Merge tag '5.0-rc3-smb3-fixes' of git://git.samba.org/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user);
135
136 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
137 {
138         return rcu_dereference_rtnl(cfg80211_regdomain);
139 }
140
141 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
142 {
143         return rcu_dereference_rtnl(wiphy->regd);
144 }
145
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
147 {
148         switch (dfs_region) {
149         case NL80211_DFS_UNSET:
150                 return "unset";
151         case NL80211_DFS_FCC:
152                 return "FCC";
153         case NL80211_DFS_ETSI:
154                 return "ETSI";
155         case NL80211_DFS_JP:
156                 return "JP";
157         }
158         return "Unknown";
159 }
160
161 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
162 {
163         const struct ieee80211_regdomain *regd = NULL;
164         const struct ieee80211_regdomain *wiphy_regd = NULL;
165
166         regd = get_cfg80211_regdom();
167         if (!wiphy)
168                 goto out;
169
170         wiphy_regd = get_wiphy_regdom(wiphy);
171         if (!wiphy_regd)
172                 goto out;
173
174         if (wiphy_regd->dfs_region == regd->dfs_region)
175                 goto out;
176
177         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178                  dev_name(&wiphy->dev),
179                  reg_dfs_region_str(wiphy_regd->dfs_region),
180                  reg_dfs_region_str(regd->dfs_region));
181
182 out:
183         return regd->dfs_region;
184 }
185
186 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
187 {
188         if (!r)
189                 return;
190         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
191 }
192
193 static struct regulatory_request *get_last_request(void)
194 {
195         return rcu_dereference_rtnl(last_request);
196 }
197
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list);
200 static spinlock_t reg_requests_lock;
201
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons);
204 static spinlock_t reg_pending_beacons_lock;
205
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list);
208
209 struct reg_beacon {
210         struct list_head list;
211         struct ieee80211_channel chan;
212 };
213
214 static void reg_check_chans_work(struct work_struct *work);
215 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
216
217 static void reg_todo(struct work_struct *work);
218 static DECLARE_WORK(reg_work, reg_todo);
219
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom = {
222         .n_reg_rules = 8,
223         .alpha2 =  "00",
224         .reg_rules = {
225                 /* IEEE 802.11b/g, channels 1..11 */
226                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227                 /* IEEE 802.11b/g, channels 12..13. */
228                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
230                 /* IEEE 802.11 channel 14 - Only JP enables
231                  * this and for 802.11b only */
232                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
233                         NL80211_RRF_NO_IR |
234                         NL80211_RRF_NO_OFDM),
235                 /* IEEE 802.11a, channel 36..48 */
236                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
237                         NL80211_RRF_NO_IR |
238                         NL80211_RRF_AUTO_BW),
239
240                 /* IEEE 802.11a, channel 52..64 - DFS required */
241                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
242                         NL80211_RRF_NO_IR |
243                         NL80211_RRF_AUTO_BW |
244                         NL80211_RRF_DFS),
245
246                 /* IEEE 802.11a, channel 100..144 - DFS required */
247                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
248                         NL80211_RRF_NO_IR |
249                         NL80211_RRF_DFS),
250
251                 /* IEEE 802.11a, channel 149..165 */
252                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
253                         NL80211_RRF_NO_IR),
254
255                 /* IEEE 802.11ad (60GHz), channels 1..3 */
256                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
257         }
258 };
259
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain *cfg80211_world_regdom =
262         &world_regdom;
263
264 static char *ieee80211_regdom = "00";
265 static char user_alpha2[2];
266
267 module_param(ieee80211_regdom, charp, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
269
270 static void reg_free_request(struct regulatory_request *request)
271 {
272         if (request == &core_request_world)
273                 return;
274
275         if (request != get_last_request())
276                 kfree(request);
277 }
278
279 static void reg_free_last_request(void)
280 {
281         struct regulatory_request *lr = get_last_request();
282
283         if (lr != &core_request_world && lr)
284                 kfree_rcu(lr, rcu_head);
285 }
286
287 static void reg_update_last_request(struct regulatory_request *request)
288 {
289         struct regulatory_request *lr;
290
291         lr = get_last_request();
292         if (lr == request)
293                 return;
294
295         reg_free_last_request();
296         rcu_assign_pointer(last_request, request);
297 }
298
299 static void reset_regdomains(bool full_reset,
300                              const struct ieee80211_regdomain *new_regdom)
301 {
302         const struct ieee80211_regdomain *r;
303
304         ASSERT_RTNL();
305
306         r = get_cfg80211_regdom();
307
308         /* avoid freeing static information or freeing something twice */
309         if (r == cfg80211_world_regdom)
310                 r = NULL;
311         if (cfg80211_world_regdom == &world_regdom)
312                 cfg80211_world_regdom = NULL;
313         if (r == &world_regdom)
314                 r = NULL;
315
316         rcu_free_regdom(r);
317         rcu_free_regdom(cfg80211_world_regdom);
318
319         cfg80211_world_regdom = &world_regdom;
320         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
321
322         if (!full_reset)
323                 return;
324
325         reg_update_last_request(&core_request_world);
326 }
327
328 /*
329  * Dynamic world regulatory domain requested by the wireless
330  * core upon initialization
331  */
332 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
333 {
334         struct regulatory_request *lr;
335
336         lr = get_last_request();
337
338         WARN_ON(!lr);
339
340         reset_regdomains(false, rd);
341
342         cfg80211_world_regdom = rd;
343 }
344
345 bool is_world_regdom(const char *alpha2)
346 {
347         if (!alpha2)
348                 return false;
349         return alpha2[0] == '0' && alpha2[1] == '0';
350 }
351
352 static bool is_alpha2_set(const char *alpha2)
353 {
354         if (!alpha2)
355                 return false;
356         return alpha2[0] && alpha2[1];
357 }
358
359 static bool is_unknown_alpha2(const char *alpha2)
360 {
361         if (!alpha2)
362                 return false;
363         /*
364          * Special case where regulatory domain was built by driver
365          * but a specific alpha2 cannot be determined
366          */
367         return alpha2[0] == '9' && alpha2[1] == '9';
368 }
369
370 static bool is_intersected_alpha2(const char *alpha2)
371 {
372         if (!alpha2)
373                 return false;
374         /*
375          * Special case where regulatory domain is the
376          * result of an intersection between two regulatory domain
377          * structures
378          */
379         return alpha2[0] == '9' && alpha2[1] == '8';
380 }
381
382 static bool is_an_alpha2(const char *alpha2)
383 {
384         if (!alpha2)
385                 return false;
386         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
387 }
388
389 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
390 {
391         if (!alpha2_x || !alpha2_y)
392                 return false;
393         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
394 }
395
396 static bool regdom_changes(const char *alpha2)
397 {
398         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
399
400         if (!r)
401                 return true;
402         return !alpha2_equal(r->alpha2, alpha2);
403 }
404
405 /*
406  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408  * has ever been issued.
409  */
410 static bool is_user_regdom_saved(void)
411 {
412         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
413                 return false;
414
415         /* This would indicate a mistake on the design */
416         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
417                  "Unexpected user alpha2: %c%c\n",
418                  user_alpha2[0], user_alpha2[1]))
419                 return false;
420
421         return true;
422 }
423
424 static const struct ieee80211_regdomain *
425 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
426 {
427         struct ieee80211_regdomain *regd;
428         int size_of_regd;
429         unsigned int i;
430
431         size_of_regd =
432                 sizeof(struct ieee80211_regdomain) +
433                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
434
435         regd = kzalloc(size_of_regd, GFP_KERNEL);
436         if (!regd)
437                 return ERR_PTR(-ENOMEM);
438
439         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
440
441         for (i = 0; i < src_regd->n_reg_rules; i++)
442                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
443                        sizeof(struct ieee80211_reg_rule));
444
445         return regd;
446 }
447
448 struct reg_regdb_apply_request {
449         struct list_head list;
450         const struct ieee80211_regdomain *regdom;
451 };
452
453 static LIST_HEAD(reg_regdb_apply_list);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex);
455
456 static void reg_regdb_apply(struct work_struct *work)
457 {
458         struct reg_regdb_apply_request *request;
459
460         rtnl_lock();
461
462         mutex_lock(&reg_regdb_apply_mutex);
463         while (!list_empty(&reg_regdb_apply_list)) {
464                 request = list_first_entry(&reg_regdb_apply_list,
465                                            struct reg_regdb_apply_request,
466                                            list);
467                 list_del(&request->list);
468
469                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
470                 kfree(request);
471         }
472         mutex_unlock(&reg_regdb_apply_mutex);
473
474         rtnl_unlock();
475 }
476
477 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
478
479 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
480 {
481         struct reg_regdb_apply_request *request;
482
483         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
484         if (!request) {
485                 kfree(regdom);
486                 return -ENOMEM;
487         }
488
489         request->regdom = regdom;
490
491         mutex_lock(&reg_regdb_apply_mutex);
492         list_add_tail(&request->list, &reg_regdb_apply_list);
493         mutex_unlock(&reg_regdb_apply_mutex);
494
495         schedule_work(&reg_regdb_work);
496         return 0;
497 }
498
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA  */
501 #define REG_MAX_CRDA_TIMEOUTS 10
502
503 static u32 reg_crda_timeouts;
504
505 static void crda_timeout_work(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
507
508 static void crda_timeout_work(struct work_struct *work)
509 {
510         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
511         rtnl_lock();
512         reg_crda_timeouts++;
513         restore_regulatory_settings(true);
514         rtnl_unlock();
515 }
516
517 static void cancel_crda_timeout(void)
518 {
519         cancel_delayed_work(&crda_timeout);
520 }
521
522 static void cancel_crda_timeout_sync(void)
523 {
524         cancel_delayed_work_sync(&crda_timeout);
525 }
526
527 static void reset_crda_timeouts(void)
528 {
529         reg_crda_timeouts = 0;
530 }
531
532 /*
533  * This lets us keep regulatory code which is updated on a regulatory
534  * basis in userspace.
535  */
536 static int call_crda(const char *alpha2)
537 {
538         char country[12];
539         char *env[] = { country, NULL };
540         int ret;
541
542         snprintf(country, sizeof(country), "COUNTRY=%c%c",
543                  alpha2[0], alpha2[1]);
544
545         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
546                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
547                 return -EINVAL;
548         }
549
550         if (!is_world_regdom((char *) alpha2))
551                 pr_debug("Calling CRDA for country: %c%c\n",
552                          alpha2[0], alpha2[1]);
553         else
554                 pr_debug("Calling CRDA to update world regulatory domain\n");
555
556         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
557         if (ret)
558                 return ret;
559
560         queue_delayed_work(system_power_efficient_wq,
561                            &crda_timeout, msecs_to_jiffies(3142));
562         return 0;
563 }
564 #else
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2)
569 {
570         return -ENODATA;
571 }
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
573
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header *regdb;
576
577 struct fwdb_country {
578         u8 alpha2[2];
579         __be16 coll_ptr;
580         /* this struct cannot be extended */
581 } __packed __aligned(4);
582
583 struct fwdb_collection {
584         u8 len;
585         u8 n_rules;
586         u8 dfs_region;
587         /* no optional data yet */
588         /* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed __aligned(4);
590
591 enum fwdb_flags {
592         FWDB_FLAG_NO_OFDM       = BIT(0),
593         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
594         FWDB_FLAG_DFS           = BIT(2),
595         FWDB_FLAG_NO_IR         = BIT(3),
596         FWDB_FLAG_AUTO_BW       = BIT(4),
597 };
598
599 struct fwdb_wmm_ac {
600         u8 ecw;
601         u8 aifsn;
602         __be16 cot;
603 } __packed;
604
605 struct fwdb_wmm_rule {
606         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
607         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
608 } __packed;
609
610 struct fwdb_rule {
611         u8 len;
612         u8 flags;
613         __be16 max_eirp;
614         __be32 start, end, max_bw;
615         /* start of optional data */
616         __be16 cac_timeout;
617         __be16 wmm_ptr;
618 } __packed __aligned(4);
619
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
622
623 struct fwdb_header {
624         __be32 magic;
625         __be32 version;
626         struct fwdb_country country[];
627 } __packed __aligned(4);
628
629 static int ecw2cw(int ecw)
630 {
631         return (1 << ecw) - 1;
632 }
633
634 static bool valid_wmm(struct fwdb_wmm_rule *rule)
635 {
636         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
637         int i;
638
639         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
640                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
641                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
642                 u8 aifsn = ac[i].aifsn;
643
644                 if (cw_min >= cw_max)
645                         return false;
646
647                 if (aifsn < 1)
648                         return false;
649         }
650
651         return true;
652 }
653
654 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
655 {
656         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
657
658         if ((u8 *)rule + sizeof(rule->len) > data + size)
659                 return false;
660
661         /* mandatory fields */
662         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
663                 return false;
664         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
665                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
666                 struct fwdb_wmm_rule *wmm;
667
668                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
669                         return false;
670
671                 wmm = (void *)(data + wmm_ptr);
672
673                 if (!valid_wmm(wmm))
674                         return false;
675         }
676         return true;
677 }
678
679 static bool valid_country(const u8 *data, unsigned int size,
680                           const struct fwdb_country *country)
681 {
682         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
683         struct fwdb_collection *coll = (void *)(data + ptr);
684         __be16 *rules_ptr;
685         unsigned int i;
686
687         /* make sure we can read len/n_rules */
688         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
689                 return false;
690
691         /* make sure base struct and all rules fit */
692         if ((u8 *)coll + ALIGN(coll->len, 2) +
693             (coll->n_rules * 2) > data + size)
694                 return false;
695
696         /* mandatory fields must exist */
697         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
698                 return false;
699
700         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
701
702         for (i = 0; i < coll->n_rules; i++) {
703                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
704
705                 if (!valid_rule(data, size, rule_ptr))
706                         return false;
707         }
708
709         return true;
710 }
711
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key *builtin_regdb_keys;
714
715 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
716 {
717         const u8 *end = p + buflen;
718         size_t plen;
719         key_ref_t key;
720
721         while (p < end) {
722                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723                  * than 256 bytes in size.
724                  */
725                 if (end - p < 4)
726                         goto dodgy_cert;
727                 if (p[0] != 0x30 &&
728                     p[1] != 0x82)
729                         goto dodgy_cert;
730                 plen = (p[2] << 8) | p[3];
731                 plen += 4;
732                 if (plen > end - p)
733                         goto dodgy_cert;
734
735                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
736                                            "asymmetric", NULL, p, plen,
737                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
738                                             KEY_USR_VIEW | KEY_USR_READ),
739                                            KEY_ALLOC_NOT_IN_QUOTA |
740                                            KEY_ALLOC_BUILT_IN |
741                                            KEY_ALLOC_BYPASS_RESTRICTION);
742                 if (IS_ERR(key)) {
743                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
744                                PTR_ERR(key));
745                 } else {
746                         pr_notice("Loaded X.509 cert '%s'\n",
747                                   key_ref_to_ptr(key)->description);
748                         key_ref_put(key);
749                 }
750                 p += plen;
751         }
752
753         return;
754
755 dodgy_cert:
756         pr_err("Problem parsing in-kernel X.509 certificate list\n");
757 }
758
759 static int __init load_builtin_regdb_keys(void)
760 {
761         builtin_regdb_keys =
762                 keyring_alloc(".builtin_regdb_keys",
763                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
765                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
766                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
767         if (IS_ERR(builtin_regdb_keys))
768                 return PTR_ERR(builtin_regdb_keys);
769
770         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
771
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
774 #endif
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
777                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
778 #endif
779
780         return 0;
781 }
782
783 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
784 {
785         const struct firmware *sig;
786         bool result;
787
788         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
789                 return false;
790
791         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
792                                         builtin_regdb_keys,
793                                         VERIFYING_UNSPECIFIED_SIGNATURE,
794                                         NULL, NULL) == 0;
795
796         release_firmware(sig);
797
798         return result;
799 }
800
801 static void free_regdb_keyring(void)
802 {
803         key_put(builtin_regdb_keys);
804 }
805 #else
806 static int load_builtin_regdb_keys(void)
807 {
808         return 0;
809 }
810
811 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
812 {
813         return true;
814 }
815
816 static void free_regdb_keyring(void)
817 {
818 }
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
820
821 static bool valid_regdb(const u8 *data, unsigned int size)
822 {
823         const struct fwdb_header *hdr = (void *)data;
824         const struct fwdb_country *country;
825
826         if (size < sizeof(*hdr))
827                 return false;
828
829         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
830                 return false;
831
832         if (hdr->version != cpu_to_be32(FWDB_VERSION))
833                 return false;
834
835         if (!regdb_has_valid_signature(data, size))
836                 return false;
837
838         country = &hdr->country[0];
839         while ((u8 *)(country + 1) <= data + size) {
840                 if (!country->coll_ptr)
841                         break;
842                 if (!valid_country(data, size, country))
843                         return false;
844                 country++;
845         }
846
847         return true;
848 }
849
850 static void set_wmm_rule(const struct fwdb_header *db,
851                          const struct fwdb_country *country,
852                          const struct fwdb_rule *rule,
853                          struct ieee80211_reg_rule *rrule)
854 {
855         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
856         struct fwdb_wmm_rule *wmm;
857         unsigned int i, wmm_ptr;
858
859         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
860         wmm = (void *)((u8 *)db + wmm_ptr);
861
862         if (!valid_wmm(wmm)) {
863                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
864                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
865                        country->alpha2[0], country->alpha2[1]);
866                 return;
867         }
868
869         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
870                 wmm_rule->client[i].cw_min =
871                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
872                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
873                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
874                 wmm_rule->client[i].cot =
875                         1000 * be16_to_cpu(wmm->client[i].cot);
876                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
877                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
878                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
879                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
880         }
881
882         rrule->has_wmm = true;
883 }
884
885 static int __regdb_query_wmm(const struct fwdb_header *db,
886                              const struct fwdb_country *country, int freq,
887                              struct ieee80211_reg_rule *rrule)
888 {
889         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
890         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
891         int i;
892
893         for (i = 0; i < coll->n_rules; i++) {
894                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
895                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
896                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
897
898                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
899                         continue;
900
901                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
902                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
903                         set_wmm_rule(db, country, rule, rrule);
904                         return 0;
905                 }
906         }
907
908         return -ENODATA;
909 }
910
911 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
912 {
913         const struct fwdb_header *hdr = regdb;
914         const struct fwdb_country *country;
915
916         if (!regdb)
917                 return -ENODATA;
918
919         if (IS_ERR(regdb))
920                 return PTR_ERR(regdb);
921
922         country = &hdr->country[0];
923         while (country->coll_ptr) {
924                 if (alpha2_equal(alpha2, country->alpha2))
925                         return __regdb_query_wmm(regdb, country, freq, rule);
926
927                 country++;
928         }
929
930         return -ENODATA;
931 }
932 EXPORT_SYMBOL(reg_query_regdb_wmm);
933
934 static int regdb_query_country(const struct fwdb_header *db,
935                                const struct fwdb_country *country)
936 {
937         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
938         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
939         struct ieee80211_regdomain *regdom;
940         unsigned int size_of_regd, i;
941
942         size_of_regd = sizeof(struct ieee80211_regdomain) +
943                 coll->n_rules * sizeof(struct ieee80211_reg_rule);
944
945         regdom = kzalloc(size_of_regd, GFP_KERNEL);
946         if (!regdom)
947                 return -ENOMEM;
948
949         regdom->n_reg_rules = coll->n_rules;
950         regdom->alpha2[0] = country->alpha2[0];
951         regdom->alpha2[1] = country->alpha2[1];
952         regdom->dfs_region = coll->dfs_region;
953
954         for (i = 0; i < regdom->n_reg_rules; i++) {
955                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
956                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
957                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
958                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
959
960                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
961                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
962                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
963
964                 rrule->power_rule.max_antenna_gain = 0;
965                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
966
967                 rrule->flags = 0;
968                 if (rule->flags & FWDB_FLAG_NO_OFDM)
969                         rrule->flags |= NL80211_RRF_NO_OFDM;
970                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
971                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
972                 if (rule->flags & FWDB_FLAG_DFS)
973                         rrule->flags |= NL80211_RRF_DFS;
974                 if (rule->flags & FWDB_FLAG_NO_IR)
975                         rrule->flags |= NL80211_RRF_NO_IR;
976                 if (rule->flags & FWDB_FLAG_AUTO_BW)
977                         rrule->flags |= NL80211_RRF_AUTO_BW;
978
979                 rrule->dfs_cac_ms = 0;
980
981                 /* handle optional data */
982                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
983                         rrule->dfs_cac_ms =
984                                 1000 * be16_to_cpu(rule->cac_timeout);
985                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
986                         set_wmm_rule(db, country, rule, rrule);
987         }
988
989         return reg_schedule_apply(regdom);
990 }
991
992 static int query_regdb(const char *alpha2)
993 {
994         const struct fwdb_header *hdr = regdb;
995         const struct fwdb_country *country;
996
997         ASSERT_RTNL();
998
999         if (IS_ERR(regdb))
1000                 return PTR_ERR(regdb);
1001
1002         country = &hdr->country[0];
1003         while (country->coll_ptr) {
1004                 if (alpha2_equal(alpha2, country->alpha2))
1005                         return regdb_query_country(regdb, country);
1006                 country++;
1007         }
1008
1009         return -ENODATA;
1010 }
1011
1012 static void regdb_fw_cb(const struct firmware *fw, void *context)
1013 {
1014         int set_error = 0;
1015         bool restore = true;
1016         void *db;
1017
1018         if (!fw) {
1019                 pr_info("failed to load regulatory.db\n");
1020                 set_error = -ENODATA;
1021         } else if (!valid_regdb(fw->data, fw->size)) {
1022                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1023                 set_error = -EINVAL;
1024         }
1025
1026         rtnl_lock();
1027         if (WARN_ON(regdb && !IS_ERR(regdb))) {
1028                 /* just restore and free new db */
1029         } else if (set_error) {
1030                 regdb = ERR_PTR(set_error);
1031         } else if (fw) {
1032                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1033                 if (db) {
1034                         regdb = db;
1035                         restore = context && query_regdb(context);
1036                 } else {
1037                         restore = true;
1038                 }
1039         }
1040
1041         if (restore)
1042                 restore_regulatory_settings(true);
1043
1044         rtnl_unlock();
1045
1046         kfree(context);
1047
1048         release_firmware(fw);
1049 }
1050
1051 static int query_regdb_file(const char *alpha2)
1052 {
1053         ASSERT_RTNL();
1054
1055         if (regdb)
1056                 return query_regdb(alpha2);
1057
1058         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1059         if (!alpha2)
1060                 return -ENOMEM;
1061
1062         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1063                                        &reg_pdev->dev, GFP_KERNEL,
1064                                        (void *)alpha2, regdb_fw_cb);
1065 }
1066
1067 int reg_reload_regdb(void)
1068 {
1069         const struct firmware *fw;
1070         void *db;
1071         int err;
1072
1073         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1074         if (err)
1075                 return err;
1076
1077         if (!valid_regdb(fw->data, fw->size)) {
1078                 err = -ENODATA;
1079                 goto out;
1080         }
1081
1082         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1083         if (!db) {
1084                 err = -ENOMEM;
1085                 goto out;
1086         }
1087
1088         rtnl_lock();
1089         if (!IS_ERR_OR_NULL(regdb))
1090                 kfree(regdb);
1091         regdb = db;
1092         rtnl_unlock();
1093
1094  out:
1095         release_firmware(fw);
1096         return err;
1097 }
1098
1099 static bool reg_query_database(struct regulatory_request *request)
1100 {
1101         if (query_regdb_file(request->alpha2) == 0)
1102                 return true;
1103
1104         if (call_crda(request->alpha2) == 0)
1105                 return true;
1106
1107         return false;
1108 }
1109
1110 bool reg_is_valid_request(const char *alpha2)
1111 {
1112         struct regulatory_request *lr = get_last_request();
1113
1114         if (!lr || lr->processed)
1115                 return false;
1116
1117         return alpha2_equal(lr->alpha2, alpha2);
1118 }
1119
1120 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1121 {
1122         struct regulatory_request *lr = get_last_request();
1123
1124         /*
1125          * Follow the driver's regulatory domain, if present, unless a country
1126          * IE has been processed or a user wants to help complaince further
1127          */
1128         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1129             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1130             wiphy->regd)
1131                 return get_wiphy_regdom(wiphy);
1132
1133         return get_cfg80211_regdom();
1134 }
1135
1136 static unsigned int
1137 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1138                                  const struct ieee80211_reg_rule *rule)
1139 {
1140         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1141         const struct ieee80211_freq_range *freq_range_tmp;
1142         const struct ieee80211_reg_rule *tmp;
1143         u32 start_freq, end_freq, idx, no;
1144
1145         for (idx = 0; idx < rd->n_reg_rules; idx++)
1146                 if (rule == &rd->reg_rules[idx])
1147                         break;
1148
1149         if (idx == rd->n_reg_rules)
1150                 return 0;
1151
1152         /* get start_freq */
1153         no = idx;
1154
1155         while (no) {
1156                 tmp = &rd->reg_rules[--no];
1157                 freq_range_tmp = &tmp->freq_range;
1158
1159                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1160                         break;
1161
1162                 freq_range = freq_range_tmp;
1163         }
1164
1165         start_freq = freq_range->start_freq_khz;
1166
1167         /* get end_freq */
1168         freq_range = &rule->freq_range;
1169         no = idx;
1170
1171         while (no < rd->n_reg_rules - 1) {
1172                 tmp = &rd->reg_rules[++no];
1173                 freq_range_tmp = &tmp->freq_range;
1174
1175                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1176                         break;
1177
1178                 freq_range = freq_range_tmp;
1179         }
1180
1181         end_freq = freq_range->end_freq_khz;
1182
1183         return end_freq - start_freq;
1184 }
1185
1186 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1187                                    const struct ieee80211_reg_rule *rule)
1188 {
1189         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1190
1191         if (rule->flags & NL80211_RRF_NO_160MHZ)
1192                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1193         if (rule->flags & NL80211_RRF_NO_80MHZ)
1194                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1195
1196         /*
1197          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1198          * are not allowed.
1199          */
1200         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1201             rule->flags & NL80211_RRF_NO_HT40PLUS)
1202                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1203
1204         return bw;
1205 }
1206
1207 /* Sanity check on a regulatory rule */
1208 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1209 {
1210         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1211         u32 freq_diff;
1212
1213         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1214                 return false;
1215
1216         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1217                 return false;
1218
1219         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1220
1221         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1222             freq_range->max_bandwidth_khz > freq_diff)
1223                 return false;
1224
1225         return true;
1226 }
1227
1228 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1229 {
1230         const struct ieee80211_reg_rule *reg_rule = NULL;
1231         unsigned int i;
1232
1233         if (!rd->n_reg_rules)
1234                 return false;
1235
1236         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1237                 return false;
1238
1239         for (i = 0; i < rd->n_reg_rules; i++) {
1240                 reg_rule = &rd->reg_rules[i];
1241                 if (!is_valid_reg_rule(reg_rule))
1242                         return false;
1243         }
1244
1245         return true;
1246 }
1247
1248 /**
1249  * freq_in_rule_band - tells us if a frequency is in a frequency band
1250  * @freq_range: frequency rule we want to query
1251  * @freq_khz: frequency we are inquiring about
1252  *
1253  * This lets us know if a specific frequency rule is or is not relevant to
1254  * a specific frequency's band. Bands are device specific and artificial
1255  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1256  * however it is safe for now to assume that a frequency rule should not be
1257  * part of a frequency's band if the start freq or end freq are off by more
1258  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1259  * 60 GHz band.
1260  * This resolution can be lowered and should be considered as we add
1261  * regulatory rule support for other "bands".
1262  **/
1263 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1264                               u32 freq_khz)
1265 {
1266 #define ONE_GHZ_IN_KHZ  1000000
1267         /*
1268          * From 802.11ad: directional multi-gigabit (DMG):
1269          * Pertaining to operation in a frequency band containing a channel
1270          * with the Channel starting frequency above 45 GHz.
1271          */
1272         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1273                         10 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1274         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1275                 return true;
1276         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1277                 return true;
1278         return false;
1279 #undef ONE_GHZ_IN_KHZ
1280 }
1281
1282 /*
1283  * Later on we can perhaps use the more restrictive DFS
1284  * region but we don't have information for that yet so
1285  * for now simply disallow conflicts.
1286  */
1287 static enum nl80211_dfs_regions
1288 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1289                          const enum nl80211_dfs_regions dfs_region2)
1290 {
1291         if (dfs_region1 != dfs_region2)
1292                 return NL80211_DFS_UNSET;
1293         return dfs_region1;
1294 }
1295
1296 /*
1297  * Helper for regdom_intersect(), this does the real
1298  * mathematical intersection fun
1299  */
1300 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1301                                const struct ieee80211_regdomain *rd2,
1302                                const struct ieee80211_reg_rule *rule1,
1303                                const struct ieee80211_reg_rule *rule2,
1304                                struct ieee80211_reg_rule *intersected_rule)
1305 {
1306         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1307         struct ieee80211_freq_range *freq_range;
1308         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1309         struct ieee80211_power_rule *power_rule;
1310         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1311
1312         freq_range1 = &rule1->freq_range;
1313         freq_range2 = &rule2->freq_range;
1314         freq_range = &intersected_rule->freq_range;
1315
1316         power_rule1 = &rule1->power_rule;
1317         power_rule2 = &rule2->power_rule;
1318         power_rule = &intersected_rule->power_rule;
1319
1320         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1321                                          freq_range2->start_freq_khz);
1322         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1323                                        freq_range2->end_freq_khz);
1324
1325         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1326         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1327
1328         if (rule1->flags & NL80211_RRF_AUTO_BW)
1329                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1330         if (rule2->flags & NL80211_RRF_AUTO_BW)
1331                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1332
1333         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1334
1335         intersected_rule->flags = rule1->flags | rule2->flags;
1336
1337         /*
1338          * In case NL80211_RRF_AUTO_BW requested for both rules
1339          * set AUTO_BW in intersected rule also. Next we will
1340          * calculate BW correctly in handle_channel function.
1341          * In other case remove AUTO_BW flag while we calculate
1342          * maximum bandwidth correctly and auto calculation is
1343          * not required.
1344          */
1345         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1346             (rule2->flags & NL80211_RRF_AUTO_BW))
1347                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1348         else
1349                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1350
1351         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1352         if (freq_range->max_bandwidth_khz > freq_diff)
1353                 freq_range->max_bandwidth_khz = freq_diff;
1354
1355         power_rule->max_eirp = min(power_rule1->max_eirp,
1356                 power_rule2->max_eirp);
1357         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1358                 power_rule2->max_antenna_gain);
1359
1360         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1361                                            rule2->dfs_cac_ms);
1362
1363         if (!is_valid_reg_rule(intersected_rule))
1364                 return -EINVAL;
1365
1366         return 0;
1367 }
1368
1369 /* check whether old rule contains new rule */
1370 static bool rule_contains(struct ieee80211_reg_rule *r1,
1371                           struct ieee80211_reg_rule *r2)
1372 {
1373         /* for simplicity, currently consider only same flags */
1374         if (r1->flags != r2->flags)
1375                 return false;
1376
1377         /* verify r1 is more restrictive */
1378         if ((r1->power_rule.max_antenna_gain >
1379              r2->power_rule.max_antenna_gain) ||
1380             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1381                 return false;
1382
1383         /* make sure r2's range is contained within r1 */
1384         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1385             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1386                 return false;
1387
1388         /* and finally verify that r1.max_bw >= r2.max_bw */
1389         if (r1->freq_range.max_bandwidth_khz <
1390             r2->freq_range.max_bandwidth_khz)
1391                 return false;
1392
1393         return true;
1394 }
1395
1396 /* add or extend current rules. do nothing if rule is already contained */
1397 static void add_rule(struct ieee80211_reg_rule *rule,
1398                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1399 {
1400         struct ieee80211_reg_rule *tmp_rule;
1401         int i;
1402
1403         for (i = 0; i < *n_rules; i++) {
1404                 tmp_rule = &reg_rules[i];
1405                 /* rule is already contained - do nothing */
1406                 if (rule_contains(tmp_rule, rule))
1407                         return;
1408
1409                 /* extend rule if possible */
1410                 if (rule_contains(rule, tmp_rule)) {
1411                         memcpy(tmp_rule, rule, sizeof(*rule));
1412                         return;
1413                 }
1414         }
1415
1416         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1417         (*n_rules)++;
1418 }
1419
1420 /**
1421  * regdom_intersect - do the intersection between two regulatory domains
1422  * @rd1: first regulatory domain
1423  * @rd2: second regulatory domain
1424  *
1425  * Use this function to get the intersection between two regulatory domains.
1426  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1427  * as no one single alpha2 can represent this regulatory domain.
1428  *
1429  * Returns a pointer to the regulatory domain structure which will hold the
1430  * resulting intersection of rules between rd1 and rd2. We will
1431  * kzalloc() this structure for you.
1432  */
1433 static struct ieee80211_regdomain *
1434 regdom_intersect(const struct ieee80211_regdomain *rd1,
1435                  const struct ieee80211_regdomain *rd2)
1436 {
1437         int r, size_of_regd;
1438         unsigned int x, y;
1439         unsigned int num_rules = 0;
1440         const struct ieee80211_reg_rule *rule1, *rule2;
1441         struct ieee80211_reg_rule intersected_rule;
1442         struct ieee80211_regdomain *rd;
1443
1444         if (!rd1 || !rd2)
1445                 return NULL;
1446
1447         /*
1448          * First we get a count of the rules we'll need, then we actually
1449          * build them. This is to so we can malloc() and free() a
1450          * regdomain once. The reason we use reg_rules_intersect() here
1451          * is it will return -EINVAL if the rule computed makes no sense.
1452          * All rules that do check out OK are valid.
1453          */
1454
1455         for (x = 0; x < rd1->n_reg_rules; x++) {
1456                 rule1 = &rd1->reg_rules[x];
1457                 for (y = 0; y < rd2->n_reg_rules; y++) {
1458                         rule2 = &rd2->reg_rules[y];
1459                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1460                                                  &intersected_rule))
1461                                 num_rules++;
1462                 }
1463         }
1464
1465         if (!num_rules)
1466                 return NULL;
1467
1468         size_of_regd = sizeof(struct ieee80211_regdomain) +
1469                        num_rules * sizeof(struct ieee80211_reg_rule);
1470
1471         rd = kzalloc(size_of_regd, GFP_KERNEL);
1472         if (!rd)
1473                 return NULL;
1474
1475         for (x = 0; x < rd1->n_reg_rules; x++) {
1476                 rule1 = &rd1->reg_rules[x];
1477                 for (y = 0; y < rd2->n_reg_rules; y++) {
1478                         rule2 = &rd2->reg_rules[y];
1479                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1480                                                 &intersected_rule);
1481                         /*
1482                          * No need to memset here the intersected rule here as
1483                          * we're not using the stack anymore
1484                          */
1485                         if (r)
1486                                 continue;
1487
1488                         add_rule(&intersected_rule, rd->reg_rules,
1489                                  &rd->n_reg_rules);
1490                 }
1491         }
1492
1493         rd->alpha2[0] = '9';
1494         rd->alpha2[1] = '8';
1495         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1496                                                   rd2->dfs_region);
1497
1498         return rd;
1499 }
1500
1501 /*
1502  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1503  * want to just have the channel structure use these
1504  */
1505 static u32 map_regdom_flags(u32 rd_flags)
1506 {
1507         u32 channel_flags = 0;
1508         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1509                 channel_flags |= IEEE80211_CHAN_NO_IR;
1510         if (rd_flags & NL80211_RRF_DFS)
1511                 channel_flags |= IEEE80211_CHAN_RADAR;
1512         if (rd_flags & NL80211_RRF_NO_OFDM)
1513                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1514         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1515                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1516         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1517                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1518         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1519                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1520         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1521                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1522         if (rd_flags & NL80211_RRF_NO_80MHZ)
1523                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1524         if (rd_flags & NL80211_RRF_NO_160MHZ)
1525                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1526         return channel_flags;
1527 }
1528
1529 static const struct ieee80211_reg_rule *
1530 freq_reg_info_regd(u32 center_freq,
1531                    const struct ieee80211_regdomain *regd, u32 bw)
1532 {
1533         int i;
1534         bool band_rule_found = false;
1535         bool bw_fits = false;
1536
1537         if (!regd)
1538                 return ERR_PTR(-EINVAL);
1539
1540         for (i = 0; i < regd->n_reg_rules; i++) {
1541                 const struct ieee80211_reg_rule *rr;
1542                 const struct ieee80211_freq_range *fr = NULL;
1543
1544                 rr = &regd->reg_rules[i];
1545                 fr = &rr->freq_range;
1546
1547                 /*
1548                  * We only need to know if one frequency rule was
1549                  * was in center_freq's band, that's enough, so lets
1550                  * not overwrite it once found
1551                  */
1552                 if (!band_rule_found)
1553                         band_rule_found = freq_in_rule_band(fr, center_freq);
1554
1555                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1556
1557                 if (band_rule_found && bw_fits)
1558                         return rr;
1559         }
1560
1561         if (!band_rule_found)
1562                 return ERR_PTR(-ERANGE);
1563
1564         return ERR_PTR(-EINVAL);
1565 }
1566
1567 static const struct ieee80211_reg_rule *
1568 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1569 {
1570         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1571         const struct ieee80211_reg_rule *reg_rule = NULL;
1572         u32 bw;
1573
1574         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1575                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1576                 if (!IS_ERR(reg_rule))
1577                         return reg_rule;
1578         }
1579
1580         return reg_rule;
1581 }
1582
1583 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1584                                                u32 center_freq)
1585 {
1586         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1587 }
1588 EXPORT_SYMBOL(freq_reg_info);
1589
1590 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1591 {
1592         switch (initiator) {
1593         case NL80211_REGDOM_SET_BY_CORE:
1594                 return "core";
1595         case NL80211_REGDOM_SET_BY_USER:
1596                 return "user";
1597         case NL80211_REGDOM_SET_BY_DRIVER:
1598                 return "driver";
1599         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1600                 return "country element";
1601         default:
1602                 WARN_ON(1);
1603                 return "bug";
1604         }
1605 }
1606 EXPORT_SYMBOL(reg_initiator_name);
1607
1608 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1609                                           const struct ieee80211_reg_rule *reg_rule,
1610                                           const struct ieee80211_channel *chan)
1611 {
1612         const struct ieee80211_freq_range *freq_range = NULL;
1613         u32 max_bandwidth_khz, bw_flags = 0;
1614
1615         freq_range = &reg_rule->freq_range;
1616
1617         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1618         /* Check if auto calculation requested */
1619         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1620                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1621
1622         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1623         if (!cfg80211_does_bw_fit_range(freq_range,
1624                                         MHZ_TO_KHZ(chan->center_freq),
1625                                         MHZ_TO_KHZ(10)))
1626                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1627         if (!cfg80211_does_bw_fit_range(freq_range,
1628                                         MHZ_TO_KHZ(chan->center_freq),
1629                                         MHZ_TO_KHZ(20)))
1630                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1631
1632         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1633                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1634         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1635                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1636         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1637                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1638         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1639                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1640         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1641                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1642         return bw_flags;
1643 }
1644
1645 /*
1646  * Note that right now we assume the desired channel bandwidth
1647  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1648  * per channel, the primary and the extension channel).
1649  */
1650 static void handle_channel(struct wiphy *wiphy,
1651                            enum nl80211_reg_initiator initiator,
1652                            struct ieee80211_channel *chan)
1653 {
1654         u32 flags, bw_flags = 0;
1655         const struct ieee80211_reg_rule *reg_rule = NULL;
1656         const struct ieee80211_power_rule *power_rule = NULL;
1657         struct wiphy *request_wiphy = NULL;
1658         struct regulatory_request *lr = get_last_request();
1659         const struct ieee80211_regdomain *regd;
1660
1661         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1662
1663         flags = chan->orig_flags;
1664
1665         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1666         if (IS_ERR(reg_rule)) {
1667                 /*
1668                  * We will disable all channels that do not match our
1669                  * received regulatory rule unless the hint is coming
1670                  * from a Country IE and the Country IE had no information
1671                  * about a band. The IEEE 802.11 spec allows for an AP
1672                  * to send only a subset of the regulatory rules allowed,
1673                  * so an AP in the US that only supports 2.4 GHz may only send
1674                  * a country IE with information for the 2.4 GHz band
1675                  * while 5 GHz is still supported.
1676                  */
1677                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1678                     PTR_ERR(reg_rule) == -ERANGE)
1679                         return;
1680
1681                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1682                     request_wiphy && request_wiphy == wiphy &&
1683                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1684                         pr_debug("Disabling freq %d MHz for good\n",
1685                                  chan->center_freq);
1686                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1687                         chan->flags = chan->orig_flags;
1688                 } else {
1689                         pr_debug("Disabling freq %d MHz\n",
1690                                  chan->center_freq);
1691                         chan->flags |= IEEE80211_CHAN_DISABLED;
1692                 }
1693                 return;
1694         }
1695
1696         regd = reg_get_regdomain(wiphy);
1697
1698         power_rule = &reg_rule->power_rule;
1699         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1700
1701         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1702             request_wiphy && request_wiphy == wiphy &&
1703             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1704                 /*
1705                  * This guarantees the driver's requested regulatory domain
1706                  * will always be used as a base for further regulatory
1707                  * settings
1708                  */
1709                 chan->flags = chan->orig_flags =
1710                         map_regdom_flags(reg_rule->flags) | bw_flags;
1711                 chan->max_antenna_gain = chan->orig_mag =
1712                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1713                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1714                         (int) MBM_TO_DBM(power_rule->max_eirp);
1715
1716                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1717                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1718                         if (reg_rule->dfs_cac_ms)
1719                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1720                 }
1721
1722                 return;
1723         }
1724
1725         chan->dfs_state = NL80211_DFS_USABLE;
1726         chan->dfs_state_entered = jiffies;
1727
1728         chan->beacon_found = false;
1729         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1730         chan->max_antenna_gain =
1731                 min_t(int, chan->orig_mag,
1732                       MBI_TO_DBI(power_rule->max_antenna_gain));
1733         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1734
1735         if (chan->flags & IEEE80211_CHAN_RADAR) {
1736                 if (reg_rule->dfs_cac_ms)
1737                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1738                 else
1739                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1740         }
1741
1742         if (chan->orig_mpwr) {
1743                 /*
1744                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1745                  * will always follow the passed country IE power settings.
1746                  */
1747                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1748                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1749                         chan->max_power = chan->max_reg_power;
1750                 else
1751                         chan->max_power = min(chan->orig_mpwr,
1752                                               chan->max_reg_power);
1753         } else
1754                 chan->max_power = chan->max_reg_power;
1755 }
1756
1757 static void handle_band(struct wiphy *wiphy,
1758                         enum nl80211_reg_initiator initiator,
1759                         struct ieee80211_supported_band *sband)
1760 {
1761         unsigned int i;
1762
1763         if (!sband)
1764                 return;
1765
1766         for (i = 0; i < sband->n_channels; i++)
1767                 handle_channel(wiphy, initiator, &sband->channels[i]);
1768 }
1769
1770 static bool reg_request_cell_base(struct regulatory_request *request)
1771 {
1772         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1773                 return false;
1774         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1775 }
1776
1777 bool reg_last_request_cell_base(void)
1778 {
1779         return reg_request_cell_base(get_last_request());
1780 }
1781
1782 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1783 /* Core specific check */
1784 static enum reg_request_treatment
1785 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1786 {
1787         struct regulatory_request *lr = get_last_request();
1788
1789         if (!reg_num_devs_support_basehint)
1790                 return REG_REQ_IGNORE;
1791
1792         if (reg_request_cell_base(lr) &&
1793             !regdom_changes(pending_request->alpha2))
1794                 return REG_REQ_ALREADY_SET;
1795
1796         return REG_REQ_OK;
1797 }
1798
1799 /* Device specific check */
1800 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1801 {
1802         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1803 }
1804 #else
1805 static enum reg_request_treatment
1806 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1807 {
1808         return REG_REQ_IGNORE;
1809 }
1810
1811 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1812 {
1813         return true;
1814 }
1815 #endif
1816
1817 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1818 {
1819         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1820             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1821                 return true;
1822         return false;
1823 }
1824
1825 static bool ignore_reg_update(struct wiphy *wiphy,
1826                               enum nl80211_reg_initiator initiator)
1827 {
1828         struct regulatory_request *lr = get_last_request();
1829
1830         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1831                 return true;
1832
1833         if (!lr) {
1834                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1835                          reg_initiator_name(initiator));
1836                 return true;
1837         }
1838
1839         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1840             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1841                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1842                          reg_initiator_name(initiator));
1843                 return true;
1844         }
1845
1846         /*
1847          * wiphy->regd will be set once the device has its own
1848          * desired regulatory domain set
1849          */
1850         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1851             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1852             !is_world_regdom(lr->alpha2)) {
1853                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1854                          reg_initiator_name(initiator));
1855                 return true;
1856         }
1857
1858         if (reg_request_cell_base(lr))
1859                 return reg_dev_ignore_cell_hint(wiphy);
1860
1861         return false;
1862 }
1863
1864 static bool reg_is_world_roaming(struct wiphy *wiphy)
1865 {
1866         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1867         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1868         struct regulatory_request *lr = get_last_request();
1869
1870         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1871                 return true;
1872
1873         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1874             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1875                 return true;
1876
1877         return false;
1878 }
1879
1880 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1881                               struct reg_beacon *reg_beacon)
1882 {
1883         struct ieee80211_supported_band *sband;
1884         struct ieee80211_channel *chan;
1885         bool channel_changed = false;
1886         struct ieee80211_channel chan_before;
1887
1888         sband = wiphy->bands[reg_beacon->chan.band];
1889         chan = &sband->channels[chan_idx];
1890
1891         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1892                 return;
1893
1894         if (chan->beacon_found)
1895                 return;
1896
1897         chan->beacon_found = true;
1898
1899         if (!reg_is_world_roaming(wiphy))
1900                 return;
1901
1902         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1903                 return;
1904
1905         chan_before = *chan;
1906
1907         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1908                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1909                 channel_changed = true;
1910         }
1911
1912         if (channel_changed)
1913                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1914 }
1915
1916 /*
1917  * Called when a scan on a wiphy finds a beacon on
1918  * new channel
1919  */
1920 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1921                                     struct reg_beacon *reg_beacon)
1922 {
1923         unsigned int i;
1924         struct ieee80211_supported_band *sband;
1925
1926         if (!wiphy->bands[reg_beacon->chan.band])
1927                 return;
1928
1929         sband = wiphy->bands[reg_beacon->chan.band];
1930
1931         for (i = 0; i < sband->n_channels; i++)
1932                 handle_reg_beacon(wiphy, i, reg_beacon);
1933 }
1934
1935 /*
1936  * Called upon reg changes or a new wiphy is added
1937  */
1938 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1939 {
1940         unsigned int i;
1941         struct ieee80211_supported_band *sband;
1942         struct reg_beacon *reg_beacon;
1943
1944         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1945                 if (!wiphy->bands[reg_beacon->chan.band])
1946                         continue;
1947                 sband = wiphy->bands[reg_beacon->chan.band];
1948                 for (i = 0; i < sband->n_channels; i++)
1949                         handle_reg_beacon(wiphy, i, reg_beacon);
1950         }
1951 }
1952
1953 /* Reap the advantages of previously found beacons */
1954 static void reg_process_beacons(struct wiphy *wiphy)
1955 {
1956         /*
1957          * Means we are just firing up cfg80211, so no beacons would
1958          * have been processed yet.
1959          */
1960         if (!last_request)
1961                 return;
1962         wiphy_update_beacon_reg(wiphy);
1963 }
1964
1965 static bool is_ht40_allowed(struct ieee80211_channel *chan)
1966 {
1967         if (!chan)
1968                 return false;
1969         if (chan->flags & IEEE80211_CHAN_DISABLED)
1970                 return false;
1971         /* This would happen when regulatory rules disallow HT40 completely */
1972         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
1973                 return false;
1974         return true;
1975 }
1976
1977 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
1978                                          struct ieee80211_channel *channel)
1979 {
1980         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
1981         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
1982         const struct ieee80211_regdomain *regd;
1983         unsigned int i;
1984         u32 flags;
1985
1986         if (!is_ht40_allowed(channel)) {
1987                 channel->flags |= IEEE80211_CHAN_NO_HT40;
1988                 return;
1989         }
1990
1991         /*
1992          * We need to ensure the extension channels exist to
1993          * be able to use HT40- or HT40+, this finds them (or not)
1994          */
1995         for (i = 0; i < sband->n_channels; i++) {
1996                 struct ieee80211_channel *c = &sband->channels[i];
1997
1998                 if (c->center_freq == (channel->center_freq - 20))
1999                         channel_before = c;
2000                 if (c->center_freq == (channel->center_freq + 20))
2001                         channel_after = c;
2002         }
2003
2004         flags = 0;
2005         regd = get_wiphy_regdom(wiphy);
2006         if (regd) {
2007                 const struct ieee80211_reg_rule *reg_rule =
2008                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2009                                            regd, MHZ_TO_KHZ(20));
2010
2011                 if (!IS_ERR(reg_rule))
2012                         flags = reg_rule->flags;
2013         }
2014
2015         /*
2016          * Please note that this assumes target bandwidth is 20 MHz,
2017          * if that ever changes we also need to change the below logic
2018          * to include that as well.
2019          */
2020         if (!is_ht40_allowed(channel_before) ||
2021             flags & NL80211_RRF_NO_HT40MINUS)
2022                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2023         else
2024                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2025
2026         if (!is_ht40_allowed(channel_after) ||
2027             flags & NL80211_RRF_NO_HT40PLUS)
2028                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2029         else
2030                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2031 }
2032
2033 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2034                                       struct ieee80211_supported_band *sband)
2035 {
2036         unsigned int i;
2037
2038         if (!sband)
2039                 return;
2040
2041         for (i = 0; i < sband->n_channels; i++)
2042                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2043 }
2044
2045 static void reg_process_ht_flags(struct wiphy *wiphy)
2046 {
2047         enum nl80211_band band;
2048
2049         if (!wiphy)
2050                 return;
2051
2052         for (band = 0; band < NUM_NL80211_BANDS; band++)
2053                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2054 }
2055
2056 static void reg_call_notifier(struct wiphy *wiphy,
2057                               struct regulatory_request *request)
2058 {
2059         if (wiphy->reg_notifier)
2060                 wiphy->reg_notifier(wiphy, request);
2061 }
2062
2063 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2064 {
2065         struct cfg80211_chan_def chandef;
2066         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2067         enum nl80211_iftype iftype;
2068
2069         wdev_lock(wdev);
2070         iftype = wdev->iftype;
2071
2072         /* make sure the interface is active */
2073         if (!wdev->netdev || !netif_running(wdev->netdev))
2074                 goto wdev_inactive_unlock;
2075
2076         switch (iftype) {
2077         case NL80211_IFTYPE_AP:
2078         case NL80211_IFTYPE_P2P_GO:
2079                 if (!wdev->beacon_interval)
2080                         goto wdev_inactive_unlock;
2081                 chandef = wdev->chandef;
2082                 break;
2083         case NL80211_IFTYPE_ADHOC:
2084                 if (!wdev->ssid_len)
2085                         goto wdev_inactive_unlock;
2086                 chandef = wdev->chandef;
2087                 break;
2088         case NL80211_IFTYPE_STATION:
2089         case NL80211_IFTYPE_P2P_CLIENT:
2090                 if (!wdev->current_bss ||
2091                     !wdev->current_bss->pub.channel)
2092                         goto wdev_inactive_unlock;
2093
2094                 if (!rdev->ops->get_channel ||
2095                     rdev_get_channel(rdev, wdev, &chandef))
2096                         cfg80211_chandef_create(&chandef,
2097                                                 wdev->current_bss->pub.channel,
2098                                                 NL80211_CHAN_NO_HT);
2099                 break;
2100         case NL80211_IFTYPE_MONITOR:
2101         case NL80211_IFTYPE_AP_VLAN:
2102         case NL80211_IFTYPE_P2P_DEVICE:
2103                 /* no enforcement required */
2104                 break;
2105         default:
2106                 /* others not implemented for now */
2107                 WARN_ON(1);
2108                 break;
2109         }
2110
2111         wdev_unlock(wdev);
2112
2113         switch (iftype) {
2114         case NL80211_IFTYPE_AP:
2115         case NL80211_IFTYPE_P2P_GO:
2116         case NL80211_IFTYPE_ADHOC:
2117                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2118         case NL80211_IFTYPE_STATION:
2119         case NL80211_IFTYPE_P2P_CLIENT:
2120                 return cfg80211_chandef_usable(wiphy, &chandef,
2121                                                IEEE80211_CHAN_DISABLED);
2122         default:
2123                 break;
2124         }
2125
2126         return true;
2127
2128 wdev_inactive_unlock:
2129         wdev_unlock(wdev);
2130         return true;
2131 }
2132
2133 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2134 {
2135         struct wireless_dev *wdev;
2136         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2137
2138         ASSERT_RTNL();
2139
2140         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2141                 if (!reg_wdev_chan_valid(wiphy, wdev))
2142                         cfg80211_leave(rdev, wdev);
2143 }
2144
2145 static void reg_check_chans_work(struct work_struct *work)
2146 {
2147         struct cfg80211_registered_device *rdev;
2148
2149         pr_debug("Verifying active interfaces after reg change\n");
2150         rtnl_lock();
2151
2152         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2153                 if (!(rdev->wiphy.regulatory_flags &
2154                       REGULATORY_IGNORE_STALE_KICKOFF))
2155                         reg_leave_invalid_chans(&rdev->wiphy);
2156
2157         rtnl_unlock();
2158 }
2159
2160 static void reg_check_channels(void)
2161 {
2162         /*
2163          * Give usermode a chance to do something nicer (move to another
2164          * channel, orderly disconnection), before forcing a disconnection.
2165          */
2166         mod_delayed_work(system_power_efficient_wq,
2167                          &reg_check_chans,
2168                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2169 }
2170
2171 static void wiphy_update_regulatory(struct wiphy *wiphy,
2172                                     enum nl80211_reg_initiator initiator)
2173 {
2174         enum nl80211_band band;
2175         struct regulatory_request *lr = get_last_request();
2176
2177         if (ignore_reg_update(wiphy, initiator)) {
2178                 /*
2179                  * Regulatory updates set by CORE are ignored for custom
2180                  * regulatory cards. Let us notify the changes to the driver,
2181                  * as some drivers used this to restore its orig_* reg domain.
2182                  */
2183                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2184                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2185                     !(wiphy->regulatory_flags &
2186                       REGULATORY_WIPHY_SELF_MANAGED))
2187                         reg_call_notifier(wiphy, lr);
2188                 return;
2189         }
2190
2191         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2192
2193         for (band = 0; band < NUM_NL80211_BANDS; band++)
2194                 handle_band(wiphy, initiator, wiphy->bands[band]);
2195
2196         reg_process_beacons(wiphy);
2197         reg_process_ht_flags(wiphy);
2198         reg_call_notifier(wiphy, lr);
2199 }
2200
2201 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2202 {
2203         struct cfg80211_registered_device *rdev;
2204         struct wiphy *wiphy;
2205
2206         ASSERT_RTNL();
2207
2208         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2209                 wiphy = &rdev->wiphy;
2210                 wiphy_update_regulatory(wiphy, initiator);
2211         }
2212
2213         reg_check_channels();
2214 }
2215
2216 static void handle_channel_custom(struct wiphy *wiphy,
2217                                   struct ieee80211_channel *chan,
2218                                   const struct ieee80211_regdomain *regd)
2219 {
2220         u32 bw_flags = 0;
2221         const struct ieee80211_reg_rule *reg_rule = NULL;
2222         const struct ieee80211_power_rule *power_rule = NULL;
2223         u32 bw;
2224
2225         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2226                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2227                                               regd, bw);
2228                 if (!IS_ERR(reg_rule))
2229                         break;
2230         }
2231
2232         if (IS_ERR(reg_rule)) {
2233                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2234                          chan->center_freq);
2235                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2236                         chan->flags |= IEEE80211_CHAN_DISABLED;
2237                 } else {
2238                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2239                         chan->flags = chan->orig_flags;
2240                 }
2241                 return;
2242         }
2243
2244         power_rule = &reg_rule->power_rule;
2245         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2246
2247         chan->dfs_state_entered = jiffies;
2248         chan->dfs_state = NL80211_DFS_USABLE;
2249
2250         chan->beacon_found = false;
2251
2252         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2253                 chan->flags = chan->orig_flags | bw_flags |
2254                               map_regdom_flags(reg_rule->flags);
2255         else
2256                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2257
2258         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2259         chan->max_reg_power = chan->max_power =
2260                 (int) MBM_TO_DBM(power_rule->max_eirp);
2261
2262         if (chan->flags & IEEE80211_CHAN_RADAR) {
2263                 if (reg_rule->dfs_cac_ms)
2264                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2265                 else
2266                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2267         }
2268
2269         chan->max_power = chan->max_reg_power;
2270 }
2271
2272 static void handle_band_custom(struct wiphy *wiphy,
2273                                struct ieee80211_supported_band *sband,
2274                                const struct ieee80211_regdomain *regd)
2275 {
2276         unsigned int i;
2277
2278         if (!sband)
2279                 return;
2280
2281         for (i = 0; i < sband->n_channels; i++)
2282                 handle_channel_custom(wiphy, &sband->channels[i], regd);
2283 }
2284
2285 /* Used by drivers prior to wiphy registration */
2286 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2287                                    const struct ieee80211_regdomain *regd)
2288 {
2289         enum nl80211_band band;
2290         unsigned int bands_set = 0;
2291
2292         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2293              "wiphy should have REGULATORY_CUSTOM_REG\n");
2294         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2295
2296         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2297                 if (!wiphy->bands[band])
2298                         continue;
2299                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2300                 bands_set++;
2301         }
2302
2303         /*
2304          * no point in calling this if it won't have any effect
2305          * on your device's supported bands.
2306          */
2307         WARN_ON(!bands_set);
2308 }
2309 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2310
2311 static void reg_set_request_processed(void)
2312 {
2313         bool need_more_processing = false;
2314         struct regulatory_request *lr = get_last_request();
2315
2316         lr->processed = true;
2317
2318         spin_lock(&reg_requests_lock);
2319         if (!list_empty(&reg_requests_list))
2320                 need_more_processing = true;
2321         spin_unlock(&reg_requests_lock);
2322
2323         cancel_crda_timeout();
2324
2325         if (need_more_processing)
2326                 schedule_work(&reg_work);
2327 }
2328
2329 /**
2330  * reg_process_hint_core - process core regulatory requests
2331  * @pending_request: a pending core regulatory request
2332  *
2333  * The wireless subsystem can use this function to process
2334  * a regulatory request issued by the regulatory core.
2335  */
2336 static enum reg_request_treatment
2337 reg_process_hint_core(struct regulatory_request *core_request)
2338 {
2339         if (reg_query_database(core_request)) {
2340                 core_request->intersect = false;
2341                 core_request->processed = false;
2342                 reg_update_last_request(core_request);
2343                 return REG_REQ_OK;
2344         }
2345
2346         return REG_REQ_IGNORE;
2347 }
2348
2349 static enum reg_request_treatment
2350 __reg_process_hint_user(struct regulatory_request *user_request)
2351 {
2352         struct regulatory_request *lr = get_last_request();
2353
2354         if (reg_request_cell_base(user_request))
2355                 return reg_ignore_cell_hint(user_request);
2356
2357         if (reg_request_cell_base(lr))
2358                 return REG_REQ_IGNORE;
2359
2360         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2361                 return REG_REQ_INTERSECT;
2362         /*
2363          * If the user knows better the user should set the regdom
2364          * to their country before the IE is picked up
2365          */
2366         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2367             lr->intersect)
2368                 return REG_REQ_IGNORE;
2369         /*
2370          * Process user requests only after previous user/driver/core
2371          * requests have been processed
2372          */
2373         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2374              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2375              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2376             regdom_changes(lr->alpha2))
2377                 return REG_REQ_IGNORE;
2378
2379         if (!regdom_changes(user_request->alpha2))
2380                 return REG_REQ_ALREADY_SET;
2381
2382         return REG_REQ_OK;
2383 }
2384
2385 /**
2386  * reg_process_hint_user - process user regulatory requests
2387  * @user_request: a pending user regulatory request
2388  *
2389  * The wireless subsystem can use this function to process
2390  * a regulatory request initiated by userspace.
2391  */
2392 static enum reg_request_treatment
2393 reg_process_hint_user(struct regulatory_request *user_request)
2394 {
2395         enum reg_request_treatment treatment;
2396
2397         treatment = __reg_process_hint_user(user_request);
2398         if (treatment == REG_REQ_IGNORE ||
2399             treatment == REG_REQ_ALREADY_SET)
2400                 return REG_REQ_IGNORE;
2401
2402         user_request->intersect = treatment == REG_REQ_INTERSECT;
2403         user_request->processed = false;
2404
2405         if (reg_query_database(user_request)) {
2406                 reg_update_last_request(user_request);
2407                 user_alpha2[0] = user_request->alpha2[0];
2408                 user_alpha2[1] = user_request->alpha2[1];
2409                 return REG_REQ_OK;
2410         }
2411
2412         return REG_REQ_IGNORE;
2413 }
2414
2415 static enum reg_request_treatment
2416 __reg_process_hint_driver(struct regulatory_request *driver_request)
2417 {
2418         struct regulatory_request *lr = get_last_request();
2419
2420         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2421                 if (regdom_changes(driver_request->alpha2))
2422                         return REG_REQ_OK;
2423                 return REG_REQ_ALREADY_SET;
2424         }
2425
2426         /*
2427          * This would happen if you unplug and plug your card
2428          * back in or if you add a new device for which the previously
2429          * loaded card also agrees on the regulatory domain.
2430          */
2431         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2432             !regdom_changes(driver_request->alpha2))
2433                 return REG_REQ_ALREADY_SET;
2434
2435         return REG_REQ_INTERSECT;
2436 }
2437
2438 /**
2439  * reg_process_hint_driver - process driver regulatory requests
2440  * @driver_request: a pending driver regulatory request
2441  *
2442  * The wireless subsystem can use this function to process
2443  * a regulatory request issued by an 802.11 driver.
2444  *
2445  * Returns one of the different reg request treatment values.
2446  */
2447 static enum reg_request_treatment
2448 reg_process_hint_driver(struct wiphy *wiphy,
2449                         struct regulatory_request *driver_request)
2450 {
2451         const struct ieee80211_regdomain *regd, *tmp;
2452         enum reg_request_treatment treatment;
2453
2454         treatment = __reg_process_hint_driver(driver_request);
2455
2456         switch (treatment) {
2457         case REG_REQ_OK:
2458                 break;
2459         case REG_REQ_IGNORE:
2460                 return REG_REQ_IGNORE;
2461         case REG_REQ_INTERSECT:
2462         case REG_REQ_ALREADY_SET:
2463                 regd = reg_copy_regd(get_cfg80211_regdom());
2464                 if (IS_ERR(regd))
2465                         return REG_REQ_IGNORE;
2466
2467                 tmp = get_wiphy_regdom(wiphy);
2468                 rcu_assign_pointer(wiphy->regd, regd);
2469                 rcu_free_regdom(tmp);
2470         }
2471
2472
2473         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2474         driver_request->processed = false;
2475
2476         /*
2477          * Since CRDA will not be called in this case as we already
2478          * have applied the requested regulatory domain before we just
2479          * inform userspace we have processed the request
2480          */
2481         if (treatment == REG_REQ_ALREADY_SET) {
2482                 nl80211_send_reg_change_event(driver_request);
2483                 reg_update_last_request(driver_request);
2484                 reg_set_request_processed();
2485                 return REG_REQ_ALREADY_SET;
2486         }
2487
2488         if (reg_query_database(driver_request)) {
2489                 reg_update_last_request(driver_request);
2490                 return REG_REQ_OK;
2491         }
2492
2493         return REG_REQ_IGNORE;
2494 }
2495
2496 static enum reg_request_treatment
2497 __reg_process_hint_country_ie(struct wiphy *wiphy,
2498                               struct regulatory_request *country_ie_request)
2499 {
2500         struct wiphy *last_wiphy = NULL;
2501         struct regulatory_request *lr = get_last_request();
2502
2503         if (reg_request_cell_base(lr)) {
2504                 /* Trust a Cell base station over the AP's country IE */
2505                 if (regdom_changes(country_ie_request->alpha2))
2506                         return REG_REQ_IGNORE;
2507                 return REG_REQ_ALREADY_SET;
2508         } else {
2509                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2510                         return REG_REQ_IGNORE;
2511         }
2512
2513         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2514                 return -EINVAL;
2515
2516         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2517                 return REG_REQ_OK;
2518
2519         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2520
2521         if (last_wiphy != wiphy) {
2522                 /*
2523                  * Two cards with two APs claiming different
2524                  * Country IE alpha2s. We could
2525                  * intersect them, but that seems unlikely
2526                  * to be correct. Reject second one for now.
2527                  */
2528                 if (regdom_changes(country_ie_request->alpha2))
2529                         return REG_REQ_IGNORE;
2530                 return REG_REQ_ALREADY_SET;
2531         }
2532
2533         if (regdom_changes(country_ie_request->alpha2))
2534                 return REG_REQ_OK;
2535         return REG_REQ_ALREADY_SET;
2536 }
2537
2538 /**
2539  * reg_process_hint_country_ie - process regulatory requests from country IEs
2540  * @country_ie_request: a regulatory request from a country IE
2541  *
2542  * The wireless subsystem can use this function to process
2543  * a regulatory request issued by a country Information Element.
2544  *
2545  * Returns one of the different reg request treatment values.
2546  */
2547 static enum reg_request_treatment
2548 reg_process_hint_country_ie(struct wiphy *wiphy,
2549                             struct regulatory_request *country_ie_request)
2550 {
2551         enum reg_request_treatment treatment;
2552
2553         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2554
2555         switch (treatment) {
2556         case REG_REQ_OK:
2557                 break;
2558         case REG_REQ_IGNORE:
2559                 return REG_REQ_IGNORE;
2560         case REG_REQ_ALREADY_SET:
2561                 reg_free_request(country_ie_request);
2562                 return REG_REQ_ALREADY_SET;
2563         case REG_REQ_INTERSECT:
2564                 /*
2565                  * This doesn't happen yet, not sure we
2566                  * ever want to support it for this case.
2567                  */
2568                 WARN_ONCE(1, "Unexpected intersection for country elements");
2569                 return REG_REQ_IGNORE;
2570         }
2571
2572         country_ie_request->intersect = false;
2573         country_ie_request->processed = false;
2574
2575         if (reg_query_database(country_ie_request)) {
2576                 reg_update_last_request(country_ie_request);
2577                 return REG_REQ_OK;
2578         }
2579
2580         return REG_REQ_IGNORE;
2581 }
2582
2583 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2584 {
2585         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2586         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2587         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2588         bool dfs_domain_same;
2589
2590         rcu_read_lock();
2591
2592         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2593         wiphy1_regd = rcu_dereference(wiphy1->regd);
2594         if (!wiphy1_regd)
2595                 wiphy1_regd = cfg80211_regd;
2596
2597         wiphy2_regd = rcu_dereference(wiphy2->regd);
2598         if (!wiphy2_regd)
2599                 wiphy2_regd = cfg80211_regd;
2600
2601         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2602
2603         rcu_read_unlock();
2604
2605         return dfs_domain_same;
2606 }
2607
2608 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2609                                     struct ieee80211_channel *src_chan)
2610 {
2611         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2612             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2613                 return;
2614
2615         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2616             src_chan->flags & IEEE80211_CHAN_DISABLED)
2617                 return;
2618
2619         if (src_chan->center_freq == dst_chan->center_freq &&
2620             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2621                 dst_chan->dfs_state = src_chan->dfs_state;
2622                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2623         }
2624 }
2625
2626 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2627                                        struct wiphy *src_wiphy)
2628 {
2629         struct ieee80211_supported_band *src_sband, *dst_sband;
2630         struct ieee80211_channel *src_chan, *dst_chan;
2631         int i, j, band;
2632
2633         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2634                 return;
2635
2636         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2637                 dst_sband = dst_wiphy->bands[band];
2638                 src_sband = src_wiphy->bands[band];
2639                 if (!dst_sband || !src_sband)
2640                         continue;
2641
2642                 for (i = 0; i < dst_sband->n_channels; i++) {
2643                         dst_chan = &dst_sband->channels[i];
2644                         for (j = 0; j < src_sband->n_channels; j++) {
2645                                 src_chan = &src_sband->channels[j];
2646                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2647                         }
2648                 }
2649         }
2650 }
2651
2652 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2653 {
2654         struct cfg80211_registered_device *rdev;
2655
2656         ASSERT_RTNL();
2657
2658         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2659                 if (wiphy == &rdev->wiphy)
2660                         continue;
2661                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2662         }
2663 }
2664
2665 /* This processes *all* regulatory hints */
2666 static void reg_process_hint(struct regulatory_request *reg_request)
2667 {
2668         struct wiphy *wiphy = NULL;
2669         enum reg_request_treatment treatment;
2670         enum nl80211_reg_initiator initiator = reg_request->initiator;
2671
2672         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2673                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2674
2675         switch (initiator) {
2676         case NL80211_REGDOM_SET_BY_CORE:
2677                 treatment = reg_process_hint_core(reg_request);
2678                 break;
2679         case NL80211_REGDOM_SET_BY_USER:
2680                 treatment = reg_process_hint_user(reg_request);
2681                 break;
2682         case NL80211_REGDOM_SET_BY_DRIVER:
2683                 if (!wiphy)
2684                         goto out_free;
2685                 treatment = reg_process_hint_driver(wiphy, reg_request);
2686                 break;
2687         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2688                 if (!wiphy)
2689                         goto out_free;
2690                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2691                 break;
2692         default:
2693                 WARN(1, "invalid initiator %d\n", initiator);
2694                 goto out_free;
2695         }
2696
2697         if (treatment == REG_REQ_IGNORE)
2698                 goto out_free;
2699
2700         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2701              "unexpected treatment value %d\n", treatment);
2702
2703         /* This is required so that the orig_* parameters are saved.
2704          * NOTE: treatment must be set for any case that reaches here!
2705          */
2706         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2707             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2708                 wiphy_update_regulatory(wiphy, initiator);
2709                 wiphy_all_share_dfs_chan_state(wiphy);
2710                 reg_check_channels();
2711         }
2712
2713         return;
2714
2715 out_free:
2716         reg_free_request(reg_request);
2717 }
2718
2719 static void notify_self_managed_wiphys(struct regulatory_request *request)
2720 {
2721         struct cfg80211_registered_device *rdev;
2722         struct wiphy *wiphy;
2723
2724         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2725                 wiphy = &rdev->wiphy;
2726                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2727                     request->initiator == NL80211_REGDOM_SET_BY_USER &&
2728                     request->user_reg_hint_type ==
2729                                 NL80211_USER_REG_HINT_CELL_BASE)
2730                         reg_call_notifier(wiphy, request);
2731         }
2732 }
2733
2734 /*
2735  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2736  * Regulatory hints come on a first come first serve basis and we
2737  * must process each one atomically.
2738  */
2739 static void reg_process_pending_hints(void)
2740 {
2741         struct regulatory_request *reg_request, *lr;
2742
2743         lr = get_last_request();
2744
2745         /* When last_request->processed becomes true this will be rescheduled */
2746         if (lr && !lr->processed) {
2747                 reg_process_hint(lr);
2748                 return;
2749         }
2750
2751         spin_lock(&reg_requests_lock);
2752
2753         if (list_empty(&reg_requests_list)) {
2754                 spin_unlock(&reg_requests_lock);
2755                 return;
2756         }
2757
2758         reg_request = list_first_entry(&reg_requests_list,
2759                                        struct regulatory_request,
2760                                        list);
2761         list_del_init(&reg_request->list);
2762
2763         spin_unlock(&reg_requests_lock);
2764
2765         notify_self_managed_wiphys(reg_request);
2766
2767         reg_process_hint(reg_request);
2768
2769         lr = get_last_request();
2770
2771         spin_lock(&reg_requests_lock);
2772         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2773                 schedule_work(&reg_work);
2774         spin_unlock(&reg_requests_lock);
2775 }
2776
2777 /* Processes beacon hints -- this has nothing to do with country IEs */
2778 static void reg_process_pending_beacon_hints(void)
2779 {
2780         struct cfg80211_registered_device *rdev;
2781         struct reg_beacon *pending_beacon, *tmp;
2782
2783         /* This goes through the _pending_ beacon list */
2784         spin_lock_bh(&reg_pending_beacons_lock);
2785
2786         list_for_each_entry_safe(pending_beacon, tmp,
2787                                  &reg_pending_beacons, list) {
2788                 list_del_init(&pending_beacon->list);
2789
2790                 /* Applies the beacon hint to current wiphys */
2791                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2792                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2793
2794                 /* Remembers the beacon hint for new wiphys or reg changes */
2795                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2796         }
2797
2798         spin_unlock_bh(&reg_pending_beacons_lock);
2799 }
2800
2801 static void reg_process_self_managed_hints(void)
2802 {
2803         struct cfg80211_registered_device *rdev;
2804         struct wiphy *wiphy;
2805         const struct ieee80211_regdomain *tmp;
2806         const struct ieee80211_regdomain *regd;
2807         enum nl80211_band band;
2808         struct regulatory_request request = {};
2809
2810         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2811                 wiphy = &rdev->wiphy;
2812
2813                 spin_lock(&reg_requests_lock);
2814                 regd = rdev->requested_regd;
2815                 rdev->requested_regd = NULL;
2816                 spin_unlock(&reg_requests_lock);
2817
2818                 if (regd == NULL)
2819                         continue;
2820
2821                 tmp = get_wiphy_regdom(wiphy);
2822                 rcu_assign_pointer(wiphy->regd, regd);
2823                 rcu_free_regdom(tmp);
2824
2825                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2826                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2827
2828                 reg_process_ht_flags(wiphy);
2829
2830                 request.wiphy_idx = get_wiphy_idx(wiphy);
2831                 request.alpha2[0] = regd->alpha2[0];
2832                 request.alpha2[1] = regd->alpha2[1];
2833                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2834
2835                 nl80211_send_wiphy_reg_change_event(&request);
2836         }
2837
2838         reg_check_channels();
2839 }
2840
2841 static void reg_todo(struct work_struct *work)
2842 {
2843         rtnl_lock();
2844         reg_process_pending_hints();
2845         reg_process_pending_beacon_hints();
2846         reg_process_self_managed_hints();
2847         rtnl_unlock();
2848 }
2849
2850 static void queue_regulatory_request(struct regulatory_request *request)
2851 {
2852         request->alpha2[0] = toupper(request->alpha2[0]);
2853         request->alpha2[1] = toupper(request->alpha2[1]);
2854
2855         spin_lock(&reg_requests_lock);
2856         list_add_tail(&request->list, &reg_requests_list);
2857         spin_unlock(&reg_requests_lock);
2858
2859         schedule_work(&reg_work);
2860 }
2861
2862 /*
2863  * Core regulatory hint -- happens during cfg80211_init()
2864  * and when we restore regulatory settings.
2865  */
2866 static int regulatory_hint_core(const char *alpha2)
2867 {
2868         struct regulatory_request *request;
2869
2870         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2871         if (!request)
2872                 return -ENOMEM;
2873
2874         request->alpha2[0] = alpha2[0];
2875         request->alpha2[1] = alpha2[1];
2876         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2877         request->wiphy_idx = WIPHY_IDX_INVALID;
2878
2879         queue_regulatory_request(request);
2880
2881         return 0;
2882 }
2883
2884 /* User hints */
2885 int regulatory_hint_user(const char *alpha2,
2886                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2887 {
2888         struct regulatory_request *request;
2889
2890         if (WARN_ON(!alpha2))
2891                 return -EINVAL;
2892
2893         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2894         if (!request)
2895                 return -ENOMEM;
2896
2897         request->wiphy_idx = WIPHY_IDX_INVALID;
2898         request->alpha2[0] = alpha2[0];
2899         request->alpha2[1] = alpha2[1];
2900         request->initiator = NL80211_REGDOM_SET_BY_USER;
2901         request->user_reg_hint_type = user_reg_hint_type;
2902
2903         /* Allow calling CRDA again */
2904         reset_crda_timeouts();
2905
2906         queue_regulatory_request(request);
2907
2908         return 0;
2909 }
2910
2911 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2912 {
2913         spin_lock(&reg_indoor_lock);
2914
2915         /* It is possible that more than one user space process is trying to
2916          * configure the indoor setting. To handle such cases, clear the indoor
2917          * setting in case that some process does not think that the device
2918          * is operating in an indoor environment. In addition, if a user space
2919          * process indicates that it is controlling the indoor setting, save its
2920          * portid, i.e., make it the owner.
2921          */
2922         reg_is_indoor = is_indoor;
2923         if (reg_is_indoor) {
2924                 if (!reg_is_indoor_portid)
2925                         reg_is_indoor_portid = portid;
2926         } else {
2927                 reg_is_indoor_portid = 0;
2928         }
2929
2930         spin_unlock(&reg_indoor_lock);
2931
2932         if (!is_indoor)
2933                 reg_check_channels();
2934
2935         return 0;
2936 }
2937
2938 void regulatory_netlink_notify(u32 portid)
2939 {
2940         spin_lock(&reg_indoor_lock);
2941
2942         if (reg_is_indoor_portid != portid) {
2943                 spin_unlock(&reg_indoor_lock);
2944                 return;
2945         }
2946
2947         reg_is_indoor = false;
2948         reg_is_indoor_portid = 0;
2949
2950         spin_unlock(&reg_indoor_lock);
2951
2952         reg_check_channels();
2953 }
2954
2955 /* Driver hints */
2956 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
2957 {
2958         struct regulatory_request *request;
2959
2960         if (WARN_ON(!alpha2 || !wiphy))
2961                 return -EINVAL;
2962
2963         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
2964
2965         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2966         if (!request)
2967                 return -ENOMEM;
2968
2969         request->wiphy_idx = get_wiphy_idx(wiphy);
2970
2971         request->alpha2[0] = alpha2[0];
2972         request->alpha2[1] = alpha2[1];
2973         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
2974
2975         /* Allow calling CRDA again */
2976         reset_crda_timeouts();
2977
2978         queue_regulatory_request(request);
2979
2980         return 0;
2981 }
2982 EXPORT_SYMBOL(regulatory_hint);
2983
2984 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
2985                                 const u8 *country_ie, u8 country_ie_len)
2986 {
2987         char alpha2[2];
2988         enum environment_cap env = ENVIRON_ANY;
2989         struct regulatory_request *request = NULL, *lr;
2990
2991         /* IE len must be evenly divisible by 2 */
2992         if (country_ie_len & 0x01)
2993                 return;
2994
2995         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
2996                 return;
2997
2998         request = kzalloc(sizeof(*request), GFP_KERNEL);
2999         if (!request)
3000                 return;
3001
3002         alpha2[0] = country_ie[0];
3003         alpha2[1] = country_ie[1];
3004
3005         if (country_ie[2] == 'I')
3006                 env = ENVIRON_INDOOR;
3007         else if (country_ie[2] == 'O')
3008                 env = ENVIRON_OUTDOOR;
3009
3010         rcu_read_lock();
3011         lr = get_last_request();
3012
3013         if (unlikely(!lr))
3014                 goto out;
3015
3016         /*
3017          * We will run this only upon a successful connection on cfg80211.
3018          * We leave conflict resolution to the workqueue, where can hold
3019          * the RTNL.
3020          */
3021         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3022             lr->wiphy_idx != WIPHY_IDX_INVALID)
3023                 goto out;
3024
3025         request->wiphy_idx = get_wiphy_idx(wiphy);
3026         request->alpha2[0] = alpha2[0];
3027         request->alpha2[1] = alpha2[1];
3028         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3029         request->country_ie_env = env;
3030
3031         /* Allow calling CRDA again */
3032         reset_crda_timeouts();
3033
3034         queue_regulatory_request(request);
3035         request = NULL;
3036 out:
3037         kfree(request);
3038         rcu_read_unlock();
3039 }
3040
3041 static void restore_alpha2(char *alpha2, bool reset_user)
3042 {
3043         /* indicates there is no alpha2 to consider for restoration */
3044         alpha2[0] = '9';
3045         alpha2[1] = '7';
3046
3047         /* The user setting has precedence over the module parameter */
3048         if (is_user_regdom_saved()) {
3049                 /* Unless we're asked to ignore it and reset it */
3050                 if (reset_user) {
3051                         pr_debug("Restoring regulatory settings including user preference\n");
3052                         user_alpha2[0] = '9';
3053                         user_alpha2[1] = '7';
3054
3055                         /*
3056                          * If we're ignoring user settings, we still need to
3057                          * check the module parameter to ensure we put things
3058                          * back as they were for a full restore.
3059                          */
3060                         if (!is_world_regdom(ieee80211_regdom)) {
3061                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3062                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3063                                 alpha2[0] = ieee80211_regdom[0];
3064                                 alpha2[1] = ieee80211_regdom[1];
3065                         }
3066                 } else {
3067                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3068                                  user_alpha2[0], user_alpha2[1]);
3069                         alpha2[0] = user_alpha2[0];
3070                         alpha2[1] = user_alpha2[1];
3071                 }
3072         } else if (!is_world_regdom(ieee80211_regdom)) {
3073                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3074                          ieee80211_regdom[0], ieee80211_regdom[1]);
3075                 alpha2[0] = ieee80211_regdom[0];
3076                 alpha2[1] = ieee80211_regdom[1];
3077         } else
3078                 pr_debug("Restoring regulatory settings\n");
3079 }
3080
3081 static void restore_custom_reg_settings(struct wiphy *wiphy)
3082 {
3083         struct ieee80211_supported_band *sband;
3084         enum nl80211_band band;
3085         struct ieee80211_channel *chan;
3086         int i;
3087
3088         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3089                 sband = wiphy->bands[band];
3090                 if (!sband)
3091                         continue;
3092                 for (i = 0; i < sband->n_channels; i++) {
3093                         chan = &sband->channels[i];
3094                         chan->flags = chan->orig_flags;
3095                         chan->max_antenna_gain = chan->orig_mag;
3096                         chan->max_power = chan->orig_mpwr;
3097                         chan->beacon_found = false;
3098                 }
3099         }
3100 }
3101
3102 /*
3103  * Restoring regulatory settings involves ingoring any
3104  * possibly stale country IE information and user regulatory
3105  * settings if so desired, this includes any beacon hints
3106  * learned as we could have traveled outside to another country
3107  * after disconnection. To restore regulatory settings we do
3108  * exactly what we did at bootup:
3109  *
3110  *   - send a core regulatory hint
3111  *   - send a user regulatory hint if applicable
3112  *
3113  * Device drivers that send a regulatory hint for a specific country
3114  * keep their own regulatory domain on wiphy->regd so that does does
3115  * not need to be remembered.
3116  */
3117 static void restore_regulatory_settings(bool reset_user)
3118 {
3119         char alpha2[2];
3120         char world_alpha2[2];
3121         struct reg_beacon *reg_beacon, *btmp;
3122         LIST_HEAD(tmp_reg_req_list);
3123         struct cfg80211_registered_device *rdev;
3124
3125         ASSERT_RTNL();
3126
3127         /*
3128          * Clear the indoor setting in case that it is not controlled by user
3129          * space, as otherwise there is no guarantee that the device is still
3130          * operating in an indoor environment.
3131          */
3132         spin_lock(&reg_indoor_lock);
3133         if (reg_is_indoor && !reg_is_indoor_portid) {
3134                 reg_is_indoor = false;
3135                 reg_check_channels();
3136         }
3137         spin_unlock(&reg_indoor_lock);
3138
3139         reset_regdomains(true, &world_regdom);
3140         restore_alpha2(alpha2, reset_user);
3141
3142         /*
3143          * If there's any pending requests we simply
3144          * stash them to a temporary pending queue and
3145          * add then after we've restored regulatory
3146          * settings.
3147          */
3148         spin_lock(&reg_requests_lock);
3149         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3150         spin_unlock(&reg_requests_lock);
3151
3152         /* Clear beacon hints */
3153         spin_lock_bh(&reg_pending_beacons_lock);
3154         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3155                 list_del(&reg_beacon->list);
3156                 kfree(reg_beacon);
3157         }
3158         spin_unlock_bh(&reg_pending_beacons_lock);
3159
3160         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3161                 list_del(&reg_beacon->list);
3162                 kfree(reg_beacon);
3163         }
3164
3165         /* First restore to the basic regulatory settings */
3166         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3167         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3168
3169         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3170                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3171                         continue;
3172                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3173                         restore_custom_reg_settings(&rdev->wiphy);
3174         }
3175
3176         regulatory_hint_core(world_alpha2);
3177
3178         /*
3179          * This restores the ieee80211_regdom module parameter
3180          * preference or the last user requested regulatory
3181          * settings, user regulatory settings takes precedence.
3182          */
3183         if (is_an_alpha2(alpha2))
3184                 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3185
3186         spin_lock(&reg_requests_lock);
3187         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3188         spin_unlock(&reg_requests_lock);
3189
3190         pr_debug("Kicking the queue\n");
3191
3192         schedule_work(&reg_work);
3193 }
3194
3195 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3196 {
3197         struct cfg80211_registered_device *rdev;
3198         struct wireless_dev *wdev;
3199
3200         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3201                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3202                         wdev_lock(wdev);
3203                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3204                                 wdev_unlock(wdev);
3205                                 return false;
3206                         }
3207                         wdev_unlock(wdev);
3208                 }
3209         }
3210
3211         return true;
3212 }
3213
3214 void regulatory_hint_disconnect(void)
3215 {
3216         /* Restore of regulatory settings is not required when wiphy(s)
3217          * ignore IE from connected access point but clearance of beacon hints
3218          * is required when wiphy(s) supports beacon hints.
3219          */
3220         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3221                 struct reg_beacon *reg_beacon, *btmp;
3222
3223                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3224                         return;
3225
3226                 spin_lock_bh(&reg_pending_beacons_lock);
3227                 list_for_each_entry_safe(reg_beacon, btmp,
3228                                          &reg_pending_beacons, list) {
3229                         list_del(&reg_beacon->list);
3230                         kfree(reg_beacon);
3231                 }
3232                 spin_unlock_bh(&reg_pending_beacons_lock);
3233
3234                 list_for_each_entry_safe(reg_beacon, btmp,
3235                                          &reg_beacon_list, list) {
3236                         list_del(&reg_beacon->list);
3237                         kfree(reg_beacon);
3238                 }
3239
3240                 return;
3241         }
3242
3243         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3244         restore_regulatory_settings(false);
3245 }
3246
3247 static bool freq_is_chan_12_13_14(u32 freq)
3248 {
3249         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3250             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3251             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3252                 return true;
3253         return false;
3254 }
3255
3256 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3257 {
3258         struct reg_beacon *pending_beacon;
3259
3260         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3261                 if (beacon_chan->center_freq ==
3262                     pending_beacon->chan.center_freq)
3263                         return true;
3264         return false;
3265 }
3266
3267 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3268                                  struct ieee80211_channel *beacon_chan,
3269                                  gfp_t gfp)
3270 {
3271         struct reg_beacon *reg_beacon;
3272         bool processing;
3273
3274         if (beacon_chan->beacon_found ||
3275             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3276             (beacon_chan->band == NL80211_BAND_2GHZ &&
3277              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3278                 return 0;
3279
3280         spin_lock_bh(&reg_pending_beacons_lock);
3281         processing = pending_reg_beacon(beacon_chan);
3282         spin_unlock_bh(&reg_pending_beacons_lock);
3283
3284         if (processing)
3285                 return 0;
3286
3287         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3288         if (!reg_beacon)
3289                 return -ENOMEM;
3290
3291         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3292                  beacon_chan->center_freq,
3293                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3294                  wiphy_name(wiphy));
3295
3296         memcpy(&reg_beacon->chan, beacon_chan,
3297                sizeof(struct ieee80211_channel));
3298
3299         /*
3300          * Since we can be called from BH or and non-BH context
3301          * we must use spin_lock_bh()
3302          */
3303         spin_lock_bh(&reg_pending_beacons_lock);
3304         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3305         spin_unlock_bh(&reg_pending_beacons_lock);
3306
3307         schedule_work(&reg_work);
3308
3309         return 0;
3310 }
3311
3312 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3313 {
3314         unsigned int i;
3315         const struct ieee80211_reg_rule *reg_rule = NULL;
3316         const struct ieee80211_freq_range *freq_range = NULL;
3317         const struct ieee80211_power_rule *power_rule = NULL;
3318         char bw[32], cac_time[32];
3319
3320         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3321
3322         for (i = 0; i < rd->n_reg_rules; i++) {
3323                 reg_rule = &rd->reg_rules[i];
3324                 freq_range = &reg_rule->freq_range;
3325                 power_rule = &reg_rule->power_rule;
3326
3327                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3328                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3329                                  freq_range->max_bandwidth_khz,
3330                                  reg_get_max_bandwidth(rd, reg_rule));
3331                 else
3332                         snprintf(bw, sizeof(bw), "%d KHz",
3333                                  freq_range->max_bandwidth_khz);
3334
3335                 if (reg_rule->flags & NL80211_RRF_DFS)
3336                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3337                                   reg_rule->dfs_cac_ms/1000);
3338                 else
3339                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3340
3341
3342                 /*
3343                  * There may not be documentation for max antenna gain
3344                  * in certain regions
3345                  */
3346                 if (power_rule->max_antenna_gain)
3347                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3348                                 freq_range->start_freq_khz,
3349                                 freq_range->end_freq_khz,
3350                                 bw,
3351                                 power_rule->max_antenna_gain,
3352                                 power_rule->max_eirp,
3353                                 cac_time);
3354                 else
3355                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3356                                 freq_range->start_freq_khz,
3357                                 freq_range->end_freq_khz,
3358                                 bw,
3359                                 power_rule->max_eirp,
3360                                 cac_time);
3361         }
3362 }
3363
3364 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3365 {
3366         switch (dfs_region) {
3367         case NL80211_DFS_UNSET:
3368         case NL80211_DFS_FCC:
3369         case NL80211_DFS_ETSI:
3370         case NL80211_DFS_JP:
3371                 return true;
3372         default:
3373                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3374                 return false;
3375         }
3376 }
3377
3378 static void print_regdomain(const struct ieee80211_regdomain *rd)
3379 {
3380         struct regulatory_request *lr = get_last_request();
3381
3382         if (is_intersected_alpha2(rd->alpha2)) {
3383                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3384                         struct cfg80211_registered_device *rdev;
3385                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3386                         if (rdev) {
3387                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3388                                         rdev->country_ie_alpha2[0],
3389                                         rdev->country_ie_alpha2[1]);
3390                         } else
3391                                 pr_debug("Current regulatory domain intersected:\n");
3392                 } else
3393                         pr_debug("Current regulatory domain intersected:\n");
3394         } else if (is_world_regdom(rd->alpha2)) {
3395                 pr_debug("World regulatory domain updated:\n");
3396         } else {
3397                 if (is_unknown_alpha2(rd->alpha2))
3398                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3399                 else {
3400                         if (reg_request_cell_base(lr))
3401                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3402                                         rd->alpha2[0], rd->alpha2[1]);
3403                         else
3404                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3405                                         rd->alpha2[0], rd->alpha2[1]);
3406                 }
3407         }
3408
3409         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3410         print_rd_rules(rd);
3411 }
3412
3413 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3414 {
3415         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3416         print_rd_rules(rd);
3417 }
3418
3419 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3420 {
3421         if (!is_world_regdom(rd->alpha2))
3422                 return -EINVAL;
3423         update_world_regdomain(rd);
3424         return 0;
3425 }
3426
3427 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3428                            struct regulatory_request *user_request)
3429 {
3430         const struct ieee80211_regdomain *intersected_rd = NULL;
3431
3432         if (!regdom_changes(rd->alpha2))
3433                 return -EALREADY;
3434
3435         if (!is_valid_rd(rd)) {
3436                 pr_err("Invalid regulatory domain detected: %c%c\n",
3437                        rd->alpha2[0], rd->alpha2[1]);
3438                 print_regdomain_info(rd);
3439                 return -EINVAL;
3440         }
3441
3442         if (!user_request->intersect) {
3443                 reset_regdomains(false, rd);
3444                 return 0;
3445         }
3446
3447         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3448         if (!intersected_rd)
3449                 return -EINVAL;
3450
3451         kfree(rd);
3452         rd = NULL;
3453         reset_regdomains(false, intersected_rd);
3454
3455         return 0;
3456 }
3457
3458 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3459                              struct regulatory_request *driver_request)
3460 {
3461         const struct ieee80211_regdomain *regd;
3462         const struct ieee80211_regdomain *intersected_rd = NULL;
3463         const struct ieee80211_regdomain *tmp;
3464         struct wiphy *request_wiphy;
3465
3466         if (is_world_regdom(rd->alpha2))
3467                 return -EINVAL;
3468
3469         if (!regdom_changes(rd->alpha2))
3470                 return -EALREADY;
3471
3472         if (!is_valid_rd(rd)) {
3473                 pr_err("Invalid regulatory domain detected: %c%c\n",
3474                        rd->alpha2[0], rd->alpha2[1]);
3475                 print_regdomain_info(rd);
3476                 return -EINVAL;
3477         }
3478
3479         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3480         if (!request_wiphy)
3481                 return -ENODEV;
3482
3483         if (!driver_request->intersect) {
3484                 if (request_wiphy->regd)
3485                         return -EALREADY;
3486
3487                 regd = reg_copy_regd(rd);
3488                 if (IS_ERR(regd))
3489                         return PTR_ERR(regd);
3490
3491                 rcu_assign_pointer(request_wiphy->regd, regd);
3492                 reset_regdomains(false, rd);
3493                 return 0;
3494         }
3495
3496         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3497         if (!intersected_rd)
3498                 return -EINVAL;
3499
3500         /*
3501          * We can trash what CRDA provided now.
3502          * However if a driver requested this specific regulatory
3503          * domain we keep it for its private use
3504          */
3505         tmp = get_wiphy_regdom(request_wiphy);
3506         rcu_assign_pointer(request_wiphy->regd, rd);
3507         rcu_free_regdom(tmp);
3508
3509         rd = NULL;
3510
3511         reset_regdomains(false, intersected_rd);
3512
3513         return 0;
3514 }
3515
3516 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3517                                  struct regulatory_request *country_ie_request)
3518 {
3519         struct wiphy *request_wiphy;
3520
3521         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3522             !is_unknown_alpha2(rd->alpha2))
3523                 return -EINVAL;
3524
3525         /*
3526          * Lets only bother proceeding on the same alpha2 if the current
3527          * rd is non static (it means CRDA was present and was used last)
3528          * and the pending request came in from a country IE
3529          */
3530
3531         if (!is_valid_rd(rd)) {
3532                 pr_err("Invalid regulatory domain detected: %c%c\n",
3533                        rd->alpha2[0], rd->alpha2[1]);
3534                 print_regdomain_info(rd);
3535                 return -EINVAL;
3536         }
3537
3538         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3539         if (!request_wiphy)
3540                 return -ENODEV;
3541
3542         if (country_ie_request->intersect)
3543                 return -EINVAL;
3544
3545         reset_regdomains(false, rd);
3546         return 0;
3547 }
3548
3549 /*
3550  * Use this call to set the current regulatory domain. Conflicts with
3551  * multiple drivers can be ironed out later. Caller must've already
3552  * kmalloc'd the rd structure.
3553  */
3554 int set_regdom(const struct ieee80211_regdomain *rd,
3555                enum ieee80211_regd_source regd_src)
3556 {
3557         struct regulatory_request *lr;
3558         bool user_reset = false;
3559         int r;
3560
3561         if (!reg_is_valid_request(rd->alpha2)) {
3562                 kfree(rd);
3563                 return -EINVAL;
3564         }
3565
3566         if (regd_src == REGD_SOURCE_CRDA)
3567                 reset_crda_timeouts();
3568
3569         lr = get_last_request();
3570
3571         /* Note that this doesn't update the wiphys, this is done below */
3572         switch (lr->initiator) {
3573         case NL80211_REGDOM_SET_BY_CORE:
3574                 r = reg_set_rd_core(rd);
3575                 break;
3576         case NL80211_REGDOM_SET_BY_USER:
3577                 r = reg_set_rd_user(rd, lr);
3578                 user_reset = true;
3579                 break;
3580         case NL80211_REGDOM_SET_BY_DRIVER:
3581                 r = reg_set_rd_driver(rd, lr);
3582                 break;
3583         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3584                 r = reg_set_rd_country_ie(rd, lr);
3585                 break;
3586         default:
3587                 WARN(1, "invalid initiator %d\n", lr->initiator);
3588                 kfree(rd);
3589                 return -EINVAL;
3590         }
3591
3592         if (r) {
3593                 switch (r) {
3594                 case -EALREADY:
3595                         reg_set_request_processed();
3596                         break;
3597                 default:
3598                         /* Back to world regulatory in case of errors */
3599                         restore_regulatory_settings(user_reset);
3600                 }
3601
3602                 kfree(rd);
3603                 return r;
3604         }
3605
3606         /* This would make this whole thing pointless */
3607         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3608                 return -EINVAL;
3609
3610         /* update all wiphys now with the new established regulatory domain */
3611         update_all_wiphy_regulatory(lr->initiator);
3612
3613         print_regdomain(get_cfg80211_regdom());
3614
3615         nl80211_send_reg_change_event(lr);
3616
3617         reg_set_request_processed();
3618
3619         return 0;
3620 }
3621
3622 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3623                                        struct ieee80211_regdomain *rd)
3624 {
3625         const struct ieee80211_regdomain *regd;
3626         const struct ieee80211_regdomain *prev_regd;
3627         struct cfg80211_registered_device *rdev;
3628
3629         if (WARN_ON(!wiphy || !rd))
3630                 return -EINVAL;
3631
3632         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3633                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3634                 return -EPERM;
3635
3636         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3637                 print_regdomain_info(rd);
3638                 return -EINVAL;
3639         }
3640
3641         regd = reg_copy_regd(rd);
3642         if (IS_ERR(regd))
3643                 return PTR_ERR(regd);
3644
3645         rdev = wiphy_to_rdev(wiphy);
3646
3647         spin_lock(&reg_requests_lock);
3648         prev_regd = rdev->requested_regd;
3649         rdev->requested_regd = regd;
3650         spin_unlock(&reg_requests_lock);
3651
3652         kfree(prev_regd);
3653         return 0;
3654 }
3655
3656 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3657                               struct ieee80211_regdomain *rd)
3658 {
3659         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3660
3661         if (ret)
3662                 return ret;
3663
3664         schedule_work(&reg_work);
3665         return 0;
3666 }
3667 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3668
3669 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3670                                         struct ieee80211_regdomain *rd)
3671 {
3672         int ret;
3673
3674         ASSERT_RTNL();
3675
3676         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3677         if (ret)
3678                 return ret;
3679
3680         /* process the request immediately */
3681         reg_process_self_managed_hints();
3682         return 0;
3683 }
3684 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3685
3686 void wiphy_regulatory_register(struct wiphy *wiphy)
3687 {
3688         struct regulatory_request *lr = get_last_request();
3689
3690         /* self-managed devices ignore beacon hints and country IE */
3691         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3692                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3693                                            REGULATORY_COUNTRY_IE_IGNORE;
3694
3695                 /*
3696                  * The last request may have been received before this
3697                  * registration call. Call the driver notifier if
3698                  * initiator is USER and user type is CELL_BASE.
3699                  */
3700                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3701                     lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3702                         reg_call_notifier(wiphy, lr);
3703         }
3704
3705         if (!reg_dev_ignore_cell_hint(wiphy))
3706                 reg_num_devs_support_basehint++;
3707
3708         wiphy_update_regulatory(wiphy, lr->initiator);
3709         wiphy_all_share_dfs_chan_state(wiphy);
3710 }
3711
3712 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3713 {
3714         struct wiphy *request_wiphy = NULL;
3715         struct regulatory_request *lr;
3716
3717         lr = get_last_request();
3718
3719         if (!reg_dev_ignore_cell_hint(wiphy))
3720                 reg_num_devs_support_basehint--;
3721
3722         rcu_free_regdom(get_wiphy_regdom(wiphy));
3723         RCU_INIT_POINTER(wiphy->regd, NULL);
3724
3725         if (lr)
3726                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3727
3728         if (!request_wiphy || request_wiphy != wiphy)
3729                 return;
3730
3731         lr->wiphy_idx = WIPHY_IDX_INVALID;
3732         lr->country_ie_env = ENVIRON_ANY;
3733 }
3734
3735 /*
3736  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3737  * UNII band definitions
3738  */
3739 int cfg80211_get_unii(int freq)
3740 {
3741         /* UNII-1 */
3742         if (freq >= 5150 && freq <= 5250)
3743                 return 0;
3744
3745         /* UNII-2A */
3746         if (freq > 5250 && freq <= 5350)
3747                 return 1;
3748
3749         /* UNII-2B */
3750         if (freq > 5350 && freq <= 5470)
3751                 return 2;
3752
3753         /* UNII-2C */
3754         if (freq > 5470 && freq <= 5725)
3755                 return 3;
3756
3757         /* UNII-3 */
3758         if (freq > 5725 && freq <= 5825)
3759                 return 4;
3760
3761         return -EINVAL;
3762 }
3763
3764 bool regulatory_indoor_allowed(void)
3765 {
3766         return reg_is_indoor;
3767 }
3768
3769 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3770 {
3771         const struct ieee80211_regdomain *regd = NULL;
3772         const struct ieee80211_regdomain *wiphy_regd = NULL;
3773         bool pre_cac_allowed = false;
3774
3775         rcu_read_lock();
3776
3777         regd = rcu_dereference(cfg80211_regdomain);
3778         wiphy_regd = rcu_dereference(wiphy->regd);
3779         if (!wiphy_regd) {
3780                 if (regd->dfs_region == NL80211_DFS_ETSI)
3781                         pre_cac_allowed = true;
3782
3783                 rcu_read_unlock();
3784
3785                 return pre_cac_allowed;
3786         }
3787
3788         if (regd->dfs_region == wiphy_regd->dfs_region &&
3789             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3790                 pre_cac_allowed = true;
3791
3792         rcu_read_unlock();
3793
3794         return pre_cac_allowed;
3795 }
3796
3797 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3798                                     struct cfg80211_chan_def *chandef,
3799                                     enum nl80211_dfs_state dfs_state,
3800                                     enum nl80211_radar_event event)
3801 {
3802         struct cfg80211_registered_device *rdev;
3803
3804         ASSERT_RTNL();
3805
3806         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3807                 return;
3808
3809         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3810                 if (wiphy == &rdev->wiphy)
3811                         continue;
3812
3813                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3814                         continue;
3815
3816                 if (!ieee80211_get_channel(&rdev->wiphy,
3817                                            chandef->chan->center_freq))
3818                         continue;
3819
3820                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3821
3822                 if (event == NL80211_RADAR_DETECTED ||
3823                     event == NL80211_RADAR_CAC_FINISHED)
3824                         cfg80211_sched_dfs_chan_update(rdev);
3825
3826                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3827         }
3828 }
3829
3830 static int __init regulatory_init_db(void)
3831 {
3832         int err;
3833
3834         /*
3835          * It's possible that - due to other bugs/issues - cfg80211
3836          * never called regulatory_init() below, or that it failed;
3837          * in that case, don't try to do any further work here as
3838          * it's doomed to lead to crashes.
3839          */
3840         if (IS_ERR_OR_NULL(reg_pdev))
3841                 return -EINVAL;
3842
3843         err = load_builtin_regdb_keys();
3844         if (err)
3845                 return err;
3846
3847         /* We always try to get an update for the static regdomain */
3848         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3849         if (err) {
3850                 if (err == -ENOMEM) {
3851                         platform_device_unregister(reg_pdev);
3852                         return err;
3853                 }
3854                 /*
3855                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3856                  * memory which is handled and propagated appropriately above
3857                  * but it can also fail during a netlink_broadcast() or during
3858                  * early boot for call_usermodehelper(). For now treat these
3859                  * errors as non-fatal.
3860                  */
3861                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3862         }
3863
3864         /*
3865          * Finally, if the user set the module parameter treat it
3866          * as a user hint.
3867          */
3868         if (!is_world_regdom(ieee80211_regdom))
3869                 regulatory_hint_user(ieee80211_regdom,
3870                                      NL80211_USER_REG_HINT_USER);
3871
3872         return 0;
3873 }
3874 #ifndef MODULE
3875 late_initcall(regulatory_init_db);
3876 #endif
3877
3878 int __init regulatory_init(void)
3879 {
3880         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3881         if (IS_ERR(reg_pdev))
3882                 return PTR_ERR(reg_pdev);
3883
3884         spin_lock_init(&reg_requests_lock);
3885         spin_lock_init(&reg_pending_beacons_lock);
3886         spin_lock_init(&reg_indoor_lock);
3887
3888         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3889
3890         user_alpha2[0] = '9';
3891         user_alpha2[1] = '7';
3892
3893 #ifdef MODULE
3894         return regulatory_init_db();
3895 #else
3896         return 0;
3897 #endif
3898 }
3899
3900 void regulatory_exit(void)
3901 {
3902         struct regulatory_request *reg_request, *tmp;
3903         struct reg_beacon *reg_beacon, *btmp;
3904
3905         cancel_work_sync(&reg_work);
3906         cancel_crda_timeout_sync();
3907         cancel_delayed_work_sync(&reg_check_chans);
3908
3909         /* Lock to suppress warnings */
3910         rtnl_lock();
3911         reset_regdomains(true, NULL);
3912         rtnl_unlock();
3913
3914         dev_set_uevent_suppress(&reg_pdev->dev, true);
3915
3916         platform_device_unregister(reg_pdev);
3917
3918         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3919                 list_del(&reg_beacon->list);
3920                 kfree(reg_beacon);
3921         }
3922
3923         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3924                 list_del(&reg_beacon->list);
3925                 kfree(reg_beacon);
3926         }
3927
3928         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
3929                 list_del(&reg_request->list);
3930                 kfree(reg_request);
3931         }
3932
3933         if (!IS_ERR_OR_NULL(regdb))
3934                 kfree(regdb);
3935
3936         free_regdb_keyring();
3937 }