USB: remove broken usb-serial num_endpoints check
[sfrench/cifs-2.6.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presence of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks.
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
96 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
97 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
99 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
100 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
101 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
102 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
103 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
109
110 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
115
116 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
117
118 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
119 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
120
121 /* Adapt the MSS value used to make delayed ack decision to the
122  * real world.
123  */
124 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
125 {
126         struct inet_connection_sock *icsk = inet_csk(sk);
127         const unsigned int lss = icsk->icsk_ack.last_seg_size;
128         unsigned int len;
129
130         icsk->icsk_ack.last_seg_size = 0;
131
132         /* skb->len may jitter because of SACKs, even if peer
133          * sends good full-sized frames.
134          */
135         len = skb_shinfo(skb)->gso_size ? : skb->len;
136         if (len >= icsk->icsk_ack.rcv_mss) {
137                 icsk->icsk_ack.rcv_mss = len;
138         } else {
139                 /* Otherwise, we make more careful check taking into account,
140                  * that SACKs block is variable.
141                  *
142                  * "len" is invariant segment length, including TCP header.
143                  */
144                 len += skb->data - skb_transport_header(skb);
145                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146                     /* If PSH is not set, packet should be
147                      * full sized, provided peer TCP is not badly broken.
148                      * This observation (if it is correct 8)) allows
149                      * to handle super-low mtu links fairly.
150                      */
151                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153                         /* Subtract also invariant (if peer is RFC compliant),
154                          * tcp header plus fixed timestamp option length.
155                          * Resulting "len" is MSS free of SACK jitter.
156                          */
157                         len -= tcp_sk(sk)->tcp_header_len;
158                         icsk->icsk_ack.last_seg_size = len;
159                         if (len == lss) {
160                                 icsk->icsk_ack.rcv_mss = len;
161                                 return;
162                         }
163                 }
164                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167         }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172         struct inet_connection_sock *icsk = inet_csk(sk);
173         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175         if (quickacks == 0)
176                 quickacks = 2;
177         if (quickacks > icsk->icsk_ack.quick)
178                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183         struct inet_connection_sock *icsk = inet_csk(sk);
184         tcp_incr_quickack(sk);
185         icsk->icsk_ack.pingpong = 0;
186         icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195         const struct inet_connection_sock *icsk = inet_csk(sk);
196         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201         if (tp->ecn_flags & TCP_ECN_OK)
202                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207         if (tcp_hdr(skb)->cwr)
208                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218         if (tp->ecn_flags & TCP_ECN_OK) {
219                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221                 /* Funny extension: if ECT is not set on a segment,
222                  * it is surely retransmit. It is not in ECN RFC,
223                  * but Linux follows this rule. */
224                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225                         tcp_enter_quickack_mode((struct sock *)tp);
226         }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
232                 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237         if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
238                 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243         if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
244                 return 1;
245         return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256                      sizeof(struct sk_buff);
257
258         if (sk->sk_sndbuf < 3 * sndmem)
259                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290         struct tcp_sock *tp = tcp_sk(sk);
291         /* Optimize this! */
292         int truesize = tcp_win_from_space(skb->truesize) >> 1;
293         int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
294
295         while (tp->rcv_ssthresh <= window) {
296                 if (truesize <= skb->len)
297                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299                 truesize >>= 1;
300                 window >>= 1;
301         }
302         return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
306 {
307         struct tcp_sock *tp = tcp_sk(sk);
308
309         /* Check #1 */
310         if (tp->rcv_ssthresh < tp->window_clamp &&
311             (int)tp->rcv_ssthresh < tcp_space(sk) &&
312             !tcp_memory_pressure) {
313                 int incr;
314
315                 /* Check #2. Increase window, if skb with such overhead
316                  * will fit to rcvbuf in future.
317                  */
318                 if (tcp_win_from_space(skb->truesize) <= skb->len)
319                         incr = 2 * tp->advmss;
320                 else
321                         incr = __tcp_grow_window(sk, skb);
322
323                 if (incr) {
324                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
325                                                tp->window_clamp);
326                         inet_csk(sk)->icsk_ack.quick |= 1;
327                 }
328         }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335         struct tcp_sock *tp = tcp_sk(sk);
336         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338         /* Try to select rcvbuf so that 4 mss-sized segments
339          * will fit to window and corresponding skbs will fit to our rcvbuf.
340          * (was 3; 4 is minimum to allow fast retransmit to work.)
341          */
342         while (tcp_win_from_space(rcvmem) < tp->advmss)
343                 rcvmem += 128;
344         if (sk->sk_rcvbuf < 4 * rcvmem)
345                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353         struct tcp_sock *tp = tcp_sk(sk);
354         int maxwin;
355
356         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357                 tcp_fixup_rcvbuf(sk);
358         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359                 tcp_fixup_sndbuf(sk);
360
361         tp->rcvq_space.space = tp->rcv_wnd;
362
363         maxwin = tcp_full_space(sk);
364
365         if (tp->window_clamp >= maxwin) {
366                 tp->window_clamp = maxwin;
367
368                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369                         tp->window_clamp = max(maxwin -
370                                                (maxwin >> sysctl_tcp_app_win),
371                                                4 * tp->advmss);
372         }
373
374         /* Force reservation of one segment. */
375         if (sysctl_tcp_app_win &&
376             tp->window_clamp > 2 * tp->advmss &&
377             tp->window_clamp + tp->advmss > maxwin)
378                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381         tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387         struct tcp_sock *tp = tcp_sk(sk);
388         struct inet_connection_sock *icsk = inet_csk(sk);
389
390         icsk->icsk_ack.quick = 0;
391
392         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394             !tcp_memory_pressure &&
395             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397                                     sysctl_tcp_rmem[2]);
398         }
399         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400                 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 }
402
403 /* Initialize RCV_MSS value.
404  * RCV_MSS is an our guess about MSS used by the peer.
405  * We haven't any direct information about the MSS.
406  * It's better to underestimate the RCV_MSS rather than overestimate.
407  * Overestimations make us ACKing less frequently than needed.
408  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409  */
410 void tcp_initialize_rcv_mss(struct sock *sk)
411 {
412         struct tcp_sock *tp = tcp_sk(sk);
413         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414
415         hint = min(hint, tp->rcv_wnd / 2);
416         hint = min(hint, TCP_MIN_RCVMSS);
417         hint = max(hint, TCP_MIN_MSS);
418
419         inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 }
421
422 /* Receiver "autotuning" code.
423  *
424  * The algorithm for RTT estimation w/o timestamps is based on
425  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427  *
428  * More detail on this code can be found at
429  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430  * though this reference is out of date.  A new paper
431  * is pending.
432  */
433 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434 {
435         u32 new_sample = tp->rcv_rtt_est.rtt;
436         long m = sample;
437
438         if (m == 0)
439                 m = 1;
440
441         if (new_sample != 0) {
442                 /* If we sample in larger samples in the non-timestamp
443                  * case, we could grossly overestimate the RTT especially
444                  * with chatty applications or bulk transfer apps which
445                  * are stalled on filesystem I/O.
446                  *
447                  * Also, since we are only going for a minimum in the
448                  * non-timestamp case, we do not smooth things out
449                  * else with timestamps disabled convergence takes too
450                  * long.
451                  */
452                 if (!win_dep) {
453                         m -= (new_sample >> 3);
454                         new_sample += m;
455                 } else if (m < new_sample)
456                         new_sample = m << 3;
457         } else {
458                 /* No previous measure. */
459                 new_sample = m << 3;
460         }
461
462         if (tp->rcv_rtt_est.rtt != new_sample)
463                 tp->rcv_rtt_est.rtt = new_sample;
464 }
465
466 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467 {
468         if (tp->rcv_rtt_est.time == 0)
469                 goto new_measure;
470         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471                 return;
472         tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
473
474 new_measure:
475         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
476         tp->rcv_rtt_est.time = tcp_time_stamp;
477 }
478
479 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
480                                           const struct sk_buff *skb)
481 {
482         struct tcp_sock *tp = tcp_sk(sk);
483         if (tp->rx_opt.rcv_tsecr &&
484             (TCP_SKB_CB(skb)->end_seq -
485              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
486                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
487 }
488
489 /*
490  * This function should be called every time data is copied to user space.
491  * It calculates the appropriate TCP receive buffer space.
492  */
493 void tcp_rcv_space_adjust(struct sock *sk)
494 {
495         struct tcp_sock *tp = tcp_sk(sk);
496         int time;
497         int space;
498
499         if (tp->rcvq_space.time == 0)
500                 goto new_measure;
501
502         time = tcp_time_stamp - tp->rcvq_space.time;
503         if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
504                 return;
505
506         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
507
508         space = max(tp->rcvq_space.space, space);
509
510         if (tp->rcvq_space.space != space) {
511                 int rcvmem;
512
513                 tp->rcvq_space.space = space;
514
515                 if (sysctl_tcp_moderate_rcvbuf &&
516                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
517                         int new_clamp = space;
518
519                         /* Receive space grows, normalize in order to
520                          * take into account packet headers and sk_buff
521                          * structure overhead.
522                          */
523                         space /= tp->advmss;
524                         if (!space)
525                                 space = 1;
526                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
527                                   16 + sizeof(struct sk_buff));
528                         while (tcp_win_from_space(rcvmem) < tp->advmss)
529                                 rcvmem += 128;
530                         space *= rcvmem;
531                         space = min(space, sysctl_tcp_rmem[2]);
532                         if (space > sk->sk_rcvbuf) {
533                                 sk->sk_rcvbuf = space;
534
535                                 /* Make the window clamp follow along.  */
536                                 tp->window_clamp = new_clamp;
537                         }
538                 }
539         }
540
541 new_measure:
542         tp->rcvq_space.seq = tp->copied_seq;
543         tp->rcvq_space.time = tcp_time_stamp;
544 }
545
546 /* There is something which you must keep in mind when you analyze the
547  * behavior of the tp->ato delayed ack timeout interval.  When a
548  * connection starts up, we want to ack as quickly as possible.  The
549  * problem is that "good" TCP's do slow start at the beginning of data
550  * transmission.  The means that until we send the first few ACK's the
551  * sender will sit on his end and only queue most of his data, because
552  * he can only send snd_cwnd unacked packets at any given time.  For
553  * each ACK we send, he increments snd_cwnd and transmits more of his
554  * queue.  -DaveM
555  */
556 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
557 {
558         struct tcp_sock *tp = tcp_sk(sk);
559         struct inet_connection_sock *icsk = inet_csk(sk);
560         u32 now;
561
562         inet_csk_schedule_ack(sk);
563
564         tcp_measure_rcv_mss(sk, skb);
565
566         tcp_rcv_rtt_measure(tp);
567
568         now = tcp_time_stamp;
569
570         if (!icsk->icsk_ack.ato) {
571                 /* The _first_ data packet received, initialize
572                  * delayed ACK engine.
573                  */
574                 tcp_incr_quickack(sk);
575                 icsk->icsk_ack.ato = TCP_ATO_MIN;
576         } else {
577                 int m = now - icsk->icsk_ack.lrcvtime;
578
579                 if (m <= TCP_ATO_MIN / 2) {
580                         /* The fastest case is the first. */
581                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
582                 } else if (m < icsk->icsk_ack.ato) {
583                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
584                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
585                                 icsk->icsk_ack.ato = icsk->icsk_rto;
586                 } else if (m > icsk->icsk_rto) {
587                         /* Too long gap. Apparently sender failed to
588                          * restart window, so that we send ACKs quickly.
589                          */
590                         tcp_incr_quickack(sk);
591                         sk_mem_reclaim(sk);
592                 }
593         }
594         icsk->icsk_ack.lrcvtime = now;
595
596         TCP_ECN_check_ce(tp, skb);
597
598         if (skb->len >= 128)
599                 tcp_grow_window(sk, skb);
600 }
601
602 static u32 tcp_rto_min(struct sock *sk)
603 {
604         struct dst_entry *dst = __sk_dst_get(sk);
605         u32 rto_min = TCP_RTO_MIN;
606
607         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
608                 rto_min = dst->metrics[RTAX_RTO_MIN - 1];
609         return rto_min;
610 }
611
612 /* Called to compute a smoothed rtt estimate. The data fed to this
613  * routine either comes from timestamps, or from segments that were
614  * known _not_ to have been retransmitted [see Karn/Partridge
615  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
616  * piece by Van Jacobson.
617  * NOTE: the next three routines used to be one big routine.
618  * To save cycles in the RFC 1323 implementation it was better to break
619  * it up into three procedures. -- erics
620  */
621 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
622 {
623         struct tcp_sock *tp = tcp_sk(sk);
624         long m = mrtt; /* RTT */
625
626         /*      The following amusing code comes from Jacobson's
627          *      article in SIGCOMM '88.  Note that rtt and mdev
628          *      are scaled versions of rtt and mean deviation.
629          *      This is designed to be as fast as possible
630          *      m stands for "measurement".
631          *
632          *      On a 1990 paper the rto value is changed to:
633          *      RTO = rtt + 4 * mdev
634          *
635          * Funny. This algorithm seems to be very broken.
636          * These formulae increase RTO, when it should be decreased, increase
637          * too slowly, when it should be increased quickly, decrease too quickly
638          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
639          * does not matter how to _calculate_ it. Seems, it was trap
640          * that VJ failed to avoid. 8)
641          */
642         if (m == 0)
643                 m = 1;
644         if (tp->srtt != 0) {
645                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
646                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
647                 if (m < 0) {
648                         m = -m;         /* m is now abs(error) */
649                         m -= (tp->mdev >> 2);   /* similar update on mdev */
650                         /* This is similar to one of Eifel findings.
651                          * Eifel blocks mdev updates when rtt decreases.
652                          * This solution is a bit different: we use finer gain
653                          * for mdev in this case (alpha*beta).
654                          * Like Eifel it also prevents growth of rto,
655                          * but also it limits too fast rto decreases,
656                          * happening in pure Eifel.
657                          */
658                         if (m > 0)
659                                 m >>= 3;
660                 } else {
661                         m -= (tp->mdev >> 2);   /* similar update on mdev */
662                 }
663                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
664                 if (tp->mdev > tp->mdev_max) {
665                         tp->mdev_max = tp->mdev;
666                         if (tp->mdev_max > tp->rttvar)
667                                 tp->rttvar = tp->mdev_max;
668                 }
669                 if (after(tp->snd_una, tp->rtt_seq)) {
670                         if (tp->mdev_max < tp->rttvar)
671                                 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
672                         tp->rtt_seq = tp->snd_nxt;
673                         tp->mdev_max = tcp_rto_min(sk);
674                 }
675         } else {
676                 /* no previous measure. */
677                 tp->srtt = m << 3;      /* take the measured time to be rtt */
678                 tp->mdev = m << 1;      /* make sure rto = 3*rtt */
679                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
680                 tp->rtt_seq = tp->snd_nxt;
681         }
682 }
683
684 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
685  * routine referred to above.
686  */
687 static inline void tcp_set_rto(struct sock *sk)
688 {
689         const struct tcp_sock *tp = tcp_sk(sk);
690         /* Old crap is replaced with new one. 8)
691          *
692          * More seriously:
693          * 1. If rtt variance happened to be less 50msec, it is hallucination.
694          *    It cannot be less due to utterly erratic ACK generation made
695          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
696          *    to do with delayed acks, because at cwnd>2 true delack timeout
697          *    is invisible. Actually, Linux-2.4 also generates erratic
698          *    ACKs in some circumstances.
699          */
700         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
701
702         /* 2. Fixups made earlier cannot be right.
703          *    If we do not estimate RTO correctly without them,
704          *    all the algo is pure shit and should be replaced
705          *    with correct one. It is exactly, which we pretend to do.
706          */
707 }
708
709 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
710  * guarantees that rto is higher.
711  */
712 static inline void tcp_bound_rto(struct sock *sk)
713 {
714         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
715                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
716 }
717
718 /* Save metrics learned by this TCP session.
719    This function is called only, when TCP finishes successfully
720    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
721  */
722 void tcp_update_metrics(struct sock *sk)
723 {
724         struct tcp_sock *tp = tcp_sk(sk);
725         struct dst_entry *dst = __sk_dst_get(sk);
726
727         if (sysctl_tcp_nometrics_save)
728                 return;
729
730         dst_confirm(dst);
731
732         if (dst && (dst->flags & DST_HOST)) {
733                 const struct inet_connection_sock *icsk = inet_csk(sk);
734                 int m;
735
736                 if (icsk->icsk_backoff || !tp->srtt) {
737                         /* This session failed to estimate rtt. Why?
738                          * Probably, no packets returned in time.
739                          * Reset our results.
740                          */
741                         if (!(dst_metric_locked(dst, RTAX_RTT)))
742                                 dst->metrics[RTAX_RTT - 1] = 0;
743                         return;
744                 }
745
746                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
747
748                 /* If newly calculated rtt larger than stored one,
749                  * store new one. Otherwise, use EWMA. Remember,
750                  * rtt overestimation is always better than underestimation.
751                  */
752                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
753                         if (m <= 0)
754                                 dst->metrics[RTAX_RTT - 1] = tp->srtt;
755                         else
756                                 dst->metrics[RTAX_RTT - 1] -= (m >> 3);
757                 }
758
759                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
760                         if (m < 0)
761                                 m = -m;
762
763                         /* Scale deviation to rttvar fixed point */
764                         m >>= 1;
765                         if (m < tp->mdev)
766                                 m = tp->mdev;
767
768                         if (m >= dst_metric(dst, RTAX_RTTVAR))
769                                 dst->metrics[RTAX_RTTVAR - 1] = m;
770                         else
771                                 dst->metrics[RTAX_RTTVAR-1] -=
772                                         (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
773                 }
774
775                 if (tp->snd_ssthresh >= 0xFFFF) {
776                         /* Slow start still did not finish. */
777                         if (dst_metric(dst, RTAX_SSTHRESH) &&
778                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
779                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
780                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
781                         if (!dst_metric_locked(dst, RTAX_CWND) &&
782                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
783                                 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
784                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
785                            icsk->icsk_ca_state == TCP_CA_Open) {
786                         /* Cong. avoidance phase, cwnd is reliable. */
787                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
788                                 dst->metrics[RTAX_SSTHRESH-1] =
789                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
790                         if (!dst_metric_locked(dst, RTAX_CWND))
791                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
792                 } else {
793                         /* Else slow start did not finish, cwnd is non-sense,
794                            ssthresh may be also invalid.
795                          */
796                         if (!dst_metric_locked(dst, RTAX_CWND))
797                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
798                         if (dst->metrics[RTAX_SSTHRESH-1] &&
799                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
800                             tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
801                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
802                 }
803
804                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
805                         if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
806                             tp->reordering != sysctl_tcp_reordering)
807                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
808                 }
809         }
810 }
811
812 /* Numbers are taken from RFC3390.
813  *
814  * John Heffner states:
815  *
816  *      The RFC specifies a window of no more than 4380 bytes
817  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
818  *      is a bit misleading because they use a clamp at 4380 bytes
819  *      rather than use a multiplier in the relevant range.
820  */
821 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
822 {
823         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
824
825         if (!cwnd) {
826                 if (tp->mss_cache > 1460)
827                         cwnd = 2;
828                 else
829                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
830         }
831         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
832 }
833
834 /* Set slow start threshold and cwnd not falling to slow start */
835 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
836 {
837         struct tcp_sock *tp = tcp_sk(sk);
838         const struct inet_connection_sock *icsk = inet_csk(sk);
839
840         tp->prior_ssthresh = 0;
841         tp->bytes_acked = 0;
842         if (icsk->icsk_ca_state < TCP_CA_CWR) {
843                 tp->undo_marker = 0;
844                 if (set_ssthresh)
845                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
846                 tp->snd_cwnd = min(tp->snd_cwnd,
847                                    tcp_packets_in_flight(tp) + 1U);
848                 tp->snd_cwnd_cnt = 0;
849                 tp->high_seq = tp->snd_nxt;
850                 tp->snd_cwnd_stamp = tcp_time_stamp;
851                 TCP_ECN_queue_cwr(tp);
852
853                 tcp_set_ca_state(sk, TCP_CA_CWR);
854         }
855 }
856
857 /*
858  * Packet counting of FACK is based on in-order assumptions, therefore TCP
859  * disables it when reordering is detected
860  */
861 static void tcp_disable_fack(struct tcp_sock *tp)
862 {
863         /* RFC3517 uses different metric in lost marker => reset on change */
864         if (tcp_is_fack(tp))
865                 tp->lost_skb_hint = NULL;
866         tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872         tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879         struct tcp_sock *tp = tcp_sk(sk);
880         struct dst_entry *dst = __sk_dst_get(sk);
881
882         if (dst == NULL)
883                 goto reset;
884
885         dst_confirm(dst);
886
887         if (dst_metric_locked(dst, RTAX_CWND))
888                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889         if (dst_metric(dst, RTAX_SSTHRESH)) {
890                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
893         }
894         if (dst_metric(dst, RTAX_REORDERING) &&
895             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896                 tcp_disable_fack(tp);
897                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898         }
899
900         if (dst_metric(dst, RTAX_RTT) == 0)
901                 goto reset;
902
903         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904                 goto reset;
905
906         /* Initial rtt is determined from SYN,SYN-ACK.
907          * The segment is small and rtt may appear much
908          * less than real one. Use per-dst memory
909          * to make it more realistic.
910          *
911          * A bit of theory. RTT is time passed after "normal" sized packet
912          * is sent until it is ACKed. In normal circumstances sending small
913          * packets force peer to delay ACKs and calculation is correct too.
914          * The algorithm is adaptive and, provided we follow specs, it
915          * NEVER underestimate RTT. BUT! If peer tries to make some clever
916          * tricks sort of "quick acks" for time long enough to decrease RTT
917          * to low value, and then abruptly stops to do it and starts to delay
918          * ACKs, wait for troubles.
919          */
920         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921                 tp->srtt = dst_metric(dst, RTAX_RTT);
922                 tp->rtt_seq = tp->snd_nxt;
923         }
924         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
927         }
928         tcp_set_rto(sk);
929         tcp_bound_rto(sk);
930         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931                 goto reset;
932         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933         tp->snd_cwnd_stamp = tcp_time_stamp;
934         return;
935
936 reset:
937         /* Play conservative. If timestamps are not
938          * supported, TCP will fail to recalculate correct
939          * rtt, if initial rto is too small. FORGET ALL AND RESET!
940          */
941         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942                 tp->srtt = 0;
943                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945         }
946 }
947
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949                                   const int ts)
950 {
951         struct tcp_sock *tp = tcp_sk(sk);
952         if (metric > tp->reordering) {
953                 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955                 /* This exciting event is worth to be remembered. 8) */
956                 if (ts)
957                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958                 else if (tcp_is_reno(tp))
959                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960                 else if (tcp_is_fack(tp))
961                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962                 else
963                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967                        tp->reordering,
968                        tp->fackets_out,
969                        tp->sacked_out,
970                        tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972                 tcp_disable_fack(tp);
973         }
974 }
975
976 /* This procedure tags the retransmission queue when SACKs arrive.
977  *
978  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979  * Packets in queue with these bits set are counted in variables
980  * sacked_out, retrans_out and lost_out, correspondingly.
981  *
982  * Valid combinations are:
983  * Tag  InFlight        Description
984  * 0    1               - orig segment is in flight.
985  * S    0               - nothing flies, orig reached receiver.
986  * L    0               - nothing flies, orig lost by net.
987  * R    2               - both orig and retransmit are in flight.
988  * L|R  1               - orig is lost, retransmit is in flight.
989  * S|R  1               - orig reached receiver, retrans is still in flight.
990  * (L|S|R is logically valid, it could occur when L|R is sacked,
991  *  but it is equivalent to plain S and code short-curcuits it to S.
992  *  L|S is logically invalid, it would mean -1 packet in flight 8))
993  *
994  * These 6 states form finite state machine, controlled by the following events:
995  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997  * 3. Loss detection event of one of three flavors:
998  *      A. Scoreboard estimator decided the packet is lost.
999  *         A'. Reno "three dupacks" marks head of queue lost.
1000  *         A''. Its FACK modfication, head until snd.fack is lost.
1001  *      B. SACK arrives sacking data transmitted after never retransmitted
1002  *         hole was sent out.
1003  *      C. SACK arrives sacking SND.NXT at the moment, when the
1004  *         segment was retransmitted.
1005  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006  *
1007  * It is pleasant to note, that state diagram turns out to be commutative,
1008  * so that we are allowed not to be bothered by order of our actions,
1009  * when multiple events arrive simultaneously. (see the function below).
1010  *
1011  * Reordering detection.
1012  * --------------------
1013  * Reordering metric is maximal distance, which a packet can be displaced
1014  * in packet stream. With SACKs we can estimate it:
1015  *
1016  * 1. SACK fills old hole and the corresponding segment was not
1017  *    ever retransmitted -> reordering. Alas, we cannot use it
1018  *    when segment was retransmitted.
1019  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020  *    for retransmitted and already SACKed segment -> reordering..
1021  * Both of these heuristics are not used in Loss state, when we cannot
1022  * account for retransmits accurately.
1023  *
1024  * SACK block validation.
1025  * ----------------------
1026  *
1027  * SACK block range validation checks that the received SACK block fits to
1028  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029  * Note that SND.UNA is not included to the range though being valid because
1030  * it means that the receiver is rather inconsistent with itself reporting
1031  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032  * perfectly valid, however, in light of RFC2018 which explicitly states
1033  * that "SACK block MUST reflect the newest segment.  Even if the newest
1034  * segment is going to be discarded ...", not that it looks very clever
1035  * in case of head skb. Due to potentional receiver driven attacks, we
1036  * choose to avoid immediate execution of a walk in write queue due to
1037  * reneging and defer head skb's loss recovery to standard loss recovery
1038  * procedure that will eventually trigger (nothing forbids us doing this).
1039  *
1040  * Implements also blockage to start_seq wrap-around. Problem lies in the
1041  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042  * there's no guarantee that it will be before snd_nxt (n). The problem
1043  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044  * wrap (s_w):
1045  *
1046  *         <- outs wnd ->                          <- wrapzone ->
1047  *         u     e      n                         u_w   e_w  s n_w
1048  *         |     |      |                          |     |   |  |
1049  * |<------------+------+----- TCP seqno space --------------+---------->|
1050  * ...-- <2^31 ->|                                           |<--------...
1051  * ...---- >2^31 ------>|                                    |<--------...
1052  *
1053  * Current code wouldn't be vulnerable but it's better still to discard such
1054  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057  * equal to the ideal case (infinite seqno space without wrap caused issues).
1058  *
1059  * With D-SACK the lower bound is extended to cover sequence space below
1060  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061  * again, D-SACK block must not to go across snd_una (for the same reason as
1062  * for the normal SACK blocks, explained above). But there all simplicity
1063  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064  * fully below undo_marker they do not affect behavior in anyway and can
1065  * therefore be safely ignored. In rare cases (which are more or less
1066  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067  * fragmentation and packet reordering past skb's retransmission. To consider
1068  * them correctly, the acceptable range must be extended even more though
1069  * the exact amount is rather hard to quantify. However, tp->max_window can
1070  * be used as an exaggerated estimate.
1071  */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073                                   u32 start_seq, u32 end_seq)
1074 {
1075         /* Too far in future, or reversed (interpretation is ambiguous) */
1076         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077                 return 0;
1078
1079         /* Nasty start_seq wrap-around check (see comments above) */
1080         if (!before(start_seq, tp->snd_nxt))
1081                 return 0;
1082
1083         /* In outstanding window? ...This is valid exit for D-SACKs too.
1084          * start_seq == snd_una is non-sensical (see comments above)
1085          */
1086         if (after(start_seq, tp->snd_una))
1087                 return 1;
1088
1089         if (!is_dsack || !tp->undo_marker)
1090                 return 0;
1091
1092         /* ...Then it's D-SACK, and must reside below snd_una completely */
1093         if (!after(end_seq, tp->snd_una))
1094                 return 0;
1095
1096         if (!before(start_seq, tp->undo_marker))
1097                 return 1;
1098
1099         /* Too old */
1100         if (!after(end_seq, tp->undo_marker))
1101                 return 0;
1102
1103         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104          *   start_seq < undo_marker and end_seq >= undo_marker.
1105          */
1106         return !before(start_seq, end_seq - tp->max_window);
1107 }
1108
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110  * Event "C". Later note: FACK people cheated me again 8), we have to account
1111  * for reordering! Ugly, but should help.
1112  *
1113  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114  * less than what is now known to be received by the other end (derived from
1115  * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1116  * retransmitted skbs to avoid some costly processing per ACKs.
1117  */
1118 static void tcp_mark_lost_retrans(struct sock *sk)
1119 {
1120         const struct inet_connection_sock *icsk = inet_csk(sk);
1121         struct tcp_sock *tp = tcp_sk(sk);
1122         struct sk_buff *skb;
1123         int cnt = 0;
1124         u32 new_low_seq = tp->snd_nxt;
1125         u32 received_upto = tcp_highest_sack_seq(tp);
1126
1127         if (!tcp_is_fack(tp) || !tp->retrans_out ||
1128             !after(received_upto, tp->lost_retrans_low) ||
1129             icsk->icsk_ca_state != TCP_CA_Recovery)
1130                 return;
1131
1132         tcp_for_write_queue(skb, sk) {
1133                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1134
1135                 if (skb == tcp_send_head(sk))
1136                         break;
1137                 if (cnt == tp->retrans_out)
1138                         break;
1139                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1140                         continue;
1141
1142                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1143                         continue;
1144
1145                 if (after(received_upto, ack_seq) &&
1146                     (tcp_is_fack(tp) ||
1147                      !before(received_upto,
1148                              ack_seq + tp->reordering * tp->mss_cache))) {
1149                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1150                         tp->retrans_out -= tcp_skb_pcount(skb);
1151
1152                         /* clear lost hint */
1153                         tp->retransmit_skb_hint = NULL;
1154
1155                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1156                                 tp->lost_out += tcp_skb_pcount(skb);
1157                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1158                         }
1159                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1160                 } else {
1161                         if (before(ack_seq, new_low_seq))
1162                                 new_low_seq = ack_seq;
1163                         cnt += tcp_skb_pcount(skb);
1164                 }
1165         }
1166
1167         if (tp->retrans_out)
1168                 tp->lost_retrans_low = new_low_seq;
1169 }
1170
1171 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1172                            struct tcp_sack_block_wire *sp, int num_sacks,
1173                            u32 prior_snd_una)
1174 {
1175         u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1176         u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1177         int dup_sack = 0;
1178
1179         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1180                 dup_sack = 1;
1181                 tcp_dsack_seen(tp);
1182                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1183         } else if (num_sacks > 1) {
1184                 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1185                 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1186
1187                 if (!after(end_seq_0, end_seq_1) &&
1188                     !before(start_seq_0, start_seq_1)) {
1189                         dup_sack = 1;
1190                         tcp_dsack_seen(tp);
1191                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1192                 }
1193         }
1194
1195         /* D-SACK for already forgotten data... Do dumb counting. */
1196         if (dup_sack &&
1197             !after(end_seq_0, prior_snd_una) &&
1198             after(end_seq_0, tp->undo_marker))
1199                 tp->undo_retrans--;
1200
1201         return dup_sack;
1202 }
1203
1204 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1205  * the incoming SACK may not exactly match but we can find smaller MSS
1206  * aligned portion of it that matches. Therefore we might need to fragment
1207  * which may fail and creates some hassle (caller must handle error case
1208  * returns).
1209  */
1210 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1211                                  u32 start_seq, u32 end_seq)
1212 {
1213         int in_sack, err;
1214         unsigned int pkt_len;
1215
1216         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1217                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1218
1219         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1220             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1221
1222                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1223
1224                 if (!in_sack)
1225                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1226                 else
1227                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1228                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1229                 if (err < 0)
1230                         return err;
1231         }
1232
1233         return in_sack;
1234 }
1235
1236 static int tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1237                            int *reord, int dup_sack, int fack_count)
1238 {
1239         struct tcp_sock *tp = tcp_sk(sk);
1240         u8 sacked = TCP_SKB_CB(skb)->sacked;
1241         int flag = 0;
1242
1243         /* Account D-SACK for retransmitted packet. */
1244         if (dup_sack && (sacked & TCPCB_RETRANS)) {
1245                 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1246                         tp->undo_retrans--;
1247                 if (sacked & TCPCB_SACKED_ACKED)
1248                         *reord = min(fack_count, *reord);
1249         }
1250
1251         /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1252         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1253                 return flag;
1254
1255         if (!(sacked & TCPCB_SACKED_ACKED)) {
1256                 if (sacked & TCPCB_SACKED_RETRANS) {
1257                         /* If the segment is not tagged as lost,
1258                          * we do not clear RETRANS, believing
1259                          * that retransmission is still in flight.
1260                          */
1261                         if (sacked & TCPCB_LOST) {
1262                                 TCP_SKB_CB(skb)->sacked &=
1263                                         ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1264                                 tp->lost_out -= tcp_skb_pcount(skb);
1265                                 tp->retrans_out -= tcp_skb_pcount(skb);
1266
1267                                 /* clear lost hint */
1268                                 tp->retransmit_skb_hint = NULL;
1269                         }
1270                 } else {
1271                         if (!(sacked & TCPCB_RETRANS)) {
1272                                 /* New sack for not retransmitted frame,
1273                                  * which was in hole. It is reordering.
1274                                  */
1275                                 if (before(TCP_SKB_CB(skb)->seq,
1276                                            tcp_highest_sack_seq(tp)))
1277                                         *reord = min(fack_count, *reord);
1278
1279                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1280                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1281                                         flag |= FLAG_ONLY_ORIG_SACKED;
1282                         }
1283
1284                         if (sacked & TCPCB_LOST) {
1285                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1286                                 tp->lost_out -= tcp_skb_pcount(skb);
1287
1288                                 /* clear lost hint */
1289                                 tp->retransmit_skb_hint = NULL;
1290                         }
1291                 }
1292
1293                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1294                 flag |= FLAG_DATA_SACKED;
1295                 tp->sacked_out += tcp_skb_pcount(skb);
1296
1297                 fack_count += tcp_skb_pcount(skb);
1298
1299                 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1300                 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1301                     before(TCP_SKB_CB(skb)->seq,
1302                            TCP_SKB_CB(tp->lost_skb_hint)->seq))
1303                         tp->lost_cnt_hint += tcp_skb_pcount(skb);
1304
1305                 if (fack_count > tp->fackets_out)
1306                         tp->fackets_out = fack_count;
1307
1308                 if (!before(TCP_SKB_CB(skb)->seq, tcp_highest_sack_seq(tp)))
1309                         tcp_advance_highest_sack(sk, skb);
1310         }
1311
1312         /* D-SACK. We can detect redundant retransmission in S|R and plain R
1313          * frames and clear it. undo_retrans is decreased above, L|R frames
1314          * are accounted above as well.
1315          */
1316         if (dup_sack && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)) {
1317                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1318                 tp->retrans_out -= tcp_skb_pcount(skb);
1319                 tp->retransmit_skb_hint = NULL;
1320         }
1321
1322         return flag;
1323 }
1324
1325 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1326                                         struct tcp_sack_block *next_dup,
1327                                         u32 start_seq, u32 end_seq,
1328                                         int dup_sack_in, int *fack_count,
1329                                         int *reord, int *flag)
1330 {
1331         tcp_for_write_queue_from(skb, sk) {
1332                 int in_sack = 0;
1333                 int dup_sack = dup_sack_in;
1334
1335                 if (skb == tcp_send_head(sk))
1336                         break;
1337
1338                 /* queue is in-order => we can short-circuit the walk early */
1339                 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1340                         break;
1341
1342                 if ((next_dup != NULL) &&
1343                     before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1344                         in_sack = tcp_match_skb_to_sack(sk, skb,
1345                                                         next_dup->start_seq,
1346                                                         next_dup->end_seq);
1347                         if (in_sack > 0)
1348                                 dup_sack = 1;
1349                 }
1350
1351                 if (in_sack <= 0)
1352                         in_sack = tcp_match_skb_to_sack(sk, skb, start_seq,
1353                                                         end_seq);
1354                 if (unlikely(in_sack < 0))
1355                         break;
1356
1357                 if (in_sack)
1358                         *flag |= tcp_sacktag_one(skb, sk, reord, dup_sack,
1359                                                  *fack_count);
1360
1361                 *fack_count += tcp_skb_pcount(skb);
1362         }
1363         return skb;
1364 }
1365
1366 /* Avoid all extra work that is being done by sacktag while walking in
1367  * a normal way
1368  */
1369 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1370                                         u32 skip_to_seq, int *fack_count)
1371 {
1372         tcp_for_write_queue_from(skb, sk) {
1373                 if (skb == tcp_send_head(sk))
1374                         break;
1375
1376                 if (!before(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1377                         break;
1378
1379                 *fack_count += tcp_skb_pcount(skb);
1380         }
1381         return skb;
1382 }
1383
1384 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1385                                                 struct sock *sk,
1386                                                 struct tcp_sack_block *next_dup,
1387                                                 u32 skip_to_seq,
1388                                                 int *fack_count, int *reord,
1389                                                 int *flag)
1390 {
1391         if (next_dup == NULL)
1392                 return skb;
1393
1394         if (before(next_dup->start_seq, skip_to_seq)) {
1395                 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq, fack_count);
1396                 tcp_sacktag_walk(skb, sk, NULL,
1397                                  next_dup->start_seq, next_dup->end_seq,
1398                                  1, fack_count, reord, flag);
1399         }
1400
1401         return skb;
1402 }
1403
1404 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1405 {
1406         return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1407 }
1408
1409 static int
1410 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1411                         u32 prior_snd_una)
1412 {
1413         const struct inet_connection_sock *icsk = inet_csk(sk);
1414         struct tcp_sock *tp = tcp_sk(sk);
1415         unsigned char *ptr = (skb_transport_header(ack_skb) +
1416                               TCP_SKB_CB(ack_skb)->sacked);
1417         struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1418         struct tcp_sack_block sp[4];
1419         struct tcp_sack_block *cache;
1420         struct sk_buff *skb;
1421         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE) >> 3;
1422         int used_sacks;
1423         int reord = tp->packets_out;
1424         int flag = 0;
1425         int found_dup_sack = 0;
1426         int fack_count;
1427         int i, j;
1428         int first_sack_index;
1429
1430         if (!tp->sacked_out) {
1431                 if (WARN_ON(tp->fackets_out))
1432                         tp->fackets_out = 0;
1433                 tcp_highest_sack_reset(sk);
1434         }
1435
1436         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp_wire,
1437                                          num_sacks, prior_snd_una);
1438         if (found_dup_sack)
1439                 flag |= FLAG_DSACKING_ACK;
1440
1441         /* Eliminate too old ACKs, but take into
1442          * account more or less fresh ones, they can
1443          * contain valid SACK info.
1444          */
1445         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1446                 return 0;
1447
1448         if (!tp->packets_out)
1449                 goto out;
1450
1451         used_sacks = 0;
1452         first_sack_index = 0;
1453         for (i = 0; i < num_sacks; i++) {
1454                 int dup_sack = !i && found_dup_sack;
1455
1456                 sp[used_sacks].start_seq = ntohl(get_unaligned(&sp_wire[i].start_seq));
1457                 sp[used_sacks].end_seq = ntohl(get_unaligned(&sp_wire[i].end_seq));
1458
1459                 if (!tcp_is_sackblock_valid(tp, dup_sack,
1460                                             sp[used_sacks].start_seq,
1461                                             sp[used_sacks].end_seq)) {
1462                         if (dup_sack) {
1463                                 if (!tp->undo_marker)
1464                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1465                                 else
1466                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1467                         } else {
1468                                 /* Don't count olds caused by ACK reordering */
1469                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1470                                     !after(sp[used_sacks].end_seq, tp->snd_una))
1471                                         continue;
1472                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1473                         }
1474                         if (i == 0)
1475                                 first_sack_index = -1;
1476                         continue;
1477                 }
1478
1479                 /* Ignore very old stuff early */
1480                 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1481                         continue;
1482
1483                 used_sacks++;
1484         }
1485
1486         /* order SACK blocks to allow in order walk of the retrans queue */
1487         for (i = used_sacks - 1; i > 0; i--) {
1488                 for (j = 0; j < i; j++) {
1489                         if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1490                                 struct tcp_sack_block tmp;
1491
1492                                 tmp = sp[j];
1493                                 sp[j] = sp[j + 1];
1494                                 sp[j + 1] = tmp;
1495
1496                                 /* Track where the first SACK block goes to */
1497                                 if (j == first_sack_index)
1498                                         first_sack_index = j + 1;
1499                         }
1500                 }
1501         }
1502
1503         skb = tcp_write_queue_head(sk);
1504         fack_count = 0;
1505         i = 0;
1506
1507         if (!tp->sacked_out) {
1508                 /* It's already past, so skip checking against it */
1509                 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1510         } else {
1511                 cache = tp->recv_sack_cache;
1512                 /* Skip empty blocks in at head of the cache */
1513                 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1514                        !cache->end_seq)
1515                         cache++;
1516         }
1517
1518         while (i < used_sacks) {
1519                 u32 start_seq = sp[i].start_seq;
1520                 u32 end_seq = sp[i].end_seq;
1521                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1522                 struct tcp_sack_block *next_dup = NULL;
1523
1524                 if (found_dup_sack && ((i + 1) == first_sack_index))
1525                         next_dup = &sp[i + 1];
1526
1527                 /* Event "B" in the comment above. */
1528                 if (after(end_seq, tp->high_seq))
1529                         flag |= FLAG_DATA_LOST;
1530
1531                 /* Skip too early cached blocks */
1532                 while (tcp_sack_cache_ok(tp, cache) &&
1533                        !before(start_seq, cache->end_seq))
1534                         cache++;
1535
1536                 /* Can skip some work by looking recv_sack_cache? */
1537                 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1538                     after(end_seq, cache->start_seq)) {
1539
1540                         /* Head todo? */
1541                         if (before(start_seq, cache->start_seq)) {
1542                                 skb = tcp_sacktag_skip(skb, sk, start_seq,
1543                                                        &fack_count);
1544                                 skb = tcp_sacktag_walk(skb, sk, next_dup,
1545                                                        start_seq,
1546                                                        cache->start_seq,
1547                                                        dup_sack, &fack_count,
1548                                                        &reord, &flag);
1549                         }
1550
1551                         /* Rest of the block already fully processed? */
1552                         if (!after(end_seq, cache->end_seq))
1553                                 goto advance_sp;
1554
1555                         skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1556                                                        cache->end_seq,
1557                                                        &fack_count, &reord,
1558                                                        &flag);
1559
1560                         /* ...tail remains todo... */
1561                         if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1562                                 /* ...but better entrypoint exists! */
1563                                 skb = tcp_highest_sack(sk);
1564                                 if (skb == NULL)
1565                                         break;
1566                                 fack_count = tp->fackets_out;
1567                                 cache++;
1568                                 goto walk;
1569                         }
1570
1571                         skb = tcp_sacktag_skip(skb, sk, cache->end_seq,
1572                                                &fack_count);
1573                         /* Check overlap against next cached too (past this one already) */
1574                         cache++;
1575                         continue;
1576                 }
1577
1578                 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1579                         skb = tcp_highest_sack(sk);
1580                         if (skb == NULL)
1581                                 break;
1582                         fack_count = tp->fackets_out;
1583                 }
1584                 skb = tcp_sacktag_skip(skb, sk, start_seq, &fack_count);
1585
1586 walk:
1587                 skb = tcp_sacktag_walk(skb, sk, next_dup, start_seq, end_seq,
1588                                        dup_sack, &fack_count, &reord, &flag);
1589
1590 advance_sp:
1591                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1592                  * due to in-order walk
1593                  */
1594                 if (after(end_seq, tp->frto_highmark))
1595                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1596
1597                 i++;
1598         }
1599
1600         /* Clear the head of the cache sack blocks so we can skip it next time */
1601         for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1602                 tp->recv_sack_cache[i].start_seq = 0;
1603                 tp->recv_sack_cache[i].end_seq = 0;
1604         }
1605         for (j = 0; j < used_sacks; j++)
1606                 tp->recv_sack_cache[i++] = sp[j];
1607
1608         tcp_mark_lost_retrans(sk);
1609
1610         tcp_verify_left_out(tp);
1611
1612         if ((reord < tp->fackets_out) &&
1613             ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1614             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1615                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1616
1617 out:
1618
1619 #if FASTRETRANS_DEBUG > 0
1620         BUG_TRAP((int)tp->sacked_out >= 0);
1621         BUG_TRAP((int)tp->lost_out >= 0);
1622         BUG_TRAP((int)tp->retrans_out >= 0);
1623         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1624 #endif
1625         return flag;
1626 }
1627
1628 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1629  * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1630  */
1631 int tcp_limit_reno_sacked(struct tcp_sock *tp)
1632 {
1633         u32 holes;
1634
1635         holes = max(tp->lost_out, 1U);
1636         holes = min(holes, tp->packets_out);
1637
1638         if ((tp->sacked_out + holes) > tp->packets_out) {
1639                 tp->sacked_out = tp->packets_out - holes;
1640                 return 1;
1641         }
1642         return 0;
1643 }
1644
1645 /* If we receive more dupacks than we expected counting segments
1646  * in assumption of absent reordering, interpret this as reordering.
1647  * The only another reason could be bug in receiver TCP.
1648  */
1649 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1650 {
1651         struct tcp_sock *tp = tcp_sk(sk);
1652         if (tcp_limit_reno_sacked(tp))
1653                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1654 }
1655
1656 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1657
1658 static void tcp_add_reno_sack(struct sock *sk)
1659 {
1660         struct tcp_sock *tp = tcp_sk(sk);
1661         tp->sacked_out++;
1662         tcp_check_reno_reordering(sk, 0);
1663         tcp_verify_left_out(tp);
1664 }
1665
1666 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1667
1668 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1669 {
1670         struct tcp_sock *tp = tcp_sk(sk);
1671
1672         if (acked > 0) {
1673                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1674                 if (acked - 1 >= tp->sacked_out)
1675                         tp->sacked_out = 0;
1676                 else
1677                         tp->sacked_out -= acked - 1;
1678         }
1679         tcp_check_reno_reordering(sk, acked);
1680         tcp_verify_left_out(tp);
1681 }
1682
1683 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1684 {
1685         tp->sacked_out = 0;
1686 }
1687
1688 /* F-RTO can only be used if TCP has never retransmitted anything other than
1689  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1690  */
1691 int tcp_use_frto(struct sock *sk)
1692 {
1693         const struct tcp_sock *tp = tcp_sk(sk);
1694         const struct inet_connection_sock *icsk = inet_csk(sk);
1695         struct sk_buff *skb;
1696
1697         if (!sysctl_tcp_frto)
1698                 return 0;
1699
1700         /* MTU probe and F-RTO won't really play nicely along currently */
1701         if (icsk->icsk_mtup.probe_size)
1702                 return 0;
1703
1704         if (IsSackFrto())
1705                 return 1;
1706
1707         /* Avoid expensive walking of rexmit queue if possible */
1708         if (tp->retrans_out > 1)
1709                 return 0;
1710
1711         skb = tcp_write_queue_head(sk);
1712         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1713         tcp_for_write_queue_from(skb, sk) {
1714                 if (skb == tcp_send_head(sk))
1715                         break;
1716                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1717                         return 0;
1718                 /* Short-circuit when first non-SACKed skb has been checked */
1719                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1720                         break;
1721         }
1722         return 1;
1723 }
1724
1725 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1726  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1727  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1728  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1729  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1730  * bits are handled if the Loss state is really to be entered (in
1731  * tcp_enter_frto_loss).
1732  *
1733  * Do like tcp_enter_loss() would; when RTO expires the second time it
1734  * does:
1735  *  "Reduce ssthresh if it has not yet been made inside this window."
1736  */
1737 void tcp_enter_frto(struct sock *sk)
1738 {
1739         const struct inet_connection_sock *icsk = inet_csk(sk);
1740         struct tcp_sock *tp = tcp_sk(sk);
1741         struct sk_buff *skb;
1742
1743         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1744             tp->snd_una == tp->high_seq ||
1745             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1746              !icsk->icsk_retransmits)) {
1747                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1748                 /* Our state is too optimistic in ssthresh() call because cwnd
1749                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1750                  * recovery has not yet completed. Pattern would be this: RTO,
1751                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1752                  * up here twice).
1753                  * RFC4138 should be more specific on what to do, even though
1754                  * RTO is quite unlikely to occur after the first Cumulative ACK
1755                  * due to back-off and complexity of triggering events ...
1756                  */
1757                 if (tp->frto_counter) {
1758                         u32 stored_cwnd;
1759                         stored_cwnd = tp->snd_cwnd;
1760                         tp->snd_cwnd = 2;
1761                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1762                         tp->snd_cwnd = stored_cwnd;
1763                 } else {
1764                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1765                 }
1766                 /* ... in theory, cong.control module could do "any tricks" in
1767                  * ssthresh(), which means that ca_state, lost bits and lost_out
1768                  * counter would have to be faked before the call occurs. We
1769                  * consider that too expensive, unlikely and hacky, so modules
1770                  * using these in ssthresh() must deal these incompatibility
1771                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1772                  */
1773                 tcp_ca_event(sk, CA_EVENT_FRTO);
1774         }
1775
1776         tp->undo_marker = tp->snd_una;
1777         tp->undo_retrans = 0;
1778
1779         skb = tcp_write_queue_head(sk);
1780         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1781                 tp->undo_marker = 0;
1782         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1783                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1784                 tp->retrans_out -= tcp_skb_pcount(skb);
1785         }
1786         tcp_verify_left_out(tp);
1787
1788         /* Too bad if TCP was application limited */
1789         tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
1790
1791         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1792          * The last condition is necessary at least in tp->frto_counter case.
1793          */
1794         if (IsSackFrto() && (tp->frto_counter ||
1795             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1796             after(tp->high_seq, tp->snd_una)) {
1797                 tp->frto_highmark = tp->high_seq;
1798         } else {
1799                 tp->frto_highmark = tp->snd_nxt;
1800         }
1801         tcp_set_ca_state(sk, TCP_CA_Disorder);
1802         tp->high_seq = tp->snd_nxt;
1803         tp->frto_counter = 1;
1804 }
1805
1806 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1807  * which indicates that we should follow the traditional RTO recovery,
1808  * i.e. mark everything lost and do go-back-N retransmission.
1809  */
1810 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1811 {
1812         struct tcp_sock *tp = tcp_sk(sk);
1813         struct sk_buff *skb;
1814
1815         tp->lost_out = 0;
1816         tp->retrans_out = 0;
1817         if (tcp_is_reno(tp))
1818                 tcp_reset_reno_sack(tp);
1819
1820         tcp_for_write_queue(skb, sk) {
1821                 if (skb == tcp_send_head(sk))
1822                         break;
1823
1824                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1825                 /*
1826                  * Count the retransmission made on RTO correctly (only when
1827                  * waiting for the first ACK and did not get it)...
1828                  */
1829                 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
1830                         /* For some reason this R-bit might get cleared? */
1831                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1832                                 tp->retrans_out += tcp_skb_pcount(skb);
1833                         /* ...enter this if branch just for the first segment */
1834                         flag |= FLAG_DATA_ACKED;
1835                 } else {
1836                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1837                                 tp->undo_marker = 0;
1838                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1839                 }
1840
1841                 /* Don't lost mark skbs that were fwd transmitted after RTO */
1842                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) &&
1843                     !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1844                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1845                         tp->lost_out += tcp_skb_pcount(skb);
1846                 }
1847         }
1848         tcp_verify_left_out(tp);
1849
1850         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1851         tp->snd_cwnd_cnt = 0;
1852         tp->snd_cwnd_stamp = tcp_time_stamp;
1853         tp->frto_counter = 0;
1854         tp->bytes_acked = 0;
1855
1856         tp->reordering = min_t(unsigned int, tp->reordering,
1857                                sysctl_tcp_reordering);
1858         tcp_set_ca_state(sk, TCP_CA_Loss);
1859         tp->high_seq = tp->frto_highmark;
1860         TCP_ECN_queue_cwr(tp);
1861
1862         tcp_clear_retrans_hints_partial(tp);
1863 }
1864
1865 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1866 {
1867         tp->retrans_out = 0;
1868         tp->lost_out = 0;
1869
1870         tp->undo_marker = 0;
1871         tp->undo_retrans = 0;
1872 }
1873
1874 void tcp_clear_retrans(struct tcp_sock *tp)
1875 {
1876         tcp_clear_retrans_partial(tp);
1877
1878         tp->fackets_out = 0;
1879         tp->sacked_out = 0;
1880 }
1881
1882 /* Enter Loss state. If "how" is not zero, forget all SACK information
1883  * and reset tags completely, otherwise preserve SACKs. If receiver
1884  * dropped its ofo queue, we will know this due to reneging detection.
1885  */
1886 void tcp_enter_loss(struct sock *sk, int how)
1887 {
1888         const struct inet_connection_sock *icsk = inet_csk(sk);
1889         struct tcp_sock *tp = tcp_sk(sk);
1890         struct sk_buff *skb;
1891
1892         /* Reduce ssthresh if it has not yet been made inside this window. */
1893         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1894             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1895                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1896                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1897                 tcp_ca_event(sk, CA_EVENT_LOSS);
1898         }
1899         tp->snd_cwnd       = 1;
1900         tp->snd_cwnd_cnt   = 0;
1901         tp->snd_cwnd_stamp = tcp_time_stamp;
1902
1903         tp->bytes_acked = 0;
1904         tcp_clear_retrans_partial(tp);
1905
1906         if (tcp_is_reno(tp))
1907                 tcp_reset_reno_sack(tp);
1908
1909         if (!how) {
1910                 /* Push undo marker, if it was plain RTO and nothing
1911                  * was retransmitted. */
1912                 tp->undo_marker = tp->snd_una;
1913                 tcp_clear_retrans_hints_partial(tp);
1914         } else {
1915                 tp->sacked_out = 0;
1916                 tp->fackets_out = 0;
1917                 tcp_clear_all_retrans_hints(tp);
1918         }
1919
1920         tcp_for_write_queue(skb, sk) {
1921                 if (skb == tcp_send_head(sk))
1922                         break;
1923
1924                 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1925                         tp->undo_marker = 0;
1926                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1927                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1928                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1929                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1930                         tp->lost_out += tcp_skb_pcount(skb);
1931                 }
1932         }
1933         tcp_verify_left_out(tp);
1934
1935         tp->reordering = min_t(unsigned int, tp->reordering,
1936                                sysctl_tcp_reordering);
1937         tcp_set_ca_state(sk, TCP_CA_Loss);
1938         tp->high_seq = tp->snd_nxt;
1939         TCP_ECN_queue_cwr(tp);
1940         /* Abort F-RTO algorithm if one is in progress */
1941         tp->frto_counter = 0;
1942 }
1943
1944 /* If ACK arrived pointing to a remembered SACK, it means that our
1945  * remembered SACKs do not reflect real state of receiver i.e.
1946  * receiver _host_ is heavily congested (or buggy).
1947  *
1948  * Do processing similar to RTO timeout.
1949  */
1950 static int tcp_check_sack_reneging(struct sock *sk, int flag)
1951 {
1952         if (flag & FLAG_SACK_RENEGING) {
1953                 struct inet_connection_sock *icsk = inet_csk(sk);
1954                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1955
1956                 tcp_enter_loss(sk, 1);
1957                 icsk->icsk_retransmits++;
1958                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1959                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1960                                           icsk->icsk_rto, TCP_RTO_MAX);
1961                 return 1;
1962         }
1963         return 0;
1964 }
1965
1966 static inline int tcp_fackets_out(struct tcp_sock *tp)
1967 {
1968         return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1969 }
1970
1971 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1972  * counter when SACK is enabled (without SACK, sacked_out is used for
1973  * that purpose).
1974  *
1975  * Instead, with FACK TCP uses fackets_out that includes both SACKed
1976  * segments up to the highest received SACK block so far and holes in
1977  * between them.
1978  *
1979  * With reordering, holes may still be in flight, so RFC3517 recovery
1980  * uses pure sacked_out (total number of SACKed segments) even though
1981  * it violates the RFC that uses duplicate ACKs, often these are equal
1982  * but when e.g. out-of-window ACKs or packet duplication occurs,
1983  * they differ. Since neither occurs due to loss, TCP should really
1984  * ignore them.
1985  */
1986 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
1987 {
1988         return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
1989 }
1990
1991 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1992 {
1993         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1994 }
1995
1996 static inline int tcp_head_timedout(struct sock *sk)
1997 {
1998         struct tcp_sock *tp = tcp_sk(sk);
1999
2000         return tp->packets_out &&
2001                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2002 }
2003
2004 /* Linux NewReno/SACK/FACK/ECN state machine.
2005  * --------------------------------------
2006  *
2007  * "Open"       Normal state, no dubious events, fast path.
2008  * "Disorder"   In all the respects it is "Open",
2009  *              but requires a bit more attention. It is entered when
2010  *              we see some SACKs or dupacks. It is split of "Open"
2011  *              mainly to move some processing from fast path to slow one.
2012  * "CWR"        CWND was reduced due to some Congestion Notification event.
2013  *              It can be ECN, ICMP source quench, local device congestion.
2014  * "Recovery"   CWND was reduced, we are fast-retransmitting.
2015  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2016  *
2017  * tcp_fastretrans_alert() is entered:
2018  * - each incoming ACK, if state is not "Open"
2019  * - when arrived ACK is unusual, namely:
2020  *      * SACK
2021  *      * Duplicate ACK.
2022  *      * ECN ECE.
2023  *
2024  * Counting packets in flight is pretty simple.
2025  *
2026  *      in_flight = packets_out - left_out + retrans_out
2027  *
2028  *      packets_out is SND.NXT-SND.UNA counted in packets.
2029  *
2030  *      retrans_out is number of retransmitted segments.
2031  *
2032  *      left_out is number of segments left network, but not ACKed yet.
2033  *
2034  *              left_out = sacked_out + lost_out
2035  *
2036  *     sacked_out: Packets, which arrived to receiver out of order
2037  *                 and hence not ACKed. With SACKs this number is simply
2038  *                 amount of SACKed data. Even without SACKs
2039  *                 it is easy to give pretty reliable estimate of this number,
2040  *                 counting duplicate ACKs.
2041  *
2042  *       lost_out: Packets lost by network. TCP has no explicit
2043  *                 "loss notification" feedback from network (for now).
2044  *                 It means that this number can be only _guessed_.
2045  *                 Actually, it is the heuristics to predict lossage that
2046  *                 distinguishes different algorithms.
2047  *
2048  *      F.e. after RTO, when all the queue is considered as lost,
2049  *      lost_out = packets_out and in_flight = retrans_out.
2050  *
2051  *              Essentially, we have now two algorithms counting
2052  *              lost packets.
2053  *
2054  *              FACK: It is the simplest heuristics. As soon as we decided
2055  *              that something is lost, we decide that _all_ not SACKed
2056  *              packets until the most forward SACK are lost. I.e.
2057  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2058  *              It is absolutely correct estimate, if network does not reorder
2059  *              packets. And it loses any connection to reality when reordering
2060  *              takes place. We use FACK by default until reordering
2061  *              is suspected on the path to this destination.
2062  *
2063  *              NewReno: when Recovery is entered, we assume that one segment
2064  *              is lost (classic Reno). While we are in Recovery and
2065  *              a partial ACK arrives, we assume that one more packet
2066  *              is lost (NewReno). This heuristics are the same in NewReno
2067  *              and SACK.
2068  *
2069  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2070  *  deflation etc. CWND is real congestion window, never inflated, changes
2071  *  only according to classic VJ rules.
2072  *
2073  * Really tricky (and requiring careful tuning) part of algorithm
2074  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2075  * The first determines the moment _when_ we should reduce CWND and,
2076  * hence, slow down forward transmission. In fact, it determines the moment
2077  * when we decide that hole is caused by loss, rather than by a reorder.
2078  *
2079  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2080  * holes, caused by lost packets.
2081  *
2082  * And the most logically complicated part of algorithm is undo
2083  * heuristics. We detect false retransmits due to both too early
2084  * fast retransmit (reordering) and underestimated RTO, analyzing
2085  * timestamps and D-SACKs. When we detect that some segments were
2086  * retransmitted by mistake and CWND reduction was wrong, we undo
2087  * window reduction and abort recovery phase. This logic is hidden
2088  * inside several functions named tcp_try_undo_<something>.
2089  */
2090
2091 /* This function decides, when we should leave Disordered state
2092  * and enter Recovery phase, reducing congestion window.
2093  *
2094  * Main question: may we further continue forward transmission
2095  * with the same cwnd?
2096  */
2097 static int tcp_time_to_recover(struct sock *sk)
2098 {
2099         struct tcp_sock *tp = tcp_sk(sk);
2100         __u32 packets_out;
2101
2102         /* Do not perform any recovery during F-RTO algorithm */
2103         if (tp->frto_counter)
2104                 return 0;
2105
2106         /* Trick#1: The loss is proven. */
2107         if (tp->lost_out)
2108                 return 1;
2109
2110         /* Not-A-Trick#2 : Classic rule... */
2111         if (tcp_dupack_heurestics(tp) > tp->reordering)
2112                 return 1;
2113
2114         /* Trick#3 : when we use RFC2988 timer restart, fast
2115          * retransmit can be triggered by timeout of queue head.
2116          */
2117         if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2118                 return 1;
2119
2120         /* Trick#4: It is still not OK... But will it be useful to delay
2121          * recovery more?
2122          */
2123         packets_out = tp->packets_out;
2124         if (packets_out <= tp->reordering &&
2125             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2126             !tcp_may_send_now(sk)) {
2127                 /* We have nothing to send. This connection is limited
2128                  * either by receiver window or by application.
2129                  */
2130                 return 1;
2131         }
2132
2133         return 0;
2134 }
2135
2136 /* RFC: This is from the original, I doubt that this is necessary at all:
2137  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2138  * retransmitted past LOST markings in the first place? I'm not fully sure
2139  * about undo and end of connection cases, which can cause R without L?
2140  */
2141 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
2142 {
2143         if ((tp->retransmit_skb_hint != NULL) &&
2144             before(TCP_SKB_CB(skb)->seq,
2145                    TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2146                 tp->retransmit_skb_hint = NULL;
2147 }
2148
2149 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2150  * is against sacked "cnt", otherwise it's against facked "cnt"
2151  */
2152 static void tcp_mark_head_lost(struct sock *sk, int packets)
2153 {
2154         struct tcp_sock *tp = tcp_sk(sk);
2155         struct sk_buff *skb;
2156         int cnt, oldcnt;
2157         int err;
2158         unsigned int mss;
2159
2160         BUG_TRAP(packets <= tp->packets_out);
2161         if (tp->lost_skb_hint) {
2162                 skb = tp->lost_skb_hint;
2163                 cnt = tp->lost_cnt_hint;
2164         } else {
2165                 skb = tcp_write_queue_head(sk);
2166                 cnt = 0;
2167         }
2168
2169         tcp_for_write_queue_from(skb, sk) {
2170                 if (skb == tcp_send_head(sk))
2171                         break;
2172                 /* TODO: do this better */
2173                 /* this is not the most efficient way to do this... */
2174                 tp->lost_skb_hint = skb;
2175                 tp->lost_cnt_hint = cnt;
2176
2177                 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2178                         break;
2179
2180                 oldcnt = cnt;
2181                 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2182                     (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2183                         cnt += tcp_skb_pcount(skb);
2184
2185                 if (cnt > packets) {
2186                         if (tcp_is_sack(tp) || (oldcnt >= packets))
2187                                 break;
2188
2189                         mss = skb_shinfo(skb)->gso_size;
2190                         err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2191                         if (err < 0)
2192                                 break;
2193                         cnt = packets;
2194                 }
2195
2196                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2197                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2198                         tp->lost_out += tcp_skb_pcount(skb);
2199                         tcp_verify_retransmit_hint(tp, skb);
2200                 }
2201         }
2202         tcp_verify_left_out(tp);
2203 }
2204
2205 /* Account newly detected lost packet(s) */
2206
2207 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2208 {
2209         struct tcp_sock *tp = tcp_sk(sk);
2210
2211         if (tcp_is_reno(tp)) {
2212                 tcp_mark_head_lost(sk, 1);
2213         } else if (tcp_is_fack(tp)) {
2214                 int lost = tp->fackets_out - tp->reordering;
2215                 if (lost <= 0)
2216                         lost = 1;
2217                 tcp_mark_head_lost(sk, lost);
2218         } else {
2219                 int sacked_upto = tp->sacked_out - tp->reordering;
2220                 if (sacked_upto < fast_rexmit)
2221                         sacked_upto = fast_rexmit;
2222                 tcp_mark_head_lost(sk, sacked_upto);
2223         }
2224
2225         /* New heuristics: it is possible only after we switched
2226          * to restart timer each time when something is ACKed.
2227          * Hence, we can detect timed out packets during fast
2228          * retransmit without falling to slow start.
2229          */
2230         if (tcp_is_fack(tp) && tcp_head_timedout(sk)) {
2231                 struct sk_buff *skb;
2232
2233                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2234                         : tcp_write_queue_head(sk);
2235
2236                 tcp_for_write_queue_from(skb, sk) {
2237                         if (skb == tcp_send_head(sk))
2238                                 break;
2239                         if (!tcp_skb_timedout(sk, skb))
2240                                 break;
2241
2242                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2243                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2244                                 tp->lost_out += tcp_skb_pcount(skb);
2245                                 tcp_verify_retransmit_hint(tp, skb);
2246                         }
2247                 }
2248
2249                 tp->scoreboard_skb_hint = skb;
2250
2251                 tcp_verify_left_out(tp);
2252         }
2253 }
2254
2255 /* CWND moderation, preventing bursts due to too big ACKs
2256  * in dubious situations.
2257  */
2258 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2259 {
2260         tp->snd_cwnd = min(tp->snd_cwnd,
2261                            tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2262         tp->snd_cwnd_stamp = tcp_time_stamp;
2263 }
2264
2265 /* Lower bound on congestion window is slow start threshold
2266  * unless congestion avoidance choice decides to overide it.
2267  */
2268 static inline u32 tcp_cwnd_min(const struct sock *sk)
2269 {
2270         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2271
2272         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2273 }
2274
2275 /* Decrease cwnd each second ack. */
2276 static void tcp_cwnd_down(struct sock *sk, int flag)
2277 {
2278         struct tcp_sock *tp = tcp_sk(sk);
2279         int decr = tp->snd_cwnd_cnt + 1;
2280
2281         if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2282             (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2283                 tp->snd_cwnd_cnt = decr & 1;
2284                 decr >>= 1;
2285
2286                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2287                         tp->snd_cwnd -= decr;
2288
2289                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2290                 tp->snd_cwnd_stamp = tcp_time_stamp;
2291         }
2292 }
2293
2294 /* Nothing was retransmitted or returned timestamp is less
2295  * than timestamp of the first retransmission.
2296  */
2297 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2298 {
2299         return !tp->retrans_stamp ||
2300                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2301                  (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2302 }
2303
2304 /* Undo procedures. */
2305
2306 #if FASTRETRANS_DEBUG > 1
2307 static void DBGUNDO(struct sock *sk, const char *msg)
2308 {
2309         struct tcp_sock *tp = tcp_sk(sk);
2310         struct inet_sock *inet = inet_sk(sk);
2311
2312         printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2313                msg,
2314                NIPQUAD(inet->daddr), ntohs(inet->dport),
2315                tp->snd_cwnd, tcp_left_out(tp),
2316                tp->snd_ssthresh, tp->prior_ssthresh,
2317                tp->packets_out);
2318 }
2319 #else
2320 #define DBGUNDO(x...) do { } while (0)
2321 #endif
2322
2323 static void tcp_undo_cwr(struct sock *sk, const int undo)
2324 {
2325         struct tcp_sock *tp = tcp_sk(sk);
2326
2327         if (tp->prior_ssthresh) {
2328                 const struct inet_connection_sock *icsk = inet_csk(sk);
2329
2330                 if (icsk->icsk_ca_ops->undo_cwnd)
2331                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2332                 else
2333                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2334
2335                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2336                         tp->snd_ssthresh = tp->prior_ssthresh;
2337                         TCP_ECN_withdraw_cwr(tp);
2338                 }
2339         } else {
2340                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2341         }
2342         tcp_moderate_cwnd(tp);
2343         tp->snd_cwnd_stamp = tcp_time_stamp;
2344
2345         /* There is something screwy going on with the retrans hints after
2346            an undo */
2347         tcp_clear_all_retrans_hints(tp);
2348 }
2349
2350 static inline int tcp_may_undo(struct tcp_sock *tp)
2351 {
2352         return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2353 }
2354
2355 /* People celebrate: "We love our President!" */
2356 static int tcp_try_undo_recovery(struct sock *sk)
2357 {
2358         struct tcp_sock *tp = tcp_sk(sk);
2359
2360         if (tcp_may_undo(tp)) {
2361                 /* Happy end! We did not retransmit anything
2362                  * or our original transmission succeeded.
2363                  */
2364                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2365                 tcp_undo_cwr(sk, 1);
2366                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2367                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2368                 else
2369                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2370                 tp->undo_marker = 0;
2371         }
2372         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2373                 /* Hold old state until something *above* high_seq
2374                  * is ACKed. For Reno it is MUST to prevent false
2375                  * fast retransmits (RFC2582). SACK TCP is safe. */
2376                 tcp_moderate_cwnd(tp);
2377                 return 1;
2378         }
2379         tcp_set_ca_state(sk, TCP_CA_Open);
2380         return 0;
2381 }
2382
2383 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2384 static void tcp_try_undo_dsack(struct sock *sk)
2385 {
2386         struct tcp_sock *tp = tcp_sk(sk);
2387
2388         if (tp->undo_marker && !tp->undo_retrans) {
2389                 DBGUNDO(sk, "D-SACK");
2390                 tcp_undo_cwr(sk, 1);
2391                 tp->undo_marker = 0;
2392                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2393         }
2394 }
2395
2396 /* Undo during fast recovery after partial ACK. */
2397
2398 static int tcp_try_undo_partial(struct sock *sk, int acked)
2399 {
2400         struct tcp_sock *tp = tcp_sk(sk);
2401         /* Partial ACK arrived. Force Hoe's retransmit. */
2402         int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2403
2404         if (tcp_may_undo(tp)) {
2405                 /* Plain luck! Hole if filled with delayed
2406                  * packet, rather than with a retransmit.
2407                  */
2408                 if (tp->retrans_out == 0)
2409                         tp->retrans_stamp = 0;
2410
2411                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2412
2413                 DBGUNDO(sk, "Hoe");
2414                 tcp_undo_cwr(sk, 0);
2415                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2416
2417                 /* So... Do not make Hoe's retransmit yet.
2418                  * If the first packet was delayed, the rest
2419                  * ones are most probably delayed as well.
2420                  */
2421                 failed = 0;
2422         }
2423         return failed;
2424 }
2425
2426 /* Undo during loss recovery after partial ACK. */
2427 static int tcp_try_undo_loss(struct sock *sk)
2428 {
2429         struct tcp_sock *tp = tcp_sk(sk);
2430
2431         if (tcp_may_undo(tp)) {
2432                 struct sk_buff *skb;
2433                 tcp_for_write_queue(skb, sk) {
2434                         if (skb == tcp_send_head(sk))
2435                                 break;
2436                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2437                 }
2438
2439                 tcp_clear_all_retrans_hints(tp);
2440
2441                 DBGUNDO(sk, "partial loss");
2442                 tp->lost_out = 0;
2443                 tcp_undo_cwr(sk, 1);
2444                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2445                 inet_csk(sk)->icsk_retransmits = 0;
2446                 tp->undo_marker = 0;
2447                 if (tcp_is_sack(tp))
2448                         tcp_set_ca_state(sk, TCP_CA_Open);
2449                 return 1;
2450         }
2451         return 0;
2452 }
2453
2454 static inline void tcp_complete_cwr(struct sock *sk)
2455 {
2456         struct tcp_sock *tp = tcp_sk(sk);
2457         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2458         tp->snd_cwnd_stamp = tcp_time_stamp;
2459         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2460 }
2461
2462 static void tcp_try_to_open(struct sock *sk, int flag)
2463 {
2464         struct tcp_sock *tp = tcp_sk(sk);
2465
2466         tcp_verify_left_out(tp);
2467
2468         if (tp->retrans_out == 0)
2469                 tp->retrans_stamp = 0;
2470
2471         if (flag & FLAG_ECE)
2472                 tcp_enter_cwr(sk, 1);
2473
2474         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2475                 int state = TCP_CA_Open;
2476
2477                 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2478                         state = TCP_CA_Disorder;
2479
2480                 if (inet_csk(sk)->icsk_ca_state != state) {
2481                         tcp_set_ca_state(sk, state);
2482                         tp->high_seq = tp->snd_nxt;
2483                 }
2484                 tcp_moderate_cwnd(tp);
2485         } else {
2486                 tcp_cwnd_down(sk, flag);
2487         }
2488 }
2489
2490 static void tcp_mtup_probe_failed(struct sock *sk)
2491 {
2492         struct inet_connection_sock *icsk = inet_csk(sk);
2493
2494         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2495         icsk->icsk_mtup.probe_size = 0;
2496 }
2497
2498 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2499 {
2500         struct tcp_sock *tp = tcp_sk(sk);
2501         struct inet_connection_sock *icsk = inet_csk(sk);
2502
2503         /* FIXME: breaks with very large cwnd */
2504         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2505         tp->snd_cwnd = tp->snd_cwnd *
2506                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2507                        icsk->icsk_mtup.probe_size;
2508         tp->snd_cwnd_cnt = 0;
2509         tp->snd_cwnd_stamp = tcp_time_stamp;
2510         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2511
2512         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2513         icsk->icsk_mtup.probe_size = 0;
2514         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2515 }
2516
2517 /* Process an event, which can update packets-in-flight not trivially.
2518  * Main goal of this function is to calculate new estimate for left_out,
2519  * taking into account both packets sitting in receiver's buffer and
2520  * packets lost by network.
2521  *
2522  * Besides that it does CWND reduction, when packet loss is detected
2523  * and changes state of machine.
2524  *
2525  * It does _not_ decide what to send, it is made in function
2526  * tcp_xmit_retransmit_queue().
2527  */
2528 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2529 {
2530         struct inet_connection_sock *icsk = inet_csk(sk);
2531         struct tcp_sock *tp = tcp_sk(sk);
2532         int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2533         int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2534                                     (tcp_fackets_out(tp) > tp->reordering));
2535         int fast_rexmit = 0;
2536
2537         if (WARN_ON(!tp->packets_out && tp->sacked_out))
2538                 tp->sacked_out = 0;
2539         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2540                 tp->fackets_out = 0;
2541
2542         /* Now state machine starts.
2543          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2544         if (flag & FLAG_ECE)
2545                 tp->prior_ssthresh = 0;
2546
2547         /* B. In all the states check for reneging SACKs. */
2548         if (tcp_check_sack_reneging(sk, flag))
2549                 return;
2550
2551         /* C. Process data loss notification, provided it is valid. */
2552         if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2553             before(tp->snd_una, tp->high_seq) &&
2554             icsk->icsk_ca_state != TCP_CA_Open &&
2555             tp->fackets_out > tp->reordering) {
2556                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2557                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2558         }
2559
2560         /* D. Check consistency of the current state. */
2561         tcp_verify_left_out(tp);
2562
2563         /* E. Check state exit conditions. State can be terminated
2564          *    when high_seq is ACKed. */
2565         if (icsk->icsk_ca_state == TCP_CA_Open) {
2566                 BUG_TRAP(tp->retrans_out == 0);
2567                 tp->retrans_stamp = 0;
2568         } else if (!before(tp->snd_una, tp->high_seq)) {
2569                 switch (icsk->icsk_ca_state) {
2570                 case TCP_CA_Loss:
2571                         icsk->icsk_retransmits = 0;
2572                         if (tcp_try_undo_recovery(sk))
2573                                 return;
2574                         break;
2575
2576                 case TCP_CA_CWR:
2577                         /* CWR is to be held something *above* high_seq
2578                          * is ACKed for CWR bit to reach receiver. */
2579                         if (tp->snd_una != tp->high_seq) {
2580                                 tcp_complete_cwr(sk);
2581                                 tcp_set_ca_state(sk, TCP_CA_Open);
2582                         }
2583                         break;
2584
2585                 case TCP_CA_Disorder:
2586                         tcp_try_undo_dsack(sk);
2587                         if (!tp->undo_marker ||
2588                             /* For SACK case do not Open to allow to undo
2589                              * catching for all duplicate ACKs. */
2590                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2591                                 tp->undo_marker = 0;
2592                                 tcp_set_ca_state(sk, TCP_CA_Open);
2593                         }
2594                         break;
2595
2596                 case TCP_CA_Recovery:
2597                         if (tcp_is_reno(tp))
2598                                 tcp_reset_reno_sack(tp);
2599                         if (tcp_try_undo_recovery(sk))
2600                                 return;
2601                         tcp_complete_cwr(sk);
2602                         break;
2603                 }
2604         }
2605
2606         /* F. Process state. */
2607         switch (icsk->icsk_ca_state) {
2608         case TCP_CA_Recovery:
2609                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2610                         if (tcp_is_reno(tp) && is_dupack)
2611                                 tcp_add_reno_sack(sk);
2612                 } else
2613                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2614                 break;
2615         case TCP_CA_Loss:
2616                 if (flag & FLAG_DATA_ACKED)
2617                         icsk->icsk_retransmits = 0;
2618                 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
2619                         tcp_reset_reno_sack(tp);
2620                 if (!tcp_try_undo_loss(sk)) {
2621                         tcp_moderate_cwnd(tp);
2622                         tcp_xmit_retransmit_queue(sk);
2623                         return;
2624                 }
2625                 if (icsk->icsk_ca_state != TCP_CA_Open)
2626                         return;
2627                 /* Loss is undone; fall through to processing in Open state. */
2628         default:
2629                 if (tcp_is_reno(tp)) {
2630                         if (flag & FLAG_SND_UNA_ADVANCED)
2631                                 tcp_reset_reno_sack(tp);
2632                         if (is_dupack)
2633                                 tcp_add_reno_sack(sk);
2634                 }
2635
2636                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2637                         tcp_try_undo_dsack(sk);
2638
2639                 if (!tcp_time_to_recover(sk)) {
2640                         tcp_try_to_open(sk, flag);
2641                         return;
2642                 }
2643
2644                 /* MTU probe failure: don't reduce cwnd */
2645                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2646                     icsk->icsk_mtup.probe_size &&
2647                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2648                         tcp_mtup_probe_failed(sk);
2649                         /* Restores the reduction we did in tcp_mtup_probe() */
2650                         tp->snd_cwnd++;
2651                         tcp_simple_retransmit(sk);
2652                         return;
2653                 }
2654
2655                 /* Otherwise enter Recovery state */
2656
2657                 if (tcp_is_reno(tp))
2658                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2659                 else
2660                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2661
2662                 tp->high_seq = tp->snd_nxt;
2663                 tp->prior_ssthresh = 0;
2664                 tp->undo_marker = tp->snd_una;
2665                 tp->undo_retrans = tp->retrans_out;
2666
2667                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2668                         if (!(flag & FLAG_ECE))
2669                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2670                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2671                         TCP_ECN_queue_cwr(tp);
2672                 }
2673
2674                 tp->bytes_acked = 0;
2675                 tp->snd_cwnd_cnt = 0;
2676                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2677                 fast_rexmit = 1;
2678         }
2679
2680         if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
2681                 tcp_update_scoreboard(sk, fast_rexmit);
2682         tcp_cwnd_down(sk, flag);
2683         tcp_xmit_retransmit_queue(sk);
2684 }
2685
2686 /* Read draft-ietf-tcplw-high-performance before mucking
2687  * with this code. (Supersedes RFC1323)
2688  */
2689 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2690 {
2691         /* RTTM Rule: A TSecr value received in a segment is used to
2692          * update the averaged RTT measurement only if the segment
2693          * acknowledges some new data, i.e., only if it advances the
2694          * left edge of the send window.
2695          *
2696          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2697          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2698          *
2699          * Changed: reset backoff as soon as we see the first valid sample.
2700          * If we do not, we get strongly overestimated rto. With timestamps
2701          * samples are accepted even from very old segments: f.e., when rtt=1
2702          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2703          * answer arrives rto becomes 120 seconds! If at least one of segments
2704          * in window is lost... Voila.                          --ANK (010210)
2705          */
2706         struct tcp_sock *tp = tcp_sk(sk);
2707         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2708         tcp_rtt_estimator(sk, seq_rtt);
2709         tcp_set_rto(sk);
2710         inet_csk(sk)->icsk_backoff = 0;
2711         tcp_bound_rto(sk);
2712 }
2713
2714 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2715 {
2716         /* We don't have a timestamp. Can only use
2717          * packets that are not retransmitted to determine
2718          * rtt estimates. Also, we must not reset the
2719          * backoff for rto until we get a non-retransmitted
2720          * packet. This allows us to deal with a situation
2721          * where the network delay has increased suddenly.
2722          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2723          */
2724
2725         if (flag & FLAG_RETRANS_DATA_ACKED)
2726                 return;
2727
2728         tcp_rtt_estimator(sk, seq_rtt);
2729         tcp_set_rto(sk);
2730         inet_csk(sk)->icsk_backoff = 0;
2731         tcp_bound_rto(sk);
2732 }
2733
2734 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2735                                       const s32 seq_rtt)
2736 {
2737         const struct tcp_sock *tp = tcp_sk(sk);
2738         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2739         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2740                 tcp_ack_saw_tstamp(sk, flag);
2741         else if (seq_rtt >= 0)
2742                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2743 }
2744
2745 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
2746 {
2747         const struct inet_connection_sock *icsk = inet_csk(sk);
2748         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
2749         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2750 }
2751
2752 /* Restart timer after forward progress on connection.
2753  * RFC2988 recommends to restart timer to now+rto.
2754  */
2755 static void tcp_rearm_rto(struct sock *sk)
2756 {
2757         struct tcp_sock *tp = tcp_sk(sk);
2758
2759         if (!tp->packets_out) {
2760                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2761         } else {
2762                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2763                                           inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2764         }
2765 }
2766
2767 /* If we get here, the whole TSO packet has not been acked. */
2768 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2769 {
2770         struct tcp_sock *tp = tcp_sk(sk);
2771         u32 packets_acked;
2772
2773         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2774
2775         packets_acked = tcp_skb_pcount(skb);
2776         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2777                 return 0;
2778         packets_acked -= tcp_skb_pcount(skb);
2779
2780         if (packets_acked) {
2781                 BUG_ON(tcp_skb_pcount(skb) == 0);
2782                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2783         }
2784
2785         return packets_acked;
2786 }
2787
2788 /* Remove acknowledged frames from the retransmission queue. If our packet
2789  * is before the ack sequence we can discard it as it's confirmed to have
2790  * arrived at the other end.
2791  */
2792 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets)
2793 {
2794         struct tcp_sock *tp = tcp_sk(sk);
2795         const struct inet_connection_sock *icsk = inet_csk(sk);
2796         struct sk_buff *skb;
2797         u32 now = tcp_time_stamp;
2798         int fully_acked = 1;
2799         int flag = 0;
2800         u32 pkts_acked = 0;
2801         u32 reord = tp->packets_out;
2802         s32 seq_rtt = -1;
2803         s32 ca_seq_rtt = -1;
2804         ktime_t last_ackt = net_invalid_timestamp();
2805
2806         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2807                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2808                 u32 end_seq;
2809                 u32 acked_pcount;
2810                 u8 sacked = scb->sacked;
2811
2812                 /* Determine how many packets and what bytes were acked, tso and else */
2813                 if (after(scb->end_seq, tp->snd_una)) {
2814                         if (tcp_skb_pcount(skb) == 1 ||
2815                             !after(tp->snd_una, scb->seq))
2816                                 break;
2817
2818                         acked_pcount = tcp_tso_acked(sk, skb);
2819                         if (!acked_pcount)
2820                                 break;
2821
2822                         fully_acked = 0;
2823                         end_seq = tp->snd_una;
2824                 } else {
2825                         acked_pcount = tcp_skb_pcount(skb);
2826                         end_seq = scb->end_seq;
2827                 }
2828
2829                 /* MTU probing checks */
2830                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2831                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2832                         tcp_mtup_probe_success(sk, skb);
2833                 }
2834
2835                 if (sacked & TCPCB_RETRANS) {
2836                         if (sacked & TCPCB_SACKED_RETRANS)
2837                                 tp->retrans_out -= acked_pcount;
2838                         flag |= FLAG_RETRANS_DATA_ACKED;
2839                         ca_seq_rtt = -1;
2840                         seq_rtt = -1;
2841                         if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
2842                                 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2843                 } else {
2844                         ca_seq_rtt = now - scb->when;
2845                         last_ackt = skb->tstamp;
2846                         if (seq_rtt < 0) {
2847                                 seq_rtt = ca_seq_rtt;
2848                         }
2849                         if (!(sacked & TCPCB_SACKED_ACKED))
2850                                 reord = min(pkts_acked, reord);
2851                 }
2852
2853                 if (sacked & TCPCB_SACKED_ACKED)
2854                         tp->sacked_out -= acked_pcount;
2855                 if (sacked & TCPCB_LOST)
2856                         tp->lost_out -= acked_pcount;
2857
2858                 if (unlikely(tp->urg_mode && !before(end_seq, tp->snd_up)))
2859                         tp->urg_mode = 0;
2860
2861                 tp->packets_out -= acked_pcount;
2862                 pkts_acked += acked_pcount;
2863
2864                 /* Initial outgoing SYN's get put onto the write_queue
2865                  * just like anything else we transmit.  It is not
2866                  * true data, and if we misinform our callers that
2867                  * this ACK acks real data, we will erroneously exit
2868                  * connection startup slow start one packet too
2869                  * quickly.  This is severely frowned upon behavior.
2870                  */
2871                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2872                         flag |= FLAG_DATA_ACKED;
2873                 } else {
2874                         flag |= FLAG_SYN_ACKED;
2875                         tp->retrans_stamp = 0;
2876                 }
2877
2878                 if (!fully_acked)
2879                         break;
2880
2881                 tcp_unlink_write_queue(skb, sk);
2882                 sk_wmem_free_skb(sk, skb);
2883                 tcp_clear_all_retrans_hints(tp);
2884         }
2885
2886         if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2887                 flag |= FLAG_SACK_RENEGING;
2888
2889         if (flag & FLAG_ACKED) {
2890                 const struct tcp_congestion_ops *ca_ops
2891                         = inet_csk(sk)->icsk_ca_ops;
2892
2893                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2894                 tcp_rearm_rto(sk);
2895
2896                 if (tcp_is_reno(tp)) {
2897                         tcp_remove_reno_sacks(sk, pkts_acked);
2898                 } else {
2899                         /* Non-retransmitted hole got filled? That's reordering */
2900                         if (reord < prior_fackets)
2901                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2902                 }
2903
2904                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2905
2906                 if (ca_ops->pkts_acked) {
2907                         s32 rtt_us = -1;
2908
2909                         /* Is the ACK triggering packet unambiguous? */
2910                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2911                                 /* High resolution needed and available? */
2912                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2913                                     !ktime_equal(last_ackt,
2914                                                  net_invalid_timestamp()))
2915                                         rtt_us = ktime_us_delta(ktime_get_real(),
2916                                                                 last_ackt);
2917                                 else if (ca_seq_rtt > 0)
2918                                         rtt_us = jiffies_to_usecs(ca_seq_rtt);
2919                         }
2920
2921                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2922                 }
2923         }
2924
2925 #if FASTRETRANS_DEBUG > 0
2926         BUG_TRAP((int)tp->sacked_out >= 0);
2927         BUG_TRAP((int)tp->lost_out >= 0);
2928         BUG_TRAP((int)tp->retrans_out >= 0);
2929         if (!tp->packets_out && tcp_is_sack(tp)) {
2930                 icsk = inet_csk(sk);
2931                 if (tp->lost_out) {
2932                         printk(KERN_DEBUG "Leak l=%u %d\n",
2933                                tp->lost_out, icsk->icsk_ca_state);
2934                         tp->lost_out = 0;
2935                 }
2936                 if (tp->sacked_out) {
2937                         printk(KERN_DEBUG "Leak s=%u %d\n",
2938                                tp->sacked_out, icsk->icsk_ca_state);
2939                         tp->sacked_out = 0;
2940                 }
2941                 if (tp->retrans_out) {
2942                         printk(KERN_DEBUG "Leak r=%u %d\n",
2943                                tp->retrans_out, icsk->icsk_ca_state);
2944                         tp->retrans_out = 0;
2945                 }
2946         }
2947 #endif
2948         return flag;
2949 }
2950
2951 static void tcp_ack_probe(struct sock *sk)
2952 {
2953         const struct tcp_sock *tp = tcp_sk(sk);
2954         struct inet_connection_sock *icsk = inet_csk(sk);
2955
2956         /* Was it a usable window open? */
2957
2958         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
2959                 icsk->icsk_backoff = 0;
2960                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2961                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2962                  * This function is not for random using!
2963                  */
2964         } else {
2965                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2966                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2967                                           TCP_RTO_MAX);
2968         }
2969 }
2970
2971 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2972 {
2973         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2974                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2975 }
2976
2977 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2978 {
2979         const struct tcp_sock *tp = tcp_sk(sk);
2980         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2981                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2982 }
2983
2984 /* Check that window update is acceptable.
2985  * The function assumes that snd_una<=ack<=snd_next.
2986  */
2987 static inline int tcp_may_update_window(const struct tcp_sock *tp,
2988                                         const u32 ack, const u32 ack_seq,
2989                                         const u32 nwin)
2990 {
2991         return (after(ack, tp->snd_una) ||
2992                 after(ack_seq, tp->snd_wl1) ||
2993                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2994 }
2995
2996 /* Update our send window.
2997  *
2998  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2999  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3000  */
3001 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3002                                  u32 ack_seq)
3003 {
3004         struct tcp_sock *tp = tcp_sk(sk);
3005         int flag = 0;
3006         u32 nwin = ntohs(tcp_hdr(skb)->window);
3007
3008         if (likely(!tcp_hdr(skb)->syn))
3009                 nwin <<= tp->rx_opt.snd_wscale;
3010
3011         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3012                 flag |= FLAG_WIN_UPDATE;
3013                 tcp_update_wl(tp, ack, ack_seq);
3014
3015                 if (tp->snd_wnd != nwin) {
3016                         tp->snd_wnd = nwin;
3017
3018                         /* Note, it is the only place, where
3019                          * fast path is recovered for sending TCP.
3020                          */
3021                         tp->pred_flags = 0;
3022                         tcp_fast_path_check(sk);
3023
3024                         if (nwin > tp->max_window) {
3025                                 tp->max_window = nwin;
3026                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3027                         }
3028                 }
3029         }
3030
3031         tp->snd_una = ack;
3032
3033         return flag;
3034 }
3035
3036 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3037  * continue in congestion avoidance.
3038  */
3039 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3040 {
3041         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3042         tp->snd_cwnd_cnt = 0;
3043         tp->bytes_acked = 0;
3044         TCP_ECN_queue_cwr(tp);
3045         tcp_moderate_cwnd(tp);
3046 }
3047
3048 /* A conservative spurious RTO response algorithm: reduce cwnd using
3049  * rate halving and continue in congestion avoidance.
3050  */
3051 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3052 {
3053         tcp_enter_cwr(sk, 0);
3054 }
3055
3056 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3057 {
3058         if (flag & FLAG_ECE)
3059                 tcp_ratehalving_spur_to_response(sk);
3060         else
3061                 tcp_undo_cwr(sk, 1);
3062 }
3063
3064 /* F-RTO spurious RTO detection algorithm (RFC4138)
3065  *
3066  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3067  * comments). State (ACK number) is kept in frto_counter. When ACK advances
3068  * window (but not to or beyond highest sequence sent before RTO):
3069  *   On First ACK,  send two new segments out.
3070  *   On Second ACK, RTO was likely spurious. Do spurious response (response
3071  *                  algorithm is not part of the F-RTO detection algorithm
3072  *                  given in RFC4138 but can be selected separately).
3073  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3074  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3075  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3076  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3077  *
3078  * Rationale: if the RTO was spurious, new ACKs should arrive from the
3079  * original window even after we transmit two new data segments.
3080  *
3081  * SACK version:
3082  *   on first step, wait until first cumulative ACK arrives, then move to
3083  *   the second step. In second step, the next ACK decides.
3084  *
3085  * F-RTO is implemented (mainly) in four functions:
3086  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
3087  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3088  *     called when tcp_use_frto() showed green light
3089  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3090  *   - tcp_enter_frto_loss() is called if there is not enough evidence
3091  *     to prove that the RTO is indeed spurious. It transfers the control
3092  *     from F-RTO to the conventional RTO recovery
3093  */
3094 static int tcp_process_frto(struct sock *sk, int flag)
3095 {
3096         struct tcp_sock *tp = tcp_sk(sk);
3097
3098         tcp_verify_left_out(tp);
3099
3100         /* Duplicate the behavior from Loss state (fastretrans_alert) */
3101         if (flag & FLAG_DATA_ACKED)
3102                 inet_csk(sk)->icsk_retransmits = 0;
3103
3104         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3105             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3106                 tp->undo_marker = 0;
3107
3108         if (!before(tp->snd_una, tp->frto_highmark)) {
3109                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3110                 return 1;
3111         }
3112