Merge branches 'pm-wakeup' and 'pm-domains'
[sfrench/cifs-2.6.git] / net / socket.c
1 /*
2  * NET          An implementation of the SOCKET network access protocol.
3  *
4  * Version:     @(#)socket.c    1.1.93  18/02/95
5  *
6  * Authors:     Orest Zborowski, <obz@Kodak.COM>
7  *              Ross Biro
8  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9  *
10  * Fixes:
11  *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
12  *                                      shutdown()
13  *              Alan Cox        :       verify_area() fixes
14  *              Alan Cox        :       Removed DDI
15  *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
16  *              Alan Cox        :       Moved a load of checks to the very
17  *                                      top level.
18  *              Alan Cox        :       Move address structures to/from user
19  *                                      mode above the protocol layers.
20  *              Rob Janssen     :       Allow 0 length sends.
21  *              Alan Cox        :       Asynchronous I/O support (cribbed from the
22  *                                      tty drivers).
23  *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
24  *              Jeff Uphoff     :       Made max number of sockets command-line
25  *                                      configurable.
26  *              Matti Aarnio    :       Made the number of sockets dynamic,
27  *                                      to be allocated when needed, and mr.
28  *                                      Uphoff's max is used as max to be
29  *                                      allowed to allocate.
30  *              Linus           :       Argh. removed all the socket allocation
31  *                                      altogether: it's in the inode now.
32  *              Alan Cox        :       Made sock_alloc()/sock_release() public
33  *                                      for NetROM and future kernel nfsd type
34  *                                      stuff.
35  *              Alan Cox        :       sendmsg/recvmsg basics.
36  *              Tom Dyas        :       Export net symbols.
37  *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
38  *              Alan Cox        :       Added thread locking to sys_* calls
39  *                                      for sockets. May have errors at the
40  *                                      moment.
41  *              Kevin Buhr      :       Fixed the dumb errors in the above.
42  *              Andi Kleen      :       Some small cleanups, optimizations,
43  *                                      and fixed a copy_from_user() bug.
44  *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
45  *              Tigran Aivazian :       Made listen(2) backlog sanity checks
46  *                                      protocol-independent
47  *
48  *
49  *              This program is free software; you can redistribute it and/or
50  *              modify it under the terms of the GNU General Public License
51  *              as published by the Free Software Foundation; either version
52  *              2 of the License, or (at your option) any later version.
53  *
54  *
55  *      This module is effectively the top level interface to the BSD socket
56  *      paradigm.
57  *
58  *      Based upon Swansea University Computer Society NET3.039
59  */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <asm/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109
110 #ifdef CONFIG_NET_RX_BUSY_POLL
111 unsigned int sysctl_net_busy_read __read_mostly;
112 unsigned int sysctl_net_busy_poll __read_mostly;
113 #endif
114
115 static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
116 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
117                          unsigned long nr_segs, loff_t pos);
118 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
119                           unsigned long nr_segs, loff_t pos);
120 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
121
122 static int sock_close(struct inode *inode, struct file *file);
123 static unsigned int sock_poll(struct file *file,
124                               struct poll_table_struct *wait);
125 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
126 #ifdef CONFIG_COMPAT
127 static long compat_sock_ioctl(struct file *file,
128                               unsigned int cmd, unsigned long arg);
129 #endif
130 static int sock_fasync(int fd, struct file *filp, int on);
131 static ssize_t sock_sendpage(struct file *file, struct page *page,
132                              int offset, size_t size, loff_t *ppos, int more);
133 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
134                                 struct pipe_inode_info *pipe, size_t len,
135                                 unsigned int flags);
136
137 /*
138  *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
139  *      in the operation structures but are done directly via the socketcall() multiplexor.
140  */
141
142 static const struct file_operations socket_file_ops = {
143         .owner =        THIS_MODULE,
144         .llseek =       no_llseek,
145         .aio_read =     sock_aio_read,
146         .aio_write =    sock_aio_write,
147         .poll =         sock_poll,
148         .unlocked_ioctl = sock_ioctl,
149 #ifdef CONFIG_COMPAT
150         .compat_ioctl = compat_sock_ioctl,
151 #endif
152         .mmap =         sock_mmap,
153         .open =         sock_no_open,   /* special open code to disallow open via /proc */
154         .release =      sock_close,
155         .fasync =       sock_fasync,
156         .sendpage =     sock_sendpage,
157         .splice_write = generic_splice_sendpage,
158         .splice_read =  sock_splice_read,
159 };
160
161 /*
162  *      The protocol list. Each protocol is registered in here.
163  */
164
165 static DEFINE_SPINLOCK(net_family_lock);
166 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
167
168 /*
169  *      Statistics counters of the socket lists
170  */
171
172 static DEFINE_PER_CPU(int, sockets_in_use);
173
174 /*
175  * Support routines.
176  * Move socket addresses back and forth across the kernel/user
177  * divide and look after the messy bits.
178  */
179
180 /**
181  *      move_addr_to_kernel     -       copy a socket address into kernel space
182  *      @uaddr: Address in user space
183  *      @kaddr: Address in kernel space
184  *      @ulen: Length in user space
185  *
186  *      The address is copied into kernel space. If the provided address is
187  *      too long an error code of -EINVAL is returned. If the copy gives
188  *      invalid addresses -EFAULT is returned. On a success 0 is returned.
189  */
190
191 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
192 {
193         if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
194                 return -EINVAL;
195         if (ulen == 0)
196                 return 0;
197         if (copy_from_user(kaddr, uaddr, ulen))
198                 return -EFAULT;
199         return audit_sockaddr(ulen, kaddr);
200 }
201
202 /**
203  *      move_addr_to_user       -       copy an address to user space
204  *      @kaddr: kernel space address
205  *      @klen: length of address in kernel
206  *      @uaddr: user space address
207  *      @ulen: pointer to user length field
208  *
209  *      The value pointed to by ulen on entry is the buffer length available.
210  *      This is overwritten with the buffer space used. -EINVAL is returned
211  *      if an overlong buffer is specified or a negative buffer size. -EFAULT
212  *      is returned if either the buffer or the length field are not
213  *      accessible.
214  *      After copying the data up to the limit the user specifies, the true
215  *      length of the data is written over the length limit the user
216  *      specified. Zero is returned for a success.
217  */
218
219 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
220                              void __user *uaddr, int __user *ulen)
221 {
222         int err;
223         int len;
224
225         BUG_ON(klen > sizeof(struct sockaddr_storage));
226         err = get_user(len, ulen);
227         if (err)
228                 return err;
229         if (len > klen)
230                 len = klen;
231         if (len < 0)
232                 return -EINVAL;
233         if (len) {
234                 if (audit_sockaddr(klen, kaddr))
235                         return -ENOMEM;
236                 if (copy_to_user(uaddr, kaddr, len))
237                         return -EFAULT;
238         }
239         /*
240          *      "fromlen shall refer to the value before truncation.."
241          *                      1003.1g
242          */
243         return __put_user(klen, ulen);
244 }
245
246 static struct kmem_cache *sock_inode_cachep __read_mostly;
247
248 static struct inode *sock_alloc_inode(struct super_block *sb)
249 {
250         struct socket_alloc *ei;
251         struct socket_wq *wq;
252
253         ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254         if (!ei)
255                 return NULL;
256         wq = kmalloc(sizeof(*wq), GFP_KERNEL);
257         if (!wq) {
258                 kmem_cache_free(sock_inode_cachep, ei);
259                 return NULL;
260         }
261         init_waitqueue_head(&wq->wait);
262         wq->fasync_list = NULL;
263         RCU_INIT_POINTER(ei->socket.wq, wq);
264
265         ei->socket.state = SS_UNCONNECTED;
266         ei->socket.flags = 0;
267         ei->socket.ops = NULL;
268         ei->socket.sk = NULL;
269         ei->socket.file = NULL;
270
271         return &ei->vfs_inode;
272 }
273
274 static void sock_destroy_inode(struct inode *inode)
275 {
276         struct socket_alloc *ei;
277         struct socket_wq *wq;
278
279         ei = container_of(inode, struct socket_alloc, vfs_inode);
280         wq = rcu_dereference_protected(ei->socket.wq, 1);
281         kfree_rcu(wq, rcu);
282         kmem_cache_free(sock_inode_cachep, ei);
283 }
284
285 static void init_once(void *foo)
286 {
287         struct socket_alloc *ei = (struct socket_alloc *)foo;
288
289         inode_init_once(&ei->vfs_inode);
290 }
291
292 static int init_inodecache(void)
293 {
294         sock_inode_cachep = kmem_cache_create("sock_inode_cache",
295                                               sizeof(struct socket_alloc),
296                                               0,
297                                               (SLAB_HWCACHE_ALIGN |
298                                                SLAB_RECLAIM_ACCOUNT |
299                                                SLAB_MEM_SPREAD),
300                                               init_once);
301         if (sock_inode_cachep == NULL)
302                 return -ENOMEM;
303         return 0;
304 }
305
306 static const struct super_operations sockfs_ops = {
307         .alloc_inode    = sock_alloc_inode,
308         .destroy_inode  = sock_destroy_inode,
309         .statfs         = simple_statfs,
310 };
311
312 /*
313  * sockfs_dname() is called from d_path().
314  */
315 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
316 {
317         return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
318                                 dentry->d_inode->i_ino);
319 }
320
321 static const struct dentry_operations sockfs_dentry_operations = {
322         .d_dname  = sockfs_dname,
323 };
324
325 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
326                          int flags, const char *dev_name, void *data)
327 {
328         return mount_pseudo(fs_type, "socket:", &sockfs_ops,
329                 &sockfs_dentry_operations, SOCKFS_MAGIC);
330 }
331
332 static struct vfsmount *sock_mnt __read_mostly;
333
334 static struct file_system_type sock_fs_type = {
335         .name =         "sockfs",
336         .mount =        sockfs_mount,
337         .kill_sb =      kill_anon_super,
338 };
339
340 /*
341  *      Obtains the first available file descriptor and sets it up for use.
342  *
343  *      These functions create file structures and maps them to fd space
344  *      of the current process. On success it returns file descriptor
345  *      and file struct implicitly stored in sock->file.
346  *      Note that another thread may close file descriptor before we return
347  *      from this function. We use the fact that now we do not refer
348  *      to socket after mapping. If one day we will need it, this
349  *      function will increment ref. count on file by 1.
350  *
351  *      In any case returned fd MAY BE not valid!
352  *      This race condition is unavoidable
353  *      with shared fd spaces, we cannot solve it inside kernel,
354  *      but we take care of internal coherence yet.
355  */
356
357 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
358 {
359         struct qstr name = { .name = "" };
360         struct path path;
361         struct file *file;
362
363         if (dname) {
364                 name.name = dname;
365                 name.len = strlen(name.name);
366         } else if (sock->sk) {
367                 name.name = sock->sk->sk_prot_creator->name;
368                 name.len = strlen(name.name);
369         }
370         path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
371         if (unlikely(!path.dentry))
372                 return ERR_PTR(-ENOMEM);
373         path.mnt = mntget(sock_mnt);
374
375         d_instantiate(path.dentry, SOCK_INODE(sock));
376         SOCK_INODE(sock)->i_fop = &socket_file_ops;
377
378         file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
379                   &socket_file_ops);
380         if (unlikely(IS_ERR(file))) {
381                 /* drop dentry, keep inode */
382                 ihold(path.dentry->d_inode);
383                 path_put(&path);
384                 return file;
385         }
386
387         sock->file = file;
388         file->f_flags = O_RDWR | (flags & O_NONBLOCK);
389         file->private_data = sock;
390         return file;
391 }
392 EXPORT_SYMBOL(sock_alloc_file);
393
394 static int sock_map_fd(struct socket *sock, int flags)
395 {
396         struct file *newfile;
397         int fd = get_unused_fd_flags(flags);
398         if (unlikely(fd < 0))
399                 return fd;
400
401         newfile = sock_alloc_file(sock, flags, NULL);
402         if (likely(!IS_ERR(newfile))) {
403                 fd_install(fd, newfile);
404                 return fd;
405         }
406
407         put_unused_fd(fd);
408         return PTR_ERR(newfile);
409 }
410
411 struct socket *sock_from_file(struct file *file, int *err)
412 {
413         if (file->f_op == &socket_file_ops)
414                 return file->private_data;      /* set in sock_map_fd */
415
416         *err = -ENOTSOCK;
417         return NULL;
418 }
419 EXPORT_SYMBOL(sock_from_file);
420
421 /**
422  *      sockfd_lookup - Go from a file number to its socket slot
423  *      @fd: file handle
424  *      @err: pointer to an error code return
425  *
426  *      The file handle passed in is locked and the socket it is bound
427  *      too is returned. If an error occurs the err pointer is overwritten
428  *      with a negative errno code and NULL is returned. The function checks
429  *      for both invalid handles and passing a handle which is not a socket.
430  *
431  *      On a success the socket object pointer is returned.
432  */
433
434 struct socket *sockfd_lookup(int fd, int *err)
435 {
436         struct file *file;
437         struct socket *sock;
438
439         file = fget(fd);
440         if (!file) {
441                 *err = -EBADF;
442                 return NULL;
443         }
444
445         sock = sock_from_file(file, err);
446         if (!sock)
447                 fput(file);
448         return sock;
449 }
450 EXPORT_SYMBOL(sockfd_lookup);
451
452 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
453 {
454         struct fd f = fdget(fd);
455         struct socket *sock;
456
457         *err = -EBADF;
458         if (f.file) {
459                 sock = sock_from_file(f.file, err);
460                 if (likely(sock)) {
461                         *fput_needed = f.flags;
462                         return sock;
463                 }
464                 fdput(f);
465         }
466         return NULL;
467 }
468
469 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
470 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
471 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
472 static ssize_t sockfs_getxattr(struct dentry *dentry,
473                                const char *name, void *value, size_t size)
474 {
475         const char *proto_name;
476         size_t proto_size;
477         int error;
478
479         error = -ENODATA;
480         if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
481                 proto_name = dentry->d_name.name;
482                 proto_size = strlen(proto_name);
483
484                 if (value) {
485                         error = -ERANGE;
486                         if (proto_size + 1 > size)
487                                 goto out;
488
489                         strncpy(value, proto_name, proto_size + 1);
490                 }
491                 error = proto_size + 1;
492         }
493
494 out:
495         return error;
496 }
497
498 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
499                                 size_t size)
500 {
501         ssize_t len;
502         ssize_t used = 0;
503
504         len = security_inode_listsecurity(dentry->d_inode, buffer, size);
505         if (len < 0)
506                 return len;
507         used += len;
508         if (buffer) {
509                 if (size < used)
510                         return -ERANGE;
511                 buffer += len;
512         }
513
514         len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
515         used += len;
516         if (buffer) {
517                 if (size < used)
518                         return -ERANGE;
519                 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
520                 buffer += len;
521         }
522
523         return used;
524 }
525
526 static const struct inode_operations sockfs_inode_ops = {
527         .getxattr = sockfs_getxattr,
528         .listxattr = sockfs_listxattr,
529 };
530
531 /**
532  *      sock_alloc      -       allocate a socket
533  *
534  *      Allocate a new inode and socket object. The two are bound together
535  *      and initialised. The socket is then returned. If we are out of inodes
536  *      NULL is returned.
537  */
538
539 static struct socket *sock_alloc(void)
540 {
541         struct inode *inode;
542         struct socket *sock;
543
544         inode = new_inode_pseudo(sock_mnt->mnt_sb);
545         if (!inode)
546                 return NULL;
547
548         sock = SOCKET_I(inode);
549
550         kmemcheck_annotate_bitfield(sock, type);
551         inode->i_ino = get_next_ino();
552         inode->i_mode = S_IFSOCK | S_IRWXUGO;
553         inode->i_uid = current_fsuid();
554         inode->i_gid = current_fsgid();
555         inode->i_op = &sockfs_inode_ops;
556
557         this_cpu_add(sockets_in_use, 1);
558         return sock;
559 }
560
561 /*
562  *      In theory you can't get an open on this inode, but /proc provides
563  *      a back door. Remember to keep it shut otherwise you'll let the
564  *      creepy crawlies in.
565  */
566
567 static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
568 {
569         return -ENXIO;
570 }
571
572 const struct file_operations bad_sock_fops = {
573         .owner = THIS_MODULE,
574         .open = sock_no_open,
575         .llseek = noop_llseek,
576 };
577
578 /**
579  *      sock_release    -       close a socket
580  *      @sock: socket to close
581  *
582  *      The socket is released from the protocol stack if it has a release
583  *      callback, and the inode is then released if the socket is bound to
584  *      an inode not a file.
585  */
586
587 void sock_release(struct socket *sock)
588 {
589         if (sock->ops) {
590                 struct module *owner = sock->ops->owner;
591
592                 sock->ops->release(sock);
593                 sock->ops = NULL;
594                 module_put(owner);
595         }
596
597         if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
598                 pr_err("%s: fasync list not empty!\n", __func__);
599
600         if (test_bit(SOCK_EXTERNALLY_ALLOCATED, &sock->flags))
601                 return;
602
603         this_cpu_sub(sockets_in_use, 1);
604         if (!sock->file) {
605                 iput(SOCK_INODE(sock));
606                 return;
607         }
608         sock->file = NULL;
609 }
610 EXPORT_SYMBOL(sock_release);
611
612 void sock_tx_timestamp(struct sock *sk, __u8 *tx_flags)
613 {
614         *tx_flags = 0;
615         if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
616                 *tx_flags |= SKBTX_HW_TSTAMP;
617         if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
618                 *tx_flags |= SKBTX_SW_TSTAMP;
619         if (sock_flag(sk, SOCK_WIFI_STATUS))
620                 *tx_flags |= SKBTX_WIFI_STATUS;
621 }
622 EXPORT_SYMBOL(sock_tx_timestamp);
623
624 static inline int __sock_sendmsg_nosec(struct kiocb *iocb, struct socket *sock,
625                                        struct msghdr *msg, size_t size)
626 {
627         struct sock_iocb *si = kiocb_to_siocb(iocb);
628
629         si->sock = sock;
630         si->scm = NULL;
631         si->msg = msg;
632         si->size = size;
633
634         return sock->ops->sendmsg(iocb, sock, msg, size);
635 }
636
637 static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
638                                  struct msghdr *msg, size_t size)
639 {
640         int err = security_socket_sendmsg(sock, msg, size);
641
642         return err ?: __sock_sendmsg_nosec(iocb, sock, msg, size);
643 }
644
645 int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
646 {
647         struct kiocb iocb;
648         struct sock_iocb siocb;
649         int ret;
650
651         init_sync_kiocb(&iocb, NULL);
652         iocb.private = &siocb;
653         ret = __sock_sendmsg(&iocb, sock, msg, size);
654         if (-EIOCBQUEUED == ret)
655                 ret = wait_on_sync_kiocb(&iocb);
656         return ret;
657 }
658 EXPORT_SYMBOL(sock_sendmsg);
659
660 static int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg, size_t size)
661 {
662         struct kiocb iocb;
663         struct sock_iocb siocb;
664         int ret;
665
666         init_sync_kiocb(&iocb, NULL);
667         iocb.private = &siocb;
668         ret = __sock_sendmsg_nosec(&iocb, sock, msg, size);
669         if (-EIOCBQUEUED == ret)
670                 ret = wait_on_sync_kiocb(&iocb);
671         return ret;
672 }
673
674 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
675                    struct kvec *vec, size_t num, size_t size)
676 {
677         mm_segment_t oldfs = get_fs();
678         int result;
679
680         set_fs(KERNEL_DS);
681         /*
682          * the following is safe, since for compiler definitions of kvec and
683          * iovec are identical, yielding the same in-core layout and alignment
684          */
685         msg->msg_iov = (struct iovec *)vec;
686         msg->msg_iovlen = num;
687         result = sock_sendmsg(sock, msg, size);
688         set_fs(oldfs);
689         return result;
690 }
691 EXPORT_SYMBOL(kernel_sendmsg);
692
693 /*
694  * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
695  */
696 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
697         struct sk_buff *skb)
698 {
699         int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
700         struct timespec ts[3];
701         int empty = 1;
702         struct skb_shared_hwtstamps *shhwtstamps =
703                 skb_hwtstamps(skb);
704
705         /* Race occurred between timestamp enabling and packet
706            receiving.  Fill in the current time for now. */
707         if (need_software_tstamp && skb->tstamp.tv64 == 0)
708                 __net_timestamp(skb);
709
710         if (need_software_tstamp) {
711                 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
712                         struct timeval tv;
713                         skb_get_timestamp(skb, &tv);
714                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
715                                  sizeof(tv), &tv);
716                 } else {
717                         skb_get_timestampns(skb, &ts[0]);
718                         put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
719                                  sizeof(ts[0]), &ts[0]);
720                 }
721         }
722
723
724         memset(ts, 0, sizeof(ts));
725         if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE) &&
726             ktime_to_timespec_cond(skb->tstamp, ts + 0))
727                 empty = 0;
728         if (shhwtstamps) {
729                 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE) &&
730                     ktime_to_timespec_cond(shhwtstamps->syststamp, ts + 1))
731                         empty = 0;
732                 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE) &&
733                     ktime_to_timespec_cond(shhwtstamps->hwtstamp, ts + 2))
734                         empty = 0;
735         }
736         if (!empty)
737                 put_cmsg(msg, SOL_SOCKET,
738                          SCM_TIMESTAMPING, sizeof(ts), &ts);
739 }
740 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
741
742 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
743         struct sk_buff *skb)
744 {
745         int ack;
746
747         if (!sock_flag(sk, SOCK_WIFI_STATUS))
748                 return;
749         if (!skb->wifi_acked_valid)
750                 return;
751
752         ack = skb->wifi_acked;
753
754         put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
755 }
756 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
757
758 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
759                                    struct sk_buff *skb)
760 {
761         if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && skb->dropcount)
762                 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
763                         sizeof(__u32), &skb->dropcount);
764 }
765
766 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
767         struct sk_buff *skb)
768 {
769         sock_recv_timestamp(msg, sk, skb);
770         sock_recv_drops(msg, sk, skb);
771 }
772 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
773
774 static inline int __sock_recvmsg_nosec(struct kiocb *iocb, struct socket *sock,
775                                        struct msghdr *msg, size_t size, int flags)
776 {
777         struct sock_iocb *si = kiocb_to_siocb(iocb);
778
779         si->sock = sock;
780         si->scm = NULL;
781         si->msg = msg;
782         si->size = size;
783         si->flags = flags;
784
785         return sock->ops->recvmsg(iocb, sock, msg, size, flags);
786 }
787
788 static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
789                                  struct msghdr *msg, size_t size, int flags)
790 {
791         int err = security_socket_recvmsg(sock, msg, size, flags);
792
793         return err ?: __sock_recvmsg_nosec(iocb, sock, msg, size, flags);
794 }
795
796 int sock_recvmsg(struct socket *sock, struct msghdr *msg,
797                  size_t size, int flags)
798 {
799         struct kiocb iocb;
800         struct sock_iocb siocb;
801         int ret;
802
803         init_sync_kiocb(&iocb, NULL);
804         iocb.private = &siocb;
805         ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
806         if (-EIOCBQUEUED == ret)
807                 ret = wait_on_sync_kiocb(&iocb);
808         return ret;
809 }
810 EXPORT_SYMBOL(sock_recvmsg);
811
812 static int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
813                               size_t size, int flags)
814 {
815         struct kiocb iocb;
816         struct sock_iocb siocb;
817         int ret;
818
819         init_sync_kiocb(&iocb, NULL);
820         iocb.private = &siocb;
821         ret = __sock_recvmsg_nosec(&iocb, sock, msg, size, flags);
822         if (-EIOCBQUEUED == ret)
823                 ret = wait_on_sync_kiocb(&iocb);
824         return ret;
825 }
826
827 /**
828  * kernel_recvmsg - Receive a message from a socket (kernel space)
829  * @sock:       The socket to receive the message from
830  * @msg:        Received message
831  * @vec:        Input s/g array for message data
832  * @num:        Size of input s/g array
833  * @size:       Number of bytes to read
834  * @flags:      Message flags (MSG_DONTWAIT, etc...)
835  *
836  * On return the msg structure contains the scatter/gather array passed in the
837  * vec argument. The array is modified so that it consists of the unfilled
838  * portion of the original array.
839  *
840  * The returned value is the total number of bytes received, or an error.
841  */
842 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
843                    struct kvec *vec, size_t num, size_t size, int flags)
844 {
845         mm_segment_t oldfs = get_fs();
846         int result;
847
848         set_fs(KERNEL_DS);
849         /*
850          * the following is safe, since for compiler definitions of kvec and
851          * iovec are identical, yielding the same in-core layout and alignment
852          */
853         msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
854         result = sock_recvmsg(sock, msg, size, flags);
855         set_fs(oldfs);
856         return result;
857 }
858 EXPORT_SYMBOL(kernel_recvmsg);
859
860 static ssize_t sock_sendpage(struct file *file, struct page *page,
861                              int offset, size_t size, loff_t *ppos, int more)
862 {
863         struct socket *sock;
864         int flags;
865
866         sock = file->private_data;
867
868         flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
869         /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
870         flags |= more;
871
872         return kernel_sendpage(sock, page, offset, size, flags);
873 }
874
875 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
876                                 struct pipe_inode_info *pipe, size_t len,
877                                 unsigned int flags)
878 {
879         struct socket *sock = file->private_data;
880
881         if (unlikely(!sock->ops->splice_read))
882                 return -EINVAL;
883
884         return sock->ops->splice_read(sock, ppos, pipe, len, flags);
885 }
886
887 static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
888                                          struct sock_iocb *siocb)
889 {
890         if (!is_sync_kiocb(iocb))
891                 BUG();
892
893         siocb->kiocb = iocb;
894         iocb->private = siocb;
895         return siocb;
896 }
897
898 static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
899                 struct file *file, const struct iovec *iov,
900                 unsigned long nr_segs)
901 {
902         struct socket *sock = file->private_data;
903         size_t size = 0;
904         int i;
905
906         for (i = 0; i < nr_segs; i++)
907                 size += iov[i].iov_len;
908
909         msg->msg_name = NULL;
910         msg->msg_namelen = 0;
911         msg->msg_control = NULL;
912         msg->msg_controllen = 0;
913         msg->msg_iov = (struct iovec *)iov;
914         msg->msg_iovlen = nr_segs;
915         msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
916
917         return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
918 }
919
920 static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
921                                 unsigned long nr_segs, loff_t pos)
922 {
923         struct sock_iocb siocb, *x;
924
925         if (pos != 0)
926                 return -ESPIPE;
927
928         if (iocb->ki_nbytes == 0)       /* Match SYS5 behaviour */
929                 return 0;
930
931
932         x = alloc_sock_iocb(iocb, &siocb);
933         if (!x)
934                 return -ENOMEM;
935         return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
936 }
937
938 static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
939                         struct file *file, const struct iovec *iov,
940                         unsigned long nr_segs)
941 {
942         struct socket *sock = file->private_data;
943         size_t size = 0;
944         int i;
945
946         for (i = 0; i < nr_segs; i++)
947                 size += iov[i].iov_len;
948
949         msg->msg_name = NULL;
950         msg->msg_namelen = 0;
951         msg->msg_control = NULL;
952         msg->msg_controllen = 0;
953         msg->msg_iov = (struct iovec *)iov;
954         msg->msg_iovlen = nr_segs;
955         msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
956         if (sock->type == SOCK_SEQPACKET)
957                 msg->msg_flags |= MSG_EOR;
958
959         return __sock_sendmsg(iocb, sock, msg, size);
960 }
961
962 static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
963                           unsigned long nr_segs, loff_t pos)
964 {
965         struct sock_iocb siocb, *x;
966
967         if (pos != 0)
968                 return -ESPIPE;
969
970         x = alloc_sock_iocb(iocb, &siocb);
971         if (!x)
972                 return -ENOMEM;
973
974         return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
975 }
976
977 /*
978  * Atomic setting of ioctl hooks to avoid race
979  * with module unload.
980  */
981
982 static DEFINE_MUTEX(br_ioctl_mutex);
983 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
984
985 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
986 {
987         mutex_lock(&br_ioctl_mutex);
988         br_ioctl_hook = hook;
989         mutex_unlock(&br_ioctl_mutex);
990 }
991 EXPORT_SYMBOL(brioctl_set);
992
993 static DEFINE_MUTEX(vlan_ioctl_mutex);
994 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
995
996 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
997 {
998         mutex_lock(&vlan_ioctl_mutex);
999         vlan_ioctl_hook = hook;
1000         mutex_unlock(&vlan_ioctl_mutex);
1001 }
1002 EXPORT_SYMBOL(vlan_ioctl_set);
1003
1004 static DEFINE_MUTEX(dlci_ioctl_mutex);
1005 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1006
1007 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1008 {
1009         mutex_lock(&dlci_ioctl_mutex);
1010         dlci_ioctl_hook = hook;
1011         mutex_unlock(&dlci_ioctl_mutex);
1012 }
1013 EXPORT_SYMBOL(dlci_ioctl_set);
1014
1015 static long sock_do_ioctl(struct net *net, struct socket *sock,
1016                                  unsigned int cmd, unsigned long arg)
1017 {
1018         int err;
1019         void __user *argp = (void __user *)arg;
1020
1021         err = sock->ops->ioctl(sock, cmd, arg);
1022
1023         /*
1024          * If this ioctl is unknown try to hand it down
1025          * to the NIC driver.
1026          */
1027         if (err == -ENOIOCTLCMD)
1028                 err = dev_ioctl(net, cmd, argp);
1029
1030         return err;
1031 }
1032
1033 /*
1034  *      With an ioctl, arg may well be a user mode pointer, but we don't know
1035  *      what to do with it - that's up to the protocol still.
1036  */
1037
1038 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1039 {
1040         struct socket *sock;
1041         struct sock *sk;
1042         void __user *argp = (void __user *)arg;
1043         int pid, err;
1044         struct net *net;
1045
1046         sock = file->private_data;
1047         sk = sock->sk;
1048         net = sock_net(sk);
1049         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
1050                 err = dev_ioctl(net, cmd, argp);
1051         } else
1052 #ifdef CONFIG_WEXT_CORE
1053         if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1054                 err = dev_ioctl(net, cmd, argp);
1055         } else
1056 #endif
1057                 switch (cmd) {
1058                 case FIOSETOWN:
1059                 case SIOCSPGRP:
1060                         err = -EFAULT;
1061                         if (get_user(pid, (int __user *)argp))
1062                                 break;
1063                         err = f_setown(sock->file, pid, 1);
1064                         break;
1065                 case FIOGETOWN:
1066                 case SIOCGPGRP:
1067                         err = put_user(f_getown(sock->file),
1068                                        (int __user *)argp);
1069                         break;
1070                 case SIOCGIFBR:
1071                 case SIOCSIFBR:
1072                 case SIOCBRADDBR:
1073                 case SIOCBRDELBR:
1074                         err = -ENOPKG;
1075                         if (!br_ioctl_hook)
1076                                 request_module("bridge");
1077
1078                         mutex_lock(&br_ioctl_mutex);
1079                         if (br_ioctl_hook)
1080                                 err = br_ioctl_hook(net, cmd, argp);
1081                         mutex_unlock(&br_ioctl_mutex);
1082                         break;
1083                 case SIOCGIFVLAN:
1084                 case SIOCSIFVLAN:
1085                         err = -ENOPKG;
1086                         if (!vlan_ioctl_hook)
1087                                 request_module("8021q");
1088
1089                         mutex_lock(&vlan_ioctl_mutex);
1090                         if (vlan_ioctl_hook)
1091                                 err = vlan_ioctl_hook(net, argp);
1092                         mutex_unlock(&vlan_ioctl_mutex);
1093                         break;
1094                 case SIOCADDDLCI:
1095                 case SIOCDELDLCI:
1096                         err = -ENOPKG;
1097                         if (!dlci_ioctl_hook)
1098                                 request_module("dlci");
1099
1100                         mutex_lock(&dlci_ioctl_mutex);
1101                         if (dlci_ioctl_hook)
1102                                 err = dlci_ioctl_hook(cmd, argp);
1103                         mutex_unlock(&dlci_ioctl_mutex);
1104                         break;
1105                 default:
1106                         err = sock_do_ioctl(net, sock, cmd, arg);
1107                         break;
1108                 }
1109         return err;
1110 }
1111
1112 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1113 {
1114         int err;
1115         struct socket *sock = NULL;
1116
1117         err = security_socket_create(family, type, protocol, 1);
1118         if (err)
1119                 goto out;
1120
1121         sock = sock_alloc();
1122         if (!sock) {
1123                 err = -ENOMEM;
1124                 goto out;
1125         }
1126
1127         sock->type = type;
1128         err = security_socket_post_create(sock, family, type, protocol, 1);
1129         if (err)
1130                 goto out_release;
1131
1132 out:
1133         *res = sock;
1134         return err;
1135 out_release:
1136         sock_release(sock);
1137         sock = NULL;
1138         goto out;
1139 }
1140 EXPORT_SYMBOL(sock_create_lite);
1141
1142 /* No kernel lock held - perfect */
1143 static unsigned int sock_poll(struct file *file, poll_table *wait)
1144 {
1145         unsigned int busy_flag = 0;
1146         struct socket *sock;
1147
1148         /*
1149          *      We can't return errors to poll, so it's either yes or no.
1150          */
1151         sock = file->private_data;
1152
1153         if (sk_can_busy_loop(sock->sk)) {
1154                 /* this socket can poll_ll so tell the system call */
1155                 busy_flag = POLL_BUSY_LOOP;
1156
1157                 /* once, only if requested by syscall */
1158                 if (wait && (wait->_key & POLL_BUSY_LOOP))
1159                         sk_busy_loop(sock->sk, 1);
1160         }
1161
1162         return busy_flag | sock->ops->poll(file, sock, wait);
1163 }
1164
1165 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1166 {
1167         struct socket *sock = file->private_data;
1168
1169         return sock->ops->mmap(file, sock, vma);
1170 }
1171
1172 static int sock_close(struct inode *inode, struct file *filp)
1173 {
1174         sock_release(SOCKET_I(inode));
1175         return 0;
1176 }
1177
1178 /*
1179  *      Update the socket async list
1180  *
1181  *      Fasync_list locking strategy.
1182  *
1183  *      1. fasync_list is modified only under process context socket lock
1184  *         i.e. under semaphore.
1185  *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1186  *         or under socket lock
1187  */
1188
1189 static int sock_fasync(int fd, struct file *filp, int on)
1190 {
1191         struct socket *sock = filp->private_data;
1192         struct sock *sk = sock->sk;
1193         struct socket_wq *wq;
1194
1195         if (sk == NULL)
1196                 return -EINVAL;
1197
1198         lock_sock(sk);
1199         wq = rcu_dereference_protected(sock->wq, sock_owned_by_user(sk));
1200         fasync_helper(fd, filp, on, &wq->fasync_list);
1201
1202         if (!wq->fasync_list)
1203                 sock_reset_flag(sk, SOCK_FASYNC);
1204         else
1205                 sock_set_flag(sk, SOCK_FASYNC);
1206
1207         release_sock(sk);
1208         return 0;
1209 }
1210
1211 /* This function may be called only under socket lock or callback_lock or rcu_lock */
1212
1213 int sock_wake_async(struct socket *sock, int how, int band)
1214 {
1215         struct socket_wq *wq;
1216
1217         if (!sock)
1218                 return -1;
1219         rcu_read_lock();
1220         wq = rcu_dereference(sock->wq);
1221         if (!wq || !wq->fasync_list) {
1222                 rcu_read_unlock();
1223                 return -1;
1224         }
1225         switch (how) {
1226         case SOCK_WAKE_WAITD:
1227                 if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1228                         break;
1229                 goto call_kill;
1230         case SOCK_WAKE_SPACE:
1231                 if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1232                         break;
1233                 /* fall through */
1234         case SOCK_WAKE_IO:
1235 call_kill:
1236                 kill_fasync(&wq->fasync_list, SIGIO, band);
1237                 break;
1238         case SOCK_WAKE_URG:
1239                 kill_fasync(&wq->fasync_list, SIGURG, band);
1240         }
1241         rcu_read_unlock();
1242         return 0;
1243 }
1244 EXPORT_SYMBOL(sock_wake_async);
1245
1246 int __sock_create(struct net *net, int family, int type, int protocol,
1247                          struct socket **res, int kern)
1248 {
1249         int err;
1250         struct socket *sock;
1251         const struct net_proto_family *pf;
1252
1253         /*
1254          *      Check protocol is in range
1255          */
1256         if (family < 0 || family >= NPROTO)
1257                 return -EAFNOSUPPORT;
1258         if (type < 0 || type >= SOCK_MAX)
1259                 return -EINVAL;
1260
1261         /* Compatibility.
1262
1263            This uglymoron is moved from INET layer to here to avoid
1264            deadlock in module load.
1265          */
1266         if (family == PF_INET && type == SOCK_PACKET) {
1267                 static int warned;
1268                 if (!warned) {
1269                         warned = 1;
1270                         pr_info("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1271                                 current->comm);
1272                 }
1273                 family = PF_PACKET;
1274         }
1275
1276         err = security_socket_create(family, type, protocol, kern);
1277         if (err)
1278                 return err;
1279
1280         /*
1281          *      Allocate the socket and allow the family to set things up. if
1282          *      the protocol is 0, the family is instructed to select an appropriate
1283          *      default.
1284          */
1285         sock = sock_alloc();
1286         if (!sock) {
1287                 net_warn_ratelimited("socket: no more sockets\n");
1288                 return -ENFILE; /* Not exactly a match, but its the
1289                                    closest posix thing */
1290         }
1291
1292         sock->type = type;
1293
1294 #ifdef CONFIG_MODULES
1295         /* Attempt to load a protocol module if the find failed.
1296          *
1297          * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1298          * requested real, full-featured networking support upon configuration.
1299          * Otherwise module support will break!
1300          */
1301         if (rcu_access_pointer(net_families[family]) == NULL)
1302                 request_module("net-pf-%d", family);
1303 #endif
1304
1305         rcu_read_lock();
1306         pf = rcu_dereference(net_families[family]);
1307         err = -EAFNOSUPPORT;
1308         if (!pf)
1309                 goto out_release;
1310
1311         /*
1312          * We will call the ->create function, that possibly is in a loadable
1313          * module, so we have to bump that loadable module refcnt first.
1314          */
1315         if (!try_module_get(pf->owner))
1316                 goto out_release;
1317
1318         /* Now protected by module ref count */
1319         rcu_read_unlock();
1320
1321         err = pf->create(net, sock, protocol, kern);
1322         if (err < 0)
1323                 goto out_module_put;
1324
1325         /*
1326          * Now to bump the refcnt of the [loadable] module that owns this
1327          * socket at sock_release time we decrement its refcnt.
1328          */
1329         if (!try_module_get(sock->ops->owner))
1330                 goto out_module_busy;
1331
1332         /*
1333          * Now that we're done with the ->create function, the [loadable]
1334          * module can have its refcnt decremented
1335          */
1336         module_put(pf->owner);
1337         err = security_socket_post_create(sock, family, type, protocol, kern);
1338         if (err)
1339                 goto out_sock_release;
1340         *res = sock;
1341
1342         return 0;
1343
1344 out_module_busy:
1345         err = -EAFNOSUPPORT;
1346 out_module_put:
1347         sock->ops = NULL;
1348         module_put(pf->owner);
1349 out_sock_release:
1350         sock_release(sock);
1351         return err;
1352
1353 out_release:
1354         rcu_read_unlock();
1355         goto out_sock_release;
1356 }
1357 EXPORT_SYMBOL(__sock_create);
1358
1359 int sock_create(int family, int type, int protocol, struct socket **res)
1360 {
1361         return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1362 }
1363 EXPORT_SYMBOL(sock_create);
1364
1365 int sock_create_kern(int family, int type, int protocol, struct socket **res)
1366 {
1367         return __sock_create(&init_net, family, type, protocol, res, 1);
1368 }
1369 EXPORT_SYMBOL(sock_create_kern);
1370
1371 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1372 {
1373         int retval;
1374         struct socket *sock;
1375         int flags;
1376
1377         /* Check the SOCK_* constants for consistency.  */
1378         BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1379         BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1380         BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1381         BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1382
1383         flags = type & ~SOCK_TYPE_MASK;
1384         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1385                 return -EINVAL;
1386         type &= SOCK_TYPE_MASK;
1387
1388         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1389                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1390
1391         retval = sock_create(family, type, protocol, &sock);
1392         if (retval < 0)
1393                 goto out;
1394
1395         retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1396         if (retval < 0)
1397                 goto out_release;
1398
1399 out:
1400         /* It may be already another descriptor 8) Not kernel problem. */
1401         return retval;
1402
1403 out_release:
1404         sock_release(sock);
1405         return retval;
1406 }
1407
1408 /*
1409  *      Create a pair of connected sockets.
1410  */
1411
1412 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1413                 int __user *, usockvec)
1414 {
1415         struct socket *sock1, *sock2;
1416         int fd1, fd2, err;
1417         struct file *newfile1, *newfile2;
1418         int flags;
1419
1420         flags = type & ~SOCK_TYPE_MASK;
1421         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1422                 return -EINVAL;
1423         type &= SOCK_TYPE_MASK;
1424
1425         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1426                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1427
1428         /*
1429          * Obtain the first socket and check if the underlying protocol
1430          * supports the socketpair call.
1431          */
1432
1433         err = sock_create(family, type, protocol, &sock1);
1434         if (err < 0)
1435                 goto out;
1436
1437         err = sock_create(family, type, protocol, &sock2);
1438         if (err < 0)
1439                 goto out_release_1;
1440
1441         err = sock1->ops->socketpair(sock1, sock2);
1442         if (err < 0)
1443                 goto out_release_both;
1444
1445         fd1 = get_unused_fd_flags(flags);
1446         if (unlikely(fd1 < 0)) {
1447                 err = fd1;
1448                 goto out_release_both;
1449         }
1450
1451         fd2 = get_unused_fd_flags(flags);
1452         if (unlikely(fd2 < 0)) {
1453                 err = fd2;
1454                 goto out_put_unused_1;
1455         }
1456
1457         newfile1 = sock_alloc_file(sock1, flags, NULL);
1458         if (unlikely(IS_ERR(newfile1))) {
1459                 err = PTR_ERR(newfile1);
1460                 goto out_put_unused_both;
1461         }
1462
1463         newfile2 = sock_alloc_file(sock2, flags, NULL);
1464         if (IS_ERR(newfile2)) {
1465                 err = PTR_ERR(newfile2);
1466                 goto out_fput_1;
1467         }
1468
1469         err = put_user(fd1, &usockvec[0]);
1470         if (err)
1471                 goto out_fput_both;
1472
1473         err = put_user(fd2, &usockvec[1]);
1474         if (err)
1475                 goto out_fput_both;
1476
1477         audit_fd_pair(fd1, fd2);
1478
1479         fd_install(fd1, newfile1);
1480         fd_install(fd2, newfile2);
1481         /* fd1 and fd2 may be already another descriptors.
1482          * Not kernel problem.
1483          */
1484
1485         return 0;
1486
1487 out_fput_both:
1488         fput(newfile2);
1489         fput(newfile1);
1490         put_unused_fd(fd2);
1491         put_unused_fd(fd1);
1492         goto out;
1493
1494 out_fput_1:
1495         fput(newfile1);
1496         put_unused_fd(fd2);
1497         put_unused_fd(fd1);
1498         sock_release(sock2);
1499         goto out;
1500
1501 out_put_unused_both:
1502         put_unused_fd(fd2);
1503 out_put_unused_1:
1504         put_unused_fd(fd1);
1505 out_release_both:
1506         sock_release(sock2);
1507 out_release_1:
1508         sock_release(sock1);
1509 out:
1510         return err;
1511 }
1512
1513 /*
1514  *      Bind a name to a socket. Nothing much to do here since it's
1515  *      the protocol's responsibility to handle the local address.
1516  *
1517  *      We move the socket address to kernel space before we call
1518  *      the protocol layer (having also checked the address is ok).
1519  */
1520
1521 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1522 {
1523         struct socket *sock;
1524         struct sockaddr_storage address;
1525         int err, fput_needed;
1526
1527         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1528         if (sock) {
1529                 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1530                 if (err >= 0) {
1531                         err = security_socket_bind(sock,
1532                                                    (struct sockaddr *)&address,
1533                                                    addrlen);
1534                         if (!err)
1535                                 err = sock->ops->bind(sock,
1536                                                       (struct sockaddr *)
1537                                                       &address, addrlen);
1538                 }
1539                 fput_light(sock->file, fput_needed);
1540         }
1541         return err;
1542 }
1543
1544 /*
1545  *      Perform a listen. Basically, we allow the protocol to do anything
1546  *      necessary for a listen, and if that works, we mark the socket as
1547  *      ready for listening.
1548  */
1549
1550 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1551 {
1552         struct socket *sock;
1553         int err, fput_needed;
1554         int somaxconn;
1555
1556         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557         if (sock) {
1558                 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1559                 if ((unsigned int)backlog > somaxconn)
1560                         backlog = somaxconn;
1561
1562                 err = security_socket_listen(sock, backlog);
1563                 if (!err)
1564                         err = sock->ops->listen(sock, backlog);
1565
1566                 fput_light(sock->file, fput_needed);
1567         }
1568         return err;
1569 }
1570
1571 /*
1572  *      For accept, we attempt to create a new socket, set up the link
1573  *      with the client, wake up the client, then return the new
1574  *      connected fd. We collect the address of the connector in kernel
1575  *      space and move it to user at the very end. This is unclean because
1576  *      we open the socket then return an error.
1577  *
1578  *      1003.1g adds the ability to recvmsg() to query connection pending
1579  *      status to recvmsg. We need to add that support in a way thats
1580  *      clean when we restucture accept also.
1581  */
1582
1583 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1584                 int __user *, upeer_addrlen, int, flags)
1585 {
1586         struct socket *sock, *newsock;
1587         struct file *newfile;
1588         int err, len, newfd, fput_needed;
1589         struct sockaddr_storage address;
1590
1591         if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1592                 return -EINVAL;
1593
1594         if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1595                 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1596
1597         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1598         if (!sock)
1599                 goto out;
1600
1601         err = -ENFILE;
1602         newsock = sock_alloc();
1603         if (!newsock)
1604                 goto out_put;
1605
1606         newsock->type = sock->type;
1607         newsock->ops = sock->ops;
1608
1609         /*
1610          * We don't need try_module_get here, as the listening socket (sock)
1611          * has the protocol module (sock->ops->owner) held.
1612          */
1613         __module_get(newsock->ops->owner);
1614
1615         newfd = get_unused_fd_flags(flags);
1616         if (unlikely(newfd < 0)) {
1617                 err = newfd;
1618                 sock_release(newsock);
1619                 goto out_put;
1620         }
1621         newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1622         if (unlikely(IS_ERR(newfile))) {
1623                 err = PTR_ERR(newfile);
1624                 put_unused_fd(newfd);
1625                 sock_release(newsock);
1626                 goto out_put;
1627         }
1628
1629         err = security_socket_accept(sock, newsock);
1630         if (err)
1631                 goto out_fd;
1632
1633         err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1634         if (err < 0)
1635                 goto out_fd;
1636
1637         if (upeer_sockaddr) {
1638                 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1639                                           &len, 2) < 0) {
1640                         err = -ECONNABORTED;
1641                         goto out_fd;
1642                 }
1643                 err = move_addr_to_user(&address,
1644                                         len, upeer_sockaddr, upeer_addrlen);
1645                 if (err < 0)
1646                         goto out_fd;
1647         }
1648
1649         /* File flags are not inherited via accept() unlike another OSes. */
1650
1651         fd_install(newfd, newfile);
1652         err = newfd;
1653
1654 out_put:
1655         fput_light(sock->file, fput_needed);
1656 out:
1657         return err;
1658 out_fd:
1659         fput(newfile);
1660         put_unused_fd(newfd);
1661         goto out_put;
1662 }
1663
1664 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1665                 int __user *, upeer_addrlen)
1666 {
1667         return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1668 }
1669
1670 /*
1671  *      Attempt to connect to a socket with the server address.  The address
1672  *      is in user space so we verify it is OK and move it to kernel space.
1673  *
1674  *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1675  *      break bindings
1676  *
1677  *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1678  *      other SEQPACKET protocols that take time to connect() as it doesn't
1679  *      include the -EINPROGRESS status for such sockets.
1680  */
1681
1682 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1683                 int, addrlen)
1684 {
1685         struct socket *sock;
1686         struct sockaddr_storage address;
1687         int err, fput_needed;
1688
1689         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1690         if (!sock)
1691                 goto out;
1692         err = move_addr_to_kernel(uservaddr, addrlen, &address);
1693         if (err < 0)
1694                 goto out_put;
1695
1696         err =
1697             security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1698         if (err)
1699                 goto out_put;
1700
1701         err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1702                                  sock->file->f_flags);
1703 out_put:
1704         fput_light(sock->file, fput_needed);
1705 out:
1706         return err;
1707 }
1708
1709 /*
1710  *      Get the local address ('name') of a socket object. Move the obtained
1711  *      name to user space.
1712  */
1713
1714 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1715                 int __user *, usockaddr_len)
1716 {
1717         struct socket *sock;
1718         struct sockaddr_storage address;
1719         int len, err, fput_needed;
1720
1721         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1722         if (!sock)
1723                 goto out;
1724
1725         err = security_socket_getsockname(sock);
1726         if (err)
1727                 goto out_put;
1728
1729         err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1730         if (err)
1731                 goto out_put;
1732         err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1733
1734 out_put:
1735         fput_light(sock->file, fput_needed);
1736 out:
1737         return err;
1738 }
1739
1740 /*
1741  *      Get the remote address ('name') of a socket object. Move the obtained
1742  *      name to user space.
1743  */
1744
1745 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1746                 int __user *, usockaddr_len)
1747 {
1748         struct socket *sock;
1749         struct sockaddr_storage address;
1750         int len, err, fput_needed;
1751
1752         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1753         if (sock != NULL) {
1754                 err = security_socket_getpeername(sock);
1755                 if (err) {
1756                         fput_light(sock->file, fput_needed);
1757                         return err;
1758                 }
1759
1760                 err =
1761                     sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1762                                        1);
1763                 if (!err)
1764                         err = move_addr_to_user(&address, len, usockaddr,
1765                                                 usockaddr_len);
1766                 fput_light(sock->file, fput_needed);
1767         }
1768         return err;
1769 }
1770
1771 /*
1772  *      Send a datagram to a given address. We move the address into kernel
1773  *      space and check the user space data area is readable before invoking
1774  *      the protocol.
1775  */
1776
1777 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1778                 unsigned int, flags, struct sockaddr __user *, addr,
1779                 int, addr_len)
1780 {
1781         struct socket *sock;
1782         struct sockaddr_storage address;
1783         int err;
1784         struct msghdr msg;
1785         struct iovec iov;
1786         int fput_needed;
1787
1788         if (len > INT_MAX)
1789                 len = INT_MAX;
1790         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1791         if (!sock)
1792                 goto out;
1793
1794         iov.iov_base = buff;
1795         iov.iov_len = len;
1796         msg.msg_name = NULL;
1797         msg.msg_iov = &iov;
1798         msg.msg_iovlen = 1;
1799         msg.msg_control = NULL;
1800         msg.msg_controllen = 0;
1801         msg.msg_namelen = 0;
1802         if (addr) {
1803                 err = move_addr_to_kernel(addr, addr_len, &address);
1804                 if (err < 0)
1805                         goto out_put;
1806                 msg.msg_name = (struct sockaddr *)&address;
1807                 msg.msg_namelen = addr_len;
1808         }
1809         if (sock->file->f_flags & O_NONBLOCK)
1810                 flags |= MSG_DONTWAIT;
1811         msg.msg_flags = flags;
1812         err = sock_sendmsg(sock, &msg, len);
1813
1814 out_put:
1815         fput_light(sock->file, fput_needed);
1816 out:
1817         return err;
1818 }
1819
1820 /*
1821  *      Send a datagram down a socket.
1822  */
1823
1824 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1825                 unsigned int, flags)
1826 {
1827         return sys_sendto(fd, buff, len, flags, NULL, 0);
1828 }
1829
1830 /*
1831  *      Receive a frame from the socket and optionally record the address of the
1832  *      sender. We verify the buffers are writable and if needed move the
1833  *      sender address from kernel to user space.
1834  */
1835
1836 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1837                 unsigned int, flags, struct sockaddr __user *, addr,
1838                 int __user *, addr_len)
1839 {
1840         struct socket *sock;
1841         struct iovec iov;
1842         struct msghdr msg;
1843         struct sockaddr_storage address;
1844         int err, err2;
1845         int fput_needed;
1846
1847         if (size > INT_MAX)
1848                 size = INT_MAX;
1849         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1850         if (!sock)
1851                 goto out;
1852
1853         msg.msg_control = NULL;
1854         msg.msg_controllen = 0;
1855         msg.msg_iovlen = 1;
1856         msg.msg_iov = &iov;
1857         iov.iov_len = size;
1858         iov.iov_base = ubuf;
1859         /* Save some cycles and don't copy the address if not needed */
1860         msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1861         /* We assume all kernel code knows the size of sockaddr_storage */
1862         msg.msg_namelen = 0;
1863         if (sock->file->f_flags & O_NONBLOCK)
1864                 flags |= MSG_DONTWAIT;
1865         err = sock_recvmsg(sock, &msg, size, flags);
1866
1867         if (err >= 0 && addr != NULL) {
1868                 err2 = move_addr_to_user(&address,
1869                                          msg.msg_namelen, addr, addr_len);
1870                 if (err2 < 0)
1871                         err = err2;
1872         }
1873
1874         fput_light(sock->file, fput_needed);
1875 out:
1876         return err;
1877 }
1878
1879 /*
1880  *      Receive a datagram from a socket.
1881  */
1882
1883 asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1884                          unsigned int flags)
1885 {
1886         return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1887 }
1888
1889 /*
1890  *      Set a socket option. Because we don't know the option lengths we have
1891  *      to pass the user mode parameter for the protocols to sort out.
1892  */
1893
1894 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1895                 char __user *, optval, int, optlen)
1896 {
1897         int err, fput_needed;
1898         struct socket *sock;
1899
1900         if (optlen < 0)
1901                 return -EINVAL;
1902
1903         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1904         if (sock != NULL) {
1905                 err = security_socket_setsockopt(sock, level, optname);
1906                 if (err)
1907                         goto out_put;
1908
1909                 if (level == SOL_SOCKET)
1910                         err =
1911                             sock_setsockopt(sock, level, optname, optval,
1912                                             optlen);
1913                 else
1914                         err =
1915                             sock->ops->setsockopt(sock, level, optname, optval,
1916                                                   optlen);
1917 out_put:
1918                 fput_light(sock->file, fput_needed);
1919         }
1920         return err;
1921 }
1922
1923 /*
1924  *      Get a socket option. Because we don't know the option lengths we have
1925  *      to pass a user mode parameter for the protocols to sort out.
1926  */
1927
1928 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1929                 char __user *, optval, int __user *, optlen)
1930 {
1931         int err, fput_needed;
1932         struct socket *sock;
1933
1934         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935         if (sock != NULL) {
1936                 err = security_socket_getsockopt(sock, level, optname);
1937                 if (err)
1938                         goto out_put;
1939
1940                 if (level == SOL_SOCKET)
1941                         err =
1942                             sock_getsockopt(sock, level, optname, optval,
1943                                             optlen);
1944                 else
1945                         err =
1946                             sock->ops->getsockopt(sock, level, optname, optval,
1947                                                   optlen);
1948 out_put:
1949                 fput_light(sock->file, fput_needed);
1950         }
1951         return err;
1952 }
1953
1954 /*
1955  *      Shutdown a socket.
1956  */
1957
1958 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1959 {
1960         int err, fput_needed;
1961         struct socket *sock;
1962
1963         sock = sockfd_lookup_light(fd, &err, &fput_needed);
1964         if (sock != NULL) {
1965                 err = security_socket_shutdown(sock, how);
1966                 if (!err)
1967                         err = sock->ops->shutdown(sock, how);
1968                 fput_light(sock->file, fput_needed);
1969         }
1970         return err;
1971 }
1972
1973 /* A couple of helpful macros for getting the address of the 32/64 bit
1974  * fields which are the same type (int / unsigned) on our platforms.
1975  */
1976 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1977 #define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1978 #define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1979
1980 struct used_address {
1981         struct sockaddr_storage name;
1982         unsigned int name_len;
1983 };
1984
1985 static int copy_msghdr_from_user(struct msghdr *kmsg,
1986                                  struct msghdr __user *umsg)
1987 {
1988         if (copy_from_user(kmsg, umsg, sizeof(struct msghdr)))
1989                 return -EFAULT;
1990
1991         if (kmsg->msg_namelen < 0)
1992                 return -EINVAL;
1993
1994         if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1995                 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1996         return 0;
1997 }
1998
1999 static int ___sys_sendmsg(struct socket *sock, struct msghdr __user *msg,
2000                          struct msghdr *msg_sys, unsigned int flags,
2001                          struct used_address *used_address)
2002 {
2003         struct compat_msghdr __user *msg_compat =
2004             (struct compat_msghdr __user *)msg;
2005         struct sockaddr_storage address;
2006         struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2007         unsigned char ctl[sizeof(struct cmsghdr) + 20]
2008             __attribute__ ((aligned(sizeof(__kernel_size_t))));
2009         /* 20 is size of ipv6_pktinfo */
2010         unsigned char *ctl_buf = ctl;
2011         int err, ctl_len, total_len;
2012
2013         err = -EFAULT;
2014         if (MSG_CMSG_COMPAT & flags) {
2015                 if (get_compat_msghdr(msg_sys, msg_compat))
2016                         return -EFAULT;
2017         } else {
2018                 err = copy_msghdr_from_user(msg_sys, msg);
2019                 if (err)
2020                         return err;
2021         }
2022
2023         if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2024                 err = -EMSGSIZE;
2025                 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2026                         goto out;
2027                 err = -ENOMEM;
2028                 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2029                               GFP_KERNEL);
2030                 if (!iov)
2031                         goto out;
2032         }
2033
2034         /* This will also move the address data into kernel space */
2035         if (MSG_CMSG_COMPAT & flags) {
2036                 err = verify_compat_iovec(msg_sys, iov, &address, VERIFY_READ);
2037         } else
2038                 err = verify_iovec(msg_sys, iov, &address, VERIFY_READ);
2039         if (err < 0)
2040                 goto out_freeiov;
2041         total_len = err;
2042
2043         err = -ENOBUFS;
2044
2045         if (msg_sys->msg_controllen > INT_MAX)
2046                 goto out_freeiov;
2047         ctl_len = msg_sys->msg_controllen;
2048         if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2049                 err =
2050                     cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2051                                                      sizeof(ctl));
2052                 if (err)
2053                         goto out_freeiov;
2054                 ctl_buf = msg_sys->msg_control;
2055                 ctl_len = msg_sys->msg_controllen;
2056         } else if (ctl_len) {
2057                 if (ctl_len > sizeof(ctl)) {
2058                         ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2059                         if (ctl_buf == NULL)
2060                                 goto out_freeiov;
2061                 }
2062                 err = -EFAULT;
2063                 /*
2064                  * Careful! Before this, msg_sys->msg_control contains a user pointer.
2065                  * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2066                  * checking falls down on this.
2067                  */
2068                 if (copy_from_user(ctl_buf,
2069                                    (void __user __force *)msg_sys->msg_control,
2070                                    ctl_len))
2071                         goto out_freectl;
2072                 msg_sys->msg_control = ctl_buf;
2073         }
2074         msg_sys->msg_flags = flags;
2075
2076         if (sock->file->f_flags & O_NONBLOCK)
2077                 msg_sys->msg_flags |= MSG_DONTWAIT;
2078         /*
2079          * If this is sendmmsg() and current destination address is same as
2080          * previously succeeded address, omit asking LSM's decision.
2081          * used_address->name_len is initialized to UINT_MAX so that the first
2082          * destination address never matches.
2083          */
2084         if (used_address && msg_sys->msg_name &&
2085             used_address->name_len == msg_sys->msg_namelen &&
2086             !memcmp(&used_address->name, msg_sys->msg_name,
2087                     used_address->name_len)) {
2088                 err = sock_sendmsg_nosec(sock, msg_sys, total_len);
2089                 goto out_freectl;
2090         }
2091         err = sock_sendmsg(sock, msg_sys, total_len);
2092         /*
2093          * If this is sendmmsg() and sending to current destination address was
2094          * successful, remember it.
2095          */
2096         if (used_address && err >= 0) {
2097                 used_address->name_len = msg_sys->msg_namelen;
2098                 if (msg_sys->msg_name)
2099                         memcpy(&used_address->name, msg_sys->msg_name,
2100                                used_address->name_len);
2101         }
2102
2103 out_freectl:
2104         if (ctl_buf != ctl)
2105                 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2106 out_freeiov:
2107         if (iov != iovstack)
2108                 kfree(iov);
2109 out:
2110         return err;
2111 }
2112
2113 /*
2114  *      BSD sendmsg interface
2115  */
2116
2117 long __sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
2118 {
2119         int fput_needed, err;
2120         struct msghdr msg_sys;
2121         struct socket *sock;
2122
2123         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2124         if (!sock)
2125                 goto out;
2126
2127         err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL);
2128
2129         fput_light(sock->file, fput_needed);
2130 out:
2131         return err;
2132 }
2133
2134 SYSCALL_DEFINE3(sendmsg, int, fd, struct msghdr __user *, msg, unsigned int, flags)
2135 {
2136         if (flags & MSG_CMSG_COMPAT)
2137                 return -EINVAL;
2138         return __sys_sendmsg(fd, msg, flags);
2139 }
2140
2141 /*
2142  *      Linux sendmmsg interface
2143  */
2144
2145 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2146                    unsigned int flags)
2147 {
2148         int fput_needed, err, datagrams;
2149         struct socket *sock;
2150         struct mmsghdr __user *entry;
2151         struct compat_mmsghdr __user *compat_entry;
2152         struct msghdr msg_sys;
2153         struct used_address used_address;
2154
2155         if (vlen > UIO_MAXIOV)
2156                 vlen = UIO_MAXIOV;
2157
2158         datagrams = 0;
2159
2160         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2161         if (!sock)
2162                 return err;
2163
2164         used_address.name_len = UINT_MAX;
2165         entry = mmsg;
2166         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2167         err = 0;
2168
2169         while (datagrams < vlen) {
2170                 if (MSG_CMSG_COMPAT & flags) {
2171                         err = ___sys_sendmsg(sock, (struct msghdr __user *)compat_entry,
2172                                              &msg_sys, flags, &used_address);
2173                         if (err < 0)
2174                                 break;
2175                         err = __put_user(err, &compat_entry->msg_len);
2176                         ++compat_entry;
2177                 } else {
2178                         err = ___sys_sendmsg(sock,
2179                                              (struct msghdr __user *)entry,
2180                                              &msg_sys, flags, &used_address);
2181                         if (err < 0)
2182                                 break;
2183                         err = put_user(err, &entry->msg_len);
2184                         ++entry;
2185                 }
2186
2187                 if (err)
2188                         break;
2189                 ++datagrams;
2190         }
2191
2192         fput_light(sock->file, fput_needed);
2193
2194         /* We only return an error if no datagrams were able to be sent */
2195         if (datagrams != 0)
2196                 return datagrams;
2197
2198         return err;
2199 }
2200
2201 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2202                 unsigned int, vlen, unsigned int, flags)
2203 {
2204         if (flags & MSG_CMSG_COMPAT)
2205                 return -EINVAL;
2206         return __sys_sendmmsg(fd, mmsg, vlen, flags);
2207 }
2208
2209 static int ___sys_recvmsg(struct socket *sock, struct msghdr __user *msg,
2210                          struct msghdr *msg_sys, unsigned int flags, int nosec)
2211 {
2212         struct compat_msghdr __user *msg_compat =
2213             (struct compat_msghdr __user *)msg;
2214         struct iovec iovstack[UIO_FASTIOV];
2215         struct iovec *iov = iovstack;
2216         unsigned long cmsg_ptr;
2217         int err, total_len, len;
2218
2219         /* kernel mode address */
2220         struct sockaddr_storage addr;
2221
2222         /* user mode address pointers */
2223         struct sockaddr __user *uaddr;
2224         int __user *uaddr_len;
2225
2226         if (MSG_CMSG_COMPAT & flags) {
2227                 if (get_compat_msghdr(msg_sys, msg_compat))
2228                         return -EFAULT;
2229         } else {
2230                 err = copy_msghdr_from_user(msg_sys, msg);
2231                 if (err)
2232                         return err;
2233         }
2234
2235         if (msg_sys->msg_iovlen > UIO_FASTIOV) {
2236                 err = -EMSGSIZE;
2237                 if (msg_sys->msg_iovlen > UIO_MAXIOV)
2238                         goto out;
2239                 err = -ENOMEM;
2240                 iov = kmalloc(msg_sys->msg_iovlen * sizeof(struct iovec),
2241                               GFP_KERNEL);
2242                 if (!iov)
2243                         goto out;
2244         }
2245
2246         /* Save the user-mode address (verify_iovec will change the
2247          * kernel msghdr to use the kernel address space)
2248          */
2249         uaddr = (__force void __user *)msg_sys->msg_name;
2250         uaddr_len = COMPAT_NAMELEN(msg);
2251         if (MSG_CMSG_COMPAT & flags)
2252                 err = verify_compat_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2253         else
2254                 err = verify_iovec(msg_sys, iov, &addr, VERIFY_WRITE);
2255         if (err < 0)
2256                 goto out_freeiov;
2257         total_len = err;
2258
2259         cmsg_ptr = (unsigned long)msg_sys->msg_control;
2260         msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2261
2262         /* We assume all kernel code knows the size of sockaddr_storage */
2263         msg_sys->msg_namelen = 0;
2264
2265         if (sock->file->f_flags & O_NONBLOCK)
2266                 flags |= MSG_DONTWAIT;
2267         err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys,
2268                                                           total_len, flags);
2269         if (err < 0)
2270                 goto out_freeiov;
2271         len = err;
2272
2273         if (uaddr != NULL) {
2274                 err = move_addr_to_user(&addr,
2275                                         msg_sys->msg_namelen, uaddr,
2276                                         uaddr_len);
2277                 if (err < 0)
2278                         goto out_freeiov;
2279         }
2280         err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2281                          COMPAT_FLAGS(msg));
2282         if (err)
2283                 goto out_freeiov;
2284         if (MSG_CMSG_COMPAT & flags)
2285                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2286                                  &msg_compat->msg_controllen);
2287         else
2288                 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2289                                  &msg->msg_controllen);
2290         if (err)
2291                 goto out_freeiov;
2292         err = len;
2293
2294 out_freeiov:
2295         if (iov != iovstack)
2296                 kfree(iov);
2297 out:
2298         return err;
2299 }
2300
2301 /*
2302  *      BSD recvmsg interface
2303  */
2304
2305 long __sys_recvmsg(int fd, struct msghdr __user *msg, unsigned flags)
2306 {
2307         int fput_needed, err;
2308         struct msghdr msg_sys;
2309         struct socket *sock;
2310
2311         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2312         if (!sock)
2313                 goto out;
2314
2315         err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2316
2317         fput_light(sock->file, fput_needed);
2318 out:
2319         return err;
2320 }
2321
2322 SYSCALL_DEFINE3(recvmsg, int, fd, struct msghdr __user *, msg,
2323                 unsigned int, flags)
2324 {
2325         if (flags & MSG_CMSG_COMPAT)
2326                 return -EINVAL;
2327         return __sys_recvmsg(fd, msg, flags);
2328 }
2329
2330 /*
2331  *     Linux recvmmsg interface
2332  */
2333
2334 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2335                    unsigned int flags, struct timespec *timeout)
2336 {
2337         int fput_needed, err, datagrams;
2338         struct socket *sock;
2339         struct mmsghdr __user *entry;
2340         struct compat_mmsghdr __user *compat_entry;
2341         struct msghdr msg_sys;
2342         struct timespec end_time;
2343
2344         if (timeout &&
2345             poll_select_set_timeout(&end_time, timeout->tv_sec,
2346                                     timeout->tv_nsec))
2347                 return -EINVAL;
2348
2349         datagrams = 0;
2350
2351         sock = sockfd_lookup_light(fd, &err, &fput_needed);
2352         if (!sock)
2353                 return err;
2354
2355         err = sock_error(sock->sk);
2356         if (err)
2357                 goto out_put;
2358
2359         entry = mmsg;
2360         compat_entry = (struct compat_mmsghdr __user *)mmsg;
2361
2362         while (datagrams < vlen) {
2363                 /*
2364                  * No need to ask LSM for more than the first datagram.
2365                  */
2366                 if (MSG_CMSG_COMPAT & flags) {
2367                         err = ___sys_recvmsg(sock, (struct msghdr __user *)compat_entry,
2368                                              &msg_sys, flags & ~MSG_WAITFORONE,
2369                                              datagrams);
2370                         if (err < 0)
2371                                 break;
2372                         err = __put_user(err, &compat_entry->msg_len);
2373                         ++compat_entry;
2374                 } else {
2375                         err = ___sys_recvmsg(sock,
2376                                              (struct msghdr __user *)entry,
2377                                              &msg_sys, flags & ~MSG_WAITFORONE,
2378                                              datagrams);
2379                         if (err < 0)
2380                                 break;
2381                         err = put_user(err, &entry->msg_len);
2382                         ++entry;
2383                 }
2384
2385                 if (err)
2386                         break;
2387                 ++datagrams;
2388
2389                 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2390                 if (flags & MSG_WAITFORONE)
2391                         flags |= MSG_DONTWAIT;
2392
2393                 if (timeout) {
2394                         ktime_get_ts(timeout);
2395                         *timeout = timespec_sub(end_time, *timeout);
2396                         if (timeout->tv_sec < 0) {
2397                                 timeout->tv_sec = timeout->tv_nsec = 0;
2398                                 break;
2399                         }
2400
2401                         /* Timeout, return less than vlen datagrams */
2402                         if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2403                                 break;
2404                 }
2405
2406                 /* Out of band data, return right away */
2407                 if (msg_sys.msg_flags & MSG_OOB)
2408                         break;
2409         }
2410
2411 out_put:
2412         fput_light(sock->file, fput_needed);
2413
2414         if (err == 0)
2415                 return datagrams;
2416
2417         if (datagrams != 0) {
2418                 /*
2419                  * We may return less entries than requested (vlen) if the
2420                  * sock is non block and there aren't enough datagrams...
2421                  */
2422                 if (err != -EAGAIN) {
2423                         /*
2424                          * ... or  if recvmsg returns an error after we
2425                          * received some datagrams, where we record the
2426                          * error to return on the next call or if the
2427                          * app asks about it using getsockopt(SO_ERROR).
2428                          */
2429                         sock->sk->sk_err = -err;
2430                 }
2431
2432                 return datagrams;
2433         }
2434
2435         return err;
2436 }
2437
2438 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2439                 unsigned int, vlen, unsigned int, flags,
2440                 struct timespec __user *, timeout)
2441 {
2442         int datagrams;
2443         struct timespec timeout_sys;
2444
2445         if (flags & MSG_CMSG_COMPAT)
2446                 return -EINVAL;
2447
2448         if (!timeout)
2449                 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2450
2451         if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2452                 return -EFAULT;
2453
2454         datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2455
2456         if (datagrams > 0 &&
2457             copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2458                 datagrams = -EFAULT;
2459
2460         return datagrams;
2461 }
2462
2463 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2464 /* Argument list sizes for sys_socketcall */
2465 #define AL(x) ((x) * sizeof(unsigned long))
2466 static const unsigned char nargs[21] = {
2467         AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2468         AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2469         AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2470         AL(4), AL(5), AL(4)
2471 };
2472
2473 #undef AL
2474
2475 /*
2476  *      System call vectors.
2477  *
2478  *      Argument checking cleaned up. Saved 20% in size.
2479  *  This function doesn't need to set the kernel lock because
2480  *  it is set by the callees.
2481  */
2482
2483 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2484 {
2485         unsigned long a[AUDITSC_ARGS];
2486         unsigned long a0, a1;
2487         int err;
2488         unsigned int len;
2489
2490         if (call < 1 || call > SYS_SENDMMSG)
2491                 return -EINVAL;
2492
2493         len = nargs[call];
2494         if (len > sizeof(a))
2495                 return -EINVAL;
2496
2497         /* copy_from_user should be SMP safe. */
2498         if (copy_from_user(a, args, len))
2499                 return -EFAULT;
2500
2501         err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2502         if (err)
2503                 return err;
2504
2505         a0 = a[0];
2506         a1 = a[1];
2507
2508         switch (call) {
2509         case SYS_SOCKET:
2510                 err = sys_socket(a0, a1, a[2]);
2511                 break;
2512         case SYS_BIND:
2513                 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2514                 break;
2515         case SYS_CONNECT:
2516                 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2517                 break;
2518         case SYS_LISTEN:
2519                 err = sys_listen(a0, a1);
2520                 break;
2521         case SYS_ACCEPT:
2522                 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2523                                   (int __user *)a[2], 0);
2524                 break;
2525         case SYS_GETSOCKNAME:
2526                 err =
2527                     sys_getsockname(a0, (struct sockaddr __user *)a1,
2528                                     (int __user *)a[2]);
2529                 break;
2530         case SYS_GETPEERNAME:
2531                 err =
2532                     sys_getpeername(a0, (struct sockaddr __user *)a1,
2533                                     (int __user *)a[2]);
2534                 break;
2535         case SYS_SOCKETPAIR:
2536                 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2537                 break;
2538         case SYS_SEND:
2539                 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2540                 break;
2541         case SYS_SENDTO:
2542                 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2543                                  (struct sockaddr __user *)a[4], a[5]);
2544                 break;
2545         case SYS_RECV:
2546                 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2547                 break;
2548         case SYS_RECVFROM:
2549                 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2550                                    (struct sockaddr __user *)a[4],
2551                                    (int __user *)a[5]);
2552                 break;
2553         case SYS_SHUTDOWN:
2554                 err = sys_shutdown(a0, a1);
2555                 break;
2556         case SYS_SETSOCKOPT:
2557                 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2558                 break;
2559         case SYS_GETSOCKOPT:
2560                 err =
2561                     sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2562                                    (int __user *)a[4]);
2563                 break;
2564         case SYS_SENDMSG:
2565                 err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2566                 break;
2567         case SYS_SENDMMSG:
2568                 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2569                 break;
2570         case SYS_RECVMSG:
2571                 err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2572                 break;
2573         case SYS_RECVMMSG:
2574                 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2575                                    (struct timespec __user *)a[4]);
2576                 break;
2577         case SYS_ACCEPT4:
2578                 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2579                                   (int __user *)a[2], a[3]);
2580                 break;
2581         default:
2582                 err = -EINVAL;
2583                 break;
2584         }
2585         return err;
2586 }
2587
2588 #endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2589
2590 /**
2591  *      sock_register - add a socket protocol handler
2592  *      @ops: description of protocol
2593  *
2594  *      This function is called by a protocol handler that wants to
2595  *      advertise its address family, and have it linked into the
2596  *      socket interface. The value ops->family coresponds to the
2597  *      socket system call protocol family.
2598  */
2599 int sock_register(const struct net_proto_family *ops)
2600 {
2601         int err;
2602
2603         if (ops->family >= NPROTO) {
2604                 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2605                 return -ENOBUFS;
2606         }
2607
2608         spin_lock(&net_family_lock);
2609         if (rcu_dereference_protected(net_families[ops->family],
2610                                       lockdep_is_held(&net_family_lock)))
2611                 err = -EEXIST;
2612         else {
2613                 rcu_assign_pointer(net_families[ops->family], ops);
2614                 err = 0;
2615         }
2616         spin_unlock(&net_family_lock);
2617
2618         pr_info("NET: Registered protocol family %d\n", ops->family);
2619         return err;
2620 }
2621 EXPORT_SYMBOL(sock_register);
2622
2623 /**
2624  *      sock_unregister - remove a protocol handler
2625  *      @family: protocol family to remove
2626  *
2627  *      This function is called by a protocol handler that wants to
2628  *      remove its address family, and have it unlinked from the
2629  *      new socket creation.
2630  *
2631  *      If protocol handler is a module, then it can use module reference
2632  *      counts to protect against new references. If protocol handler is not
2633  *      a module then it needs to provide its own protection in
2634  *      the ops->create routine.
2635  */
2636 void sock_unregister(int family)
2637 {
2638         BUG_ON(family < 0 || family >= NPROTO);
2639
2640         spin_lock(&net_family_lock);
2641         RCU_INIT_POINTER(net_families[family], NULL);
2642         spin_unlock(&net_family_lock);
2643
2644         synchronize_rcu();
2645
2646         pr_info("NET: Unregistered protocol family %d\n", family);
2647 }
2648 EXPORT_SYMBOL(sock_unregister);
2649
2650 static int __init sock_init(void)
2651 {
2652         int err;
2653         /*
2654          *      Initialize the network sysctl infrastructure.
2655          */
2656         err = net_sysctl_init();
2657         if (err)
2658                 goto out;
2659
2660         /*
2661          *      Initialize skbuff SLAB cache
2662          */
2663         skb_init();
2664
2665         /*
2666          *      Initialize the protocols module.
2667          */
2668
2669         init_inodecache();
2670
2671         err = register_filesystem(&sock_fs_type);
2672         if (err)
2673                 goto out_fs;
2674         sock_mnt = kern_mount(&sock_fs_type);
2675         if (IS_ERR(sock_mnt)) {
2676                 err = PTR_ERR(sock_mnt);
2677                 goto out_mount;
2678         }
2679
2680         /* The real protocol initialization is performed in later initcalls.
2681          */
2682
2683 #ifdef CONFIG_NETFILTER
2684         err = netfilter_init();
2685         if (err)
2686                 goto out;
2687 #endif
2688
2689         ptp_classifier_init();
2690
2691 out:
2692         return err;
2693
2694 out_mount:
2695         unregister_filesystem(&sock_fs_type);
2696 out_fs:
2697         goto out;
2698 }
2699
2700 core_initcall(sock_init);       /* early initcall */
2701
2702 #ifdef CONFIG_PROC_FS
2703 void socket_seq_show(struct seq_file *seq)
2704 {
2705         int cpu;
2706         int counter = 0;
2707
2708         for_each_possible_cpu(cpu)
2709             counter += per_cpu(sockets_in_use, cpu);
2710
2711         /* It can be negative, by the way. 8) */
2712         if (counter < 0)
2713                 counter = 0;
2714
2715         seq_printf(seq, "sockets: used %d\n", counter);
2716 }
2717 #endif                          /* CONFIG_PROC_FS */
2718
2719 #ifdef CONFIG_COMPAT
2720 static int do_siocgstamp(struct net *net, struct socket *sock,
2721                          unsigned int cmd, void __user *up)
2722 {
2723         mm_segment_t old_fs = get_fs();
2724         struct timeval ktv;
2725         int err;
2726
2727         set_fs(KERNEL_DS);
2728         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2729         set_fs(old_fs);
2730         if (!err)
2731                 err = compat_put_timeval(&ktv, up);
2732
2733         return err;
2734 }
2735
2736 static int do_siocgstampns(struct net *net, struct socket *sock,
2737                            unsigned int cmd, void __user *up)
2738 {
2739         mm_segment_t old_fs = get_fs();
2740         struct timespec kts;
2741         int err;
2742
2743         set_fs(KERNEL_DS);
2744         err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2745         set_fs(old_fs);
2746         if (!err)
2747                 err = compat_put_timespec(&kts, up);
2748
2749         return err;
2750 }
2751
2752 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2753 {
2754         struct ifreq __user *uifr;
2755         int err;
2756
2757         uifr = compat_alloc_user_space(sizeof(struct ifreq));
2758         if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2759                 return -EFAULT;
2760
2761         err = dev_ioctl(net, SIOCGIFNAME, uifr);
2762         if (err)
2763                 return err;
2764
2765         if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2766                 return -EFAULT;
2767
2768         return 0;
2769 }
2770
2771 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2772 {
2773         struct compat_ifconf ifc32;
2774         struct ifconf ifc;
2775         struct ifconf __user *uifc;
2776         struct compat_ifreq __user *ifr32;
2777         struct ifreq __user *ifr;
2778         unsigned int i, j;
2779         int err;
2780
2781         if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2782                 return -EFAULT;
2783
2784         memset(&ifc, 0, sizeof(ifc));
2785         if (ifc32.ifcbuf == 0) {
2786                 ifc32.ifc_len = 0;
2787                 ifc.ifc_len = 0;
2788                 ifc.ifc_req = NULL;
2789                 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2790         } else {
2791                 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2792                         sizeof(struct ifreq);
2793                 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2794                 ifc.ifc_len = len;
2795                 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2796                 ifr32 = compat_ptr(ifc32.ifcbuf);
2797                 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2798                         if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2799                                 return -EFAULT;
2800                         ifr++;
2801                         ifr32++;
2802                 }
2803         }
2804         if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2805                 return -EFAULT;
2806
2807         err = dev_ioctl(net, SIOCGIFCONF, uifc);
2808         if (err)
2809                 return err;
2810
2811         if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2812                 return -EFAULT;
2813
2814         ifr = ifc.ifc_req;
2815         ifr32 = compat_ptr(ifc32.ifcbuf);
2816         for (i = 0, j = 0;
2817              i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2818              i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2819                 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2820                         return -EFAULT;
2821                 ifr32++;
2822                 ifr++;
2823         }
2824
2825         if (ifc32.ifcbuf == 0) {
2826                 /* Translate from 64-bit structure multiple to
2827                  * a 32-bit one.
2828                  */
2829                 i = ifc.ifc_len;
2830                 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2831                 ifc32.ifc_len = i;
2832         } else {
2833                 ifc32.ifc_len = i;
2834         }
2835         if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2836                 return -EFAULT;
2837
2838         return 0;
2839 }
2840
2841 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2842 {
2843         struct compat_ethtool_rxnfc __user *compat_rxnfc;
2844         bool convert_in = false, convert_out = false;
2845         size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2846         struct ethtool_rxnfc __user *rxnfc;
2847         struct ifreq __user *ifr;
2848         u32 rule_cnt = 0, actual_rule_cnt;
2849         u32 ethcmd;
2850         u32 data;
2851         int ret;
2852
2853         if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2854                 return -EFAULT;
2855
2856         compat_rxnfc = compat_ptr(data);
2857
2858         if (get_user(ethcmd, &compat_rxnfc->cmd))
2859                 return -EFAULT;
2860
2861         /* Most ethtool structures are defined without padding.
2862          * Unfortunately struct ethtool_rxnfc is an exception.
2863          */
2864         switch (ethcmd) {
2865         default:
2866                 break;
2867         case ETHTOOL_GRXCLSRLALL:
2868                 /* Buffer size is variable */
2869                 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2870                         return -EFAULT;
2871                 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2872                         return -ENOMEM;
2873                 buf_size += rule_cnt * sizeof(u32);
2874                 /* fall through */
2875         case ETHTOOL_GRXRINGS:
2876         case ETHTOOL_GRXCLSRLCNT:
2877         case ETHTOOL_GRXCLSRULE:
2878         case ETHTOOL_SRXCLSRLINS:
2879                 convert_out = true;
2880                 /* fall through */
2881         case ETHTOOL_SRXCLSRLDEL:
2882                 buf_size += sizeof(struct ethtool_rxnfc);
2883                 convert_in = true;
2884                 break;
2885         }
2886
2887         ifr = compat_alloc_user_space(buf_size);
2888         rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2889
2890         if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2891                 return -EFAULT;
2892
2893         if (put_user(convert_in ? rxnfc : compat_ptr(data),
2894                      &ifr->ifr_ifru.ifru_data))
2895                 return -EFAULT;
2896
2897         if (convert_in) {
2898                 /* We expect there to be holes between fs.m_ext and
2899                  * fs.ring_cookie and at the end of fs, but nowhere else.
2900                  */
2901                 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2902                              sizeof(compat_rxnfc->fs.m_ext) !=
2903                              offsetof(struct ethtool_rxnfc, fs.m_ext) +
2904                              sizeof(rxnfc->fs.m_ext));
2905                 BUILD_BUG_ON(
2906                         offsetof(struct compat_ethtool_rxnfc, fs.location) -
2907                         offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2908                         offsetof(struct ethtool_rxnfc, fs.location) -
2909                         offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2910
2911                 if (copy_in_user(rxnfc, compat_rxnfc,
2912                                  (void __user *)(&rxnfc->fs.m_ext + 1) -
2913                                  (void __user *)rxnfc) ||
2914                     copy_in_user(&rxnfc->fs.ring_cookie,
2915                                  &compat_rxnfc->fs.ring_cookie,
2916                                  (void __user *)(&rxnfc->fs.location + 1) -
2917                                  (void __user *)&rxnfc->fs.ring_cookie) ||
2918                     copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2919                                  sizeof(rxnfc->rule_cnt)))
2920                         return -EFAULT;
2921         }
2922
2923         ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2924         if (ret)
2925                 return ret;
2926
2927         if (convert_out) {
2928                 if (copy_in_user(compat_rxnfc, rxnfc,
2929                                  (const void __user *)(&rxnfc->fs.m_ext + 1) -
2930                                  (const void __user *)rxnfc) ||
2931                     copy_in_user(&compat_rxnfc->fs.ring_cookie,
2932                                  &rxnfc->fs.ring_cookie,
2933                                  (const void __user *)(&rxnfc->fs.location + 1) -
2934                                  (const void __user *)&rxnfc->fs.ring_cookie) ||
2935                     copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2936                                  sizeof(rxnfc->rule_cnt)))
2937                         return -EFAULT;
2938
2939                 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2940                         /* As an optimisation, we only copy the actual
2941                          * number of rules that the underlying
2942                          * function returned.  Since Mallory might
2943                          * change the rule count in user memory, we
2944                          * check that it is less than the rule count
2945                          * originally given (as the user buffer size),
2946                          * which has been range-checked.
2947                          */
2948                         if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2949                                 return -EFAULT;
2950                         if (actual_rule_cnt < rule_cnt)
2951                                 rule_cnt = actual_rule_cnt;
2952                         if (copy_in_user(&compat_rxnfc->rule_locs[0],
2953                                          &rxnfc->rule_locs[0],
2954                                          rule_cnt * sizeof(u32)))
2955                                 return -EFAULT;
2956                 }
2957         }
2958
2959         return 0;
2960 }
2961
2962 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2963 {
2964         void __user *uptr;
2965         compat_uptr_t uptr32;
2966         struct ifreq __user *uifr;
2967
2968         uifr = compat_alloc_user_space(sizeof(*uifr));
2969         if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2970                 return -EFAULT;
2971
2972         if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2973                 return -EFAULT;
2974
2975         uptr = compat_ptr(uptr32);
2976
2977         if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2978                 return -EFAULT;
2979
2980         return dev_ioctl(net, SIOCWANDEV, uifr);
2981 }
2982
2983 static int bond_ioctl(struct net *net, unsigned int cmd,
2984                          struct compat_ifreq __user *ifr32)
2985 {
2986         struct ifreq kifr;
2987         mm_segment_t old_fs;
2988         int err;
2989
2990         switch (cmd) {
2991         case SIOCBONDENSLAVE:
2992         case SIOCBONDRELEASE:
2993         case SIOCBONDSETHWADDR:
2994         case SIOCBONDCHANGEACTIVE:
2995                 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2996                         return -EFAULT;
2997
2998                 old_fs = get_fs();
2999                 set_fs(KERNEL_DS);
3000                 err = dev_ioctl(net, cmd,
3001                                 (struct ifreq __user __force *) &kifr);
3002                 set_fs(old_fs);
3003
3004                 return err;
3005         default:
3006                 return -ENOIOCTLCMD;
3007         }
3008 }
3009
3010 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3011 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3012                                  struct compat_ifreq __user *u_ifreq32)
3013 {
3014         struct ifreq __user *u_ifreq64;
3015         char tmp_buf[IFNAMSIZ];
3016         void __user *data64;
3017         u32 data32;
3018
3019         if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
3020                            IFNAMSIZ))
3021                 return -EFAULT;
3022         if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
3023                 return -EFAULT;
3024         data64 = compat_ptr(data32);
3025
3026         u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
3027
3028         if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
3029                          IFNAMSIZ))
3030                 return -EFAULT;
3031         if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
3032                 return -EFAULT;
3033
3034         return dev_ioctl(net, cmd, u_ifreq64);
3035 }
3036
3037 static int dev_ifsioc(struct net *net, struct socket *sock,
3038                          unsigned int cmd, struct compat_ifreq __user *uifr32)
3039 {
3040         struct ifreq __user *uifr;
3041         int err;
3042
3043         uifr = compat_alloc_user_space(sizeof(*uifr));
3044         if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3045                 return -EFAULT;
3046
3047         err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3048
3049         if (!err) {
3050                 switch (cmd) {
3051                 case SIOCGIFFLAGS:
3052                 case SIOCGIFMETRIC:
3053                 case SIOCGIFMTU:
3054                 case SIOCGIFMEM:
3055                 case SIOCGIFHWADDR:
3056                 case SIOCGIFINDEX:
3057                 case SIOCGIFADDR:
3058                 case SIOCGIFBRDADDR:
3059                 case SIOCGIFDSTADDR:
3060                 case SIOCGIFNETMASK:
3061                 case SIOCGIFPFLAGS:
3062                 case SIOCGIFTXQLEN:
3063                 case SIOCGMIIPHY:
3064                 case SIOCGMIIREG:
3065                         if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3066                                 err = -EFAULT;
3067                         break;
3068                 }
3069         }
3070         return err;
3071 }
3072
3073 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3074                         struct compat_ifreq __user *uifr32)
3075 {
3076         struct ifreq ifr;
3077         struct compat_ifmap __user *uifmap32;
3078         mm_segment_t old_fs;
3079         int err;
3080
3081         uifmap32 = &uifr32->ifr_ifru.ifru_map;
3082         err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3083         err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3084         err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3085         err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3086         err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3087         err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3088         err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3089         if (err)
3090                 return -EFAULT;
3091
3092         old_fs = get_fs();
3093         set_fs(KERNEL_DS);
3094         err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
3095         set_fs(old_fs);
3096
3097         if (cmd == SIOCGIFMAP && !err) {
3098                 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3099                 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3100                 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3101                 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3102                 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3103                 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3104                 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3105                 if (err)
3106                         err = -EFAULT;
3107         }
3108         return err;
3109 }
3110
3111 struct rtentry32 {
3112         u32             rt_pad1;
3113         struct sockaddr rt_dst;         /* target address               */
3114         struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3115         struct sockaddr rt_genmask;     /* target network mask (IP)     */
3116         unsigned short  rt_flags;
3117         short           rt_pad2;
3118         u32             rt_pad3;
3119         unsigned char   rt_tos;
3120         unsigned char   rt_class;
3121         short           rt_pad4;
3122         short           rt_metric;      /* +1 for binary compatibility! */
3123         /* char * */ u32 rt_dev;        /* forcing the device at add    */
3124         u32             rt_mtu;         /* per route MTU/Window         */
3125         u32             rt_window;      /* Window clamping              */
3126         unsigned short  rt_irtt;        /* Initial RTT                  */
3127 };
3128
3129 struct in6_rtmsg32 {
3130         struct in6_addr         rtmsg_dst;
3131         struct in6_addr         rtmsg_src;
3132         struct in6_addr         rtmsg_gateway;
3133         u32                     rtmsg_type;
3134         u16                     rtmsg_dst_len;
3135         u16                     rtmsg_src_len;
3136         u32                     rtmsg_metric;
3137         u32                     rtmsg_info;
3138         u32                     rtmsg_flags;
3139         s32                     rtmsg_ifindex;
3140 };
3141
3142 static int routing_ioctl(struct net *net, struct socket *sock,
3143                          unsigned int cmd, void __user *argp)
3144 {
3145         int ret;
3146         void *r = NULL;
3147         struct in6_rtmsg r6;
3148         struct rtentry r4;
3149         char devname[16];
3150         u32 rtdev;
3151         mm_segment_t old_fs = get_fs();
3152
3153         if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3154                 struct in6_rtmsg32 __user *ur6 = argp;
3155                 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3156                         3 * sizeof(struct in6_addr));
3157                 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3158                 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3159                 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3160                 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3161                 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3162                 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3163                 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3164
3165                 r = (void *) &r6;
3166         } else { /* ipv4 */
3167                 struct rtentry32 __user *ur4 = argp;
3168                 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3169                                         3 * sizeof(struct sockaddr));
3170                 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3171                 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3172                 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3173                 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3174                 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3175                 ret |= get_user(rtdev, &(ur4->rt_dev));
3176                 if (rtdev) {
3177                         ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3178                         r4.rt_dev = (char __user __force *)devname;
3179                         devname[15] = 0;
3180                 } else
3181                         r4.rt_dev = NULL;
3182
3183                 r = (void *) &r4;
3184         }
3185
3186         if (ret) {
3187                 ret = -EFAULT;
3188                 goto out;
3189         }
3190
3191         set_fs(KERNEL_DS);
3192         ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3193         set_fs(old_fs);
3194
3195 out:
3196         return ret;
3197 }
3198
3199 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3200  * for some operations; this forces use of the newer bridge-utils that
3201  * use compatible ioctls
3202  */
3203 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3204 {
3205         compat_ulong_t tmp;
3206
3207         if (get_user(tmp, argp))
3208                 return -EFAULT;
3209         if (tmp == BRCTL_GET_VERSION)
3210                 return BRCTL_VERSION + 1;
3211         return -EINVAL;
3212 }
3213
3214 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3215                          unsigned int cmd, unsigned long arg)
3216 {
3217         void __user *argp = compat_ptr(arg);
3218         struct sock *sk = sock->sk;
3219         struct net *net = sock_net(sk);
3220
3221         if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3222                 return compat_ifr_data_ioctl(net, cmd, argp);
3223
3224         switch (cmd) {
3225         case SIOCSIFBR:
3226         case SIOCGIFBR:
3227                 return old_bridge_ioctl(argp);
3228         case SIOCGIFNAME:
3229                 return dev_ifname32(net, argp);
3230         case SIOCGIFCONF:
3231                 return dev_ifconf(net, argp);
3232         case SIOCETHTOOL:
3233                 return ethtool_ioctl(net, argp);
3234         case SIOCWANDEV:
3235                 return compat_siocwandev(net, argp);
3236         case SIOCGIFMAP:
3237         case SIOCSIFMAP:
3238                 return compat_sioc_ifmap(net, cmd, argp);
3239         case SIOCBONDENSLAVE:
3240         case SIOCBONDRELEASE:
3241         case SIOCBONDSETHWADDR:
3242         case SIOCBONDCHANGEACTIVE:
3243                 return bond_ioctl(net, cmd, argp);
3244         case SIOCADDRT:
3245         case SIOCDELRT:
3246                 return routing_ioctl(net, sock, cmd, argp);
3247         case SIOCGSTAMP:
3248                 return do_siocgstamp(net, sock, cmd, argp);
3249         case SIOCGSTAMPNS:
3250                 return do_siocgstampns(net, sock, cmd, argp);
3251         case SIOCBONDSLAVEINFOQUERY:
3252         case SIOCBONDINFOQUERY:
3253         case SIOCSHWTSTAMP:
3254         case SIOCGHWTSTAMP:
3255                 return compat_ifr_data_ioctl(net, cmd, argp);
3256
3257         case FIOSETOWN:
3258         case SIOCSPGRP:
3259         case FIOGETOWN:
3260         case SIOCGPGRP:
3261         case SIOCBRADDBR:
3262         case SIOCBRDELBR:
3263         case SIOCGIFVLAN:
3264         case SIOCSIFVLAN:
3265         case SIOCADDDLCI:
3266         case SIOCDELDLCI:
3267                 return sock_ioctl(file, cmd, arg);
3268
3269         case SIOCGIFFLAGS:
3270         case SIOCSIFFLAGS:
3271         case SIOCGIFMETRIC:
3272         case SIOCSIFMETRIC:
3273         case SIOCGIFMTU:
3274         case SIOCSIFMTU:
3275         case SIOCGIFMEM:
3276         case SIOCSIFMEM:
3277         case SIOCGIFHWADDR:
3278         case SIOCSIFHWADDR:
3279         case SIOCADDMULTI:
3280         case SIOCDELMULTI:
3281         case SIOCGIFINDEX:
3282         case SIOCGIFADDR:
3283         case SIOCSIFADDR:
3284         case SIOCSIFHWBROADCAST:
3285         case SIOCDIFADDR:
3286         case SIOCGIFBRDADDR:
3287         case SIOCSIFBRDADDR:
3288         case SIOCGIFDSTADDR:
3289         case SIOCSIFDSTADDR:
3290         case SIOCGIFNETMASK:
3291         case SIOCSIFNETMASK:
3292         case SIOCSIFPFLAGS:
3293         case SIOCGIFPFLAGS:
3294         case SIOCGIFTXQLEN:
3295         case SIOCSIFTXQLEN:
3296         case SIOCBRADDIF:
3297         case SIOCBRDELIF:
3298         case SIOCSIFNAME:
3299         case SIOCGMIIPHY:
3300         case SIOCGMIIREG:
3301         case SIOCSMIIREG:
3302                 return dev_ifsioc(net, sock, cmd, argp);
3303
3304         case SIOCSARP:
3305         case SIOCGARP:
3306         case SIOCDARP:
3307         case SIOCATMARK:
3308                 return sock_do_ioctl(net, sock, cmd, arg);
3309         }
3310
3311         return -ENOIOCTLCMD;
3312 }
3313
3314 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3315                               unsigned long arg)
3316 {
3317         struct socket *sock = file->private_data;
3318         int ret = -ENOIOCTLCMD;
3319         struct sock *sk;
3320         struct net *net;
3321
3322         sk = sock->sk;
3323         net = sock_net(sk);
3324
3325         if (sock->ops->compat_ioctl)
3326                 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3327
3328         if (ret == -ENOIOCTLCMD &&
3329             (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3330                 ret = compat_wext_handle_ioctl(net, cmd, arg);
3331
3332         if (ret == -ENOIOCTLCMD)
3333                 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3334
3335         return ret;
3336 }
3337 #endif
3338
3339 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3340 {
3341         return sock->ops->bind(sock, addr, addrlen);
3342 }
3343 EXPORT_SYMBOL(kernel_bind);
3344
3345 int kernel_listen(struct socket *sock, int backlog)
3346 {
3347         return sock->ops->listen(sock, backlog);
3348 }
3349 EXPORT_SYMBOL(kernel_listen);
3350
3351 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3352 {
3353         struct sock *sk = sock->sk;
3354         int err;
3355
3356         err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3357                                newsock);
3358         if (err < 0)
3359                 goto done;
3360
3361         err = sock->ops->accept(sock, *newsock, flags);
3362         if (err < 0) {
3363                 sock_release(*newsock);
3364                 *newsock = NULL;
3365                 goto done;
3366         }
3367
3368         (*newsock)->ops = sock->ops;
3369         __module_get((*newsock)->ops->owner);
3370
3371 done:
3372         return err;
3373 }
3374 EXPORT_SYMBOL(kernel_accept);
3375
3376 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3377                    int flags)
3378 {
3379         return sock->ops->connect(sock, addr, addrlen, flags);
3380 }
3381 EXPORT_SYMBOL(kernel_connect);
3382
3383 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3384                          int *addrlen)
3385 {
3386         return sock->ops->getname(sock, addr, addrlen, 0);
3387 }
3388 EXPORT_SYMBOL(kernel_getsockname);
3389
3390 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3391                          int *addrlen)
3392 {
3393         return sock->ops->getname(sock, addr, addrlen, 1);
3394 }
3395 EXPORT_SYMBOL(kernel_getpeername);
3396
3397 int kernel_getsockopt(struct socket *sock, int level, int optname,
3398                         char *optval, int *optlen)
3399 {
3400         mm_segment_t oldfs = get_fs();
3401         char __user *uoptval;
3402         int __user *uoptlen;
3403         int err;
3404
3405         uoptval = (char __user __force *) optval;
3406         uoptlen = (int __user __force *) optlen;
3407
3408         set_fs(KERNEL_DS);
3409         if (level == SOL_SOCKET)
3410                 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3411         else
3412                 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3413                                             uoptlen);
3414         set_fs(oldfs);
3415         return err;
3416 }
3417 EXPORT_SYMBOL(kernel_getsockopt);
3418
3419 int kernel_setsockopt(struct socket *sock, int level, int optname,
3420                         char *optval, unsigned int optlen)
3421 {
3422         mm_segment_t oldfs = get_fs();
3423         char __user *uoptval;
3424         int err;
3425
3426         uoptval = (char __user __force *) optval;
3427
3428         set_fs(KERNEL_DS);
3429         if (level == SOL_SOCKET)
3430                 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3431         else
3432                 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3433                                             optlen);
3434         set_fs(oldfs);
3435         return err;
3436 }
3437 EXPORT_SYMBOL(kernel_setsockopt);
3438
3439 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3440                     size_t size, int flags)
3441 {
3442         if (sock->ops->sendpage)
3443                 return sock->ops->sendpage(sock, page, offset, size, flags);
3444
3445         return sock_no_sendpage(sock, page, offset, size, flags);
3446 }
3447 EXPORT_SYMBOL(kernel_sendpage);
3448
3449 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3450 {
3451         mm_segment_t oldfs = get_fs();
3452         int err;
3453
3454         set_fs(KERNEL_DS);
3455         err = sock->ops->ioctl(sock, cmd, arg);
3456         set_fs(oldfs);
3457
3458         return err;
3459 }
3460 EXPORT_SYMBOL(kernel_sock_ioctl);
3461
3462 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3463 {
3464         return sock->ops->shutdown(sock, how);
3465 }
3466 EXPORT_SYMBOL(kernel_sock_shutdown);