Merge tag 'gpio-v5.3-5' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw/linux...
[sfrench/cifs-2.6.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139         return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144         return rcu_dereference_rtnl(wiphy->regd);
145 }
146
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149         switch (dfs_region) {
150         case NL80211_DFS_UNSET:
151                 return "unset";
152         case NL80211_DFS_FCC:
153                 return "FCC";
154         case NL80211_DFS_ETSI:
155                 return "ETSI";
156         case NL80211_DFS_JP:
157                 return "JP";
158         }
159         return "Unknown";
160 }
161
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164         const struct ieee80211_regdomain *regd = NULL;
165         const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167         regd = get_cfg80211_regdom();
168         if (!wiphy)
169                 goto out;
170
171         wiphy_regd = get_wiphy_regdom(wiphy);
172         if (!wiphy_regd)
173                 goto out;
174
175         if (wiphy_regd->dfs_region == regd->dfs_region)
176                 goto out;
177
178         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179                  dev_name(&wiphy->dev),
180                  reg_dfs_region_str(wiphy_regd->dfs_region),
181                  reg_dfs_region_str(regd->dfs_region));
182
183 out:
184         return regd->dfs_region;
185 }
186
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189         if (!r)
190                 return;
191         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193
194 static struct regulatory_request *get_last_request(void)
195 {
196         return rcu_dereference_rtnl(last_request);
197 }
198
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209
210 struct reg_beacon {
211         struct list_head list;
212         struct ieee80211_channel chan;
213 };
214
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223         .n_reg_rules = 8,
224         .alpha2 =  "00",
225         .reg_rules = {
226                 /* IEEE 802.11b/g, channels 1..11 */
227                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228                 /* IEEE 802.11b/g, channels 12..13. */
229                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231                 /* IEEE 802.11 channel 14 - Only JP enables
232                  * this and for 802.11b only */
233                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_NO_OFDM),
236                 /* IEEE 802.11a, channel 36..48 */
237                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240
241                 /* IEEE 802.11a, channel 52..64 - DFS required */
242                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_AUTO_BW |
245                         NL80211_RRF_DFS),
246
247                 /* IEEE 802.11a, channel 100..144 - DFS required */
248                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR |
250                         NL80211_RRF_DFS),
251
252                 /* IEEE 802.11a, channel 149..165 */
253                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254                         NL80211_RRF_NO_IR),
255
256                 /* IEEE 802.11ad (60GHz), channels 1..3 */
257                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258         }
259 };
260
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263         &world_regdom;
264
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272 static void reg_free_request(struct regulatory_request *request)
273 {
274         if (request == &core_request_world)
275                 return;
276
277         if (request != get_last_request())
278                 kfree(request);
279 }
280
281 static void reg_free_last_request(void)
282 {
283         struct regulatory_request *lr = get_last_request();
284
285         if (lr != &core_request_world && lr)
286                 kfree_rcu(lr, rcu_head);
287 }
288
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291         struct regulatory_request *lr;
292
293         lr = get_last_request();
294         if (lr == request)
295                 return;
296
297         reg_free_last_request();
298         rcu_assign_pointer(last_request, request);
299 }
300
301 static void reset_regdomains(bool full_reset,
302                              const struct ieee80211_regdomain *new_regdom)
303 {
304         const struct ieee80211_regdomain *r;
305
306         ASSERT_RTNL();
307
308         r = get_cfg80211_regdom();
309
310         /* avoid freeing static information or freeing something twice */
311         if (r == cfg80211_world_regdom)
312                 r = NULL;
313         if (cfg80211_world_regdom == &world_regdom)
314                 cfg80211_world_regdom = NULL;
315         if (r == &world_regdom)
316                 r = NULL;
317
318         rcu_free_regdom(r);
319         rcu_free_regdom(cfg80211_world_regdom);
320
321         cfg80211_world_regdom = &world_regdom;
322         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324         if (!full_reset)
325                 return;
326
327         reg_update_last_request(&core_request_world);
328 }
329
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336         struct regulatory_request *lr;
337
338         lr = get_last_request();
339
340         WARN_ON(!lr);
341
342         reset_regdomains(false, rd);
343
344         cfg80211_world_regdom = rd;
345 }
346
347 bool is_world_regdom(const char *alpha2)
348 {
349         if (!alpha2)
350                 return false;
351         return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
354 static bool is_alpha2_set(const char *alpha2)
355 {
356         if (!alpha2)
357                 return false;
358         return alpha2[0] && alpha2[1];
359 }
360
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363         if (!alpha2)
364                 return false;
365         /*
366          * Special case where regulatory domain was built by driver
367          * but a specific alpha2 cannot be determined
368          */
369         return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374         if (!alpha2)
375                 return false;
376         /*
377          * Special case where regulatory domain is the
378          * result of an intersection between two regulatory domain
379          * structures
380          */
381         return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
384 static bool is_an_alpha2(const char *alpha2)
385 {
386         if (!alpha2)
387                 return false;
388         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393         if (!alpha2_x || !alpha2_y)
394                 return false;
395         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
398 static bool regdom_changes(const char *alpha2)
399 {
400         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402         if (!r)
403                 return true;
404         return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
412 static bool is_user_regdom_saved(void)
413 {
414         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415                 return false;
416
417         /* This would indicate a mistake on the design */
418         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419                  "Unexpected user alpha2: %c%c\n",
420                  user_alpha2[0], user_alpha2[1]))
421                 return false;
422
423         return true;
424 }
425
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429         struct ieee80211_regdomain *regd;
430         unsigned int i;
431
432         regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
433                        GFP_KERNEL);
434         if (!regd)
435                 return ERR_PTR(-ENOMEM);
436
437         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
438
439         for (i = 0; i < src_regd->n_reg_rules; i++)
440                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
441                        sizeof(struct ieee80211_reg_rule));
442
443         return regd;
444 }
445
446 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
447 {
448         ASSERT_RTNL();
449
450         if (!IS_ERR(cfg80211_user_regdom))
451                 kfree(cfg80211_user_regdom);
452         cfg80211_user_regdom = reg_copy_regd(rd);
453 }
454
455 struct reg_regdb_apply_request {
456         struct list_head list;
457         const struct ieee80211_regdomain *regdom;
458 };
459
460 static LIST_HEAD(reg_regdb_apply_list);
461 static DEFINE_MUTEX(reg_regdb_apply_mutex);
462
463 static void reg_regdb_apply(struct work_struct *work)
464 {
465         struct reg_regdb_apply_request *request;
466
467         rtnl_lock();
468
469         mutex_lock(&reg_regdb_apply_mutex);
470         while (!list_empty(&reg_regdb_apply_list)) {
471                 request = list_first_entry(&reg_regdb_apply_list,
472                                            struct reg_regdb_apply_request,
473                                            list);
474                 list_del(&request->list);
475
476                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
477                 kfree(request);
478         }
479         mutex_unlock(&reg_regdb_apply_mutex);
480
481         rtnl_unlock();
482 }
483
484 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
485
486 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
487 {
488         struct reg_regdb_apply_request *request;
489
490         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
491         if (!request) {
492                 kfree(regdom);
493                 return -ENOMEM;
494         }
495
496         request->regdom = regdom;
497
498         mutex_lock(&reg_regdb_apply_mutex);
499         list_add_tail(&request->list, &reg_regdb_apply_list);
500         mutex_unlock(&reg_regdb_apply_mutex);
501
502         schedule_work(&reg_regdb_work);
503         return 0;
504 }
505
506 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
507 /* Max number of consecutive attempts to communicate with CRDA  */
508 #define REG_MAX_CRDA_TIMEOUTS 10
509
510 static u32 reg_crda_timeouts;
511
512 static void crda_timeout_work(struct work_struct *work);
513 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
514
515 static void crda_timeout_work(struct work_struct *work)
516 {
517         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
518         rtnl_lock();
519         reg_crda_timeouts++;
520         restore_regulatory_settings(true, false);
521         rtnl_unlock();
522 }
523
524 static void cancel_crda_timeout(void)
525 {
526         cancel_delayed_work(&crda_timeout);
527 }
528
529 static void cancel_crda_timeout_sync(void)
530 {
531         cancel_delayed_work_sync(&crda_timeout);
532 }
533
534 static void reset_crda_timeouts(void)
535 {
536         reg_crda_timeouts = 0;
537 }
538
539 /*
540  * This lets us keep regulatory code which is updated on a regulatory
541  * basis in userspace.
542  */
543 static int call_crda(const char *alpha2)
544 {
545         char country[12];
546         char *env[] = { country, NULL };
547         int ret;
548
549         snprintf(country, sizeof(country), "COUNTRY=%c%c",
550                  alpha2[0], alpha2[1]);
551
552         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
553                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
554                 return -EINVAL;
555         }
556
557         if (!is_world_regdom((char *) alpha2))
558                 pr_debug("Calling CRDA for country: %c%c\n",
559                          alpha2[0], alpha2[1]);
560         else
561                 pr_debug("Calling CRDA to update world regulatory domain\n");
562
563         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
564         if (ret)
565                 return ret;
566
567         queue_delayed_work(system_power_efficient_wq,
568                            &crda_timeout, msecs_to_jiffies(3142));
569         return 0;
570 }
571 #else
572 static inline void cancel_crda_timeout(void) {}
573 static inline void cancel_crda_timeout_sync(void) {}
574 static inline void reset_crda_timeouts(void) {}
575 static inline int call_crda(const char *alpha2)
576 {
577         return -ENODATA;
578 }
579 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
580
581 /* code to directly load a firmware database through request_firmware */
582 static const struct fwdb_header *regdb;
583
584 struct fwdb_country {
585         u8 alpha2[2];
586         __be16 coll_ptr;
587         /* this struct cannot be extended */
588 } __packed __aligned(4);
589
590 struct fwdb_collection {
591         u8 len;
592         u8 n_rules;
593         u8 dfs_region;
594         /* no optional data yet */
595         /* aligned to 2, then followed by __be16 array of rule pointers */
596 } __packed __aligned(4);
597
598 enum fwdb_flags {
599         FWDB_FLAG_NO_OFDM       = BIT(0),
600         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
601         FWDB_FLAG_DFS           = BIT(2),
602         FWDB_FLAG_NO_IR         = BIT(3),
603         FWDB_FLAG_AUTO_BW       = BIT(4),
604 };
605
606 struct fwdb_wmm_ac {
607         u8 ecw;
608         u8 aifsn;
609         __be16 cot;
610 } __packed;
611
612 struct fwdb_wmm_rule {
613         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
614         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
615 } __packed;
616
617 struct fwdb_rule {
618         u8 len;
619         u8 flags;
620         __be16 max_eirp;
621         __be32 start, end, max_bw;
622         /* start of optional data */
623         __be16 cac_timeout;
624         __be16 wmm_ptr;
625 } __packed __aligned(4);
626
627 #define FWDB_MAGIC 0x52474442
628 #define FWDB_VERSION 20
629
630 struct fwdb_header {
631         __be32 magic;
632         __be32 version;
633         struct fwdb_country country[];
634 } __packed __aligned(4);
635
636 static int ecw2cw(int ecw)
637 {
638         return (1 << ecw) - 1;
639 }
640
641 static bool valid_wmm(struct fwdb_wmm_rule *rule)
642 {
643         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
644         int i;
645
646         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
647                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
648                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
649                 u8 aifsn = ac[i].aifsn;
650
651                 if (cw_min >= cw_max)
652                         return false;
653
654                 if (aifsn < 1)
655                         return false;
656         }
657
658         return true;
659 }
660
661 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
662 {
663         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
664
665         if ((u8 *)rule + sizeof(rule->len) > data + size)
666                 return false;
667
668         /* mandatory fields */
669         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
670                 return false;
671         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
672                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
673                 struct fwdb_wmm_rule *wmm;
674
675                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
676                         return false;
677
678                 wmm = (void *)(data + wmm_ptr);
679
680                 if (!valid_wmm(wmm))
681                         return false;
682         }
683         return true;
684 }
685
686 static bool valid_country(const u8 *data, unsigned int size,
687                           const struct fwdb_country *country)
688 {
689         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
690         struct fwdb_collection *coll = (void *)(data + ptr);
691         __be16 *rules_ptr;
692         unsigned int i;
693
694         /* make sure we can read len/n_rules */
695         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
696                 return false;
697
698         /* make sure base struct and all rules fit */
699         if ((u8 *)coll + ALIGN(coll->len, 2) +
700             (coll->n_rules * 2) > data + size)
701                 return false;
702
703         /* mandatory fields must exist */
704         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
705                 return false;
706
707         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
708
709         for (i = 0; i < coll->n_rules; i++) {
710                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
711
712                 if (!valid_rule(data, size, rule_ptr))
713                         return false;
714         }
715
716         return true;
717 }
718
719 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
720 static struct key *builtin_regdb_keys;
721
722 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
723 {
724         const u8 *end = p + buflen;
725         size_t plen;
726         key_ref_t key;
727
728         while (p < end) {
729                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
730                  * than 256 bytes in size.
731                  */
732                 if (end - p < 4)
733                         goto dodgy_cert;
734                 if (p[0] != 0x30 &&
735                     p[1] != 0x82)
736                         goto dodgy_cert;
737                 plen = (p[2] << 8) | p[3];
738                 plen += 4;
739                 if (plen > end - p)
740                         goto dodgy_cert;
741
742                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
743                                            "asymmetric", NULL, p, plen,
744                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
745                                             KEY_USR_VIEW | KEY_USR_READ),
746                                            KEY_ALLOC_NOT_IN_QUOTA |
747                                            KEY_ALLOC_BUILT_IN |
748                                            KEY_ALLOC_BYPASS_RESTRICTION);
749                 if (IS_ERR(key)) {
750                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
751                                PTR_ERR(key));
752                 } else {
753                         pr_notice("Loaded X.509 cert '%s'\n",
754                                   key_ref_to_ptr(key)->description);
755                         key_ref_put(key);
756                 }
757                 p += plen;
758         }
759
760         return;
761
762 dodgy_cert:
763         pr_err("Problem parsing in-kernel X.509 certificate list\n");
764 }
765
766 static int __init load_builtin_regdb_keys(void)
767 {
768         builtin_regdb_keys =
769                 keyring_alloc(".builtin_regdb_keys",
770                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
771                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
772                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
773                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
774         if (IS_ERR(builtin_regdb_keys))
775                 return PTR_ERR(builtin_regdb_keys);
776
777         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
778
779 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
780         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
781 #endif
782 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
783         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
784                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
785 #endif
786
787         return 0;
788 }
789
790 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
791 {
792         const struct firmware *sig;
793         bool result;
794
795         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
796                 return false;
797
798         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
799                                         builtin_regdb_keys,
800                                         VERIFYING_UNSPECIFIED_SIGNATURE,
801                                         NULL, NULL) == 0;
802
803         release_firmware(sig);
804
805         return result;
806 }
807
808 static void free_regdb_keyring(void)
809 {
810         key_put(builtin_regdb_keys);
811 }
812 #else
813 static int load_builtin_regdb_keys(void)
814 {
815         return 0;
816 }
817
818 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
819 {
820         return true;
821 }
822
823 static void free_regdb_keyring(void)
824 {
825 }
826 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
827
828 static bool valid_regdb(const u8 *data, unsigned int size)
829 {
830         const struct fwdb_header *hdr = (void *)data;
831         const struct fwdb_country *country;
832
833         if (size < sizeof(*hdr))
834                 return false;
835
836         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
837                 return false;
838
839         if (hdr->version != cpu_to_be32(FWDB_VERSION))
840                 return false;
841
842         if (!regdb_has_valid_signature(data, size))
843                 return false;
844
845         country = &hdr->country[0];
846         while ((u8 *)(country + 1) <= data + size) {
847                 if (!country->coll_ptr)
848                         break;
849                 if (!valid_country(data, size, country))
850                         return false;
851                 country++;
852         }
853
854         return true;
855 }
856
857 static void set_wmm_rule(const struct fwdb_header *db,
858                          const struct fwdb_country *country,
859                          const struct fwdb_rule *rule,
860                          struct ieee80211_reg_rule *rrule)
861 {
862         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
863         struct fwdb_wmm_rule *wmm;
864         unsigned int i, wmm_ptr;
865
866         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
867         wmm = (void *)((u8 *)db + wmm_ptr);
868
869         if (!valid_wmm(wmm)) {
870                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
871                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
872                        country->alpha2[0], country->alpha2[1]);
873                 return;
874         }
875
876         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
877                 wmm_rule->client[i].cw_min =
878                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
879                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
880                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
881                 wmm_rule->client[i].cot =
882                         1000 * be16_to_cpu(wmm->client[i].cot);
883                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
884                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
885                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
886                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
887         }
888
889         rrule->has_wmm = true;
890 }
891
892 static int __regdb_query_wmm(const struct fwdb_header *db,
893                              const struct fwdb_country *country, int freq,
894                              struct ieee80211_reg_rule *rrule)
895 {
896         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
897         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
898         int i;
899
900         for (i = 0; i < coll->n_rules; i++) {
901                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
902                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
903                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
904
905                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
906                         continue;
907
908                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
909                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
910                         set_wmm_rule(db, country, rule, rrule);
911                         return 0;
912                 }
913         }
914
915         return -ENODATA;
916 }
917
918 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
919 {
920         const struct fwdb_header *hdr = regdb;
921         const struct fwdb_country *country;
922
923         if (!regdb)
924                 return -ENODATA;
925
926         if (IS_ERR(regdb))
927                 return PTR_ERR(regdb);
928
929         country = &hdr->country[0];
930         while (country->coll_ptr) {
931                 if (alpha2_equal(alpha2, country->alpha2))
932                         return __regdb_query_wmm(regdb, country, freq, rule);
933
934                 country++;
935         }
936
937         return -ENODATA;
938 }
939 EXPORT_SYMBOL(reg_query_regdb_wmm);
940
941 static int regdb_query_country(const struct fwdb_header *db,
942                                const struct fwdb_country *country)
943 {
944         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
945         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
946         struct ieee80211_regdomain *regdom;
947         unsigned int i;
948
949         regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
950                          GFP_KERNEL);
951         if (!regdom)
952                 return -ENOMEM;
953
954         regdom->n_reg_rules = coll->n_rules;
955         regdom->alpha2[0] = country->alpha2[0];
956         regdom->alpha2[1] = country->alpha2[1];
957         regdom->dfs_region = coll->dfs_region;
958
959         for (i = 0; i < regdom->n_reg_rules; i++) {
960                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
961                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
962                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
963                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
964
965                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
966                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
967                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
968
969                 rrule->power_rule.max_antenna_gain = 0;
970                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
971
972                 rrule->flags = 0;
973                 if (rule->flags & FWDB_FLAG_NO_OFDM)
974                         rrule->flags |= NL80211_RRF_NO_OFDM;
975                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
976                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
977                 if (rule->flags & FWDB_FLAG_DFS)
978                         rrule->flags |= NL80211_RRF_DFS;
979                 if (rule->flags & FWDB_FLAG_NO_IR)
980                         rrule->flags |= NL80211_RRF_NO_IR;
981                 if (rule->flags & FWDB_FLAG_AUTO_BW)
982                         rrule->flags |= NL80211_RRF_AUTO_BW;
983
984                 rrule->dfs_cac_ms = 0;
985
986                 /* handle optional data */
987                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
988                         rrule->dfs_cac_ms =
989                                 1000 * be16_to_cpu(rule->cac_timeout);
990                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
991                         set_wmm_rule(db, country, rule, rrule);
992         }
993
994         return reg_schedule_apply(regdom);
995 }
996
997 static int query_regdb(const char *alpha2)
998 {
999         const struct fwdb_header *hdr = regdb;
1000         const struct fwdb_country *country;
1001
1002         ASSERT_RTNL();
1003
1004         if (IS_ERR(regdb))
1005                 return PTR_ERR(regdb);
1006
1007         country = &hdr->country[0];
1008         while (country->coll_ptr) {
1009                 if (alpha2_equal(alpha2, country->alpha2))
1010                         return regdb_query_country(regdb, country);
1011                 country++;
1012         }
1013
1014         return -ENODATA;
1015 }
1016
1017 static void regdb_fw_cb(const struct firmware *fw, void *context)
1018 {
1019         int set_error = 0;
1020         bool restore = true;
1021         void *db;
1022
1023         if (!fw) {
1024                 pr_info("failed to load regulatory.db\n");
1025                 set_error = -ENODATA;
1026         } else if (!valid_regdb(fw->data, fw->size)) {
1027                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1028                 set_error = -EINVAL;
1029         }
1030
1031         rtnl_lock();
1032         if (regdb && !IS_ERR(regdb)) {
1033                 /* negative case - a bug
1034                  * positive case - can happen due to race in case of multiple cb's in
1035                  * queue, due to usage of asynchronous callback
1036                  *
1037                  * Either case, just restore and free new db.
1038                  */
1039         } else if (set_error) {
1040                 regdb = ERR_PTR(set_error);
1041         } else if (fw) {
1042                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1043                 if (db) {
1044                         regdb = db;
1045                         restore = context && query_regdb(context);
1046                 } else {
1047                         restore = true;
1048                 }
1049         }
1050
1051         if (restore)
1052                 restore_regulatory_settings(true, false);
1053
1054         rtnl_unlock();
1055
1056         kfree(context);
1057
1058         release_firmware(fw);
1059 }
1060
1061 static int query_regdb_file(const char *alpha2)
1062 {
1063         ASSERT_RTNL();
1064
1065         if (regdb)
1066                 return query_regdb(alpha2);
1067
1068         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1069         if (!alpha2)
1070                 return -ENOMEM;
1071
1072         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1073                                        &reg_pdev->dev, GFP_KERNEL,
1074                                        (void *)alpha2, regdb_fw_cb);
1075 }
1076
1077 int reg_reload_regdb(void)
1078 {
1079         const struct firmware *fw;
1080         void *db;
1081         int err;
1082
1083         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1084         if (err)
1085                 return err;
1086
1087         if (!valid_regdb(fw->data, fw->size)) {
1088                 err = -ENODATA;
1089                 goto out;
1090         }
1091
1092         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1093         if (!db) {
1094                 err = -ENOMEM;
1095                 goto out;
1096         }
1097
1098         rtnl_lock();
1099         if (!IS_ERR_OR_NULL(regdb))
1100                 kfree(regdb);
1101         regdb = db;
1102         rtnl_unlock();
1103
1104  out:
1105         release_firmware(fw);
1106         return err;
1107 }
1108
1109 static bool reg_query_database(struct regulatory_request *request)
1110 {
1111         if (query_regdb_file(request->alpha2) == 0)
1112                 return true;
1113
1114         if (call_crda(request->alpha2) == 0)
1115                 return true;
1116
1117         return false;
1118 }
1119
1120 bool reg_is_valid_request(const char *alpha2)
1121 {
1122         struct regulatory_request *lr = get_last_request();
1123
1124         if (!lr || lr->processed)
1125                 return false;
1126
1127         return alpha2_equal(lr->alpha2, alpha2);
1128 }
1129
1130 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1131 {
1132         struct regulatory_request *lr = get_last_request();
1133
1134         /*
1135          * Follow the driver's regulatory domain, if present, unless a country
1136          * IE has been processed or a user wants to help complaince further
1137          */
1138         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1139             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1140             wiphy->regd)
1141                 return get_wiphy_regdom(wiphy);
1142
1143         return get_cfg80211_regdom();
1144 }
1145
1146 static unsigned int
1147 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1148                                  const struct ieee80211_reg_rule *rule)
1149 {
1150         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1151         const struct ieee80211_freq_range *freq_range_tmp;
1152         const struct ieee80211_reg_rule *tmp;
1153         u32 start_freq, end_freq, idx, no;
1154
1155         for (idx = 0; idx < rd->n_reg_rules; idx++)
1156                 if (rule == &rd->reg_rules[idx])
1157                         break;
1158
1159         if (idx == rd->n_reg_rules)
1160                 return 0;
1161
1162         /* get start_freq */
1163         no = idx;
1164
1165         while (no) {
1166                 tmp = &rd->reg_rules[--no];
1167                 freq_range_tmp = &tmp->freq_range;
1168
1169                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1170                         break;
1171
1172                 freq_range = freq_range_tmp;
1173         }
1174
1175         start_freq = freq_range->start_freq_khz;
1176
1177         /* get end_freq */
1178         freq_range = &rule->freq_range;
1179         no = idx;
1180
1181         while (no < rd->n_reg_rules - 1) {
1182                 tmp = &rd->reg_rules[++no];
1183                 freq_range_tmp = &tmp->freq_range;
1184
1185                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1186                         break;
1187
1188                 freq_range = freq_range_tmp;
1189         }
1190
1191         end_freq = freq_range->end_freq_khz;
1192
1193         return end_freq - start_freq;
1194 }
1195
1196 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1197                                    const struct ieee80211_reg_rule *rule)
1198 {
1199         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1200
1201         if (rule->flags & NL80211_RRF_NO_160MHZ)
1202                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1203         if (rule->flags & NL80211_RRF_NO_80MHZ)
1204                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1205
1206         /*
1207          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1208          * are not allowed.
1209          */
1210         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1211             rule->flags & NL80211_RRF_NO_HT40PLUS)
1212                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1213
1214         return bw;
1215 }
1216
1217 /* Sanity check on a regulatory rule */
1218 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1219 {
1220         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1221         u32 freq_diff;
1222
1223         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1224                 return false;
1225
1226         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1227                 return false;
1228
1229         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1230
1231         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1232             freq_range->max_bandwidth_khz > freq_diff)
1233                 return false;
1234
1235         return true;
1236 }
1237
1238 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1239 {
1240         const struct ieee80211_reg_rule *reg_rule = NULL;
1241         unsigned int i;
1242
1243         if (!rd->n_reg_rules)
1244                 return false;
1245
1246         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1247                 return false;
1248
1249         for (i = 0; i < rd->n_reg_rules; i++) {
1250                 reg_rule = &rd->reg_rules[i];
1251                 if (!is_valid_reg_rule(reg_rule))
1252                         return false;
1253         }
1254
1255         return true;
1256 }
1257
1258 /**
1259  * freq_in_rule_band - tells us if a frequency is in a frequency band
1260  * @freq_range: frequency rule we want to query
1261  * @freq_khz: frequency we are inquiring about
1262  *
1263  * This lets us know if a specific frequency rule is or is not relevant to
1264  * a specific frequency's band. Bands are device specific and artificial
1265  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1266  * however it is safe for now to assume that a frequency rule should not be
1267  * part of a frequency's band if the start freq or end freq are off by more
1268  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1269  * 60 GHz band.
1270  * This resolution can be lowered and should be considered as we add
1271  * regulatory rule support for other "bands".
1272  **/
1273 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1274                               u32 freq_khz)
1275 {
1276 #define ONE_GHZ_IN_KHZ  1000000
1277         /*
1278          * From 802.11ad: directional multi-gigabit (DMG):
1279          * Pertaining to operation in a frequency band containing a channel
1280          * with the Channel starting frequency above 45 GHz.
1281          */
1282         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1283                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1284         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1285                 return true;
1286         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1287                 return true;
1288         return false;
1289 #undef ONE_GHZ_IN_KHZ
1290 }
1291
1292 /*
1293  * Later on we can perhaps use the more restrictive DFS
1294  * region but we don't have information for that yet so
1295  * for now simply disallow conflicts.
1296  */
1297 static enum nl80211_dfs_regions
1298 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1299                          const enum nl80211_dfs_regions dfs_region2)
1300 {
1301         if (dfs_region1 != dfs_region2)
1302                 return NL80211_DFS_UNSET;
1303         return dfs_region1;
1304 }
1305
1306 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1307                                     const struct ieee80211_wmm_ac *wmm_ac2,
1308                                     struct ieee80211_wmm_ac *intersect)
1309 {
1310         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1311         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1312         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1313         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1314 }
1315
1316 /*
1317  * Helper for regdom_intersect(), this does the real
1318  * mathematical intersection fun
1319  */
1320 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1321                                const struct ieee80211_regdomain *rd2,
1322                                const struct ieee80211_reg_rule *rule1,
1323                                const struct ieee80211_reg_rule *rule2,
1324                                struct ieee80211_reg_rule *intersected_rule)
1325 {
1326         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1327         struct ieee80211_freq_range *freq_range;
1328         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1329         struct ieee80211_power_rule *power_rule;
1330         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1331         struct ieee80211_wmm_rule *wmm_rule;
1332         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1333
1334         freq_range1 = &rule1->freq_range;
1335         freq_range2 = &rule2->freq_range;
1336         freq_range = &intersected_rule->freq_range;
1337
1338         power_rule1 = &rule1->power_rule;
1339         power_rule2 = &rule2->power_rule;
1340         power_rule = &intersected_rule->power_rule;
1341
1342         wmm_rule1 = &rule1->wmm_rule;
1343         wmm_rule2 = &rule2->wmm_rule;
1344         wmm_rule = &intersected_rule->wmm_rule;
1345
1346         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1347                                          freq_range2->start_freq_khz);
1348         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1349                                        freq_range2->end_freq_khz);
1350
1351         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1352         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1353
1354         if (rule1->flags & NL80211_RRF_AUTO_BW)
1355                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1356         if (rule2->flags & NL80211_RRF_AUTO_BW)
1357                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1358
1359         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1360
1361         intersected_rule->flags = rule1->flags | rule2->flags;
1362
1363         /*
1364          * In case NL80211_RRF_AUTO_BW requested for both rules
1365          * set AUTO_BW in intersected rule also. Next we will
1366          * calculate BW correctly in handle_channel function.
1367          * In other case remove AUTO_BW flag while we calculate
1368          * maximum bandwidth correctly and auto calculation is
1369          * not required.
1370          */
1371         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1372             (rule2->flags & NL80211_RRF_AUTO_BW))
1373                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1374         else
1375                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1376
1377         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1378         if (freq_range->max_bandwidth_khz > freq_diff)
1379                 freq_range->max_bandwidth_khz = freq_diff;
1380
1381         power_rule->max_eirp = min(power_rule1->max_eirp,
1382                 power_rule2->max_eirp);
1383         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1384                 power_rule2->max_antenna_gain);
1385
1386         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1387                                            rule2->dfs_cac_ms);
1388
1389         if (rule1->has_wmm && rule2->has_wmm) {
1390                 u8 ac;
1391
1392                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1393                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1394                                                 &wmm_rule2->client[ac],
1395                                                 &wmm_rule->client[ac]);
1396                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1397                                                 &wmm_rule2->ap[ac],
1398                                                 &wmm_rule->ap[ac]);
1399                 }
1400
1401                 intersected_rule->has_wmm = true;
1402         } else if (rule1->has_wmm) {
1403                 *wmm_rule = *wmm_rule1;
1404                 intersected_rule->has_wmm = true;
1405         } else if (rule2->has_wmm) {
1406                 *wmm_rule = *wmm_rule2;
1407                 intersected_rule->has_wmm = true;
1408         } else {
1409                 intersected_rule->has_wmm = false;
1410         }
1411
1412         if (!is_valid_reg_rule(intersected_rule))
1413                 return -EINVAL;
1414
1415         return 0;
1416 }
1417
1418 /* check whether old rule contains new rule */
1419 static bool rule_contains(struct ieee80211_reg_rule *r1,
1420                           struct ieee80211_reg_rule *r2)
1421 {
1422         /* for simplicity, currently consider only same flags */
1423         if (r1->flags != r2->flags)
1424                 return false;
1425
1426         /* verify r1 is more restrictive */
1427         if ((r1->power_rule.max_antenna_gain >
1428              r2->power_rule.max_antenna_gain) ||
1429             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1430                 return false;
1431
1432         /* make sure r2's range is contained within r1 */
1433         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1434             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1435                 return false;
1436
1437         /* and finally verify that r1.max_bw >= r2.max_bw */
1438         if (r1->freq_range.max_bandwidth_khz <
1439             r2->freq_range.max_bandwidth_khz)
1440                 return false;
1441
1442         return true;
1443 }
1444
1445 /* add or extend current rules. do nothing if rule is already contained */
1446 static void add_rule(struct ieee80211_reg_rule *rule,
1447                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1448 {
1449         struct ieee80211_reg_rule *tmp_rule;
1450         int i;
1451
1452         for (i = 0; i < *n_rules; i++) {
1453                 tmp_rule = &reg_rules[i];
1454                 /* rule is already contained - do nothing */
1455                 if (rule_contains(tmp_rule, rule))
1456                         return;
1457
1458                 /* extend rule if possible */
1459                 if (rule_contains(rule, tmp_rule)) {
1460                         memcpy(tmp_rule, rule, sizeof(*rule));
1461                         return;
1462                 }
1463         }
1464
1465         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1466         (*n_rules)++;
1467 }
1468
1469 /**
1470  * regdom_intersect - do the intersection between two regulatory domains
1471  * @rd1: first regulatory domain
1472  * @rd2: second regulatory domain
1473  *
1474  * Use this function to get the intersection between two regulatory domains.
1475  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1476  * as no one single alpha2 can represent this regulatory domain.
1477  *
1478  * Returns a pointer to the regulatory domain structure which will hold the
1479  * resulting intersection of rules between rd1 and rd2. We will
1480  * kzalloc() this structure for you.
1481  */
1482 static struct ieee80211_regdomain *
1483 regdom_intersect(const struct ieee80211_regdomain *rd1,
1484                  const struct ieee80211_regdomain *rd2)
1485 {
1486         int r;
1487         unsigned int x, y;
1488         unsigned int num_rules = 0;
1489         const struct ieee80211_reg_rule *rule1, *rule2;
1490         struct ieee80211_reg_rule intersected_rule;
1491         struct ieee80211_regdomain *rd;
1492
1493         if (!rd1 || !rd2)
1494                 return NULL;
1495
1496         /*
1497          * First we get a count of the rules we'll need, then we actually
1498          * build them. This is to so we can malloc() and free() a
1499          * regdomain once. The reason we use reg_rules_intersect() here
1500          * is it will return -EINVAL if the rule computed makes no sense.
1501          * All rules that do check out OK are valid.
1502          */
1503
1504         for (x = 0; x < rd1->n_reg_rules; x++) {
1505                 rule1 = &rd1->reg_rules[x];
1506                 for (y = 0; y < rd2->n_reg_rules; y++) {
1507                         rule2 = &rd2->reg_rules[y];
1508                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1509                                                  &intersected_rule))
1510                                 num_rules++;
1511                 }
1512         }
1513
1514         if (!num_rules)
1515                 return NULL;
1516
1517         rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1518         if (!rd)
1519                 return NULL;
1520
1521         for (x = 0; x < rd1->n_reg_rules; x++) {
1522                 rule1 = &rd1->reg_rules[x];
1523                 for (y = 0; y < rd2->n_reg_rules; y++) {
1524                         rule2 = &rd2->reg_rules[y];
1525                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1526                                                 &intersected_rule);
1527                         /*
1528                          * No need to memset here the intersected rule here as
1529                          * we're not using the stack anymore
1530                          */
1531                         if (r)
1532                                 continue;
1533
1534                         add_rule(&intersected_rule, rd->reg_rules,
1535                                  &rd->n_reg_rules);
1536                 }
1537         }
1538
1539         rd->alpha2[0] = '9';
1540         rd->alpha2[1] = '8';
1541         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1542                                                   rd2->dfs_region);
1543
1544         return rd;
1545 }
1546
1547 /*
1548  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1549  * want to just have the channel structure use these
1550  */
1551 static u32 map_regdom_flags(u32 rd_flags)
1552 {
1553         u32 channel_flags = 0;
1554         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1555                 channel_flags |= IEEE80211_CHAN_NO_IR;
1556         if (rd_flags & NL80211_RRF_DFS)
1557                 channel_flags |= IEEE80211_CHAN_RADAR;
1558         if (rd_flags & NL80211_RRF_NO_OFDM)
1559                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1560         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1561                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1562         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1563                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1564         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1565                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1566         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1567                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1568         if (rd_flags & NL80211_RRF_NO_80MHZ)
1569                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1570         if (rd_flags & NL80211_RRF_NO_160MHZ)
1571                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1572         return channel_flags;
1573 }
1574
1575 static const struct ieee80211_reg_rule *
1576 freq_reg_info_regd(u32 center_freq,
1577                    const struct ieee80211_regdomain *regd, u32 bw)
1578 {
1579         int i;
1580         bool band_rule_found = false;
1581         bool bw_fits = false;
1582
1583         if (!regd)
1584                 return ERR_PTR(-EINVAL);
1585
1586         for (i = 0; i < regd->n_reg_rules; i++) {
1587                 const struct ieee80211_reg_rule *rr;
1588                 const struct ieee80211_freq_range *fr = NULL;
1589
1590                 rr = &regd->reg_rules[i];
1591                 fr = &rr->freq_range;
1592
1593                 /*
1594                  * We only need to know if one frequency rule was
1595                  * was in center_freq's band, that's enough, so lets
1596                  * not overwrite it once found
1597                  */
1598                 if (!band_rule_found)
1599                         band_rule_found = freq_in_rule_band(fr, center_freq);
1600
1601                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1602
1603                 if (band_rule_found && bw_fits)
1604                         return rr;
1605         }
1606
1607         if (!band_rule_found)
1608                 return ERR_PTR(-ERANGE);
1609
1610         return ERR_PTR(-EINVAL);
1611 }
1612
1613 static const struct ieee80211_reg_rule *
1614 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1615 {
1616         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1617         const struct ieee80211_reg_rule *reg_rule = NULL;
1618         u32 bw;
1619
1620         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1621                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1622                 if (!IS_ERR(reg_rule))
1623                         return reg_rule;
1624         }
1625
1626         return reg_rule;
1627 }
1628
1629 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1630                                                u32 center_freq)
1631 {
1632         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1633 }
1634 EXPORT_SYMBOL(freq_reg_info);
1635
1636 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1637 {
1638         switch (initiator) {
1639         case NL80211_REGDOM_SET_BY_CORE:
1640                 return "core";
1641         case NL80211_REGDOM_SET_BY_USER:
1642                 return "user";
1643         case NL80211_REGDOM_SET_BY_DRIVER:
1644                 return "driver";
1645         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1646                 return "country element";
1647         default:
1648                 WARN_ON(1);
1649                 return "bug";
1650         }
1651 }
1652 EXPORT_SYMBOL(reg_initiator_name);
1653
1654 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1655                                           const struct ieee80211_reg_rule *reg_rule,
1656                                           const struct ieee80211_channel *chan)
1657 {
1658         const struct ieee80211_freq_range *freq_range = NULL;
1659         u32 max_bandwidth_khz, bw_flags = 0;
1660
1661         freq_range = &reg_rule->freq_range;
1662
1663         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1664         /* Check if auto calculation requested */
1665         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1666                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1667
1668         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1669         if (!cfg80211_does_bw_fit_range(freq_range,
1670                                         MHZ_TO_KHZ(chan->center_freq),
1671                                         MHZ_TO_KHZ(10)))
1672                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1673         if (!cfg80211_does_bw_fit_range(freq_range,
1674                                         MHZ_TO_KHZ(chan->center_freq),
1675                                         MHZ_TO_KHZ(20)))
1676                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1677
1678         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1679                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1680         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1681                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1682         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1683                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1684         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1685                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1686         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1687                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1688         return bw_flags;
1689 }
1690
1691 /*
1692  * Note that right now we assume the desired channel bandwidth
1693  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1694  * per channel, the primary and the extension channel).
1695  */
1696 static void handle_channel(struct wiphy *wiphy,
1697                            enum nl80211_reg_initiator initiator,
1698                            struct ieee80211_channel *chan)
1699 {
1700         u32 flags, bw_flags = 0;
1701         const struct ieee80211_reg_rule *reg_rule = NULL;
1702         const struct ieee80211_power_rule *power_rule = NULL;
1703         struct wiphy *request_wiphy = NULL;
1704         struct regulatory_request *lr = get_last_request();
1705         const struct ieee80211_regdomain *regd;
1706
1707         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1708
1709         flags = chan->orig_flags;
1710
1711         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1712         if (IS_ERR(reg_rule)) {
1713                 /*
1714                  * We will disable all channels that do not match our
1715                  * received regulatory rule unless the hint is coming
1716                  * from a Country IE and the Country IE had no information
1717                  * about a band. The IEEE 802.11 spec allows for an AP
1718                  * to send only a subset of the regulatory rules allowed,
1719                  * so an AP in the US that only supports 2.4 GHz may only send
1720                  * a country IE with information for the 2.4 GHz band
1721                  * while 5 GHz is still supported.
1722                  */
1723                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1724                     PTR_ERR(reg_rule) == -ERANGE)
1725                         return;
1726
1727                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1728                     request_wiphy && request_wiphy == wiphy &&
1729                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1730                         pr_debug("Disabling freq %d MHz for good\n",
1731                                  chan->center_freq);
1732                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1733                         chan->flags = chan->orig_flags;
1734                 } else {
1735                         pr_debug("Disabling freq %d MHz\n",
1736                                  chan->center_freq);
1737                         chan->flags |= IEEE80211_CHAN_DISABLED;
1738                 }
1739                 return;
1740         }
1741
1742         regd = reg_get_regdomain(wiphy);
1743
1744         power_rule = &reg_rule->power_rule;
1745         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1746
1747         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1748             request_wiphy && request_wiphy == wiphy &&
1749             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1750                 /*
1751                  * This guarantees the driver's requested regulatory domain
1752                  * will always be used as a base for further regulatory
1753                  * settings
1754                  */
1755                 chan->flags = chan->orig_flags =
1756                         map_regdom_flags(reg_rule->flags) | bw_flags;
1757                 chan->max_antenna_gain = chan->orig_mag =
1758                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1759                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1760                         (int) MBM_TO_DBM(power_rule->max_eirp);
1761
1762                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1763                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1764                         if (reg_rule->dfs_cac_ms)
1765                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1766                 }
1767
1768                 return;
1769         }
1770
1771         chan->dfs_state = NL80211_DFS_USABLE;
1772         chan->dfs_state_entered = jiffies;
1773
1774         chan->beacon_found = false;
1775         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1776         chan->max_antenna_gain =
1777                 min_t(int, chan->orig_mag,
1778                       MBI_TO_DBI(power_rule->max_antenna_gain));
1779         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1780
1781         if (chan->flags & IEEE80211_CHAN_RADAR) {
1782                 if (reg_rule->dfs_cac_ms)
1783                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1784                 else
1785                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1786         }
1787
1788         if (chan->orig_mpwr) {
1789                 /*
1790                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1791                  * will always follow the passed country IE power settings.
1792                  */
1793                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1794                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1795                         chan->max_power = chan->max_reg_power;
1796                 else
1797                         chan->max_power = min(chan->orig_mpwr,
1798                                               chan->max_reg_power);
1799         } else
1800                 chan->max_power = chan->max_reg_power;
1801 }
1802
1803 static void handle_band(struct wiphy *wiphy,
1804                         enum nl80211_reg_initiator initiator,
1805                         struct ieee80211_supported_band *sband)
1806 {
1807         unsigned int i;
1808
1809         if (!sband)
1810                 return;
1811
1812         for (i = 0; i < sband->n_channels; i++)
1813                 handle_channel(wiphy, initiator, &sband->channels[i]);
1814 }
1815
1816 static bool reg_request_cell_base(struct regulatory_request *request)
1817 {
1818         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1819                 return false;
1820         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1821 }
1822
1823 bool reg_last_request_cell_base(void)
1824 {
1825         return reg_request_cell_base(get_last_request());
1826 }
1827
1828 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1829 /* Core specific check */
1830 static enum reg_request_treatment
1831 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1832 {
1833         struct regulatory_request *lr = get_last_request();
1834
1835         if (!reg_num_devs_support_basehint)
1836                 return REG_REQ_IGNORE;
1837
1838         if (reg_request_cell_base(lr) &&
1839             !regdom_changes(pending_request->alpha2))
1840                 return REG_REQ_ALREADY_SET;
1841
1842         return REG_REQ_OK;
1843 }
1844
1845 /* Device specific check */
1846 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1847 {
1848         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1849 }
1850 #else
1851 static enum reg_request_treatment
1852 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1853 {
1854         return REG_REQ_IGNORE;
1855 }
1856
1857 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1858 {
1859         return true;
1860 }
1861 #endif
1862
1863 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1864 {
1865         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1866             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1867                 return true;
1868         return false;
1869 }
1870
1871 static bool ignore_reg_update(struct wiphy *wiphy,
1872                               enum nl80211_reg_initiator initiator)
1873 {
1874         struct regulatory_request *lr = get_last_request();
1875
1876         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1877                 return true;
1878
1879         if (!lr) {
1880                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1881                          reg_initiator_name(initiator));
1882                 return true;
1883         }
1884
1885         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1886             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1887                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1888                          reg_initiator_name(initiator));
1889                 return true;
1890         }
1891
1892         /*
1893          * wiphy->regd will be set once the device has its own
1894          * desired regulatory domain set
1895          */
1896         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1897             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1898             !is_world_regdom(lr->alpha2)) {
1899                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1900                          reg_initiator_name(initiator));
1901                 return true;
1902         }
1903
1904         if (reg_request_cell_base(lr))
1905                 return reg_dev_ignore_cell_hint(wiphy);
1906
1907         return false;
1908 }
1909
1910 static bool reg_is_world_roaming(struct wiphy *wiphy)
1911 {
1912         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1913         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1914         struct regulatory_request *lr = get_last_request();
1915
1916         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1917                 return true;
1918
1919         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1920             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1921                 return true;
1922
1923         return false;
1924 }
1925
1926 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1927                               struct reg_beacon *reg_beacon)
1928 {
1929         struct ieee80211_supported_band *sband;
1930         struct ieee80211_channel *chan;
1931         bool channel_changed = false;
1932         struct ieee80211_channel chan_before;
1933
1934         sband = wiphy->bands[reg_beacon->chan.band];
1935         chan = &sband->channels[chan_idx];
1936
1937         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1938                 return;
1939
1940         if (chan->beacon_found)
1941                 return;
1942
1943         chan->beacon_found = true;
1944
1945         if (!reg_is_world_roaming(wiphy))
1946                 return;
1947
1948         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1949                 return;
1950
1951         chan_before = *chan;
1952
1953         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1954                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1955                 channel_changed = true;
1956         }
1957
1958         if (channel_changed)
1959                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1960 }
1961
1962 /*
1963  * Called when a scan on a wiphy finds a beacon on
1964  * new channel
1965  */
1966 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1967                                     struct reg_beacon *reg_beacon)
1968 {
1969         unsigned int i;
1970         struct ieee80211_supported_band *sband;
1971
1972         if (!wiphy->bands[reg_beacon->chan.band])
1973                 return;
1974
1975         sband = wiphy->bands[reg_beacon->chan.band];
1976
1977         for (i = 0; i < sband->n_channels; i++)
1978                 handle_reg_beacon(wiphy, i, reg_beacon);
1979 }
1980
1981 /*
1982  * Called upon reg changes or a new wiphy is added
1983  */
1984 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1985 {
1986         unsigned int i;
1987         struct ieee80211_supported_band *sband;
1988         struct reg_beacon *reg_beacon;
1989
1990         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
1991                 if (!wiphy->bands[reg_beacon->chan.band])
1992                         continue;
1993                 sband = wiphy->bands[reg_beacon->chan.band];
1994                 for (i = 0; i < sband->n_channels; i++)
1995                         handle_reg_beacon(wiphy, i, reg_beacon);
1996         }
1997 }
1998
1999 /* Reap the advantages of previously found beacons */
2000 static void reg_process_beacons(struct wiphy *wiphy)
2001 {
2002         /*
2003          * Means we are just firing up cfg80211, so no beacons would
2004          * have been processed yet.
2005          */
2006         if (!last_request)
2007                 return;
2008         wiphy_update_beacon_reg(wiphy);
2009 }
2010
2011 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2012 {
2013         if (!chan)
2014                 return false;
2015         if (chan->flags & IEEE80211_CHAN_DISABLED)
2016                 return false;
2017         /* This would happen when regulatory rules disallow HT40 completely */
2018         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2019                 return false;
2020         return true;
2021 }
2022
2023 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2024                                          struct ieee80211_channel *channel)
2025 {
2026         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2027         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2028         const struct ieee80211_regdomain *regd;
2029         unsigned int i;
2030         u32 flags;
2031
2032         if (!is_ht40_allowed(channel)) {
2033                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2034                 return;
2035         }
2036
2037         /*
2038          * We need to ensure the extension channels exist to
2039          * be able to use HT40- or HT40+, this finds them (or not)
2040          */
2041         for (i = 0; i < sband->n_channels; i++) {
2042                 struct ieee80211_channel *c = &sband->channels[i];
2043
2044                 if (c->center_freq == (channel->center_freq - 20))
2045                         channel_before = c;
2046                 if (c->center_freq == (channel->center_freq + 20))
2047                         channel_after = c;
2048         }
2049
2050         flags = 0;
2051         regd = get_wiphy_regdom(wiphy);
2052         if (regd) {
2053                 const struct ieee80211_reg_rule *reg_rule =
2054                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2055                                            regd, MHZ_TO_KHZ(20));
2056
2057                 if (!IS_ERR(reg_rule))
2058                         flags = reg_rule->flags;
2059         }
2060
2061         /*
2062          * Please note that this assumes target bandwidth is 20 MHz,
2063          * if that ever changes we also need to change the below logic
2064          * to include that as well.
2065          */
2066         if (!is_ht40_allowed(channel_before) ||
2067             flags & NL80211_RRF_NO_HT40MINUS)
2068                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2069         else
2070                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2071
2072         if (!is_ht40_allowed(channel_after) ||
2073             flags & NL80211_RRF_NO_HT40PLUS)
2074                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2075         else
2076                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2077 }
2078
2079 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2080                                       struct ieee80211_supported_band *sband)
2081 {
2082         unsigned int i;
2083
2084         if (!sband)
2085                 return;
2086
2087         for (i = 0; i < sband->n_channels; i++)
2088                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2089 }
2090
2091 static void reg_process_ht_flags(struct wiphy *wiphy)
2092 {
2093         enum nl80211_band band;
2094
2095         if (!wiphy)
2096                 return;
2097
2098         for (band = 0; band < NUM_NL80211_BANDS; band++)
2099                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2100 }
2101
2102 static void reg_call_notifier(struct wiphy *wiphy,
2103                               struct regulatory_request *request)
2104 {
2105         if (wiphy->reg_notifier)
2106                 wiphy->reg_notifier(wiphy, request);
2107 }
2108
2109 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2110 {
2111         struct cfg80211_chan_def chandef;
2112         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2113         enum nl80211_iftype iftype;
2114
2115         wdev_lock(wdev);
2116         iftype = wdev->iftype;
2117
2118         /* make sure the interface is active */
2119         if (!wdev->netdev || !netif_running(wdev->netdev))
2120                 goto wdev_inactive_unlock;
2121
2122         switch (iftype) {
2123         case NL80211_IFTYPE_AP:
2124         case NL80211_IFTYPE_P2P_GO:
2125                 if (!wdev->beacon_interval)
2126                         goto wdev_inactive_unlock;
2127                 chandef = wdev->chandef;
2128                 break;
2129         case NL80211_IFTYPE_ADHOC:
2130                 if (!wdev->ssid_len)
2131                         goto wdev_inactive_unlock;
2132                 chandef = wdev->chandef;
2133                 break;
2134         case NL80211_IFTYPE_STATION:
2135         case NL80211_IFTYPE_P2P_CLIENT:
2136                 if (!wdev->current_bss ||
2137                     !wdev->current_bss->pub.channel)
2138                         goto wdev_inactive_unlock;
2139
2140                 if (!rdev->ops->get_channel ||
2141                     rdev_get_channel(rdev, wdev, &chandef))
2142                         cfg80211_chandef_create(&chandef,
2143                                                 wdev->current_bss->pub.channel,
2144                                                 NL80211_CHAN_NO_HT);
2145                 break;
2146         case NL80211_IFTYPE_MONITOR:
2147         case NL80211_IFTYPE_AP_VLAN:
2148         case NL80211_IFTYPE_P2P_DEVICE:
2149                 /* no enforcement required */
2150                 break;
2151         default:
2152                 /* others not implemented for now */
2153                 WARN_ON(1);
2154                 break;
2155         }
2156
2157         wdev_unlock(wdev);
2158
2159         switch (iftype) {
2160         case NL80211_IFTYPE_AP:
2161         case NL80211_IFTYPE_P2P_GO:
2162         case NL80211_IFTYPE_ADHOC:
2163                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2164         case NL80211_IFTYPE_STATION:
2165         case NL80211_IFTYPE_P2P_CLIENT:
2166                 return cfg80211_chandef_usable(wiphy, &chandef,
2167                                                IEEE80211_CHAN_DISABLED);
2168         default:
2169                 break;
2170         }
2171
2172         return true;
2173
2174 wdev_inactive_unlock:
2175         wdev_unlock(wdev);
2176         return true;
2177 }
2178
2179 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2180 {
2181         struct wireless_dev *wdev;
2182         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2183
2184         ASSERT_RTNL();
2185
2186         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2187                 if (!reg_wdev_chan_valid(wiphy, wdev))
2188                         cfg80211_leave(rdev, wdev);
2189 }
2190
2191 static void reg_check_chans_work(struct work_struct *work)
2192 {
2193         struct cfg80211_registered_device *rdev;
2194
2195         pr_debug("Verifying active interfaces after reg change\n");
2196         rtnl_lock();
2197
2198         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2199                 if (!(rdev->wiphy.regulatory_flags &
2200                       REGULATORY_IGNORE_STALE_KICKOFF))
2201                         reg_leave_invalid_chans(&rdev->wiphy);
2202
2203         rtnl_unlock();
2204 }
2205
2206 static void reg_check_channels(void)
2207 {
2208         /*
2209          * Give usermode a chance to do something nicer (move to another
2210          * channel, orderly disconnection), before forcing a disconnection.
2211          */
2212         mod_delayed_work(system_power_efficient_wq,
2213                          &reg_check_chans,
2214                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2215 }
2216
2217 static void wiphy_update_regulatory(struct wiphy *wiphy,
2218                                     enum nl80211_reg_initiator initiator)
2219 {
2220         enum nl80211_band band;
2221         struct regulatory_request *lr = get_last_request();
2222
2223         if (ignore_reg_update(wiphy, initiator)) {
2224                 /*
2225                  * Regulatory updates set by CORE are ignored for custom
2226                  * regulatory cards. Let us notify the changes to the driver,
2227                  * as some drivers used this to restore its orig_* reg domain.
2228                  */
2229                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2230                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2231                     !(wiphy->regulatory_flags &
2232                       REGULATORY_WIPHY_SELF_MANAGED))
2233                         reg_call_notifier(wiphy, lr);
2234                 return;
2235         }
2236
2237         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2238
2239         for (band = 0; band < NUM_NL80211_BANDS; band++)
2240                 handle_band(wiphy, initiator, wiphy->bands[band]);
2241
2242         reg_process_beacons(wiphy);
2243         reg_process_ht_flags(wiphy);
2244         reg_call_notifier(wiphy, lr);
2245 }
2246
2247 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2248 {
2249         struct cfg80211_registered_device *rdev;
2250         struct wiphy *wiphy;
2251
2252         ASSERT_RTNL();
2253
2254         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2255                 wiphy = &rdev->wiphy;
2256                 wiphy_update_regulatory(wiphy, initiator);
2257         }
2258
2259         reg_check_channels();
2260 }
2261
2262 static void handle_channel_custom(struct wiphy *wiphy,
2263                                   struct ieee80211_channel *chan,
2264                                   const struct ieee80211_regdomain *regd)
2265 {
2266         u32 bw_flags = 0;
2267         const struct ieee80211_reg_rule *reg_rule = NULL;
2268         const struct ieee80211_power_rule *power_rule = NULL;
2269         u32 bw;
2270
2271         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2272                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2273                                               regd, bw);
2274                 if (!IS_ERR(reg_rule))
2275                         break;
2276         }
2277
2278         if (IS_ERR(reg_rule)) {
2279                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2280                          chan->center_freq);
2281                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2282                         chan->flags |= IEEE80211_CHAN_DISABLED;
2283                 } else {
2284                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2285                         chan->flags = chan->orig_flags;
2286                 }
2287                 return;
2288         }
2289
2290         power_rule = &reg_rule->power_rule;
2291         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2292
2293         chan->dfs_state_entered = jiffies;
2294         chan->dfs_state = NL80211_DFS_USABLE;
2295
2296         chan->beacon_found = false;
2297
2298         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2299                 chan->flags = chan->orig_flags | bw_flags |
2300                               map_regdom_flags(reg_rule->flags);
2301         else
2302                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2303
2304         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2305         chan->max_reg_power = chan->max_power =
2306                 (int) MBM_TO_DBM(power_rule->max_eirp);
2307
2308         if (chan->flags & IEEE80211_CHAN_RADAR) {
2309                 if (reg_rule->dfs_cac_ms)
2310                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2311                 else
2312                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2313         }
2314
2315         chan->max_power = chan->max_reg_power;
2316 }
2317
2318 static void handle_band_custom(struct wiphy *wiphy,
2319                                struct ieee80211_supported_band *sband,
2320                                const struct ieee80211_regdomain *regd)
2321 {
2322         unsigned int i;
2323
2324         if (!sband)
2325                 return;
2326
2327         for (i = 0; i < sband->n_channels; i++)
2328                 handle_channel_custom(wiphy, &sband->channels[i], regd);
2329 }
2330
2331 /* Used by drivers prior to wiphy registration */
2332 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2333                                    const struct ieee80211_regdomain *regd)
2334 {
2335         enum nl80211_band band;
2336         unsigned int bands_set = 0;
2337
2338         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2339              "wiphy should have REGULATORY_CUSTOM_REG\n");
2340         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2341
2342         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2343                 if (!wiphy->bands[band])
2344                         continue;
2345                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2346                 bands_set++;
2347         }
2348
2349         /*
2350          * no point in calling this if it won't have any effect
2351          * on your device's supported bands.
2352          */
2353         WARN_ON(!bands_set);
2354 }
2355 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2356
2357 static void reg_set_request_processed(void)
2358 {
2359         bool need_more_processing = false;
2360         struct regulatory_request *lr = get_last_request();
2361
2362         lr->processed = true;
2363
2364         spin_lock(&reg_requests_lock);
2365         if (!list_empty(&reg_requests_list))
2366                 need_more_processing = true;
2367         spin_unlock(&reg_requests_lock);
2368
2369         cancel_crda_timeout();
2370
2371         if (need_more_processing)
2372                 schedule_work(&reg_work);
2373 }
2374
2375 /**
2376  * reg_process_hint_core - process core regulatory requests
2377  * @pending_request: a pending core regulatory request
2378  *
2379  * The wireless subsystem can use this function to process
2380  * a regulatory request issued by the regulatory core.
2381  */
2382 static enum reg_request_treatment
2383 reg_process_hint_core(struct regulatory_request *core_request)
2384 {
2385         if (reg_query_database(core_request)) {
2386                 core_request->intersect = false;
2387                 core_request->processed = false;
2388                 reg_update_last_request(core_request);
2389                 return REG_REQ_OK;
2390         }
2391
2392         return REG_REQ_IGNORE;
2393 }
2394
2395 static enum reg_request_treatment
2396 __reg_process_hint_user(struct regulatory_request *user_request)
2397 {
2398         struct regulatory_request *lr = get_last_request();
2399
2400         if (reg_request_cell_base(user_request))
2401                 return reg_ignore_cell_hint(user_request);
2402
2403         if (reg_request_cell_base(lr))
2404                 return REG_REQ_IGNORE;
2405
2406         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2407                 return REG_REQ_INTERSECT;
2408         /*
2409          * If the user knows better the user should set the regdom
2410          * to their country before the IE is picked up
2411          */
2412         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2413             lr->intersect)
2414                 return REG_REQ_IGNORE;
2415         /*
2416          * Process user requests only after previous user/driver/core
2417          * requests have been processed
2418          */
2419         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2420              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2421              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2422             regdom_changes(lr->alpha2))
2423                 return REG_REQ_IGNORE;
2424
2425         if (!regdom_changes(user_request->alpha2))
2426                 return REG_REQ_ALREADY_SET;
2427
2428         return REG_REQ_OK;
2429 }
2430
2431 /**
2432  * reg_process_hint_user - process user regulatory requests
2433  * @user_request: a pending user regulatory request
2434  *
2435  * The wireless subsystem can use this function to process
2436  * a regulatory request initiated by userspace.
2437  */
2438 static enum reg_request_treatment
2439 reg_process_hint_user(struct regulatory_request *user_request)
2440 {
2441         enum reg_request_treatment treatment;
2442
2443         treatment = __reg_process_hint_user(user_request);
2444         if (treatment == REG_REQ_IGNORE ||
2445             treatment == REG_REQ_ALREADY_SET)
2446                 return REG_REQ_IGNORE;
2447
2448         user_request->intersect = treatment == REG_REQ_INTERSECT;
2449         user_request->processed = false;
2450
2451         if (reg_query_database(user_request)) {
2452                 reg_update_last_request(user_request);
2453                 user_alpha2[0] = user_request->alpha2[0];
2454                 user_alpha2[1] = user_request->alpha2[1];
2455                 return REG_REQ_OK;
2456         }
2457
2458         return REG_REQ_IGNORE;
2459 }
2460
2461 static enum reg_request_treatment
2462 __reg_process_hint_driver(struct regulatory_request *driver_request)
2463 {
2464         struct regulatory_request *lr = get_last_request();
2465
2466         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2467                 if (regdom_changes(driver_request->alpha2))
2468                         return REG_REQ_OK;
2469                 return REG_REQ_ALREADY_SET;
2470         }
2471
2472         /*
2473          * This would happen if you unplug and plug your card
2474          * back in or if you add a new device for which the previously
2475          * loaded card also agrees on the regulatory domain.
2476          */
2477         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2478             !regdom_changes(driver_request->alpha2))
2479                 return REG_REQ_ALREADY_SET;
2480
2481         return REG_REQ_INTERSECT;
2482 }
2483
2484 /**
2485  * reg_process_hint_driver - process driver regulatory requests
2486  * @driver_request: a pending driver regulatory request
2487  *
2488  * The wireless subsystem can use this function to process
2489  * a regulatory request issued by an 802.11 driver.
2490  *
2491  * Returns one of the different reg request treatment values.
2492  */
2493 static enum reg_request_treatment
2494 reg_process_hint_driver(struct wiphy *wiphy,
2495                         struct regulatory_request *driver_request)
2496 {
2497         const struct ieee80211_regdomain *regd, *tmp;
2498         enum reg_request_treatment treatment;
2499
2500         treatment = __reg_process_hint_driver(driver_request);
2501
2502         switch (treatment) {
2503         case REG_REQ_OK:
2504                 break;
2505         case REG_REQ_IGNORE:
2506                 return REG_REQ_IGNORE;
2507         case REG_REQ_INTERSECT:
2508         case REG_REQ_ALREADY_SET:
2509                 regd = reg_copy_regd(get_cfg80211_regdom());
2510                 if (IS_ERR(regd))
2511                         return REG_REQ_IGNORE;
2512
2513                 tmp = get_wiphy_regdom(wiphy);
2514                 rcu_assign_pointer(wiphy->regd, regd);
2515                 rcu_free_regdom(tmp);
2516         }
2517
2518
2519         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2520         driver_request->processed = false;
2521
2522         /*
2523          * Since CRDA will not be called in this case as we already
2524          * have applied the requested regulatory domain before we just
2525          * inform userspace we have processed the request
2526          */
2527         if (treatment == REG_REQ_ALREADY_SET) {
2528                 nl80211_send_reg_change_event(driver_request);
2529                 reg_update_last_request(driver_request);
2530                 reg_set_request_processed();
2531                 return REG_REQ_ALREADY_SET;
2532         }
2533
2534         if (reg_query_database(driver_request)) {
2535                 reg_update_last_request(driver_request);
2536                 return REG_REQ_OK;
2537         }
2538
2539         return REG_REQ_IGNORE;
2540 }
2541
2542 static enum reg_request_treatment
2543 __reg_process_hint_country_ie(struct wiphy *wiphy,
2544                               struct regulatory_request *country_ie_request)
2545 {
2546         struct wiphy *last_wiphy = NULL;
2547         struct regulatory_request *lr = get_last_request();
2548
2549         if (reg_request_cell_base(lr)) {
2550                 /* Trust a Cell base station over the AP's country IE */
2551                 if (regdom_changes(country_ie_request->alpha2))
2552                         return REG_REQ_IGNORE;
2553                 return REG_REQ_ALREADY_SET;
2554         } else {
2555                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2556                         return REG_REQ_IGNORE;
2557         }
2558
2559         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2560                 return -EINVAL;
2561
2562         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2563                 return REG_REQ_OK;
2564
2565         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2566
2567         if (last_wiphy != wiphy) {
2568                 /*
2569                  * Two cards with two APs claiming different
2570                  * Country IE alpha2s. We could
2571                  * intersect them, but that seems unlikely
2572                  * to be correct. Reject second one for now.
2573                  */
2574                 if (regdom_changes(country_ie_request->alpha2))
2575                         return REG_REQ_IGNORE;
2576                 return REG_REQ_ALREADY_SET;
2577         }
2578
2579         if (regdom_changes(country_ie_request->alpha2))
2580                 return REG_REQ_OK;
2581         return REG_REQ_ALREADY_SET;
2582 }
2583
2584 /**
2585  * reg_process_hint_country_ie - process regulatory requests from country IEs
2586  * @country_ie_request: a regulatory request from a country IE
2587  *
2588  * The wireless subsystem can use this function to process
2589  * a regulatory request issued by a country Information Element.
2590  *
2591  * Returns one of the different reg request treatment values.
2592  */
2593 static enum reg_request_treatment
2594 reg_process_hint_country_ie(struct wiphy *wiphy,
2595                             struct regulatory_request *country_ie_request)
2596 {
2597         enum reg_request_treatment treatment;
2598
2599         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2600
2601         switch (treatment) {
2602         case REG_REQ_OK:
2603                 break;
2604         case REG_REQ_IGNORE:
2605                 return REG_REQ_IGNORE;
2606         case REG_REQ_ALREADY_SET:
2607                 reg_free_request(country_ie_request);
2608                 return REG_REQ_ALREADY_SET;
2609         case REG_REQ_INTERSECT:
2610                 /*
2611                  * This doesn't happen yet, not sure we
2612                  * ever want to support it for this case.
2613                  */
2614                 WARN_ONCE(1, "Unexpected intersection for country elements");
2615                 return REG_REQ_IGNORE;
2616         }
2617
2618         country_ie_request->intersect = false;
2619         country_ie_request->processed = false;
2620
2621         if (reg_query_database(country_ie_request)) {
2622                 reg_update_last_request(country_ie_request);
2623                 return REG_REQ_OK;
2624         }
2625
2626         return REG_REQ_IGNORE;
2627 }
2628
2629 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2630 {
2631         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2632         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2633         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2634         bool dfs_domain_same;
2635
2636         rcu_read_lock();
2637
2638         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2639         wiphy1_regd = rcu_dereference(wiphy1->regd);
2640         if (!wiphy1_regd)
2641                 wiphy1_regd = cfg80211_regd;
2642
2643         wiphy2_regd = rcu_dereference(wiphy2->regd);
2644         if (!wiphy2_regd)
2645                 wiphy2_regd = cfg80211_regd;
2646
2647         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2648
2649         rcu_read_unlock();
2650
2651         return dfs_domain_same;
2652 }
2653
2654 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2655                                     struct ieee80211_channel *src_chan)
2656 {
2657         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2658             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2659                 return;
2660
2661         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2662             src_chan->flags & IEEE80211_CHAN_DISABLED)
2663                 return;
2664
2665         if (src_chan->center_freq == dst_chan->center_freq &&
2666             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2667                 dst_chan->dfs_state = src_chan->dfs_state;
2668                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2669         }
2670 }
2671
2672 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2673                                        struct wiphy *src_wiphy)
2674 {
2675         struct ieee80211_supported_band *src_sband, *dst_sband;
2676         struct ieee80211_channel *src_chan, *dst_chan;
2677         int i, j, band;
2678
2679         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2680                 return;
2681
2682         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2683                 dst_sband = dst_wiphy->bands[band];
2684                 src_sband = src_wiphy->bands[band];
2685                 if (!dst_sband || !src_sband)
2686                         continue;
2687
2688                 for (i = 0; i < dst_sband->n_channels; i++) {
2689                         dst_chan = &dst_sband->channels[i];
2690                         for (j = 0; j < src_sband->n_channels; j++) {
2691                                 src_chan = &src_sband->channels[j];
2692                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2693                         }
2694                 }
2695         }
2696 }
2697
2698 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2699 {
2700         struct cfg80211_registered_device *rdev;
2701
2702         ASSERT_RTNL();
2703
2704         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2705                 if (wiphy == &rdev->wiphy)
2706                         continue;
2707                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2708         }
2709 }
2710
2711 /* This processes *all* regulatory hints */
2712 static void reg_process_hint(struct regulatory_request *reg_request)
2713 {
2714         struct wiphy *wiphy = NULL;
2715         enum reg_request_treatment treatment;
2716         enum nl80211_reg_initiator initiator = reg_request->initiator;
2717
2718         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2719                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2720
2721         switch (initiator) {
2722         case NL80211_REGDOM_SET_BY_CORE:
2723                 treatment = reg_process_hint_core(reg_request);
2724                 break;
2725         case NL80211_REGDOM_SET_BY_USER:
2726                 treatment = reg_process_hint_user(reg_request);
2727                 break;
2728         case NL80211_REGDOM_SET_BY_DRIVER:
2729                 if (!wiphy)
2730                         goto out_free;
2731                 treatment = reg_process_hint_driver(wiphy, reg_request);
2732                 break;
2733         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2734                 if (!wiphy)
2735                         goto out_free;
2736                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2737                 break;
2738         default:
2739                 WARN(1, "invalid initiator %d\n", initiator);
2740                 goto out_free;
2741         }
2742
2743         if (treatment == REG_REQ_IGNORE)
2744                 goto out_free;
2745
2746         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2747              "unexpected treatment value %d\n", treatment);
2748
2749         /* This is required so that the orig_* parameters are saved.
2750          * NOTE: treatment must be set for any case that reaches here!
2751          */
2752         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2753             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2754                 wiphy_update_regulatory(wiphy, initiator);
2755                 wiphy_all_share_dfs_chan_state(wiphy);
2756                 reg_check_channels();
2757         }
2758
2759         return;
2760
2761 out_free:
2762         reg_free_request(reg_request);
2763 }
2764
2765 static void notify_self_managed_wiphys(struct regulatory_request *request)
2766 {
2767         struct cfg80211_registered_device *rdev;
2768         struct wiphy *wiphy;
2769
2770         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2771                 wiphy = &rdev->wiphy;
2772                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2773                     request->initiator == NL80211_REGDOM_SET_BY_USER)
2774                         reg_call_notifier(wiphy, request);
2775         }
2776 }
2777
2778 /*
2779  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2780  * Regulatory hints come on a first come first serve basis and we
2781  * must process each one atomically.
2782  */
2783 static void reg_process_pending_hints(void)
2784 {
2785         struct regulatory_request *reg_request, *lr;
2786
2787         lr = get_last_request();
2788
2789         /* When last_request->processed becomes true this will be rescheduled */
2790         if (lr && !lr->processed) {
2791                 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
2792                 return;
2793         }
2794
2795         spin_lock(&reg_requests_lock);
2796
2797         if (list_empty(&reg_requests_list)) {
2798                 spin_unlock(&reg_requests_lock);
2799                 return;
2800         }
2801
2802         reg_request = list_first_entry(&reg_requests_list,
2803                                        struct regulatory_request,
2804                                        list);
2805         list_del_init(&reg_request->list);
2806
2807         spin_unlock(&reg_requests_lock);
2808
2809         notify_self_managed_wiphys(reg_request);
2810
2811         reg_process_hint(reg_request);
2812
2813         lr = get_last_request();
2814
2815         spin_lock(&reg_requests_lock);
2816         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2817                 schedule_work(&reg_work);
2818         spin_unlock(&reg_requests_lock);
2819 }
2820
2821 /* Processes beacon hints -- this has nothing to do with country IEs */
2822 static void reg_process_pending_beacon_hints(void)
2823 {
2824         struct cfg80211_registered_device *rdev;
2825         struct reg_beacon *pending_beacon, *tmp;
2826
2827         /* This goes through the _pending_ beacon list */
2828         spin_lock_bh(&reg_pending_beacons_lock);
2829
2830         list_for_each_entry_safe(pending_beacon, tmp,
2831                                  &reg_pending_beacons, list) {
2832                 list_del_init(&pending_beacon->list);
2833
2834                 /* Applies the beacon hint to current wiphys */
2835                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2836                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2837
2838                 /* Remembers the beacon hint for new wiphys or reg changes */
2839                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2840         }
2841
2842         spin_unlock_bh(&reg_pending_beacons_lock);
2843 }
2844
2845 static void reg_process_self_managed_hints(void)
2846 {
2847         struct cfg80211_registered_device *rdev;
2848         struct wiphy *wiphy;
2849         const struct ieee80211_regdomain *tmp;
2850         const struct ieee80211_regdomain *regd;
2851         enum nl80211_band band;
2852         struct regulatory_request request = {};
2853
2854         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2855                 wiphy = &rdev->wiphy;
2856
2857                 spin_lock(&reg_requests_lock);
2858                 regd = rdev->requested_regd;
2859                 rdev->requested_regd = NULL;
2860                 spin_unlock(&reg_requests_lock);
2861
2862                 if (regd == NULL)
2863                         continue;
2864
2865                 tmp = get_wiphy_regdom(wiphy);
2866                 rcu_assign_pointer(wiphy->regd, regd);
2867                 rcu_free_regdom(tmp);
2868
2869                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2870                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2871
2872                 reg_process_ht_flags(wiphy);
2873
2874                 request.wiphy_idx = get_wiphy_idx(wiphy);
2875                 request.alpha2[0] = regd->alpha2[0];
2876                 request.alpha2[1] = regd->alpha2[1];
2877                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2878
2879                 nl80211_send_wiphy_reg_change_event(&request);
2880         }
2881
2882         reg_check_channels();
2883 }
2884
2885 static void reg_todo(struct work_struct *work)
2886 {
2887         rtnl_lock();
2888         reg_process_pending_hints();
2889         reg_process_pending_beacon_hints();
2890         reg_process_self_managed_hints();
2891         rtnl_unlock();
2892 }
2893
2894 static void queue_regulatory_request(struct regulatory_request *request)
2895 {
2896         request->alpha2[0] = toupper(request->alpha2[0]);
2897         request->alpha2[1] = toupper(request->alpha2[1]);
2898
2899         spin_lock(&reg_requests_lock);
2900         list_add_tail(&request->list, &reg_requests_list);
2901         spin_unlock(&reg_requests_lock);
2902
2903         schedule_work(&reg_work);
2904 }
2905
2906 /*
2907  * Core regulatory hint -- happens during cfg80211_init()
2908  * and when we restore regulatory settings.
2909  */
2910 static int regulatory_hint_core(const char *alpha2)
2911 {
2912         struct regulatory_request *request;
2913
2914         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2915         if (!request)
2916                 return -ENOMEM;
2917
2918         request->alpha2[0] = alpha2[0];
2919         request->alpha2[1] = alpha2[1];
2920         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2921         request->wiphy_idx = WIPHY_IDX_INVALID;
2922
2923         queue_regulatory_request(request);
2924
2925         return 0;
2926 }
2927
2928 /* User hints */
2929 int regulatory_hint_user(const char *alpha2,
2930                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2931 {
2932         struct regulatory_request *request;
2933
2934         if (WARN_ON(!alpha2))
2935                 return -EINVAL;
2936
2937         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2938         if (!request)
2939                 return -ENOMEM;
2940
2941         request->wiphy_idx = WIPHY_IDX_INVALID;
2942         request->alpha2[0] = alpha2[0];
2943         request->alpha2[1] = alpha2[1];
2944         request->initiator = NL80211_REGDOM_SET_BY_USER;
2945         request->user_reg_hint_type = user_reg_hint_type;
2946
2947         /* Allow calling CRDA again */
2948         reset_crda_timeouts();
2949
2950         queue_regulatory_request(request);
2951
2952         return 0;
2953 }
2954
2955 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2956 {
2957         spin_lock(&reg_indoor_lock);
2958
2959         /* It is possible that more than one user space process is trying to
2960          * configure the indoor setting. To handle such cases, clear the indoor
2961          * setting in case that some process does not think that the device
2962          * is operating in an indoor environment. In addition, if a user space
2963          * process indicates that it is controlling the indoor setting, save its
2964          * portid, i.e., make it the owner.
2965          */
2966         reg_is_indoor = is_indoor;
2967         if (reg_is_indoor) {
2968                 if (!reg_is_indoor_portid)
2969                         reg_is_indoor_portid = portid;
2970         } else {
2971                 reg_is_indoor_portid = 0;
2972         }
2973
2974         spin_unlock(&reg_indoor_lock);
2975
2976         if (!is_indoor)
2977                 reg_check_channels();
2978
2979         return 0;
2980 }
2981
2982 void regulatory_netlink_notify(u32 portid)
2983 {
2984         spin_lock(&reg_indoor_lock);
2985
2986         if (reg_is_indoor_portid != portid) {
2987                 spin_unlock(&reg_indoor_lock);
2988                 return;
2989         }
2990
2991         reg_is_indoor = false;
2992         reg_is_indoor_portid = 0;
2993
2994         spin_unlock(&reg_indoor_lock);
2995
2996         reg_check_channels();
2997 }
2998
2999 /* Driver hints */
3000 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3001 {
3002         struct regulatory_request *request;
3003
3004         if (WARN_ON(!alpha2 || !wiphy))
3005                 return -EINVAL;
3006
3007         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3008
3009         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3010         if (!request)
3011                 return -ENOMEM;
3012
3013         request->wiphy_idx = get_wiphy_idx(wiphy);
3014
3015         request->alpha2[0] = alpha2[0];
3016         request->alpha2[1] = alpha2[1];
3017         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3018
3019         /* Allow calling CRDA again */
3020         reset_crda_timeouts();
3021
3022         queue_regulatory_request(request);
3023
3024         return 0;
3025 }
3026 EXPORT_SYMBOL(regulatory_hint);
3027
3028 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3029                                 const u8 *country_ie, u8 country_ie_len)
3030 {
3031         char alpha2[2];
3032         enum environment_cap env = ENVIRON_ANY;
3033         struct regulatory_request *request = NULL, *lr;
3034
3035         /* IE len must be evenly divisible by 2 */
3036         if (country_ie_len & 0x01)
3037                 return;
3038
3039         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3040                 return;
3041
3042         request = kzalloc(sizeof(*request), GFP_KERNEL);
3043         if (!request)
3044                 return;
3045
3046         alpha2[0] = country_ie[0];
3047         alpha2[1] = country_ie[1];
3048
3049         if (country_ie[2] == 'I')
3050                 env = ENVIRON_INDOOR;
3051         else if (country_ie[2] == 'O')
3052                 env = ENVIRON_OUTDOOR;
3053
3054         rcu_read_lock();
3055         lr = get_last_request();
3056
3057         if (unlikely(!lr))
3058                 goto out;
3059
3060         /*
3061          * We will run this only upon a successful connection on cfg80211.
3062          * We leave conflict resolution to the workqueue, where can hold
3063          * the RTNL.
3064          */
3065         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3066             lr->wiphy_idx != WIPHY_IDX_INVALID)
3067                 goto out;
3068
3069         request->wiphy_idx = get_wiphy_idx(wiphy);
3070         request->alpha2[0] = alpha2[0];
3071         request->alpha2[1] = alpha2[1];
3072         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3073         request->country_ie_env = env;
3074
3075         /* Allow calling CRDA again */
3076         reset_crda_timeouts();
3077
3078         queue_regulatory_request(request);
3079         request = NULL;
3080 out:
3081         kfree(request);
3082         rcu_read_unlock();
3083 }
3084
3085 static void restore_alpha2(char *alpha2, bool reset_user)
3086 {
3087         /* indicates there is no alpha2 to consider for restoration */
3088         alpha2[0] = '9';
3089         alpha2[1] = '7';
3090
3091         /* The user setting has precedence over the module parameter */
3092         if (is_user_regdom_saved()) {
3093                 /* Unless we're asked to ignore it and reset it */
3094                 if (reset_user) {
3095                         pr_debug("Restoring regulatory settings including user preference\n");
3096                         user_alpha2[0] = '9';
3097                         user_alpha2[1] = '7';
3098
3099                         /*
3100                          * If we're ignoring user settings, we still need to
3101                          * check the module parameter to ensure we put things
3102                          * back as they were for a full restore.
3103                          */
3104                         if (!is_world_regdom(ieee80211_regdom)) {
3105                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3106                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3107                                 alpha2[0] = ieee80211_regdom[0];
3108                                 alpha2[1] = ieee80211_regdom[1];
3109                         }
3110                 } else {
3111                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3112                                  user_alpha2[0], user_alpha2[1]);
3113                         alpha2[0] = user_alpha2[0];
3114                         alpha2[1] = user_alpha2[1];
3115                 }
3116         } else if (!is_world_regdom(ieee80211_regdom)) {
3117                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3118                          ieee80211_regdom[0], ieee80211_regdom[1]);
3119                 alpha2[0] = ieee80211_regdom[0];
3120                 alpha2[1] = ieee80211_regdom[1];
3121         } else
3122                 pr_debug("Restoring regulatory settings\n");
3123 }
3124
3125 static void restore_custom_reg_settings(struct wiphy *wiphy)
3126 {
3127         struct ieee80211_supported_band *sband;
3128         enum nl80211_band band;
3129         struct ieee80211_channel *chan;
3130         int i;
3131
3132         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3133                 sband = wiphy->bands[band];
3134                 if (!sband)
3135                         continue;
3136                 for (i = 0; i < sband->n_channels; i++) {
3137                         chan = &sband->channels[i];
3138                         chan->flags = chan->orig_flags;
3139                         chan->max_antenna_gain = chan->orig_mag;
3140                         chan->max_power = chan->orig_mpwr;
3141                         chan->beacon_found = false;
3142                 }
3143         }
3144 }
3145
3146 /*
3147  * Restoring regulatory settings involves ingoring any
3148  * possibly stale country IE information and user regulatory
3149  * settings if so desired, this includes any beacon hints
3150  * learned as we could have traveled outside to another country
3151  * after disconnection. To restore regulatory settings we do
3152  * exactly what we did at bootup:
3153  *
3154  *   - send a core regulatory hint
3155  *   - send a user regulatory hint if applicable
3156  *
3157  * Device drivers that send a regulatory hint for a specific country
3158  * keep their own regulatory domain on wiphy->regd so that does does
3159  * not need to be remembered.
3160  */
3161 static void restore_regulatory_settings(bool reset_user, bool cached)
3162 {
3163         char alpha2[2];
3164         char world_alpha2[2];
3165         struct reg_beacon *reg_beacon, *btmp;
3166         LIST_HEAD(tmp_reg_req_list);
3167         struct cfg80211_registered_device *rdev;
3168
3169         ASSERT_RTNL();
3170
3171         /*
3172          * Clear the indoor setting in case that it is not controlled by user
3173          * space, as otherwise there is no guarantee that the device is still
3174          * operating in an indoor environment.
3175          */
3176         spin_lock(&reg_indoor_lock);
3177         if (reg_is_indoor && !reg_is_indoor_portid) {
3178                 reg_is_indoor = false;
3179                 reg_check_channels();
3180         }
3181         spin_unlock(&reg_indoor_lock);
3182
3183         reset_regdomains(true, &world_regdom);
3184         restore_alpha2(alpha2, reset_user);
3185
3186         /*
3187          * If there's any pending requests we simply
3188          * stash them to a temporary pending queue and
3189          * add then after we've restored regulatory
3190          * settings.
3191          */
3192         spin_lock(&reg_requests_lock);
3193         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3194         spin_unlock(&reg_requests_lock);
3195
3196         /* Clear beacon hints */
3197         spin_lock_bh(&reg_pending_beacons_lock);
3198         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3199                 list_del(&reg_beacon->list);
3200                 kfree(reg_beacon);
3201         }
3202         spin_unlock_bh(&reg_pending_beacons_lock);
3203
3204         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3205                 list_del(&reg_beacon->list);
3206                 kfree(reg_beacon);
3207         }
3208
3209         /* First restore to the basic regulatory settings */
3210         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3211         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3212
3213         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3214                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3215                         continue;
3216                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3217                         restore_custom_reg_settings(&rdev->wiphy);
3218         }
3219
3220         if (cached && (!is_an_alpha2(alpha2) ||
3221                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3222                 reset_regdomains(false, cfg80211_world_regdom);
3223                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3224                 print_regdomain(get_cfg80211_regdom());
3225                 nl80211_send_reg_change_event(&core_request_world);
3226                 reg_set_request_processed();
3227
3228                 if (is_an_alpha2(alpha2) &&
3229                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3230                         struct regulatory_request *ureq;
3231
3232                         spin_lock(&reg_requests_lock);
3233                         ureq = list_last_entry(&reg_requests_list,
3234                                                struct regulatory_request,
3235                                                list);
3236                         list_del(&ureq->list);
3237                         spin_unlock(&reg_requests_lock);
3238
3239                         notify_self_managed_wiphys(ureq);
3240                         reg_update_last_request(ureq);
3241                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3242                                    REGD_SOURCE_CACHED);
3243                 }
3244         } else {
3245                 regulatory_hint_core(world_alpha2);
3246
3247                 /*
3248                  * This restores the ieee80211_regdom module parameter
3249                  * preference or the last user requested regulatory
3250                  * settings, user regulatory settings takes precedence.
3251                  */
3252                 if (is_an_alpha2(alpha2))
3253                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3254         }
3255
3256         spin_lock(&reg_requests_lock);
3257         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3258         spin_unlock(&reg_requests_lock);
3259
3260         pr_debug("Kicking the queue\n");
3261
3262         schedule_work(&reg_work);
3263 }
3264
3265 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3266 {
3267         struct cfg80211_registered_device *rdev;
3268         struct wireless_dev *wdev;
3269
3270         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3271                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3272                         wdev_lock(wdev);
3273                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3274                                 wdev_unlock(wdev);
3275                                 return false;
3276                         }
3277                         wdev_unlock(wdev);
3278                 }
3279         }
3280
3281         return true;
3282 }
3283
3284 void regulatory_hint_disconnect(void)
3285 {
3286         /* Restore of regulatory settings is not required when wiphy(s)
3287          * ignore IE from connected access point but clearance of beacon hints
3288          * is required when wiphy(s) supports beacon hints.
3289          */
3290         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3291                 struct reg_beacon *reg_beacon, *btmp;
3292
3293                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3294                         return;
3295
3296                 spin_lock_bh(&reg_pending_beacons_lock);
3297                 list_for_each_entry_safe(reg_beacon, btmp,
3298                                          &reg_pending_beacons, list) {
3299                         list_del(&reg_beacon->list);
3300                         kfree(reg_beacon);
3301                 }
3302                 spin_unlock_bh(&reg_pending_beacons_lock);
3303
3304                 list_for_each_entry_safe(reg_beacon, btmp,
3305                                          &reg_beacon_list, list) {
3306                         list_del(&reg_beacon->list);
3307                         kfree(reg_beacon);
3308                 }
3309
3310                 return;
3311         }
3312
3313         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3314         restore_regulatory_settings(false, true);
3315 }
3316
3317 static bool freq_is_chan_12_13_14(u32 freq)
3318 {
3319         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3320             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3321             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3322                 return true;
3323         return false;
3324 }
3325
3326 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3327 {
3328         struct reg_beacon *pending_beacon;
3329
3330         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3331                 if (beacon_chan->center_freq ==
3332                     pending_beacon->chan.center_freq)
3333                         return true;
3334         return false;
3335 }
3336
3337 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3338                                  struct ieee80211_channel *beacon_chan,
3339                                  gfp_t gfp)
3340 {
3341         struct reg_beacon *reg_beacon;
3342         bool processing;
3343
3344         if (beacon_chan->beacon_found ||
3345             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3346             (beacon_chan->band == NL80211_BAND_2GHZ &&
3347              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3348                 return 0;
3349
3350         spin_lock_bh(&reg_pending_beacons_lock);
3351         processing = pending_reg_beacon(beacon_chan);
3352         spin_unlock_bh(&reg_pending_beacons_lock);
3353
3354         if (processing)
3355                 return 0;
3356
3357         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3358         if (!reg_beacon)
3359                 return -ENOMEM;
3360
3361         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3362                  beacon_chan->center_freq,
3363                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3364                  wiphy_name(wiphy));
3365
3366         memcpy(&reg_beacon->chan, beacon_chan,
3367                sizeof(struct ieee80211_channel));
3368
3369         /*
3370          * Since we can be called from BH or and non-BH context
3371          * we must use spin_lock_bh()
3372          */
3373         spin_lock_bh(&reg_pending_beacons_lock);
3374         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3375         spin_unlock_bh(&reg_pending_beacons_lock);
3376
3377         schedule_work(&reg_work);
3378
3379         return 0;
3380 }
3381
3382 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3383 {
3384         unsigned int i;
3385         const struct ieee80211_reg_rule *reg_rule = NULL;
3386         const struct ieee80211_freq_range *freq_range = NULL;
3387         const struct ieee80211_power_rule *power_rule = NULL;
3388         char bw[32], cac_time[32];
3389
3390         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3391
3392         for (i = 0; i < rd->n_reg_rules; i++) {
3393                 reg_rule = &rd->reg_rules[i];
3394                 freq_range = &reg_rule->freq_range;
3395                 power_rule = &reg_rule->power_rule;
3396
3397                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3398                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3399                                  freq_range->max_bandwidth_khz,
3400                                  reg_get_max_bandwidth(rd, reg_rule));
3401                 else
3402                         snprintf(bw, sizeof(bw), "%d KHz",
3403                                  freq_range->max_bandwidth_khz);
3404
3405                 if (reg_rule->flags & NL80211_RRF_DFS)
3406                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3407                                   reg_rule->dfs_cac_ms/1000);
3408                 else
3409                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3410
3411
3412                 /*
3413                  * There may not be documentation for max antenna gain
3414                  * in certain regions
3415                  */
3416                 if (power_rule->max_antenna_gain)
3417                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3418                                 freq_range->start_freq_khz,
3419                                 freq_range->end_freq_khz,
3420                                 bw,
3421                                 power_rule->max_antenna_gain,
3422                                 power_rule->max_eirp,
3423                                 cac_time);
3424                 else
3425                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3426                                 freq_range->start_freq_khz,
3427                                 freq_range->end_freq_khz,
3428                                 bw,
3429                                 power_rule->max_eirp,
3430                                 cac_time);
3431         }
3432 }
3433
3434 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3435 {
3436         switch (dfs_region) {
3437         case NL80211_DFS_UNSET:
3438         case NL80211_DFS_FCC:
3439         case NL80211_DFS_ETSI:
3440         case NL80211_DFS_JP:
3441                 return true;
3442         default:
3443                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3444                 return false;
3445         }
3446 }
3447
3448 static void print_regdomain(const struct ieee80211_regdomain *rd)
3449 {
3450         struct regulatory_request *lr = get_last_request();
3451
3452         if (is_intersected_alpha2(rd->alpha2)) {
3453                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3454                         struct cfg80211_registered_device *rdev;
3455                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3456                         if (rdev) {
3457                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3458                                         rdev->country_ie_alpha2[0],
3459                                         rdev->country_ie_alpha2[1]);
3460                         } else
3461                                 pr_debug("Current regulatory domain intersected:\n");
3462                 } else
3463                         pr_debug("Current regulatory domain intersected:\n");
3464         } else if (is_world_regdom(rd->alpha2)) {
3465                 pr_debug("World regulatory domain updated:\n");
3466         } else {
3467                 if (is_unknown_alpha2(rd->alpha2))
3468                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3469                 else {
3470                         if (reg_request_cell_base(lr))
3471                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3472                                         rd->alpha2[0], rd->alpha2[1]);
3473                         else
3474                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3475                                         rd->alpha2[0], rd->alpha2[1]);
3476                 }
3477         }
3478
3479         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3480         print_rd_rules(rd);
3481 }
3482
3483 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3484 {
3485         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3486         print_rd_rules(rd);
3487 }
3488
3489 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3490 {
3491         if (!is_world_regdom(rd->alpha2))
3492                 return -EINVAL;
3493         update_world_regdomain(rd);
3494         return 0;
3495 }
3496
3497 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3498                            struct regulatory_request *user_request)
3499 {
3500         const struct ieee80211_regdomain *intersected_rd = NULL;
3501
3502         if (!regdom_changes(rd->alpha2))
3503                 return -EALREADY;
3504
3505         if (!is_valid_rd(rd)) {
3506                 pr_err("Invalid regulatory domain detected: %c%c\n",
3507                        rd->alpha2[0], rd->alpha2[1]);
3508                 print_regdomain_info(rd);
3509                 return -EINVAL;
3510         }
3511
3512         if (!user_request->intersect) {
3513                 reset_regdomains(false, rd);
3514                 return 0;
3515         }
3516
3517         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3518         if (!intersected_rd)
3519                 return -EINVAL;
3520
3521         kfree(rd);
3522         rd = NULL;
3523         reset_regdomains(false, intersected_rd);
3524
3525         return 0;
3526 }
3527
3528 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3529                              struct regulatory_request *driver_request)
3530 {
3531         const struct ieee80211_regdomain *regd;
3532         const struct ieee80211_regdomain *intersected_rd = NULL;
3533         const struct ieee80211_regdomain *tmp;
3534         struct wiphy *request_wiphy;
3535
3536         if (is_world_regdom(rd->alpha2))
3537                 return -EINVAL;
3538
3539         if (!regdom_changes(rd->alpha2))
3540                 return -EALREADY;
3541
3542         if (!is_valid_rd(rd)) {
3543                 pr_err("Invalid regulatory domain detected: %c%c\n",
3544                        rd->alpha2[0], rd->alpha2[1]);
3545                 print_regdomain_info(rd);
3546                 return -EINVAL;
3547         }
3548
3549         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3550         if (!request_wiphy)
3551                 return -ENODEV;
3552
3553         if (!driver_request->intersect) {
3554                 if (request_wiphy->regd)
3555                         return -EALREADY;
3556
3557                 regd = reg_copy_regd(rd);
3558                 if (IS_ERR(regd))
3559                         return PTR_ERR(regd);
3560
3561                 rcu_assign_pointer(request_wiphy->regd, regd);
3562                 reset_regdomains(false, rd);
3563                 return 0;
3564         }
3565
3566         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3567         if (!intersected_rd)
3568                 return -EINVAL;
3569
3570         /*
3571          * We can trash what CRDA provided now.
3572          * However if a driver requested this specific regulatory
3573          * domain we keep it for its private use
3574          */
3575         tmp = get_wiphy_regdom(request_wiphy);
3576         rcu_assign_pointer(request_wiphy->regd, rd);
3577         rcu_free_regdom(tmp);
3578
3579         rd = NULL;
3580
3581         reset_regdomains(false, intersected_rd);
3582
3583         return 0;
3584 }
3585
3586 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3587                                  struct regulatory_request *country_ie_request)
3588 {
3589         struct wiphy *request_wiphy;
3590
3591         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3592             !is_unknown_alpha2(rd->alpha2))
3593                 return -EINVAL;
3594
3595         /*
3596          * Lets only bother proceeding on the same alpha2 if the current
3597          * rd is non static (it means CRDA was present and was used last)
3598          * and the pending request came in from a country IE
3599          */
3600
3601         if (!is_valid_rd(rd)) {
3602                 pr_err("Invalid regulatory domain detected: %c%c\n",
3603                        rd->alpha2[0], rd->alpha2[1]);
3604                 print_regdomain_info(rd);
3605                 return -EINVAL;
3606         }
3607
3608         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3609         if (!request_wiphy)
3610                 return -ENODEV;
3611
3612         if (country_ie_request->intersect)
3613                 return -EINVAL;
3614
3615         reset_regdomains(false, rd);
3616         return 0;
3617 }
3618
3619 /*
3620  * Use this call to set the current regulatory domain. Conflicts with
3621  * multiple drivers can be ironed out later. Caller must've already
3622  * kmalloc'd the rd structure.
3623  */
3624 int set_regdom(const struct ieee80211_regdomain *rd,
3625                enum ieee80211_regd_source regd_src)
3626 {
3627         struct regulatory_request *lr;
3628         bool user_reset = false;
3629         int r;
3630
3631         if (IS_ERR_OR_NULL(rd))
3632                 return -ENODATA;
3633
3634         if (!reg_is_valid_request(rd->alpha2)) {
3635                 kfree(rd);
3636                 return -EINVAL;
3637         }
3638
3639         if (regd_src == REGD_SOURCE_CRDA)
3640                 reset_crda_timeouts();
3641
3642         lr = get_last_request();
3643
3644         /* Note that this doesn't update the wiphys, this is done below */
3645         switch (lr->initiator) {
3646         case NL80211_REGDOM_SET_BY_CORE:
3647                 r = reg_set_rd_core(rd);
3648                 break;
3649         case NL80211_REGDOM_SET_BY_USER:
3650                 cfg80211_save_user_regdom(rd);
3651                 r = reg_set_rd_user(rd, lr);
3652                 user_reset = true;
3653                 break;
3654         case NL80211_REGDOM_SET_BY_DRIVER:
3655                 r = reg_set_rd_driver(rd, lr);
3656                 break;
3657         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3658                 r = reg_set_rd_country_ie(rd, lr);
3659                 break;
3660         default:
3661                 WARN(1, "invalid initiator %d\n", lr->initiator);
3662                 kfree(rd);
3663                 return -EINVAL;
3664         }
3665
3666         if (r) {
3667                 switch (r) {
3668                 case -EALREADY:
3669                         reg_set_request_processed();
3670                         break;
3671                 default:
3672                         /* Back to world regulatory in case of errors */
3673                         restore_regulatory_settings(user_reset, false);
3674                 }
3675
3676                 kfree(rd);
3677                 return r;
3678         }
3679
3680         /* This would make this whole thing pointless */
3681         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3682                 return -EINVAL;
3683
3684         /* update all wiphys now with the new established regulatory domain */
3685         update_all_wiphy_regulatory(lr->initiator);
3686
3687         print_regdomain(get_cfg80211_regdom());
3688
3689         nl80211_send_reg_change_event(lr);
3690
3691         reg_set_request_processed();
3692
3693         return 0;
3694 }
3695
3696 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3697                                        struct ieee80211_regdomain *rd)
3698 {
3699         const struct ieee80211_regdomain *regd;
3700         const struct ieee80211_regdomain *prev_regd;
3701         struct cfg80211_registered_device *rdev;
3702
3703         if (WARN_ON(!wiphy || !rd))
3704                 return -EINVAL;
3705
3706         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3707                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3708                 return -EPERM;
3709
3710         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3711                 print_regdomain_info(rd);
3712                 return -EINVAL;
3713         }
3714
3715         regd = reg_copy_regd(rd);
3716         if (IS_ERR(regd))
3717                 return PTR_ERR(regd);
3718
3719         rdev = wiphy_to_rdev(wiphy);
3720
3721         spin_lock(&reg_requests_lock);
3722         prev_regd = rdev->requested_regd;
3723         rdev->requested_regd = regd;
3724         spin_unlock(&reg_requests_lock);
3725
3726         kfree(prev_regd);
3727         return 0;
3728 }
3729
3730 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3731                               struct ieee80211_regdomain *rd)
3732 {
3733         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3734
3735         if (ret)
3736                 return ret;
3737
3738         schedule_work(&reg_work);
3739         return 0;
3740 }
3741 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3742
3743 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3744                                         struct ieee80211_regdomain *rd)
3745 {
3746         int ret;
3747
3748         ASSERT_RTNL();
3749
3750         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3751         if (ret)
3752                 return ret;
3753
3754         /* process the request immediately */
3755         reg_process_self_managed_hints();
3756         return 0;
3757 }
3758 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3759
3760 void wiphy_regulatory_register(struct wiphy *wiphy)
3761 {
3762         struct regulatory_request *lr = get_last_request();
3763
3764         /* self-managed devices ignore beacon hints and country IE */
3765         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3766                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3767                                            REGULATORY_COUNTRY_IE_IGNORE;
3768
3769                 /*
3770                  * The last request may have been received before this
3771                  * registration call. Call the driver notifier if
3772                  * initiator is USER.
3773                  */
3774                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
3775                         reg_call_notifier(wiphy, lr);
3776         }
3777
3778         if (!reg_dev_ignore_cell_hint(wiphy))
3779                 reg_num_devs_support_basehint++;
3780
3781         wiphy_update_regulatory(wiphy, lr->initiator);
3782         wiphy_all_share_dfs_chan_state(wiphy);
3783 }
3784
3785 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3786 {
3787         struct wiphy *request_wiphy = NULL;
3788         struct regulatory_request *lr;
3789
3790         lr = get_last_request();
3791
3792         if (!reg_dev_ignore_cell_hint(wiphy))
3793                 reg_num_devs_support_basehint--;
3794
3795         rcu_free_regdom(get_wiphy_regdom(wiphy));
3796         RCU_INIT_POINTER(wiphy->regd, NULL);
3797
3798         if (lr)
3799                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3800
3801         if (!request_wiphy || request_wiphy != wiphy)
3802                 return;
3803
3804         lr->wiphy_idx = WIPHY_IDX_INVALID;
3805         lr->country_ie_env = ENVIRON_ANY;
3806 }
3807
3808 /*
3809  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3810  * UNII band definitions
3811  */
3812 int cfg80211_get_unii(int freq)
3813 {
3814         /* UNII-1 */
3815         if (freq >= 5150 && freq <= 5250)
3816                 return 0;
3817
3818         /* UNII-2A */
3819         if (freq > 5250 && freq <= 5350)
3820                 return 1;
3821
3822         /* UNII-2B */
3823         if (freq > 5350 && freq <= 5470)
3824                 return 2;
3825
3826         /* UNII-2C */
3827         if (freq > 5470 && freq <= 5725)
3828                 return 3;
3829
3830         /* UNII-3 */
3831         if (freq > 5725 && freq <= 5825)
3832                 return 4;
3833
3834         return -EINVAL;
3835 }
3836
3837 bool regulatory_indoor_allowed(void)
3838 {
3839         return reg_is_indoor;
3840 }
3841
3842 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3843 {
3844         const struct ieee80211_regdomain *regd = NULL;
3845         const struct ieee80211_regdomain *wiphy_regd = NULL;
3846         bool pre_cac_allowed = false;
3847
3848         rcu_read_lock();
3849
3850         regd = rcu_dereference(cfg80211_regdomain);
3851         wiphy_regd = rcu_dereference(wiphy->regd);
3852         if (!wiphy_regd) {
3853                 if (regd->dfs_region == NL80211_DFS_ETSI)
3854                         pre_cac_allowed = true;
3855
3856                 rcu_read_unlock();
3857
3858                 return pre_cac_allowed;
3859         }
3860
3861         if (regd->dfs_region == wiphy_regd->dfs_region &&
3862             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3863                 pre_cac_allowed = true;
3864
3865         rcu_read_unlock();
3866
3867         return pre_cac_allowed;
3868 }
3869
3870 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3871                                     struct cfg80211_chan_def *chandef,
3872                                     enum nl80211_dfs_state dfs_state,
3873                                     enum nl80211_radar_event event)
3874 {
3875         struct cfg80211_registered_device *rdev;
3876
3877         ASSERT_RTNL();
3878
3879         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3880                 return;
3881
3882         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3883                 if (wiphy == &rdev->wiphy)
3884                         continue;
3885
3886                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3887                         continue;
3888
3889                 if (!ieee80211_get_channel(&rdev->wiphy,
3890                                            chandef->chan->center_freq))
3891                         continue;
3892
3893                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3894
3895                 if (event == NL80211_RADAR_DETECTED ||
3896                     event == NL80211_RADAR_CAC_FINISHED)
3897                         cfg80211_sched_dfs_chan_update(rdev);
3898
3899                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3900         }
3901 }
3902
3903 static int __init regulatory_init_db(void)
3904 {
3905         int err;
3906
3907         /*
3908          * It's possible that - due to other bugs/issues - cfg80211
3909          * never called regulatory_init() below, or that it failed;
3910          * in that case, don't try to do any further work here as
3911          * it's doomed to lead to crashes.
3912          */
3913         if (IS_ERR_OR_NULL(reg_pdev))
3914                 return -EINVAL;
3915
3916         err = load_builtin_regdb_keys();
3917         if (err)
3918                 return err;
3919
3920         /* We always try to get an update for the static regdomain */
3921         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3922         if (err) {
3923                 if (err == -ENOMEM) {
3924                         platform_device_unregister(reg_pdev);
3925                         return err;
3926                 }
3927                 /*
3928                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3929                  * memory which is handled and propagated appropriately above
3930                  * but it can also fail during a netlink_broadcast() or during
3931                  * early boot for call_usermodehelper(). For now treat these
3932                  * errors as non-fatal.
3933                  */
3934                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3935         }
3936
3937         /*
3938          * Finally, if the user set the module parameter treat it
3939          * as a user hint.
3940          */
3941         if (!is_world_regdom(ieee80211_regdom))
3942                 regulatory_hint_user(ieee80211_regdom,
3943                                      NL80211_USER_REG_HINT_USER);
3944
3945         return 0;
3946 }
3947 #ifndef MODULE
3948 late_initcall(regulatory_init_db);
3949 #endif
3950
3951 int __init regulatory_init(void)
3952 {
3953         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3954         if (IS_ERR(reg_pdev))
3955                 return PTR_ERR(reg_pdev);
3956
3957         spin_lock_init(&reg_requests_lock);
3958         spin_lock_init(&reg_pending_beacons_lock);
3959         spin_lock_init(&reg_indoor_lock);
3960
3961         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3962
3963         user_alpha2[0] = '9';
3964         user_alpha2[1] = '7';
3965
3966 #ifdef MODULE
3967         return regulatory_init_db();
3968 #else
3969         return 0;
3970 #endif
3971 }
3972
3973 void regulatory_exit(void)
3974 {
3975         struct regulatory_request *reg_request, *tmp;
3976         struct reg_beacon *reg_beacon, *btmp;
3977
3978         cancel_work_sync(&reg_work);
3979         cancel_crda_timeout_sync();
3980         cancel_delayed_work_sync(&reg_check_chans);
3981
3982         /* Lock to suppress warnings */
3983         rtnl_lock();
3984         reset_regdomains(true, NULL);
3985         rtnl_unlock();
3986
3987         dev_set_uevent_suppress(&reg_pdev->dev, true);
3988
3989         platform_device_unregister(reg_pdev);
3990
3991         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3992                 list_del(&reg_beacon->list);
3993                 kfree(reg_beacon);
3994         }
3995
3996         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3997                 list_del(&reg_beacon->list);
3998                 kfree(reg_beacon);
3999         }
4000
4001         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4002                 list_del(&reg_request->list);
4003                 kfree(reg_request);
4004         }
4005
4006         if (!IS_ERR_OR_NULL(regdb))
4007                 kfree(regdb);
4008         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4009                 kfree(cfg80211_user_regdom);
4010
4011         free_regdb_keyring();
4012 }