openvswitch: Set flow-key members.
[sfrench/cifs-2.6.git] / net / openvswitch / flow.c
1 /*
2  * Copyright (c) 2007-2014 Nicira, Inc.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of version 2 of the GNU General Public
6  * License as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program; if not, write to the Free Software
15  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
16  * 02110-1301, USA
17  */
18
19 #include <linux/uaccess.h>
20 #include <linux/netdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/if_ether.h>
23 #include <linux/if_vlan.h>
24 #include <net/llc_pdu.h>
25 #include <linux/kernel.h>
26 #include <linux/jhash.h>
27 #include <linux/jiffies.h>
28 #include <linux/llc.h>
29 #include <linux/module.h>
30 #include <linux/in.h>
31 #include <linux/rcupdate.h>
32 #include <linux/if_arp.h>
33 #include <linux/ip.h>
34 #include <linux/ipv6.h>
35 #include <linux/sctp.h>
36 #include <linux/smp.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
42 #include <net/ip.h>
43 #include <net/ip_tunnels.h>
44 #include <net/ipv6.h>
45 #include <net/ndisc.h>
46
47 #include "datapath.h"
48 #include "flow.h"
49 #include "flow_netlink.h"
50
51 u64 ovs_flow_used_time(unsigned long flow_jiffies)
52 {
53         struct timespec cur_ts;
54         u64 cur_ms, idle_ms;
55
56         ktime_get_ts(&cur_ts);
57         idle_ms = jiffies_to_msecs(jiffies - flow_jiffies);
58         cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC +
59                  cur_ts.tv_nsec / NSEC_PER_MSEC;
60
61         return cur_ms - idle_ms;
62 }
63
64 #define TCP_FLAGS_BE16(tp) (*(__be16 *)&tcp_flag_word(tp) & htons(0x0FFF))
65
66 void ovs_flow_stats_update(struct sw_flow *flow, __be16 tcp_flags,
67                            struct sk_buff *skb)
68 {
69         struct flow_stats *stats;
70         int node = numa_node_id();
71
72         stats = rcu_dereference(flow->stats[node]);
73
74         /* Check if already have node-specific stats. */
75         if (likely(stats)) {
76                 spin_lock(&stats->lock);
77                 /* Mark if we write on the pre-allocated stats. */
78                 if (node == 0 && unlikely(flow->stats_last_writer != node))
79                         flow->stats_last_writer = node;
80         } else {
81                 stats = rcu_dereference(flow->stats[0]); /* Pre-allocated. */
82                 spin_lock(&stats->lock);
83
84                 /* If the current NUMA-node is the only writer on the
85                  * pre-allocated stats keep using them.
86                  */
87                 if (unlikely(flow->stats_last_writer != node)) {
88                         /* A previous locker may have already allocated the
89                          * stats, so we need to check again.  If node-specific
90                          * stats were already allocated, we update the pre-
91                          * allocated stats as we have already locked them.
92                          */
93                         if (likely(flow->stats_last_writer != NUMA_NO_NODE)
94                             && likely(!rcu_access_pointer(flow->stats[node]))) {
95                                 /* Try to allocate node-specific stats. */
96                                 struct flow_stats *new_stats;
97
98                                 new_stats =
99                                         kmem_cache_alloc_node(flow_stats_cache,
100                                                               GFP_THISNODE |
101                                                               __GFP_NOMEMALLOC,
102                                                               node);
103                                 if (likely(new_stats)) {
104                                         new_stats->used = jiffies;
105                                         new_stats->packet_count = 1;
106                                         new_stats->byte_count = skb->len;
107                                         new_stats->tcp_flags = tcp_flags;
108                                         spin_lock_init(&new_stats->lock);
109
110                                         rcu_assign_pointer(flow->stats[node],
111                                                            new_stats);
112                                         goto unlock;
113                                 }
114                         }
115                         flow->stats_last_writer = node;
116                 }
117         }
118
119         stats->used = jiffies;
120         stats->packet_count++;
121         stats->byte_count += skb->len;
122         stats->tcp_flags |= tcp_flags;
123 unlock:
124         spin_unlock(&stats->lock);
125 }
126
127 /* Must be called with rcu_read_lock or ovs_mutex. */
128 void ovs_flow_stats_get(const struct sw_flow *flow,
129                         struct ovs_flow_stats *ovs_stats,
130                         unsigned long *used, __be16 *tcp_flags)
131 {
132         int node;
133
134         *used = 0;
135         *tcp_flags = 0;
136         memset(ovs_stats, 0, sizeof(*ovs_stats));
137
138         for_each_node(node) {
139                 struct flow_stats *stats = rcu_dereference_ovsl(flow->stats[node]);
140
141                 if (stats) {
142                         /* Local CPU may write on non-local stats, so we must
143                          * block bottom-halves here.
144                          */
145                         spin_lock_bh(&stats->lock);
146                         if (!*used || time_after(stats->used, *used))
147                                 *used = stats->used;
148                         *tcp_flags |= stats->tcp_flags;
149                         ovs_stats->n_packets += stats->packet_count;
150                         ovs_stats->n_bytes += stats->byte_count;
151                         spin_unlock_bh(&stats->lock);
152                 }
153         }
154 }
155
156 /* Called with ovs_mutex. */
157 void ovs_flow_stats_clear(struct sw_flow *flow)
158 {
159         int node;
160
161         for_each_node(node) {
162                 struct flow_stats *stats = ovsl_dereference(flow->stats[node]);
163
164                 if (stats) {
165                         spin_lock_bh(&stats->lock);
166                         stats->used = 0;
167                         stats->packet_count = 0;
168                         stats->byte_count = 0;
169                         stats->tcp_flags = 0;
170                         spin_unlock_bh(&stats->lock);
171                 }
172         }
173 }
174
175 static int check_header(struct sk_buff *skb, int len)
176 {
177         if (unlikely(skb->len < len))
178                 return -EINVAL;
179         if (unlikely(!pskb_may_pull(skb, len)))
180                 return -ENOMEM;
181         return 0;
182 }
183
184 static bool arphdr_ok(struct sk_buff *skb)
185 {
186         return pskb_may_pull(skb, skb_network_offset(skb) +
187                                   sizeof(struct arp_eth_header));
188 }
189
190 static int check_iphdr(struct sk_buff *skb)
191 {
192         unsigned int nh_ofs = skb_network_offset(skb);
193         unsigned int ip_len;
194         int err;
195
196         err = check_header(skb, nh_ofs + sizeof(struct iphdr));
197         if (unlikely(err))
198                 return err;
199
200         ip_len = ip_hdrlen(skb);
201         if (unlikely(ip_len < sizeof(struct iphdr) ||
202                      skb->len < nh_ofs + ip_len))
203                 return -EINVAL;
204
205         skb_set_transport_header(skb, nh_ofs + ip_len);
206         return 0;
207 }
208
209 static bool tcphdr_ok(struct sk_buff *skb)
210 {
211         int th_ofs = skb_transport_offset(skb);
212         int tcp_len;
213
214         if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr))))
215                 return false;
216
217         tcp_len = tcp_hdrlen(skb);
218         if (unlikely(tcp_len < sizeof(struct tcphdr) ||
219                      skb->len < th_ofs + tcp_len))
220                 return false;
221
222         return true;
223 }
224
225 static bool udphdr_ok(struct sk_buff *skb)
226 {
227         return pskb_may_pull(skb, skb_transport_offset(skb) +
228                                   sizeof(struct udphdr));
229 }
230
231 static bool sctphdr_ok(struct sk_buff *skb)
232 {
233         return pskb_may_pull(skb, skb_transport_offset(skb) +
234                                   sizeof(struct sctphdr));
235 }
236
237 static bool icmphdr_ok(struct sk_buff *skb)
238 {
239         return pskb_may_pull(skb, skb_transport_offset(skb) +
240                                   sizeof(struct icmphdr));
241 }
242
243 static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key)
244 {
245         unsigned int nh_ofs = skb_network_offset(skb);
246         unsigned int nh_len;
247         int payload_ofs;
248         struct ipv6hdr *nh;
249         uint8_t nexthdr;
250         __be16 frag_off;
251         int err;
252
253         err = check_header(skb, nh_ofs + sizeof(*nh));
254         if (unlikely(err))
255                 return err;
256
257         nh = ipv6_hdr(skb);
258         nexthdr = nh->nexthdr;
259         payload_ofs = (u8 *)(nh + 1) - skb->data;
260
261         key->ip.proto = NEXTHDR_NONE;
262         key->ip.tos = ipv6_get_dsfield(nh);
263         key->ip.ttl = nh->hop_limit;
264         key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
265         key->ipv6.addr.src = nh->saddr;
266         key->ipv6.addr.dst = nh->daddr;
267
268         payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off);
269         if (unlikely(payload_ofs < 0))
270                 return -EINVAL;
271
272         if (frag_off) {
273                 if (frag_off & htons(~0x7))
274                         key->ip.frag = OVS_FRAG_TYPE_LATER;
275                 else
276                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
277         } else {
278                 key->ip.frag = OVS_FRAG_TYPE_NONE;
279         }
280
281         nh_len = payload_ofs - nh_ofs;
282         skb_set_transport_header(skb, nh_ofs + nh_len);
283         key->ip.proto = nexthdr;
284         return nh_len;
285 }
286
287 static bool icmp6hdr_ok(struct sk_buff *skb)
288 {
289         return pskb_may_pull(skb, skb_transport_offset(skb) +
290                                   sizeof(struct icmp6hdr));
291 }
292
293 static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
294 {
295         struct qtag_prefix {
296                 __be16 eth_type; /* ETH_P_8021Q */
297                 __be16 tci;
298         };
299         struct qtag_prefix *qp;
300
301         if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16)))
302                 return 0;
303
304         if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) +
305                                          sizeof(__be16))))
306                 return -ENOMEM;
307
308         qp = (struct qtag_prefix *) skb->data;
309         key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT);
310         __skb_pull(skb, sizeof(struct qtag_prefix));
311
312         return 0;
313 }
314
315 static __be16 parse_ethertype(struct sk_buff *skb)
316 {
317         struct llc_snap_hdr {
318                 u8  dsap;  /* Always 0xAA */
319                 u8  ssap;  /* Always 0xAA */
320                 u8  ctrl;
321                 u8  oui[3];
322                 __be16 ethertype;
323         };
324         struct llc_snap_hdr *llc;
325         __be16 proto;
326
327         proto = *(__be16 *) skb->data;
328         __skb_pull(skb, sizeof(__be16));
329
330         if (ntohs(proto) >= ETH_P_802_3_MIN)
331                 return proto;
332
333         if (skb->len < sizeof(struct llc_snap_hdr))
334                 return htons(ETH_P_802_2);
335
336         if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr))))
337                 return htons(0);
338
339         llc = (struct llc_snap_hdr *) skb->data;
340         if (llc->dsap != LLC_SAP_SNAP ||
341             llc->ssap != LLC_SAP_SNAP ||
342             (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0)
343                 return htons(ETH_P_802_2);
344
345         __skb_pull(skb, sizeof(struct llc_snap_hdr));
346
347         if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN)
348                 return llc->ethertype;
349
350         return htons(ETH_P_802_2);
351 }
352
353 static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key,
354                         int nh_len)
355 {
356         struct icmp6hdr *icmp = icmp6_hdr(skb);
357
358         /* The ICMPv6 type and code fields use the 16-bit transport port
359          * fields, so we need to store them in 16-bit network byte order.
360          */
361         key->tp.src = htons(icmp->icmp6_type);
362         key->tp.dst = htons(icmp->icmp6_code);
363         memset(&key->ipv6.nd, 0, sizeof(key->ipv6.nd));
364
365         if (icmp->icmp6_code == 0 &&
366             (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION ||
367              icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) {
368                 int icmp_len = skb->len - skb_transport_offset(skb);
369                 struct nd_msg *nd;
370                 int offset;
371
372                 /* In order to process neighbor discovery options, we need the
373                  * entire packet.
374                  */
375                 if (unlikely(icmp_len < sizeof(*nd)))
376                         return 0;
377
378                 if (unlikely(skb_linearize(skb)))
379                         return -ENOMEM;
380
381                 nd = (struct nd_msg *)skb_transport_header(skb);
382                 key->ipv6.nd.target = nd->target;
383
384                 icmp_len -= sizeof(*nd);
385                 offset = 0;
386                 while (icmp_len >= 8) {
387                         struct nd_opt_hdr *nd_opt =
388                                  (struct nd_opt_hdr *)(nd->opt + offset);
389                         int opt_len = nd_opt->nd_opt_len * 8;
390
391                         if (unlikely(!opt_len || opt_len > icmp_len))
392                                 return 0;
393
394                         /* Store the link layer address if the appropriate
395                          * option is provided.  It is considered an error if
396                          * the same link layer option is specified twice.
397                          */
398                         if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR
399                             && opt_len == 8) {
400                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll)))
401                                         goto invalid;
402                                 ether_addr_copy(key->ipv6.nd.sll,
403                                                 &nd->opt[offset+sizeof(*nd_opt)]);
404                         } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR
405                                    && opt_len == 8) {
406                                 if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll)))
407                                         goto invalid;
408                                 ether_addr_copy(key->ipv6.nd.tll,
409                                                 &nd->opt[offset+sizeof(*nd_opt)]);
410                         }
411
412                         icmp_len -= opt_len;
413                         offset += opt_len;
414                 }
415         }
416
417         return 0;
418
419 invalid:
420         memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target));
421         memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll));
422         memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll));
423
424         return 0;
425 }
426
427 /**
428  * key_extract - extracts a flow key from an Ethernet frame.
429  * @skb: sk_buff that contains the frame, with skb->data pointing to the
430  * Ethernet header
431  * @key: output flow key
432  *
433  * The caller must ensure that skb->len >= ETH_HLEN.
434  *
435  * Returns 0 if successful, otherwise a negative errno value.
436  *
437  * Initializes @skb header pointers as follows:
438  *
439  *    - skb->mac_header: the Ethernet header.
440  *
441  *    - skb->network_header: just past the Ethernet header, or just past the
442  *      VLAN header, to the first byte of the Ethernet payload.
443  *
444  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6
445  *      on output, then just past the IP header, if one is present and
446  *      of a correct length, otherwise the same as skb->network_header.
447  *      For other key->eth.type values it is left untouched.
448  */
449 static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
450 {
451         int error;
452         struct ethhdr *eth;
453
454         /* Flags are always used as part of stats */
455         key->tp.flags = 0;
456
457         skb_reset_mac_header(skb);
458
459         /* Link layer.  We are guaranteed to have at least the 14 byte Ethernet
460          * header in the linear data area.
461          */
462         eth = eth_hdr(skb);
463         ether_addr_copy(key->eth.src, eth->h_source);
464         ether_addr_copy(key->eth.dst, eth->h_dest);
465
466         __skb_pull(skb, 2 * ETH_ALEN);
467         /* We are going to push all headers that we pull, so no need to
468          * update skb->csum here.
469          */
470
471         key->eth.tci = 0;
472         if (vlan_tx_tag_present(skb))
473                 key->eth.tci = htons(skb->vlan_tci);
474         else if (eth->h_proto == htons(ETH_P_8021Q))
475                 if (unlikely(parse_vlan(skb, key)))
476                         return -ENOMEM;
477
478         key->eth.type = parse_ethertype(skb);
479         if (unlikely(key->eth.type == htons(0)))
480                 return -ENOMEM;
481
482         skb_reset_network_header(skb);
483         __skb_push(skb, skb->data - skb_mac_header(skb));
484
485         /* Network layer. */
486         if (key->eth.type == htons(ETH_P_IP)) {
487                 struct iphdr *nh;
488                 __be16 offset;
489
490                 error = check_iphdr(skb);
491                 if (unlikely(error)) {
492                         memset(&key->ip, 0, sizeof(key->ip));
493                         memset(&key->ipv4, 0, sizeof(key->ipv4));
494                         if (error == -EINVAL) {
495                                 skb->transport_header = skb->network_header;
496                                 error = 0;
497                         }
498                         return error;
499                 }
500
501                 nh = ip_hdr(skb);
502                 key->ipv4.addr.src = nh->saddr;
503                 key->ipv4.addr.dst = nh->daddr;
504
505                 key->ip.proto = nh->protocol;
506                 key->ip.tos = nh->tos;
507                 key->ip.ttl = nh->ttl;
508
509                 offset = nh->frag_off & htons(IP_OFFSET);
510                 if (offset) {
511                         key->ip.frag = OVS_FRAG_TYPE_LATER;
512                         return 0;
513                 }
514                 if (nh->frag_off & htons(IP_MF) ||
515                         skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
516                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
517                 else
518                         key->ip.frag = OVS_FRAG_TYPE_NONE;
519
520                 /* Transport layer. */
521                 if (key->ip.proto == IPPROTO_TCP) {
522                         if (tcphdr_ok(skb)) {
523                                 struct tcphdr *tcp = tcp_hdr(skb);
524                                 key->tp.src = tcp->source;
525                                 key->tp.dst = tcp->dest;
526                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
527                         } else {
528                                 memset(&key->tp, 0, sizeof(key->tp));
529                         }
530
531                 } else if (key->ip.proto == IPPROTO_UDP) {
532                         if (udphdr_ok(skb)) {
533                                 struct udphdr *udp = udp_hdr(skb);
534                                 key->tp.src = udp->source;
535                                 key->tp.dst = udp->dest;
536                         } else {
537                                 memset(&key->tp, 0, sizeof(key->tp));
538                         }
539                 } else if (key->ip.proto == IPPROTO_SCTP) {
540                         if (sctphdr_ok(skb)) {
541                                 struct sctphdr *sctp = sctp_hdr(skb);
542                                 key->tp.src = sctp->source;
543                                 key->tp.dst = sctp->dest;
544                         } else {
545                                 memset(&key->tp, 0, sizeof(key->tp));
546                         }
547                 } else if (key->ip.proto == IPPROTO_ICMP) {
548                         if (icmphdr_ok(skb)) {
549                                 struct icmphdr *icmp = icmp_hdr(skb);
550                                 /* The ICMP type and code fields use the 16-bit
551                                  * transport port fields, so we need to store
552                                  * them in 16-bit network byte order. */
553                                 key->tp.src = htons(icmp->type);
554                                 key->tp.dst = htons(icmp->code);
555                         } else {
556                                 memset(&key->tp, 0, sizeof(key->tp));
557                         }
558                 }
559
560         } else if (key->eth.type == htons(ETH_P_ARP) ||
561                    key->eth.type == htons(ETH_P_RARP)) {
562                 struct arp_eth_header *arp;
563                 bool arp_available = arphdr_ok(skb);
564
565                 arp = (struct arp_eth_header *)skb_network_header(skb);
566
567                 if (arp_available &&
568                     arp->ar_hrd == htons(ARPHRD_ETHER) &&
569                     arp->ar_pro == htons(ETH_P_IP) &&
570                     arp->ar_hln == ETH_ALEN &&
571                     arp->ar_pln == 4) {
572
573                         /* We only match on the lower 8 bits of the opcode. */
574                         if (ntohs(arp->ar_op) <= 0xff)
575                                 key->ip.proto = ntohs(arp->ar_op);
576                         else
577                                 key->ip.proto = 0;
578
579                         memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src));
580                         memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst));
581                         ether_addr_copy(key->ipv4.arp.sha, arp->ar_sha);
582                         ether_addr_copy(key->ipv4.arp.tha, arp->ar_tha);
583                 } else {
584                         memset(&key->ip, 0, sizeof(key->ip));
585                         memset(&key->ipv4, 0, sizeof(key->ipv4));
586                 }
587         } else if (key->eth.type == htons(ETH_P_IPV6)) {
588                 int nh_len;             /* IPv6 Header + Extensions */
589
590                 nh_len = parse_ipv6hdr(skb, key);
591                 if (unlikely(nh_len < 0)) {
592                         memset(&key->ip, 0, sizeof(key->ip));
593                         memset(&key->ipv6.addr, 0, sizeof(key->ipv6.addr));
594                         if (nh_len == -EINVAL) {
595                                 skb->transport_header = skb->network_header;
596                                 error = 0;
597                         } else {
598                                 error = nh_len;
599                         }
600                         return error;
601                 }
602
603                 if (key->ip.frag == OVS_FRAG_TYPE_LATER)
604                         return 0;
605                 if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP)
606                         key->ip.frag = OVS_FRAG_TYPE_FIRST;
607
608                 /* Transport layer. */
609                 if (key->ip.proto == NEXTHDR_TCP) {
610                         if (tcphdr_ok(skb)) {
611                                 struct tcphdr *tcp = tcp_hdr(skb);
612                                 key->tp.src = tcp->source;
613                                 key->tp.dst = tcp->dest;
614                                 key->tp.flags = TCP_FLAGS_BE16(tcp);
615                         } else {
616                                 memset(&key->tp, 0, sizeof(key->tp));
617                         }
618                 } else if (key->ip.proto == NEXTHDR_UDP) {
619                         if (udphdr_ok(skb)) {
620                                 struct udphdr *udp = udp_hdr(skb);
621                                 key->tp.src = udp->source;
622                                 key->tp.dst = udp->dest;
623                         } else {
624                                 memset(&key->tp, 0, sizeof(key->tp));
625                         }
626                 } else if (key->ip.proto == NEXTHDR_SCTP) {
627                         if (sctphdr_ok(skb)) {
628                                 struct sctphdr *sctp = sctp_hdr(skb);
629                                 key->tp.src = sctp->source;
630                                 key->tp.dst = sctp->dest;
631                         } else {
632                                 memset(&key->tp, 0, sizeof(key->tp));
633                         }
634                 } else if (key->ip.proto == NEXTHDR_ICMP) {
635                         if (icmp6hdr_ok(skb)) {
636                                 error = parse_icmpv6(skb, key, nh_len);
637                                 if (error)
638                                         return error;
639                         } else {
640                                 memset(&key->tp, 0, sizeof(key->tp));
641                         }
642                 }
643         }
644         return 0;
645 }
646
647 int ovs_flow_key_update(struct sk_buff *skb, struct sw_flow_key *key)
648 {
649         return key_extract(skb, key);
650 }
651
652 int ovs_flow_key_extract(struct ovs_tunnel_info *tun_info,
653                          struct sk_buff *skb, struct sw_flow_key *key)
654 {
655         /* Extract metadata from packet. */
656         if (tun_info) {
657                 memcpy(&key->tun_key, &tun_info->tunnel, sizeof(key->tun_key));
658
659                 if (tun_info->options) {
660                         BUILD_BUG_ON((1 << (sizeof(tun_info->options_len) *
661                                                    8)) - 1
662                                         > sizeof(key->tun_opts));
663                         memcpy(GENEVE_OPTS(key, tun_info->options_len),
664                                tun_info->options, tun_info->options_len);
665                         key->tun_opts_len = tun_info->options_len;
666                 } else {
667                         key->tun_opts_len = 0;
668                 }
669         } else  {
670                 key->tun_opts_len = 0;
671                 memset(&key->tun_key, 0, sizeof(key->tun_key));
672         }
673
674         key->phy.priority = skb->priority;
675         key->phy.in_port = OVS_CB(skb)->input_vport->port_no;
676         key->phy.skb_mark = skb->mark;
677         key->ovs_flow_hash = 0;
678         key->recirc_id = 0;
679
680         return key_extract(skb, key);
681 }
682
683 int ovs_flow_key_extract_userspace(const struct nlattr *attr,
684                                    struct sk_buff *skb,
685                                    struct sw_flow_key *key)
686 {
687         int err;
688
689         /* Extract metadata from netlink attributes. */
690         err = ovs_nla_get_flow_metadata(attr, key);
691         if (err)
692                 return err;
693
694         return key_extract(skb, key);
695 }