spi: bcm-qspi: Fix use after free in bcm_qspi_probe() in error path
[sfrench/cifs-2.6.git] / net / rds / ib.c
1 /*
2  * Copyright (c) 2006 Oracle.  All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  *
32  */
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/if.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42
43 #include "rds_single_path.h"
44 #include "rds.h"
45 #include "ib.h"
46 #include "ib_mr.h"
47
48 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
49 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
50 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
51
52 module_param(rds_ib_mr_1m_pool_size, int, 0444);
53 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
54 module_param(rds_ib_mr_8k_pool_size, int, 0444);
55 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
56 module_param(rds_ib_retry_count, int, 0444);
57 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
58
59 /*
60  * we have a clumsy combination of RCU and a rwsem protecting this list
61  * because it is used both in the get_mr fast path and while blocking in
62  * the FMR flushing path.
63  */
64 DECLARE_RWSEM(rds_ib_devices_lock);
65 struct list_head rds_ib_devices;
66
67 /* NOTE: if also grabbing ibdev lock, grab this first */
68 DEFINE_SPINLOCK(ib_nodev_conns_lock);
69 LIST_HEAD(ib_nodev_conns);
70
71 static void rds_ib_nodev_connect(void)
72 {
73         struct rds_ib_connection *ic;
74
75         spin_lock(&ib_nodev_conns_lock);
76         list_for_each_entry(ic, &ib_nodev_conns, ib_node)
77                 rds_conn_connect_if_down(ic->conn);
78         spin_unlock(&ib_nodev_conns_lock);
79 }
80
81 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
82 {
83         struct rds_ib_connection *ic;
84         unsigned long flags;
85
86         spin_lock_irqsave(&rds_ibdev->spinlock, flags);
87         list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
88                 rds_conn_drop(ic->conn);
89         spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
90 }
91
92 /*
93  * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
94  * from interrupt context so we push freing off into a work struct in krdsd.
95  */
96 static void rds_ib_dev_free(struct work_struct *work)
97 {
98         struct rds_ib_ipaddr *i_ipaddr, *i_next;
99         struct rds_ib_device *rds_ibdev = container_of(work,
100                                         struct rds_ib_device, free_work);
101
102         if (rds_ibdev->mr_8k_pool)
103                 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
104         if (rds_ibdev->mr_1m_pool)
105                 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
106         if (rds_ibdev->pd)
107                 ib_dealloc_pd(rds_ibdev->pd);
108
109         list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
110                 list_del(&i_ipaddr->list);
111                 kfree(i_ipaddr);
112         }
113
114         kfree(rds_ibdev->vector_load);
115
116         kfree(rds_ibdev);
117 }
118
119 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
120 {
121         BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
122         if (refcount_dec_and_test(&rds_ibdev->refcount))
123                 queue_work(rds_wq, &rds_ibdev->free_work);
124 }
125
126 static void rds_ib_add_one(struct ib_device *device)
127 {
128         struct rds_ib_device *rds_ibdev;
129
130         /* Only handle IB (no iWARP) devices */
131         if (device->node_type != RDMA_NODE_IB_CA)
132                 return;
133
134         rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
135                                  ibdev_to_node(device));
136         if (!rds_ibdev)
137                 return;
138
139         spin_lock_init(&rds_ibdev->spinlock);
140         refcount_set(&rds_ibdev->refcount, 1);
141         INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
142
143         rds_ibdev->max_wrs = device->attrs.max_qp_wr;
144         rds_ibdev->max_sge = min(device->attrs.max_sge, RDS_IB_MAX_SGE);
145
146         rds_ibdev->has_fr = (device->attrs.device_cap_flags &
147                                   IB_DEVICE_MEM_MGT_EXTENSIONS);
148         rds_ibdev->has_fmr = (device->alloc_fmr && device->dealloc_fmr &&
149                             device->map_phys_fmr && device->unmap_fmr);
150         rds_ibdev->use_fastreg = (rds_ibdev->has_fr && !rds_ibdev->has_fmr);
151
152         rds_ibdev->fmr_max_remaps = device->attrs.max_map_per_fmr?: 32;
153         rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
154                 min_t(unsigned int, (device->attrs.max_mr / 2),
155                       rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
156
157         rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
158                 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
159                       rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
160
161         rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
162         rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
163
164         rds_ibdev->vector_load = kzalloc(sizeof(int) * device->num_comp_vectors,
165                                          GFP_KERNEL);
166         if (!rds_ibdev->vector_load) {
167                 pr_err("RDS/IB: %s failed to allocate vector memory\n",
168                         __func__);
169                 goto put_dev;
170         }
171
172         rds_ibdev->dev = device;
173         rds_ibdev->pd = ib_alloc_pd(device, 0);
174         if (IS_ERR(rds_ibdev->pd)) {
175                 rds_ibdev->pd = NULL;
176                 goto put_dev;
177         }
178
179         rds_ibdev->mr_1m_pool =
180                 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
181         if (IS_ERR(rds_ibdev->mr_1m_pool)) {
182                 rds_ibdev->mr_1m_pool = NULL;
183                 goto put_dev;
184         }
185
186         rds_ibdev->mr_8k_pool =
187                 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
188         if (IS_ERR(rds_ibdev->mr_8k_pool)) {
189                 rds_ibdev->mr_8k_pool = NULL;
190                 goto put_dev;
191         }
192
193         rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
194                  device->attrs.max_fmr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
195                  rds_ibdev->fmr_max_remaps, rds_ibdev->max_1m_mrs,
196                  rds_ibdev->max_8k_mrs);
197
198         pr_info("RDS/IB: %s: %s supported and preferred\n",
199                 device->name,
200                 rds_ibdev->use_fastreg ? "FRMR" : "FMR");
201
202         INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
203         INIT_LIST_HEAD(&rds_ibdev->conn_list);
204
205         down_write(&rds_ib_devices_lock);
206         list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
207         up_write(&rds_ib_devices_lock);
208         refcount_inc(&rds_ibdev->refcount);
209
210         ib_set_client_data(device, &rds_ib_client, rds_ibdev);
211         refcount_inc(&rds_ibdev->refcount);
212
213         rds_ib_nodev_connect();
214
215 put_dev:
216         rds_ib_dev_put(rds_ibdev);
217 }
218
219 /*
220  * New connections use this to find the device to associate with the
221  * connection.  It's not in the fast path so we're not concerned about the
222  * performance of the IB call.  (As of this writing, it uses an interrupt
223  * blocking spinlock to serialize walking a per-device list of all registered
224  * clients.)
225  *
226  * RCU is used to handle incoming connections racing with device teardown.
227  * Rather than use a lock to serialize removal from the client_data and
228  * getting a new reference, we use an RCU grace period.  The destruction
229  * path removes the device from client_data and then waits for all RCU
230  * readers to finish.
231  *
232  * A new connection can get NULL from this if its arriving on a
233  * device that is in the process of being removed.
234  */
235 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
236 {
237         struct rds_ib_device *rds_ibdev;
238
239         rcu_read_lock();
240         rds_ibdev = ib_get_client_data(device, &rds_ib_client);
241         if (rds_ibdev)
242                 refcount_inc(&rds_ibdev->refcount);
243         rcu_read_unlock();
244         return rds_ibdev;
245 }
246
247 /*
248  * The IB stack is letting us know that a device is going away.  This can
249  * happen if the underlying HCA driver is removed or if PCI hotplug is removing
250  * the pci function, for example.
251  *
252  * This can be called at any time and can be racing with any other RDS path.
253  */
254 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
255 {
256         struct rds_ib_device *rds_ibdev = client_data;
257
258         if (!rds_ibdev)
259                 return;
260
261         rds_ib_dev_shutdown(rds_ibdev);
262
263         /* stop connection attempts from getting a reference to this device. */
264         ib_set_client_data(device, &rds_ib_client, NULL);
265
266         down_write(&rds_ib_devices_lock);
267         list_del_rcu(&rds_ibdev->list);
268         up_write(&rds_ib_devices_lock);
269
270         /*
271          * This synchronize rcu is waiting for readers of both the ib
272          * client data and the devices list to finish before we drop
273          * both of those references.
274          */
275         synchronize_rcu();
276         rds_ib_dev_put(rds_ibdev);
277         rds_ib_dev_put(rds_ibdev);
278 }
279
280 struct ib_client rds_ib_client = {
281         .name   = "rds_ib",
282         .add    = rds_ib_add_one,
283         .remove = rds_ib_remove_one
284 };
285
286 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
287                                     void *buffer)
288 {
289         struct rds_info_rdma_connection *iinfo = buffer;
290         struct rds_ib_connection *ic;
291
292         /* We will only ever look at IB transports */
293         if (conn->c_trans != &rds_ib_transport)
294                 return 0;
295
296         iinfo->src_addr = conn->c_laddr;
297         iinfo->dst_addr = conn->c_faddr;
298
299         memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
300         memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
301         if (rds_conn_state(conn) == RDS_CONN_UP) {
302                 struct rds_ib_device *rds_ibdev;
303                 struct rdma_dev_addr *dev_addr;
304
305                 ic = conn->c_transport_data;
306                 dev_addr = &ic->i_cm_id->route.addr.dev_addr;
307
308                 rdma_addr_get_sgid(dev_addr, (union ib_gid *) &iinfo->src_gid);
309                 rdma_addr_get_dgid(dev_addr, (union ib_gid *) &iinfo->dst_gid);
310
311                 rds_ibdev = ic->rds_ibdev;
312                 iinfo->max_send_wr = ic->i_send_ring.w_nr;
313                 iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
314                 iinfo->max_send_sge = rds_ibdev->max_sge;
315                 rds_ib_get_mr_info(rds_ibdev, iinfo);
316         }
317         return 1;
318 }
319
320 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
321                            struct rds_info_iterator *iter,
322                            struct rds_info_lengths *lens)
323 {
324         rds_for_each_conn_info(sock, len, iter, lens,
325                                 rds_ib_conn_info_visitor,
326                                 sizeof(struct rds_info_rdma_connection));
327 }
328
329
330 /*
331  * Early RDS/IB was built to only bind to an address if there is an IPoIB
332  * device with that address set.
333  *
334  * If it were me, I'd advocate for something more flexible.  Sending and
335  * receiving should be device-agnostic.  Transports would try and maintain
336  * connections between peers who have messages queued.  Userspace would be
337  * allowed to influence which paths have priority.  We could call userspace
338  * asserting this policy "routing".
339  */
340 static int rds_ib_laddr_check(struct net *net, __be32 addr)
341 {
342         int ret;
343         struct rdma_cm_id *cm_id;
344         struct sockaddr_in sin;
345
346         /* Create a CMA ID and try to bind it. This catches both
347          * IB and iWARP capable NICs.
348          */
349         cm_id = rdma_create_id(&init_net, NULL, NULL, RDMA_PS_TCP, IB_QPT_RC);
350         if (IS_ERR(cm_id))
351                 return PTR_ERR(cm_id);
352
353         memset(&sin, 0, sizeof(sin));
354         sin.sin_family = AF_INET;
355         sin.sin_addr.s_addr = addr;
356
357         /* rdma_bind_addr will only succeed for IB & iWARP devices */
358         ret = rdma_bind_addr(cm_id, (struct sockaddr *)&sin);
359         /* due to this, we will claim to support iWARP devices unless we
360            check node_type. */
361         if (ret || !cm_id->device ||
362             cm_id->device->node_type != RDMA_NODE_IB_CA)
363                 ret = -EADDRNOTAVAIL;
364
365         rdsdebug("addr %pI4 ret %d node type %d\n",
366                 &addr, ret,
367                 cm_id->device ? cm_id->device->node_type : -1);
368
369         rdma_destroy_id(cm_id);
370
371         return ret;
372 }
373
374 static void rds_ib_unregister_client(void)
375 {
376         ib_unregister_client(&rds_ib_client);
377         /* wait for rds_ib_dev_free() to complete */
378         flush_workqueue(rds_wq);
379 }
380
381 void rds_ib_exit(void)
382 {
383         rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
384         rds_ib_unregister_client();
385         rds_ib_destroy_nodev_conns();
386         rds_ib_sysctl_exit();
387         rds_ib_recv_exit();
388         rds_trans_unregister(&rds_ib_transport);
389         rds_ib_mr_exit();
390 }
391
392 struct rds_transport rds_ib_transport = {
393         .laddr_check            = rds_ib_laddr_check,
394         .xmit_path_complete     = rds_ib_xmit_path_complete,
395         .xmit                   = rds_ib_xmit,
396         .xmit_rdma              = rds_ib_xmit_rdma,
397         .xmit_atomic            = rds_ib_xmit_atomic,
398         .recv_path              = rds_ib_recv_path,
399         .conn_alloc             = rds_ib_conn_alloc,
400         .conn_free              = rds_ib_conn_free,
401         .conn_path_connect      = rds_ib_conn_path_connect,
402         .conn_path_shutdown     = rds_ib_conn_path_shutdown,
403         .inc_copy_to_user       = rds_ib_inc_copy_to_user,
404         .inc_free               = rds_ib_inc_free,
405         .cm_initiate_connect    = rds_ib_cm_initiate_connect,
406         .cm_handle_connect      = rds_ib_cm_handle_connect,
407         .cm_connect_complete    = rds_ib_cm_connect_complete,
408         .stats_info_copy        = rds_ib_stats_info_copy,
409         .exit                   = rds_ib_exit,
410         .get_mr                 = rds_ib_get_mr,
411         .sync_mr                = rds_ib_sync_mr,
412         .free_mr                = rds_ib_free_mr,
413         .flush_mrs              = rds_ib_flush_mrs,
414         .t_owner                = THIS_MODULE,
415         .t_name                 = "infiniband",
416         .t_type                 = RDS_TRANS_IB
417 };
418
419 int rds_ib_init(void)
420 {
421         int ret;
422
423         INIT_LIST_HEAD(&rds_ib_devices);
424
425         ret = rds_ib_mr_init();
426         if (ret)
427                 goto out;
428
429         ret = ib_register_client(&rds_ib_client);
430         if (ret)
431                 goto out_mr_exit;
432
433         ret = rds_ib_sysctl_init();
434         if (ret)
435                 goto out_ibreg;
436
437         ret = rds_ib_recv_init();
438         if (ret)
439                 goto out_sysctl;
440
441         rds_trans_register(&rds_ib_transport);
442
443         rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
444
445         goto out;
446
447 out_sysctl:
448         rds_ib_sysctl_exit();
449 out_ibreg:
450         rds_ib_unregister_client();
451 out_mr_exit:
452         rds_ib_mr_exit();
453 out:
454         return ret;
455 }
456
457 MODULE_LICENSE("GPL");
458