Merge tag 'trace-v5.0-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[sfrench/cifs-2.6.git] / net / tls / tls_sw.c
1 /*
2  * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3  * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4  * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5  * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6  * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7  * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
8  *
9  * This software is available to you under a choice of one of two
10  * licenses.  You may choose to be licensed under the terms of the GNU
11  * General Public License (GPL) Version 2, available from the file
12  * COPYING in the main directory of this source tree, or the
13  * OpenIB.org BSD license below:
14  *
15  *     Redistribution and use in source and binary forms, with or
16  *     without modification, are permitted provided that the following
17  *     conditions are met:
18  *
19  *      - Redistributions of source code must retain the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer.
22  *
23  *      - Redistributions in binary form must reproduce the above
24  *        copyright notice, this list of conditions and the following
25  *        disclaimer in the documentation and/or other materials
26  *        provided with the distribution.
27  *
28  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35  * SOFTWARE.
36  */
37
38 #include <linux/sched/signal.h>
39 #include <linux/module.h>
40 #include <crypto/aead.h>
41
42 #include <net/strparser.h>
43 #include <net/tls.h>
44
45 #define MAX_IV_SIZE     TLS_CIPHER_AES_GCM_128_IV_SIZE
46
47 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
48                      unsigned int recursion_level)
49 {
50         int start = skb_headlen(skb);
51         int i, chunk = start - offset;
52         struct sk_buff *frag_iter;
53         int elt = 0;
54
55         if (unlikely(recursion_level >= 24))
56                 return -EMSGSIZE;
57
58         if (chunk > 0) {
59                 if (chunk > len)
60                         chunk = len;
61                 elt++;
62                 len -= chunk;
63                 if (len == 0)
64                         return elt;
65                 offset += chunk;
66         }
67
68         for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
69                 int end;
70
71                 WARN_ON(start > offset + len);
72
73                 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
74                 chunk = end - offset;
75                 if (chunk > 0) {
76                         if (chunk > len)
77                                 chunk = len;
78                         elt++;
79                         len -= chunk;
80                         if (len == 0)
81                                 return elt;
82                         offset += chunk;
83                 }
84                 start = end;
85         }
86
87         if (unlikely(skb_has_frag_list(skb))) {
88                 skb_walk_frags(skb, frag_iter) {
89                         int end, ret;
90
91                         WARN_ON(start > offset + len);
92
93                         end = start + frag_iter->len;
94                         chunk = end - offset;
95                         if (chunk > 0) {
96                                 if (chunk > len)
97                                         chunk = len;
98                                 ret = __skb_nsg(frag_iter, offset - start, chunk,
99                                                 recursion_level + 1);
100                                 if (unlikely(ret < 0))
101                                         return ret;
102                                 elt += ret;
103                                 len -= chunk;
104                                 if (len == 0)
105                                         return elt;
106                                 offset += chunk;
107                         }
108                         start = end;
109                 }
110         }
111         BUG_ON(len);
112         return elt;
113 }
114
115 /* Return the number of scatterlist elements required to completely map the
116  * skb, or -EMSGSIZE if the recursion depth is exceeded.
117  */
118 static int skb_nsg(struct sk_buff *skb, int offset, int len)
119 {
120         return __skb_nsg(skb, offset, len, 0);
121 }
122
123 static void tls_decrypt_done(struct crypto_async_request *req, int err)
124 {
125         struct aead_request *aead_req = (struct aead_request *)req;
126         struct scatterlist *sgout = aead_req->dst;
127         struct tls_sw_context_rx *ctx;
128         struct tls_context *tls_ctx;
129         struct scatterlist *sg;
130         struct sk_buff *skb;
131         unsigned int pages;
132         int pending;
133
134         skb = (struct sk_buff *)req->data;
135         tls_ctx = tls_get_ctx(skb->sk);
136         ctx = tls_sw_ctx_rx(tls_ctx);
137         pending = atomic_dec_return(&ctx->decrypt_pending);
138
139         /* Propagate if there was an err */
140         if (err) {
141                 ctx->async_wait.err = err;
142                 tls_err_abort(skb->sk, err);
143         }
144
145         /* After using skb->sk to propagate sk through crypto async callback
146          * we need to NULL it again.
147          */
148         skb->sk = NULL;
149
150         /* Release the skb, pages and memory allocated for crypto req */
151         kfree_skb(skb);
152
153         /* Skip the first S/G entry as it points to AAD */
154         for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
155                 if (!sg)
156                         break;
157                 put_page(sg_page(sg));
158         }
159
160         kfree(aead_req);
161
162         if (!pending && READ_ONCE(ctx->async_notify))
163                 complete(&ctx->async_wait.completion);
164 }
165
166 static int tls_do_decryption(struct sock *sk,
167                              struct sk_buff *skb,
168                              struct scatterlist *sgin,
169                              struct scatterlist *sgout,
170                              char *iv_recv,
171                              size_t data_len,
172                              struct aead_request *aead_req,
173                              bool async)
174 {
175         struct tls_context *tls_ctx = tls_get_ctx(sk);
176         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
177         int ret;
178
179         aead_request_set_tfm(aead_req, ctx->aead_recv);
180         aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
181         aead_request_set_crypt(aead_req, sgin, sgout,
182                                data_len + tls_ctx->rx.tag_size,
183                                (u8 *)iv_recv);
184
185         if (async) {
186                 /* Using skb->sk to push sk through to crypto async callback
187                  * handler. This allows propagating errors up to the socket
188                  * if needed. It _must_ be cleared in the async handler
189                  * before kfree_skb is called. We _know_ skb->sk is NULL
190                  * because it is a clone from strparser.
191                  */
192                 skb->sk = sk;
193                 aead_request_set_callback(aead_req,
194                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
195                                           tls_decrypt_done, skb);
196                 atomic_inc(&ctx->decrypt_pending);
197         } else {
198                 aead_request_set_callback(aead_req,
199                                           CRYPTO_TFM_REQ_MAY_BACKLOG,
200                                           crypto_req_done, &ctx->async_wait);
201         }
202
203         ret = crypto_aead_decrypt(aead_req);
204         if (ret == -EINPROGRESS) {
205                 if (async)
206                         return ret;
207
208                 ret = crypto_wait_req(ret, &ctx->async_wait);
209         }
210
211         if (async)
212                 atomic_dec(&ctx->decrypt_pending);
213
214         return ret;
215 }
216
217 static void tls_trim_both_msgs(struct sock *sk, int target_size)
218 {
219         struct tls_context *tls_ctx = tls_get_ctx(sk);
220         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
221         struct tls_rec *rec = ctx->open_rec;
222
223         sk_msg_trim(sk, &rec->msg_plaintext, target_size);
224         if (target_size > 0)
225                 target_size += tls_ctx->tx.overhead_size;
226         sk_msg_trim(sk, &rec->msg_encrypted, target_size);
227 }
228
229 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
230 {
231         struct tls_context *tls_ctx = tls_get_ctx(sk);
232         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
233         struct tls_rec *rec = ctx->open_rec;
234         struct sk_msg *msg_en = &rec->msg_encrypted;
235
236         return sk_msg_alloc(sk, msg_en, len, 0);
237 }
238
239 static int tls_clone_plaintext_msg(struct sock *sk, int required)
240 {
241         struct tls_context *tls_ctx = tls_get_ctx(sk);
242         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
243         struct tls_rec *rec = ctx->open_rec;
244         struct sk_msg *msg_pl = &rec->msg_plaintext;
245         struct sk_msg *msg_en = &rec->msg_encrypted;
246         int skip, len;
247
248         /* We add page references worth len bytes from encrypted sg
249          * at the end of plaintext sg. It is guaranteed that msg_en
250          * has enough required room (ensured by caller).
251          */
252         len = required - msg_pl->sg.size;
253
254         /* Skip initial bytes in msg_en's data to be able to use
255          * same offset of both plain and encrypted data.
256          */
257         skip = tls_ctx->tx.prepend_size + msg_pl->sg.size;
258
259         return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
260 }
261
262 static struct tls_rec *tls_get_rec(struct sock *sk)
263 {
264         struct tls_context *tls_ctx = tls_get_ctx(sk);
265         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
266         struct sk_msg *msg_pl, *msg_en;
267         struct tls_rec *rec;
268         int mem_size;
269
270         mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
271
272         rec = kzalloc(mem_size, sk->sk_allocation);
273         if (!rec)
274                 return NULL;
275
276         msg_pl = &rec->msg_plaintext;
277         msg_en = &rec->msg_encrypted;
278
279         sk_msg_init(msg_pl);
280         sk_msg_init(msg_en);
281
282         sg_init_table(rec->sg_aead_in, 2);
283         sg_set_buf(&rec->sg_aead_in[0], rec->aad_space,
284                    sizeof(rec->aad_space));
285         sg_unmark_end(&rec->sg_aead_in[1]);
286
287         sg_init_table(rec->sg_aead_out, 2);
288         sg_set_buf(&rec->sg_aead_out[0], rec->aad_space,
289                    sizeof(rec->aad_space));
290         sg_unmark_end(&rec->sg_aead_out[1]);
291
292         return rec;
293 }
294
295 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
296 {
297         sk_msg_free(sk, &rec->msg_encrypted);
298         sk_msg_free(sk, &rec->msg_plaintext);
299         kfree(rec);
300 }
301
302 static void tls_free_open_rec(struct sock *sk)
303 {
304         struct tls_context *tls_ctx = tls_get_ctx(sk);
305         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
306         struct tls_rec *rec = ctx->open_rec;
307
308         if (rec) {
309                 tls_free_rec(sk, rec);
310                 ctx->open_rec = NULL;
311         }
312 }
313
314 int tls_tx_records(struct sock *sk, int flags)
315 {
316         struct tls_context *tls_ctx = tls_get_ctx(sk);
317         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
318         struct tls_rec *rec, *tmp;
319         struct sk_msg *msg_en;
320         int tx_flags, rc = 0;
321
322         if (tls_is_partially_sent_record(tls_ctx)) {
323                 rec = list_first_entry(&ctx->tx_list,
324                                        struct tls_rec, list);
325
326                 if (flags == -1)
327                         tx_flags = rec->tx_flags;
328                 else
329                         tx_flags = flags;
330
331                 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
332                 if (rc)
333                         goto tx_err;
334
335                 /* Full record has been transmitted.
336                  * Remove the head of tx_list
337                  */
338                 list_del(&rec->list);
339                 sk_msg_free(sk, &rec->msg_plaintext);
340                 kfree(rec);
341         }
342
343         /* Tx all ready records */
344         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
345                 if (READ_ONCE(rec->tx_ready)) {
346                         if (flags == -1)
347                                 tx_flags = rec->tx_flags;
348                         else
349                                 tx_flags = flags;
350
351                         msg_en = &rec->msg_encrypted;
352                         rc = tls_push_sg(sk, tls_ctx,
353                                          &msg_en->sg.data[msg_en->sg.curr],
354                                          0, tx_flags);
355                         if (rc)
356                                 goto tx_err;
357
358                         list_del(&rec->list);
359                         sk_msg_free(sk, &rec->msg_plaintext);
360                         kfree(rec);
361                 } else {
362                         break;
363                 }
364         }
365
366 tx_err:
367         if (rc < 0 && rc != -EAGAIN)
368                 tls_err_abort(sk, EBADMSG);
369
370         return rc;
371 }
372
373 static void tls_encrypt_done(struct crypto_async_request *req, int err)
374 {
375         struct aead_request *aead_req = (struct aead_request *)req;
376         struct sock *sk = req->data;
377         struct tls_context *tls_ctx = tls_get_ctx(sk);
378         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
379         struct scatterlist *sge;
380         struct sk_msg *msg_en;
381         struct tls_rec *rec;
382         bool ready = false;
383         int pending;
384
385         rec = container_of(aead_req, struct tls_rec, aead_req);
386         msg_en = &rec->msg_encrypted;
387
388         sge = sk_msg_elem(msg_en, msg_en->sg.curr);
389         sge->offset -= tls_ctx->tx.prepend_size;
390         sge->length += tls_ctx->tx.prepend_size;
391
392         /* Check if error is previously set on socket */
393         if (err || sk->sk_err) {
394                 rec = NULL;
395
396                 /* If err is already set on socket, return the same code */
397                 if (sk->sk_err) {
398                         ctx->async_wait.err = sk->sk_err;
399                 } else {
400                         ctx->async_wait.err = err;
401                         tls_err_abort(sk, err);
402                 }
403         }
404
405         if (rec) {
406                 struct tls_rec *first_rec;
407
408                 /* Mark the record as ready for transmission */
409                 smp_store_mb(rec->tx_ready, true);
410
411                 /* If received record is at head of tx_list, schedule tx */
412                 first_rec = list_first_entry(&ctx->tx_list,
413                                              struct tls_rec, list);
414                 if (rec == first_rec)
415                         ready = true;
416         }
417
418         pending = atomic_dec_return(&ctx->encrypt_pending);
419
420         if (!pending && READ_ONCE(ctx->async_notify))
421                 complete(&ctx->async_wait.completion);
422
423         if (!ready)
424                 return;
425
426         /* Schedule the transmission */
427         if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
428                 schedule_delayed_work(&ctx->tx_work.work, 1);
429 }
430
431 static int tls_do_encryption(struct sock *sk,
432                              struct tls_context *tls_ctx,
433                              struct tls_sw_context_tx *ctx,
434                              struct aead_request *aead_req,
435                              size_t data_len, u32 start)
436 {
437         struct tls_rec *rec = ctx->open_rec;
438         struct sk_msg *msg_en = &rec->msg_encrypted;
439         struct scatterlist *sge = sk_msg_elem(msg_en, start);
440         int rc;
441
442         memcpy(rec->iv_data, tls_ctx->tx.iv, sizeof(rec->iv_data));
443
444         sge->offset += tls_ctx->tx.prepend_size;
445         sge->length -= tls_ctx->tx.prepend_size;
446
447         msg_en->sg.curr = start;
448
449         aead_request_set_tfm(aead_req, ctx->aead_send);
450         aead_request_set_ad(aead_req, TLS_AAD_SPACE_SIZE);
451         aead_request_set_crypt(aead_req, rec->sg_aead_in,
452                                rec->sg_aead_out,
453                                data_len, rec->iv_data);
454
455         aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
456                                   tls_encrypt_done, sk);
457
458         /* Add the record in tx_list */
459         list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
460         atomic_inc(&ctx->encrypt_pending);
461
462         rc = crypto_aead_encrypt(aead_req);
463         if (!rc || rc != -EINPROGRESS) {
464                 atomic_dec(&ctx->encrypt_pending);
465                 sge->offset -= tls_ctx->tx.prepend_size;
466                 sge->length += tls_ctx->tx.prepend_size;
467         }
468
469         if (!rc) {
470                 WRITE_ONCE(rec->tx_ready, true);
471         } else if (rc != -EINPROGRESS) {
472                 list_del(&rec->list);
473                 return rc;
474         }
475
476         /* Unhook the record from context if encryption is not failure */
477         ctx->open_rec = NULL;
478         tls_advance_record_sn(sk, &tls_ctx->tx);
479         return rc;
480 }
481
482 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
483                                  struct tls_rec **to, struct sk_msg *msg_opl,
484                                  struct sk_msg *msg_oen, u32 split_point,
485                                  u32 tx_overhead_size, u32 *orig_end)
486 {
487         u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
488         struct scatterlist *sge, *osge, *nsge;
489         u32 orig_size = msg_opl->sg.size;
490         struct scatterlist tmp = { };
491         struct sk_msg *msg_npl;
492         struct tls_rec *new;
493         int ret;
494
495         new = tls_get_rec(sk);
496         if (!new)
497                 return -ENOMEM;
498         ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
499                            tx_overhead_size, 0);
500         if (ret < 0) {
501                 tls_free_rec(sk, new);
502                 return ret;
503         }
504
505         *orig_end = msg_opl->sg.end;
506         i = msg_opl->sg.start;
507         sge = sk_msg_elem(msg_opl, i);
508         while (apply && sge->length) {
509                 if (sge->length > apply) {
510                         u32 len = sge->length - apply;
511
512                         get_page(sg_page(sge));
513                         sg_set_page(&tmp, sg_page(sge), len,
514                                     sge->offset + apply);
515                         sge->length = apply;
516                         bytes += apply;
517                         apply = 0;
518                 } else {
519                         apply -= sge->length;
520                         bytes += sge->length;
521                 }
522
523                 sk_msg_iter_var_next(i);
524                 if (i == msg_opl->sg.end)
525                         break;
526                 sge = sk_msg_elem(msg_opl, i);
527         }
528
529         msg_opl->sg.end = i;
530         msg_opl->sg.curr = i;
531         msg_opl->sg.copybreak = 0;
532         msg_opl->apply_bytes = 0;
533         msg_opl->sg.size = bytes;
534
535         msg_npl = &new->msg_plaintext;
536         msg_npl->apply_bytes = apply;
537         msg_npl->sg.size = orig_size - bytes;
538
539         j = msg_npl->sg.start;
540         nsge = sk_msg_elem(msg_npl, j);
541         if (tmp.length) {
542                 memcpy(nsge, &tmp, sizeof(*nsge));
543                 sk_msg_iter_var_next(j);
544                 nsge = sk_msg_elem(msg_npl, j);
545         }
546
547         osge = sk_msg_elem(msg_opl, i);
548         while (osge->length) {
549                 memcpy(nsge, osge, sizeof(*nsge));
550                 sg_unmark_end(nsge);
551                 sk_msg_iter_var_next(i);
552                 sk_msg_iter_var_next(j);
553                 if (i == *orig_end)
554                         break;
555                 osge = sk_msg_elem(msg_opl, i);
556                 nsge = sk_msg_elem(msg_npl, j);
557         }
558
559         msg_npl->sg.end = j;
560         msg_npl->sg.curr = j;
561         msg_npl->sg.copybreak = 0;
562
563         *to = new;
564         return 0;
565 }
566
567 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
568                                   struct tls_rec *from, u32 orig_end)
569 {
570         struct sk_msg *msg_npl = &from->msg_plaintext;
571         struct sk_msg *msg_opl = &to->msg_plaintext;
572         struct scatterlist *osge, *nsge;
573         u32 i, j;
574
575         i = msg_opl->sg.end;
576         sk_msg_iter_var_prev(i);
577         j = msg_npl->sg.start;
578
579         osge = sk_msg_elem(msg_opl, i);
580         nsge = sk_msg_elem(msg_npl, j);
581
582         if (sg_page(osge) == sg_page(nsge) &&
583             osge->offset + osge->length == nsge->offset) {
584                 osge->length += nsge->length;
585                 put_page(sg_page(nsge));
586         }
587
588         msg_opl->sg.end = orig_end;
589         msg_opl->sg.curr = orig_end;
590         msg_opl->sg.copybreak = 0;
591         msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
592         msg_opl->sg.size += msg_npl->sg.size;
593
594         sk_msg_free(sk, &to->msg_encrypted);
595         sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
596
597         kfree(from);
598 }
599
600 static int tls_push_record(struct sock *sk, int flags,
601                            unsigned char record_type)
602 {
603         struct tls_context *tls_ctx = tls_get_ctx(sk);
604         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
605         struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
606         u32 i, split_point, uninitialized_var(orig_end);
607         struct sk_msg *msg_pl, *msg_en;
608         struct aead_request *req;
609         bool split;
610         int rc;
611
612         if (!rec)
613                 return 0;
614
615         msg_pl = &rec->msg_plaintext;
616         msg_en = &rec->msg_encrypted;
617
618         split_point = msg_pl->apply_bytes;
619         split = split_point && split_point < msg_pl->sg.size;
620         if (split) {
621                 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
622                                            split_point, tls_ctx->tx.overhead_size,
623                                            &orig_end);
624                 if (rc < 0)
625                         return rc;
626                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
627                             tls_ctx->tx.overhead_size);
628         }
629
630         rec->tx_flags = flags;
631         req = &rec->aead_req;
632
633         i = msg_pl->sg.end;
634         sk_msg_iter_var_prev(i);
635         sg_mark_end(sk_msg_elem(msg_pl, i));
636
637         i = msg_pl->sg.start;
638         sg_chain(rec->sg_aead_in, 2, rec->inplace_crypto ?
639                  &msg_en->sg.data[i] : &msg_pl->sg.data[i]);
640
641         i = msg_en->sg.end;
642         sk_msg_iter_var_prev(i);
643         sg_mark_end(sk_msg_elem(msg_en, i));
644
645         i = msg_en->sg.start;
646         sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
647
648         tls_make_aad(rec->aad_space, msg_pl->sg.size,
649                      tls_ctx->tx.rec_seq, tls_ctx->tx.rec_seq_size,
650                      record_type);
651
652         tls_fill_prepend(tls_ctx,
653                          page_address(sg_page(&msg_en->sg.data[i])) +
654                          msg_en->sg.data[i].offset, msg_pl->sg.size,
655                          record_type);
656
657         tls_ctx->pending_open_record_frags = false;
658
659         rc = tls_do_encryption(sk, tls_ctx, ctx, req, msg_pl->sg.size, i);
660         if (rc < 0) {
661                 if (rc != -EINPROGRESS) {
662                         tls_err_abort(sk, EBADMSG);
663                         if (split) {
664                                 tls_ctx->pending_open_record_frags = true;
665                                 tls_merge_open_record(sk, rec, tmp, orig_end);
666                         }
667                 }
668                 return rc;
669         } else if (split) {
670                 msg_pl = &tmp->msg_plaintext;
671                 msg_en = &tmp->msg_encrypted;
672                 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
673                             tls_ctx->tx.overhead_size);
674                 tls_ctx->pending_open_record_frags = true;
675                 ctx->open_rec = tmp;
676         }
677
678         return tls_tx_records(sk, flags);
679 }
680
681 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
682                                bool full_record, u8 record_type,
683                                size_t *copied, int flags)
684 {
685         struct tls_context *tls_ctx = tls_get_ctx(sk);
686         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
687         struct sk_msg msg_redir = { };
688         struct sk_psock *psock;
689         struct sock *sk_redir;
690         struct tls_rec *rec;
691         bool enospc, policy;
692         int err = 0, send;
693         u32 delta = 0;
694
695         policy = !(flags & MSG_SENDPAGE_NOPOLICY);
696         psock = sk_psock_get(sk);
697         if (!psock || !policy)
698                 return tls_push_record(sk, flags, record_type);
699 more_data:
700         enospc = sk_msg_full(msg);
701         if (psock->eval == __SK_NONE) {
702                 delta = msg->sg.size;
703                 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
704                 if (delta < msg->sg.size)
705                         delta -= msg->sg.size;
706                 else
707                         delta = 0;
708         }
709         if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
710             !enospc && !full_record) {
711                 err = -ENOSPC;
712                 goto out_err;
713         }
714         msg->cork_bytes = 0;
715         send = msg->sg.size;
716         if (msg->apply_bytes && msg->apply_bytes < send)
717                 send = msg->apply_bytes;
718
719         switch (psock->eval) {
720         case __SK_PASS:
721                 err = tls_push_record(sk, flags, record_type);
722                 if (err < 0) {
723                         *copied -= sk_msg_free(sk, msg);
724                         tls_free_open_rec(sk);
725                         goto out_err;
726                 }
727                 break;
728         case __SK_REDIRECT:
729                 sk_redir = psock->sk_redir;
730                 memcpy(&msg_redir, msg, sizeof(*msg));
731                 if (msg->apply_bytes < send)
732                         msg->apply_bytes = 0;
733                 else
734                         msg->apply_bytes -= send;
735                 sk_msg_return_zero(sk, msg, send);
736                 msg->sg.size -= send;
737                 release_sock(sk);
738                 err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
739                 lock_sock(sk);
740                 if (err < 0) {
741                         *copied -= sk_msg_free_nocharge(sk, &msg_redir);
742                         msg->sg.size = 0;
743                 }
744                 if (msg->sg.size == 0)
745                         tls_free_open_rec(sk);
746                 break;
747         case __SK_DROP:
748         default:
749                 sk_msg_free_partial(sk, msg, send);
750                 if (msg->apply_bytes < send)
751                         msg->apply_bytes = 0;
752                 else
753                         msg->apply_bytes -= send;
754                 if (msg->sg.size == 0)
755                         tls_free_open_rec(sk);
756                 *copied -= (send + delta);
757                 err = -EACCES;
758         }
759
760         if (likely(!err)) {
761                 bool reset_eval = !ctx->open_rec;
762
763                 rec = ctx->open_rec;
764                 if (rec) {
765                         msg = &rec->msg_plaintext;
766                         if (!msg->apply_bytes)
767                                 reset_eval = true;
768                 }
769                 if (reset_eval) {
770                         psock->eval = __SK_NONE;
771                         if (psock->sk_redir) {
772                                 sock_put(psock->sk_redir);
773                                 psock->sk_redir = NULL;
774                         }
775                 }
776                 if (rec)
777                         goto more_data;
778         }
779  out_err:
780         sk_psock_put(sk, psock);
781         return err;
782 }
783
784 static int tls_sw_push_pending_record(struct sock *sk, int flags)
785 {
786         struct tls_context *tls_ctx = tls_get_ctx(sk);
787         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
788         struct tls_rec *rec = ctx->open_rec;
789         struct sk_msg *msg_pl;
790         size_t copied;
791
792         if (!rec)
793                 return 0;
794
795         msg_pl = &rec->msg_plaintext;
796         copied = msg_pl->sg.size;
797         if (!copied)
798                 return 0;
799
800         return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
801                                    &copied, flags);
802 }
803
804 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
805 {
806         long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
807         struct tls_context *tls_ctx = tls_get_ctx(sk);
808         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
809         struct crypto_tfm *tfm = crypto_aead_tfm(ctx->aead_send);
810         bool async_capable = tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC;
811         unsigned char record_type = TLS_RECORD_TYPE_DATA;
812         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
813         bool eor = !(msg->msg_flags & MSG_MORE);
814         size_t try_to_copy, copied = 0;
815         struct sk_msg *msg_pl, *msg_en;
816         struct tls_rec *rec;
817         int required_size;
818         int num_async = 0;
819         bool full_record;
820         int record_room;
821         int num_zc = 0;
822         int orig_size;
823         int ret = 0;
824
825         if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL))
826                 return -ENOTSUPP;
827
828         lock_sock(sk);
829
830         /* Wait till there is any pending write on socket */
831         if (unlikely(sk->sk_write_pending)) {
832                 ret = wait_on_pending_writer(sk, &timeo);
833                 if (unlikely(ret))
834                         goto send_end;
835         }
836
837         if (unlikely(msg->msg_controllen)) {
838                 ret = tls_proccess_cmsg(sk, msg, &record_type);
839                 if (ret) {
840                         if (ret == -EINPROGRESS)
841                                 num_async++;
842                         else if (ret != -EAGAIN)
843                                 goto send_end;
844                 }
845         }
846
847         while (msg_data_left(msg)) {
848                 if (sk->sk_err) {
849                         ret = -sk->sk_err;
850                         goto send_end;
851                 }
852
853                 if (ctx->open_rec)
854                         rec = ctx->open_rec;
855                 else
856                         rec = ctx->open_rec = tls_get_rec(sk);
857                 if (!rec) {
858                         ret = -ENOMEM;
859                         goto send_end;
860                 }
861
862                 msg_pl = &rec->msg_plaintext;
863                 msg_en = &rec->msg_encrypted;
864
865                 orig_size = msg_pl->sg.size;
866                 full_record = false;
867                 try_to_copy = msg_data_left(msg);
868                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
869                 if (try_to_copy >= record_room) {
870                         try_to_copy = record_room;
871                         full_record = true;
872                 }
873
874                 required_size = msg_pl->sg.size + try_to_copy +
875                                 tls_ctx->tx.overhead_size;
876
877                 if (!sk_stream_memory_free(sk))
878                         goto wait_for_sndbuf;
879
880 alloc_encrypted:
881                 ret = tls_alloc_encrypted_msg(sk, required_size);
882                 if (ret) {
883                         if (ret != -ENOSPC)
884                                 goto wait_for_memory;
885
886                         /* Adjust try_to_copy according to the amount that was
887                          * actually allocated. The difference is due
888                          * to max sg elements limit
889                          */
890                         try_to_copy -= required_size - msg_en->sg.size;
891                         full_record = true;
892                 }
893
894                 if (!is_kvec && (full_record || eor) && !async_capable) {
895                         u32 first = msg_pl->sg.end;
896
897                         ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
898                                                         msg_pl, try_to_copy);
899                         if (ret)
900                                 goto fallback_to_reg_send;
901
902                         rec->inplace_crypto = 0;
903
904                         num_zc++;
905                         copied += try_to_copy;
906
907                         sk_msg_sg_copy_set(msg_pl, first);
908                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
909                                                   record_type, &copied,
910                                                   msg->msg_flags);
911                         if (ret) {
912                                 if (ret == -EINPROGRESS)
913                                         num_async++;
914                                 else if (ret == -ENOMEM)
915                                         goto wait_for_memory;
916                                 else if (ret == -ENOSPC)
917                                         goto rollback_iter;
918                                 else if (ret != -EAGAIN)
919                                         goto send_end;
920                         }
921                         continue;
922 rollback_iter:
923                         copied -= try_to_copy;
924                         sk_msg_sg_copy_clear(msg_pl, first);
925                         iov_iter_revert(&msg->msg_iter,
926                                         msg_pl->sg.size - orig_size);
927 fallback_to_reg_send:
928                         sk_msg_trim(sk, msg_pl, orig_size);
929                 }
930
931                 required_size = msg_pl->sg.size + try_to_copy;
932
933                 ret = tls_clone_plaintext_msg(sk, required_size);
934                 if (ret) {
935                         if (ret != -ENOSPC)
936                                 goto send_end;
937
938                         /* Adjust try_to_copy according to the amount that was
939                          * actually allocated. The difference is due
940                          * to max sg elements limit
941                          */
942                         try_to_copy -= required_size - msg_pl->sg.size;
943                         full_record = true;
944                         sk_msg_trim(sk, msg_en, msg_pl->sg.size +
945                                     tls_ctx->tx.overhead_size);
946                 }
947
948                 if (try_to_copy) {
949                         ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
950                                                        msg_pl, try_to_copy);
951                         if (ret < 0)
952                                 goto trim_sgl;
953                 }
954
955                 /* Open records defined only if successfully copied, otherwise
956                  * we would trim the sg but not reset the open record frags.
957                  */
958                 tls_ctx->pending_open_record_frags = true;
959                 copied += try_to_copy;
960                 if (full_record || eor) {
961                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
962                                                   record_type, &copied,
963                                                   msg->msg_flags);
964                         if (ret) {
965                                 if (ret == -EINPROGRESS)
966                                         num_async++;
967                                 else if (ret == -ENOMEM)
968                                         goto wait_for_memory;
969                                 else if (ret != -EAGAIN) {
970                                         if (ret == -ENOSPC)
971                                                 ret = 0;
972                                         goto send_end;
973                                 }
974                         }
975                 }
976
977                 continue;
978
979 wait_for_sndbuf:
980                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
981 wait_for_memory:
982                 ret = sk_stream_wait_memory(sk, &timeo);
983                 if (ret) {
984 trim_sgl:
985                         tls_trim_both_msgs(sk, orig_size);
986                         goto send_end;
987                 }
988
989                 if (msg_en->sg.size < required_size)
990                         goto alloc_encrypted;
991         }
992
993         if (!num_async) {
994                 goto send_end;
995         } else if (num_zc) {
996                 /* Wait for pending encryptions to get completed */
997                 smp_store_mb(ctx->async_notify, true);
998
999                 if (atomic_read(&ctx->encrypt_pending))
1000                         crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1001                 else
1002                         reinit_completion(&ctx->async_wait.completion);
1003
1004                 WRITE_ONCE(ctx->async_notify, false);
1005
1006                 if (ctx->async_wait.err) {
1007                         ret = ctx->async_wait.err;
1008                         copied = 0;
1009                 }
1010         }
1011
1012         /* Transmit if any encryptions have completed */
1013         if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1014                 cancel_delayed_work(&ctx->tx_work.work);
1015                 tls_tx_records(sk, msg->msg_flags);
1016         }
1017
1018 send_end:
1019         ret = sk_stream_error(sk, msg->msg_flags, ret);
1020
1021         release_sock(sk);
1022         return copied ? copied : ret;
1023 }
1024
1025 int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1026                        int offset, size_t size, int flags)
1027 {
1028         long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1029         struct tls_context *tls_ctx = tls_get_ctx(sk);
1030         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1031         unsigned char record_type = TLS_RECORD_TYPE_DATA;
1032         struct sk_msg *msg_pl;
1033         struct tls_rec *rec;
1034         int num_async = 0;
1035         size_t copied = 0;
1036         bool full_record;
1037         int record_room;
1038         int ret = 0;
1039         bool eor;
1040
1041         eor = !(flags & (MSG_MORE | MSG_SENDPAGE_NOTLAST));
1042         sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1043
1044         /* Wait till there is any pending write on socket */
1045         if (unlikely(sk->sk_write_pending)) {
1046                 ret = wait_on_pending_writer(sk, &timeo);
1047                 if (unlikely(ret))
1048                         goto sendpage_end;
1049         }
1050
1051         /* Call the sk_stream functions to manage the sndbuf mem. */
1052         while (size > 0) {
1053                 size_t copy, required_size;
1054
1055                 if (sk->sk_err) {
1056                         ret = -sk->sk_err;
1057                         goto sendpage_end;
1058                 }
1059
1060                 if (ctx->open_rec)
1061                         rec = ctx->open_rec;
1062                 else
1063                         rec = ctx->open_rec = tls_get_rec(sk);
1064                 if (!rec) {
1065                         ret = -ENOMEM;
1066                         goto sendpage_end;
1067                 }
1068
1069                 msg_pl = &rec->msg_plaintext;
1070
1071                 full_record = false;
1072                 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1073                 copied = 0;
1074                 copy = size;
1075                 if (copy >= record_room) {
1076                         copy = record_room;
1077                         full_record = true;
1078                 }
1079
1080                 required_size = msg_pl->sg.size + copy +
1081                                 tls_ctx->tx.overhead_size;
1082
1083                 if (!sk_stream_memory_free(sk))
1084                         goto wait_for_sndbuf;
1085 alloc_payload:
1086                 ret = tls_alloc_encrypted_msg(sk, required_size);
1087                 if (ret) {
1088                         if (ret != -ENOSPC)
1089                                 goto wait_for_memory;
1090
1091                         /* Adjust copy according to the amount that was
1092                          * actually allocated. The difference is due
1093                          * to max sg elements limit
1094                          */
1095                         copy -= required_size - msg_pl->sg.size;
1096                         full_record = true;
1097                 }
1098
1099                 sk_msg_page_add(msg_pl, page, copy, offset);
1100                 sk_mem_charge(sk, copy);
1101
1102                 offset += copy;
1103                 size -= copy;
1104                 copied += copy;
1105
1106                 tls_ctx->pending_open_record_frags = true;
1107                 if (full_record || eor || sk_msg_full(msg_pl)) {
1108                         rec->inplace_crypto = 0;
1109                         ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1110                                                   record_type, &copied, flags);
1111                         if (ret) {
1112                                 if (ret == -EINPROGRESS)
1113                                         num_async++;
1114                                 else if (ret == -ENOMEM)
1115                                         goto wait_for_memory;
1116                                 else if (ret != -EAGAIN) {
1117                                         if (ret == -ENOSPC)
1118                                                 ret = 0;
1119                                         goto sendpage_end;
1120                                 }
1121                         }
1122                 }
1123                 continue;
1124 wait_for_sndbuf:
1125                 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1126 wait_for_memory:
1127                 ret = sk_stream_wait_memory(sk, &timeo);
1128                 if (ret) {
1129                         tls_trim_both_msgs(sk, msg_pl->sg.size);
1130                         goto sendpage_end;
1131                 }
1132
1133                 goto alloc_payload;
1134         }
1135
1136         if (num_async) {
1137                 /* Transmit if any encryptions have completed */
1138                 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1139                         cancel_delayed_work(&ctx->tx_work.work);
1140                         tls_tx_records(sk, flags);
1141                 }
1142         }
1143 sendpage_end:
1144         ret = sk_stream_error(sk, flags, ret);
1145         return copied ? copied : ret;
1146 }
1147
1148 int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1149                            int offset, size_t size, int flags)
1150 {
1151         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1152                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1153                 return -ENOTSUPP;
1154
1155         return tls_sw_do_sendpage(sk, page, offset, size, flags);
1156 }
1157
1158 int tls_sw_sendpage(struct sock *sk, struct page *page,
1159                     int offset, size_t size, int flags)
1160 {
1161         int ret;
1162
1163         if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1164                       MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1165                 return -ENOTSUPP;
1166
1167         lock_sock(sk);
1168         ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1169         release_sock(sk);
1170         return ret;
1171 }
1172
1173 static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1174                                      int flags, long timeo, int *err)
1175 {
1176         struct tls_context *tls_ctx = tls_get_ctx(sk);
1177         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1178         struct sk_buff *skb;
1179         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1180
1181         while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1182                 if (sk->sk_err) {
1183                         *err = sock_error(sk);
1184                         return NULL;
1185                 }
1186
1187                 if (sk->sk_shutdown & RCV_SHUTDOWN)
1188                         return NULL;
1189
1190                 if (sock_flag(sk, SOCK_DONE))
1191                         return NULL;
1192
1193                 if ((flags & MSG_DONTWAIT) || !timeo) {
1194                         *err = -EAGAIN;
1195                         return NULL;
1196                 }
1197
1198                 add_wait_queue(sk_sleep(sk), &wait);
1199                 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1200                 sk_wait_event(sk, &timeo,
1201                               ctx->recv_pkt != skb ||
1202                               !sk_psock_queue_empty(psock),
1203                               &wait);
1204                 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1205                 remove_wait_queue(sk_sleep(sk), &wait);
1206
1207                 /* Handle signals */
1208                 if (signal_pending(current)) {
1209                         *err = sock_intr_errno(timeo);
1210                         return NULL;
1211                 }
1212         }
1213
1214         return skb;
1215 }
1216
1217 static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1218                                int length, int *pages_used,
1219                                unsigned int *size_used,
1220                                struct scatterlist *to,
1221                                int to_max_pages)
1222 {
1223         int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1224         struct page *pages[MAX_SKB_FRAGS];
1225         unsigned int size = *size_used;
1226         ssize_t copied, use;
1227         size_t offset;
1228
1229         while (length > 0) {
1230                 i = 0;
1231                 maxpages = to_max_pages - num_elem;
1232                 if (maxpages == 0) {
1233                         rc = -EFAULT;
1234                         goto out;
1235                 }
1236                 copied = iov_iter_get_pages(from, pages,
1237                                             length,
1238                                             maxpages, &offset);
1239                 if (copied <= 0) {
1240                         rc = -EFAULT;
1241                         goto out;
1242                 }
1243
1244                 iov_iter_advance(from, copied);
1245
1246                 length -= copied;
1247                 size += copied;
1248                 while (copied) {
1249                         use = min_t(int, copied, PAGE_SIZE - offset);
1250
1251                         sg_set_page(&to[num_elem],
1252                                     pages[i], use, offset);
1253                         sg_unmark_end(&to[num_elem]);
1254                         /* We do not uncharge memory from this API */
1255
1256                         offset = 0;
1257                         copied -= use;
1258
1259                         i++;
1260                         num_elem++;
1261                 }
1262         }
1263         /* Mark the end in the last sg entry if newly added */
1264         if (num_elem > *pages_used)
1265                 sg_mark_end(&to[num_elem - 1]);
1266 out:
1267         if (rc)
1268                 iov_iter_revert(from, size - *size_used);
1269         *size_used = size;
1270         *pages_used = num_elem;
1271
1272         return rc;
1273 }
1274
1275 /* This function decrypts the input skb into either out_iov or in out_sg
1276  * or in skb buffers itself. The input parameter 'zc' indicates if
1277  * zero-copy mode needs to be tried or not. With zero-copy mode, either
1278  * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1279  * NULL, then the decryption happens inside skb buffers itself, i.e.
1280  * zero-copy gets disabled and 'zc' is updated.
1281  */
1282
1283 static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1284                             struct iov_iter *out_iov,
1285                             struct scatterlist *out_sg,
1286                             int *chunk, bool *zc)
1287 {
1288         struct tls_context *tls_ctx = tls_get_ctx(sk);
1289         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1290         struct strp_msg *rxm = strp_msg(skb);
1291         int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1292         struct aead_request *aead_req;
1293         struct sk_buff *unused;
1294         u8 *aad, *iv, *mem = NULL;
1295         struct scatterlist *sgin = NULL;
1296         struct scatterlist *sgout = NULL;
1297         const int data_len = rxm->full_len - tls_ctx->rx.overhead_size;
1298
1299         if (*zc && (out_iov || out_sg)) {
1300                 if (out_iov)
1301                         n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1302                 else
1303                         n_sgout = sg_nents(out_sg);
1304                 n_sgin = skb_nsg(skb, rxm->offset + tls_ctx->rx.prepend_size,
1305                                  rxm->full_len - tls_ctx->rx.prepend_size);
1306         } else {
1307                 n_sgout = 0;
1308                 *zc = false;
1309                 n_sgin = skb_cow_data(skb, 0, &unused);
1310         }
1311
1312         if (n_sgin < 1)
1313                 return -EBADMSG;
1314
1315         /* Increment to accommodate AAD */
1316         n_sgin = n_sgin + 1;
1317
1318         nsg = n_sgin + n_sgout;
1319
1320         aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1321         mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1322         mem_size = mem_size + TLS_AAD_SPACE_SIZE;
1323         mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1324
1325         /* Allocate a single block of memory which contains
1326          * aead_req || sgin[] || sgout[] || aad || iv.
1327          * This order achieves correct alignment for aead_req, sgin, sgout.
1328          */
1329         mem = kmalloc(mem_size, sk->sk_allocation);
1330         if (!mem)
1331                 return -ENOMEM;
1332
1333         /* Segment the allocated memory */
1334         aead_req = (struct aead_request *)mem;
1335         sgin = (struct scatterlist *)(mem + aead_size);
1336         sgout = sgin + n_sgin;
1337         aad = (u8 *)(sgout + n_sgout);
1338         iv = aad + TLS_AAD_SPACE_SIZE;
1339
1340         /* Prepare IV */
1341         err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1342                             iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1343                             tls_ctx->rx.iv_size);
1344         if (err < 0) {
1345                 kfree(mem);
1346                 return err;
1347         }
1348         memcpy(iv, tls_ctx->rx.iv, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1349
1350         /* Prepare AAD */
1351         tls_make_aad(aad, rxm->full_len - tls_ctx->rx.overhead_size,
1352                      tls_ctx->rx.rec_seq, tls_ctx->rx.rec_seq_size,
1353                      ctx->control);
1354
1355         /* Prepare sgin */
1356         sg_init_table(sgin, n_sgin);
1357         sg_set_buf(&sgin[0], aad, TLS_AAD_SPACE_SIZE);
1358         err = skb_to_sgvec(skb, &sgin[1],
1359                            rxm->offset + tls_ctx->rx.prepend_size,
1360                            rxm->full_len - tls_ctx->rx.prepend_size);
1361         if (err < 0) {
1362                 kfree(mem);
1363                 return err;
1364         }
1365
1366         if (n_sgout) {
1367                 if (out_iov) {
1368                         sg_init_table(sgout, n_sgout);
1369                         sg_set_buf(&sgout[0], aad, TLS_AAD_SPACE_SIZE);
1370
1371                         *chunk = 0;
1372                         err = tls_setup_from_iter(sk, out_iov, data_len,
1373                                                   &pages, chunk, &sgout[1],
1374                                                   (n_sgout - 1));
1375                         if (err < 0)
1376                                 goto fallback_to_reg_recv;
1377                 } else if (out_sg) {
1378                         memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1379                 } else {
1380                         goto fallback_to_reg_recv;
1381                 }
1382         } else {
1383 fallback_to_reg_recv:
1384                 sgout = sgin;
1385                 pages = 0;
1386                 *chunk = 0;
1387                 *zc = false;
1388         }
1389
1390         /* Prepare and submit AEAD request */
1391         err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1392                                 data_len, aead_req, *zc);
1393         if (err == -EINPROGRESS)
1394                 return err;
1395
1396         /* Release the pages in case iov was mapped to pages */
1397         for (; pages > 0; pages--)
1398                 put_page(sg_page(&sgout[pages]));
1399
1400         kfree(mem);
1401         return err;
1402 }
1403
1404 static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1405                               struct iov_iter *dest, int *chunk, bool *zc)
1406 {
1407         struct tls_context *tls_ctx = tls_get_ctx(sk);
1408         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1409         struct strp_msg *rxm = strp_msg(skb);
1410         int err = 0;
1411
1412 #ifdef CONFIG_TLS_DEVICE
1413         err = tls_device_decrypted(sk, skb);
1414         if (err < 0)
1415                 return err;
1416 #endif
1417         if (!ctx->decrypted) {
1418                 err = decrypt_internal(sk, skb, dest, NULL, chunk, zc);
1419                 if (err < 0) {
1420                         if (err == -EINPROGRESS)
1421                                 tls_advance_record_sn(sk, &tls_ctx->rx);
1422
1423                         return err;
1424                 }
1425         } else {
1426                 *zc = false;
1427         }
1428
1429         rxm->offset += tls_ctx->rx.prepend_size;
1430         rxm->full_len -= tls_ctx->rx.overhead_size;
1431         tls_advance_record_sn(sk, &tls_ctx->rx);
1432         ctx->decrypted = true;
1433         ctx->saved_data_ready(sk);
1434
1435         return err;
1436 }
1437
1438 int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1439                 struct scatterlist *sgout)
1440 {
1441         bool zc = true;
1442         int chunk;
1443
1444         return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc);
1445 }
1446
1447 static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1448                                unsigned int len)
1449 {
1450         struct tls_context *tls_ctx = tls_get_ctx(sk);
1451         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1452
1453         if (skb) {
1454                 struct strp_msg *rxm = strp_msg(skb);
1455
1456                 if (len < rxm->full_len) {
1457                         rxm->offset += len;
1458                         rxm->full_len -= len;
1459                         return false;
1460                 }
1461                 kfree_skb(skb);
1462         }
1463
1464         /* Finished with message */
1465         ctx->recv_pkt = NULL;
1466         __strp_unpause(&ctx->strp);
1467
1468         return true;
1469 }
1470
1471 int tls_sw_recvmsg(struct sock *sk,
1472                    struct msghdr *msg,
1473                    size_t len,
1474                    int nonblock,
1475                    int flags,
1476                    int *addr_len)
1477 {
1478         struct tls_context *tls_ctx = tls_get_ctx(sk);
1479         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1480         struct sk_psock *psock;
1481         unsigned char control;
1482         struct strp_msg *rxm;
1483         struct sk_buff *skb;
1484         ssize_t copied = 0;
1485         bool cmsg = false;
1486         int target, err = 0;
1487         long timeo;
1488         bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1489         int num_async = 0;
1490
1491         flags |= nonblock;
1492
1493         if (unlikely(flags & MSG_ERRQUEUE))
1494                 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1495
1496         psock = sk_psock_get(sk);
1497         lock_sock(sk);
1498
1499         target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1500         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1501         do {
1502                 bool zc = false;
1503                 bool async = false;
1504                 int chunk = 0;
1505
1506                 skb = tls_wait_data(sk, psock, flags, timeo, &err);
1507                 if (!skb) {
1508                         if (psock) {
1509                                 int ret = __tcp_bpf_recvmsg(sk, psock,
1510                                                             msg, len, flags);
1511
1512                                 if (ret > 0) {
1513                                         copied += ret;
1514                                         len -= ret;
1515                                         continue;
1516                                 }
1517                         }
1518                         goto recv_end;
1519                 }
1520
1521                 rxm = strp_msg(skb);
1522
1523                 if (!cmsg) {
1524                         int cerr;
1525
1526                         cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1527                                         sizeof(ctx->control), &ctx->control);
1528                         cmsg = true;
1529                         control = ctx->control;
1530                         if (ctx->control != TLS_RECORD_TYPE_DATA) {
1531                                 if (cerr || msg->msg_flags & MSG_CTRUNC) {
1532                                         err = -EIO;
1533                                         goto recv_end;
1534                                 }
1535                         }
1536                 } else if (control != ctx->control) {
1537                         goto recv_end;
1538                 }
1539
1540                 if (!ctx->decrypted) {
1541                         int to_copy = rxm->full_len - tls_ctx->rx.overhead_size;
1542
1543                         if (!is_kvec && to_copy <= len &&
1544                             likely(!(flags & MSG_PEEK)))
1545                                 zc = true;
1546
1547                         err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1548                                                  &chunk, &zc);
1549                         if (err < 0 && err != -EINPROGRESS) {
1550                                 tls_err_abort(sk, EBADMSG);
1551                                 goto recv_end;
1552                         }
1553
1554                         if (err == -EINPROGRESS) {
1555                                 async = true;
1556                                 num_async++;
1557                                 goto pick_next_record;
1558                         }
1559
1560                         ctx->decrypted = true;
1561                 }
1562
1563                 if (!zc) {
1564                         chunk = min_t(unsigned int, rxm->full_len, len);
1565
1566                         err = skb_copy_datagram_msg(skb, rxm->offset, msg,
1567                                                     chunk);
1568                         if (err < 0)
1569                                 goto recv_end;
1570                 }
1571
1572 pick_next_record:
1573                 copied += chunk;
1574                 len -= chunk;
1575                 if (likely(!(flags & MSG_PEEK))) {
1576                         u8 control = ctx->control;
1577
1578                         /* For async, drop current skb reference */
1579                         if (async)
1580                                 skb = NULL;
1581
1582                         if (tls_sw_advance_skb(sk, skb, chunk)) {
1583                                 /* Return full control message to
1584                                  * userspace before trying to parse
1585                                  * another message type
1586                                  */
1587                                 msg->msg_flags |= MSG_EOR;
1588                                 if (control != TLS_RECORD_TYPE_DATA)
1589                                         goto recv_end;
1590                         } else {
1591                                 break;
1592                         }
1593                 } else {
1594                         /* MSG_PEEK right now cannot look beyond current skb
1595                          * from strparser, meaning we cannot advance skb here
1596                          * and thus unpause strparser since we'd loose original
1597                          * one.
1598                          */
1599                         break;
1600                 }
1601
1602                 /* If we have a new message from strparser, continue now. */
1603                 if (copied >= target && !ctx->recv_pkt)
1604                         break;
1605         } while (len);
1606
1607 recv_end:
1608         if (num_async) {
1609                 /* Wait for all previously submitted records to be decrypted */
1610                 smp_store_mb(ctx->async_notify, true);
1611                 if (atomic_read(&ctx->decrypt_pending)) {
1612                         err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1613                         if (err) {
1614                                 /* one of async decrypt failed */
1615                                 tls_err_abort(sk, err);
1616                                 copied = 0;
1617                         }
1618                 } else {
1619                         reinit_completion(&ctx->async_wait.completion);
1620                 }
1621                 WRITE_ONCE(ctx->async_notify, false);
1622         }
1623
1624         release_sock(sk);
1625         if (psock)
1626                 sk_psock_put(sk, psock);
1627         return copied ? : err;
1628 }
1629
1630 ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1631                            struct pipe_inode_info *pipe,
1632                            size_t len, unsigned int flags)
1633 {
1634         struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1635         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1636         struct strp_msg *rxm = NULL;
1637         struct sock *sk = sock->sk;
1638         struct sk_buff *skb;
1639         ssize_t copied = 0;
1640         int err = 0;
1641         long timeo;
1642         int chunk;
1643         bool zc = false;
1644
1645         lock_sock(sk);
1646
1647         timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1648
1649         skb = tls_wait_data(sk, NULL, flags, timeo, &err);
1650         if (!skb)
1651                 goto splice_read_end;
1652
1653         /* splice does not support reading control messages */
1654         if (ctx->control != TLS_RECORD_TYPE_DATA) {
1655                 err = -ENOTSUPP;
1656                 goto splice_read_end;
1657         }
1658
1659         if (!ctx->decrypted) {
1660                 err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc);
1661
1662                 if (err < 0) {
1663                         tls_err_abort(sk, EBADMSG);
1664                         goto splice_read_end;
1665                 }
1666                 ctx->decrypted = true;
1667         }
1668         rxm = strp_msg(skb);
1669
1670         chunk = min_t(unsigned int, rxm->full_len, len);
1671         copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
1672         if (copied < 0)
1673                 goto splice_read_end;
1674
1675         if (likely(!(flags & MSG_PEEK)))
1676                 tls_sw_advance_skb(sk, skb, copied);
1677
1678 splice_read_end:
1679         release_sock(sk);
1680         return copied ? : err;
1681 }
1682
1683 bool tls_sw_stream_read(const struct sock *sk)
1684 {
1685         struct tls_context *tls_ctx = tls_get_ctx(sk);
1686         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1687         bool ingress_empty = true;
1688         struct sk_psock *psock;
1689
1690         rcu_read_lock();
1691         psock = sk_psock(sk);
1692         if (psock)
1693                 ingress_empty = list_empty(&psock->ingress_msg);
1694         rcu_read_unlock();
1695
1696         return !ingress_empty || ctx->recv_pkt;
1697 }
1698
1699 static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
1700 {
1701         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1702         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1703         char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
1704         struct strp_msg *rxm = strp_msg(skb);
1705         size_t cipher_overhead;
1706         size_t data_len = 0;
1707         int ret;
1708
1709         /* Verify that we have a full TLS header, or wait for more data */
1710         if (rxm->offset + tls_ctx->rx.prepend_size > skb->len)
1711                 return 0;
1712
1713         /* Sanity-check size of on-stack buffer. */
1714         if (WARN_ON(tls_ctx->rx.prepend_size > sizeof(header))) {
1715                 ret = -EINVAL;
1716                 goto read_failure;
1717         }
1718
1719         /* Linearize header to local buffer */
1720         ret = skb_copy_bits(skb, rxm->offset, header, tls_ctx->rx.prepend_size);
1721
1722         if (ret < 0)
1723                 goto read_failure;
1724
1725         ctx->control = header[0];
1726
1727         data_len = ((header[4] & 0xFF) | (header[3] << 8));
1728
1729         cipher_overhead = tls_ctx->rx.tag_size + tls_ctx->rx.iv_size;
1730
1731         if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead) {
1732                 ret = -EMSGSIZE;
1733                 goto read_failure;
1734         }
1735         if (data_len < cipher_overhead) {
1736                 ret = -EBADMSG;
1737                 goto read_failure;
1738         }
1739
1740         if (header[1] != TLS_VERSION_MINOR(tls_ctx->crypto_recv.info.version) ||
1741             header[2] != TLS_VERSION_MAJOR(tls_ctx->crypto_recv.info.version)) {
1742                 ret = -EINVAL;
1743                 goto read_failure;
1744         }
1745
1746 #ifdef CONFIG_TLS_DEVICE
1747         handle_device_resync(strp->sk, TCP_SKB_CB(skb)->seq + rxm->offset,
1748                              *(u64*)tls_ctx->rx.rec_seq);
1749 #endif
1750         return data_len + TLS_HEADER_SIZE;
1751
1752 read_failure:
1753         tls_err_abort(strp->sk, ret);
1754
1755         return ret;
1756 }
1757
1758 static void tls_queue(struct strparser *strp, struct sk_buff *skb)
1759 {
1760         struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
1761         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1762
1763         ctx->decrypted = false;
1764
1765         ctx->recv_pkt = skb;
1766         strp_pause(strp);
1767
1768         ctx->saved_data_ready(strp->sk);
1769 }
1770
1771 static void tls_data_ready(struct sock *sk)
1772 {
1773         struct tls_context *tls_ctx = tls_get_ctx(sk);
1774         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1775         struct sk_psock *psock;
1776
1777         strp_data_ready(&ctx->strp);
1778
1779         psock = sk_psock_get(sk);
1780         if (psock && !list_empty(&psock->ingress_msg)) {
1781                 ctx->saved_data_ready(sk);
1782                 sk_psock_put(sk, psock);
1783         }
1784 }
1785
1786 void tls_sw_free_resources_tx(struct sock *sk)
1787 {
1788         struct tls_context *tls_ctx = tls_get_ctx(sk);
1789         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1790         struct tls_rec *rec, *tmp;
1791
1792         /* Wait for any pending async encryptions to complete */
1793         smp_store_mb(ctx->async_notify, true);
1794         if (atomic_read(&ctx->encrypt_pending))
1795                 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1796
1797         release_sock(sk);
1798         cancel_delayed_work_sync(&ctx->tx_work.work);
1799         lock_sock(sk);
1800
1801         /* Tx whatever records we can transmit and abandon the rest */
1802         tls_tx_records(sk, -1);
1803
1804         /* Free up un-sent records in tx_list. First, free
1805          * the partially sent record if any at head of tx_list.
1806          */
1807         if (tls_ctx->partially_sent_record) {
1808                 struct scatterlist *sg = tls_ctx->partially_sent_record;
1809
1810                 while (1) {
1811                         put_page(sg_page(sg));
1812                         sk_mem_uncharge(sk, sg->length);
1813
1814                         if (sg_is_last(sg))
1815                                 break;
1816                         sg++;
1817                 }
1818
1819                 tls_ctx->partially_sent_record = NULL;
1820
1821                 rec = list_first_entry(&ctx->tx_list,
1822                                        struct tls_rec, list);
1823                 list_del(&rec->list);
1824                 sk_msg_free(sk, &rec->msg_plaintext);
1825                 kfree(rec);
1826         }
1827
1828         list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
1829                 list_del(&rec->list);
1830                 sk_msg_free(sk, &rec->msg_encrypted);
1831                 sk_msg_free(sk, &rec->msg_plaintext);
1832                 kfree(rec);
1833         }
1834
1835         crypto_free_aead(ctx->aead_send);
1836         tls_free_open_rec(sk);
1837
1838         kfree(ctx);
1839 }
1840
1841 void tls_sw_release_resources_rx(struct sock *sk)
1842 {
1843         struct tls_context *tls_ctx = tls_get_ctx(sk);
1844         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1845
1846         if (ctx->aead_recv) {
1847                 kfree_skb(ctx->recv_pkt);
1848                 ctx->recv_pkt = NULL;
1849                 crypto_free_aead(ctx->aead_recv);
1850                 strp_stop(&ctx->strp);
1851                 write_lock_bh(&sk->sk_callback_lock);
1852                 sk->sk_data_ready = ctx->saved_data_ready;
1853                 write_unlock_bh(&sk->sk_callback_lock);
1854                 release_sock(sk);
1855                 strp_done(&ctx->strp);
1856                 lock_sock(sk);
1857         }
1858 }
1859
1860 void tls_sw_free_resources_rx(struct sock *sk)
1861 {
1862         struct tls_context *tls_ctx = tls_get_ctx(sk);
1863         struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1864
1865         tls_sw_release_resources_rx(sk);
1866
1867         kfree(ctx);
1868 }
1869
1870 /* The work handler to transmitt the encrypted records in tx_list */
1871 static void tx_work_handler(struct work_struct *work)
1872 {
1873         struct delayed_work *delayed_work = to_delayed_work(work);
1874         struct tx_work *tx_work = container_of(delayed_work,
1875                                                struct tx_work, work);
1876         struct sock *sk = tx_work->sk;
1877         struct tls_context *tls_ctx = tls_get_ctx(sk);
1878         struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1879
1880         if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
1881                 return;
1882
1883         lock_sock(sk);
1884         tls_tx_records(sk, -1);
1885         release_sock(sk);
1886 }
1887
1888 int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
1889 {
1890         struct tls_crypto_info *crypto_info;
1891         struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
1892         struct tls_sw_context_tx *sw_ctx_tx = NULL;
1893         struct tls_sw_context_rx *sw_ctx_rx = NULL;
1894         struct cipher_context *cctx;
1895         struct crypto_aead **aead;
1896         struct strp_callbacks cb;
1897         u16 nonce_size, tag_size, iv_size, rec_seq_size;
1898         char *iv, *rec_seq;
1899         int rc = 0;
1900
1901         if (!ctx) {
1902                 rc = -EINVAL;
1903                 goto out;
1904         }
1905
1906         if (tx) {
1907                 if (!ctx->priv_ctx_tx) {
1908                         sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
1909                         if (!sw_ctx_tx) {
1910                                 rc = -ENOMEM;
1911                                 goto out;
1912                         }
1913                         ctx->priv_ctx_tx = sw_ctx_tx;
1914                 } else {
1915                         sw_ctx_tx =
1916                                 (struct tls_sw_context_tx *)ctx->priv_ctx_tx;
1917                 }
1918         } else {
1919                 if (!ctx->priv_ctx_rx) {
1920                         sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
1921                         if (!sw_ctx_rx) {
1922                                 rc = -ENOMEM;
1923                                 goto out;
1924                         }
1925                         ctx->priv_ctx_rx = sw_ctx_rx;
1926                 } else {
1927                         sw_ctx_rx =
1928                                 (struct tls_sw_context_rx *)ctx->priv_ctx_rx;
1929                 }
1930         }
1931
1932         if (tx) {
1933                 crypto_init_wait(&sw_ctx_tx->async_wait);
1934                 crypto_info = &ctx->crypto_send.info;
1935                 cctx = &ctx->tx;
1936                 aead = &sw_ctx_tx->aead_send;
1937                 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
1938                 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
1939                 sw_ctx_tx->tx_work.sk = sk;
1940         } else {
1941                 crypto_init_wait(&sw_ctx_rx->async_wait);
1942                 crypto_info = &ctx->crypto_recv.info;
1943                 cctx = &ctx->rx;
1944                 aead = &sw_ctx_rx->aead_recv;
1945         }
1946
1947         switch (crypto_info->cipher_type) {
1948         case TLS_CIPHER_AES_GCM_128: {
1949                 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1950                 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1951                 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1952                 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1953                 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1954                 rec_seq =
1955                  ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1956                 gcm_128_info =
1957                         (struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
1958                 break;
1959         }
1960         default:
1961                 rc = -EINVAL;
1962                 goto free_priv;
1963         }
1964
1965         /* Sanity-check the IV size for stack allocations. */
1966         if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE) {
1967                 rc = -EINVAL;
1968                 goto free_priv;
1969         }
1970
1971         cctx->prepend_size = TLS_HEADER_SIZE + nonce_size;
1972         cctx->tag_size = tag_size;
1973         cctx->overhead_size = cctx->prepend_size + cctx->tag_size;
1974         cctx->iv_size = iv_size;
1975         cctx->iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1976                            GFP_KERNEL);
1977         if (!cctx->iv) {
1978                 rc = -ENOMEM;
1979                 goto free_priv;
1980         }
1981         memcpy(cctx->iv, gcm_128_info->salt, TLS_CIPHER_AES_GCM_128_SALT_SIZE);
1982         memcpy(cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1983         cctx->rec_seq_size = rec_seq_size;
1984         cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1985         if (!cctx->rec_seq) {
1986                 rc = -ENOMEM;
1987                 goto free_iv;
1988         }
1989
1990         if (!*aead) {
1991                 *aead = crypto_alloc_aead("gcm(aes)", 0, 0);
1992                 if (IS_ERR(*aead)) {
1993                         rc = PTR_ERR(*aead);
1994                         *aead = NULL;
1995                         goto free_rec_seq;
1996                 }
1997         }
1998
1999         ctx->push_pending_record = tls_sw_push_pending_record;
2000
2001         rc = crypto_aead_setkey(*aead, gcm_128_info->key,
2002                                 TLS_CIPHER_AES_GCM_128_KEY_SIZE);
2003         if (rc)
2004                 goto free_aead;
2005
2006         rc = crypto_aead_setauthsize(*aead, cctx->tag_size);
2007         if (rc)
2008                 goto free_aead;
2009
2010         if (sw_ctx_rx) {
2011                 /* Set up strparser */
2012                 memset(&cb, 0, sizeof(cb));
2013                 cb.rcv_msg = tls_queue;
2014                 cb.parse_msg = tls_read_size;
2015
2016                 strp_init(&sw_ctx_rx->strp, sk, &cb);
2017
2018                 write_lock_bh(&sk->sk_callback_lock);
2019                 sw_ctx_rx->saved_data_ready = sk->sk_data_ready;
2020                 sk->sk_data_ready = tls_data_ready;
2021                 write_unlock_bh(&sk->sk_callback_lock);
2022
2023                 strp_check_rcv(&sw_ctx_rx->strp);
2024         }
2025
2026         goto out;
2027
2028 free_aead:
2029         crypto_free_aead(*aead);
2030         *aead = NULL;
2031 free_rec_seq:
2032         kfree(cctx->rec_seq);
2033         cctx->rec_seq = NULL;
2034 free_iv:
2035         kfree(cctx->iv);
2036         cctx->iv = NULL;
2037 free_priv:
2038         if (tx) {
2039                 kfree(ctx->priv_ctx_tx);
2040                 ctx->priv_ctx_tx = NULL;
2041         } else {
2042                 kfree(ctx->priv_ctx_rx);
2043                 ctx->priv_ctx_rx = NULL;
2044         }
2045 out:
2046         return rc;
2047 }