Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[sfrench/cifs-2.6.git] / security / selinux / hooks.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  NSA Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
8  *            Chris Vance, <cvance@nai.com>
9  *            Wayne Salamon, <wsalamon@nai.com>
10  *            James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *                                         Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *                          <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *      Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *                     Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/tracehook.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>             /* for local_port_range[] */
55 #include <net/tcp.h>            /* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>    /* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>           /* for Unix socket types */
73 #include <net/af_unix.h>        /* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <linux/bpf.h>
89 #include <linux/kernfs.h>
90 #include <linux/stringhash.h>   /* for hashlen_string() */
91 #include <uapi/linux/mount.h>
92 #include <linux/fsnotify.h>
93 #include <linux/fanotify.h>
94
95 #include "avc.h"
96 #include "objsec.h"
97 #include "netif.h"
98 #include "netnode.h"
99 #include "netport.h"
100 #include "ibpkey.h"
101 #include "xfrm.h"
102 #include "netlabel.h"
103 #include "audit.h"
104 #include "avc_ss.h"
105
106 struct selinux_state selinux_state;
107
108 /* SECMARK reference count */
109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110
111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112 static int selinux_enforcing_boot;
113
114 static int __init enforcing_setup(char *str)
115 {
116         unsigned long enforcing;
117         if (!kstrtoul(str, 0, &enforcing))
118                 selinux_enforcing_boot = enforcing ? 1 : 0;
119         return 1;
120 }
121 __setup("enforcing=", enforcing_setup);
122 #else
123 #define selinux_enforcing_boot 1
124 #endif
125
126 int selinux_enabled __lsm_ro_after_init = 1;
127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128 static int __init selinux_enabled_setup(char *str)
129 {
130         unsigned long enabled;
131         if (!kstrtoul(str, 0, &enabled))
132                 selinux_enabled = enabled ? 1 : 0;
133         return 1;
134 }
135 __setup("selinux=", selinux_enabled_setup);
136 #endif
137
138 static unsigned int selinux_checkreqprot_boot =
139         CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141 static int __init checkreqprot_setup(char *str)
142 {
143         unsigned long checkreqprot;
144
145         if (!kstrtoul(str, 0, &checkreqprot))
146                 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147         return 1;
148 }
149 __setup("checkreqprot=", checkreqprot_setup);
150
151 /**
152  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
153  *
154  * Description:
155  * This function checks the SECMARK reference counter to see if any SECMARK
156  * targets are currently configured, if the reference counter is greater than
157  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
158  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
159  * policy capability is enabled, SECMARK is always considered enabled.
160  *
161  */
162 static int selinux_secmark_enabled(void)
163 {
164         return (selinux_policycap_alwaysnetwork() ||
165                 atomic_read(&selinux_secmark_refcount));
166 }
167
168 /**
169  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
170  *
171  * Description:
172  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
173  * (1) if any are enabled or false (0) if neither are enabled.  If the
174  * always_check_network policy capability is enabled, peer labeling
175  * is always considered enabled.
176  *
177  */
178 static int selinux_peerlbl_enabled(void)
179 {
180         return (selinux_policycap_alwaysnetwork() ||
181                 netlbl_enabled() || selinux_xfrm_enabled());
182 }
183
184 static int selinux_netcache_avc_callback(u32 event)
185 {
186         if (event == AVC_CALLBACK_RESET) {
187                 sel_netif_flush();
188                 sel_netnode_flush();
189                 sel_netport_flush();
190                 synchronize_net();
191         }
192         return 0;
193 }
194
195 static int selinux_lsm_notifier_avc_callback(u32 event)
196 {
197         if (event == AVC_CALLBACK_RESET) {
198                 sel_ib_pkey_flush();
199                 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
200         }
201
202         return 0;
203 }
204
205 /*
206  * initialise the security for the init task
207  */
208 static void cred_init_security(void)
209 {
210         struct cred *cred = (struct cred *) current->real_cred;
211         struct task_security_struct *tsec;
212
213         tsec = selinux_cred(cred);
214         tsec->osid = tsec->sid = SECINITSID_KERNEL;
215 }
216
217 /*
218  * get the security ID of a set of credentials
219  */
220 static inline u32 cred_sid(const struct cred *cred)
221 {
222         const struct task_security_struct *tsec;
223
224         tsec = selinux_cred(cred);
225         return tsec->sid;
226 }
227
228 /*
229  * get the objective security ID of a task
230  */
231 static inline u32 task_sid(const struct task_struct *task)
232 {
233         u32 sid;
234
235         rcu_read_lock();
236         sid = cred_sid(__task_cred(task));
237         rcu_read_unlock();
238         return sid;
239 }
240
241 /* Allocate and free functions for each kind of security blob. */
242
243 static int inode_alloc_security(struct inode *inode)
244 {
245         struct inode_security_struct *isec = selinux_inode(inode);
246         u32 sid = current_sid();
247
248         spin_lock_init(&isec->lock);
249         INIT_LIST_HEAD(&isec->list);
250         isec->inode = inode;
251         isec->sid = SECINITSID_UNLABELED;
252         isec->sclass = SECCLASS_FILE;
253         isec->task_sid = sid;
254         isec->initialized = LABEL_INVALID;
255
256         return 0;
257 }
258
259 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
260
261 /*
262  * Try reloading inode security labels that have been marked as invalid.  The
263  * @may_sleep parameter indicates when sleeping and thus reloading labels is
264  * allowed; when set to false, returns -ECHILD when the label is
265  * invalid.  The @dentry parameter should be set to a dentry of the inode.
266  */
267 static int __inode_security_revalidate(struct inode *inode,
268                                        struct dentry *dentry,
269                                        bool may_sleep)
270 {
271         struct inode_security_struct *isec = selinux_inode(inode);
272
273         might_sleep_if(may_sleep);
274
275         if (selinux_state.initialized &&
276             isec->initialized != LABEL_INITIALIZED) {
277                 if (!may_sleep)
278                         return -ECHILD;
279
280                 /*
281                  * Try reloading the inode security label.  This will fail if
282                  * @opt_dentry is NULL and no dentry for this inode can be
283                  * found; in that case, continue using the old label.
284                  */
285                 inode_doinit_with_dentry(inode, dentry);
286         }
287         return 0;
288 }
289
290 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
291 {
292         return selinux_inode(inode);
293 }
294
295 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
296 {
297         int error;
298
299         error = __inode_security_revalidate(inode, NULL, !rcu);
300         if (error)
301                 return ERR_PTR(error);
302         return selinux_inode(inode);
303 }
304
305 /*
306  * Get the security label of an inode.
307  */
308 static struct inode_security_struct *inode_security(struct inode *inode)
309 {
310         __inode_security_revalidate(inode, NULL, true);
311         return selinux_inode(inode);
312 }
313
314 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
315 {
316         struct inode *inode = d_backing_inode(dentry);
317
318         return selinux_inode(inode);
319 }
320
321 /*
322  * Get the security label of a dentry's backing inode.
323  */
324 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
325 {
326         struct inode *inode = d_backing_inode(dentry);
327
328         __inode_security_revalidate(inode, dentry, true);
329         return selinux_inode(inode);
330 }
331
332 static void inode_free_security(struct inode *inode)
333 {
334         struct inode_security_struct *isec = selinux_inode(inode);
335         struct superblock_security_struct *sbsec;
336
337         if (!isec)
338                 return;
339         sbsec = inode->i_sb->s_security;
340         /*
341          * As not all inode security structures are in a list, we check for
342          * empty list outside of the lock to make sure that we won't waste
343          * time taking a lock doing nothing.
344          *
345          * The list_del_init() function can be safely called more than once.
346          * It should not be possible for this function to be called with
347          * concurrent list_add(), but for better safety against future changes
348          * in the code, we use list_empty_careful() here.
349          */
350         if (!list_empty_careful(&isec->list)) {
351                 spin_lock(&sbsec->isec_lock);
352                 list_del_init(&isec->list);
353                 spin_unlock(&sbsec->isec_lock);
354         }
355 }
356
357 static int file_alloc_security(struct file *file)
358 {
359         struct file_security_struct *fsec = selinux_file(file);
360         u32 sid = current_sid();
361
362         fsec->sid = sid;
363         fsec->fown_sid = sid;
364
365         return 0;
366 }
367
368 static int superblock_alloc_security(struct super_block *sb)
369 {
370         struct superblock_security_struct *sbsec;
371
372         sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
373         if (!sbsec)
374                 return -ENOMEM;
375
376         mutex_init(&sbsec->lock);
377         INIT_LIST_HEAD(&sbsec->isec_head);
378         spin_lock_init(&sbsec->isec_lock);
379         sbsec->sb = sb;
380         sbsec->sid = SECINITSID_UNLABELED;
381         sbsec->def_sid = SECINITSID_FILE;
382         sbsec->mntpoint_sid = SECINITSID_UNLABELED;
383         sb->s_security = sbsec;
384
385         return 0;
386 }
387
388 static void superblock_free_security(struct super_block *sb)
389 {
390         struct superblock_security_struct *sbsec = sb->s_security;
391         sb->s_security = NULL;
392         kfree(sbsec);
393 }
394
395 struct selinux_mnt_opts {
396         const char *fscontext, *context, *rootcontext, *defcontext;
397 };
398
399 static void selinux_free_mnt_opts(void *mnt_opts)
400 {
401         struct selinux_mnt_opts *opts = mnt_opts;
402         kfree(opts->fscontext);
403         kfree(opts->context);
404         kfree(opts->rootcontext);
405         kfree(opts->defcontext);
406         kfree(opts);
407 }
408
409 static inline int inode_doinit(struct inode *inode)
410 {
411         return inode_doinit_with_dentry(inode, NULL);
412 }
413
414 enum {
415         Opt_error = -1,
416         Opt_context = 0,
417         Opt_defcontext = 1,
418         Opt_fscontext = 2,
419         Opt_rootcontext = 3,
420         Opt_seclabel = 4,
421 };
422
423 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
424 static struct {
425         const char *name;
426         int len;
427         int opt;
428         bool has_arg;
429 } tokens[] = {
430         A(context, true),
431         A(fscontext, true),
432         A(defcontext, true),
433         A(rootcontext, true),
434         A(seclabel, false),
435 };
436 #undef A
437
438 static int match_opt_prefix(char *s, int l, char **arg)
439 {
440         int i;
441
442         for (i = 0; i < ARRAY_SIZE(tokens); i++) {
443                 size_t len = tokens[i].len;
444                 if (len > l || memcmp(s, tokens[i].name, len))
445                         continue;
446                 if (tokens[i].has_arg) {
447                         if (len == l || s[len] != '=')
448                                 continue;
449                         *arg = s + len + 1;
450                 } else if (len != l)
451                         continue;
452                 return tokens[i].opt;
453         }
454         return Opt_error;
455 }
456
457 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
458
459 static int may_context_mount_sb_relabel(u32 sid,
460                         struct superblock_security_struct *sbsec,
461                         const struct cred *cred)
462 {
463         const struct task_security_struct *tsec = selinux_cred(cred);
464         int rc;
465
466         rc = avc_has_perm(&selinux_state,
467                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
468                           FILESYSTEM__RELABELFROM, NULL);
469         if (rc)
470                 return rc;
471
472         rc = avc_has_perm(&selinux_state,
473                           tsec->sid, sid, SECCLASS_FILESYSTEM,
474                           FILESYSTEM__RELABELTO, NULL);
475         return rc;
476 }
477
478 static int may_context_mount_inode_relabel(u32 sid,
479                         struct superblock_security_struct *sbsec,
480                         const struct cred *cred)
481 {
482         const struct task_security_struct *tsec = selinux_cred(cred);
483         int rc;
484         rc = avc_has_perm(&selinux_state,
485                           tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
486                           FILESYSTEM__RELABELFROM, NULL);
487         if (rc)
488                 return rc;
489
490         rc = avc_has_perm(&selinux_state,
491                           sid, sbsec->sid, SECCLASS_FILESYSTEM,
492                           FILESYSTEM__ASSOCIATE, NULL);
493         return rc;
494 }
495
496 static int selinux_is_genfs_special_handling(struct super_block *sb)
497 {
498         /* Special handling. Genfs but also in-core setxattr handler */
499         return  !strcmp(sb->s_type->name, "sysfs") ||
500                 !strcmp(sb->s_type->name, "pstore") ||
501                 !strcmp(sb->s_type->name, "debugfs") ||
502                 !strcmp(sb->s_type->name, "tracefs") ||
503                 !strcmp(sb->s_type->name, "rootfs") ||
504                 (selinux_policycap_cgroupseclabel() &&
505                  (!strcmp(sb->s_type->name, "cgroup") ||
506                   !strcmp(sb->s_type->name, "cgroup2")));
507 }
508
509 static int selinux_is_sblabel_mnt(struct super_block *sb)
510 {
511         struct superblock_security_struct *sbsec = sb->s_security;
512
513         /*
514          * IMPORTANT: Double-check logic in this function when adding a new
515          * SECURITY_FS_USE_* definition!
516          */
517         BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
518
519         switch (sbsec->behavior) {
520         case SECURITY_FS_USE_XATTR:
521         case SECURITY_FS_USE_TRANS:
522         case SECURITY_FS_USE_TASK:
523         case SECURITY_FS_USE_NATIVE:
524                 return 1;
525
526         case SECURITY_FS_USE_GENFS:
527                 return selinux_is_genfs_special_handling(sb);
528
529         /* Never allow relabeling on context mounts */
530         case SECURITY_FS_USE_MNTPOINT:
531         case SECURITY_FS_USE_NONE:
532         default:
533                 return 0;
534         }
535 }
536
537 static int sb_finish_set_opts(struct super_block *sb)
538 {
539         struct superblock_security_struct *sbsec = sb->s_security;
540         struct dentry *root = sb->s_root;
541         struct inode *root_inode = d_backing_inode(root);
542         int rc = 0;
543
544         if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
545                 /* Make sure that the xattr handler exists and that no
546                    error other than -ENODATA is returned by getxattr on
547                    the root directory.  -ENODATA is ok, as this may be
548                    the first boot of the SELinux kernel before we have
549                    assigned xattr values to the filesystem. */
550                 if (!(root_inode->i_opflags & IOP_XATTR)) {
551                         pr_warn("SELinux: (dev %s, type %s) has no "
552                                "xattr support\n", sb->s_id, sb->s_type->name);
553                         rc = -EOPNOTSUPP;
554                         goto out;
555                 }
556
557                 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
558                 if (rc < 0 && rc != -ENODATA) {
559                         if (rc == -EOPNOTSUPP)
560                                 pr_warn("SELinux: (dev %s, type "
561                                        "%s) has no security xattr handler\n",
562                                        sb->s_id, sb->s_type->name);
563                         else
564                                 pr_warn("SELinux: (dev %s, type "
565                                        "%s) getxattr errno %d\n", sb->s_id,
566                                        sb->s_type->name, -rc);
567                         goto out;
568                 }
569         }
570
571         sbsec->flags |= SE_SBINITIALIZED;
572
573         /*
574          * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
575          * leave the flag untouched because sb_clone_mnt_opts might be handing
576          * us a superblock that needs the flag to be cleared.
577          */
578         if (selinux_is_sblabel_mnt(sb))
579                 sbsec->flags |= SBLABEL_MNT;
580         else
581                 sbsec->flags &= ~SBLABEL_MNT;
582
583         /* Initialize the root inode. */
584         rc = inode_doinit_with_dentry(root_inode, root);
585
586         /* Initialize any other inodes associated with the superblock, e.g.
587            inodes created prior to initial policy load or inodes created
588            during get_sb by a pseudo filesystem that directly
589            populates itself. */
590         spin_lock(&sbsec->isec_lock);
591         while (!list_empty(&sbsec->isec_head)) {
592                 struct inode_security_struct *isec =
593                                 list_first_entry(&sbsec->isec_head,
594                                            struct inode_security_struct, list);
595                 struct inode *inode = isec->inode;
596                 list_del_init(&isec->list);
597                 spin_unlock(&sbsec->isec_lock);
598                 inode = igrab(inode);
599                 if (inode) {
600                         if (!IS_PRIVATE(inode))
601                                 inode_doinit(inode);
602                         iput(inode);
603                 }
604                 spin_lock(&sbsec->isec_lock);
605         }
606         spin_unlock(&sbsec->isec_lock);
607 out:
608         return rc;
609 }
610
611 static int bad_option(struct superblock_security_struct *sbsec, char flag,
612                       u32 old_sid, u32 new_sid)
613 {
614         char mnt_flags = sbsec->flags & SE_MNTMASK;
615
616         /* check if the old mount command had the same options */
617         if (sbsec->flags & SE_SBINITIALIZED)
618                 if (!(sbsec->flags & flag) ||
619                     (old_sid != new_sid))
620                         return 1;
621
622         /* check if we were passed the same options twice,
623          * aka someone passed context=a,context=b
624          */
625         if (!(sbsec->flags & SE_SBINITIALIZED))
626                 if (mnt_flags & flag)
627                         return 1;
628         return 0;
629 }
630
631 static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
632 {
633         int rc = security_context_str_to_sid(&selinux_state, s,
634                                              sid, GFP_KERNEL);
635         if (rc)
636                 pr_warn("SELinux: security_context_str_to_sid"
637                        "(%s) failed for (dev %s, type %s) errno=%d\n",
638                        s, sb->s_id, sb->s_type->name, rc);
639         return rc;
640 }
641
642 /*
643  * Allow filesystems with binary mount data to explicitly set mount point
644  * labeling information.
645  */
646 static int selinux_set_mnt_opts(struct super_block *sb,
647                                 void *mnt_opts,
648                                 unsigned long kern_flags,
649                                 unsigned long *set_kern_flags)
650 {
651         const struct cred *cred = current_cred();
652         struct superblock_security_struct *sbsec = sb->s_security;
653         struct dentry *root = sbsec->sb->s_root;
654         struct selinux_mnt_opts *opts = mnt_opts;
655         struct inode_security_struct *root_isec;
656         u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
657         u32 defcontext_sid = 0;
658         int rc = 0;
659
660         mutex_lock(&sbsec->lock);
661
662         if (!selinux_state.initialized) {
663                 if (!opts) {
664                         /* Defer initialization until selinux_complete_init,
665                            after the initial policy is loaded and the security
666                            server is ready to handle calls. */
667                         goto out;
668                 }
669                 rc = -EINVAL;
670                 pr_warn("SELinux: Unable to set superblock options "
671                         "before the security server is initialized\n");
672                 goto out;
673         }
674         if (kern_flags && !set_kern_flags) {
675                 /* Specifying internal flags without providing a place to
676                  * place the results is not allowed */
677                 rc = -EINVAL;
678                 goto out;
679         }
680
681         /*
682          * Binary mount data FS will come through this function twice.  Once
683          * from an explicit call and once from the generic calls from the vfs.
684          * Since the generic VFS calls will not contain any security mount data
685          * we need to skip the double mount verification.
686          *
687          * This does open a hole in which we will not notice if the first
688          * mount using this sb set explict options and a second mount using
689          * this sb does not set any security options.  (The first options
690          * will be used for both mounts)
691          */
692         if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
693             && !opts)
694                 goto out;
695
696         root_isec = backing_inode_security_novalidate(root);
697
698         /*
699          * parse the mount options, check if they are valid sids.
700          * also check if someone is trying to mount the same sb more
701          * than once with different security options.
702          */
703         if (opts) {
704                 if (opts->fscontext) {
705                         rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
706                         if (rc)
707                                 goto out;
708                         if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
709                                         fscontext_sid))
710                                 goto out_double_mount;
711                         sbsec->flags |= FSCONTEXT_MNT;
712                 }
713                 if (opts->context) {
714                         rc = parse_sid(sb, opts->context, &context_sid);
715                         if (rc)
716                                 goto out;
717                         if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
718                                         context_sid))
719                                 goto out_double_mount;
720                         sbsec->flags |= CONTEXT_MNT;
721                 }
722                 if (opts->rootcontext) {
723                         rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
724                         if (rc)
725                                 goto out;
726                         if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
727                                         rootcontext_sid))
728                                 goto out_double_mount;
729                         sbsec->flags |= ROOTCONTEXT_MNT;
730                 }
731                 if (opts->defcontext) {
732                         rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
733                         if (rc)
734                                 goto out;
735                         if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
736                                         defcontext_sid))
737                                 goto out_double_mount;
738                         sbsec->flags |= DEFCONTEXT_MNT;
739                 }
740         }
741
742         if (sbsec->flags & SE_SBINITIALIZED) {
743                 /* previously mounted with options, but not on this attempt? */
744                 if ((sbsec->flags & SE_MNTMASK) && !opts)
745                         goto out_double_mount;
746                 rc = 0;
747                 goto out;
748         }
749
750         if (strcmp(sb->s_type->name, "proc") == 0)
751                 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
752
753         if (!strcmp(sb->s_type->name, "debugfs") ||
754             !strcmp(sb->s_type->name, "tracefs") ||
755             !strcmp(sb->s_type->name, "pstore"))
756                 sbsec->flags |= SE_SBGENFS;
757
758         if (!strcmp(sb->s_type->name, "sysfs") ||
759             !strcmp(sb->s_type->name, "cgroup") ||
760             !strcmp(sb->s_type->name, "cgroup2"))
761                 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
762
763         if (!sbsec->behavior) {
764                 /*
765                  * Determine the labeling behavior to use for this
766                  * filesystem type.
767                  */
768                 rc = security_fs_use(&selinux_state, sb);
769                 if (rc) {
770                         pr_warn("%s: security_fs_use(%s) returned %d\n",
771                                         __func__, sb->s_type->name, rc);
772                         goto out;
773                 }
774         }
775
776         /*
777          * If this is a user namespace mount and the filesystem type is not
778          * explicitly whitelisted, then no contexts are allowed on the command
779          * line and security labels must be ignored.
780          */
781         if (sb->s_user_ns != &init_user_ns &&
782             strcmp(sb->s_type->name, "tmpfs") &&
783             strcmp(sb->s_type->name, "ramfs") &&
784             strcmp(sb->s_type->name, "devpts")) {
785                 if (context_sid || fscontext_sid || rootcontext_sid ||
786                     defcontext_sid) {
787                         rc = -EACCES;
788                         goto out;
789                 }
790                 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
791                         sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
792                         rc = security_transition_sid(&selinux_state,
793                                                      current_sid(),
794                                                      current_sid(),
795                                                      SECCLASS_FILE, NULL,
796                                                      &sbsec->mntpoint_sid);
797                         if (rc)
798                                 goto out;
799                 }
800                 goto out_set_opts;
801         }
802
803         /* sets the context of the superblock for the fs being mounted. */
804         if (fscontext_sid) {
805                 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
806                 if (rc)
807                         goto out;
808
809                 sbsec->sid = fscontext_sid;
810         }
811
812         /*
813          * Switch to using mount point labeling behavior.
814          * sets the label used on all file below the mountpoint, and will set
815          * the superblock context if not already set.
816          */
817         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
818                 sbsec->behavior = SECURITY_FS_USE_NATIVE;
819                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
820         }
821
822         if (context_sid) {
823                 if (!fscontext_sid) {
824                         rc = may_context_mount_sb_relabel(context_sid, sbsec,
825                                                           cred);
826                         if (rc)
827                                 goto out;
828                         sbsec->sid = context_sid;
829                 } else {
830                         rc = may_context_mount_inode_relabel(context_sid, sbsec,
831                                                              cred);
832                         if (rc)
833                                 goto out;
834                 }
835                 if (!rootcontext_sid)
836                         rootcontext_sid = context_sid;
837
838                 sbsec->mntpoint_sid = context_sid;
839                 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
840         }
841
842         if (rootcontext_sid) {
843                 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
844                                                      cred);
845                 if (rc)
846                         goto out;
847
848                 root_isec->sid = rootcontext_sid;
849                 root_isec->initialized = LABEL_INITIALIZED;
850         }
851
852         if (defcontext_sid) {
853                 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
854                         sbsec->behavior != SECURITY_FS_USE_NATIVE) {
855                         rc = -EINVAL;
856                         pr_warn("SELinux: defcontext option is "
857                                "invalid for this filesystem type\n");
858                         goto out;
859                 }
860
861                 if (defcontext_sid != sbsec->def_sid) {
862                         rc = may_context_mount_inode_relabel(defcontext_sid,
863                                                              sbsec, cred);
864                         if (rc)
865                                 goto out;
866                 }
867
868                 sbsec->def_sid = defcontext_sid;
869         }
870
871 out_set_opts:
872         rc = sb_finish_set_opts(sb);
873 out:
874         mutex_unlock(&sbsec->lock);
875         return rc;
876 out_double_mount:
877         rc = -EINVAL;
878         pr_warn("SELinux: mount invalid.  Same superblock, different "
879                "security settings for (dev %s, type %s)\n", sb->s_id,
880                sb->s_type->name);
881         goto out;
882 }
883
884 static int selinux_cmp_sb_context(const struct super_block *oldsb,
885                                     const struct super_block *newsb)
886 {
887         struct superblock_security_struct *old = oldsb->s_security;
888         struct superblock_security_struct *new = newsb->s_security;
889         char oldflags = old->flags & SE_MNTMASK;
890         char newflags = new->flags & SE_MNTMASK;
891
892         if (oldflags != newflags)
893                 goto mismatch;
894         if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
895                 goto mismatch;
896         if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
897                 goto mismatch;
898         if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
899                 goto mismatch;
900         if (oldflags & ROOTCONTEXT_MNT) {
901                 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
902                 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
903                 if (oldroot->sid != newroot->sid)
904                         goto mismatch;
905         }
906         return 0;
907 mismatch:
908         pr_warn("SELinux: mount invalid.  Same superblock, "
909                             "different security settings for (dev %s, "
910                             "type %s)\n", newsb->s_id, newsb->s_type->name);
911         return -EBUSY;
912 }
913
914 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
915                                         struct super_block *newsb,
916                                         unsigned long kern_flags,
917                                         unsigned long *set_kern_flags)
918 {
919         int rc = 0;
920         const struct superblock_security_struct *oldsbsec = oldsb->s_security;
921         struct superblock_security_struct *newsbsec = newsb->s_security;
922
923         int set_fscontext =     (oldsbsec->flags & FSCONTEXT_MNT);
924         int set_context =       (oldsbsec->flags & CONTEXT_MNT);
925         int set_rootcontext =   (oldsbsec->flags & ROOTCONTEXT_MNT);
926
927         /*
928          * if the parent was able to be mounted it clearly had no special lsm
929          * mount options.  thus we can safely deal with this superblock later
930          */
931         if (!selinux_state.initialized)
932                 return 0;
933
934         /*
935          * Specifying internal flags without providing a place to
936          * place the results is not allowed.
937          */
938         if (kern_flags && !set_kern_flags)
939                 return -EINVAL;
940
941         /* how can we clone if the old one wasn't set up?? */
942         BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
943
944         /* if fs is reusing a sb, make sure that the contexts match */
945         if (newsbsec->flags & SE_SBINITIALIZED) {
946                 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
947                         *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
948                 return selinux_cmp_sb_context(oldsb, newsb);
949         }
950
951         mutex_lock(&newsbsec->lock);
952
953         newsbsec->flags = oldsbsec->flags;
954
955         newsbsec->sid = oldsbsec->sid;
956         newsbsec->def_sid = oldsbsec->def_sid;
957         newsbsec->behavior = oldsbsec->behavior;
958
959         if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
960                 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
961                 rc = security_fs_use(&selinux_state, newsb);
962                 if (rc)
963                         goto out;
964         }
965
966         if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
967                 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
968                 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
969         }
970
971         if (set_context) {
972                 u32 sid = oldsbsec->mntpoint_sid;
973
974                 if (!set_fscontext)
975                         newsbsec->sid = sid;
976                 if (!set_rootcontext) {
977                         struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
978                         newisec->sid = sid;
979                 }
980                 newsbsec->mntpoint_sid = sid;
981         }
982         if (set_rootcontext) {
983                 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
984                 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
985
986                 newisec->sid = oldisec->sid;
987         }
988
989         sb_finish_set_opts(newsb);
990 out:
991         mutex_unlock(&newsbsec->lock);
992         return rc;
993 }
994
995 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
996 {
997         struct selinux_mnt_opts *opts = *mnt_opts;
998
999         if (token == Opt_seclabel)      /* eaten and completely ignored */
1000                 return 0;
1001
1002         if (!opts) {
1003                 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1004                 if (!opts)
1005                         return -ENOMEM;
1006                 *mnt_opts = opts;
1007         }
1008         if (!s)
1009                 return -ENOMEM;
1010         switch (token) {
1011         case Opt_context:
1012                 if (opts->context || opts->defcontext)
1013                         goto Einval;
1014                 opts->context = s;
1015                 break;
1016         case Opt_fscontext:
1017                 if (opts->fscontext)
1018                         goto Einval;
1019                 opts->fscontext = s;
1020                 break;
1021         case Opt_rootcontext:
1022                 if (opts->rootcontext)
1023                         goto Einval;
1024                 opts->rootcontext = s;
1025                 break;
1026         case Opt_defcontext:
1027                 if (opts->context || opts->defcontext)
1028                         goto Einval;
1029                 opts->defcontext = s;
1030                 break;
1031         }
1032         return 0;
1033 Einval:
1034         pr_warn(SEL_MOUNT_FAIL_MSG);
1035         return -EINVAL;
1036 }
1037
1038 static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1039                                void **mnt_opts)
1040 {
1041         int token = Opt_error;
1042         int rc, i;
1043
1044         for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1045                 if (strcmp(option, tokens[i].name) == 0) {
1046                         token = tokens[i].opt;
1047                         break;
1048                 }
1049         }
1050
1051         if (token == Opt_error)
1052                 return -EINVAL;
1053
1054         if (token != Opt_seclabel) {
1055                 val = kmemdup_nul(val, len, GFP_KERNEL);
1056                 if (!val) {
1057                         rc = -ENOMEM;
1058                         goto free_opt;
1059                 }
1060         }
1061         rc = selinux_add_opt(token, val, mnt_opts);
1062         if (unlikely(rc)) {
1063                 kfree(val);
1064                 goto free_opt;
1065         }
1066         return rc;
1067
1068 free_opt:
1069         if (*mnt_opts) {
1070                 selinux_free_mnt_opts(*mnt_opts);
1071                 *mnt_opts = NULL;
1072         }
1073         return rc;
1074 }
1075
1076 static int show_sid(struct seq_file *m, u32 sid)
1077 {
1078         char *context = NULL;
1079         u32 len;
1080         int rc;
1081
1082         rc = security_sid_to_context(&selinux_state, sid,
1083                                              &context, &len);
1084         if (!rc) {
1085                 bool has_comma = context && strchr(context, ',');
1086
1087                 seq_putc(m, '=');
1088                 if (has_comma)
1089                         seq_putc(m, '\"');
1090                 seq_escape(m, context, "\"\n\\");
1091                 if (has_comma)
1092                         seq_putc(m, '\"');
1093         }
1094         kfree(context);
1095         return rc;
1096 }
1097
1098 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1099 {
1100         struct superblock_security_struct *sbsec = sb->s_security;
1101         int rc;
1102
1103         if (!(sbsec->flags & SE_SBINITIALIZED))
1104                 return 0;
1105
1106         if (!selinux_state.initialized)
1107                 return 0;
1108
1109         if (sbsec->flags & FSCONTEXT_MNT) {
1110                 seq_putc(m, ',');
1111                 seq_puts(m, FSCONTEXT_STR);
1112                 rc = show_sid(m, sbsec->sid);
1113                 if (rc)
1114                         return rc;
1115         }
1116         if (sbsec->flags & CONTEXT_MNT) {
1117                 seq_putc(m, ',');
1118                 seq_puts(m, CONTEXT_STR);
1119                 rc = show_sid(m, sbsec->mntpoint_sid);
1120                 if (rc)
1121                         return rc;
1122         }
1123         if (sbsec->flags & DEFCONTEXT_MNT) {
1124                 seq_putc(m, ',');
1125                 seq_puts(m, DEFCONTEXT_STR);
1126                 rc = show_sid(m, sbsec->def_sid);
1127                 if (rc)
1128                         return rc;
1129         }
1130         if (sbsec->flags & ROOTCONTEXT_MNT) {
1131                 struct dentry *root = sbsec->sb->s_root;
1132                 struct inode_security_struct *isec = backing_inode_security(root);
1133                 seq_putc(m, ',');
1134                 seq_puts(m, ROOTCONTEXT_STR);
1135                 rc = show_sid(m, isec->sid);
1136                 if (rc)
1137                         return rc;
1138         }
1139         if (sbsec->flags & SBLABEL_MNT) {
1140                 seq_putc(m, ',');
1141                 seq_puts(m, SECLABEL_STR);
1142         }
1143         return 0;
1144 }
1145
1146 static inline u16 inode_mode_to_security_class(umode_t mode)
1147 {
1148         switch (mode & S_IFMT) {
1149         case S_IFSOCK:
1150                 return SECCLASS_SOCK_FILE;
1151         case S_IFLNK:
1152                 return SECCLASS_LNK_FILE;
1153         case S_IFREG:
1154                 return SECCLASS_FILE;
1155         case S_IFBLK:
1156                 return SECCLASS_BLK_FILE;
1157         case S_IFDIR:
1158                 return SECCLASS_DIR;
1159         case S_IFCHR:
1160                 return SECCLASS_CHR_FILE;
1161         case S_IFIFO:
1162                 return SECCLASS_FIFO_FILE;
1163
1164         }
1165
1166         return SECCLASS_FILE;
1167 }
1168
1169 static inline int default_protocol_stream(int protocol)
1170 {
1171         return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1172 }
1173
1174 static inline int default_protocol_dgram(int protocol)
1175 {
1176         return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1177 }
1178
1179 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1180 {
1181         int extsockclass = selinux_policycap_extsockclass();
1182
1183         switch (family) {
1184         case PF_UNIX:
1185                 switch (type) {
1186                 case SOCK_STREAM:
1187                 case SOCK_SEQPACKET:
1188                         return SECCLASS_UNIX_STREAM_SOCKET;
1189                 case SOCK_DGRAM:
1190                 case SOCK_RAW:
1191                         return SECCLASS_UNIX_DGRAM_SOCKET;
1192                 }
1193                 break;
1194         case PF_INET:
1195         case PF_INET6:
1196                 switch (type) {
1197                 case SOCK_STREAM:
1198                 case SOCK_SEQPACKET:
1199                         if (default_protocol_stream(protocol))
1200                                 return SECCLASS_TCP_SOCKET;
1201                         else if (extsockclass && protocol == IPPROTO_SCTP)
1202                                 return SECCLASS_SCTP_SOCKET;
1203                         else
1204                                 return SECCLASS_RAWIP_SOCKET;
1205                 case SOCK_DGRAM:
1206                         if (default_protocol_dgram(protocol))
1207                                 return SECCLASS_UDP_SOCKET;
1208                         else if (extsockclass && (protocol == IPPROTO_ICMP ||
1209                                                   protocol == IPPROTO_ICMPV6))
1210                                 return SECCLASS_ICMP_SOCKET;
1211                         else
1212                                 return SECCLASS_RAWIP_SOCKET;
1213                 case SOCK_DCCP:
1214                         return SECCLASS_DCCP_SOCKET;
1215                 default:
1216                         return SECCLASS_RAWIP_SOCKET;
1217                 }
1218                 break;
1219         case PF_NETLINK:
1220                 switch (protocol) {
1221                 case NETLINK_ROUTE:
1222                         return SECCLASS_NETLINK_ROUTE_SOCKET;
1223                 case NETLINK_SOCK_DIAG:
1224                         return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1225                 case NETLINK_NFLOG:
1226                         return SECCLASS_NETLINK_NFLOG_SOCKET;
1227                 case NETLINK_XFRM:
1228                         return SECCLASS_NETLINK_XFRM_SOCKET;
1229                 case NETLINK_SELINUX:
1230                         return SECCLASS_NETLINK_SELINUX_SOCKET;
1231                 case NETLINK_ISCSI:
1232                         return SECCLASS_NETLINK_ISCSI_SOCKET;
1233                 case NETLINK_AUDIT:
1234                         return SECCLASS_NETLINK_AUDIT_SOCKET;
1235                 case NETLINK_FIB_LOOKUP:
1236                         return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1237                 case NETLINK_CONNECTOR:
1238                         return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1239                 case NETLINK_NETFILTER:
1240                         return SECCLASS_NETLINK_NETFILTER_SOCKET;
1241                 case NETLINK_DNRTMSG:
1242                         return SECCLASS_NETLINK_DNRT_SOCKET;
1243                 case NETLINK_KOBJECT_UEVENT:
1244                         return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1245                 case NETLINK_GENERIC:
1246                         return SECCLASS_NETLINK_GENERIC_SOCKET;
1247                 case NETLINK_SCSITRANSPORT:
1248                         return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1249                 case NETLINK_RDMA:
1250                         return SECCLASS_NETLINK_RDMA_SOCKET;
1251                 case NETLINK_CRYPTO:
1252                         return SECCLASS_NETLINK_CRYPTO_SOCKET;
1253                 default:
1254                         return SECCLASS_NETLINK_SOCKET;
1255                 }
1256         case PF_PACKET:
1257                 return SECCLASS_PACKET_SOCKET;
1258         case PF_KEY:
1259                 return SECCLASS_KEY_SOCKET;
1260         case PF_APPLETALK:
1261                 return SECCLASS_APPLETALK_SOCKET;
1262         }
1263
1264         if (extsockclass) {
1265                 switch (family) {
1266                 case PF_AX25:
1267                         return SECCLASS_AX25_SOCKET;
1268                 case PF_IPX:
1269                         return SECCLASS_IPX_SOCKET;
1270                 case PF_NETROM:
1271                         return SECCLASS_NETROM_SOCKET;
1272                 case PF_ATMPVC:
1273                         return SECCLASS_ATMPVC_SOCKET;
1274                 case PF_X25:
1275                         return SECCLASS_X25_SOCKET;
1276                 case PF_ROSE:
1277                         return SECCLASS_ROSE_SOCKET;
1278                 case PF_DECnet:
1279                         return SECCLASS_DECNET_SOCKET;
1280                 case PF_ATMSVC:
1281                         return SECCLASS_ATMSVC_SOCKET;
1282                 case PF_RDS:
1283                         return SECCLASS_RDS_SOCKET;
1284                 case PF_IRDA:
1285                         return SECCLASS_IRDA_SOCKET;
1286                 case PF_PPPOX:
1287                         return SECCLASS_PPPOX_SOCKET;
1288                 case PF_LLC:
1289                         return SECCLASS_LLC_SOCKET;
1290                 case PF_CAN:
1291                         return SECCLASS_CAN_SOCKET;
1292                 case PF_TIPC:
1293                         return SECCLASS_TIPC_SOCKET;
1294                 case PF_BLUETOOTH:
1295                         return SECCLASS_BLUETOOTH_SOCKET;
1296                 case PF_IUCV:
1297                         return SECCLASS_IUCV_SOCKET;
1298                 case PF_RXRPC:
1299                         return SECCLASS_RXRPC_SOCKET;
1300                 case PF_ISDN:
1301                         return SECCLASS_ISDN_SOCKET;
1302                 case PF_PHONET:
1303                         return SECCLASS_PHONET_SOCKET;
1304                 case PF_IEEE802154:
1305                         return SECCLASS_IEEE802154_SOCKET;
1306                 case PF_CAIF:
1307                         return SECCLASS_CAIF_SOCKET;
1308                 case PF_ALG:
1309                         return SECCLASS_ALG_SOCKET;
1310                 case PF_NFC:
1311                         return SECCLASS_NFC_SOCKET;
1312                 case PF_VSOCK:
1313                         return SECCLASS_VSOCK_SOCKET;
1314                 case PF_KCM:
1315                         return SECCLASS_KCM_SOCKET;
1316                 case PF_QIPCRTR:
1317                         return SECCLASS_QIPCRTR_SOCKET;
1318                 case PF_SMC:
1319                         return SECCLASS_SMC_SOCKET;
1320                 case PF_XDP:
1321                         return SECCLASS_XDP_SOCKET;
1322 #if PF_MAX > 45
1323 #error New address family defined, please update this function.
1324 #endif
1325                 }
1326         }
1327
1328         return SECCLASS_SOCKET;
1329 }
1330
1331 static int selinux_genfs_get_sid(struct dentry *dentry,
1332                                  u16 tclass,
1333                                  u16 flags,
1334                                  u32 *sid)
1335 {
1336         int rc;
1337         struct super_block *sb = dentry->d_sb;
1338         char *buffer, *path;
1339
1340         buffer = (char *)__get_free_page(GFP_KERNEL);
1341         if (!buffer)
1342                 return -ENOMEM;
1343
1344         path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1345         if (IS_ERR(path))
1346                 rc = PTR_ERR(path);
1347         else {
1348                 if (flags & SE_SBPROC) {
1349                         /* each process gets a /proc/PID/ entry. Strip off the
1350                          * PID part to get a valid selinux labeling.
1351                          * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1352                         while (path[1] >= '0' && path[1] <= '9') {
1353                                 path[1] = '/';
1354                                 path++;
1355                         }
1356                 }
1357                 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1358                                         path, tclass, sid);
1359                 if (rc == -ENOENT) {
1360                         /* No match in policy, mark as unlabeled. */
1361                         *sid = SECINITSID_UNLABELED;
1362                         rc = 0;
1363                 }
1364         }
1365         free_page((unsigned long)buffer);
1366         return rc;
1367 }
1368
1369 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1370                                   u32 def_sid, u32 *sid)
1371 {
1372 #define INITCONTEXTLEN 255
1373         char *context;
1374         unsigned int len;
1375         int rc;
1376
1377         len = INITCONTEXTLEN;
1378         context = kmalloc(len + 1, GFP_NOFS);
1379         if (!context)
1380                 return -ENOMEM;
1381
1382         context[len] = '\0';
1383         rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1384         if (rc == -ERANGE) {
1385                 kfree(context);
1386
1387                 /* Need a larger buffer.  Query for the right size. */
1388                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1389                 if (rc < 0)
1390                         return rc;
1391
1392                 len = rc;
1393                 context = kmalloc(len + 1, GFP_NOFS);
1394                 if (!context)
1395                         return -ENOMEM;
1396
1397                 context[len] = '\0';
1398                 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1399                                     context, len);
1400         }
1401         if (rc < 0) {
1402                 kfree(context);
1403                 if (rc != -ENODATA) {
1404                         pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1405                                 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1406                         return rc;
1407                 }
1408                 *sid = def_sid;
1409                 return 0;
1410         }
1411
1412         rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1413                                              def_sid, GFP_NOFS);
1414         if (rc) {
1415                 char *dev = inode->i_sb->s_id;
1416                 unsigned long ino = inode->i_ino;
1417
1418                 if (rc == -EINVAL) {
1419                         pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1420                                               ino, dev, context);
1421                 } else {
1422                         pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1423                                 __func__, context, -rc, dev, ino);
1424                 }
1425         }
1426         kfree(context);
1427         return 0;
1428 }
1429
1430 /* The inode's security attributes must be initialized before first use. */
1431 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1432 {
1433         struct superblock_security_struct *sbsec = NULL;
1434         struct inode_security_struct *isec = selinux_inode(inode);
1435         u32 task_sid, sid = 0;
1436         u16 sclass;
1437         struct dentry *dentry;
1438         int rc = 0;
1439
1440         if (isec->initialized == LABEL_INITIALIZED)
1441                 return 0;
1442
1443         spin_lock(&isec->lock);
1444         if (isec->initialized == LABEL_INITIALIZED)
1445                 goto out_unlock;
1446
1447         if (isec->sclass == SECCLASS_FILE)
1448                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1449
1450         sbsec = inode->i_sb->s_security;
1451         if (!(sbsec->flags & SE_SBINITIALIZED)) {
1452                 /* Defer initialization until selinux_complete_init,
1453                    after the initial policy is loaded and the security
1454                    server is ready to handle calls. */
1455                 spin_lock(&sbsec->isec_lock);
1456                 if (list_empty(&isec->list))
1457                         list_add(&isec->list, &sbsec->isec_head);
1458                 spin_unlock(&sbsec->isec_lock);
1459                 goto out_unlock;
1460         }
1461
1462         sclass = isec->sclass;
1463         task_sid = isec->task_sid;
1464         sid = isec->sid;
1465         isec->initialized = LABEL_PENDING;
1466         spin_unlock(&isec->lock);
1467
1468         switch (sbsec->behavior) {
1469         case SECURITY_FS_USE_NATIVE:
1470                 break;
1471         case SECURITY_FS_USE_XATTR:
1472                 if (!(inode->i_opflags & IOP_XATTR)) {
1473                         sid = sbsec->def_sid;
1474                         break;
1475                 }
1476                 /* Need a dentry, since the xattr API requires one.
1477                    Life would be simpler if we could just pass the inode. */
1478                 if (opt_dentry) {
1479                         /* Called from d_instantiate or d_splice_alias. */
1480                         dentry = dget(opt_dentry);
1481                 } else {
1482                         /*
1483                          * Called from selinux_complete_init, try to find a dentry.
1484                          * Some filesystems really want a connected one, so try
1485                          * that first.  We could split SECURITY_FS_USE_XATTR in
1486                          * two, depending upon that...
1487                          */
1488                         dentry = d_find_alias(inode);
1489                         if (!dentry)
1490                                 dentry = d_find_any_alias(inode);
1491                 }
1492                 if (!dentry) {
1493                         /*
1494                          * this is can be hit on boot when a file is accessed
1495                          * before the policy is loaded.  When we load policy we
1496                          * may find inodes that have no dentry on the
1497                          * sbsec->isec_head list.  No reason to complain as these
1498                          * will get fixed up the next time we go through
1499                          * inode_doinit with a dentry, before these inodes could
1500                          * be used again by userspace.
1501                          */
1502                         goto out;
1503                 }
1504
1505                 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1506                                             &sid);
1507                 dput(dentry);
1508                 if (rc)
1509                         goto out;
1510                 break;
1511         case SECURITY_FS_USE_TASK:
1512                 sid = task_sid;
1513                 break;
1514         case SECURITY_FS_USE_TRANS:
1515                 /* Default to the fs SID. */
1516                 sid = sbsec->sid;
1517
1518                 /* Try to obtain a transition SID. */
1519                 rc = security_transition_sid(&selinux_state, task_sid, sid,
1520                                              sclass, NULL, &sid);
1521                 if (rc)
1522                         goto out;
1523                 break;
1524         case SECURITY_FS_USE_MNTPOINT:
1525                 sid = sbsec->mntpoint_sid;
1526                 break;
1527         default:
1528                 /* Default to the fs superblock SID. */
1529                 sid = sbsec->sid;
1530
1531                 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1532                         /* We must have a dentry to determine the label on
1533                          * procfs inodes */
1534                         if (opt_dentry) {
1535                                 /* Called from d_instantiate or
1536                                  * d_splice_alias. */
1537                                 dentry = dget(opt_dentry);
1538                         } else {
1539                                 /* Called from selinux_complete_init, try to
1540                                  * find a dentry.  Some filesystems really want
1541                                  * a connected one, so try that first.
1542                                  */
1543                                 dentry = d_find_alias(inode);
1544                                 if (!dentry)
1545                                         dentry = d_find_any_alias(inode);
1546                         }
1547                         /*
1548                          * This can be hit on boot when a file is accessed
1549                          * before the policy is loaded.  When we load policy we
1550                          * may find inodes that have no dentry on the
1551                          * sbsec->isec_head list.  No reason to complain as
1552                          * these will get fixed up the next time we go through
1553                          * inode_doinit() with a dentry, before these inodes
1554                          * could be used again by userspace.
1555                          */
1556                         if (!dentry)
1557                                 goto out;
1558                         rc = selinux_genfs_get_sid(dentry, sclass,
1559                                                    sbsec->flags, &sid);
1560                         if (rc) {
1561                                 dput(dentry);
1562                                 goto out;
1563                         }
1564
1565                         if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1566                             (inode->i_opflags & IOP_XATTR)) {
1567                                 rc = inode_doinit_use_xattr(inode, dentry,
1568                                                             sid, &sid);
1569                                 if (rc) {
1570                                         dput(dentry);
1571                                         goto out;
1572                                 }
1573                         }
1574                         dput(dentry);
1575                 }
1576                 break;
1577         }
1578
1579 out:
1580         spin_lock(&isec->lock);
1581         if (isec->initialized == LABEL_PENDING) {
1582                 if (!sid || rc) {
1583                         isec->initialized = LABEL_INVALID;
1584                         goto out_unlock;
1585                 }
1586
1587                 isec->initialized = LABEL_INITIALIZED;
1588                 isec->sid = sid;
1589         }
1590
1591 out_unlock:
1592         spin_unlock(&isec->lock);
1593         return rc;
1594 }
1595
1596 /* Convert a Linux signal to an access vector. */
1597 static inline u32 signal_to_av(int sig)
1598 {
1599         u32 perm = 0;
1600
1601         switch (sig) {
1602         case SIGCHLD:
1603                 /* Commonly granted from child to parent. */
1604                 perm = PROCESS__SIGCHLD;
1605                 break;
1606         case SIGKILL:
1607                 /* Cannot be caught or ignored */
1608                 perm = PROCESS__SIGKILL;
1609                 break;
1610         case SIGSTOP:
1611                 /* Cannot be caught or ignored */
1612                 perm = PROCESS__SIGSTOP;
1613                 break;
1614         default:
1615                 /* All other signals. */
1616                 perm = PROCESS__SIGNAL;
1617                 break;
1618         }
1619
1620         return perm;
1621 }
1622
1623 #if CAP_LAST_CAP > 63
1624 #error Fix SELinux to handle capabilities > 63.
1625 #endif
1626
1627 /* Check whether a task is allowed to use a capability. */
1628 static int cred_has_capability(const struct cred *cred,
1629                                int cap, unsigned int opts, bool initns)
1630 {
1631         struct common_audit_data ad;
1632         struct av_decision avd;
1633         u16 sclass;
1634         u32 sid = cred_sid(cred);
1635         u32 av = CAP_TO_MASK(cap);
1636         int rc;
1637
1638         ad.type = LSM_AUDIT_DATA_CAP;
1639         ad.u.cap = cap;
1640
1641         switch (CAP_TO_INDEX(cap)) {
1642         case 0:
1643                 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1644                 break;
1645         case 1:
1646                 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1647                 break;
1648         default:
1649                 pr_err("SELinux:  out of range capability %d\n", cap);
1650                 BUG();
1651                 return -EINVAL;
1652         }
1653
1654         rc = avc_has_perm_noaudit(&selinux_state,
1655                                   sid, sid, sclass, av, 0, &avd);
1656         if (!(opts & CAP_OPT_NOAUDIT)) {
1657                 int rc2 = avc_audit(&selinux_state,
1658                                     sid, sid, sclass, av, &avd, rc, &ad, 0);
1659                 if (rc2)
1660                         return rc2;
1661         }
1662         return rc;
1663 }
1664
1665 /* Check whether a task has a particular permission to an inode.
1666    The 'adp' parameter is optional and allows other audit
1667    data to be passed (e.g. the dentry). */
1668 static int inode_has_perm(const struct cred *cred,
1669                           struct inode *inode,
1670                           u32 perms,
1671                           struct common_audit_data *adp)
1672 {
1673         struct inode_security_struct *isec;
1674         u32 sid;
1675
1676         validate_creds(cred);
1677
1678         if (unlikely(IS_PRIVATE(inode)))
1679                 return 0;
1680
1681         sid = cred_sid(cred);
1682         isec = selinux_inode(inode);
1683
1684         return avc_has_perm(&selinux_state,
1685                             sid, isec->sid, isec->sclass, perms, adp);
1686 }
1687
1688 /* Same as inode_has_perm, but pass explicit audit data containing
1689    the dentry to help the auditing code to more easily generate the
1690    pathname if needed. */
1691 static inline int dentry_has_perm(const struct cred *cred,
1692                                   struct dentry *dentry,
1693                                   u32 av)
1694 {
1695         struct inode *inode = d_backing_inode(dentry);
1696         struct common_audit_data ad;
1697
1698         ad.type = LSM_AUDIT_DATA_DENTRY;
1699         ad.u.dentry = dentry;
1700         __inode_security_revalidate(inode, dentry, true);
1701         return inode_has_perm(cred, inode, av, &ad);
1702 }
1703
1704 /* Same as inode_has_perm, but pass explicit audit data containing
1705    the path to help the auditing code to more easily generate the
1706    pathname if needed. */
1707 static inline int path_has_perm(const struct cred *cred,
1708                                 const struct path *path,
1709                                 u32 av)
1710 {
1711         struct inode *inode = d_backing_inode(path->dentry);
1712         struct common_audit_data ad;
1713
1714         ad.type = LSM_AUDIT_DATA_PATH;
1715         ad.u.path = *path;
1716         __inode_security_revalidate(inode, path->dentry, true);
1717         return inode_has_perm(cred, inode, av, &ad);
1718 }
1719
1720 /* Same as path_has_perm, but uses the inode from the file struct. */
1721 static inline int file_path_has_perm(const struct cred *cred,
1722                                      struct file *file,
1723                                      u32 av)
1724 {
1725         struct common_audit_data ad;
1726
1727         ad.type = LSM_AUDIT_DATA_FILE;
1728         ad.u.file = file;
1729         return inode_has_perm(cred, file_inode(file), av, &ad);
1730 }
1731
1732 #ifdef CONFIG_BPF_SYSCALL
1733 static int bpf_fd_pass(struct file *file, u32 sid);
1734 #endif
1735
1736 /* Check whether a task can use an open file descriptor to
1737    access an inode in a given way.  Check access to the
1738    descriptor itself, and then use dentry_has_perm to
1739    check a particular permission to the file.
1740    Access to the descriptor is implicitly granted if it
1741    has the same SID as the process.  If av is zero, then
1742    access to the file is not checked, e.g. for cases
1743    where only the descriptor is affected like seek. */
1744 static int file_has_perm(const struct cred *cred,
1745                          struct file *file,
1746                          u32 av)
1747 {
1748         struct file_security_struct *fsec = selinux_file(file);
1749         struct inode *inode = file_inode(file);
1750         struct common_audit_data ad;
1751         u32 sid = cred_sid(cred);
1752         int rc;
1753
1754         ad.type = LSM_AUDIT_DATA_FILE;
1755         ad.u.file = file;
1756
1757         if (sid != fsec->sid) {
1758                 rc = avc_has_perm(&selinux_state,
1759                                   sid, fsec->sid,
1760                                   SECCLASS_FD,
1761                                   FD__USE,
1762                                   &ad);
1763                 if (rc)
1764                         goto out;
1765         }
1766
1767 #ifdef CONFIG_BPF_SYSCALL
1768         rc = bpf_fd_pass(file, cred_sid(cred));
1769         if (rc)
1770                 return rc;
1771 #endif
1772
1773         /* av is zero if only checking access to the descriptor. */
1774         rc = 0;
1775         if (av)
1776                 rc = inode_has_perm(cred, inode, av, &ad);
1777
1778 out:
1779         return rc;
1780 }
1781
1782 /*
1783  * Determine the label for an inode that might be unioned.
1784  */
1785 static int
1786 selinux_determine_inode_label(const struct task_security_struct *tsec,
1787                                  struct inode *dir,
1788                                  const struct qstr *name, u16 tclass,
1789                                  u32 *_new_isid)
1790 {
1791         const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1792
1793         if ((sbsec->flags & SE_SBINITIALIZED) &&
1794             (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1795                 *_new_isid = sbsec->mntpoint_sid;
1796         } else if ((sbsec->flags & SBLABEL_MNT) &&
1797                    tsec->create_sid) {
1798                 *_new_isid = tsec->create_sid;
1799         } else {
1800                 const struct inode_security_struct *dsec = inode_security(dir);
1801                 return security_transition_sid(&selinux_state, tsec->sid,
1802                                                dsec->sid, tclass,
1803                                                name, _new_isid);
1804         }
1805
1806         return 0;
1807 }
1808
1809 /* Check whether a task can create a file. */
1810 static int may_create(struct inode *dir,
1811                       struct dentry *dentry,
1812                       u16 tclass)
1813 {
1814         const struct task_security_struct *tsec = selinux_cred(current_cred());
1815         struct inode_security_struct *dsec;
1816         struct superblock_security_struct *sbsec;
1817         u32 sid, newsid;
1818         struct common_audit_data ad;
1819         int rc;
1820
1821         dsec = inode_security(dir);
1822         sbsec = dir->i_sb->s_security;
1823
1824         sid = tsec->sid;
1825
1826         ad.type = LSM_AUDIT_DATA_DENTRY;
1827         ad.u.dentry = dentry;
1828
1829         rc = avc_has_perm(&selinux_state,
1830                           sid, dsec->sid, SECCLASS_DIR,
1831                           DIR__ADD_NAME | DIR__SEARCH,
1832                           &ad);
1833         if (rc)
1834                 return rc;
1835
1836         rc = selinux_determine_inode_label(selinux_cred(current_cred()), dir,
1837                                            &dentry->d_name, tclass, &newsid);
1838         if (rc)
1839                 return rc;
1840
1841         rc = avc_has_perm(&selinux_state,
1842                           sid, newsid, tclass, FILE__CREATE, &ad);
1843         if (rc)
1844                 return rc;
1845
1846         return avc_has_perm(&selinux_state,
1847                             newsid, sbsec->sid,
1848                             SECCLASS_FILESYSTEM,
1849                             FILESYSTEM__ASSOCIATE, &ad);
1850 }
1851
1852 #define MAY_LINK        0
1853 #define MAY_UNLINK      1
1854 #define MAY_RMDIR       2
1855
1856 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1857 static int may_link(struct inode *dir,
1858                     struct dentry *dentry,
1859                     int kind)
1860
1861 {
1862         struct inode_security_struct *dsec, *isec;
1863         struct common_audit_data ad;
1864         u32 sid = current_sid();
1865         u32 av;
1866         int rc;
1867
1868         dsec = inode_security(dir);
1869         isec = backing_inode_security(dentry);
1870
1871         ad.type = LSM_AUDIT_DATA_DENTRY;
1872         ad.u.dentry = dentry;
1873
1874         av = DIR__SEARCH;
1875         av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1876         rc = avc_has_perm(&selinux_state,
1877                           sid, dsec->sid, SECCLASS_DIR, av, &ad);
1878         if (rc)
1879                 return rc;
1880
1881         switch (kind) {
1882         case MAY_LINK:
1883                 av = FILE__LINK;
1884                 break;
1885         case MAY_UNLINK:
1886                 av = FILE__UNLINK;
1887                 break;
1888         case MAY_RMDIR:
1889                 av = DIR__RMDIR;
1890                 break;
1891         default:
1892                 pr_warn("SELinux: %s:  unrecognized kind %d\n",
1893                         __func__, kind);
1894                 return 0;
1895         }
1896
1897         rc = avc_has_perm(&selinux_state,
1898                           sid, isec->sid, isec->sclass, av, &ad);
1899         return rc;
1900 }
1901
1902 static inline int may_rename(struct inode *old_dir,
1903                              struct dentry *old_dentry,
1904                              struct inode *new_dir,
1905                              struct dentry *new_dentry)
1906 {
1907         struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1908         struct common_audit_data ad;
1909         u32 sid = current_sid();
1910         u32 av;
1911         int old_is_dir, new_is_dir;
1912         int rc;
1913
1914         old_dsec = inode_security(old_dir);
1915         old_isec = backing_inode_security(old_dentry);
1916         old_is_dir = d_is_dir(old_dentry);
1917         new_dsec = inode_security(new_dir);
1918
1919         ad.type = LSM_AUDIT_DATA_DENTRY;
1920
1921         ad.u.dentry = old_dentry;
1922         rc = avc_has_perm(&selinux_state,
1923                           sid, old_dsec->sid, SECCLASS_DIR,
1924                           DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1925         if (rc)
1926                 return rc;
1927         rc = avc_has_perm(&selinux_state,
1928                           sid, old_isec->sid,
1929                           old_isec->sclass, FILE__RENAME, &ad);
1930         if (rc)
1931                 return rc;
1932         if (old_is_dir && new_dir != old_dir) {
1933                 rc = avc_has_perm(&selinux_state,
1934                                   sid, old_isec->sid,
1935                                   old_isec->sclass, DIR__REPARENT, &ad);
1936                 if (rc)
1937                         return rc;
1938         }
1939
1940         ad.u.dentry = new_dentry;
1941         av = DIR__ADD_NAME | DIR__SEARCH;
1942         if (d_is_positive(new_dentry))
1943                 av |= DIR__REMOVE_NAME;
1944         rc = avc_has_perm(&selinux_state,
1945                           sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1946         if (rc)
1947                 return rc;
1948         if (d_is_positive(new_dentry)) {
1949                 new_isec = backing_inode_security(new_dentry);
1950                 new_is_dir = d_is_dir(new_dentry);
1951                 rc = avc_has_perm(&selinux_state,
1952                                   sid, new_isec->sid,
1953                                   new_isec->sclass,
1954                                   (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1955                 if (rc)
1956                         return rc;
1957         }
1958
1959         return 0;
1960 }
1961
1962 /* Check whether a task can perform a filesystem operation. */
1963 static int superblock_has_perm(const struct cred *cred,
1964                                struct super_block *sb,
1965                                u32 perms,
1966                                struct common_audit_data *ad)
1967 {
1968         struct superblock_security_struct *sbsec;
1969         u32 sid = cred_sid(cred);
1970
1971         sbsec = sb->s_security;
1972         return avc_has_perm(&selinux_state,
1973                             sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1974 }
1975
1976 /* Convert a Linux mode and permission mask to an access vector. */
1977 static inline u32 file_mask_to_av(int mode, int mask)
1978 {
1979         u32 av = 0;
1980
1981         if (!S_ISDIR(mode)) {
1982                 if (mask & MAY_EXEC)
1983                         av |= FILE__EXECUTE;
1984                 if (mask & MAY_READ)
1985                         av |= FILE__READ;
1986
1987                 if (mask & MAY_APPEND)
1988                         av |= FILE__APPEND;
1989                 else if (mask & MAY_WRITE)
1990                         av |= FILE__WRITE;
1991
1992         } else {
1993                 if (mask & MAY_EXEC)
1994                         av |= DIR__SEARCH;
1995                 if (mask & MAY_WRITE)
1996                         av |= DIR__WRITE;
1997                 if (mask & MAY_READ)
1998                         av |= DIR__READ;
1999         }
2000
2001         return av;
2002 }
2003
2004 /* Convert a Linux file to an access vector. */
2005 static inline u32 file_to_av(struct file *file)
2006 {
2007         u32 av = 0;
2008
2009         if (file->f_mode & FMODE_READ)
2010                 av |= FILE__READ;
2011         if (file->f_mode & FMODE_WRITE) {
2012                 if (file->f_flags & O_APPEND)
2013                         av |= FILE__APPEND;
2014                 else
2015                         av |= FILE__WRITE;
2016         }
2017         if (!av) {
2018                 /*
2019                  * Special file opened with flags 3 for ioctl-only use.
2020                  */
2021                 av = FILE__IOCTL;
2022         }
2023
2024         return av;
2025 }
2026
2027 /*
2028  * Convert a file to an access vector and include the correct open
2029  * open permission.
2030  */
2031 static inline u32 open_file_to_av(struct file *file)
2032 {
2033         u32 av = file_to_av(file);
2034         struct inode *inode = file_inode(file);
2035
2036         if (selinux_policycap_openperm() &&
2037             inode->i_sb->s_magic != SOCKFS_MAGIC)
2038                 av |= FILE__OPEN;
2039
2040         return av;
2041 }
2042
2043 /* Hook functions begin here. */
2044
2045 static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2046 {
2047         u32 mysid = current_sid();
2048         u32 mgrsid = task_sid(mgr);
2049
2050         return avc_has_perm(&selinux_state,
2051                             mysid, mgrsid, SECCLASS_BINDER,
2052                             BINDER__SET_CONTEXT_MGR, NULL);
2053 }
2054
2055 static int selinux_binder_transaction(struct task_struct *from,
2056                                       struct task_struct *to)
2057 {
2058         u32 mysid = current_sid();
2059         u32 fromsid = task_sid(from);
2060         u32 tosid = task_sid(to);
2061         int rc;
2062
2063         if (mysid != fromsid) {
2064                 rc = avc_has_perm(&selinux_state,
2065                                   mysid, fromsid, SECCLASS_BINDER,
2066                                   BINDER__IMPERSONATE, NULL);
2067                 if (rc)
2068                         return rc;
2069         }
2070
2071         return avc_has_perm(&selinux_state,
2072                             fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2073                             NULL);
2074 }
2075
2076 static int selinux_binder_transfer_binder(struct task_struct *from,
2077                                           struct task_struct *to)
2078 {
2079         u32 fromsid = task_sid(from);
2080         u32 tosid = task_sid(to);
2081
2082         return avc_has_perm(&selinux_state,
2083                             fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2084                             NULL);
2085 }
2086
2087 static int selinux_binder_transfer_file(struct task_struct *from,
2088                                         struct task_struct *to,
2089                                         struct file *file)
2090 {
2091         u32 sid = task_sid(to);
2092         struct file_security_struct *fsec = selinux_file(file);
2093         struct dentry *dentry = file->f_path.dentry;
2094         struct inode_security_struct *isec;
2095         struct common_audit_data ad;
2096         int rc;
2097
2098         ad.type = LSM_AUDIT_DATA_PATH;
2099         ad.u.path = file->f_path;
2100
2101         if (sid != fsec->sid) {
2102                 rc = avc_has_perm(&selinux_state,
2103                                   sid, fsec->sid,
2104                                   SECCLASS_FD,
2105                                   FD__USE,
2106                                   &ad);
2107                 if (rc)
2108                         return rc;
2109         }
2110
2111 #ifdef CONFIG_BPF_SYSCALL
2112         rc = bpf_fd_pass(file, sid);
2113         if (rc)
2114                 return rc;
2115 #endif
2116
2117         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2118                 return 0;
2119
2120         isec = backing_inode_security(dentry);
2121         return avc_has_perm(&selinux_state,
2122                             sid, isec->sid, isec->sclass, file_to_av(file),
2123                             &ad);
2124 }
2125
2126 static int selinux_ptrace_access_check(struct task_struct *child,
2127                                      unsigned int mode)
2128 {
2129         u32 sid = current_sid();
2130         u32 csid = task_sid(child);
2131
2132         if (mode & PTRACE_MODE_READ)
2133                 return avc_has_perm(&selinux_state,
2134                                     sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2135
2136         return avc_has_perm(&selinux_state,
2137                             sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2138 }
2139
2140 static int selinux_ptrace_traceme(struct task_struct *parent)
2141 {
2142         return avc_has_perm(&selinux_state,
2143                             task_sid(parent), current_sid(), SECCLASS_PROCESS,
2144                             PROCESS__PTRACE, NULL);
2145 }
2146
2147 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2148                           kernel_cap_t *inheritable, kernel_cap_t *permitted)
2149 {
2150         return avc_has_perm(&selinux_state,
2151                             current_sid(), task_sid(target), SECCLASS_PROCESS,
2152                             PROCESS__GETCAP, NULL);
2153 }
2154
2155 static int selinux_capset(struct cred *new, const struct cred *old,
2156                           const kernel_cap_t *effective,
2157                           const kernel_cap_t *inheritable,
2158                           const kernel_cap_t *permitted)
2159 {
2160         return avc_has_perm(&selinux_state,
2161                             cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2162                             PROCESS__SETCAP, NULL);
2163 }
2164
2165 /*
2166  * (This comment used to live with the selinux_task_setuid hook,
2167  * which was removed).
2168  *
2169  * Since setuid only affects the current process, and since the SELinux
2170  * controls are not based on the Linux identity attributes, SELinux does not
2171  * need to control this operation.  However, SELinux does control the use of
2172  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2173  */
2174
2175 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2176                            int cap, unsigned int opts)
2177 {
2178         return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2179 }
2180
2181 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2182 {
2183         const struct cred *cred = current_cred();
2184         int rc = 0;
2185
2186         if (!sb)
2187                 return 0;
2188
2189         switch (cmds) {
2190         case Q_SYNC:
2191         case Q_QUOTAON:
2192         case Q_QUOTAOFF:
2193         case Q_SETINFO:
2194         case Q_SETQUOTA:
2195                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2196                 break;
2197         case Q_GETFMT:
2198         case Q_GETINFO:
2199         case Q_GETQUOTA:
2200                 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2201                 break;
2202         default:
2203                 rc = 0;  /* let the kernel handle invalid cmds */
2204                 break;
2205         }
2206         return rc;
2207 }
2208
2209 static int selinux_quota_on(struct dentry *dentry)
2210 {
2211         const struct cred *cred = current_cred();
2212
2213         return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2214 }
2215
2216 static int selinux_syslog(int type)
2217 {
2218         switch (type) {
2219         case SYSLOG_ACTION_READ_ALL:    /* Read last kernel messages */
2220         case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2221                 return avc_has_perm(&selinux_state,
2222                                     current_sid(), SECINITSID_KERNEL,
2223                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2224         case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2225         case SYSLOG_ACTION_CONSOLE_ON:  /* Enable logging to console */
2226         /* Set level of messages printed to console */
2227         case SYSLOG_ACTION_CONSOLE_LEVEL:
2228                 return avc_has_perm(&selinux_state,
2229                                     current_sid(), SECINITSID_KERNEL,
2230                                     SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2231                                     NULL);
2232         }
2233         /* All other syslog types */
2234         return avc_has_perm(&selinux_state,
2235                             current_sid(), SECINITSID_KERNEL,
2236                             SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2237 }
2238
2239 /*
2240  * Check that a process has enough memory to allocate a new virtual
2241  * mapping. 0 means there is enough memory for the allocation to
2242  * succeed and -ENOMEM implies there is not.
2243  *
2244  * Do not audit the selinux permission check, as this is applied to all
2245  * processes that allocate mappings.
2246  */
2247 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2248 {
2249         int rc, cap_sys_admin = 0;
2250
2251         rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2252                                  CAP_OPT_NOAUDIT, true);
2253         if (rc == 0)
2254                 cap_sys_admin = 1;
2255
2256         return cap_sys_admin;
2257 }
2258
2259 /* binprm security operations */
2260
2261 static u32 ptrace_parent_sid(void)
2262 {
2263         u32 sid = 0;
2264         struct task_struct *tracer;
2265
2266         rcu_read_lock();
2267         tracer = ptrace_parent(current);
2268         if (tracer)
2269                 sid = task_sid(tracer);
2270         rcu_read_unlock();
2271
2272         return sid;
2273 }
2274
2275 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2276                             const struct task_security_struct *old_tsec,
2277                             const struct task_security_struct *new_tsec)
2278 {
2279         int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2280         int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2281         int rc;
2282         u32 av;
2283
2284         if (!nnp && !nosuid)
2285                 return 0; /* neither NNP nor nosuid */
2286
2287         if (new_tsec->sid == old_tsec->sid)
2288                 return 0; /* No change in credentials */
2289
2290         /*
2291          * If the policy enables the nnp_nosuid_transition policy capability,
2292          * then we permit transitions under NNP or nosuid if the
2293          * policy allows the corresponding permission between
2294          * the old and new contexts.
2295          */
2296         if (selinux_policycap_nnp_nosuid_transition()) {
2297                 av = 0;
2298                 if (nnp)
2299                         av |= PROCESS2__NNP_TRANSITION;
2300                 if (nosuid)
2301                         av |= PROCESS2__NOSUID_TRANSITION;
2302                 rc = avc_has_perm(&selinux_state,
2303                                   old_tsec->sid, new_tsec->sid,
2304                                   SECCLASS_PROCESS2, av, NULL);
2305                 if (!rc)
2306                         return 0;
2307         }
2308
2309         /*
2310          * We also permit NNP or nosuid transitions to bounded SIDs,
2311          * i.e. SIDs that are guaranteed to only be allowed a subset
2312          * of the permissions of the current SID.
2313          */
2314         rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2315                                          new_tsec->sid);
2316         if (!rc)
2317                 return 0;
2318
2319         /*
2320          * On failure, preserve the errno values for NNP vs nosuid.
2321          * NNP:  Operation not permitted for caller.
2322          * nosuid:  Permission denied to file.
2323          */
2324         if (nnp)
2325                 return -EPERM;
2326         return -EACCES;
2327 }
2328
2329 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2330 {
2331         const struct task_security_struct *old_tsec;
2332         struct task_security_struct *new_tsec;
2333         struct inode_security_struct *isec;
2334         struct common_audit_data ad;
2335         struct inode *inode = file_inode(bprm->file);
2336         int rc;
2337
2338         /* SELinux context only depends on initial program or script and not
2339          * the script interpreter */
2340         if (bprm->called_set_creds)
2341                 return 0;
2342
2343         old_tsec = selinux_cred(current_cred());
2344         new_tsec = selinux_cred(bprm->cred);
2345         isec = inode_security(inode);
2346
2347         /* Default to the current task SID. */
2348         new_tsec->sid = old_tsec->sid;
2349         new_tsec->osid = old_tsec->sid;
2350
2351         /* Reset fs, key, and sock SIDs on execve. */
2352         new_tsec->create_sid = 0;
2353         new_tsec->keycreate_sid = 0;
2354         new_tsec->sockcreate_sid = 0;
2355
2356         if (old_tsec->exec_sid) {
2357                 new_tsec->sid = old_tsec->exec_sid;
2358                 /* Reset exec SID on execve. */
2359                 new_tsec->exec_sid = 0;
2360
2361                 /* Fail on NNP or nosuid if not an allowed transition. */
2362                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2363                 if (rc)
2364                         return rc;
2365         } else {
2366                 /* Check for a default transition on this program. */
2367                 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2368                                              isec->sid, SECCLASS_PROCESS, NULL,
2369                                              &new_tsec->sid);
2370                 if (rc)
2371                         return rc;
2372
2373                 /*
2374                  * Fallback to old SID on NNP or nosuid if not an allowed
2375                  * transition.
2376                  */
2377                 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2378                 if (rc)
2379                         new_tsec->sid = old_tsec->sid;
2380         }
2381
2382         ad.type = LSM_AUDIT_DATA_FILE;
2383         ad.u.file = bprm->file;
2384
2385         if (new_tsec->sid == old_tsec->sid) {
2386                 rc = avc_has_perm(&selinux_state,
2387                                   old_tsec->sid, isec->sid,
2388                                   SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2389                 if (rc)
2390                         return rc;
2391         } else {
2392                 /* Check permissions for the transition. */
2393                 rc = avc_has_perm(&selinux_state,
2394                                   old_tsec->sid, new_tsec->sid,
2395                                   SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2396                 if (rc)
2397                         return rc;
2398
2399                 rc = avc_has_perm(&selinux_state,
2400                                   new_tsec->sid, isec->sid,
2401                                   SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2402                 if (rc)
2403                         return rc;
2404
2405                 /* Check for shared state */
2406                 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2407                         rc = avc_has_perm(&selinux_state,
2408                                           old_tsec->sid, new_tsec->sid,
2409                                           SECCLASS_PROCESS, PROCESS__SHARE,
2410                                           NULL);
2411                         if (rc)
2412                                 return -EPERM;
2413                 }
2414
2415                 /* Make sure that anyone attempting to ptrace over a task that
2416                  * changes its SID has the appropriate permit */
2417                 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2418                         u32 ptsid = ptrace_parent_sid();
2419                         if (ptsid != 0) {
2420                                 rc = avc_has_perm(&selinux_state,
2421                                                   ptsid, new_tsec->sid,
2422                                                   SECCLASS_PROCESS,
2423                                                   PROCESS__PTRACE, NULL);
2424                                 if (rc)
2425                                         return -EPERM;
2426                         }
2427                 }
2428
2429                 /* Clear any possibly unsafe personality bits on exec: */
2430                 bprm->per_clear |= PER_CLEAR_ON_SETID;
2431
2432                 /* Enable secure mode for SIDs transitions unless
2433                    the noatsecure permission is granted between
2434                    the two SIDs, i.e. ahp returns 0. */
2435                 rc = avc_has_perm(&selinux_state,
2436                                   old_tsec->sid, new_tsec->sid,
2437                                   SECCLASS_PROCESS, PROCESS__NOATSECURE,
2438                                   NULL);
2439                 bprm->secureexec |= !!rc;
2440         }
2441
2442         return 0;
2443 }
2444
2445 static int match_file(const void *p, struct file *file, unsigned fd)
2446 {
2447         return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2448 }
2449
2450 /* Derived from fs/exec.c:flush_old_files. */
2451 static inline void flush_unauthorized_files(const struct cred *cred,
2452                                             struct files_struct *files)
2453 {
2454         struct file *file, *devnull = NULL;
2455         struct tty_struct *tty;
2456         int drop_tty = 0;
2457         unsigned n;
2458
2459         tty = get_current_tty();
2460         if (tty) {
2461                 spin_lock(&tty->files_lock);
2462                 if (!list_empty(&tty->tty_files)) {
2463                         struct tty_file_private *file_priv;
2464
2465                         /* Revalidate access to controlling tty.
2466                            Use file_path_has_perm on the tty path directly
2467                            rather than using file_has_perm, as this particular
2468                            open file may belong to another process and we are
2469                            only interested in the inode-based check here. */
2470                         file_priv = list_first_entry(&tty->tty_files,
2471                                                 struct tty_file_private, list);
2472                         file = file_priv->file;
2473                         if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2474                                 drop_tty = 1;
2475                 }
2476                 spin_unlock(&tty->files_lock);
2477                 tty_kref_put(tty);
2478         }
2479         /* Reset controlling tty. */
2480         if (drop_tty)
2481                 no_tty();
2482
2483         /* Revalidate access to inherited open files. */
2484         n = iterate_fd(files, 0, match_file, cred);
2485         if (!n) /* none found? */
2486                 return;
2487
2488         devnull = dentry_open(&selinux_null, O_RDWR, cred);
2489         if (IS_ERR(devnull))
2490                 devnull = NULL;
2491         /* replace all the matching ones with this */
2492         do {
2493                 replace_fd(n - 1, devnull, 0);
2494         } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2495         if (devnull)
2496                 fput(devnull);
2497 }
2498
2499 /*
2500  * Prepare a process for imminent new credential changes due to exec
2501  */
2502 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2503 {
2504         struct task_security_struct *new_tsec;
2505         struct rlimit *rlim, *initrlim;
2506         int rc, i;
2507
2508         new_tsec = selinux_cred(bprm->cred);
2509         if (new_tsec->sid == new_tsec->osid)
2510                 return;
2511
2512         /* Close files for which the new task SID is not authorized. */
2513         flush_unauthorized_files(bprm->cred, current->files);
2514
2515         /* Always clear parent death signal on SID transitions. */
2516         current->pdeath_signal = 0;
2517
2518         /* Check whether the new SID can inherit resource limits from the old
2519          * SID.  If not, reset all soft limits to the lower of the current
2520          * task's hard limit and the init task's soft limit.
2521          *
2522          * Note that the setting of hard limits (even to lower them) can be
2523          * controlled by the setrlimit check.  The inclusion of the init task's
2524          * soft limit into the computation is to avoid resetting soft limits
2525          * higher than the default soft limit for cases where the default is
2526          * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2527          */
2528         rc = avc_has_perm(&selinux_state,
2529                           new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2530                           PROCESS__RLIMITINH, NULL);
2531         if (rc) {
2532                 /* protect against do_prlimit() */
2533                 task_lock(current);
2534                 for (i = 0; i < RLIM_NLIMITS; i++) {
2535                         rlim = current->signal->rlim + i;
2536                         initrlim = init_task.signal->rlim + i;
2537                         rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2538                 }
2539                 task_unlock(current);
2540                 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2541                         update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2542         }
2543 }
2544
2545 /*
2546  * Clean up the process immediately after the installation of new credentials
2547  * due to exec
2548  */
2549 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2550 {
2551         const struct task_security_struct *tsec = selinux_cred(current_cred());
2552         struct itimerval itimer;
2553         u32 osid, sid;
2554         int rc, i;
2555
2556         osid = tsec->osid;
2557         sid = tsec->sid;
2558
2559         if (sid == osid)
2560                 return;
2561
2562         /* Check whether the new SID can inherit signal state from the old SID.
2563          * If not, clear itimers to avoid subsequent signal generation and
2564          * flush and unblock signals.
2565          *
2566          * This must occur _after_ the task SID has been updated so that any
2567          * kill done after the flush will be checked against the new SID.
2568          */
2569         rc = avc_has_perm(&selinux_state,
2570                           osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571         if (rc) {
2572                 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573                         memset(&itimer, 0, sizeof itimer);
2574                         for (i = 0; i < 3; i++)
2575                                 do_setitimer(i, &itimer, NULL);
2576                 }
2577                 spin_lock_irq(&current->sighand->siglock);
2578                 if (!fatal_signal_pending(current)) {
2579                         flush_sigqueue(&current->pending);
2580                         flush_sigqueue(&current->signal->shared_pending);
2581                         flush_signal_handlers(current, 1);
2582                         sigemptyset(&current->blocked);
2583                         recalc_sigpending();
2584                 }
2585                 spin_unlock_irq(&current->sighand->siglock);
2586         }
2587
2588         /* Wake up the parent if it is waiting so that it can recheck
2589          * wait permission to the new task SID. */
2590         read_lock(&tasklist_lock);
2591         __wake_up_parent(current, current->real_parent);
2592         read_unlock(&tasklist_lock);
2593 }
2594
2595 /* superblock security operations */
2596
2597 static int selinux_sb_alloc_security(struct super_block *sb)
2598 {
2599         return superblock_alloc_security(sb);
2600 }
2601
2602 static void selinux_sb_free_security(struct super_block *sb)
2603 {
2604         superblock_free_security(sb);
2605 }
2606
2607 static inline int opt_len(const char *s)
2608 {
2609         bool open_quote = false;
2610         int len;
2611         char c;
2612
2613         for (len = 0; (c = s[len]) != '\0'; len++) {
2614                 if (c == '"')
2615                         open_quote = !open_quote;
2616                 if (c == ',' && !open_quote)
2617                         break;
2618         }
2619         return len;
2620 }
2621
2622 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2623 {
2624         char *from = options;
2625         char *to = options;
2626         bool first = true;
2627         int rc;
2628
2629         while (1) {
2630                 int len = opt_len(from);
2631                 int token;
2632                 char *arg = NULL;
2633
2634                 token = match_opt_prefix(from, len, &arg);
2635
2636                 if (token != Opt_error) {
2637                         char *p, *q;
2638
2639                         /* strip quotes */
2640                         if (arg) {
2641                                 for (p = q = arg; p < from + len; p++) {
2642                                         char c = *p;
2643                                         if (c != '"')
2644                                                 *q++ = c;
2645                                 }
2646                                 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2647                                 if (!arg) {
2648                                         rc = -ENOMEM;
2649                                         goto free_opt;
2650                                 }
2651                         }
2652                         rc = selinux_add_opt(token, arg, mnt_opts);
2653                         if (unlikely(rc)) {
2654                                 kfree(arg);
2655                                 goto free_opt;
2656                         }
2657                 } else {
2658                         if (!first) {   // copy with preceding comma
2659                                 from--;
2660                                 len++;
2661                         }
2662                         if (to != from)
2663                                 memmove(to, from, len);
2664                         to += len;
2665                         first = false;
2666                 }
2667                 if (!from[len])
2668                         break;
2669                 from += len + 1;
2670         }
2671         *to = '\0';
2672         return 0;
2673
2674 free_opt:
2675         if (*mnt_opts) {
2676                 selinux_free_mnt_opts(*mnt_opts);
2677                 *mnt_opts = NULL;
2678         }
2679         return rc;
2680 }
2681
2682 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2683 {
2684         struct selinux_mnt_opts *opts = mnt_opts;
2685         struct superblock_security_struct *sbsec = sb->s_security;
2686         u32 sid;
2687         int rc;
2688
2689         if (!(sbsec->flags & SE_SBINITIALIZED))
2690                 return 0;
2691
2692         if (!opts)
2693                 return 0;
2694
2695         if (opts->fscontext) {
2696                 rc = parse_sid(sb, opts->fscontext, &sid);
2697                 if (rc)
2698                         return rc;
2699                 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2700                         goto out_bad_option;
2701         }
2702         if (opts->context) {
2703                 rc = parse_sid(sb, opts->context, &sid);
2704                 if (rc)
2705                         return rc;
2706                 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2707                         goto out_bad_option;
2708         }
2709         if (opts->rootcontext) {
2710                 struct inode_security_struct *root_isec;
2711                 root_isec = backing_inode_security(sb->s_root);
2712                 rc = parse_sid(sb, opts->rootcontext, &sid);
2713                 if (rc)
2714                         return rc;
2715                 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2716                         goto out_bad_option;
2717         }
2718         if (opts->defcontext) {
2719                 rc = parse_sid(sb, opts->defcontext, &sid);
2720                 if (rc)
2721                         return rc;
2722                 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2723                         goto out_bad_option;
2724         }
2725         return 0;
2726
2727 out_bad_option:
2728         pr_warn("SELinux: unable to change security options "
2729                "during remount (dev %s, type=%s)\n", sb->s_id,
2730                sb->s_type->name);
2731         return -EINVAL;
2732 }
2733
2734 static int selinux_sb_kern_mount(struct super_block *sb)
2735 {
2736         const struct cred *cred = current_cred();
2737         struct common_audit_data ad;
2738
2739         ad.type = LSM_AUDIT_DATA_DENTRY;
2740         ad.u.dentry = sb->s_root;
2741         return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2742 }
2743
2744 static int selinux_sb_statfs(struct dentry *dentry)
2745 {
2746         const struct cred *cred = current_cred();
2747         struct common_audit_data ad;
2748
2749         ad.type = LSM_AUDIT_DATA_DENTRY;
2750         ad.u.dentry = dentry->d_sb->s_root;
2751         return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2752 }
2753
2754 static int selinux_mount(const char *dev_name,
2755                          const struct path *path,
2756                          const char *type,
2757                          unsigned long flags,
2758                          void *data)
2759 {
2760         const struct cred *cred = current_cred();
2761
2762         if (flags & MS_REMOUNT)
2763                 return superblock_has_perm(cred, path->dentry->d_sb,
2764                                            FILESYSTEM__REMOUNT, NULL);
2765         else
2766                 return path_has_perm(cred, path, FILE__MOUNTON);
2767 }
2768
2769 static int selinux_umount(struct vfsmount *mnt, int flags)
2770 {
2771         const struct cred *cred = current_cred();
2772
2773         return superblock_has_perm(cred, mnt->mnt_sb,
2774                                    FILESYSTEM__UNMOUNT, NULL);
2775 }
2776
2777 static int selinux_fs_context_dup(struct fs_context *fc,
2778                                   struct fs_context *src_fc)
2779 {
2780         const struct selinux_mnt_opts *src = src_fc->security;
2781         struct selinux_mnt_opts *opts;
2782
2783         if (!src)
2784                 return 0;
2785
2786         fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2787         if (!fc->security)
2788                 return -ENOMEM;
2789
2790         opts = fc->security;
2791
2792         if (src->fscontext) {
2793                 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2794                 if (!opts->fscontext)
2795                         return -ENOMEM;
2796         }
2797         if (src->context) {
2798                 opts->context = kstrdup(src->context, GFP_KERNEL);
2799                 if (!opts->context)
2800                         return -ENOMEM;
2801         }
2802         if (src->rootcontext) {
2803                 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2804                 if (!opts->rootcontext)
2805                         return -ENOMEM;
2806         }
2807         if (src->defcontext) {
2808                 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2809                 if (!opts->defcontext)
2810                         return -ENOMEM;
2811         }
2812         return 0;
2813 }
2814
2815 static const struct fs_parameter_spec selinux_param_specs[] = {
2816         fsparam_string(CONTEXT_STR,     Opt_context),
2817         fsparam_string(DEFCONTEXT_STR,  Opt_defcontext),
2818         fsparam_string(FSCONTEXT_STR,   Opt_fscontext),
2819         fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2820         fsparam_flag  (SECLABEL_STR,    Opt_seclabel),
2821         {}
2822 };
2823
2824 static const struct fs_parameter_description selinux_fs_parameters = {
2825         .name           = "SELinux",
2826         .specs          = selinux_param_specs,
2827 };
2828
2829 static int selinux_fs_context_parse_param(struct fs_context *fc,
2830                                           struct fs_parameter *param)
2831 {
2832         struct fs_parse_result result;
2833         int opt, rc;
2834
2835         opt = fs_parse(fc, &selinux_fs_parameters, param, &result);
2836         if (opt < 0)
2837                 return opt;
2838
2839         rc = selinux_add_opt(opt, param->string, &fc->security);
2840         if (!rc) {
2841                 param->string = NULL;
2842                 rc = 1;
2843         }
2844         return rc;
2845 }
2846
2847 /* inode security operations */
2848
2849 static int selinux_inode_alloc_security(struct inode *inode)
2850 {
2851         return inode_alloc_security(inode);
2852 }
2853
2854 static void selinux_inode_free_security(struct inode *inode)
2855 {
2856         inode_free_security(inode);
2857 }
2858
2859 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2860                                         const struct qstr *name, void **ctx,
2861                                         u32 *ctxlen)
2862 {
2863         u32 newsid;
2864         int rc;
2865
2866         rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2867                                            d_inode(dentry->d_parent), name,
2868                                            inode_mode_to_security_class(mode),
2869                                            &newsid);
2870         if (rc)
2871                 return rc;
2872
2873         return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2874                                        ctxlen);
2875 }
2876
2877 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2878                                           struct qstr *name,
2879                                           const struct cred *old,
2880                                           struct cred *new)
2881 {
2882         u32 newsid;
2883         int rc;
2884         struct task_security_struct *tsec;
2885
2886         rc = selinux_determine_inode_label(selinux_cred(old),
2887                                            d_inode(dentry->d_parent), name,
2888                                            inode_mode_to_security_class(mode),
2889                                            &newsid);
2890         if (rc)
2891                 return rc;
2892
2893         tsec = selinux_cred(new);
2894         tsec->create_sid = newsid;
2895         return 0;
2896 }
2897
2898 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2899                                        const struct qstr *qstr,
2900                                        const char **name,
2901                                        void **value, size_t *len)
2902 {
2903         const struct task_security_struct *tsec = selinux_cred(current_cred());
2904         struct superblock_security_struct *sbsec;
2905         u32 newsid, clen;
2906         int rc;
2907         char *context;
2908
2909         sbsec = dir->i_sb->s_security;
2910
2911         newsid = tsec->create_sid;
2912
2913         rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2914                 dir, qstr,
2915                 inode_mode_to_security_class(inode->i_mode),
2916                 &newsid);
2917         if (rc)
2918                 return rc;
2919
2920         /* Possibly defer initialization to selinux_complete_init. */
2921         if (sbsec->flags & SE_SBINITIALIZED) {
2922                 struct inode_security_struct *isec = selinux_inode(inode);
2923                 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2924                 isec->sid = newsid;
2925                 isec->initialized = LABEL_INITIALIZED;
2926         }
2927
2928         if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
2929                 return -EOPNOTSUPP;
2930
2931         if (name)
2932                 *name = XATTR_SELINUX_SUFFIX;
2933
2934         if (value && len) {
2935                 rc = security_sid_to_context_force(&selinux_state, newsid,
2936                                                    &context, &clen);
2937                 if (rc)
2938                         return rc;
2939                 *value = context;
2940                 *len = clen;
2941         }
2942
2943         return 0;
2944 }
2945
2946 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2947 {
2948         return may_create(dir, dentry, SECCLASS_FILE);
2949 }
2950
2951 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2952 {
2953         return may_link(dir, old_dentry, MAY_LINK);
2954 }
2955
2956 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2957 {
2958         return may_link(dir, dentry, MAY_UNLINK);
2959 }
2960
2961 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2962 {
2963         return may_create(dir, dentry, SECCLASS_LNK_FILE);
2964 }
2965
2966 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2967 {
2968         return may_create(dir, dentry, SECCLASS_DIR);
2969 }
2970
2971 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2972 {
2973         return may_link(dir, dentry, MAY_RMDIR);
2974 }
2975
2976 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2977 {
2978         return may_create(dir, dentry, inode_mode_to_security_class(mode));
2979 }
2980
2981 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2982                                 struct inode *new_inode, struct dentry *new_dentry)
2983 {
2984         return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2985 }
2986
2987 static int selinux_inode_readlink(struct dentry *dentry)
2988 {
2989         const struct cred *cred = current_cred();
2990
2991         return dentry_has_perm(cred, dentry, FILE__READ);
2992 }
2993
2994 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2995                                      bool rcu)
2996 {
2997         const struct cred *cred = current_cred();
2998         struct common_audit_data ad;
2999         struct inode_security_struct *isec;
3000         u32 sid;
3001
3002         validate_creds(cred);
3003
3004         ad.type = LSM_AUDIT_DATA_DENTRY;
3005         ad.u.dentry = dentry;
3006         sid = cred_sid(cred);
3007         isec = inode_security_rcu(inode, rcu);
3008         if (IS_ERR(isec))
3009                 return PTR_ERR(isec);
3010
3011         return avc_has_perm(&selinux_state,
3012                             sid, isec->sid, isec->sclass, FILE__READ, &ad);
3013 }
3014
3015 static noinline int audit_inode_permission(struct inode *inode,
3016                                            u32 perms, u32 audited, u32 denied,
3017                                            int result,
3018                                            unsigned flags)
3019 {
3020         struct common_audit_data ad;
3021         struct inode_security_struct *isec = selinux_inode(inode);
3022         int rc;
3023
3024         ad.type = LSM_AUDIT_DATA_INODE;
3025         ad.u.inode = inode;
3026
3027         rc = slow_avc_audit(&selinux_state,
3028                             current_sid(), isec->sid, isec->sclass, perms,
3029                             audited, denied, result, &ad, flags);
3030         if (rc)
3031                 return rc;
3032         return 0;
3033 }
3034
3035 static int selinux_inode_permission(struct inode *inode, int mask)
3036 {
3037         const struct cred *cred = current_cred();
3038         u32 perms;
3039         bool from_access;
3040         unsigned flags = mask & MAY_NOT_BLOCK;
3041         struct inode_security_struct *isec;
3042         u32 sid;
3043         struct av_decision avd;
3044         int rc, rc2;
3045         u32 audited, denied;
3046
3047         from_access = mask & MAY_ACCESS;
3048         mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3049
3050         /* No permission to check.  Existence test. */
3051         if (!mask)
3052                 return 0;
3053
3054         validate_creds(cred);
3055
3056         if (unlikely(IS_PRIVATE(inode)))
3057                 return 0;
3058
3059         perms = file_mask_to_av(inode->i_mode, mask);
3060
3061         sid = cred_sid(cred);
3062         isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3063         if (IS_ERR(isec))
3064                 return PTR_ERR(isec);
3065
3066         rc = avc_has_perm_noaudit(&selinux_state,
3067                                   sid, isec->sid, isec->sclass, perms,
3068                                   (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
3069                                   &avd);
3070         audited = avc_audit_required(perms, &avd, rc,
3071                                      from_access ? FILE__AUDIT_ACCESS : 0,
3072                                      &denied);
3073         if (likely(!audited))
3074                 return rc;
3075
3076         rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3077         if (rc2)
3078                 return rc2;
3079         return rc;
3080 }
3081
3082 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3083 {
3084         const struct cred *cred = current_cred();
3085         struct inode *inode = d_backing_inode(dentry);
3086         unsigned int ia_valid = iattr->ia_valid;
3087         __u32 av = FILE__WRITE;
3088
3089         /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3090         if (ia_valid & ATTR_FORCE) {
3091                 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3092                               ATTR_FORCE);
3093                 if (!ia_valid)
3094                         return 0;
3095         }
3096
3097         if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3098                         ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3099                 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3100
3101         if (selinux_policycap_openperm() &&
3102             inode->i_sb->s_magic != SOCKFS_MAGIC &&
3103             (ia_valid & ATTR_SIZE) &&
3104             !(ia_valid & ATTR_FILE))
3105                 av |= FILE__OPEN;
3106
3107         return dentry_has_perm(cred, dentry, av);
3108 }
3109
3110 static int selinux_inode_getattr(const struct path *path)
3111 {
3112         return path_has_perm(current_cred(), path, FILE__GETATTR);
3113 }
3114
3115 static bool has_cap_mac_admin(bool audit)
3116 {
3117         const struct cred *cred = current_cred();
3118         unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3119
3120         if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3121                 return false;
3122         if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3123                 return false;
3124         return true;
3125 }
3126
3127 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3128                                   const void *value, size_t size, int flags)
3129 {
3130         struct inode *inode = d_backing_inode(dentry);
3131         struct inode_security_struct *isec;
3132         struct superblock_security_struct *sbsec;
3133         struct common_audit_data ad;
3134         u32 newsid, sid = current_sid();
3135         int rc = 0;
3136
3137         if (strcmp(name, XATTR_NAME_SELINUX)) {
3138                 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3139                 if (rc)
3140                         return rc;
3141
3142                 /* Not an attribute we recognize, so just check the
3143                    ordinary setattr permission. */
3144                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3145         }
3146
3147         sbsec = inode->i_sb->s_security;
3148         if (!(sbsec->flags & SBLABEL_MNT))
3149                 return -EOPNOTSUPP;
3150
3151         if (!inode_owner_or_capable(inode))
3152                 return -EPERM;
3153
3154         ad.type = LSM_AUDIT_DATA_DENTRY;
3155         ad.u.dentry = dentry;
3156
3157         isec = backing_inode_security(dentry);
3158         rc = avc_has_perm(&selinux_state,
3159                           sid, isec->sid, isec->sclass,
3160                           FILE__RELABELFROM, &ad);
3161         if (rc)
3162                 return rc;
3163
3164         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3165                                      GFP_KERNEL);
3166         if (rc == -EINVAL) {
3167                 if (!has_cap_mac_admin(true)) {
3168                         struct audit_buffer *ab;
3169                         size_t audit_size;
3170
3171                         /* We strip a nul only if it is at the end, otherwise the
3172                          * context contains a nul and we should audit that */
3173                         if (value) {
3174                                 const char *str = value;
3175
3176                                 if (str[size - 1] == '\0')
3177                                         audit_size = size - 1;
3178                                 else
3179                                         audit_size = size;
3180                         } else {
3181                                 audit_size = 0;
3182                         }
3183                         ab = audit_log_start(audit_context(),
3184                                              GFP_ATOMIC, AUDIT_SELINUX_ERR);
3185                         audit_log_format(ab, "op=setxattr invalid_context=");
3186                         audit_log_n_untrustedstring(ab, value, audit_size);
3187                         audit_log_end(ab);
3188
3189                         return rc;
3190                 }
3191                 rc = security_context_to_sid_force(&selinux_state, value,
3192                                                    size, &newsid);
3193         }
3194         if (rc)
3195                 return rc;
3196
3197         rc = avc_has_perm(&selinux_state,
3198                           sid, newsid, isec->sclass,
3199                           FILE__RELABELTO, &ad);
3200         if (rc)
3201                 return rc;
3202
3203         rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3204                                           sid, isec->sclass);
3205         if (rc)
3206                 return rc;
3207
3208         return avc_has_perm(&selinux_state,
3209                             newsid,
3210                             sbsec->sid,
3211                             SECCLASS_FILESYSTEM,
3212                             FILESYSTEM__ASSOCIATE,
3213                             &ad);
3214 }
3215
3216 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3217                                         const void *value, size_t size,
3218                                         int flags)
3219 {
3220         struct inode *inode = d_backing_inode(dentry);
3221         struct inode_security_struct *isec;
3222         u32 newsid;
3223         int rc;
3224
3225         if (strcmp(name, XATTR_NAME_SELINUX)) {
3226                 /* Not an attribute we recognize, so nothing to do. */
3227                 return;
3228         }
3229
3230         rc = security_context_to_sid_force(&selinux_state, value, size,
3231                                            &newsid);
3232         if (rc) {
3233                 pr_err("SELinux:  unable to map context to SID"
3234                        "for (%s, %lu), rc=%d\n",
3235                        inode->i_sb->s_id, inode->i_ino, -rc);
3236                 return;
3237         }
3238
3239         isec = backing_inode_security(dentry);
3240         spin_lock(&isec->lock);
3241         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3242         isec->sid = newsid;
3243         isec->initialized = LABEL_INITIALIZED;
3244         spin_unlock(&isec->lock);
3245
3246         return;
3247 }
3248
3249 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3250 {
3251         const struct cred *cred = current_cred();
3252
3253         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3254 }
3255
3256 static int selinux_inode_listxattr(struct dentry *dentry)
3257 {
3258         const struct cred *cred = current_cred();
3259
3260         return dentry_has_perm(cred, dentry, FILE__GETATTR);
3261 }
3262
3263 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3264 {
3265         if (strcmp(name, XATTR_NAME_SELINUX)) {
3266                 int rc = cap_inode_removexattr(dentry, name);
3267                 if (rc)
3268                         return rc;
3269
3270                 /* Not an attribute we recognize, so just check the
3271                    ordinary setattr permission. */
3272                 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3273         }
3274
3275         /* No one is allowed to remove a SELinux security label.
3276            You can change the label, but all data must be labeled. */
3277         return -EACCES;
3278 }
3279
3280 static int selinux_path_notify(const struct path *path, u64 mask,
3281                                                 unsigned int obj_type)
3282 {
3283         int ret;
3284         u32 perm;
3285
3286         struct common_audit_data ad;
3287
3288         ad.type = LSM_AUDIT_DATA_PATH;
3289         ad.u.path = *path;
3290
3291         /*
3292          * Set permission needed based on the type of mark being set.
3293          * Performs an additional check for sb watches.
3294          */
3295         switch (obj_type) {
3296         case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3297                 perm = FILE__WATCH_MOUNT;
3298                 break;
3299         case FSNOTIFY_OBJ_TYPE_SB:
3300                 perm = FILE__WATCH_SB;
3301                 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3302                                                 FILESYSTEM__WATCH, &ad);
3303                 if (ret)
3304                         return ret;
3305                 break;
3306         case FSNOTIFY_OBJ_TYPE_INODE:
3307                 perm = FILE__WATCH;
3308                 break;
3309         default:
3310                 return -EINVAL;
3311         }
3312
3313         /* blocking watches require the file:watch_with_perm permission */
3314         if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3315                 perm |= FILE__WATCH_WITH_PERM;
3316
3317         /* watches on read-like events need the file:watch_reads permission */
3318         if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3319                 perm |= FILE__WATCH_READS;
3320
3321         return path_has_perm(current_cred(), path, perm);
3322 }
3323
3324 /*
3325  * Copy the inode security context value to the user.
3326  *
3327  * Permission check is handled by selinux_inode_getxattr hook.
3328  */
3329 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3330 {
3331         u32 size;
3332         int error;
3333         char *context = NULL;
3334         struct inode_security_struct *isec;
3335
3336         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3337                 return -EOPNOTSUPP;
3338
3339         /*
3340          * If the caller has CAP_MAC_ADMIN, then get the raw context
3341          * value even if it is not defined by current policy; otherwise,
3342          * use the in-core value under current policy.
3343          * Use the non-auditing forms of the permission checks since
3344          * getxattr may be called by unprivileged processes commonly
3345          * and lack of permission just means that we fall back to the
3346          * in-core context value, not a denial.
3347          */
3348         isec = inode_security(inode);
3349         if (has_cap_mac_admin(false))
3350                 error = security_sid_to_context_force(&selinux_state,
3351                                                       isec->sid, &context,
3352                                                       &size);
3353         else
3354                 error = security_sid_to_context(&selinux_state, isec->sid,
3355                                                 &context, &size);
3356         if (error)
3357                 return error;
3358         error = size;
3359         if (alloc) {
3360                 *buffer = context;
3361                 goto out_nofree;
3362         }
3363         kfree(context);
3364 out_nofree:
3365         return error;
3366 }
3367
3368 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3369                                      const void *value, size_t size, int flags)
3370 {
3371         struct inode_security_struct *isec = inode_security_novalidate(inode);
3372         struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3373         u32 newsid;
3374         int rc;
3375
3376         if (strcmp(name, XATTR_SELINUX_SUFFIX))
3377                 return -EOPNOTSUPP;
3378
3379         if (!(sbsec->flags & SBLABEL_MNT))
3380                 return -EOPNOTSUPP;
3381
3382         if (!value || !size)
3383                 return -EACCES;
3384
3385         rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3386                                      GFP_KERNEL);
3387         if (rc)
3388                 return rc;
3389
3390         spin_lock(&isec->lock);
3391         isec->sclass = inode_mode_to_security_class(inode->i_mode);
3392         isec->sid = newsid;
3393         isec->initialized = LABEL_INITIALIZED;
3394         spin_unlock(&isec->lock);
3395         return 0;
3396 }
3397
3398 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3399 {
3400         const int len = sizeof(XATTR_NAME_SELINUX);
3401         if (buffer && len <= buffer_size)
3402                 memcpy(buffer, XATTR_NAME_SELINUX, len);
3403         return len;
3404 }
3405
3406 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3407 {
3408         struct inode_security_struct *isec = inode_security_novalidate(inode);
3409         *secid = isec->sid;
3410 }
3411
3412 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3413 {
3414         u32 sid;
3415         struct task_security_struct *tsec;
3416         struct cred *new_creds = *new;
3417
3418         if (new_creds == NULL) {
3419                 new_creds = prepare_creds();
3420                 if (!new_creds)
3421                         return -ENOMEM;
3422         }
3423
3424         tsec = selinux_cred(new_creds);
3425         /* Get label from overlay inode and set it in create_sid */
3426         selinux_inode_getsecid(d_inode(src), &sid);
3427         tsec->create_sid = sid;
3428         *new = new_creds;
3429         return 0;
3430 }
3431
3432 static int selinux_inode_copy_up_xattr(const char *name)
3433 {
3434         /* The copy_up hook above sets the initial context on an inode, but we
3435          * don't then want to overwrite it by blindly copying all the lower
3436          * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3437          */
3438         if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3439                 return 1; /* Discard */
3440         /*
3441          * Any other attribute apart from SELINUX is not claimed, supported
3442          * by selinux.
3443          */
3444         return -EOPNOTSUPP;
3445 }
3446
3447 /* kernfs node operations */
3448
3449 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3450                                         struct kernfs_node *kn)
3451 {
3452         const struct task_security_struct *tsec = selinux_cred(current_cred());
3453         u32 parent_sid, newsid, clen;
3454         int rc;
3455         char *context;
3456
3457         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3458         if (rc == -ENODATA)
3459                 return 0;
3460         else if (rc < 0)
3461                 return rc;
3462
3463         clen = (u32)rc;
3464         context = kmalloc(clen, GFP_KERNEL);
3465         if (!context)
3466                 return -ENOMEM;
3467
3468         rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3469         if (rc < 0) {
3470                 kfree(context);
3471                 return rc;
3472         }
3473
3474         rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3475                                      GFP_KERNEL);
3476         kfree(context);
3477         if (rc)
3478                 return rc;
3479
3480         if (tsec->create_sid) {
3481                 newsid = tsec->create_sid;
3482         } else {
3483                 u16 secclass = inode_mode_to_security_class(kn->mode);
3484                 struct qstr q;
3485
3486                 q.name = kn->name;
3487                 q.hash_len = hashlen_string(kn_dir, kn->name);
3488
3489                 rc = security_transition_sid(&selinux_state, tsec->sid,
3490                                              parent_sid, secclass, &q,
3491                                              &newsid);
3492                 if (rc)
3493                         return rc;
3494         }
3495
3496         rc = security_sid_to_context_force(&selinux_state, newsid,
3497                                            &context, &clen);
3498         if (rc)
3499                 return rc;
3500
3501         rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3502                               XATTR_CREATE);
3503         kfree(context);
3504         return rc;
3505 }
3506
3507
3508 /* file security operations */
3509
3510 static int selinux_revalidate_file_permission(struct file *file, int mask)
3511 {
3512         const struct cred *cred = current_cred();
3513         struct inode *inode = file_inode(file);
3514
3515         /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3516         if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3517                 mask |= MAY_APPEND;
3518
3519         return file_has_perm(cred, file,
3520                              file_mask_to_av(inode->i_mode, mask));
3521 }
3522
3523 static int selinux_file_permission(struct file *file, int mask)
3524 {
3525         struct inode *inode = file_inode(file);
3526         struct file_security_struct *fsec = selinux_file(file);
3527         struct inode_security_struct *isec;
3528         u32 sid = current_sid();
3529
3530         if (!mask)
3531                 /* No permission to check.  Existence test. */
3532                 return 0;
3533
3534         isec = inode_security(inode);
3535         if (sid == fsec->sid && fsec->isid == isec->sid &&
3536             fsec->pseqno == avc_policy_seqno(&selinux_state))
3537                 /* No change since file_open check. */
3538                 return 0;
3539
3540         return selinux_revalidate_file_permission(file, mask);
3541 }
3542
3543 static int selinux_file_alloc_security(struct file *file)
3544 {
3545         return file_alloc_security(file);
3546 }
3547
3548 /*
3549  * Check whether a task has the ioctl permission and cmd
3550  * operation to an inode.
3551  */
3552 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3553                 u32 requested, u16 cmd)
3554 {
3555         struct common_audit_data ad;
3556         struct file_security_struct *fsec = selinux_file(file);
3557         struct inode *inode = file_inode(file);
3558         struct inode_security_struct *isec;
3559         struct lsm_ioctlop_audit ioctl;
3560         u32 ssid = cred_sid(cred);
3561         int rc;
3562         u8 driver = cmd >> 8;
3563         u8 xperm = cmd & 0xff;
3564
3565         ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3566         ad.u.op = &ioctl;
3567         ad.u.op->cmd = cmd;
3568         ad.u.op->path = file->f_path;
3569
3570         if (ssid != fsec->sid) {
3571                 rc = avc_has_perm(&selinux_state,
3572                                   ssid, fsec->sid,
3573                                 SECCLASS_FD,
3574                                 FD__USE,
3575                                 &ad);
3576                 if (rc)
3577                         goto out;
3578         }
3579
3580         if (unlikely(IS_PRIVATE(inode)))
3581                 return 0;
3582
3583         isec = inode_security(inode);
3584         rc = avc_has_extended_perms(&selinux_state,
3585                                     ssid, isec->sid, isec->sclass,
3586                                     requested, driver, xperm, &ad);
3587 out:
3588         return rc;
3589 }
3590
3591 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3592                               unsigned long arg)
3593 {
3594         const struct cred *cred = current_cred();
3595         int error = 0;
3596
3597         switch (cmd) {
3598         case FIONREAD:
3599         /* fall through */
3600         case FIBMAP:
3601         /* fall through */
3602         case FIGETBSZ:
3603         /* fall through */
3604         case FS_IOC_GETFLAGS:
3605         /* fall through */
3606         case FS_IOC_GETVERSION:
3607                 error = file_has_perm(cred, file, FILE__GETATTR);
3608                 break;
3609
3610         case FS_IOC_SETFLAGS:
3611         /* fall through */
3612         case FS_IOC_SETVERSION:
3613                 error = file_has_perm(cred, file, FILE__SETATTR);
3614                 break;
3615
3616         /* sys_ioctl() checks */
3617         case FIONBIO:
3618         /* fall through */
3619         case FIOASYNC:
3620                 error = file_has_perm(cred, file, 0);
3621                 break;
3622
3623         case KDSKBENT:
3624         case KDSKBSENT:
3625                 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3626                                             CAP_OPT_NONE, true);
3627                 break;
3628
3629         /* default case assumes that the command will go
3630          * to the file's ioctl() function.
3631          */
3632         default:
3633                 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3634         }
3635         return error;
3636 }
3637
3638 static int default_noexec;
3639
3640 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3641 {
3642         const struct cred *cred = current_cred();
3643         u32 sid = cred_sid(cred);
3644         int rc = 0;
3645
3646         if (default_noexec &&
3647             (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3648                                    (!shared && (prot & PROT_WRITE)))) {
3649                 /*
3650                  * We are making executable an anonymous mapping or a
3651                  * private file mapping that will also be writable.
3652                  * This has an additional check.
3653                  */
3654                 rc = avc_has_perm(&selinux_state,
3655                                   sid, sid, SECCLASS_PROCESS,
3656                                   PROCESS__EXECMEM, NULL);
3657                 if (rc)
3658                         goto error;
3659         }
3660
3661         if (file) {
3662                 /* read access is always possible with a mapping */
3663                 u32 av = FILE__READ;
3664
3665                 /* write access only matters if the mapping is shared */
3666                 if (shared && (prot & PROT_WRITE))
3667                         av |= FILE__WRITE;
3668
3669                 if (prot & PROT_EXEC)
3670                         av |= FILE__EXECUTE;
3671
3672                 return file_has_perm(cred, file, av);
3673         }
3674
3675 error:
3676         return rc;
3677 }
3678
3679 static int selinux_mmap_addr(unsigned long addr)
3680 {
3681         int rc = 0;
3682
3683         if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3684                 u32 sid = current_sid();
3685                 rc = avc_has_perm(&selinux_state,
3686                                   sid, sid, SECCLASS_MEMPROTECT,
3687                                   MEMPROTECT__MMAP_ZERO, NULL);
3688         }
3689
3690         return rc;
3691 }
3692
3693 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3694                              unsigned long prot, unsigned long flags)
3695 {
3696         struct common_audit_data ad;
3697         int rc;
3698
3699         if (file) {
3700                 ad.type = LSM_AUDIT_DATA_FILE;
3701                 ad.u.file = file;
3702                 rc = inode_has_perm(current_cred(), file_inode(file),
3703                                     FILE__MAP, &ad);
3704                 if (rc)
3705                         return rc;
3706         }
3707
3708         if (selinux_state.checkreqprot)
3709                 prot = reqprot;
3710
3711         return file_map_prot_check(file, prot,
3712                                    (flags & MAP_TYPE) == MAP_SHARED);
3713 }
3714
3715 static int selinux_file_mprotect(struct vm_area_struct *vma,
3716                                  unsigned long reqprot,
3717                                  unsigned long prot)
3718 {
3719         const struct cred *cred = current_cred();
3720         u32 sid = cred_sid(cred);
3721
3722         if (selinux_state.checkreqprot)
3723                 prot = reqprot;
3724
3725         if (default_noexec &&
3726             (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3727                 int rc = 0;
3728                 if (vma->vm_start >= vma->vm_mm->start_brk &&
3729                     vma->vm_end <= vma->vm_mm->brk) {
3730                         rc = avc_has_perm(&selinux_state,
3731                                           sid, sid, SECCLASS_PROCESS,
3732                                           PROCESS__EXECHEAP, NULL);
3733                 } else if (!vma->vm_file &&
3734                            ((vma->vm_start <= vma->vm_mm->start_stack &&
3735                              vma->vm_end >= vma->vm_mm->start_stack) ||
3736                             vma_is_stack_for_current(vma))) {
3737                         rc = avc_has_perm(&selinux_state,
3738                                           sid, sid, SECCLASS_PROCESS,
3739                                           PROCESS__EXECSTACK, NULL);
3740                 } else if (vma->vm_file && vma->anon_vma) {
3741                         /*
3742                          * We are making executable a file mapping that has
3743                          * had some COW done. Since pages might have been
3744                          * written, check ability to execute the possibly
3745                          * modified content.  This typically should only
3746                          * occur for text relocations.
3747                          */
3748                         rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3749                 }
3750                 if (rc)
3751                         return rc;
3752         }
3753
3754         return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3755 }
3756
3757 static int selinux_file_lock(struct file *file, unsigned int cmd)
3758 {
3759         const struct cred *cred = current_cred();
3760
3761         return file_has_perm(cred, file, FILE__LOCK);
3762 }
3763
3764 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3765                               unsigned long arg)
3766 {
3767         const struct cred *cred = current_cred();
3768         int err = 0;
3769
3770         switch (cmd) {
3771         case F_SETFL:
3772                 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3773                         err = file_has_perm(cred, file, FILE__WRITE);
3774                         break;
3775                 }
3776                 /* fall through */
3777         case F_SETOWN:
3778         case F_SETSIG:
3779         case F_GETFL:
3780         case F_GETOWN:
3781         case F_GETSIG:
3782         case F_GETOWNER_UIDS:
3783                 /* Just check FD__USE permission */
3784                 err = file_has_perm(cred, file, 0);
3785                 break;
3786         case F_GETLK:
3787         case F_SETLK:
3788         case F_SETLKW:
3789         case F_OFD_GETLK:
3790         case F_OFD_SETLK:
3791         case F_OFD_SETLKW:
3792 #if BITS_PER_LONG == 32
3793         case F_GETLK64:
3794         case F_SETLK64:
3795         case F_SETLKW64:
3796 #endif
3797                 err = file_has_perm(cred, file, FILE__LOCK);
3798                 break;
3799         }
3800
3801         return err;
3802 }
3803
3804 static void selinux_file_set_fowner(struct file *file)
3805 {
3806         struct file_security_struct *fsec;
3807
3808         fsec = selinux_file(file);
3809         fsec->fown_sid = current_sid();
3810 }
3811
3812 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3813                                        struct fown_struct *fown, int signum)
3814 {
3815         struct file *file;
3816         u32 sid = task_sid(tsk);
3817         u32 perm;
3818         struct file_security_struct *fsec;
3819
3820         /* struct fown_struct is never outside the context of a struct file */
3821         file = container_of(fown, struct file, f_owner);
3822
3823         fsec = selinux_file(file);
3824
3825         if (!signum)
3826                 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3827         else
3828                 perm = signal_to_av(signum);
3829
3830         return avc_has_perm(&selinux_state,
3831                             fsec->fown_sid, sid,
3832                             SECCLASS_PROCESS, perm, NULL);
3833 }
3834
3835 static int selinux_file_receive(struct file *file)
3836 {
3837         const struct cred *cred = current_cred();
3838
3839         return file_has_perm(cred, file, file_to_av(file));
3840 }
3841
3842 static int selinux_file_open(struct file *file)
3843 {
3844         struct file_security_struct *fsec;
3845         struct inode_security_struct *isec;
3846
3847         fsec = selinux_file(file);
3848         isec = inode_security(file_inode(file));
3849         /*
3850          * Save inode label and policy sequence number
3851          * at open-time so that selinux_file_permission
3852          * can determine whether revalidation is necessary.
3853          * Task label is already saved in the file security
3854          * struct as its SID.
3855          */
3856         fsec->isid = isec->sid;
3857         fsec->pseqno = avc_policy_seqno(&selinux_state);
3858         /*
3859          * Since the inode label or policy seqno may have changed
3860          * between the selinux_inode_permission check and the saving
3861          * of state above, recheck that access is still permitted.
3862          * Otherwise, access might never be revalidated against the
3863          * new inode label or new policy.
3864          * This check is not redundant - do not remove.
3865          */
3866         return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3867 }
3868
3869 /* task security operations */
3870
3871 static int selinux_task_alloc(struct task_struct *task,
3872                               unsigned long clone_flags)
3873 {
3874         u32 sid = current_sid();
3875
3876         return avc_has_perm(&selinux_state,
3877                             sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3878 }
3879
3880 /*
3881  * prepare a new set of credentials for modification
3882  */
3883 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3884                                 gfp_t gfp)
3885 {
3886         const struct task_security_struct *old_tsec = selinux_cred(old);
3887         struct task_security_struct *tsec = selinux_cred(new);
3888
3889         *tsec = *old_tsec;
3890         return 0;
3891 }
3892
3893 /*
3894  * transfer the SELinux data to a blank set of creds
3895  */
3896 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3897 {
3898         const struct task_security_struct *old_tsec = selinux_cred(old);
3899         struct task_security_struct *tsec = selinux_cred(new);
3900
3901         *tsec = *old_tsec;
3902 }
3903
3904 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3905 {
3906         *secid = cred_sid(c);
3907 }
3908
3909 /*
3910  * set the security data for a kernel service
3911  * - all the creation contexts are set to unlabelled
3912  */
3913 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3914 {
3915         struct task_security_struct *tsec = selinux_cred(new);
3916         u32 sid = current_sid();
3917         int ret;
3918
3919         ret = avc_has_perm(&selinux_state,
3920                            sid, secid,
3921                            SECCLASS_KERNEL_SERVICE,
3922                            KERNEL_SERVICE__USE_AS_OVERRIDE,
3923                            NULL);
3924         if (ret == 0) {
3925                 tsec->sid = secid;
3926                 tsec->create_sid = 0;
3927                 tsec->keycreate_sid = 0;
3928                 tsec->sockcreate_sid = 0;
3929         }
3930         return ret;
3931 }
3932
3933 /*
3934  * set the file creation context in a security record to the same as the
3935  * objective context of the specified inode
3936  */
3937 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3938 {
3939         struct inode_security_struct *isec = inode_security(inode);
3940         struct task_security_struct *tsec = selinux_cred(new);
3941         u32 sid = current_sid();
3942         int ret;
3943
3944         ret = avc_has_perm(&selinux_state,
3945                            sid, isec->sid,
3946                            SECCLASS_KERNEL_SERVICE,
3947                            KERNEL_SERVICE__CREATE_FILES_AS,
3948                            NULL);
3949
3950         if (ret == 0)
3951                 tsec->create_sid = isec->sid;
3952         return ret;
3953 }
3954
3955 static int selinux_kernel_module_request(char *kmod_name)
3956 {
3957         struct common_audit_data ad;
3958
3959         ad.type = LSM_AUDIT_DATA_KMOD;
3960         ad.u.kmod_name = kmod_name;
3961
3962         return avc_has_perm(&selinux_state,
3963                             current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3964                             SYSTEM__MODULE_REQUEST, &ad);
3965 }
3966
3967 static int selinux_kernel_module_from_file(struct file *file)
3968 {
3969         struct common_audit_data ad;
3970         struct inode_security_struct *isec;
3971         struct file_security_struct *fsec;
3972         u32 sid = current_sid();
3973         int rc;
3974
3975         /* init_module */
3976         if (file == NULL)
3977                 return avc_has_perm(&selinux_state,
3978                                     sid, sid, SECCLASS_SYSTEM,
3979                                         SYSTEM__MODULE_LOAD, NULL);
3980
3981         /* finit_module */
3982
3983         ad.type = LSM_AUDIT_DATA_FILE;
3984         ad.u.file = file;
3985
3986         fsec = selinux_file(file);
3987         if (sid != fsec->sid) {
3988                 rc = avc_has_perm(&selinux_state,
3989                                   sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3990                 if (rc)
3991                         return rc;
3992         }
3993
3994         isec = inode_security(file_inode(file));
3995         return avc_has_perm(&selinux_state,
3996                             sid, isec->sid, SECCLASS_SYSTEM,
3997                                 SYSTEM__MODULE_LOAD, &ad);
3998 }
3999
4000 static int selinux_kernel_read_file(struct file *file,
4001                                     enum kernel_read_file_id id)
4002 {
4003         int rc = 0;
4004
4005         switch (id) {
4006         case READING_MODULE:
4007                 rc = selinux_kernel_module_from_file(file);
4008                 break;
4009         default:
4010                 break;
4011         }
4012
4013         return rc;
4014 }
4015
4016 static int selinux_kernel_load_data(enum kernel_load_data_id id)
4017 {
4018         int rc = 0;
4019
4020         switch (id) {
4021         case LOADING_MODULE:
4022                 rc = selinux_kernel_module_from_file(NULL);
4023         default:
4024                 break;
4025         }
4026
4027         return rc;
4028 }
4029
4030 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4031 {
4032         return avc_has_perm(&selinux_state,
4033                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4034                             PROCESS__SETPGID, NULL);
4035 }
4036
4037 static int selinux_task_getpgid(struct task_struct *p)
4038 {
4039         return avc_has_perm(&selinux_state,
4040                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4041                             PROCESS__GETPGID, NULL);
4042 }
4043
4044 static int selinux_task_getsid(struct task_struct *p)
4045 {
4046         return avc_has_perm(&selinux_state,
4047                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4048                             PROCESS__GETSESSION, NULL);
4049 }
4050
4051 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4052 {
4053         *secid = task_sid(p);
4054 }
4055
4056 static int selinux_task_setnice(struct task_struct *p, int nice)
4057 {
4058         return avc_has_perm(&selinux_state,
4059                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4060                             PROCESS__SETSCHED, NULL);
4061 }
4062
4063 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4064 {
4065         return avc_has_perm(&selinux_state,
4066                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4067                             PROCESS__SETSCHED, NULL);
4068 }
4069
4070 static int selinux_task_getioprio(struct task_struct *p)
4071 {
4072         return avc_has_perm(&selinux_state,
4073                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4074                             PROCESS__GETSCHED, NULL);
4075 }
4076
4077 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4078                                 unsigned int flags)
4079 {
4080         u32 av = 0;
4081
4082         if (!flags)
4083                 return 0;
4084         if (flags & LSM_PRLIMIT_WRITE)
4085                 av |= PROCESS__SETRLIMIT;
4086         if (flags & LSM_PRLIMIT_READ)
4087                 av |= PROCESS__GETRLIMIT;
4088         return avc_has_perm(&selinux_state,
4089                             cred_sid(cred), cred_sid(tcred),
4090                             SECCLASS_PROCESS, av, NULL);
4091 }
4092
4093 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4094                 struct rlimit *new_rlim)
4095 {
4096         struct rlimit *old_rlim = p->signal->rlim + resource;
4097
4098         /* Control the ability to change the hard limit (whether
4099            lowering or raising it), so that the hard limit can
4100            later be used as a safe reset point for the soft limit
4101            upon context transitions.  See selinux_bprm_committing_creds. */
4102         if (old_rlim->rlim_max != new_rlim->rlim_max)
4103                 return avc_has_perm(&selinux_state,
4104                                     current_sid(), task_sid(p),
4105                                     SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4106
4107         return 0;
4108 }
4109
4110 static int selinux_task_setscheduler(struct task_struct *p)
4111 {
4112         return avc_has_perm(&selinux_state,
4113                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4114                             PROCESS__SETSCHED, NULL);
4115 }
4116
4117 static int selinux_task_getscheduler(struct task_struct *p)
4118 {
4119         return avc_has_perm(&selinux_state,
4120                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4121                             PROCESS__GETSCHED, NULL);
4122 }
4123
4124 static int selinux_task_movememory(struct task_struct *p)
4125 {
4126         return avc_has_perm(&selinux_state,
4127                             current_sid(), task_sid(p), SECCLASS_PROCESS,
4128                             PROCESS__SETSCHED, NULL);
4129 }
4130
4131 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4132                                 int sig, const struct cred *cred)
4133 {
4134         u32 secid;
4135         u32 perm;
4136
4137         if (!sig)
4138                 perm = PROCESS__SIGNULL; /* null signal; existence test */
4139         else
4140                 perm = signal_to_av(sig);
4141         if (!cred)
4142                 secid = current_sid();
4143         else
4144                 secid = cred_sid(cred);
4145         return avc_has_perm(&selinux_state,
4146                             secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4147 }
4148
4149 static void selinux_task_to_inode(struct task_struct *p,
4150                                   struct inode *inode)
4151 {
4152         struct inode_security_struct *isec = selinux_inode(inode);
4153         u32 sid = task_sid(p);
4154
4155         spin_lock(&isec->lock);
4156         isec->sclass = inode_mode_to_security_class(inode->i_mode);
4157         isec->sid = sid;
4158         isec->initialized = LABEL_INITIALIZED;
4159         spin_unlock(&isec->lock);
4160 }
4161
4162 /* Returns error only if unable to parse addresses */
4163 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4164                         struct common_audit_data *ad, u8 *proto)
4165 {
4166         int offset, ihlen, ret = -EINVAL;
4167         struct iphdr _iph, *ih;
4168
4169         offset = skb_network_offset(skb);
4170         ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4171         if (ih == NULL)
4172                 goto out;
4173
4174         ihlen = ih->ihl * 4;
4175         if (ihlen < sizeof(_iph))
4176                 goto out;
4177
4178         ad->u.net->v4info.saddr = ih->saddr;
4179         ad->u.net->v4info.daddr = ih->daddr;
4180         ret = 0;
4181
4182         if (proto)
4183                 *proto = ih->protocol;
4184
4185         switch (ih->protocol) {
4186         case IPPROTO_TCP: {
4187                 struct tcphdr _tcph, *th;
4188
4189                 if (ntohs(ih->frag_off) & IP_OFFSET)
4190                         break;
4191
4192                 offset += ihlen;
4193                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4194                 if (th == NULL)
4195                         break;
4196
4197                 ad->u.net->sport = th->source;
4198                 ad->u.net->dport = th->dest;
4199                 break;
4200         }
4201
4202         case IPPROTO_UDP: {
4203                 struct udphdr _udph, *uh;
4204
4205                 if (ntohs(ih->frag_off) & IP_OFFSET)
4206                         break;
4207
4208                 offset += ihlen;
4209                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4210                 if (uh == NULL)
4211                         break;
4212
4213                 ad->u.net->sport = uh->source;
4214                 ad->u.net->dport = uh->dest;
4215                 break;
4216         }
4217
4218         case IPPROTO_DCCP: {
4219                 struct dccp_hdr _dccph, *dh;
4220
4221                 if (ntohs(ih->frag_off) & IP_OFFSET)
4222                         break;
4223
4224                 offset += ihlen;
4225                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4226                 if (dh == NULL)
4227                         break;
4228
4229                 ad->u.net->sport = dh->dccph_sport;
4230                 ad->u.net->dport = dh->dccph_dport;
4231                 break;
4232         }
4233
4234 #if IS_ENABLED(CONFIG_IP_SCTP)
4235         case IPPROTO_SCTP: {
4236                 struct sctphdr _sctph, *sh;
4237
4238                 if (ntohs(ih->frag_off) & IP_OFFSET)
4239                         break;
4240
4241                 offset += ihlen;
4242                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4243                 if (sh == NULL)
4244                         break;
4245
4246                 ad->u.net->sport = sh->source;
4247                 ad->u.net->dport = sh->dest;
4248                 break;
4249         }
4250 #endif
4251         default:
4252                 break;
4253         }
4254 out:
4255         return ret;
4256 }
4257
4258 #if IS_ENABLED(CONFIG_IPV6)
4259
4260 /* Returns error only if unable to parse addresses */
4261 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4262                         struct common_audit_data *ad, u8 *proto)
4263 {
4264         u8 nexthdr;
4265         int ret = -EINVAL, offset;
4266         struct ipv6hdr _ipv6h, *ip6;
4267         __be16 frag_off;
4268
4269         offset = skb_network_offset(skb);
4270         ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4271         if (ip6 == NULL)
4272                 goto out;
4273
4274         ad->u.net->v6info.saddr = ip6->saddr;
4275         ad->u.net->v6info.daddr = ip6->daddr;
4276         ret = 0;
4277
4278         nexthdr = ip6->nexthdr;
4279         offset += sizeof(_ipv6h);
4280         offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4281         if (offset < 0)
4282                 goto out;
4283
4284         if (proto)
4285                 *proto = nexthdr;
4286
4287         switch (nexthdr) {
4288         case IPPROTO_TCP: {
4289                 struct tcphdr _tcph, *th;
4290
4291                 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4292                 if (th == NULL)
4293                         break;
4294
4295                 ad->u.net->sport = th->source;
4296                 ad->u.net->dport = th->dest;
4297                 break;
4298         }
4299
4300         case IPPROTO_UDP: {
4301                 struct udphdr _udph, *uh;
4302
4303                 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4304                 if (uh == NULL)
4305                         break;
4306
4307                 ad->u.net->sport = uh->source;
4308                 ad->u.net->dport = uh->dest;
4309                 break;
4310         }
4311
4312         case IPPROTO_DCCP: {
4313                 struct dccp_hdr _dccph, *dh;
4314
4315                 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316                 if (dh == NULL)
4317                         break;
4318
4319                 ad->u.net->sport = dh->dccph_sport;
4320                 ad->u.net->dport = dh->dccph_dport;
4321                 break;
4322         }
4323
4324 #if IS_ENABLED(CONFIG_IP_SCTP)
4325         case IPPROTO_SCTP: {
4326                 struct sctphdr _sctph, *sh;
4327
4328                 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4329                 if (sh == NULL)
4330                         break;
4331
4332                 ad->u.net->sport = sh->source;
4333                 ad->u.net->dport = sh->dest;
4334                 break;
4335         }
4336 #endif
4337         /* includes fragments */
4338         default:
4339                 break;
4340         }
4341 out:
4342         return ret;
4343 }
4344
4345 #endif /* IPV6 */
4346
4347 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4348                              char **_addrp, int src, u8 *proto)
4349 {
4350         char *addrp;
4351         int ret;
4352
4353         switch (ad->u.net->family) {
4354         case PF_INET:
4355                 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4356                 if (ret)
4357                         goto parse_error;
4358                 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4359                                        &ad->u.net->v4info.daddr);
4360                 goto okay;
4361
4362 #if IS_ENABLED(CONFIG_IPV6)
4363         case PF_INET6:
4364                 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4365                 if (ret)
4366                         goto parse_error;
4367                 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4368                                        &ad->u.net->v6info.daddr);
4369                 goto okay;
4370 #endif  /* IPV6 */
4371         default:
4372                 addrp = NULL;
4373                 goto okay;
4374         }
4375
4376 parse_error:
4377         pr_warn(
4378                "SELinux: failure in selinux_parse_skb(),"
4379                " unable to parse packet\n");
4380         return ret;
4381
4382 okay:
4383         if (_addrp)
4384                 *_addrp = addrp;
4385         return 0;
4386 }
4387
4388 /**
4389  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4390  * @skb: the packet
4391  * @family: protocol family
4392  * @sid: the packet's peer label SID
4393  *
4394  * Description:
4395  * Check the various different forms of network peer labeling and determine
4396  * the peer label/SID for the packet; most of the magic actually occurs in
4397  * the security server function security_net_peersid_cmp().  The function
4398  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4399  * or -EACCES if @sid is invalid due to inconsistencies with the different
4400  * peer labels.
4401  *
4402  */
4403 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4404 {
4405         int err;
4406         u32 xfrm_sid;
4407         u32 nlbl_sid;
4408         u32 nlbl_type;
4409
4410         err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4411         if (unlikely(err))
4412                 return -EACCES;
4413         err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4414         if (unlikely(err))
4415                 return -EACCES;
4416
4417         err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4418                                            nlbl_type, xfrm_sid, sid);
4419         if (unlikely(err)) {
4420                 pr_warn(
4421                        "SELinux: failure in selinux_skb_peerlbl_sid(),"
4422                        " unable to determine packet's peer label\n");
4423                 return -EACCES;
4424         }
4425
4426         return 0;
4427 }
4428
4429 /**
4430  * selinux_conn_sid - Determine the child socket label for a connection
4431  * @sk_sid: the parent socket's SID
4432  * @skb_sid: the packet's SID
4433  * @conn_sid: the resulting connection SID
4434  *
4435  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4436  * combined with the MLS information from @skb_sid in order to create
4437  * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4438  * of @sk_sid.  Returns zero on success, negative values on failure.
4439  *
4440  */
4441 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4442 {
4443         int err = 0;
4444
4445         if (skb_sid != SECSID_NULL)
4446                 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4447                                             conn_sid);
4448         else
4449                 *conn_sid = sk_sid;
4450
4451         return err;
4452 }
4453
4454 /* socket security operations */
4455
4456 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4457                                  u16 secclass, u32 *socksid)
4458 {
4459         if (tsec->sockcreate_sid > SECSID_NULL) {
4460                 *socksid = tsec->sockcreate_sid;
4461                 return 0;
4462         }
4463
4464         return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4465                                        secclass, NULL, socksid);
4466 }
4467
4468 static int sock_has_perm(struct sock *sk, u32 perms)
4469 {
4470         struct sk_security_struct *sksec = sk->sk_security;
4471         struct common_audit_data ad;
4472         struct lsm_network_audit net = {0,};
4473
4474         if (sksec->sid == SECINITSID_KERNEL)
4475                 return 0;
4476
4477         ad.type = LSM_AUDIT_DATA_NET;
4478         ad.u.net = &net;
4479         ad.u.net->sk = sk;
4480
4481         return avc_has_perm(&selinux_state,
4482                             current_sid(), sksec->sid, sksec->sclass, perms,
4483                             &ad);
4484 }
4485
4486 static int selinux_socket_create(int family, int type,
4487                                  int protocol, int kern)
4488 {
4489         const struct task_security_struct *tsec = selinux_cred(current_cred());
4490         u32 newsid;
4491         u16 secclass;
4492         int rc;
4493
4494         if (kern)
4495                 return 0;
4496
4497         secclass = socket_type_to_security_class(family, type, protocol);
4498         rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4499         if (rc)
4500                 return rc;
4501
4502         return avc_has_perm(&selinux_state,
4503                             tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4504 }
4505
4506 static int selinux_socket_post_create(struct socket *sock, int family,
4507                                       int type, int protocol, int kern)
4508 {
4509         const struct task_security_struct *tsec = selinux_cred(current_cred());
4510         struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4511         struct sk_security_struct *sksec;
4512         u16 sclass = socket_type_to_security_class(family, type, protocol);
4513         u32 sid = SECINITSID_KERNEL;
4514         int err = 0;
4515
4516         if (!kern) {
4517                 err = socket_sockcreate_sid(tsec, sclass, &sid);
4518                 if (err)
4519                         return err;
4520         }
4521
4522         isec->sclass = sclass;
4523         isec->sid = sid;
4524         isec->initialized = LABEL_INITIALIZED;
4525
4526         if (sock->sk) {
4527                 sksec = sock->sk->sk_security;
4528                 sksec->sclass = sclass;
4529                 sksec->sid = sid;
4530                 /* Allows detection of the first association on this socket */
4531                 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4532                         sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4533
4534                 err = selinux_netlbl_socket_post_create(sock->sk, family);
4535         }
4536
4537         return err;
4538 }
4539
4540 static int selinux_socket_socketpair(struct socket *socka,
4541                                      struct socket *sockb)
4542 {
4543         struct sk_security_struct *sksec_a = socka->sk->sk_security;
4544         struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4545
4546         sksec_a->peer_sid = sksec_b->sid;
4547         sksec_b->peer_sid = sksec_a->sid;
4548
4549         return 0;
4550 }
4551
4552 /* Range of port numbers used to automatically bind.
4553    Need to determine whether we should perform a name_bind
4554    permission check between the socket and the port number. */
4555
4556 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4557 {
4558         struct sock *sk = sock->sk;
4559         struct sk_security_struct *sksec = sk->sk_security;
4560         u16 family;
4561         int err;
4562
4563         err = sock_has_perm(sk, SOCKET__BIND);
4564         if (err)
4565                 goto out;
4566
4567         /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4568         family = sk->sk_family;
4569         if (family == PF_INET || family == PF_INET6) {
4570                 char *addrp;
4571                 struct common_audit_data ad;
4572                 struct lsm_network_audit net = {0,};
4573                 struct sockaddr_in *addr4 = NULL;
4574                 struct sockaddr_in6 *addr6 = NULL;
4575                 u16 family_sa;
4576                 unsigned short snum;
4577                 u32 sid, node_perm;
4578
4579                 /*
4580                  * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4581                  * that validates multiple binding addresses. Because of this
4582                  * need to check address->sa_family as it is possible to have
4583                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4584                  */
4585                 if (addrlen < offsetofend(struct sockaddr, sa_family))
4586                         return -EINVAL;
4587                 family_sa = address->sa_family;
4588                 switch (family_sa) {
4589                 case AF_UNSPEC:
4590                 case AF_INET:
4591                         if (addrlen < sizeof(struct sockaddr_in))
4592                                 return -EINVAL;
4593                         addr4 = (struct sockaddr_in *)address;
4594                         if (family_sa == AF_UNSPEC) {
4595                                 /* see __inet_bind(), we only want to allow
4596                                  * AF_UNSPEC if the address is INADDR_ANY
4597                                  */
4598                                 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4599                                         goto err_af;
4600                                 family_sa = AF_INET;
4601                         }
4602                         snum = ntohs(addr4->sin_port);
4603                         addrp = (char *)&addr4->sin_addr.s_addr;
4604                         break;
4605                 case AF_INET6:
4606                         if (addrlen < SIN6_LEN_RFC2133)
4607                                 return -EINVAL;
4608                         addr6 = (struct sockaddr_in6 *)address;
4609                         snum = ntohs(addr6->sin6_port);
4610                         addrp = (char *)&addr6->sin6_addr.s6_addr;
4611                         break;
4612                 default:
4613                         goto err_af;
4614                 }
4615
4616                 ad.type = LSM_AUDIT_DATA_NET;
4617                 ad.u.net = &net;
4618                 ad.u.net->sport = htons(snum);
4619                 ad.u.net->family = family_sa;
4620
4621                 if (snum) {
4622                         int low, high;
4623
4624                         inet_get_local_port_range(sock_net(sk), &low, &high);
4625
4626                         if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4627                             snum > high) {
4628                                 err = sel_netport_sid(sk->sk_protocol,
4629                                                       snum, &sid);
4630                                 if (err)
4631                                         goto out;
4632                                 err = avc_has_perm(&selinux_state,
4633                                                    sksec->sid, sid,
4634                                                    sksec->sclass,
4635                                                    SOCKET__NAME_BIND, &ad);
4636                                 if (err)
4637                                         goto out;
4638                         }
4639                 }
4640
4641                 switch (sksec->sclass) {
4642                 case SECCLASS_TCP_SOCKET:
4643                         node_perm = TCP_SOCKET__NODE_BIND;
4644                         break;
4645
4646                 case SECCLASS_UDP_SOCKET:
4647                         node_perm = UDP_SOCKET__NODE_BIND;
4648                         break;
4649
4650                 case SECCLASS_DCCP_SOCKET:
4651                         node_perm = DCCP_SOCKET__NODE_BIND;
4652                         break;
4653
4654                 case SECCLASS_SCTP_SOCKET:
4655                         node_perm = SCTP_SOCKET__NODE_BIND;
4656                         break;
4657
4658                 default:
4659                         node_perm = RAWIP_SOCKET__NODE_BIND;
4660                         break;
4661                 }
4662
4663                 err = sel_netnode_sid(addrp, family_sa, &sid);
4664                 if (err)
4665                         goto out;
4666
4667                 if (family_sa == AF_INET)
4668                         ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4669                 else
4670                         ad.u.net->v6info.saddr = addr6->sin6_addr;
4671
4672                 err = avc_has_perm(&selinux_state,
4673                                    sksec->sid, sid,
4674                                    sksec->sclass, node_perm, &ad);
4675                 if (err)
4676                         goto out;
4677         }
4678 out:
4679         return err;
4680 err_af:
4681         /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4682         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683                 return -EINVAL;
4684         return -EAFNOSUPPORT;
4685 }
4686
4687 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4688  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4689  */
4690 static int selinux_socket_connect_helper(struct socket *sock,
4691                                          struct sockaddr *address, int addrlen)
4692 {
4693         struct sock *sk = sock->sk;
4694         struct sk_security_struct *sksec = sk->sk_security;
4695         int err;
4696
4697         err = sock_has_perm(sk, SOCKET__CONNECT);
4698         if (err)
4699                 return err;
4700         if (addrlen < offsetofend(struct sockaddr, sa_family))
4701                 return -EINVAL;
4702
4703         /* connect(AF_UNSPEC) has special handling, as it is a documented
4704          * way to disconnect the socket
4705          */
4706         if (address->sa_family == AF_UNSPEC)
4707                 return 0;
4708
4709         /*
4710          * If a TCP, DCCP or SCTP socket, check name_connect permission
4711          * for the port.
4712          */
4713         if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4714             sksec->sclass == SECCLASS_DCCP_SOCKET ||
4715             sksec->sclass == SECCLASS_SCTP_SOCKET) {
4716                 struct common_audit_data ad;
4717                 struct lsm_network_audit net = {0,};
4718                 struct sockaddr_in *addr4 = NULL;
4719                 struct sockaddr_in6 *addr6 = NULL;
4720                 unsigned short snum;
4721                 u32 sid, perm;
4722
4723                 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4724                  * that validates multiple connect addresses. Because of this
4725                  * need to check address->sa_family as it is possible to have
4726                  * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4727                  */
4728                 switch (address->sa_family) {
4729                 case AF_INET:
4730                         addr4 = (struct sockaddr_in *)address;
4731                         if (addrlen < sizeof(struct sockaddr_in))
4732                                 return -EINVAL;
4733                         snum = ntohs(addr4->sin_port);
4734                         break;
4735                 case AF_INET6:
4736                         addr6 = (struct sockaddr_in6 *)address;
4737                         if (addrlen < SIN6_LEN_RFC2133)
4738                                 return -EINVAL;
4739                         snum = ntohs(addr6->sin6_port);
4740                         break;
4741                 default:
4742                         /* Note that SCTP services expect -EINVAL, whereas
4743                          * others expect -EAFNOSUPPORT.
4744                          */
4745                         if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4746                                 return -EINVAL;
4747                         else
4748                                 return -EAFNOSUPPORT;
4749                 }
4750
4751                 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4752                 if (err)
4753                         return err;
4754
4755                 switch (sksec->sclass) {
4756                 case SECCLASS_TCP_SOCKET:
4757                         perm = TCP_SOCKET__NAME_CONNECT;
4758                         break;
4759                 case SECCLASS_DCCP_SOCKET:
4760                         perm = DCCP_SOCKET__NAME_CONNECT;
4761                         break;
4762                 case SECCLASS_SCTP_SOCKET:
4763                         perm = SCTP_SOCKET__NAME_CONNECT;
4764                         break;
4765                 }
4766
4767                 ad.type = LSM_AUDIT_DATA_NET;
4768                 ad.u.net = &net;
4769                 ad.u.net->dport = htons(snum);
4770                 ad.u.net->family = address->sa_family;
4771                 err = avc_has_perm(&selinux_state,
4772                                    sksec->sid, sid, sksec->sclass, perm, &ad);
4773                 if (err)
4774                         return err;
4775         }
4776
4777         return 0;
4778 }
4779
4780 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4781 static int selinux_socket_connect(struct socket *sock,
4782                                   struct sockaddr *address, int addrlen)
4783 {
4784         int err;
4785         struct sock *sk = sock->sk;
4786
4787         err = selinux_socket_connect_helper(sock, address, addrlen);
4788         if (err)
4789                 return err;
4790
4791         return selinux_netlbl_socket_connect(sk, address);
4792 }
4793
4794 static int selinux_socket_listen(struct socket *sock, int backlog)
4795 {
4796         return sock_has_perm(sock->sk, SOCKET__LISTEN);
4797 }
4798
4799 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4800 {
4801         int err;
4802         struct inode_security_struct *isec;
4803         struct inode_security_struct *newisec;
4804         u16 sclass;
4805         u32 sid;
4806
4807         err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4808         if (err)
4809                 return err;
4810
4811         isec = inode_security_novalidate(SOCK_INODE(sock));
4812         spin_lock(&isec->lock);
4813         sclass = isec->sclass;
4814         sid = isec->sid;
4815         spin_unlock(&isec->lock);
4816
4817         newisec = inode_security_novalidate(SOCK_INODE(newsock));
4818         newisec->sclass = sclass;
4819         newisec->sid = sid;
4820         newisec->initialized = LABEL_INITIALIZED;
4821
4822         return 0;
4823 }
4824
4825 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4826                                   int size)
4827 {
4828         return sock_has_perm(sock->sk, SOCKET__WRITE);
4829 }
4830
4831 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4832                                   int size, int flags)
4833 {
4834         return sock_has_perm(sock->sk, SOCKET__READ);
4835 }
4836
4837 static int selinux_socket_getsockname(struct socket *sock)
4838 {
4839         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4840 }
4841
4842 static int selinux_socket_getpeername(struct socket *sock)
4843 {
4844         return sock_has_perm(sock->sk, SOCKET__GETATTR);
4845 }
4846
4847 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4848 {
4849         int err;
4850
4851         err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4852         if (err)
4853                 return err;
4854
4855         return selinux_netlbl_socket_setsockopt(sock, level, optname);
4856 }
4857
4858 static int selinux_socket_getsockopt(struct socket *sock, int level,
4859                                      int optname)
4860 {
4861         return sock_has_perm(sock->sk, SOCKET__GETOPT);
4862 }
4863
4864 static int selinux_socket_shutdown(struct socket *sock, int how)
4865 {
4866         return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4867 }
4868
4869 static int selinux_socket_unix_stream_connect(struct sock *sock,
4870                                               struct sock *other,
4871                                               struct sock *newsk)
4872 {
4873         struct sk_security_struct *sksec_sock = sock->sk_security;
4874         struct sk_security_struct *sksec_other = other->sk_security;
4875         struct sk_security_struct *sksec_new = newsk->sk_security;
4876         struct common_audit_data ad;
4877         struct lsm_network_audit net = {0,};
4878         int err;
4879
4880         ad.type = LSM_AUDIT_DATA_NET;
4881         ad.u.net = &net;
4882         ad.u.net->sk = other;
4883
4884         err = avc_has_perm(&selinux_state,
4885                            sksec_sock->sid, sksec_other->sid,
4886                            sksec_other->sclass,
4887                            UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4888         if (err)
4889                 return err;
4890
4891         /* server child socket */
4892         sksec_new->peer_sid = sksec_sock->sid;
4893         err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4894                                     sksec_sock->sid, &sksec_new->sid);
4895         if (err)
4896                 return err;
4897
4898         /* connecting socket */
4899         sksec_sock->peer_sid = sksec_new->sid;
4900
4901         return 0;
4902 }
4903
4904 static int selinux_socket_unix_may_send(struct socket *sock,
4905                                         struct socket *other)
4906 {
4907         struct sk_security_struct *ssec = sock->sk->sk_security;
4908         struct sk_security_struct *osec = other->sk->sk_security;
4909         struct common_audit_data ad;
4910         struct lsm_network_audit net = {0,};
4911
4912         ad.type = LSM_AUDIT_DATA_NET;
4913         ad.u.net = &net;
4914         ad.u.net->sk = other->sk;
4915
4916         return avc_has_perm(&selinux_state,
4917                             ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4918                             &ad);
4919 }
4920
4921 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4922                                     char *addrp, u16 family, u32 peer_sid,
4923                                     struct common_audit_data *ad)
4924 {
4925         int err;
4926         u32 if_sid;
4927         u32 node_sid;
4928
4929         err = sel_netif_sid(ns, ifindex, &if_sid);
4930         if (err)
4931                 return err;
4932         err = avc_has_perm(&selinux_state,
4933                            peer_sid, if_sid,
4934                            SECCLASS_NETIF, NETIF__INGRESS, ad);
4935         if (err)
4936                 return err;
4937
4938         err = sel_netnode_sid(addrp, family, &node_sid);
4939         if (err)
4940                 return err;
4941         return avc_has_perm(&selinux_state,
4942                             peer_sid, node_sid,
4943                             SECCLASS_NODE, NODE__RECVFROM, ad);
4944 }
4945
4946 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4947                                        u16 family)
4948 {
4949         int err = 0;
4950         struct sk_security_struct *sksec = sk->sk_security;
4951         u32 sk_sid = sksec->sid;
4952         struct common_audit_data ad;
4953         struct lsm_network_audit net = {0,};
4954         char *addrp;
4955
4956         ad.type = LSM_AUDIT_DATA_NET;
4957         ad.u.net = &net;
4958         ad.u.net->netif = skb->skb_iif;
4959         ad.u.net->family = family;
4960         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4961         if (err)
4962                 return err;
4963
4964         if (selinux_secmark_enabled()) {
4965                 err = avc_has_perm(&selinux_state,
4966                                    sk_sid, skb->secmark, SECCLASS_PACKET,
4967                                    PACKET__RECV, &ad);
4968                 if (err)
4969                         return err;
4970         }
4971
4972         err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4973         if (err)
4974                 return err;
4975         err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4976
4977         return err;
4978 }
4979
4980 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4981 {
4982         int err;
4983         struct sk_security_struct *sksec = sk->sk_security;
4984         u16 family = sk->sk_family;
4985         u32 sk_sid = sksec->sid;
4986         struct common_audit_data ad;
4987         struct lsm_network_audit net = {0,};
4988         char *addrp;
4989         u8 secmark_active;
4990         u8 peerlbl_active;
4991
4992         if (family != PF_INET && family != PF_INET6)
4993                 return 0;
4994
4995         /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4996         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4997                 family = PF_INET;
4998
4999         /* If any sort of compatibility mode is enabled then handoff processing
5000          * to the selinux_sock_rcv_skb_compat() function to deal with the
5001          * special handling.  We do this in an attempt to keep this function
5002          * as fast and as clean as possible. */
5003         if (!selinux_policycap_netpeer())
5004                 return selinux_sock_rcv_skb_compat(sk, skb, family);
5005
5006         secmark_active = selinux_secmark_enabled();
5007         peerlbl_active = selinux_peerlbl_enabled();
5008         if (!secmark_active && !peerlbl_active)
5009                 return 0;
5010
5011         ad.type = LSM_AUDIT_DATA_NET;
5012         ad.u.net = &net;
5013         ad.u.net->netif = skb->skb_iif;
5014         ad.u.net->family = family;
5015         err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5016         if (err)
5017                 return err;
5018
5019         if (peerlbl_active) {
5020                 u32 peer_sid;
5021
5022                 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5023                 if (err)
5024                         return err;
5025                 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5026                                                addrp, family, peer_sid, &ad);
5027                 if (err) {
5028                         selinux_netlbl_err(skb, family, err, 0);
5029                         return err;
5030                 }
5031                 err = avc_has_perm(&selinux_state,
5032                                    sk_sid, peer_sid, SECCLASS_PEER,
5033                                    PEER__RECV, &ad);
5034                 if (err) {
5035                         selinux_netlbl_err(skb, family, err, 0);
5036                         return err;
5037                 }
5038         }
5039
5040         if (secmark_active) {
5041                 err = avc_has_perm(&selinux_state,
5042                                    sk_sid, skb->secmark, SECCLASS_PACKET,
5043                                    PACKET__RECV, &ad);
5044                 if (err)
5045                         return err;
5046         }
5047
5048         return err;
5049 }
5050
5051 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5052                                             int __user *optlen, unsigned len)
5053 {
5054         int err = 0;
5055         char *scontext;
5056         u32 scontext_len;
5057         struct sk_security_struct *sksec = sock->sk->sk_security;
5058         u32 peer_sid = SECSID_NULL;
5059
5060         if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5061             sksec->sclass == SECCLASS_TCP_SOCKET ||
5062             sksec->sclass == SECCLASS_SCTP_SOCKET)
5063                 peer_sid = sksec->peer_sid;
5064         if (peer_sid == SECSID_NULL)
5065                 return -ENOPROTOOPT;
5066
5067         err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5068                                       &scontext_len);
5069         if (err)
5070                 return err;
5071
5072         if (scontext_len > len) {
5073                 err = -ERANGE;
5074                 goto out_len;
5075         }
5076
5077         if (copy_to_user(optval, scontext, scontext_len))
5078                 err = -EFAULT;
5079
5080 out_len:
5081         if (put_user(scontext_len, optlen))
5082                 err = -EFAULT;
5083         kfree(scontext);
5084         return err;
5085 }
5086
5087 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5088 {
5089         u32 peer_secid = SECSID_NULL;
5090         u16 family;
5091         struct inode_security_struct *isec;
5092
5093         if (skb && skb->protocol == htons(ETH_P_IP))
5094                 family = PF_INET;
5095         else if (skb && skb->protocol == htons(ETH_P_IPV6))
5096                 family = PF_INET6;
5097         else if (sock)
5098                 family = sock->sk->sk_family;
5099         else
5100                 goto out;
5101
5102         if (sock && family == PF_UNIX) {
5103                 isec = inode_security_novalidate(SOCK_INODE(sock));
5104                 peer_secid = isec->sid;
5105         } else if (skb)
5106                 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5107
5108 out:
5109         *secid = peer_secid;
5110         if (peer_secid == SECSID_NULL)
5111                 return -EINVAL;
5112         return 0;
5113 }
5114
5115 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5116 {
5117         struct sk_security_struct *sksec;
5118
5119         sksec = kzalloc(sizeof(*sksec), priority);
5120         if (!sksec)
5121                 return -ENOMEM;
5122
5123         sksec->peer_sid = SECINITSID_UNLABELED;
5124         sksec->sid = SECINITSID_UNLABELED;
5125         sksec->sclass = SECCLASS_SOCKET;
5126         selinux_netlbl_sk_security_reset(sksec);
5127         sk->sk_security = sksec;
5128
5129         return 0;
5130 }
5131
5132 static void selinux_sk_free_security(struct sock *sk)
5133 {
5134         struct sk_security_struct *sksec = sk->sk_security;
5135
5136         sk->sk_security = NULL;
5137         selinux_netlbl_sk_security_free(sksec);
5138         kfree(sksec);
5139 }
5140
5141 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5142 {
5143         struct sk_security_struct *sksec = sk->sk_security;
5144         struct sk_security_struct *newsksec = newsk->sk_security;
5145
5146         newsksec->sid = sksec->sid;
5147         newsksec->peer_sid = sksec->peer_sid;
5148         newsksec->sclass = sksec->sclass;
5149
5150         selinux_netlbl_sk_security_reset(newsksec);
5151 }
5152
5153 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5154 {
5155         if (!sk)
5156                 *secid = SECINITSID_ANY_SOCKET;
5157         else {
5158                 struct sk_security_struct *sksec = sk->sk_security;
5159
5160                 *secid = sksec->sid;
5161         }
5162 }
5163
5164 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5165 {
5166         struct inode_security_struct *isec =
5167                 inode_security_novalidate(SOCK_INODE(parent));
5168         struct sk_security_struct *sksec = sk->sk_security;
5169
5170         if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5171             sk->sk_family == PF_UNIX)
5172                 isec->sid = sksec->sid;
5173         sksec->sclass = isec->sclass;
5174 }
5175
5176 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5177  * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5178  * already present).
5179  */
5180 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5181                                       struct sk_buff *skb)
5182 {
5183         struct sk_security_struct *sksec = ep->base.sk->sk_security;
5184         struct common_audit_data ad;
5185         struct lsm_network_audit net = {0,};
5186         u8 peerlbl_active;
5187         u32 peer_sid = SECINITSID_UNLABELED;
5188         u32 conn_sid;
5189         int err = 0;
5190
5191         if (!selinux_policycap_extsockclass())
5192                 return 0;
5193
5194         peerlbl_active = selinux_peerlbl_enabled();
5195
5196         if (peerlbl_active) {
5197                 /* This will return peer_sid = SECSID_NULL if there are
5198                  * no peer labels, see security_net_peersid_resolve().
5199                  */
5200                 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5201                                               &peer_sid);
5202                 if (err)
5203                         return err;
5204
5205                 if (peer_sid == SECSID_NULL)
5206                         peer_sid = SECINITSID_UNLABELED;
5207         }
5208
5209         if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5210                 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5211
5212                 /* Here as first association on socket. As the peer SID
5213                  * was allowed by peer recv (and the netif/node checks),
5214                  * then it is approved by policy and used as the primary
5215                  * peer SID for getpeercon(3).
5216                  */
5217                 sksec->peer_sid = peer_sid;
5218         } else if  (sksec->peer_sid != peer_sid) {
5219                 /* Other association peer SIDs are checked to enforce
5220                  * consistency among the peer SIDs.
5221                  */
5222                 ad.type = LSM_AUDIT_DATA_NET;
5223                 ad.u.net = &net;
5224                 ad.u.net->sk = ep->base.sk;
5225                 err = avc_has_perm(&selinux_state,
5226                                    sksec->peer_sid, peer_sid, sksec->sclass,
5227                                    SCTP_SOCKET__ASSOCIATION, &ad);
5228                 if (err)
5229                         return err;
5230         }
5231
5232         /* Compute the MLS component for the connection and store
5233          * the information in ep. This will be used by SCTP TCP type
5234          * sockets and peeled off connections as they cause a new
5235          * socket to be generated. selinux_sctp_sk_clone() will then
5236          * plug this into the new socket.
5237          */
5238         err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5239         if (err)
5240                 return err;
5241
5242         ep->secid = conn_sid;
5243         ep->peer_secid = peer_sid;
5244
5245         /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5246         return selinux_netlbl_sctp_assoc_request(ep, skb);
5247 }
5248
5249 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5250  * based on their @optname.
5251  */
5252 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5253                                      struct sockaddr *address,
5254                                      int addrlen)
5255 {
5256         int len, err = 0, walk_size = 0;
5257         void *addr_buf;
5258         struct sockaddr *addr;
5259         struct socket *sock;
5260
5261         if (!selinux_policycap_extsockclass())
5262                 return 0;
5263
5264         /* Process one or more addresses that may be IPv4 or IPv6 */
5265         sock = sk->sk_socket;
5266         addr_buf = address;
5267
5268         while (walk_size < addrlen) {
5269                 if (walk_size + sizeof(sa_family_t) > addrlen)
5270                         return -EINVAL;
5271
5272                 addr = addr_buf;
5273                 switch (addr->sa_family) {
5274                 case AF_UNSPEC:
5275                 case AF_INET:
5276                         len = sizeof(struct sockaddr_in);
5277                         break;
5278                 case AF_INET6:
5279                         len = sizeof(struct sockaddr_in6);
5280                         break;
5281                 default:
5282                         return -EINVAL;
5283                 }
5284
5285                 if (walk_size + len > addrlen)
5286                         return -EINVAL;
5287
5288                 err = -EINVAL;
5289                 switch (optname) {
5290                 /* Bind checks */
5291                 case SCTP_PRIMARY_ADDR:
5292                 case SCTP_SET_PEER_PRIMARY_ADDR:
5293                 case SCTP_SOCKOPT_BINDX_ADD:
5294                         err = selinux_socket_bind(sock, addr, len);
5295                         break;
5296                 /* Connect checks */
5297                 case SCTP_SOCKOPT_CONNECTX:
5298                 case SCTP_PARAM_SET_PRIMARY:
5299                 case SCTP_PARAM_ADD_IP:
5300                 case SCTP_SENDMSG_CONNECT:
5301                         err = selinux_socket_connect_helper(sock, addr, len);
5302                         if (err)
5303                                 return err;
5304
5305                         /* As selinux_sctp_bind_connect() is called by the
5306                          * SCTP protocol layer, the socket is already locked,
5307                          * therefore selinux_netlbl_socket_connect_locked() is
5308                          * is called here. The situations handled are:
5309                          * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5310                          * whenever a new IP address is added or when a new
5311                          * primary address is selected.
5312                          * Note that an SCTP connect(2) call happens before
5313                          * the SCTP protocol layer and is handled via
5314                          * selinux_socket_connect().
5315                          */
5316                         err = selinux_netlbl_socket_connect_locked(sk, addr);
5317                         break;
5318                 }
5319
5320                 if (err)
5321                         return err;
5322
5323                 addr_buf += len;
5324                 walk_size += len;
5325         }
5326
5327         return 0;
5328 }
5329
5330 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5331 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5332                                   struct sock *newsk)
5333 {
5334         struct sk_security_struct *sksec = sk->sk_security;
5335         struct sk_security_struct *newsksec = newsk->sk_security;
5336
5337         /* If policy does not support SECCLASS_SCTP_SOCKET then call
5338          * the non-sctp clone version.
5339          */
5340         if (!selinux_policycap_extsockclass())
5341                 return selinux_sk_clone_security(sk, newsk);
5342
5343         newsksec->sid = ep->secid;
5344         newsksec->peer_sid = ep->peer_secid;
5345         newsksec->sclass = sksec->sclass;
5346         selinux_netlbl_sctp_sk_clone(sk, newsk);
5347 }
5348
5349 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5350                                      struct request_sock *req)
5351 {
5352         struct sk_security_struct *sksec = sk->sk_security;
5353         int err;
5354         u16 family = req->rsk_ops->family;
5355         u32 connsid;
5356         u32 peersid;
5357
5358         err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5359         if (err)
5360                 return err;
5361         err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5362         if (err)
5363                 return err;
5364         req->secid = connsid;
5365         req->peer_secid = peersid;
5366
5367         return selinux_netlbl_inet_conn_request(req, family);
5368 }
5369
5370 static void selinux_inet_csk_clone(struct sock *newsk,
5371                                    const struct request_sock *req)
5372 {
5373         struct sk_security_struct *newsksec = newsk->sk_security;
5374
5375         newsksec->sid = req->secid;
5376         newsksec->peer_sid = req->peer_secid;
5377         /* NOTE: Ideally, we should also get the isec->sid for the
5378            new socket in sync, but we don't have the isec available yet.
5379            So we will wait until sock_graft to do it, by which
5380            time it will have been created and available. */
5381
5382         /* We don't need to take any sort of lock here as we are the only
5383          * thread with access to newsksec */
5384         selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5385 }
5386
5387 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5388 {
5389         u16 family = sk->sk_family;
5390         struct sk_security_struct *sksec = sk->sk_security;
5391
5392         /* handle mapped IPv4 packets arriving via IPv6 sockets */
5393         if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5394                 family = PF_INET;
5395
5396         selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5397 }
5398
5399 static int selinux_secmark_relabel_packet(u32 sid)
5400 {
5401         const struct task_security_struct *__tsec;
5402         u32 tsid;
5403
5404         __tsec = selinux_cred(current_cred());
5405         tsid = __tsec->sid;
5406
5407         return avc_has_perm(&selinux_state,
5408                             tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5409                             NULL);
5410 }
5411
5412 static void selinux_secmark_refcount_inc(void)
5413 {
5414         atomic_inc(&selinux_secmark_refcount);
5415 }
5416
5417 static void selinux_secmark_refcount_dec(void)
5418 {
5419         atomic_dec(&selinux_secmark_refcount);
5420 }
5421
5422 static void selinux_req_classify_flow(const struct request_sock *req,
5423                                       struct flowi *fl)
5424 {
5425         fl->flowi_secid = req->secid;
5426 }
5427
5428 static int selinux_tun_dev_alloc_security(void **security)
5429 {
5430         struct tun_security_struct *tunsec;
5431
5432         tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5433         if (!tunsec)
5434                 return -ENOMEM;
5435         tunsec->sid = current_sid();
5436
5437         *security = tunsec;
5438         return 0;
5439 }
5440
5441 static void selinux_tun_dev_free_security(void *security)
5442 {
5443         kfree(security);
5444 }
5445
5446 static int selinux_tun_dev_create(void)
5447 {
5448         u32 sid = current_sid();
5449
5450         /* we aren't taking into account the "sockcreate" SID since the socket
5451          * that is being created here is not a socket in the traditional sense,
5452          * instead it is a private sock, accessible only to the kernel, and
5453          * representing a wide range of network traffic spanning multiple
5454          * connections unlike traditional sockets - check the TUN driver to
5455          * get a better understanding of why this socket is special */
5456
5457         return avc_has_perm(&selinux_state,
5458                             sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5459                             NULL);
5460 }
5461
5462 static int selinux_tun_dev_attach_queue(void *security)
5463 {
5464         struct tun_security_struct *tunsec = security;
5465
5466         return avc_has_perm(&selinux_state,
5467                             current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5468                             TUN_SOCKET__ATTACH_QUEUE, NULL);
5469 }
5470
5471 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5472 {
5473         struct tun_security_struct *tunsec = security;
5474         struct sk_security_struct *sksec = sk->sk_security;
5475
5476         /* we don't currently perform any NetLabel based labeling here and it
5477          * isn't clear that we would want to do so anyway; while we could apply
5478          * labeling without the support of the TUN user the resulting labeled
5479          * traffic from the other end of the connection would almost certainly
5480          * cause confusion to the TUN user that had no idea network labeling
5481          * protocols were being used */
5482
5483         sksec->sid = tunsec->sid;
5484         sksec->sclass = SECCLASS_TUN_SOCKET;
5485
5486         return 0;
5487 }
5488
5489 static int selinux_tun_dev_open(void *security)
5490 {
5491         struct tun_security_struct *tunsec = security;
5492         u32 sid = current_sid();
5493         int err;
5494
5495         err = avc_has_perm(&selinux_state,
5496                            sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5497                            TUN_SOCKET__RELABELFROM, NULL);
5498         if (err)
5499                 return err;
5500         err = avc_has_perm(&selinux_state,
5501                            sid, sid, SECCLASS_TUN_SOCKET,
5502                            TUN_SOCKET__RELABELTO, NULL);
5503         if (err)
5504                 return err;
5505         tunsec->sid = sid;
5506
5507         return 0;
5508 }
5509
5510 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5511 {
5512         int err = 0;
5513         u32 perm;
5514         struct nlmsghdr *nlh;
5515         struct sk_security_struct *sksec = sk->sk_security;
5516
5517         if (skb->len < NLMSG_HDRLEN) {
5518                 err = -EINVAL;
5519                 goto out;
5520         }
5521         nlh = nlmsg_hdr(skb);
5522
5523         err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5524         if (err) {
5525                 if (err == -EINVAL) {
5526                         pr_warn_ratelimited("SELinux: unrecognized netlink"
5527                                " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5528                                " pig=%d comm=%s\n",
5529                                sk->sk_protocol, nlh->nlmsg_type,
5530                                secclass_map[sksec->sclass - 1].name,
5531                                task_pid_nr(current), current->comm);
5532                         if (!enforcing_enabled(&selinux_state) ||
5533                             security_get_allow_unknown(&selinux_state))
5534                                 err = 0;
5535                 }
5536
5537                 /* Ignore */
5538                 if (err == -ENOENT)
5539                         err = 0;
5540                 goto out;
5541         }
5542
5543         err = sock_has_perm(sk, perm);
5544 out:
5545         return err;
5546 }
5547
5548 #ifdef CONFIG_NETFILTER
5549
5550 static unsigned int selinux_ip_forward(struct sk_buff *skb,
5551                                        const struct net_device *indev,
5552                                        u16 family)
5553 {
5554         int err;
5555         char *addrp;
5556         u32 peer_sid;
5557         struct common_audit_data ad;
5558         struct lsm_network_audit net = {0,};
5559         u8 secmark_active;
5560         u8 netlbl_active;
5561         u8 peerlbl_active;
5562
5563         if (!selinux_policycap_netpeer())
5564                 return NF_ACCEPT;
5565
5566         secmark_active = selinux_secmark_enabled();
5567         netlbl_active = netlbl_enabled();
5568         peerlbl_active = selinux_peerlbl_enabled();
5569         if (!secmark_active && !peerlbl_active)
5570                 return NF_ACCEPT;
5571
5572         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5573                 return NF_DROP;
5574
5575         ad.type = LSM_AUDIT_DATA_NET;
5576         ad.u.net = &net;
5577         ad.u.net->netif = indev->ifindex;
5578         ad.u.net->family = family;
5579         if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5580                 return NF_DROP;
5581
5582         if (peerlbl_active) {
5583                 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5584                                                addrp, family, peer_sid, &ad);
5585                 if (err) {
5586                         selinux_netlbl_err(skb, family, err, 1);
5587                         return NF_DROP;
5588                 }
5589         }
5590
5591         if (secmark_active)
5592                 if (avc_has_perm(&selinux_state,
5593                                  peer_sid, skb->secmark,
5594                                  SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5595                         return NF_DROP;
5596
5597         if (netlbl_active)
5598                 /* we do this in the FORWARD path and not the POST_ROUTING
5599                  * path because we want to make sure we apply the necessary
5600                  * labeling before IPsec is applied so we can leverage AH
5601                  * protection */
5602                 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5603                         return NF_DROP;
5604
5605         return NF_ACCEPT;
5606 }
5607
5608 static unsigned int selinux_ipv4_forward(void *priv,
5609                                          struct sk_buff *skb,
5610                                          const struct nf_hook_state *state)
5611 {
5612         return selinux_ip_forward(skb, state->in, PF_INET);
5613 }
5614
5615 #if IS_ENABLED(CONFIG_IPV6)
5616 static unsigned int selinux_ipv6_forward(void *priv,
5617                                          struct sk_buff *skb,
5618                                          const struct nf_hook_state *state)
5619 {
5620         return selinux_ip_forward(skb, state->in, PF_INET6);
5621 }
5622 #endif  /* IPV6 */
5623
5624 static unsigned int selinux_ip_output(struct sk_buff *skb,
5625                                       u16 family)
5626 {
5627         struct sock *sk;
5628         u32 sid;
5629
5630         if (!netlbl_enabled())
5631                 return NF_ACCEPT;
5632
5633         /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5634          * because we want to make sure we apply the necessary labeling
5635          * before IPsec is applied so we can leverage AH protection */
5636         sk = skb->sk;
5637         if (sk) {
5638                 struct sk_security_struct *sksec;
5639
5640                 if (sk_listener(sk))
5641                         /* if the socket is the listening state then this
5642                          * packet is a SYN-ACK packet which means it needs to
5643                          * be labeled based on the connection/request_sock and
5644                          * not the parent socket.  unfortunately, we can't
5645                          * lookup the request_sock yet as it isn't queued on
5646                          * the parent socket until after the SYN-ACK is sent.
5647                          * the "solution" is to simply pass the packet as-is
5648                          * as any IP option based labeling should be copied
5649                          * from the initial connection request (in the IP
5650                          * layer).  it is far from ideal, but until we get a
5651                          * security label in the packet itself this is the
5652                          * best we can do. */
5653                         return NF_ACCEPT;
5654
5655                 /* standard practice, label using the parent socket */
5656                 sksec = sk->sk_security;
5657                 sid = sksec->sid;
5658         } else
5659                 sid = SECINITSID_KERNEL;
5660         if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5661                 return NF_DROP;
5662
5663         return NF_ACCEPT;
5664 }
5665
5666 static unsigned int selinux_ipv4_output(void *priv,
5667                                         struct sk_buff *skb,
5668                                         const struct nf_hook_state *state)
5669 {
5670         return selinux_ip_output(skb, PF_INET);
5671 }
5672
5673 #if IS_ENABLED(CONFIG_IPV6)
5674 static unsigned int selinux_ipv6_output(void *priv,
5675                                         struct sk_buff *skb,
5676                                         const struct nf_hook_state *state)
5677 {
5678         return selinux_ip_output(skb, PF_INET6);
5679 }
5680 #endif  /* IPV6 */
5681
5682 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5683                                                 int ifindex,
5684                                                 u16 family)
5685 {
5686         struct sock *sk = skb_to_full_sk(skb);
5687         struct sk_security_struct *sksec;
5688         struct common_audit_data ad;
5689         struct lsm_network_audit net = {0,};
5690         char *addrp;
5691         u8 proto;
5692
5693         if (sk == NULL)
5694                 return NF_ACCEPT;
5695         sksec = sk->sk_security;
5696
5697         ad.type = LSM_AUDIT_DATA_NET;
5698         ad.u.net = &net;
5699         ad.u.net->netif = ifindex;
5700         ad.u.net->family = family;
5701         if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5702                 return NF_DROP;
5703
5704         if (selinux_secmark_enabled())
5705                 if (avc_has_perm(&selinux_state,
5706                                  sksec->sid, skb->secmark,
5707                                  SECCLASS_PACKET, PACKET__SEND, &ad))
5708                         return NF_DROP_ERR(-ECONNREFUSED);
5709
5710         if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5711                 return NF_DROP_ERR(-ECONNREFUSED);
5712
5713         return NF_ACCEPT;
5714 }
5715
5716 static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5717                                          const struct net_device *outdev,
5718                                          u16 family)
5719 {
5720         u32 secmark_perm;
5721         u32 peer_sid;
5722         int ifindex = outdev->ifindex;
5723         struct sock *sk;
5724         struct common_audit_data ad;
5725         struct lsm_network_audit net = {0,};
5726         char *addrp;
5727         u8 secmark_active;
5728         u8 peerlbl_active;
5729
5730         /* If any sort of compatibility mode is enabled then handoff processing
5731          * to the selinux_ip_postroute_compat() function to deal with the
5732          * special handling.  We do this in an attempt to keep this function
5733          * as fast and as clean as possible. */
5734         if (!selinux_policycap_netpeer())
5735                 return selinux_ip_postroute_compat(skb, ifindex, family);
5736
5737         secmark_active = selinux_secmark_enabled();
5738         peerlbl_active = selinux_peerlbl_enabled();
5739         if (!secmark_active && !peerlbl_active)
5740                 return NF_ACCEPT;
5741
5742         sk = skb_to_full_sk(skb);
5743
5744 #ifdef CONFIG_XFRM
5745         /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5746          * packet transformation so allow the packet to pass without any checks
5747          * since we'll have another chance to perform access control checks
5748          * when the packet is on it's final way out.
5749          * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5750          *       is NULL, in this case go ahead and apply access control.
5751          * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5752          *       TCP listening state we cannot wait until the XFRM processing
5753          *       is done as we will miss out on the SA label if we do;
5754          *       unfortunately, this means more work, but it is only once per
5755          *       connection. */
5756         if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5757             !(sk && sk_listener(sk)))
5758                 return NF_ACCEPT;
5759 #endif
5760
5761         if (sk == NULL) {
5762                 /* Without an associated socket the packet is either coming
5763                  * from the kernel or it is being forwarded; check the packet
5764                  * to determine which and if the packet is being forwarded
5765                  * query the packet directly to determine the security label. */
5766                 if (skb->skb_iif) {
5767                         secmark_perm = PACKET__FORWARD_OUT;
5768                         if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5769                                 return NF_DROP;
5770                 } else {
5771                         secmark_perm = PACKET__SEND;
5772                         peer_sid = SECINITSID_KERNEL;
5773                 }
5774         } else if (sk_listener(sk)) {
5775                 /* Locally generated packet but the associated socket is in the
5776                  * listening state which means this is a SYN-ACK packet.  In
5777                  * this particular case the correct security label is assigned
5778                  * to the connection/request_sock but unfortunately we can't
5779                  * query the request_sock as it isn't queued on the parent
5780                  * socket until after the SYN-ACK packet is sent; the only
5781                  * viable choice is to regenerate the label like we do in
5782                  * selinux_inet_conn_request().  See also selinux_ip_output()
5783                  * for similar problems. */
5784                 u32 skb_sid;
5785                 struct sk_security_struct *sksec;
5786
5787                 sksec = sk->sk_security;
5788                 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5789                         return NF_DROP;
5790                 /* At this point, if the returned skb peerlbl is SECSID_NULL
5791                  * and the packet has been through at least one XFRM
5792                  * transformation then we must be dealing with the "final"
5793                  * form of labeled IPsec packet; since we've already applied
5794                  * all of our access controls on this packet we can safely
5795                  * pass the packet. */
5796                 if (skb_sid == SECSID_NULL) {
5797                         switch (family) {
5798                         case PF_INET:
5799                                 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5800                                         return NF_ACCEPT;
5801                                 break;
5802                         case PF_INET6:
5803                                 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5804                                         return NF_ACCEPT;
5805                                 break;
5806                         default:
5807                                 return NF_DROP_ERR(-ECONNREFUSED);
5808                         }
5809                 }
5810                 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5811                         return NF_DROP;
5812                 secmark_perm = PACKET__SEND;
5813         } else {
5814                 /* Locally generated packet, fetch the security label from the
5815                  * associated socket. */
5816                 struct sk_security_struct *sksec = sk->sk_security;
5817                 peer_sid = sksec->sid;
5818                 secmark_perm = PACKET__SEND;
5819         }
5820
5821         ad.type = LSM_AUDIT_DATA_NET;
5822         ad.u.net = &net;
5823         ad.u.net->netif = ifindex;
5824         ad.u.net->family = family;
5825         if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5826                 return NF_DROP;
5827
5828         if (secmark_active)
5829                 if (avc_has_perm(&selinux_state,
5830                                  peer_sid, skb->secmark,
5831                                  SECCLASS_PACKET, secmark_perm, &ad))
5832                         return NF_DROP_ERR(-ECONNREFUSED);
5833
5834         if (peerlbl_active) {
5835                 u32 if_sid;
5836                 u32 node_sid;
5837
5838                 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5839                         return NF_DROP;
5840                 if (avc_has_perm(&selinux_state,
5841                                  peer_sid, if_sid,
5842                                  SECCLASS_NETIF, NETIF__EGRESS, &ad))
5843                         return NF_DROP_ERR(-ECONNREFUSED);
5844
5845                 if (sel_netnode_sid(addrp, family, &node_sid))
5846                         return NF_DROP;
5847                 if (avc_has_perm(&selinux_state,
5848                                  peer_sid, node_sid,
5849                                  SECCLASS_NODE, NODE__SENDTO, &ad))
5850                         return NF_DROP_ERR(-ECONNREFUSED);
5851         }
5852
5853         return NF_ACCEPT;
5854 }
5855
5856 static unsigned int selinux_ipv4_postroute(void *priv,
5857                                            struct sk_buff *skb,
5858                                            const struct nf_hook_state *state)
5859 {
5860         return selinux_ip_postroute(skb, state->out, PF_INET);
5861 }
5862
5863 #if IS_ENABLED(CONFIG_IPV6)
5864 static unsigned int selinux_ipv6_postroute(void *priv,
5865                                            struct sk_buff *skb,
5866                                            const struct nf_hook_state *state)
5867 {
5868         return selinux_ip_postroute(skb, state->out, PF_INET6);
5869 }
5870 #endif  /* IPV6 */
5871
5872 #endif  /* CONFIG_NETFILTER */
5873
5874 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5875 {
5876         return selinux_nlmsg_perm(sk, skb);
5877 }
5878
5879 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5880 {
5881         isec->sclass = sclass;
5882         isec->sid = current_sid();
5883 }
5884
5885 static int msg_msg_alloc_security(struct msg_msg *msg)
5886 {
5887         struct msg_security_struct *msec;
5888
5889         msec = selinux_msg_msg(msg);
5890         msec->sid = SECINITSID_UNLABELED;
5891
5892         return 0;
5893 }
5894
5895 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5896                         u32 perms)
5897 {
5898         struct ipc_security_struct *isec;
5899         struct common_audit_data ad;
5900         u32 sid = current_sid();
5901
5902         isec = selinux_ipc(ipc_perms);
5903
5904         ad.type = LSM_AUDIT_DATA_IPC;
5905         ad.u.ipc_id = ipc_perms->key;
5906
5907         return avc_has_perm(&selinux_state,
5908                             sid, isec->sid, isec->sclass, perms, &ad);
5909 }
5910
5911 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5912 {
5913         return msg_msg_alloc_security(msg);
5914 }
5915
5916 /* message queue security operations */
5917 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5918 {
5919         struct ipc_security_struct *isec;
5920         struct common_audit_data ad;
5921         u32 sid = current_sid();
5922         int rc;
5923
5924         isec = selinux_ipc(msq);
5925         ipc_init_security(isec, SECCLASS_MSGQ);
5926
5927         ad.type = LSM_AUDIT_DATA_IPC;
5928         ad.u.ipc_id = msq->key;
5929
5930         rc = avc_has_perm(&selinux_state,
5931                           sid, isec->sid, SECCLASS_MSGQ,
5932                           MSGQ__CREATE, &ad);
5933         return rc;
5934 }
5935
5936 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5937 {
5938         struct ipc_security_struct *isec;
5939         struct common_audit_data ad;
5940         u32 sid = current_sid();
5941
5942         isec = selinux_ipc(msq);
5943
5944         ad.type = LSM_AUDIT_DATA_IPC;
5945         ad.u.ipc_id = msq->key;
5946
5947         return avc_has_perm(&selinux_state,
5948                             sid, isec->sid, SECCLASS_MSGQ,
5949                             MSGQ__ASSOCIATE, &ad);
5950 }
5951
5952 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5953 {
5954         int err;
5955         int perms;
5956
5957         switch (cmd) {
5958         case IPC_INFO:
5959         case MSG_INFO:
5960                 /* No specific object, just general system-wide information. */
5961                 return avc_has_perm(&selinux_state,
5962                                     current_sid(), SECINITSID_KERNEL,
5963                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5964         case IPC_STAT:
5965         case MSG_STAT:
5966         case MSG_STAT_ANY:
5967                 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5968                 break;
5969         case IPC_SET:
5970                 perms = MSGQ__SETATTR;
5971                 break;
5972         case IPC_RMID:
5973                 perms = MSGQ__DESTROY;
5974                 break;
5975         default:
5976                 return 0;
5977         }
5978
5979         err = ipc_has_perm(msq, perms);
5980         return err;
5981 }
5982
5983 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5984 {
5985         struct ipc_security_struct *isec;
5986         struct msg_security_struct *msec;
5987         struct common_audit_data ad;
5988         u32 sid = current_sid();
5989         int rc;
5990
5991         isec = selinux_ipc(msq);
5992         msec = selinux_msg_msg(msg);
5993
5994         /*
5995          * First time through, need to assign label to the message
5996          */
5997         if (msec->sid == SECINITSID_UNLABELED) {
5998                 /*
5999                  * Compute new sid based on current process and
6000                  * message queue this message will be stored in
6001                  */
6002                 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6003                                              SECCLASS_MSG, NULL, &msec->sid);
6004                 if (rc)
6005                         return rc;
6006         }
6007
6008         ad.type = LSM_AUDIT_DATA_IPC;
6009         ad.u.ipc_id = msq->key;
6010
6011         /* Can this process write to the queue? */
6012         rc = avc_has_perm(&selinux_state,
6013                           sid, isec->sid, SECCLASS_MSGQ,
6014                           MSGQ__WRITE, &ad);
6015         if (!rc)
6016                 /* Can this process send the message */
6017                 rc = avc_has_perm(&selinux_state,
6018                                   sid, msec->sid, SECCLASS_MSG,
6019                                   MSG__SEND, &ad);
6020         if (!rc)
6021                 /* Can the message be put in the queue? */
6022                 rc = avc_has_perm(&selinux_state,
6023                                   msec->sid, isec->sid, SECCLASS_MSGQ,
6024                                   MSGQ__ENQUEUE, &ad);
6025
6026         return rc;
6027 }
6028
6029 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6030                                     struct task_struct *target,
6031                                     long type, int mode)
6032 {
6033         struct ipc_security_struct *isec;
6034         struct msg_security_struct *msec;
6035         struct common_audit_data ad;
6036         u32 sid = task_sid(target);
6037         int rc;
6038
6039         isec = selinux_ipc(msq);
6040         msec = selinux_msg_msg(msg);
6041
6042         ad.type = LSM_AUDIT_DATA_IPC;
6043         ad.u.ipc_id = msq->key;
6044
6045         rc = avc_has_perm(&selinux_state,
6046                           sid, isec->sid,
6047                           SECCLASS_MSGQ, MSGQ__READ, &ad);
6048         if (!rc)
6049                 rc = avc_has_perm(&selinux_state,
6050                                   sid, msec->sid,
6051                                   SECCLASS_MSG, MSG__RECEIVE, &ad);
6052         return rc;
6053 }
6054
6055 /* Shared Memory security operations */
6056 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6057 {
6058         struct ipc_security_struct *isec;
6059         struct common_audit_data ad;
6060         u32 sid = current_sid();
6061         int rc;
6062
6063         isec = selinux_ipc(shp);
6064         ipc_init_security(isec, SECCLASS_SHM);
6065
6066         ad.type = LSM_AUDIT_DATA_IPC;
6067         ad.u.ipc_id = shp->key;
6068
6069         rc = avc_has_perm(&selinux_state,
6070                           sid, isec->sid, SECCLASS_SHM,
6071                           SHM__CREATE, &ad);
6072         return rc;
6073 }
6074
6075 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6076 {
6077         struct ipc_security_struct *isec;
6078         struct common_audit_data ad;
6079         u32 sid = current_sid();
6080
6081         isec = selinux_ipc(shp);
6082
6083         ad.type = LSM_AUDIT_DATA_IPC;
6084         ad.u.ipc_id = shp->key;
6085
6086         return avc_has_perm(&selinux_state,
6087                             sid, isec->sid, SECCLASS_SHM,
6088                             SHM__ASSOCIATE, &ad);
6089 }
6090
6091 /* Note, at this point, shp is locked down */
6092 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6093 {
6094         int perms;
6095         int err;
6096
6097         switch (cmd) {
6098         case IPC_INFO:
6099         case SHM_INFO:
6100                 /* No specific object, just general system-wide information. */
6101                 return avc_has_perm(&selinux_state,
6102                                     current_sid(), SECINITSID_KERNEL,
6103                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6104         case IPC_STAT:
6105         case SHM_STAT:
6106         case SHM_STAT_ANY:
6107                 perms = SHM__GETATTR | SHM__ASSOCIATE;
6108                 break;
6109         case IPC_SET:
6110                 perms = SHM__SETATTR;
6111                 break;
6112         case SHM_LOCK:
6113         case SHM_UNLOCK:
6114                 perms = SHM__LOCK;
6115                 break;
6116         case IPC_RMID:
6117                 perms = SHM__DESTROY;
6118                 break;
6119         default:
6120                 return 0;
6121         }
6122
6123         err = ipc_has_perm(shp, perms);
6124         return err;
6125 }
6126
6127 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6128                              char __user *shmaddr, int shmflg)
6129 {
6130         u32 perms;
6131
6132         if (shmflg & SHM_RDONLY)
6133                 perms = SHM__READ;
6134         else
6135                 perms = SHM__READ | SHM__WRITE;
6136
6137         return ipc_has_perm(shp, perms);
6138 }
6139
6140 /* Semaphore security operations */
6141 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6142 {
6143         struct ipc_security_struct *isec;
6144         struct common_audit_data ad;
6145         u32 sid = current_sid();
6146         int rc;
6147
6148         isec = selinux_ipc(sma);
6149         ipc_init_security(isec, SECCLASS_SEM);
6150
6151         ad.type = LSM_AUDIT_DATA_IPC;
6152         ad.u.ipc_id = sma->key;
6153
6154         rc = avc_has_perm(&selinux_state,
6155                           sid, isec->sid, SECCLASS_SEM,
6156                           SEM__CREATE, &ad);
6157         return rc;
6158 }
6159
6160 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6161 {
6162         struct ipc_security_struct *isec;
6163         struct common_audit_data ad;
6164         u32 sid = current_sid();
6165
6166         isec = selinux_ipc(sma);
6167
6168         ad.type = LSM_AUDIT_DATA_IPC;
6169         ad.u.ipc_id = sma->key;
6170
6171         return avc_has_perm(&selinux_state,
6172                             sid, isec->sid, SECCLASS_SEM,
6173                             SEM__ASSOCIATE, &ad);
6174 }
6175
6176 /* Note, at this point, sma is locked down */
6177 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6178 {
6179         int err;
6180         u32 perms;
6181
6182         switch (cmd) {
6183         case IPC_INFO:
6184         case SEM_INFO:
6185                 /* No specific object, just general system-wide information. */
6186                 return avc_has_perm(&selinux_state,
6187                                     current_sid(), SECINITSID_KERNEL,
6188                                     SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6189         case GETPID:
6190         case GETNCNT:
6191         case GETZCNT:
6192                 perms = SEM__GETATTR;
6193                 break;
6194         case GETVAL:
6195         case GETALL:
6196                 perms = SEM__READ;
6197                 break;
6198         case SETVAL:
6199         case SETALL:
6200                 perms = SEM__WRITE;
6201                 break;
6202         case IPC_RMID:
6203                 perms = SEM__DESTROY;
6204                 break;
6205         case IPC_SET:
6206                 perms = SEM__SETATTR;
6207                 break;
6208         case IPC_STAT:
6209         case SEM_STAT:
6210         case SEM_STAT_ANY:
6211                 perms = SEM__GETATTR | SEM__ASSOCIATE;
6212                 break;
6213         default:
6214                 return 0;
6215         }
6216
6217         err = ipc_has_perm(sma, perms);
6218         return err;
6219 }
6220
6221 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6222                              struct sembuf *sops, unsigned nsops, int alter)
6223 {
6224         u32 perms;
6225
6226         if (alter)
6227                 perms = SEM__READ | SEM__WRITE;
6228         else
6229                 perms = SEM__READ;
6230
6231         return ipc_has_perm(sma, perms);
6232 }
6233
6234 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6235 {
6236         u32 av = 0;
6237
6238         av = 0;
6239         if (flag & S_IRUGO)
6240                 av |= IPC__UNIX_READ;
6241         if (flag & S_IWUGO)
6242                 av |= IPC__UNIX_WRITE;
6243
6244         if (av == 0)
6245                 return 0;
6246
6247         return ipc_has_perm(ipcp, av);
6248 }
6249
6250 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6251 {
6252         struct ipc_security_struct *isec = selinux_ipc(ipcp);
6253         *secid = isec->sid;
6254 }
6255
6256 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6257 {
6258         if (inode)
6259                 inode_doinit_with_dentry(inode, dentry);
6260 }
6261
6262 static int selinux_getprocattr(struct task_struct *p,
6263                                char *name, char **value)
6264 {
6265         const struct task_security_struct *__tsec;
6266         u32 sid;
6267         int error;
6268         unsigned len;
6269
6270         rcu_read_lock();
6271         __tsec = selinux_cred(__task_cred(p));
6272
6273         if (current != p) {
6274                 error = avc_has_perm(&selinux_state,
6275                                      current_sid(), __tsec->sid,
6276                                      SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6277                 if (error)
6278                         goto bad;
6279         }
6280
6281         if (!strcmp(name, "current"))
6282                 sid = __tsec->sid;
6283         else if (!strcmp(name, "prev"))
6284                 sid = __tsec->osid;
6285         else if (!strcmp(name, "exec"))
6286                 sid = __tsec->exec_sid;
6287         else if (!strcmp(name, "fscreate"))
6288                 sid = __tsec->create_sid;
6289         else if (!strcmp(name, "keycreate"))
6290                 sid = __tsec->keycreate_sid;
6291         else if (!strcmp(name, "sockcreate"))
6292                 sid = __tsec->sockcreate_sid;
6293         else {
6294                 error = -EINVAL;
6295                 goto bad;
6296         }
6297         rcu_read_unlock();
6298
6299         if (!sid)
6300                 return 0;
6301
6302         error = security_sid_to_context(&selinux_state, sid, value, &len);
6303         if (error)
6304                 return error;
6305         return len;
6306
6307 bad:
6308         rcu_read_unlock();
6309         return error;
6310 }
6311
6312 static int selinux_setprocattr(const char *name, void *value, size_t size)
6313 {
6314         struct task_security_struct *tsec;
6315         struct cred *new;
6316         u32 mysid = current_sid(), sid = 0, ptsid;
6317         int error;
6318         char *str = value;
6319
6320         /*
6321          * Basic control over ability to set these attributes at all.
6322          */
6323         if (!strcmp(name, "exec"))
6324                 error = avc_has_perm(&selinux_state,
6325                                      mysid, mysid, SECCLASS_PROCESS,
6326                                      PROCESS__SETEXEC, NULL);
6327         else if (!strcmp(name, "fscreate"))
6328                 error = avc_has_perm(&selinux_state,
6329                                      mysid, mysid, SECCLASS_PROCESS,
6330                                      PROCESS__SETFSCREATE, NULL);
6331         else if (!strcmp(name, "keycreate"))
6332                 error = avc_has_perm(&selinux_state,
6333                                      mysid, mysid, SECCLASS_PROCESS,
6334                                      PROCESS__SETKEYCREATE, NULL);
6335         else if (!strcmp(name, "sockcreate"))
6336                 error = avc_has_perm(&selinux_state,
6337                                      mysid, mysid, SECCLASS_PROCESS,
6338                                      PROCESS__SETSOCKCREATE, NULL);
6339         else if (!strcmp(name, "current"))
6340                 error = avc_has_perm(&selinux_state,
6341                                      mysid, mysid, SECCLASS_PROCESS,
6342                                      PROCESS__SETCURRENT, NULL);
6343         else
6344                 error = -EINVAL;
6345         if (error)
6346                 return error;
6347
6348         /* Obtain a SID for the context, if one was specified. */
6349         if (size && str[0] && str[0] != '\n') {
6350                 if (str[size-1] == '\n') {
6351                         str[size-1] = 0;
6352                         size--;
6353                 }
6354                 error = security_context_to_sid(&selinux_state, value, size,
6355                                                 &sid, GFP_KERNEL);
6356                 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6357                         if (!has_cap_mac_admin(true)) {
6358                                 struct audit_buffer *ab;
6359                                 size_t audit_size;
6360
6361                                 /* We strip a nul only if it is at the end, otherwise the
6362                                  * context contains a nul and we should audit that */
6363                                 if (str[size - 1] == '\0')
6364                                         audit_size = size - 1;
6365                                 else
6366                                         audit_size = size;
6367                                 ab = audit_log_start(audit_context(),
6368                                                      GFP_ATOMIC,
6369                                                      AUDIT_SELINUX_ERR);
6370                                 audit_log_format(ab, "op=fscreate invalid_context=");
6371                                 audit_log_n_untrustedstring(ab, value, audit_size);
6372                                 audit_log_end(ab);
6373
6374                                 return error;
6375                         }
6376                         error = security_context_to_sid_force(
6377                                                       &selinux_state,
6378                                                       value, size, &sid);
6379                 }
6380                 if (error)
6381                         return error;
6382         }
6383
6384         new = prepare_creds();
6385         if (!new)
6386                 return -ENOMEM;
6387
6388         /* Permission checking based on the specified context is
6389            performed during the actual operation (execve,
6390            open/mkdir/...), when we know the full context of the
6391            operation.  See selinux_bprm_set_creds for the execve
6392            checks and may_create for the file creation checks. The
6393            operation will then fail if the context is not permitted. */
6394         tsec = selinux_cred(new);
6395         if (!strcmp(name, "exec")) {
6396                 tsec->exec_sid = sid;
6397         } else if (!strcmp(name, "fscreate")) {
6398                 tsec->create_sid = sid;
6399         } else if (!strcmp(name, "keycreate")) {
6400                 if (sid) {
6401                         error = avc_has_perm(&selinux_state, mysid, sid,
6402                                              SECCLASS_KEY, KEY__CREATE, NULL);
6403                         if (error)
6404                                 goto abort_change;
6405                 }
6406                 tsec->keycreate_sid = sid;
6407         } else if (!strcmp(name, "sockcreate")) {
6408                 tsec->sockcreate_sid = sid;
6409         } else if (!strcmp(name, "current")) {
6410                 error = -EINVAL;
6411                 if (sid == 0)
6412                         goto abort_change;
6413
6414                 /* Only allow single threaded processes to change context */
6415                 error = -EPERM;
6416                 if (!current_is_single_threaded()) {
6417                         error = security_bounded_transition(&selinux_state,
6418                                                             tsec->sid, sid);
6419                         if (error)
6420                                 goto abort_change;
6421                 }
6422
6423                 /* Check permissions for the transition. */
6424                 error = avc_has_perm(&selinux_state,
6425                                      tsec->sid, sid, SECCLASS_PROCESS,
6426                                      PROCESS__DYNTRANSITION, NULL);
6427                 if (error)
6428                         goto abort_change;
6429
6430                 /* Check for ptracing, and update the task SID if ok.
6431                    Otherwise, leave SID unchanged and fail. */
6432                 ptsid = ptrace_parent_sid();
6433                 if (ptsid != 0) {
6434                         error = avc_has_perm(&selinux_state,
6435                                              ptsid, sid, SECCLASS_PROCESS,
6436                                              PROCESS__PTRACE, NULL);
6437                         if (error)
6438                                 goto abort_change;
6439                 }
6440
6441                 tsec->sid = sid;
6442         } else {
6443                 error = -EINVAL;
6444                 goto abort_change;
6445         }
6446
6447         commit_creds(new);
6448         return size;
6449
6450 abort_change:
6451         abort_creds(new);
6452         return error;
6453 }
6454
6455 static int selinux_ismaclabel(const char *name)
6456 {
6457         return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6458 }
6459
6460 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6461 {
6462         return security_sid_to_context(&selinux_state, secid,
6463                                        secdata, seclen);
6464 }
6465
6466 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6467 {
6468         return security_context_to_sid(&selinux_state, secdata, seclen,
6469                                        secid, GFP_KERNEL);
6470 }
6471
6472 static void selinux_release_secctx(char *secdata, u32 seclen)
6473 {
6474         kfree(secdata);
6475 }
6476
6477 static void selinux_inode_invalidate_secctx(struct inode *inode)
6478 {
6479         struct inode_security_struct *isec = selinux_inode(inode);
6480
6481         spin_lock(&isec->lock);
6482         isec->initialized = LABEL_INVALID;
6483         spin_unlock(&isec->lock);
6484 }
6485
6486 /*
6487  *      called with inode->i_mutex locked
6488  */
6489 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6490 {
6491         int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6492                                            ctx, ctxlen, 0);
6493         /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6494         return rc == -EOPNOTSUPP ? 0 : rc;
6495 }
6496
6497 /*
6498  *      called with inode->i_mutex locked
6499  */
6500 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6501 {
6502         return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6503 }
6504
6505 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6506 {
6507         int len = 0;
6508         len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6509                                                 ctx, true);
6510         if (len < 0)
6511                 return len;
6512         *ctxlen = len;
6513         return 0;
6514 }
6515 #ifdef CONFIG_KEYS
6516
6517 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6518                              unsigned long flags)
6519 {
6520         const struct task_security_struct *tsec;
6521         struct key_security_struct *ksec;
6522
6523         ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6524         if (!ksec)
6525                 return -ENOMEM;
6526
6527         tsec = selinux_cred(cred);
6528         if (tsec->keycreate_sid)
6529                 ksec->sid = tsec->keycreate_sid;
6530         else
6531                 ksec->sid = tsec->sid;
6532
6533         k->security = ksec;
6534         return 0;
6535 }
6536
6537 static void selinux_key_free(struct key *k)
6538 {
6539         struct key_security_struct *ksec = k->security;
6540
6541         k->security = NULL;
6542         kfree(ksec);
6543 }
6544
6545 static int selinux_key_permission(key_ref_t key_ref,
6546                                   const struct cred *cred,
6547                                   unsigned perm)
6548 {
6549         struct key *key;
6550         struct key_security_struct *ksec;
6551         u32 sid;
6552
6553         /* if no specific permissions are requested, we skip the
6554            permission check. No serious, additional covert channels
6555            appear to be created. */
6556         if (perm == 0)
6557                 return 0;
6558
6559         sid = cred_sid(cred);
6560
6561         key = key_ref_to_ptr(key_ref);
6562         ksec = key->security;
6563
6564         return avc_has_perm(&selinux_state,
6565                             sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6566 }
6567
6568 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6569 {
6570         struct key_security_struct *ksec = key->security;
6571         char *context = NULL;
6572         unsigned len;
6573         int rc;
6574
6575         rc = security_sid_to_context(&selinux_state, ksec->sid,
6576                                      &context, &len);
6577         if (!rc)
6578                 rc = len;
6579         *_buffer = context;
6580         return rc;
6581 }
6582 #endif
6583
6584 #ifdef CONFIG_SECURITY_INFINIBAND
6585 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6586 {
6587         struct common_audit_data ad;
6588         int err;
6589         u32 sid = 0;
6590         struct ib_security_struct *sec = ib_sec;
6591         struct lsm_ibpkey_audit ibpkey;
6592
6593         err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6594         if (err)
6595                 return err;
6596
6597         ad.type = LSM_AUDIT_DATA_IBPKEY;
6598         ibpkey.subnet_prefix = subnet_prefix;
6599         ibpkey.pkey = pkey_val;
6600         ad.u.ibpkey = &ibpkey;
6601         return avc_has_perm(&selinux_state,
6602                             sec->sid, sid,
6603                             SECCLASS_INFINIBAND_PKEY,
6604                             INFINIBAND_PKEY__ACCESS, &ad);
6605 }
6606
6607 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6608                                             u8 port_num)
6609 {
6610         struct common_audit_data ad;
6611         int err;
6612         u32 sid = 0;
6613         struct ib_security_struct *sec = ib_sec;
6614         struct lsm_ibendport_audit ibendport;
6615
6616         err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6617                                       &sid);
6618
6619         if (err)
6620                 return err;
6621
6622         ad.type = LSM_AUDIT_DATA_IBENDPORT;
6623         strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6624         ibendport.port = port_num;
6625         ad.u.ibendport = &ibendport;
6626         return avc_has_perm(&selinux_state,
6627                             sec->sid, sid,
6628                             SECCLASS_INFINIBAND_ENDPORT,
6629                             INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6630 }
6631
6632 static int selinux_ib_alloc_security(void **ib_sec)
6633 {
6634         struct ib_security_struct *sec;
6635
6636         sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6637         if (!sec)
6638                 return -ENOMEM;
6639         sec->sid = current_sid();
6640
6641         *ib_sec = sec;
6642         return 0;
6643 }
6644
6645 static void selinux_ib_free_security(void *ib_sec)
6646 {
6647         kfree(ib_sec);
6648 }
6649 #endif
6650
6651 #ifdef CONFIG_BPF_SYSCALL
6652 static int selinux_bpf(int cmd, union bpf_attr *attr,
6653                                      unsigned int size)
6654 {
6655         u32 sid = current_sid();
6656         int ret;
6657
6658         switch (cmd) {
6659         case BPF_MAP_CREATE:
6660                 ret = avc_has_perm(&selinux_state,
6661                                    sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6662                                    NULL);
6663                 break;
6664         case BPF_PROG_LOAD:
6665                 ret = avc_has_perm(&selinux_state,
6666                                    sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6667                                    NULL);
6668                 break;
6669         default:
6670                 ret = 0;
6671                 break;
6672         }
6673
6674         return ret;
6675 }
6676
6677 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6678 {
6679         u32 av = 0;
6680
6681         if (fmode & FMODE_READ)
6682                 av |= BPF__MAP_READ;
6683         if (fmode & FMODE_WRITE)
6684                 av |= BPF__MAP_WRITE;
6685         return av;
6686 }
6687
6688 /* This function will check the file pass through unix socket or binder to see
6689  * if it is a bpf related object. And apply correspinding checks on the bpf
6690  * object based on the type. The bpf maps and programs, not like other files and
6691  * socket, are using a shared anonymous inode inside the kernel as their inode.
6692  * So checking that inode cannot identify if the process have privilege to
6693  * access the bpf object and that's why we have to add this additional check in
6694  * selinux_file_receive and selinux_binder_transfer_files.
6695  */
6696 static int bpf_fd_pass(struct file *file, u32 sid)
6697 {
6698         struct bpf_security_struct *bpfsec;
6699         struct bpf_prog *prog;
6700         struct bpf_map *map;
6701         int ret;
6702
6703         if (file->f_op == &bpf_map_fops) {
6704                 map = file->private_data;
6705                 bpfsec = map->security;
6706                 ret = avc_has_perm(&selinux_state,
6707                                    sid, bpfsec->sid, SECCLASS_BPF,
6708                                    bpf_map_fmode_to_av(file->f_mode), NULL);
6709                 if (ret)
6710                         return ret;
6711         } else if (file->f_op == &bpf_prog_fops) {
6712                 prog = file->private_data;
6713                 bpfsec = prog->aux->security;
6714                 ret = avc_has_perm(&selinux_state,
6715                                    sid, bpfsec->sid, SECCLASS_BPF,
6716                                    BPF__PROG_RUN, NULL);
6717                 if (ret)
6718                         return ret;
6719         }
6720         return 0;
6721 }
6722
6723 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6724 {
6725         u32 sid = current_sid();
6726         struct bpf_security_struct *bpfsec;
6727
6728         bpfsec = map->security;
6729         return avc_has_perm(&selinux_state,
6730                             sid, bpfsec->sid, SECCLASS_BPF,
6731                             bpf_map_fmode_to_av(fmode), NULL);
6732 }
6733
6734 static int selinux_bpf_prog(struct bpf_prog *prog)
6735 {
6736         u32 sid = current_sid();
6737         struct bpf_security_struct *bpfsec;
6738
6739         bpfsec = prog->aux->security;
6740         return avc_has_perm(&selinux_state,
6741                             sid, bpfsec->sid, SECCLASS_BPF,
6742                             BPF__PROG_RUN, NULL);
6743 }
6744
6745 static int selinux_bpf_map_alloc(struct bpf_map *map)
6746 {
6747         struct bpf_security_struct *bpfsec;
6748
6749         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6750         if (!bpfsec)
6751                 return -ENOMEM;
6752
6753         bpfsec->sid = current_sid();
6754         map->security = bpfsec;
6755
6756         return 0;
6757 }
6758
6759 static void selinux_bpf_map_free(struct bpf_map *map)
6760 {
6761         struct bpf_security_struct *bpfsec = map->security;
6762
6763         map->security = NULL;
6764         kfree(bpfsec);
6765 }
6766
6767 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6768 {
6769         struct bpf_security_struct *bpfsec;
6770
6771         bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6772         if (!bpfsec)
6773                 return -ENOMEM;
6774
6775         bpfsec->sid = current_sid();
6776         aux->security = bpfsec;
6777
6778         return 0;
6779 }
6780
6781 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6782 {
6783         struct bpf_security_struct *bpfsec = aux->security;
6784
6785         aux->security = NULL;
6786         kfree(bpfsec);
6787 }
6788 #endif
6789
6790 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6791         .lbs_cred = sizeof(struct task_security_struct),
6792         .lbs_file = sizeof(struct file_security_struct),
6793         .lbs_inode = sizeof(struct inode_security_struct),
6794         .lbs_ipc = sizeof(struct ipc_security_struct),
6795         .lbs_msg_msg = sizeof(struct msg_security_struct),
6796 };
6797
6798 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6799         LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6800         LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6801         LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6802         LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6803
6804         LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6805         LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6806         LSM_HOOK_INIT(capget, selinux_capget),
6807         LSM_HOOK_INIT(capset, selinux_capset),
6808         LSM_HOOK_INIT(capable, selinux_capable),
6809         LSM_HOOK_INIT(quotactl, selinux_quotactl),
6810         LSM_HOOK_INIT(quota_on, selinux_quota_on),
6811         LSM_HOOK_INIT(syslog, selinux_syslog),
6812         LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6813
6814         LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6815
6816         LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6817         LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6818         LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6819
6820         LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
6821         LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
6822
6823         LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6824         LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6825         LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
6826         LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6827         LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6828         LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6829         LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6830         LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6831         LSM_HOOK_INIT(sb_mount, selinux_mount),
6832         LSM_HOOK_INIT(sb_umount, selinux_umount),
6833         LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6834         LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6835         LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
6836
6837         LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6838         LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6839
6840         LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6841         LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6842         LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6843         LSM_HOOK_INIT(inode_create, selinux_inode_create),
6844         LSM_HOOK_INIT(inode_link, selinux_inode_link),
6845         LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6846         LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6847         LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6848         LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6849         LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6850         LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6851         LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6852         LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6853         LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6854         LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6855         LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6856         LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6857         LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6858         LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6859         LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6860         LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6861         LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6862         LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6863         LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6864         LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6865         LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6866         LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6867         LSM_HOOK_INIT(path_notify, selinux_path_notify),
6868
6869         LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6870
6871         LSM_HOOK_INIT(file_permission, selinux_file_permission),
6872         LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6873         LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6874         LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6875         LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6876         LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6877         LSM_HOOK_INIT(file_lock, selinux_file_lock),
6878         LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6879         LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6880         LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6881         LSM_HOOK_INIT(file_receive, selinux_file_receive),
6882
6883         LSM_HOOK_INIT(file_open, selinux_file_open),
6884
6885         LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6886         LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6887         LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6888         LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6889         LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6890         LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6891         LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6892         LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
6893         LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6894         LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6895         LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6896         LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6897         LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6898         LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6899         LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6900         LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6901         LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6902         LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6903         LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6904         LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6905         LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6906         LSM_HOOK_INIT(task_kill, selinux_task_kill),
6907         LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6908
6909         LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6910         LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6911
6912         LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6913
6914         LSM_HOOK_INIT(msg_queue_alloc_security,
6915                         selinux_msg_queue_alloc_security),
6916         LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6917         LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6918         LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6919         LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6920
6921         LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6922         LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6923         LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6924         LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6925
6926         LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6927         LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6928         LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6929         LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6930
6931         LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6932
6933         LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6934         LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6935
6936         LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6937         LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6938         LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6939         LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6940         LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6941         LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6942         LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6943         LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6944
6945         LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6946         LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6947
6948         LSM_HOOK_INIT(socket_create, selinux_socket_create),
6949         LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6950         LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
6951         LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6952         LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6953         LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6954         LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6955         LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6956         LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6957         LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6958         LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6959         LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6960         LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6961         LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6962         LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6963         LSM_HOOK_INIT(socket_getpeersec_stream,
6964                         selinux_socket_getpeersec_stream),
6965         LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6966         LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6967         LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6968         LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6969         LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6970         LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6971         LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
6972         LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
6973         LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
6974         LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6975         LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6976         LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6977         LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6978         LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6979         LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6980         LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6981         LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6982         LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6983         LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6984         LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6985         LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6986         LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6987 #ifdef CONFIG_SECURITY_INFINIBAND
6988         LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
6989         LSM_HOOK_INIT(ib_endport_manage_subnet,
6990                       selinux_ib_endport_manage_subnet),
6991         LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
6992         LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
6993 #endif
6994 #ifdef CONFIG_SECURITY_NETWORK_XFRM
6995         LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6996         LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6997         LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6998         LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6999         LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7000         LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7001                         selinux_xfrm_state_alloc_acquire),
7002         LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7003         LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7004         LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7005         LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7006                         selinux_xfrm_state_pol_flow_match),
7007         LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7008 #endif
7009
7010 #ifdef CONFIG_KEYS
7011         LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7012         LSM_HOOK_INIT(key_free, selinux_key_free),
7013         LSM_HOOK_INIT(key_permission, selinux_key_permission),
7014         LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7015 #endif
7016
7017 #ifdef CONFIG_AUDIT
7018         LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7019         LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7020         LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7021         LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7022 #endif
7023
7024 #ifdef CONFIG_BPF_SYSCALL
7025         LSM_HOOK_INIT(bpf, selinux_bpf),
7026         LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7027         LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7028         LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7029         LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7030         LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7031         LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7032 #endif
7033 };
7034
7035 static __init int selinux_init(void)
7036 {
7037         pr_info("SELinux:  Initializing.\n");
7038
7039         memset(&selinux_state, 0, sizeof(selinux_state));
7040         enforcing_set(&selinux_state, selinux_enforcing_boot);
7041         selinux_state.checkreqprot = selinux_checkreqprot_boot;
7042         selinux_ss_init(&selinux_state.ss);
7043         selinux_avc_init(&selinux_state.avc);
7044
7045         /* Set the security state for the initial task. */
7046         cred_init_security();
7047
7048         default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7049
7050         avc_init();
7051
7052         avtab_cache_init();
7053
7054         ebitmap_cache_init();
7055
7056         hashtab_cache_init();
7057
7058         security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7059
7060         if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7061                 panic("SELinux: Unable to register AVC netcache callback\n");
7062
7063         if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7064                 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7065
7066         if (selinux_enforcing_boot)
7067                 pr_debug("SELinux:  Starting in enforcing mode\n");
7068         else
7069                 pr_debug("SELinux:  Starting in permissive mode\n");
7070
7071         fs_validate_description(&selinux_fs_parameters);
7072
7073         return 0;
7074 }
7075
7076 static void delayed_superblock_init(struct super_block *sb, void *unused)
7077 {
7078         selinux_set_mnt_opts(sb, NULL, 0, NULL);
7079 }
7080
7081 void selinux_complete_init(void)
7082 {
7083         pr_debug("SELinux:  Completing initialization.\n");
7084
7085         /* Set up any superblocks initialized prior to the policy load. */
7086         pr_debug("SELinux:  Setting up existing superblocks.\n");
7087         iterate_supers(delayed_superblock_init, NULL);
7088 }
7089
7090 /* SELinux requires early initialization in order to label
7091    all processes and objects when they are created. */
7092 DEFINE_LSM(selinux) = {
7093         .name = "selinux",
7094         .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7095         .enabled = &selinux_enabled,
7096         .blobs = &selinux_blob_sizes,
7097         .init = selinux_init,
7098 };
7099
7100 #if defined(CONFIG_NETFILTER)
7101
7102 static const struct nf_hook_ops selinux_nf_ops[] = {
7103         {
7104                 .hook =         selinux_ipv4_postroute,
7105                 .pf =           NFPROTO_IPV4,
7106                 .hooknum =      NF_INET_POST_ROUTING,
7107                 .priority =     NF_IP_PRI_SELINUX_LAST,
7108         },
7109         {
7110                 .hook =         selinux_ipv4_forward,
7111                 .pf =           NFPROTO_IPV4,
7112                 .hooknum =      NF_INET_FORWARD,
7113                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7114         },
7115         {
7116                 .hook =         selinux_ipv4_output,
7117                 .pf =           NFPROTO_IPV4,
7118                 .hooknum =      NF_INET_LOCAL_OUT,
7119                 .priority =     NF_IP_PRI_SELINUX_FIRST,
7120         },
7121 #if IS_ENABLED(CONFIG_IPV6)
7122         {
7123                 .hook =         selinux_ipv6_postroute,
7124                 .pf =           NFPROTO_IPV6,
7125                 .hooknum =      NF_INET_POST_ROUTING,
7126                 .priority =     NF_IP6_PRI_SELINUX_LAST,
7127         },
7128         {
7129                 .hook =         selinux_ipv6_forward,
7130                 .pf =           NFPROTO_IPV6,
7131                 .hooknum =      NF_INET_FORWARD,
7132                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7133         },
7134         {
7135                 .hook =         selinux_ipv6_output,
7136                 .pf =           NFPROTO_IPV6,
7137                 .hooknum =      NF_INET_LOCAL_OUT,
7138                 .priority =     NF_IP6_PRI_SELINUX_FIRST,
7139         },
7140 #endif  /* IPV6 */
7141 };
7142
7143 static int __net_init selinux_nf_register(struct net *net)
7144 {
7145         return nf_register_net_hooks(net, selinux_nf_ops,
7146                                      ARRAY_SIZE(selinux_nf_ops));
7147 }
7148
7149 static void __net_exit selinux_nf_unregister(struct net *net)
7150 {
7151         nf_unregister_net_hooks(net, selinux_nf_ops,
7152                                 ARRAY_SIZE(selinux_nf_ops));
7153 }
7154
7155 static struct pernet_operations selinux_net_ops = {
7156         .init = selinux_nf_register,
7157         .exit = selinux_nf_unregister,
7158 };
7159
7160 static int __init selinux_nf_ip_init(void)
7161 {
7162         int err;
7163
7164         if (!selinux_enabled)
7165                 return 0;
7166
7167         pr_debug("SELinux:  Registering netfilter hooks\n");
7168
7169         err = register_pernet_subsys(&selinux_net_ops);
7170         if (err)
7171                 panic("SELinux: register_pernet_subsys: error %d\n", err);
7172
7173         return 0;
7174 }
7175 __initcall(selinux_nf_ip_init);
7176
7177 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7178 static void selinux_nf_ip_exit(void)
7179 {
7180         pr_debug("SELinux:  Unregistering netfilter hooks\n");
7181
7182         unregister_pernet_subsys(&selinux_net_ops);
7183 }
7184 #endif
7185
7186 #else /* CONFIG_NETFILTER */
7187
7188 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7189 #define selinux_nf_ip_exit()
7190 #endif
7191
7192 #endif /* CONFIG_NETFILTER */
7193
7194 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
7195 int selinux_disable(struct selinux_state *state)
7196 {
7197         if (state->initialized) {
7198                 /* Not permitted after initial policy load. */
7199                 return -EINVAL;
7200         }
7201
7202         if (state->disabled) {
7203                 /* Only do this once. */
7204                 return -EINVAL;
7205         }
7206
7207         state->disabled = 1;
7208
7209         pr_info("SELinux:  Disabled at runtime.\n");
7210
7211         selinux_enabled = 0;
7212
7213         security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7214
7215         /* Try to destroy the avc node cache */
7216         avc_disable();
7217
7218         /* Unregister netfilter hooks. */
7219         selinux_nf_ip_exit();
7220
7221         /* Unregister selinuxfs. */
7222         exit_sel_fs();
7223
7224         return 0;
7225 }
7226 #endif