312                          * is called here. The situations handled are:
5313                          * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5314                          * whenever a new IP address is added or when a new
5315                          * primary address is selected.
5316                          * Note that an SCTP connect(2) call happens before
5317                          * the SCTP protocol layer and is handled via
5318                          * selinux_socket_connect().
5319                          */
5320                         err = selinux_netlbl_socket_connect_locked(sk, addr);
5321                         break;
5322                 }
5323
5324                 if (err)
5325                         return err;
5326
5327                 addr_buf += len;
5328                 walk_size += len;
5329         }
5330
5331         return 0;
5332 }
5333
5334 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5335 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5336                                   struct sock *newsk)
5337 {
5338         struct sk_security_struct *sksec = sk->sk_security;
5339         struct sk_security_struct *newsksec = newsk->sk_security;
5340
5341         /* If policy does not support SECCLASS_SCTP_SOCKET then call
5342          * the non-sctp clone version.
5343          */
5344         if (!selinux_policycap_extsockclass())
5345                 return selinux_sk_clone_security(sk, newsk);
5346
5347         newsksec->sid = ep->secid;
5348         newsksec->peer_sid = ep->peer_secid;
5349         newsksec->sclass = sksec->sclass;
5350         selinux_netlbl_sctp_sk_clone(sk, newsk);
5351 }
5352
5353 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5354                                      struct request_sock *req)
5355 {
5356         struct sk_security_struct *sksec = sk->sk_security;
5357         int err;
5358         u16 family = req->rsk_ops->family;
5359         u32 connsid;
5360         u32 peersid;
5361
5362         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5363         if (err)
5364                 return err;
5365         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5366         if (err)
5367                 return err;
5368         req->secid = connsid;
5369         req->peer_secid = peersid;
5370
5371         return selinux_netlbl_inet_conn_request(req, family);
5372 }
5373
5374 static void selinux_inet_csk_clone(struct sock *newsk,
5375                                    const struct request_sock *req)
5376 {
5377         struct sk_security_struct *newsksec = newsk->sk_security;
5378
5379         newsksec->sid = req->secid;
5380         newsksec->peer_sid = req->peer_secid;
5381         /* NOTE: Ideally, we should also get the isec->sid for the
5382            new socket in sync, but we don't have the isec available yet.
5383            So we will wait until sock_graft to do it, by which
5384            time it will have been created and available. */
5385
5386         /* We don't need to take any sort of lock here as we are the only
5387          * thread with access to newsksec */
5388         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5389 }
5390
5391 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5392 {
5393         u16 family = sk->sk_family;
5394         struct sk_security_struct *sksec = sk->sk_security;
5395
5396         /* handle mapped IPv4 packets arriving via IPv6 sockets */
5397         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5398                 family = PF_INET;
5399
5400         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5401 }
5402
5403 static int selinux_secmark_relabel_packet(u32 sid)
5404 {
5405         const struct task_security_struct *__tsec;
5406         u32 tsid;
5407
5408         __tsec = selinux_cred(current_cred());
5409         tsid = __tsec->sid;
5410
5411         return avc_has_perm(&selinux_state,
5412                             tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5413                             NULL);
5414 }
5415
5416 static void selinux_secmark_refcount_inc(void)
5417 {
5418         atomic_inc(&selinux_secmark_refcount);
5419 }
5420
5421 static void selinux_secmark_refcount_dec(void)
5422 {
5423         atomic_dec(&selinux_secmark_refcount);
5424 }
5425
5426 static void selinux_req_classify_flow(const struct request_sock *req,
5427                                       struct flowi *fl)
5428 {
5429         fl->flowi_secid = req->secid;
5430 }
5431
5432 static int selinux_tun_dev_alloc_security(void **security)
5433 {
5434         struct tun_security_struct *tunsec;
5435
5436         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5437         if (!tunsec)
5438                 return -ENOMEM;
5439         tunsec->sid = current_sid();
5440
5441         *security = tunsec;
5442         return 0;
5443 }
5444
5445 static void selinux_tun_dev_free_security(void *security)
5446 {
5447         kfree(security);
5448 }
5449
5450 static int selinux_tun_dev_create(void)
5451 {
5452         u32 sid = current_sid();
5453
5454         /* we aren't taking into account the "sockcreate" SID since the socket
5455          * that is being created here is not a socket in the traditional sense,
5456          * instead it is a private sock, accessible only to the kernel, and
5457          * representing a wide range of network traffic spanning multiple
5458          * connections unlike traditional sockets - check the TUN driver to
5459          * get a better understanding of why this socket is special */
5460
5461         return avc_has_perm(&selinux_state,
5462                             sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5463                             NULL);
5464 }
5465
5466 static int selinux_tun_dev_attach_queue(void *security)
5467 {
5468         struct tun_security_struct *tunsec = security;
5469
5470         return avc_has_perm(&selinux_state,
5471                             current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5472                             TUN_SOCKET__ATTACH_QUEUE, NULL);
5473 }
5474
5475 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5476 {
5477         struct tun_security_struct *tunsec = security;
5478         struct sk_security_struct *sksec = sk->sk_security;
5479
5480         /* we don't currently perform any NetLabel based labeling here and it
5481          * isn't clear that we would want to do so anyway; while we could apply
5482          * labeling without the support of the TUN user the resulting labeled
5483          * traffic from the other end of the connection would almost certainly
5484          * cause confusion to the TUN user that had no idea network labeling
5485          * protocols were being used */
5486
5487         sksec->sid = tunsec->sid;
5488         sksec->sclass = SECCLASS_TUN_SOCKET;
5489
5490         return 0;
5491 }
5492
5493 static int selinux_tun_dev_open(void *security)
5494 {
5495         struct tun_security_struct *tunsec = security;
5496         u32 sid = current_sid();
5497         int err;
5498
5499         err = avc_has_perm(&selinux_state,
5500                            sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5501                            TUN_SOCKET__RELABELFROM, NULL);
5502         if (err)
5503                 return err;
5504         err = avc_has_perm(&selinux_state,
5505                            sid, sid, SECCLASS_TUN_SOCKET,
5506                            TUN_SOCKET__RELABELTO, NULL);
5507         if (err)
5508                 return err;
5509         tunsec->sid = sid;
5510
5511         return 0;
5512 }
5513
5514 #ifdef CONFIG_NETFILTER
5515
5516 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5517                                        const struct net_device *indev,
5518                                        u16 family)
5519 {
5520         int err;
5521         char *addrp;
5522         u32 peer_sid;
5523         struct common_audit_data ad;
5524         struct lsm_network_audit net = {0,};
5525         u8 secmark_active;
5526         u8 netlbl_active;
5527         u8 peerlbl_active;
5528
5529         if (!selinux_policycap_netpeer())
5530                 return NF_ACCEPT;
5531
5532         secmark_active = selinux_secmark_enabled();
5533         netlbl_active = netlbl_enabled();
5534         peerlbl_active = selinux_peerlbl_enabled();
5535         if (!secmark_active && !peerlbl_active)
5536                 return NF_ACCEPT;
5537
5538         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5539                 return NF_DROP;
5540
5541         ad.type = LSM_AUDIT_DATA_NET;
5542         ad.u.net = &net;
5543         ad.u.net->netif = indev->ifindex;
5544         ad.u.net->family = family;
5545         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5546                 return NF_DROP;
5547
5548         if (peerlbl_active) {
5549                 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5550                                                addrp, family, peer_sid, &ad);
5551                 if (err) {
5552                         selinux_netlbl_err(skb, family, err, 1);
5553                         return NF_DROP;
5554                 }
5555         }
5556
5557         if (secmark_active)
5558                 if (avc_has_perm(&selinux_state,
5559                                  peer_sid, skb->secmark,
5560                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5561                         return NF_DROP;
5562
5563         if (netlbl_active)
5564                 /* we do this in the FORWARD path and not the POST_ROUTING
5565                  * path because we want to make sure we apply the necessary
5566                  * labeling before IPsec is applied so we can leverage AH
5567                  * protection */
5568                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5569                         return NF_DROP;
5570
5571         return NF_ACCEPT;
5572 }
5573
5574 static unsigned int selinux_ipv4_forward(void *priv,
5575                                          struct sk_buff *skb,
5576                                          const struct nf_hook_state *state)
5577 {
5578         return selinux_ip_forward(skb, state->in, PF_INET);
5579 }
5580
5581 #if IS_ENABLED(CONFIG_IPV6)
5582 static unsigned int selinux_ipv6_forward(void *priv,
5583                                          struct sk_buff *skb,
5584                                          const struct nf_hook_state *state)
5585 {
5586         return selinux_ip_forward(skb, state->in, PF_INET6);
5587 }
5588 #endif  /* IPV6 */
5589
5590 static unsigned int selinux_ip_output(struct sk_buff *skb,
5591                                       u16 family)
5592 {
5593         struct sock *sk;
5594         u32 sid;
5595
5596         if (!netlbl_enabled())
5597                 return NF_ACCEPT;
5598
5599         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5600          * because we want to make sure we apply the necessary labeling
5601          * before IPsec is applied so we can leverage AH protection */
5602         sk = skb->sk;
5603         if (sk) {
5604                 struct sk_security_struct *sksec;
5605
5606                 if (sk_listener(sk))
5607                         /* if the socket is the listening state then this
5608                          * packet is a SYN-ACK packet which means it needs to
5609                          * be labeled based on the connection/request_sock and
5610                          * not the parent socket.  unfortunately, we can't
5611                          * lookup the request_sock yet as it isn't queued on
5612                          * the parent socket until after the SYN-ACK is sent.
5613                          * the "solution" is to simply pass the packet as-is
5614                          * as any IP option based labeling should be copied
5615                          * from the initial connection request (in the IP
5616                          * layer).  it is far from ideal, but until we get a
5617                          * security label in the packet itself this is the
5618                          * best we can do. */
5619                         return NF_ACCEPT;
5620
5621                 /* standard practice, label using the parent socket */
5622                 sksec = sk->sk_security;
5623                 sid = sksec->sid;
5624         } else
5625                 sid = SECINITSID_KERNEL;
5626         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5627                 return NF_DROP;
5628
5629         return NF_ACCEPT;
5630 }
5631
5632 static unsigned int selinux_ipv4_output(void *priv,
5633                                         struct sk_buff *skb,
5634                                         const struct nf_hook_state *state)
5635 {
5636         return selinux_ip_output(skb, PF_INET);
5637 }
5638
5639 #if IS_ENABLED(CONFIG_IPV6)
5640 static unsigned int selinux_ipv6_output(void *priv,
5641                                         struct sk_buff *skb,
5642                                         const struct nf_hook_state *state)
5643 {
5644         return selinux_ip_output(skb, PF_INET6);
5645 }
5646 #endif  /* IPV6 */
5647
5648 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5649                                                 int ifindex,
5650                                                 u16 family)
5651 {
5652         struct sock *sk = skb_to_full_sk(skb);
5653         struct sk_security_struct *sksec;
5654         struct common_audit_data ad;
5655         struct lsm_network_audit net = {0,};
5656         char *addrp;
5657         u8 proto;
5658
5659         if (sk == NULL)
5660                 return NF_ACCEPT;
5661         sksec = sk->sk_security;
5662
5663         ad.type = LSM_AUDIT_DATA_NET;
5664         ad.u.net = &net;
5665         ad.u.net->netif = ifindex;
5666         ad.u.net->family = family;
5667         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5668                 return NF_DROP;
5669
5670         if (selinux_secmark_enabled())
5671                 if (avc_has_perm(&selinux_state,
5672                                  sksec->sid, skb->secmark,
5673                                  SECCLASS_PACKET, PACKET__SEND, &ad))
5674                         return NF_DROP_ERR(-ECONNREFUSED);
5675
5676         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5677                 return NF_DROP_ERR(-ECONNREFUSED);
5678
5679         return NF_ACCEPT;
5680 }
5681
5682 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5683                                          const struct net_device *outdev,
5684                                          u16 family)
5685 {
5686         u32 secmark_perm;
5687         u32 peer_sid;
5688         int ifindex = outdev->ifindex;
5689         struct sock *sk;
5690         struct common_audit_data ad;
5691         struct lsm_network_audit net = {0,};
5692         char *addrp;
5693         u8 secmark_active;
5694         u8 peerlbl_active;
5695
5696         /* If any sort of compatibility mode is enabled then handoff processing
5697          * to the selinux_ip_postroute_compat() function to deal with the
5698          * special handling.  We do this in an attempt to keep this function
5699          * as fast and as clean as possible. */
5700         if (!selinux_policycap_netpeer())
5701                 return selinux_ip_postroute_compat(skb, ifindex, family);
5702
5703         secmark_active = selinux_secmark_enabled();
5704         peerlbl_active = selinux_peerlbl_enabled();
5705         if (!secmark_active && !peerlbl_active)
5706                 return NF_ACCEPT;
5707
5708         sk = skb_to_full_sk(skb);
5709
5710 #ifdef CONFIG_XFRM
5711         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5712          * packet transformation so allow the packet to pass without any checks
5713          * since we'll have another chance to perform access control checks
5714          * when the packet is on it's final way out.
5715          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5716          *       is NULL, in this case go ahead and apply access control.
5717          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5718          *       TCP listening state we cannot wait until the XFRM processing
5719          *       is done as we will miss out on the SA label if we do;
5720          *       unfortunately, this means more work, but it is only once per
5721          *       connection. */
5722         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5723             !(sk && sk_listener(sk)))
5724                 return NF_ACCEPT;
5725 #endif
5726
5727         if (sk == NULL) {
5728                 /* Without an associated socket the packet is either coming
5729                  * from the kernel or it is being forwarded; check the packet
5730                  * to determine which and if the packet is being forwarded
5731                  * query the packet directly to determine the security label. */
5732                 if (skb->skb_iif) {
5733                         secmark_perm = PACKET__FORWARD_OUT;
5734                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5735                                 return NF_DROP;
5736                 } else {
5737                         secmark_perm = PACKET__SEND;
5738                         peer_sid = SECINITSID_KERNEL;
5739                 }
5740         } else if (sk_listener(sk)) {
5741                 /* Locally generated packet but the associated socket is in the
5742                  * listening state which means this is a SYN-ACK packet.  In
5743                  * this particular case the correct security label is assigned
5744                  * to the connection/request_sock but unfortunately we can't
5745                  * query the request_sock as it isn't queued on the parent
5746                  * socket until after the SYN-ACK packet is sent; the only
5747                  * viable choice is to regenerate the label like we do in
5748                  * selinux_inet_conn_request().  See also selinux_ip_output()
5749                  * for similar problems. */
5750                 u32 skb_sid;
5751                 struct sk_security_struct *sksec;
5752
5753                 sksec = sk->sk_security;
5754                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5755                         return NF_DROP;
5756                 /* At this point, if the returned skb peerlbl is SECSID_NULL
5757                  * and the packet has been through at least one XFRM
5758                  * transformation then we must be dealing with the "final"
5759                  * form of labeled IPsec packet; since we've already applied
5760                  * all of our access controls on this packet we can safely
5761                  * pass the packet. */
5762                 if (skb_sid == SECSID_NULL) {
5763                         switch (family) {
5764                         case PF_INET:
5765                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5766                                         return NF_ACCEPT;
5767                                 break;
5768                         case PF_INET6:
5769                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5770                                         return NF_ACCEPT;
5771                                 break;
5772                         default:
5773                                 return NF_DROP_ERR(-ECONNREFUSED);
5774                         }
5775                 }
5776                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5777                         return NF_DROP;
5778                 secmark_perm = PACKET__SEND;
5779         } else {
5780                 /* Locally generated packet, fetch the security label from the
5781                  * associated socket. */
5782                 struct sk_security_struct *sksec = sk->sk_security;
5783                 peer_sid = sksec->sid;
5784                 secmark_perm = PACKET__SEND;
5785         }
5786
5787         ad.type = LSM_AUDIT_DATA_NET;
5788         ad.u.net = &net;
5789         ad.u.net->netif = ifindex;
5790         ad.u.net->family = family;
5791         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5792                 return NF_DROP;
5793
5794         if (secmark_active)
5795                 if (avc_has_perm(&selinux_state,
5796                                  peer_sid, skb->secmark,
5797                                  SECCLASS_PACKET, secmark_perm, &ad))
5798                         return NF_DROP_ERR(-ECONNREFUSED);
5799
5800         if (peerlbl_active) {
5801                 u32 if_sid;
5802                 u32 node_sid;
5803
5804                 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5805                         return NF_DROP;
5806                 if (avc_has_perm(&selinux_state,
5807                                  peer_sid, if_sid,
5808                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
5809                         return NF_DROP_ERR(-ECONNREFUSED);
5810
5811                 if (sel_netnode_sid(addrp, family, &node_sid))
5812                         return NF_DROP;
5813                 if (avc_has_perm(&selinux_state,
5814                                  peer_sid, node_sid,
5815                                  SECCLASS_NODE, NODE__SENDTO, &ad))
5816                         return NF_DROP_ERR(-ECONNREFUSED);
5817         }
5818
5819         return NF_ACCEPT;
5820 }
5821
5822 static unsigned int selinux_ipv4_postroute(void *priv,
5823                                            struct sk_buff *skb,
5824                                            const struct nf_hook_state *state)
5825 {
5826         return selinux_ip_postroute(skb, state->out, PF_INET);
5827 }
5828
5829 #if IS_ENABLED(CONFIG_IPV6)
5830 static unsigned int selinux_ipv6_postroute(void *priv,
5831                                            struct sk_buff *skb,
5832                                            const struct nf_hook_state *state)
5833 {
5834         return selinux_ip_postroute(skb, state->out, PF_INET6);
5835 }
5836 #endif  /* IPV6 */
5837
5838 #endif  /* CONFIG_NETFILTER */
5839
5840 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5841 {
5842         int rc = 0;
5843         unsigned int msg_len;
5844         unsigned int data_len = skb->len;
5845         unsigned char *data = skb->data;
5846         struct nlmsghdr *nlh;
5847         struct sk_security_struct *sksec = sk->sk_security;
5848         u16 sclass = sksec->sclass;
5849         u32 perm;
5850
5851         while (data_len >= nlmsg_total_size(0)) {
5852                 nlh = (struct nlmsghdr *)data;
5853
5854                 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5855                  *       users which means we can't reject skb's with bogus
5856                  *       length fields; our solution is to follow what
5857                  *       netlink_rcv_skb() does and simply skip processing at
5858                  *       messages with length fields that are clearly junk
5859                  */
5860                 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5861                         return 0;
5862
5863                 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5864                 if (rc == 0) {
5865                         rc = sock_has_perm(sk, perm);
5866                         if (rc)
5867                                 return rc;
5868                 } else if (rc == -EINVAL) {
5869                         /* -EINVAL is a missing msg/perm mapping */
5870                         pr_warn_ratelimited("SELinux: unrecognized netlink"
5871                                 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5872                                 " pid=%d comm=%s\n",
5873                                 sk->sk_protocol, nlh->nlmsg_type,
5874                                 secclass_map[sclass - 1].name,
5875                                 task_pid_nr(current), current->comm);
5876                         if (enforcing_enabled(&selinux_state) &&
5877                             !security_get_allow_unknown(&selinux_state))
5878                                 return rc;
5879                         rc = 0;
5880                 } else if (rc == -ENOENT) {
5881                         /* -ENOENT is a missing socket/class mapping, ignore */
5882                         rc = 0;
5883                 } else {
5884                         return rc;
5885                 }
5886
5887                 /* move to the next message after applying netlink padding */
5888                 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5889                 if (msg_len >= data_len)
5890                         return 0;
5891                 data_len -= msg_len;
5892                 data += msg_len;
5893         }
5894
5895         return rc;
5896 }
5897
5898 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5899 {
5900         isec->sclass = sclass;
5901         isec->sid = current_sid();
5902 }
5903
5904 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5905                         u32 perms)
5906 {
5907         struct ipc_security_struct *isec;
5908         struct common_audit_data ad;
5909         u32 sid = current_sid();
5910
5911         isec = selinux_ipc(ipc_perms);
5912
5913         ad.type = LSM_AUDIT_DATA_IPC;
5914         ad.u.ipc_id = ipc_perms->key;
5915
5916         return avc_has_perm(&selinux_state,
5917                             sid, isec->sid, isec->sclass, perms, &ad);
5918 }
5919
5920 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5921 {
5922         struct msg_security_struct *msec;
5923
5924         msec = selinux_msg_msg(msg);
5925         msec->sid = SECINITSID_UNLABELED;
5926
5927         return 0;
5928 }
5929
5930 /* message queue security operations */
5931 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5932 {
5933         struct ipc_security_struct *isec;
5934         struct common_audit_data ad;
5935         u32 sid = current_sid();
5936         int rc;
5937
5938         isec = selinux_ipc(msq);
5939         ipc_init_security(isec, SECCLASS_MSGQ);
5940
5941         ad.type = LSM_AUDIT_DATA_IPC;
5942         ad.u.ipc_id = msq->key;
5943
5944         rc = avc_has_perm(&selinux_state,
5945                           sid, isec->sid, SECCLASS_MSGQ,
5946                           MSGQ__CREATE, &ad);
5947         return rc;
5948 }
5949
5950 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5951 {
5952         struct ipc_security_struct *isec;
5953         struct common_audit_data ad;
5954         u32 sid = current_sid();
5955
5956         isec = selinux_ipc(msq);
5957
5958         ad.type = LSM_AUDIT_DATA_IPC;
5959         ad.u.ipc_id = msq->key;
5960
5961         return avc_has_perm(&selinux_state,
5962                             sid, isec->sid, SECCLASS_MSGQ,
5963                             MSGQ__ASSOCIATE, &ad);
5964 }
5965
5966 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5967 {
5968         int err;
5969         int perms;
5970
5971         switch (cmd) {
5972         case IPC_INFO:
5973         case MSG_INFO:
5974                 /* No specific object, just general system-wide information. */
5975                 return avc_has_perm(&selinux_state,
5976                                     current_sid(), SECINITSID_KERNEL,
5977                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5978         case IPC_STAT:
5979         case MSG_STAT:
5980         case MSG_STAT_ANY:
5981                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5982                 break;
5983         case IPC_SET:
5984                 perms = MSGQ__SETATTR;
5985                 break;
5986         case IPC_RMID:
5987                 perms = MSGQ__DESTROY;
5988                 break;
5989         default:
5990                 return 0;
5991         }
5992
5993         err = ipc_has_perm(msq, perms);
5994         return err;
5995 }
5996
5997 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5998 {
5999         struct ipc_security_struct *isec;
6000         struct msg_security_struct *msec;
6001         struct common_audit_data ad;
6002         u32 sid = current_sid();
6003         int rc;
6004
6005         isec = selinux_ipc(msq);
6006         msec = selinux_msg_msg(msg);
6007
6008         /*
6009          * First time through, need to assign label to the message
6010          */
6011         if (msec->sid == SECINITSID_UNLABELED) {
6012                 /*
6013                  * Compute new sid based on current process and
6014                  * message queue this message will be stored in
6015                  */
6016                 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6017                                              SECCLASS_MSG, NULL, &msec->sid);
6018                 if (rc)
6019                         return rc;
6020         }
6021
6022         ad.type = LSM_AUDIT_DATA_IPC;
6023         ad.u.ipc_id = msq->key;
6024
6025         /* Can this process write to the queue? */
6026         rc = avc_has_perm(&selinux_state,
6027                           sid, isec->sid, SECCLASS_MSGQ,
6028                           MSGQ__WRITE, &ad);
6029         if (!rc)
6030                 /* Can this process send the message */
6031                 rc = avc_has_perm(&selinux_state,
6032                                   sid, msec->sid, SECCLASS_MSG,
6033                                   MSG__SEND, &ad);
6034         if (!rc)
6035                 /* Can the message be put in the queue? */
6036                 rc = avc_has_perm(&selinux_state,
6037                                   msec->sid, isec->sid, SECCLASS_MSGQ,
6038                                   MSGQ__ENQUEUE, &ad);
6039
6040         return rc;
6041 }
6042
6043 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6044                                     struct task_struct *target,
6045                                     long type, int mode)
6046 {
6047         struct ipc_security_struct *isec;
6048         struct msg_security_struct *msec;
6049         struct common_audit_data ad;
6050         u32 sid = task_sid(target);
6051         int rc;
6052
6053         isec = selinux_ipc(msq);
6054         msec = selinux_msg_msg(msg);
6055
6056         ad.type = LSM_AUDIT_DATA_IPC;
6057         ad.u.ipc_id = msq->key;
6058
6059         rc = avc_has_perm(&selinux_state,
6060                           sid, isec->sid,
6061                           SECCLASS_MSGQ, MSGQ__READ, &ad);
6062         if (!rc)
6063                 rc = avc_has_perm(&selinux_state,
6064                                   sid, msec->sid,
6065                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
6066         return rc;
6067 }
6068
6069 /* Shared Memory security operations */
6070 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6071 {
6072         struct ipc_security_struct *isec;
6073         struct common_audit_data ad;
6074         u32 sid = current_sid();
6075         int rc;
6076
6077         isec = selinux_ipc(shp);
6078         ipc_init_security(isec, SECCLASS_SHM);
6079
6080         ad.type = LSM_AUDIT_DATA_IPC;
6081         ad.u.ipc_id = shp->key;
6082
6083         rc = avc_has_perm(&selinux_state,
6084                           sid, isec->sid, SECCLASS_SHM,
6085                           SHM__CREATE, &ad);
6086         return rc;
6087 }
6088
6089 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6090 {
6091         struct ipc_security_struct *isec;
6092         struct common_audit_data ad;
6093         u32 sid = current_sid();
6094
6095         isec = selinux_ipc(shp);
6096
6097         ad.type = LSM_AUDIT_DATA_IPC;
6098         ad.u.ipc_id = shp->key;
6099
6100         return avc_has_perm(&selinux_state,
6101                             sid, isec->sid, SECCLASS_SHM,
6102                             SHM__ASSOCIATE, &ad);
6103 }
6104
6105 /* Note, at this point, shp is locked down */
6106 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6107 {
6108         int perms;
6109         int err;
6110
6111         switch (cmd) {
6112         case IPC_INFO:
6113         case SHM_INFO:
6114                 /* No specific object, just general system-wide information. */
6115                 return avc_has_perm(&selinux_state,
6116                                     current_sid(), SECINITSID_KERNEL,
6117                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6118         case IPC_STAT:
6119         case SHM_STAT:
6120         case SHM_STAT_ANY:
6121                 perms = SHM__GETATTR | SHM__ASSOCIATE;
6122                 break;
6123         case IPC_SET:
6124                 perms = SHM__SETATTR;
6125                 break;
6126         case SHM_LOCK:
6127         case SHM_UNLOCK:
6128                 perms = SHM__LOCK;
6129                 break;
6130         case IPC_RMID:
6131                 perms = SHM__DESTROY;
6132                 break;
6133         default:
6134                 return 0;
6135         }
6136
6137         err = ipc_has_perm(shp, perms);
6138         return err;
6139 }
6140
6141 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6142                              char __user *shmaddr, int shmflg)
6143 {
6144         u32 perms;
6145
6146         if (shmflg & SHM_RDONLY)
6147                 perms = SHM__READ;
6148         else
6149                 perms = SHM__READ | SHM__WRITE;
6150
6151         return ipc_has_perm(shp, perms);
6152 }
6153
6154 /* Semaphore security operations */
6155 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6156 {
6157         struct ipc_security_struct *isec;
6158         struct common_audit_data ad;
6159         u32 sid = current_sid();
6160         int rc;
6161
6162         isec = selinux_ipc(sma);
6163         ipc_init_security(isec, SECCLASS_SEM);
6164
6165         ad.type = LSM_AUDIT_DATA_IPC;
6166         ad.u.ipc_id = sma->key;
6167
6168         rc = avc_has_perm(&selinux_state,
6169                           sid, isec->sid, SECCLASS_SEM,
6170                           SEM__CREATE, &ad);
6171         return rc;
6172 }
6173
6174 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6175 {
6176         struct ipc_security_struct *isec;
6177         struct common_audit_data ad;
6178         u32 sid = current_sid();
6179
6180         isec = selinux_ipc(sma);
6181
6182         ad.type = LSM_AUDIT_DATA_IPC;
6183         ad.u.ipc_id = sma->key;
6184
6185         return avc_has_perm(&selinux_state,
6186                             sid, isec->sid, SECCLASS_SEM,
6187                             SEM__ASSOCIATE, &ad);
6188 }
6189
6190 /* Note, at this point, sma is locked down */
6191 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6192 {
6193         int err;
6194         u32 perms;
6195
6196         switch (cmd) {
6197         case IPC_INFO:
6198         case SEM_INFO:
6199                 /* No specific object, just general system-wide information. */
6200                 return avc_has_perm(&selinux_state,
6201                                     current_sid(), SECINITSID_KERNEL,
6202                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6203         case GETPID:
6204         case GETNCNT:
6205         case GETZCNT:
6206                 perms = SEM__GETATTR;
6207                 break;
6208         case GETVAL:
6209         case GETALL:
6210                 perms = SEM__READ;
6211                 break;
6212         case SETVAL:
6213         case SETALL:
6214                 perms = SEM__WRITE;
6215                 break;
6216         case IPC_RMID:
6217                 perms = SEM__DESTROY;
6218                 break;
6219         case IPC_SET:
6220                 perms = SEM__SETATTR;
6221                 break;
6222         case IPC_STAT:
6223         case SEM_STAT:
6224         case SEM_STAT_ANY:
6225                 perms = SEM__GETATTR | SEM__ASSOCIATE;
6226                 break;
6227         default:
6228                 return 0;
6229         }
6230
6231         err = ipc_has_perm(sma, perms);
6232         return err;
6233 }
6234
6235 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6236                              struct sembuf *sops, unsigned nsops, int alter)
6237 {
6238         u32 perms;
6239
6240         if (alter)
6241                 perms = SEM__READ | SEM__WRITE;
6242         else
6243                 perms = SEM__READ;
6244
6245         return ipc_has_perm(sma, perms);
6246 }
6247
6248 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6249 {
6250         u32 av = 0;
6251
6252         av = 0;
6253         if (flag & S_IRUGO)
6254                 av |= IPC__UNIX_READ;
6255         if (flag & S_IWUGO)
6256                 av |= IPC__UNIX_WRITE;
6257
6258         if (av == 0)
6259                 return 0;
6260
6261         return ipc_has_perm(ipcp, av);
6262 }
6263
6264 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6265 {
6266         struct ipc_security_struct *isec = selinux_ipc(ipcp);
6267         *secid = isec->sid;
6268 }
6269
6270 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6271 {
6272         if (inode)
6273                 inode_doinit_with_dentry(inode, dentry);
6274 }
6275
6276 static int selinux_getprocattr(struct task_struct *p,
6277                                char *name, char **value)
6278 {
6279         const struct task_security_struct *__tsec;
6280         u32 sid;
6281         int error;
6282         unsigned len;
6283
6284         rcu_read_lock();
6285         __tsec = selinux_cred(__task_cred(p));
6286
6287         if (current != p) {
6288                 error = avc_has_perm(&selinux_state,
6289                                      current_sid(), __tsec->sid,
6290                                      SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6291                 if (error)
6292                         goto bad;
6293         }
6294
6295         if (!strcmp(name, "current"))
6296                 sid = __tsec->sid;
6297         else if (!strcmp(name, "prev"))
6298                 sid = __tsec->osid;
6299         else if (!strcmp(name, "exec"))
6300                 sid = __tsec->exec_sid;
6301         else if (!strcmp(name, "fscreate"))
6302                 sid = __tsec->create_sid;
6303         else if (!strcmp(name, "keycreate"))
6304                 sid = __tsec->keycreate_sid;
6305         else if (!strcmp(name, "sockcreate"))
6306                 sid = __tsec->sockcreate_sid;
6307         else {
6308                 error = -EINVAL;
6309                 goto bad;
6310         }
6311         rcu_read_unlock();
6312
6313         if (!sid)
6314                 return 0;
6315
6316         error = security_sid_to_context(&selinux_state, sid, value, &len);
6317         if (error)
6318                 return error;
6319         return len;
6320
6321 bad:
6322         rcu_read_unlock();
6323         return error;
6324 }
6325
6326 static int selinux_setprocattr(const char *name, void *value, size_t size)
6327 {
6328         struct task_security_struct *tsec;
6329         struct cred *new;
6330         u32 mysid = current_sid(), sid = 0, ptsid;
6331         int error;
6332         char *str = value;
6333
6334         /*
6335          * Basic control over ability to set these attributes at all.
6336          */
6337         if (!strcmp(name, "exec"))
6338                 error = avc_has_perm(&selinux_state,
6339                                      mysid, mysid, SECCLASS_PROCESS,
6340                                      PROCESS__SETEXEC, NULL);
6341         else if (!strcmp(name, "fscreate"))
6342                 error = avc_has_perm(&selinux_state,
6343                                      mysid, mysid, SECCLASS_PROCESS,
6344                                      PROCESS__SETFSCREATE, NULL);
6345         else if (!strcmp(name, "keycreate"))
6346                 error = avc_has_perm(&selinux_state,
6347                                      mysid, mysid, SECCLASS_PROCESS,
6348                                      PROCESS__SETKEYCREATE, NULL);
6349         else if (!strcmp(name, "sockcreate"))
6350                 error = avc_has_perm(&selinux_state,
6351                                      mysid, mysid, SECCLASS_PROCESS,
6352                                      PROCESS__SETSOCKCREATE, NULL);
6353         else if (!strcmp(name, "current"))
6354                 error = avc_has_perm(&selinux_state,
6355                                      mysid, mysid, SECCLASS_PROCESS,
6356                                      PROCESS__SETCURRENT, NULL);
6357         else
6358                 error = -EINVAL;
6359         if (error)
6360                 return error;
6361
6362         /* Obtain a SID for the context, if one was specified. */
6363         if (size && str[0] && str[0] != '\n') {
6364                 if (str[size-1] == '\n') {
6365                         str[size-1] = 0;
6366                         size--;
6367                 }
6368                 error = security_context_to_sid(&selinux_state, value, size,
6369                                                 &sid, GFP_KERNEL);
6370                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6371                         if (!has_cap_mac_admin(true)) {
6372                                 struct audit_buffer *ab;
6373                                 size_t audit_size;
6374
6375                                 /* We strip a nul only if it is at the end, otherwise the
6376                                  * context contains a nul and we should audit that */
6377                                 if (str[size - 1] == '\0')
6378                                         audit_size = size - 1;
6379                                 else
6380                                         audit_size = size;
6381                                 ab = audit_log_start(audit_context(),
6382                                                      GFP_ATOMIC,
6383                                                      AUDIT_SELINUX_ERR);
6384                                 audit_log_format(ab, "op=fscreate invalid_context=");
6385                                 audit_log_n_untrustedstring(ab, value, audit_size);
6386                                 audit_log_end(ab);
6387
6388                                 return error;
6389                         }
6390                         error = security_context_to_sid_force(
6391                                                       &selinux_state,
6392                                                       value, size, &sid);
6393                 }
6394                 if (error)
6395                         return error;
6396         }
6397
6398         new = prepare_creds();
6399         if (!new)
6400                 return -ENOMEM;
6401
6402         /* Permission checking based on the specified context is
6403            performed during the actual operation (execve,
6404            open/mkdir/...), when we know the full context of the
6405            operation.  See selinux_bprm_creds_for_exec for the execve
6406            checks and may_create for the file creation checks. The
6407            operation will then fail if the context is not permitted. */
6408         tsec = selinux_cred(new);
6409         if (!strcmp(name, "exec")) {
6410                 tsec->exec_sid = sid;
6411         } else if (!strcmp(name, "fscreate")) {
6412                 tsec->create_sid = sid;
6413         } else if (!strcmp(name, "keycreate")) {
6414                 if (sid) {
6415                         error = avc_has_perm(&selinux_state, mysid, sid,
6416                                              SECCLASS_KEY, KEY__CREATE, NULL);
6417                         if (error)
6418                                 goto abort_change;
6419                 }
6420                 tsec->keycreate_sid = sid;
6421         } else if (!strcmp(name, "sockcreate")) {
6422                 tsec->sockcreate_sid = sid;
6423         } else if (!strcmp(name, "current")) {
6424                 error = -EINVAL;
6425                 if (sid == 0)
6426                         goto abort_change;
6427
6428                 /* Only allow single threaded processes to change context */
6429                 error = -EPERM;
6430                 if (!current_is_single_threaded()) {
6431                         error = security_bounded_transition(&selinux_state,
6432                                                             tsec->sid, sid);
6433                         if (error)
6434                                 goto abort_change;
6435                 }
6436
6437                 /* Check permissions for the transition. */
6438                 error = avc_has_perm(&selinux_state,
6439                                      tsec->sid, sid, SECCLASS_PROCESS,
6440                                      PROCESS__DYNTRANSITION, NULL);
6441                 if (error)
6442                         goto abort_change;
6443
6444                 /* Check for ptracing, and update the task SID if ok.
6445                    Otherwise, leave SID unchanged and fail. */
6446                 ptsid = ptrace_parent_sid();
6447                 if (ptsid != 0) {
6448                         error = avc_has_perm(&selinux_state,
6449                                              ptsid, sid, SECCLASS_PROCESS,
6450                                              PROCESS__PTRACE, NULL);
6451                         if (error)
6452                                 goto abort_change;
6453                 }
6454
6455                 tsec->sid = sid;
6456         } else {
6457                 error = -EINVAL;
6458                 goto abort_change;
6459         }
6460
6461         commit_creds(new);
6462         return size;
6463
6464 abort_change:
6465         abort_creds(new);
6466         return error;
6467 }
6468
6469 static int selinux_ismaclabel(const char *name)
6470 {
6471         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6472 }
6473
6474 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6475 {
6476         return security_sid_to_context(&selinux_state, secid,
6477                                        secdata, seclen);
6478 }
6479
6480 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6481 {
6482         return security_context_to_sid(&selinux_state, secdata, seclen,
6483                                        secid, GFP_KERNEL);
6484 }
6485
6486 static void selinux_release_secctx(char *secdata, u32 seclen)
6487 {
6488         kfree(secdata);
6489 }
6490
6491 static void selinux_inode_invalidate_secctx(struct inode *inode)
6492 {
6493         struct inode_security_struct *isec = selinux_inode(inode);
6494
6495         spin_lock(&isec->lock);
6496         isec->initialized = LABEL_INVALID;
6497         spin_unlock(&isec->lock);
6498 }
6499
6500 /*
6501  *      called with inode->i_mutex locked
6502  */
6503 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6504 {
6505         int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6506                                            ctx, ctxlen, 0);
6507         /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6508         return rc == -EOPNOTSUPP ? 0 : rc;
6509 }
6510
6511 /*
6512  *      called with inode->i_mutex locked
6513  */
6514 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6515 {
6516         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6517 }
6518
6519 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6520 {
6521         int len = 0;
6522         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6523                                                 ctx, true);
6524         if (len < 0)
6525                 return len;
6526         *ctxlen = len;
6527         return 0;
6528 }
6529 #ifdef CONFIG_KEYS
6530
6531 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6532                              unsigned long flags)
6533 {
6534         const struct task_security_struct *tsec;
6535         struct key_security_struct *ksec;
6536
6537         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6538         if (!ksec)
6539                 return -ENOMEM;
6540
6541         tsec = selinux_cred(cred);
6542         if (tsec->keycreate_sid)
6543                 ksec->sid = tsec->keycreate_sid;
6544         else
6545                 ksec->sid = tsec->sid;
6546
6547         k->security = ksec;
6548         return 0;
6549 }
6550
6551 static void selinux_key_free(struct key *k)
6552 {
6553         struct key_security_struct *ksec = k->security;
6554
6555         k->security = NULL;
6556         kfree(ksec);
6557 }
6558
6559 static int selinux_key_permission(key_ref_t key_ref,
6560                                   const struct cred *cred,
6561                                   enum key_need_perm need_perm)
6562 {
6563         struct key *key;
6564         struct key_security_struct *ksec;
6565         u32 perm, sid;
6566
6567         switch (need_perm) {
6568         case KEY_NEED_VIEW:
6569                 perm = KEY__VIEW;
6570                 break;
6571         case KEY_NEED_READ:
6572                 perm = KEY__READ;
6573                 break;
6574         case KEY_NEED_WRITE:
6575                 perm = KEY__WRITE;
6576                 break;
6577         case KEY_NEED_SEARCH:
6578                 perm = KEY__SEARCH;
6579                 break;
6580         case KEY_NEED_LINK:
6581                 perm = KEY__LINK;
6582                 break;
6583         case KEY_NEED_SETATTR:
6584                 perm = KEY__SETATTR;
6585                 break;
6586         case KEY_NEED_UNLINK:
6587         case KEY_SYSADMIN_OVERRIDE:
6588         case KEY_AUTHTOKEN_OVERRIDE:
6589         case KEY_DEFER_PERM_CHECK:
6590                 return 0;
6591         default:
6592                 WARN_ON(1);
6593                 return -EPERM;
6594
6595         }
6596
6597         sid = cred_sid(cred);
6598         key = key_ref_to_ptr(key_ref);
6599         ksec = key->security;
6600
6601         return avc_has_perm(&selinux_state,
6602                             sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6603 }
6604
6605 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6606 {
6607         struct key_security_struct *ksec = key->security;
6608         char *context = NULL;
6609         unsigned len;
6610         int rc;
6611
6612         rc = security_sid_to_context(&selinux_state, ksec->sid,
6613                                      &context, &len);
6614         if (!rc)
6615                 rc = len;
6616         *_buffer = context;
6617         return rc;
6618 }
6619
6620 #ifdef CONFIG_KEY_NOTIFICATIONS
6621 static int selinux_watch_key(struct key *key)
6622 {
6623         struct key_security_struct *ksec = key->security;
6624         u32 sid = current_sid();
6625
6626         return avc_has_perm(&selinux_state,
6627                             sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6628 }
6629 #endif
6630 #endif
6631
6632 #ifdef CONFIG_SECURITY_INFINIBAND
6633 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6634 {
6635         struct common_audit_data ad;
6636         int err;
6637         u32 sid = 0;
6638         struct ib_security_struct *sec = ib_sec;
6639         struct lsm_ibpkey_audit ibpkey;
6640
6641         err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6642         if (err)
6643                 return err;
6644
6645         ad.type = LSM_AUDIT_DATA_IBPKEY;
6646         ibpkey.subnet_prefix = subnet_prefix;
6647         ibpkey.pkey = pkey_val;
6648         ad.u.ibpkey = &ibpkey;
6649         return avc_has_perm(&selinux_state,
6650                             sec->sid, sid,
6651                             SECCLASS_INFINIBAND_PKEY,
6652                             INFINIBAND_PKEY__ACCESS, &ad);
6653 }
6654
6655 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6656                                             u8 port_num)
6657 {
6658         struct common_audit_data ad;
6659         int err;
6660         u32 sid = 0;
6661         struct ib_security_struct *sec = ib_sec;
6662         struct lsm_ibendport_audit ibendport;
6663
6664         err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6665                                       &sid);
6666
6667         if (err)
6668                 return err;
6669
6670         ad.type = LSM_AUDIT_DATA_IBENDPORT;
6671         strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6672         ibendport.port = port_num;
6673         ad.u.ibendport = &ibendport;
6674         return avc_has_perm(&selinux_state,
6675                             sec->sid, sid,
6676                             SECCLASS_INFINIBAND_ENDPORT,
6677                             INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6678 }
6679
6680 static int selinux_ib_alloc_security(void **ib_sec)
6681 {
6682         struct ib_security_struct *sec;
6683
6684         sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6685         if (!sec)
6686                 return -ENOMEM;
6687         sec->sid = current_sid();
6688
6689         *ib_sec = sec;
6690         return 0;
6691 }
6692
6693 static void selinux_ib_free_security(void *ib_sec)
6694 {
6695         kfree(ib_sec);
6696 }
6697 #endif
6698
6699 #ifdef CONFIG_BPF_SYSCALL
6700 static int selinux_bpf(int cmd, union bpf_attr *attr,
6701                                      unsigned int size)
6702 {
6703         u32 sid = current_sid();
6704         int ret;
6705
6706         switch (cmd) {
6707         case BPF_MAP_CREATE:
6708                 ret = avc_has_perm(&selinux_state,
6709                                    sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6710                                    NULL);
6711                 break;
6712         case BPF_PROG_LOAD:
6713                 ret = avc_has_perm(&selinux_state,
6714                                    sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6715                                    NULL);
6716                 break;
6717         default:
6718                 ret = 0;
6719                 break;
6720         }
6721
6722         return ret;
6723 }
6724
6725 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6726 {
6727         u32 av = 0;
6728
6729         if (fmode & FMODE_READ)
6730                 av |= BPF__MAP_READ;
6731         if (fmode & FMODE_WRITE)
6732                 av |= BPF__MAP_WRITE;
6733         return av;
6734 }
6735
6736 /* This function will check the file pass through unix socket or binder to see
6737  * if it is a bpf related object. And apply correspinding checks on the bpf
6738  * object based on the type. The bpf maps and programs, not like other files and
6739  * socket, are using a shared anonymous inode inside the kernel as their inode.
6740  * So checking that inode cannot identify if the process have privilege to
6741  * access the bpf object and that's why we have to add this additional check in
6742  * selinux_file_receive and selinux_binder_transfer_files.
6743  */
6744 static int bpf_fd_pass(struct file *file, u32 sid)
6745 {
6746         struct bpf_security_struct *bpfsec;
6747         struct bpf_prog *prog;
6748         struct bpf_map *map;
6749         int ret;
6750
6751         if (file->f_op == &bpf_map_fops) {
6752                 map = file->private_data;
6753                 bpfsec = map->security;
6754                 ret = avc_has_perm(&selinux_state,
6755                                    sid, bpfsec->sid, SECCLASS_BPF,
6756                                    bpf_map_fmode_to_av(file->f_mode), NULL);
6757                 if (ret)
6758                         return ret;
6759         } else if (file->f_op == &bpf_prog_fops) {
6760                 prog = file->private_data;
6761                 bpfsec = prog->aux->security;
6762                 ret = avc_has_perm(&selinux_state,
6763                                    sid, bpfsec->sid, SECCLASS_BPF,
6764                                    BPF__PROG_RUN, NULL);
6765                 if (ret)
6766                         return ret;
6767         }
6768         return 0;
6769 }
6770
6771 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6772 {
6773         u32 sid = current_sid();
6774         struct bpf_security_struct *bpfsec;
6775
6776         bpfsec = map->security;
6777         return avc_has_perm(&selinux_state,
6778                             sid, bpfsec->sid, SECCLASS_BPF,
6779                             bpf_map_fmode_to_av(fmode), NULL);
6780 }
6781
6782 static int selinux_bpf_prog(struct bpf_prog *prog)
6783 {
6784         u32 sid = current_sid();
6785         struct bpf_security_struct *bpfsec;
6786
6787         bpfsec = prog->aux->security;
6788         return avc_has_perm(&selinux_state,
6789                             sid, bpfsec->sid, SECCLASS_BPF,
6790                             BPF__PROG_RUN, NULL);
6791 }
6792
6793 static int selinux_bpf_map_alloc(struct bpf_map *map)
6794 {
6795         struct bpf_security_struct *bpfsec;
6796
6797         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6798         if (!bpfsec)
6799                 return -ENOMEM;
6800
6801         bpfsec->sid = current_sid();
6802         map->security = bpfsec;
6803
6804         return 0;
6805 }
6806
6807 static void selinux_bpf_map_free(struct bpf_map *map)
6808 {
6809         struct bpf_security_struct *bpfsec = map->security;
6810
6811         map->security = NULL;
6812         kfree(bpfsec);
6813 }
6814
6815 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6816 {
6817         struct bpf_security_struct *bpfsec;
6818
6819         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6820         if (!bpfsec)
6821                 return -ENOMEM;
6822
6823         bpfsec->sid = current_sid();
6824         aux->security = bpfsec;
6825
6826         return 0;
6827 }
6828
6829 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6830 {
6831         struct bpf_security_struct *bpfsec = aux->security;
6832
6833         aux->security = NULL;
6834         kfree(bpfsec);
6835 }
6836 #endif
6837
6838 static int selinux_lockdown(enum lockdown_reason what)
6839 {
6840         struct common_audit_data ad;
6841         u32 sid = current_sid();
6842         int invalid_reason = (what <= LOCKDOWN_NONE) ||
6843                              (what == LOCKDOWN_INTEGRITY_MAX) ||
6844                              (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
6845
6846         if (WARN(invalid_reason, "Invalid lockdown reason")) {
6847                 audit_log(audit_context(),
6848                           GFP_ATOMIC, AUDIT_SELINUX_ERR,
6849                           "lockdown_reason=invalid");
6850                 return -EINVAL;
6851         }
6852
6853         ad.type = LSM_AUDIT_DATA_LOCKDOWN;
6854         ad.u.reason = what;
6855
6856         if (what <= LOCKDOWN_INTEGRITY_MAX)
6857                 return avc_has_perm(&selinux_state,
6858                                     sid, sid, SECCLASS_LOCKDOWN,
6859                                     LOCKDOWN__INTEGRITY, &ad);
6860         else
6861                 return avc_has_perm(&selinux_state,
6862                                     sid, sid, SECCLASS_LOCKDOWN,
6863                                     LOCKDOWN__CONFIDENTIALITY, &ad);
6864 }
6865
6866 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6867         .lbs_cred = sizeof(struct task_security_struct),
6868         .lbs_file = sizeof(struct file_security_struct),
6869         .lbs_inode = sizeof(struct inode_security_struct),
6870         .lbs_ipc = sizeof(struct ipc_security_struct),
6871         .lbs_msg_msg = sizeof(struct msg_security_struct),
6872 };
6873
6874 #ifdef CONFIG_PERF_EVENTS
6875 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6876 {
6877         u32 requested, sid = current_sid();
6878
6879         if (type == PERF_SECURITY_OPEN)
6880                 requested = PERF_EVENT__OPEN;
6881         else if (type == PERF_SECURITY_CPU)
6882                 requested = PERF_EVENT__CPU;
6883         else if (type == PERF_SECURITY_KERNEL)
6884                 requested = PERF_EVENT__KERNEL;
6885         else if (type == PERF_SECURITY_TRACEPOINT)
6886                 requested = PERF_EVENT__TRACEPOINT;
6887         else
6888                 return -EINVAL;
6889
6890         return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6891                             requested, NULL);
6892 }
6893
6894 static int selinux_perf_event_alloc(struct perf_event *event)
6895 {
6896         struct perf_event_security_struct *perfsec;
6897
6898         perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6899         if (!perfsec)
6900                 return -ENOMEM;
6901
6902         perfsec->sid = current_sid();
6903         event->security = perfsec;
6904
6905         return 0;
6906 }
6907
6908 static void selinux_perf_event_free(struct perf_event *event)
6909 {
6910         struct perf_event_security_struct *perfsec = event->security;
6911
6912         event->security = NULL;
6913         kfree(perfsec);
6914 }
6915
6916 static int selinux_perf_event_read(struct perf_event *event)
6917 {
6918         struct perf_event_security_struct *perfsec = event->security;
6919         u32 sid = current_sid();
6920
6921         return avc_has_perm(&selinux_state, sid, perfsec->sid,
6922                             SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6923 }
6924
6925 static int selinux_perf_event_write(struct perf_event *event)
6926 {
6927         struct perf_event_security_struct *perfsec = event->security;
6928         u32 sid = current_sid();
6929
6930         return avc_has_perm(&selinux_state, sid, perfsec->sid,
6931                             SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6932 }
6933 #endif
6934
6935 /*
6936  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6937  * 1. any hooks that don't belong to (2.) or (3.) below,
6938  * 2. hooks that both access structures allocated by other hooks, and allocate
6939  *    structures that can be later accessed by other hooks (mostly "cloning"
6940  *    hooks),
6941  * 3. hooks that only allocate structures that can be later accessed by other
6942  *    hooks ("allocating" hooks).
6943  *
6944  * Please follow block comment delimiters in the list to keep this order.
6945  *
6946  * This ordering is needed for SELinux runtime disable to work at least somewhat
6947  * safely. Breaking the ordering rules above might lead to NULL pointer derefs
6948  * when disabling SELinux at runtime.
6949  */
6950 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6951         LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6952         LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6953         LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6954         LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6955
6956         LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6957         LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6958         LSM_HOOK_INIT(capget, selinux_capget),
6959         LSM_HOOK_INIT(capset, selinux_capset),
6960         LSM_HOOK_INIT(capable, selinux_capable),
6961         LSM_HOOK_INIT(quotactl, selinux_quotactl),
6962         LSM_HOOK_INIT(quota_on, selinux_quota_on),
6963         LSM_HOOK_INIT(syslog, selinux_syslog),
6964         LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6965
6966         LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6967
6968         LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
6969         LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6970         LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6971
6972         LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6973         LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6974         LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6975         LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6976         LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6977         LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6978         LSM_HOOK_INIT(sb_mount, selinux_mount),
6979         LSM_HOOK_INIT(sb_umount, selinux_umount),
6980         LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6981         LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6982
6983         LSM_HOOK_INIT(move_mount, selinux_move_mount),
6984
6985         LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6986         LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6987
6988         LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6989         LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6990         LSM_HOOK_INIT(inode_create, selinux_inode_create),
6991         LSM_HOOK_INIT(inode_link, selinux_inode_link),
6992         LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6993         LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6994         LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6995         LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6996         LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6997         LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6998         LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6999         LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7000         LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7001         LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7002         LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7003         LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7004         LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7005         LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7006         LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7007         LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7008         LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7009         LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7010         LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7011         LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7012         LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7013         LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7014         LSM_HOOK_INIT(path_notify, selinux_path_notify),
7015
7016         LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7017
7018         LSM_HOOK_INIT(file_permission, selinux_file_permission),
7019         LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7020         LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7021         LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7022         LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7023         LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7024         LSM_HOOK_INIT(file_lock, selinux_file_lock),
7025         LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7026         LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7027         LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7028         LSM_HOOK_INIT(file_receive, selinux_file_receive),
7029
7030         LSM_HOOK_INIT(file_open, selinux_file_open),
7031
7032         LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7033         LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7034         LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7035         LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7036         LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7037         LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7038         LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7039         LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7040         LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7041         LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7042         LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7043         LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7044         LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
7045         LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7046         LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7047         LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7048         LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7049         LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7050         LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7051         LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7052         LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7053         LSM_HOOK_INIT(task_kill, selinux_task_kill),
7054         LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7055
7056         LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7057         LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7058
7059         LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7060         LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7061         LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7062         LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7063
7064         LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7065         LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7066         LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7067
7068         LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7069         LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7070         LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7071
7072         LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7073
7074         LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7075         LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7076
7077         LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7078         LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7079         LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7080         LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7081         LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7082         LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7083
7084         LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7085         LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7086
7087         LSM_HOOK_INIT(socket_create, selinux_socket_create),
7088         LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7089         LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7090         LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7091         LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7092         LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7093         LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7094         LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7095         LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7096         LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7097         LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7098         LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7099         LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7100         LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7101         LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7102         LSM_HOOK_INIT(socket_getpeersec_stream,
7103                         selinux_socket_getpeersec_stream),
7104         LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7105         LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7106         LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7107         LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7108         LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7109         LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7110         LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7111         LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7112         LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7113         LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7114         LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7115         LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7116         LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7117         LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7118         LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7119         LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7120         LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7121         LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7122         LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7123         LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7124 #ifdef CONFIG_SECURITY_INFINIBAND
7125         LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7126         LSM_HOOK_INIT(ib_endport_manage_subnet,
7127                       selinux_ib_endport_manage_subnet),
7128         LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7129 #endif
7130 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7131         LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7132         LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7133         LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7134         LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7135         LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7136         LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7137                         selinux_xfrm_state_pol_flow_match),
7138         LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7139 #endif
7140
7141 #ifdef CONFIG_KEYS
7142         LSM_HOOK_INIT(key_free, selinux_key_free),
7143         LSM_HOOK_INIT(key_permission, selinux_key_permission),
7144         LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7145 #ifdef CONFIG_KEY_NOTIFICATIONS
7146         LSM_HOOK_INIT(watch_key, selinux_watch_key),
7147 #endif
7148 #endif
7149
7150 #ifdef CONFIG_AUDIT
7151         LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7152         LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7153         LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7154 #endif
7155
7156 #ifdef CONFIG_BPF_SYSCALL
7157         LSM_HOOK_INIT(bpf, selinux_bpf),
7158         LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7159         LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7160         LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7161         LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7162 #endif
7163
7164 #ifdef CONFIG_PERF_EVENTS
7165         LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7166         LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7167         LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7168         LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7169 #endif
7170
7171         LSM_HOOK_INIT(locked_down, selinux_lockdown),
7172
7173         /*
7174          * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7175          */
7176         LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7177         LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7178         LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7179         LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7180 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7181         LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7182 #endif
7183
7184         /*
7185          * PUT "ALLOCATING" HOOKS HERE
7186          */
7187         LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7188         LSM_HOOK_INIT(msg_queue_alloc_security,
7189                       selinux_msg_queue_alloc_security),
7190         LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7191         LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7192         LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7193         LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7194         LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7195         LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7196         LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7197         LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7198 #ifdef CONFIG_SECURITY_INFINIBAND
7199         LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7200 #endif
7201 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7202         LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7203         LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7204         LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7205                       selinux_xfrm_state_alloc_acquire),
7206 #endif
7207 #ifdef CONFIG_KEYS
7208         LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7209 #endif
7210 #ifdef CONFIG_AUDIT
7211         LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7212 #endif
7213 #ifdef CONFIG_BPF_SYSCALL
7214         LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7215         LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7216 #endif
7217 #ifdef CONFIG_PERF_EVENTS
7218         LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7219 #endif
7220 };
7221
7222 static __init int selinux_init(void)
7223 {
7224         pr_info("SELinux:  Initializing.\n");
7225
7226         memset(&selinux_state, 0, sizeof(selinux_state));
7227         enforcing_set(&selinux_state, selinux_enforcing_boot);
7228         selinux_state.checkreqprot = selinux_checkreqprot_boot;
7229         selinux_ss_init(&selinux_state.ss);
7230         selinux_avc_init(&selinux_state.avc);
7231         mutex_init(&selinux_state.status_lock);
7232
7233         /* Set the security state for the initial task. */
7234         cred_init_security();
7235
7236         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7237
7238         avc_init();
7239
7240         avtab_cache_init();
7241
7242         ebitmap_cache_init();
7243
7244         hashtab_cache_init();
7245
7246         security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7247
7248         if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7249                 panic("SELinux: Unable to register AVC netcache callback\n");
7250
7251         if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7252                 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7253
7254         if (selinux_enforcing_boot)
7255                 pr_debug("SELinux:  Starting in enforcing mode\n");
7256         else
7257                 pr_debug("SELinux:  Starting in permissive mode\n");
7258
7259         fs_validate_description("selinux", selinux_fs_parameters);
7260
7261         return 0;
7262 }
7263
7264 static void delayed_superblock_init(struct super_block *sb, void *unused)
7265 {
7266         selinux_set_mnt_opts(sb, NULL, 0, NULL);
7267 }
7268
7269 void selinux_complete_init(void)
7270 {
7271         pr_debug("SELinux:  Completing initialization.\n");
7272
7273         /* Set up any superblocks initialized prior to the policy load. */
7274         pr_debug("SELinux:  Setting up existing superblocks.\n");
7275         iterate_supers(delayed_superblock_init, NULL);
7276 }
7277
7278 /* SELinux requires early initialization in order to label
7279    all processes and objects when they are created. */
7280 DEFINE_LSM(selinux) = {
7281         .name = "selinux",
7282         .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7283         .enabled = &selinux_enabled_boot,
7284         .blobs = &selinux_blob_sizes,
7285         .init = selinux_init,
7286 };
7287
7288 #if defined(CONFIG_NETFILTER)
7289
7290 static const struct nf_hook_ops selinux_nf_ops[] = {
7291         {
7292                 .hook =         selinux_ipv4_postroute,
7293                 .pf =           NFPROTO_IPV4,
7294                 .hooknum =      NF_INET_POST_ROUTING,
7295                 .priority =     NF_IP_PRI_SELINUX_LAST,
7296         },
7297         {
7298                 .hook =         selinux_ipv4_forward,
7299                 .pf =           NFPROTO_IPV4,
7300                 .hooknum =      NF_INET_FORWARD,
7301                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7302         },
7303         {
7304                 .hook =         selinux_ipv4_output,
7305                 .pf =           NFPROTO_IPV4,
7306                 .hooknum =      NF_INET_LOCAL_OUT,
7307                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7308         },
7309 #if IS_ENABLED(CONFIG_IPV6)
7310         {
7311                 .hook =         selinux_ipv6_postroute,
7312                 .pf =           NFPROTO_IPV6,
7313                 .hooknum =      NF_INET_POST_ROUTING,
7314                 .priority =     NF_IP6_PRI_SELINUX_LAST,
7315         },
7316         {
7317                 .hook =         selinux_ipv6_forward,
7318                 .pf =           NFPROTO_IPV6,
7319                 .hooknum =      NF_INET_FORWARD,
7320                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7321         },
7322         {
7323                 .hook =         selinux_ipv6_output,
7324                 .pf =           NFPROTO_IPV6,
7325                 .hooknum =      NF_INET_LOCAL_OUT,
7326                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7327         },
7328 #endif  /* IPV6 */
7329 };
7330
7331 static int __net_init selinux_nf_register(struct net *net)
7332 {
7333         return nf_register_net_hooks(net, selinux_nf_ops,
7334                                      ARRAY_SIZE(selinux_nf_ops));
7335 }
7336
7337 static void __net_exit selinux_nf_unregister(struct net *net)
7338 {
7339         nf_unregister_net_hooks(net, selinux_nf_ops,
7340                                 ARRAY_SIZE(selinux_nf_ops));
7341 }
7342
7343 static struct pernet_operations selinux_net_ops = {
7344         .init = selinux_nf_register,
7345         .exit = selinux_nf_unregister,
7346 };
7347
7348 static int __init selinux_nf_ip_init(void)
7349 {
7350         int err;
7351
7352         if (!selinux_enabled_boot)
7353                 return 0;
7354
7355         pr_debug("SELinux:  Registering netfilter hooks\n");
7356
7357         err = register_pernet_subsys(&selinux_net_ops);
7358         if (err)
7359                 panic("SELinux: register_pernet_subsys: error %d\n", err);
7360
7361         return 0;
7362 }
7363 __initcall(selinux_nf_ip_init);
7364
7365 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7366 static void selinux_nf_ip_exit(void)
7367 {
7368         pr_debug("SELinux:  Unregistering netfilter hooks\n");
7369
7370         unregister_pernet_subsys(&selinux_net_ops);
7371 }
7372 #endif
7373
7374 #else /* CONFIG_NETFILTER */
7375
7376 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7377 #define selinux_nf_ip_exit()
7378 #endif
7379
7380 #endif /* CONFIG_NETFILTER */
7381
7382 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7383 int selinux_disable(struct selinux_state *state)
7384 {
7385         if (selinux_initialized(state)) {
7386                 /* Not permitted after initial policy load. */
7387                 return -EINVAL;
7388         }
7389
7390         if (selinux_disabled(state)) {
7391                 /* Only do this once. */
7392                 return -EINVAL;
7393         }
7394
7395         selinux_mark_disabled(state);
7396
7397         pr_info("SELinux:  Disabled at runtime.\n");
7398
7399         /*
7400          * Unregister netfilter hooks.
7401          * Must be done before security_delete_hooks() to avoid breaking
7402          * runtime disable.
7403          */
7404         selinux_nf_ip_exit();
7405
7406         security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7407
7408         /* Try to destroy the avc node cache */
7409         avc_disable();
7410
7411         /* Unregister selinuxfs. */
7412         exit_sel_fs();
7413
7414         return 0;
7415 }
7416 #endif