CRISv10 fasttimer: Scrap INLINE and name timeval_cmp better
[sfrench/cifs-2.6.git] / net / ipv4 / tcp_input.c
1 /*
2  * INET         An implementation of the TCP/IP protocol suite for the LINUX
3  *              operating system.  INET is implemented using the  BSD Socket
4  *              interface as the means of communication with the user level.
5  *
6  *              Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Version:     $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9  *
10  * Authors:     Ross Biro
11  *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *              Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *              Florian La Roche, <flla@stud.uni-sb.de>
15  *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16  *              Linus Torvalds, <torvalds@cs.helsinki.fi>
17  *              Alan Cox, <gw4pts@gw4pts.ampr.org>
18  *              Matthew Dillon, <dillon@apollo.west.oic.com>
19  *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20  *              Jorge Cwik, <jorge@laser.satlink.net>
21  */
22
23 /*
24  * Changes:
25  *              Pedro Roque     :       Fast Retransmit/Recovery.
26  *                                      Two receive queues.
27  *                                      Retransmit queue handled by TCP.
28  *                                      Better retransmit timer handling.
29  *                                      New congestion avoidance.
30  *                                      Header prediction.
31  *                                      Variable renaming.
32  *
33  *              Eric            :       Fast Retransmit.
34  *              Randy Scott     :       MSS option defines.
35  *              Eric Schenk     :       Fixes to slow start algorithm.
36  *              Eric Schenk     :       Yet another double ACK bug.
37  *              Eric Schenk     :       Delayed ACK bug fixes.
38  *              Eric Schenk     :       Floyd style fast retrans war avoidance.
39  *              David S. Miller :       Don't allow zero congestion window.
40  *              Eric Schenk     :       Fix retransmitter so that it sends
41  *                                      next packet on ack of previous packet.
42  *              Andi Kleen      :       Moved open_request checking here
43  *                                      and process RSTs for open_requests.
44  *              Andi Kleen      :       Better prune_queue, and other fixes.
45  *              Andrey Savochkin:       Fix RTT measurements in the presence of
46  *                                      timestamps.
47  *              Andrey Savochkin:       Check sequence numbers correctly when
48  *                                      removing SACKs due to in sequence incoming
49  *                                      data segments.
50  *              Andi Kleen:             Make sure we never ack data there is not
51  *                                      enough room for. Also make this condition
52  *                                      a fatal error if it might still happen.
53  *              Andi Kleen:             Add tcp_measure_rcv_mss to make
54  *                                      connections with MSS<min(MTU,ann. MSS)
55  *                                      work without delayed acks.
56  *              Andi Kleen:             Process packets with PSH set in the
57  *                                      fast path.
58  *              J Hadi Salim:           ECN support
59  *              Andrei Gurtov,
60  *              Pasi Sarolahti,
61  *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
62  *                                      engine. Lots of bugs are found.
63  *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
64  */
65
66 #include <linux/mm.h>
67 #include <linux/module.h>
68 #include <linux/sysctl.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
74
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
84
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
91
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
94
95 #define FLAG_DATA               0x01 /* Incoming frame contained data.          */
96 #define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
97 #define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
99 #define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
100 #define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
101 #define FLAG_ECE                0x40 /* ECE in this ACK                         */
102 #define FLAG_DATA_LOST          0x80 /* SACK detected data lossage.             */
103 #define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED   0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED      0x1000 /* Non-head rexmitted data was ACKed */
108
109 #define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110 #define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111 #define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
112 #define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
113 #define FLAG_ANY_PROGRESS       (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
114
115 #define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
117 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
118 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119
120 /* Adapt the MSS value used to make delayed ack decision to the
121  * real world.
122  */
123 static void tcp_measure_rcv_mss(struct sock *sk,
124                                 const struct sk_buff *skb)
125 {
126         struct inet_connection_sock *icsk = inet_csk(sk);
127         const unsigned int lss = icsk->icsk_ack.last_seg_size;
128         unsigned int len;
129
130         icsk->icsk_ack.last_seg_size = 0;
131
132         /* skb->len may jitter because of SACKs, even if peer
133          * sends good full-sized frames.
134          */
135         len = skb_shinfo(skb)->gso_size ?: skb->len;
136         if (len >= icsk->icsk_ack.rcv_mss) {
137                 icsk->icsk_ack.rcv_mss = len;
138         } else {
139                 /* Otherwise, we make more careful check taking into account,
140                  * that SACKs block is variable.
141                  *
142                  * "len" is invariant segment length, including TCP header.
143                  */
144                 len += skb->data - skb_transport_header(skb);
145                 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146                     /* If PSH is not set, packet should be
147                      * full sized, provided peer TCP is not badly broken.
148                      * This observation (if it is correct 8)) allows
149                      * to handle super-low mtu links fairly.
150                      */
151                     (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
152                      !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
153                         /* Subtract also invariant (if peer is RFC compliant),
154                          * tcp header plus fixed timestamp option length.
155                          * Resulting "len" is MSS free of SACK jitter.
156                          */
157                         len -= tcp_sk(sk)->tcp_header_len;
158                         icsk->icsk_ack.last_seg_size = len;
159                         if (len == lss) {
160                                 icsk->icsk_ack.rcv_mss = len;
161                                 return;
162                         }
163                 }
164                 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165                         icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
166                 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
167         }
168 }
169
170 static void tcp_incr_quickack(struct sock *sk)
171 {
172         struct inet_connection_sock *icsk = inet_csk(sk);
173         unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
174
175         if (quickacks==0)
176                 quickacks=2;
177         if (quickacks > icsk->icsk_ack.quick)
178                 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 }
180
181 void tcp_enter_quickack_mode(struct sock *sk)
182 {
183         struct inet_connection_sock *icsk = inet_csk(sk);
184         tcp_incr_quickack(sk);
185         icsk->icsk_ack.pingpong = 0;
186         icsk->icsk_ack.ato = TCP_ATO_MIN;
187 }
188
189 /* Send ACKs quickly, if "quick" count is not exhausted
190  * and the session is not interactive.
191  */
192
193 static inline int tcp_in_quickack_mode(const struct sock *sk)
194 {
195         const struct inet_connection_sock *icsk = inet_csk(sk);
196         return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 }
198
199 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200 {
201         if (tp->ecn_flags&TCP_ECN_OK)
202                 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 }
204
205 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206 {
207         if (tcp_hdr(skb)->cwr)
208                 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 }
210
211 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212 {
213         tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 }
215
216 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217 {
218         if (tp->ecn_flags&TCP_ECN_OK) {
219                 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220                         tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221                 /* Funny extension: if ECT is not set on a segment,
222                  * it is surely retransmit. It is not in ECN RFC,
223                  * but Linux follows this rule. */
224                 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225                         tcp_enter_quickack_mode((struct sock *)tp);
226         }
227 }
228
229 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230 {
231         if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232                 tp->ecn_flags &= ~TCP_ECN_OK;
233 }
234
235 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236 {
237         if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238                 tp->ecn_flags &= ~TCP_ECN_OK;
239 }
240
241 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242 {
243         if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244                 return 1;
245         return 0;
246 }
247
248 /* Buffer size and advertised window tuning.
249  *
250  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251  */
252
253 static void tcp_fixup_sndbuf(struct sock *sk)
254 {
255         int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256                      sizeof(struct sk_buff);
257
258         if (sk->sk_sndbuf < 3 * sndmem)
259                 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 }
261
262 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263  *
264  * All tcp_full_space() is split to two parts: "network" buffer, allocated
265  * forward and advertised in receiver window (tp->rcv_wnd) and
266  * "application buffer", required to isolate scheduling/application
267  * latencies from network.
268  * window_clamp is maximal advertised window. It can be less than
269  * tcp_full_space(), in this case tcp_full_space() - window_clamp
270  * is reserved for "application" buffer. The less window_clamp is
271  * the smoother our behaviour from viewpoint of network, but the lower
272  * throughput and the higher sensitivity of the connection to losses. 8)
273  *
274  * rcv_ssthresh is more strict window_clamp used at "slow start"
275  * phase to predict further behaviour of this connection.
276  * It is used for two goals:
277  * - to enforce header prediction at sender, even when application
278  *   requires some significant "application buffer". It is check #1.
279  * - to prevent pruning of receive queue because of misprediction
280  *   of receiver window. Check #2.
281  *
282  * The scheme does not work when sender sends good segments opening
283  * window and then starts to feed us spaghetti. But it should work
284  * in common situations. Otherwise, we have to rely on queue collapsing.
285  */
286
287 /* Slow part of check#2. */
288 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
289 {
290         struct tcp_sock *tp = tcp_sk(sk);
291         /* Optimize this! */
292         int truesize = tcp_win_from_space(skb->truesize)/2;
293         int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
294
295         while (tp->rcv_ssthresh <= window) {
296                 if (truesize <= skb->len)
297                         return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
298
299                 truesize >>= 1;
300                 window >>= 1;
301         }
302         return 0;
303 }
304
305 static void tcp_grow_window(struct sock *sk,
306                             struct sk_buff *skb)
307 {
308         struct tcp_sock *tp = tcp_sk(sk);
309
310         /* Check #1 */
311         if (tp->rcv_ssthresh < tp->window_clamp &&
312             (int)tp->rcv_ssthresh < tcp_space(sk) &&
313             !tcp_memory_pressure) {
314                 int incr;
315
316                 /* Check #2. Increase window, if skb with such overhead
317                  * will fit to rcvbuf in future.
318                  */
319                 if (tcp_win_from_space(skb->truesize) <= skb->len)
320                         incr = 2*tp->advmss;
321                 else
322                         incr = __tcp_grow_window(sk, skb);
323
324                 if (incr) {
325                         tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
326                         inet_csk(sk)->icsk_ack.quick |= 1;
327                 }
328         }
329 }
330
331 /* 3. Tuning rcvbuf, when connection enters established state. */
332
333 static void tcp_fixup_rcvbuf(struct sock *sk)
334 {
335         struct tcp_sock *tp = tcp_sk(sk);
336         int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338         /* Try to select rcvbuf so that 4 mss-sized segments
339          * will fit to window and corresponding skbs will fit to our rcvbuf.
340          * (was 3; 4 is minimum to allow fast retransmit to work.)
341          */
342         while (tcp_win_from_space(rcvmem) < tp->advmss)
343                 rcvmem += 128;
344         if (sk->sk_rcvbuf < 4 * rcvmem)
345                 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 }
347
348 /* 4. Try to fixup all. It is made immediately after connection enters
349  *    established state.
350  */
351 static void tcp_init_buffer_space(struct sock *sk)
352 {
353         struct tcp_sock *tp = tcp_sk(sk);
354         int maxwin;
355
356         if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357                 tcp_fixup_rcvbuf(sk);
358         if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359                 tcp_fixup_sndbuf(sk);
360
361         tp->rcvq_space.space = tp->rcv_wnd;
362
363         maxwin = tcp_full_space(sk);
364
365         if (tp->window_clamp >= maxwin) {
366                 tp->window_clamp = maxwin;
367
368                 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369                         tp->window_clamp = max(maxwin -
370                                                (maxwin >> sysctl_tcp_app_win),
371                                                4 * tp->advmss);
372         }
373
374         /* Force reservation of one segment. */
375         if (sysctl_tcp_app_win &&
376             tp->window_clamp > 2 * tp->advmss &&
377             tp->window_clamp + tp->advmss > maxwin)
378                 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380         tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381         tp->snd_cwnd_stamp = tcp_time_stamp;
382 }
383
384 /* 5. Recalculate window clamp after socket hit its memory bounds. */
385 static void tcp_clamp_window(struct sock *sk)
386 {
387         struct tcp_sock *tp = tcp_sk(sk);
388         struct inet_connection_sock *icsk = inet_csk(sk);
389
390         icsk->icsk_ack.quick = 0;
391
392         if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393             !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394             !tcp_memory_pressure &&
395             atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396                 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397                                     sysctl_tcp_rmem[2]);
398         }
399         if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
400                 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
401 }
402
403
404 /* Initialize RCV_MSS value.
405  * RCV_MSS is an our guess about MSS used by the peer.
406  * We haven't any direct information about the MSS.
407  * It's better to underestimate the RCV_MSS rather than overestimate.
408  * Overestimations make us ACKing less frequently than needed.
409  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410  */
411 void tcp_initialize_rcv_mss(struct sock *sk)
412 {
413         struct tcp_sock *tp = tcp_sk(sk);
414         unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416         hint = min(hint, tp->rcv_wnd/2);
417         hint = min(hint, TCP_MIN_RCVMSS);
418         hint = max(hint, TCP_MIN_MSS);
419
420         inet_csk(sk)->icsk_ack.rcv_mss = hint;
421 }
422
423 /* Receiver "autotuning" code.
424  *
425  * The algorithm for RTT estimation w/o timestamps is based on
426  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427  * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428  *
429  * More detail on this code can be found at
430  * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431  * though this reference is out of date.  A new paper
432  * is pending.
433  */
434 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435 {
436         u32 new_sample = tp->rcv_rtt_est.rtt;
437         long m = sample;
438
439         if (m == 0)
440                 m = 1;
441
442         if (new_sample != 0) {
443                 /* If we sample in larger samples in the non-timestamp
444                  * case, we could grossly overestimate the RTT especially
445                  * with chatty applications or bulk transfer apps which
446                  * are stalled on filesystem I/O.
447                  *
448                  * Also, since we are only going for a minimum in the
449                  * non-timestamp case, we do not smooth things out
450                  * else with timestamps disabled convergence takes too
451                  * long.
452                  */
453                 if (!win_dep) {
454                         m -= (new_sample >> 3);
455                         new_sample += m;
456                 } else if (m < new_sample)
457                         new_sample = m << 3;
458         } else {
459                 /* No previous measure. */
460                 new_sample = m << 3;
461         }
462
463         if (tp->rcv_rtt_est.rtt != new_sample)
464                 tp->rcv_rtt_est.rtt = new_sample;
465 }
466
467 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468 {
469         if (tp->rcv_rtt_est.time == 0)
470                 goto new_measure;
471         if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472                 return;
473         tcp_rcv_rtt_update(tp,
474                            jiffies - tp->rcv_rtt_est.time,
475                            1);
476
477 new_measure:
478         tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479         tp->rcv_rtt_est.time = tcp_time_stamp;
480 }
481
482 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
483 {
484         struct tcp_sock *tp = tcp_sk(sk);
485         if (tp->rx_opt.rcv_tsecr &&
486             (TCP_SKB_CB(skb)->end_seq -
487              TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
488                 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489 }
490
491 /*
492  * This function should be called every time data is copied to user space.
493  * It calculates the appropriate TCP receive buffer space.
494  */
495 void tcp_rcv_space_adjust(struct sock *sk)
496 {
497         struct tcp_sock *tp = tcp_sk(sk);
498         int time;
499         int space;
500
501         if (tp->rcvq_space.time == 0)
502                 goto new_measure;
503
504         time = tcp_time_stamp - tp->rcvq_space.time;
505         if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506             tp->rcv_rtt_est.rtt == 0)
507                 return;
508
509         space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511         space = max(tp->rcvq_space.space, space);
512
513         if (tp->rcvq_space.space != space) {
514                 int rcvmem;
515
516                 tp->rcvq_space.space = space;
517
518                 if (sysctl_tcp_moderate_rcvbuf &&
519                     !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
520                         int new_clamp = space;
521
522                         /* Receive space grows, normalize in order to
523                          * take into account packet headers and sk_buff
524                          * structure overhead.
525                          */
526                         space /= tp->advmss;
527                         if (!space)
528                                 space = 1;
529                         rcvmem = (tp->advmss + MAX_TCP_HEADER +
530                                   16 + sizeof(struct sk_buff));
531                         while (tcp_win_from_space(rcvmem) < tp->advmss)
532                                 rcvmem += 128;
533                         space *= rcvmem;
534                         space = min(space, sysctl_tcp_rmem[2]);
535                         if (space > sk->sk_rcvbuf) {
536                                 sk->sk_rcvbuf = space;
537
538                                 /* Make the window clamp follow along.  */
539                                 tp->window_clamp = new_clamp;
540                         }
541                 }
542         }
543
544 new_measure:
545         tp->rcvq_space.seq = tp->copied_seq;
546         tp->rcvq_space.time = tcp_time_stamp;
547 }
548
549 /* There is something which you must keep in mind when you analyze the
550  * behavior of the tp->ato delayed ack timeout interval.  When a
551  * connection starts up, we want to ack as quickly as possible.  The
552  * problem is that "good" TCP's do slow start at the beginning of data
553  * transmission.  The means that until we send the first few ACK's the
554  * sender will sit on his end and only queue most of his data, because
555  * he can only send snd_cwnd unacked packets at any given time.  For
556  * each ACK we send, he increments snd_cwnd and transmits more of his
557  * queue.  -DaveM
558  */
559 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
560 {
561         struct tcp_sock *tp = tcp_sk(sk);
562         struct inet_connection_sock *icsk = inet_csk(sk);
563         u32 now;
564
565         inet_csk_schedule_ack(sk);
566
567         tcp_measure_rcv_mss(sk, skb);
568
569         tcp_rcv_rtt_measure(tp);
570
571         now = tcp_time_stamp;
572
573         if (!icsk->icsk_ack.ato) {
574                 /* The _first_ data packet received, initialize
575                  * delayed ACK engine.
576                  */
577                 tcp_incr_quickack(sk);
578                 icsk->icsk_ack.ato = TCP_ATO_MIN;
579         } else {
580                 int m = now - icsk->icsk_ack.lrcvtime;
581
582                 if (m <= TCP_ATO_MIN/2) {
583                         /* The fastest case is the first. */
584                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585                 } else if (m < icsk->icsk_ack.ato) {
586                         icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587                         if (icsk->icsk_ack.ato > icsk->icsk_rto)
588                                 icsk->icsk_ack.ato = icsk->icsk_rto;
589                 } else if (m > icsk->icsk_rto) {
590                         /* Too long gap. Apparently sender failed to
591                          * restart window, so that we send ACKs quickly.
592                          */
593                         tcp_incr_quickack(sk);
594                         sk_stream_mem_reclaim(sk);
595                 }
596         }
597         icsk->icsk_ack.lrcvtime = now;
598
599         TCP_ECN_check_ce(tp, skb);
600
601         if (skb->len >= 128)
602                 tcp_grow_window(sk, skb);
603 }
604
605 static u32 tcp_rto_min(struct sock *sk)
606 {
607         struct dst_entry *dst = __sk_dst_get(sk);
608         u32 rto_min = TCP_RTO_MIN;
609
610         if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
611                 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612         return rto_min;
613 }
614
615 /* Called to compute a smoothed rtt estimate. The data fed to this
616  * routine either comes from timestamps, or from segments that were
617  * known _not_ to have been retransmitted [see Karn/Partridge
618  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619  * piece by Van Jacobson.
620  * NOTE: the next three routines used to be one big routine.
621  * To save cycles in the RFC 1323 implementation it was better to break
622  * it up into three procedures. -- erics
623  */
624 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
625 {
626         struct tcp_sock *tp = tcp_sk(sk);
627         long m = mrtt; /* RTT */
628
629         /*      The following amusing code comes from Jacobson's
630          *      article in SIGCOMM '88.  Note that rtt and mdev
631          *      are scaled versions of rtt and mean deviation.
632          *      This is designed to be as fast as possible
633          *      m stands for "measurement".
634          *
635          *      On a 1990 paper the rto value is changed to:
636          *      RTO = rtt + 4 * mdev
637          *
638          * Funny. This algorithm seems to be very broken.
639          * These formulae increase RTO, when it should be decreased, increase
640          * too slowly, when it should be increased quickly, decrease too quickly
641          * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642          * does not matter how to _calculate_ it. Seems, it was trap
643          * that VJ failed to avoid. 8)
644          */
645         if (m == 0)
646                 m = 1;
647         if (tp->srtt != 0) {
648                 m -= (tp->srtt >> 3);   /* m is now error in rtt est */
649                 tp->srtt += m;          /* rtt = 7/8 rtt + 1/8 new */
650                 if (m < 0) {
651                         m = -m;         /* m is now abs(error) */
652                         m -= (tp->mdev >> 2);   /* similar update on mdev */
653                         /* This is similar to one of Eifel findings.
654                          * Eifel blocks mdev updates when rtt decreases.
655                          * This solution is a bit different: we use finer gain
656                          * for mdev in this case (alpha*beta).
657                          * Like Eifel it also prevents growth of rto,
658                          * but also it limits too fast rto decreases,
659                          * happening in pure Eifel.
660                          */
661                         if (m > 0)
662                                 m >>= 3;
663                 } else {
664                         m -= (tp->mdev >> 2);   /* similar update on mdev */
665                 }
666                 tp->mdev += m;          /* mdev = 3/4 mdev + 1/4 new */
667                 if (tp->mdev > tp->mdev_max) {
668                         tp->mdev_max = tp->mdev;
669                         if (tp->mdev_max > tp->rttvar)
670                                 tp->rttvar = tp->mdev_max;
671                 }
672                 if (after(tp->snd_una, tp->rtt_seq)) {
673                         if (tp->mdev_max < tp->rttvar)
674                                 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675                         tp->rtt_seq = tp->snd_nxt;
676                         tp->mdev_max = tcp_rto_min(sk);
677                 }
678         } else {
679                 /* no previous measure. */
680                 tp->srtt = m<<3;        /* take the measured time to be rtt */
681                 tp->mdev = m<<1;        /* make sure rto = 3*rtt */
682                 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
683                 tp->rtt_seq = tp->snd_nxt;
684         }
685 }
686
687 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
688  * routine referred to above.
689  */
690 static inline void tcp_set_rto(struct sock *sk)
691 {
692         const struct tcp_sock *tp = tcp_sk(sk);
693         /* Old crap is replaced with new one. 8)
694          *
695          * More seriously:
696          * 1. If rtt variance happened to be less 50msec, it is hallucination.
697          *    It cannot be less due to utterly erratic ACK generation made
698          *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699          *    to do with delayed acks, because at cwnd>2 true delack timeout
700          *    is invisible. Actually, Linux-2.4 also generates erratic
701          *    ACKs in some circumstances.
702          */
703         inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
704
705         /* 2. Fixups made earlier cannot be right.
706          *    If we do not estimate RTO correctly without them,
707          *    all the algo is pure shit and should be replaced
708          *    with correct one. It is exactly, which we pretend to do.
709          */
710 }
711
712 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713  * guarantees that rto is higher.
714  */
715 static inline void tcp_bound_rto(struct sock *sk)
716 {
717         if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718                 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
719 }
720
721 /* Save metrics learned by this TCP session.
722    This function is called only, when TCP finishes successfully
723    i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724  */
725 void tcp_update_metrics(struct sock *sk)
726 {
727         struct tcp_sock *tp = tcp_sk(sk);
728         struct dst_entry *dst = __sk_dst_get(sk);
729
730         if (sysctl_tcp_nometrics_save)
731                 return;
732
733         dst_confirm(dst);
734
735         if (dst && (dst->flags&DST_HOST)) {
736                 const struct inet_connection_sock *icsk = inet_csk(sk);
737                 int m;
738
739                 if (icsk->icsk_backoff || !tp->srtt) {
740                         /* This session failed to estimate rtt. Why?
741                          * Probably, no packets returned in time.
742                          * Reset our results.
743                          */
744                         if (!(dst_metric_locked(dst, RTAX_RTT)))
745                                 dst->metrics[RTAX_RTT-1] = 0;
746                         return;
747                 }
748
749                 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751                 /* If newly calculated rtt larger than stored one,
752                  * store new one. Otherwise, use EWMA. Remember,
753                  * rtt overestimation is always better than underestimation.
754                  */
755                 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756                         if (m <= 0)
757                                 dst->metrics[RTAX_RTT-1] = tp->srtt;
758                         else
759                                 dst->metrics[RTAX_RTT-1] -= (m>>3);
760                 }
761
762                 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763                         if (m < 0)
764                                 m = -m;
765
766                         /* Scale deviation to rttvar fixed point */
767                         m >>= 1;
768                         if (m < tp->mdev)
769                                 m = tp->mdev;
770
771                         if (m >= dst_metric(dst, RTAX_RTTVAR))
772                                 dst->metrics[RTAX_RTTVAR-1] = m;
773                         else
774                                 dst->metrics[RTAX_RTTVAR-1] -=
775                                         (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776                 }
777
778                 if (tp->snd_ssthresh >= 0xFFFF) {
779                         /* Slow start still did not finish. */
780                         if (dst_metric(dst, RTAX_SSTHRESH) &&
781                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782                             (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784                         if (!dst_metric_locked(dst, RTAX_CWND) &&
785                             tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786                                 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787                 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
788                            icsk->icsk_ca_state == TCP_CA_Open) {
789                         /* Cong. avoidance phase, cwnd is reliable. */
790                         if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791                                 dst->metrics[RTAX_SSTHRESH-1] =
792                                         max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793                         if (!dst_metric_locked(dst, RTAX_CWND))
794                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795                 } else {
796                         /* Else slow start did not finish, cwnd is non-sense,
797                            ssthresh may be also invalid.
798                          */
799                         if (!dst_metric_locked(dst, RTAX_CWND))
800                                 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801                         if (dst->metrics[RTAX_SSTHRESH-1] &&
802                             !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803                             tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804                                 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805                 }
806
807                 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808                         if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809                             tp->reordering != sysctl_tcp_reordering)
810                                 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811                 }
812         }
813 }
814
815 /* Numbers are taken from RFC3390.
816  *
817  * John Heffner states:
818  *
819  *      The RFC specifies a window of no more than 4380 bytes
820  *      unless 2*MSS > 4380.  Reading the pseudocode in the RFC
821  *      is a bit misleading because they use a clamp at 4380 bytes
822  *      rather than use a multiplier in the relevant range.
823  */
824 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825 {
826         __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828         if (!cwnd) {
829                 if (tp->mss_cache > 1460)
830                         cwnd = 2;
831                 else
832                         cwnd = (tp->mss_cache > 1095) ? 3 : 4;
833         }
834         return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835 }
836
837 /* Set slow start threshold and cwnd not falling to slow start */
838 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
839 {
840         struct tcp_sock *tp = tcp_sk(sk);
841         const struct inet_connection_sock *icsk = inet_csk(sk);
842
843         tp->prior_ssthresh = 0;
844         tp->bytes_acked = 0;
845         if (icsk->icsk_ca_state < TCP_CA_CWR) {
846                 tp->undo_marker = 0;
847                 if (set_ssthresh)
848                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
849                 tp->snd_cwnd = min(tp->snd_cwnd,
850                                    tcp_packets_in_flight(tp) + 1U);
851                 tp->snd_cwnd_cnt = 0;
852                 tp->high_seq = tp->snd_nxt;
853                 tp->snd_cwnd_stamp = tcp_time_stamp;
854                 TCP_ECN_queue_cwr(tp);
855
856                 tcp_set_ca_state(sk, TCP_CA_CWR);
857         }
858 }
859
860 /*
861  * Packet counting of FACK is based on in-order assumptions, therefore TCP
862  * disables it when reordering is detected
863  */
864 static void tcp_disable_fack(struct tcp_sock *tp)
865 {
866         tp->rx_opt.sack_ok &= ~2;
867 }
868
869 /* Take a notice that peer is sending D-SACKs */
870 static void tcp_dsack_seen(struct tcp_sock *tp)
871 {
872         tp->rx_opt.sack_ok |= 4;
873 }
874
875 /* Initialize metrics on socket. */
876
877 static void tcp_init_metrics(struct sock *sk)
878 {
879         struct tcp_sock *tp = tcp_sk(sk);
880         struct dst_entry *dst = __sk_dst_get(sk);
881
882         if (dst == NULL)
883                 goto reset;
884
885         dst_confirm(dst);
886
887         if (dst_metric_locked(dst, RTAX_CWND))
888                 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889         if (dst_metric(dst, RTAX_SSTHRESH)) {
890                 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891                 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892                         tp->snd_ssthresh = tp->snd_cwnd_clamp;
893         }
894         if (dst_metric(dst, RTAX_REORDERING) &&
895             tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
896                 tcp_disable_fack(tp);
897                 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898         }
899
900         if (dst_metric(dst, RTAX_RTT) == 0)
901                 goto reset;
902
903         if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904                 goto reset;
905
906         /* Initial rtt is determined from SYN,SYN-ACK.
907          * The segment is small and rtt may appear much
908          * less than real one. Use per-dst memory
909          * to make it more realistic.
910          *
911          * A bit of theory. RTT is time passed after "normal" sized packet
912          * is sent until it is ACKed. In normal circumstances sending small
913          * packets force peer to delay ACKs and calculation is correct too.
914          * The algorithm is adaptive and, provided we follow specs, it
915          * NEVER underestimate RTT. BUT! If peer tries to make some clever
916          * tricks sort of "quick acks" for time long enough to decrease RTT
917          * to low value, and then abruptly stops to do it and starts to delay
918          * ACKs, wait for troubles.
919          */
920         if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921                 tp->srtt = dst_metric(dst, RTAX_RTT);
922                 tp->rtt_seq = tp->snd_nxt;
923         }
924         if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925                 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926                 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927         }
928         tcp_set_rto(sk);
929         tcp_bound_rto(sk);
930         if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
931                 goto reset;
932         tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933         tp->snd_cwnd_stamp = tcp_time_stamp;
934         return;
935
936 reset:
937         /* Play conservative. If timestamps are not
938          * supported, TCP will fail to recalculate correct
939          * rtt, if initial rto is too small. FORGET ALL AND RESET!
940          */
941         if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942                 tp->srtt = 0;
943                 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
944                 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
945         }
946 }
947
948 static void tcp_update_reordering(struct sock *sk, const int metric,
949                                   const int ts)
950 {
951         struct tcp_sock *tp = tcp_sk(sk);
952         if (metric > tp->reordering) {
953                 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955                 /* This exciting event is worth to be remembered. 8) */
956                 if (ts)
957                         NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
958                 else if (tcp_is_reno(tp))
959                         NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
960                 else if (tcp_is_fack(tp))
961                         NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962                 else
963                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964 #if FASTRETRANS_DEBUG > 1
965                 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
966                        tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
967                        tp->reordering,
968                        tp->fackets_out,
969                        tp->sacked_out,
970                        tp->undo_marker ? tp->undo_retrans : 0);
971 #endif
972                 tcp_disable_fack(tp);
973         }
974 }
975
976 /* This procedure tags the retransmission queue when SACKs arrive.
977  *
978  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979  * Packets in queue with these bits set are counted in variables
980  * sacked_out, retrans_out and lost_out, correspondingly.
981  *
982  * Valid combinations are:
983  * Tag  InFlight        Description
984  * 0    1               - orig segment is in flight.
985  * S    0               - nothing flies, orig reached receiver.
986  * L    0               - nothing flies, orig lost by net.
987  * R    2               - both orig and retransmit are in flight.
988  * L|R  1               - orig is lost, retransmit is in flight.
989  * S|R  1               - orig reached receiver, retrans is still in flight.
990  * (L|S|R is logically valid, it could occur when L|R is sacked,
991  *  but it is equivalent to plain S and code short-curcuits it to S.
992  *  L|S is logically invalid, it would mean -1 packet in flight 8))
993  *
994  * These 6 states form finite state machine, controlled by the following events:
995  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997  * 3. Loss detection event of one of three flavors:
998  *      A. Scoreboard estimator decided the packet is lost.
999  *         A'. Reno "three dupacks" marks head of queue lost.
1000  *         A''. Its FACK modfication, head until snd.fack is lost.
1001  *      B. SACK arrives sacking data transmitted after never retransmitted
1002  *         hole was sent out.
1003  *      C. SACK arrives sacking SND.NXT at the moment, when the
1004  *         segment was retransmitted.
1005  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006  *
1007  * It is pleasant to note, that state diagram turns out to be commutative,
1008  * so that we are allowed not to be bothered by order of our actions,
1009  * when multiple events arrive simultaneously. (see the function below).
1010  *
1011  * Reordering detection.
1012  * --------------------
1013  * Reordering metric is maximal distance, which a packet can be displaced
1014  * in packet stream. With SACKs we can estimate it:
1015  *
1016  * 1. SACK fills old hole and the corresponding segment was not
1017  *    ever retransmitted -> reordering. Alas, we cannot use it
1018  *    when segment was retransmitted.
1019  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020  *    for retransmitted and already SACKed segment -> reordering..
1021  * Both of these heuristics are not used in Loss state, when we cannot
1022  * account for retransmits accurately.
1023  *
1024  * SACK block validation.
1025  * ----------------------
1026  *
1027  * SACK block range validation checks that the received SACK block fits to
1028  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029  * Note that SND.UNA is not included to the range though being valid because
1030  * it means that the receiver is rather inconsistent with itself reporting
1031  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1032  * perfectly valid, however, in light of RFC2018 which explicitly states
1033  * that "SACK block MUST reflect the newest segment.  Even if the newest
1034  * segment is going to be discarded ...", not that it looks very clever
1035  * in case of head skb. Due to potentional receiver driven attacks, we
1036  * choose to avoid immediate execution of a walk in write queue due to
1037  * reneging and defer head skb's loss recovery to standard loss recovery
1038  * procedure that will eventually trigger (nothing forbids us doing this).
1039  *
1040  * Implements also blockage to start_seq wrap-around. Problem lies in the
1041  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1042  * there's no guarantee that it will be before snd_nxt (n). The problem
1043  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1044  * wrap (s_w):
1045  *
1046  *         <- outs wnd ->                          <- wrapzone ->
1047  *         u     e      n                         u_w   e_w  s n_w
1048  *         |     |      |                          |     |   |  |
1049  * |<------------+------+----- TCP seqno space --------------+---------->|
1050  * ...-- <2^31 ->|                                           |<--------...
1051  * ...---- >2^31 ------>|                                    |<--------...
1052  *
1053  * Current code wouldn't be vulnerable but it's better still to discard such
1054  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1055  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1056  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1057  * equal to the ideal case (infinite seqno space without wrap caused issues).
1058  *
1059  * With D-SACK the lower bound is extended to cover sequence space below
1060  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1061  * again, D-SACK block must not to go across snd_una (for the same reason as
1062  * for the normal SACK blocks, explained above). But there all simplicity
1063  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1064  * fully below undo_marker they do not affect behavior in anyway and can
1065  * therefore be safely ignored. In rare cases (which are more or less
1066  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1067  * fragmentation and packet reordering past skb's retransmission. To consider
1068  * them correctly, the acceptable range must be extended even more though
1069  * the exact amount is rather hard to quantify. However, tp->max_window can
1070  * be used as an exaggerated estimate.
1071  */
1072 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1073                                   u32 start_seq, u32 end_seq)
1074 {
1075         /* Too far in future, or reversed (interpretation is ambiguous) */
1076         if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1077                 return 0;
1078
1079         /* Nasty start_seq wrap-around check (see comments above) */
1080         if (!before(start_seq, tp->snd_nxt))
1081                 return 0;
1082
1083         /* In outstanding window? ...This is valid exit for D-SACKs too.
1084          * start_seq == snd_una is non-sensical (see comments above)
1085          */
1086         if (after(start_seq, tp->snd_una))
1087                 return 1;
1088
1089         if (!is_dsack || !tp->undo_marker)
1090                 return 0;
1091
1092         /* ...Then it's D-SACK, and must reside below snd_una completely */
1093         if (!after(end_seq, tp->snd_una))
1094                 return 0;
1095
1096         if (!before(start_seq, tp->undo_marker))
1097                 return 1;
1098
1099         /* Too old */
1100         if (!after(end_seq, tp->undo_marker))
1101                 return 0;
1102
1103         /* Undo_marker boundary crossing (overestimates a lot). Known already:
1104          *   start_seq < undo_marker and end_seq >= undo_marker.
1105          */
1106         return !before(start_seq, end_seq - tp->max_window);
1107 }
1108
1109 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1110  * Event "C". Later note: FACK people cheated me again 8), we have to account
1111  * for reordering! Ugly, but should help.
1112  *
1113  * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1114  * less than what is now known to be received by the other end (derived from
1115  * SACK blocks by the caller). Also calculate the lowest snd_nxt among the
1116  * remaining retransmitted skbs to avoid some costly processing per ACKs.
1117  */
1118 static int tcp_mark_lost_retrans(struct sock *sk, u32 received_upto)
1119 {
1120         struct tcp_sock *tp = tcp_sk(sk);
1121         struct sk_buff *skb;
1122         int flag = 0;
1123         int cnt = 0;
1124         u32 new_low_seq = tp->snd_nxt;
1125
1126         tcp_for_write_queue(skb, sk) {
1127                 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1128
1129                 if (skb == tcp_send_head(sk))
1130                         break;
1131                 if (cnt == tp->retrans_out)
1132                         break;
1133                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1134                         continue;
1135
1136                 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1137                         continue;
1138
1139                 if (after(received_upto, ack_seq) &&
1140                     (tcp_is_fack(tp) ||
1141                      !before(received_upto,
1142                              ack_seq + tp->reordering * tp->mss_cache))) {
1143                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1144                         tp->retrans_out -= tcp_skb_pcount(skb);
1145
1146                         /* clear lost hint */
1147                         tp->retransmit_skb_hint = NULL;
1148
1149                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1150                                 tp->lost_out += tcp_skb_pcount(skb);
1151                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1152                                 flag |= FLAG_DATA_SACKED;
1153                                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1154                         }
1155                 } else {
1156                         if (before(ack_seq, new_low_seq))
1157                                 new_low_seq = ack_seq;
1158                         cnt += tcp_skb_pcount(skb);
1159                 }
1160         }
1161
1162         if (tp->retrans_out)
1163                 tp->lost_retrans_low = new_low_seq;
1164
1165         return flag;
1166 }
1167
1168 static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1169                            struct tcp_sack_block_wire *sp, int num_sacks,
1170                            u32 prior_snd_una)
1171 {
1172         u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1173         u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1174         int dup_sack = 0;
1175
1176         if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1177                 dup_sack = 1;
1178                 tcp_dsack_seen(tp);
1179                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1180         } else if (num_sacks > 1) {
1181                 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1182                 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1183
1184                 if (!after(end_seq_0, end_seq_1) &&
1185                     !before(start_seq_0, start_seq_1)) {
1186                         dup_sack = 1;
1187                         tcp_dsack_seen(tp);
1188                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1189                 }
1190         }
1191
1192         /* D-SACK for already forgotten data... Do dumb counting. */
1193         if (dup_sack &&
1194             !after(end_seq_0, prior_snd_una) &&
1195             after(end_seq_0, tp->undo_marker))
1196                 tp->undo_retrans--;
1197
1198         return dup_sack;
1199 }
1200
1201 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1202  * the incoming SACK may not exactly match but we can find smaller MSS
1203  * aligned portion of it that matches. Therefore we might need to fragment
1204  * which may fail and creates some hassle (caller must handle error case
1205  * returns).
1206  */
1207 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1208                                  u32 start_seq, u32 end_seq)
1209 {
1210         int in_sack, err;
1211         unsigned int pkt_len;
1212
1213         in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1214                   !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1215
1216         if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1217             after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1218
1219                 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1220
1221                 if (!in_sack)
1222                         pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1223                 else
1224                         pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1225                 err = tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size);
1226                 if (err < 0)
1227                         return err;
1228         }
1229
1230         return in_sack;
1231 }
1232
1233 static int
1234 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1235 {
1236         const struct inet_connection_sock *icsk = inet_csk(sk);
1237         struct tcp_sock *tp = tcp_sk(sk);
1238         unsigned char *ptr = (skb_transport_header(ack_skb) +
1239                               TCP_SKB_CB(ack_skb)->sacked);
1240         struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
1241         struct sk_buff *cached_skb;
1242         int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1243         int reord = tp->packets_out;
1244         int prior_fackets;
1245         u32 highest_sack_end_seq = tp->lost_retrans_low;
1246         int flag = 0;
1247         int found_dup_sack = 0;
1248         int cached_fack_count;
1249         int i;
1250         int first_sack_index;
1251         int force_one_sack;
1252
1253         if (!tp->sacked_out) {
1254                 if (WARN_ON(tp->fackets_out))
1255                         tp->fackets_out = 0;
1256                 tp->highest_sack = tp->snd_una;
1257         }
1258         prior_fackets = tp->fackets_out;
1259
1260         found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1261                                          num_sacks, prior_snd_una);
1262         if (found_dup_sack)
1263                 flag |= FLAG_DSACKING_ACK;
1264
1265         /* Eliminate too old ACKs, but take into
1266          * account more or less fresh ones, they can
1267          * contain valid SACK info.
1268          */
1269         if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1270                 return 0;
1271
1272         /* SACK fastpath:
1273          * if the only SACK change is the increase of the end_seq of
1274          * the first block then only apply that SACK block
1275          * and use retrans queue hinting otherwise slowpath */
1276         force_one_sack = 1;
1277         for (i = 0; i < num_sacks; i++) {
1278                 __be32 start_seq = sp[i].start_seq;
1279                 __be32 end_seq = sp[i].end_seq;
1280
1281                 if (i == 0) {
1282                         if (tp->recv_sack_cache[i].start_seq != start_seq)
1283                                 force_one_sack = 0;
1284                 } else {
1285                         if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1286                             (tp->recv_sack_cache[i].end_seq != end_seq))
1287                                 force_one_sack = 0;
1288                 }
1289                 tp->recv_sack_cache[i].start_seq = start_seq;
1290                 tp->recv_sack_cache[i].end_seq = end_seq;
1291         }
1292         /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1293         for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1294                 tp->recv_sack_cache[i].start_seq = 0;
1295                 tp->recv_sack_cache[i].end_seq = 0;
1296         }
1297
1298         first_sack_index = 0;
1299         if (force_one_sack)
1300                 num_sacks = 1;
1301         else {
1302                 int j;
1303                 tp->fastpath_skb_hint = NULL;
1304
1305                 /* order SACK blocks to allow in order walk of the retrans queue */
1306                 for (i = num_sacks-1; i > 0; i--) {
1307                         for (j = 0; j < i; j++){
1308                                 if (after(ntohl(sp[j].start_seq),
1309                                           ntohl(sp[j+1].start_seq))){
1310                                         struct tcp_sack_block_wire tmp;
1311
1312                                         tmp = sp[j];
1313                                         sp[j] = sp[j+1];
1314                                         sp[j+1] = tmp;
1315
1316                                         /* Track where the first SACK block goes to */
1317                                         if (j == first_sack_index)
1318                                                 first_sack_index = j+1;
1319                                 }
1320
1321                         }
1322                 }
1323         }
1324
1325         /* Use SACK fastpath hint if valid */
1326         cached_skb = tp->fastpath_skb_hint;
1327         cached_fack_count = tp->fastpath_cnt_hint;
1328         if (!cached_skb) {
1329                 cached_skb = tcp_write_queue_head(sk);
1330                 cached_fack_count = 0;
1331         }
1332
1333         for (i = 0; i < num_sacks; i++) {
1334                 struct sk_buff *skb;
1335                 __u32 start_seq = ntohl(sp->start_seq);
1336                 __u32 end_seq = ntohl(sp->end_seq);
1337                 int fack_count;
1338                 int dup_sack = (found_dup_sack && (i == first_sack_index));
1339                 int next_dup = (found_dup_sack && (i+1 == first_sack_index));
1340
1341                 sp++;
1342
1343                 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1344                         if (dup_sack) {
1345                                 if (!tp->undo_marker)
1346                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1347                                 else
1348                                         NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
1349                         } else {
1350                                 /* Don't count olds caused by ACK reordering */
1351                                 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1352                                     !after(end_seq, tp->snd_una))
1353                                         continue;
1354                                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
1355                         }
1356                         continue;
1357                 }
1358
1359                 skb = cached_skb;
1360                 fack_count = cached_fack_count;
1361
1362                 /* Event "B" in the comment above. */
1363                 if (after(end_seq, tp->high_seq))
1364                         flag |= FLAG_DATA_LOST;
1365
1366                 tcp_for_write_queue_from(skb, sk) {
1367                         int in_sack = 0;
1368                         u8 sacked;
1369
1370                         if (skb == tcp_send_head(sk))
1371                                 break;
1372
1373                         cached_skb = skb;
1374                         cached_fack_count = fack_count;
1375                         if (i == first_sack_index) {
1376                                 tp->fastpath_skb_hint = skb;
1377                                 tp->fastpath_cnt_hint = fack_count;
1378                         }
1379
1380                         /* The retransmission queue is always in order, so
1381                          * we can short-circuit the walk early.
1382                          */
1383                         if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1384                                 break;
1385
1386                         dup_sack = (found_dup_sack && (i == first_sack_index));
1387
1388                         /* Due to sorting DSACK may reside within this SACK block! */
1389                         if (next_dup) {
1390                                 u32 dup_start = ntohl(sp->start_seq);
1391                                 u32 dup_end = ntohl(sp->end_seq);
1392
1393                                 if (before(TCP_SKB_CB(skb)->seq, dup_end)) {
1394                                         in_sack = tcp_match_skb_to_sack(sk, skb, dup_start, dup_end);
1395                                         if (in_sack > 0)
1396                                                 dup_sack = 1;
1397                                 }
1398                         }
1399
1400                         /* DSACK info lost if out-of-mem, try SACK still */
1401                         if (in_sack <= 0)
1402                                 in_sack = tcp_match_skb_to_sack(sk, skb, start_seq, end_seq);
1403                         if (unlikely(in_sack < 0))
1404                                 break;
1405
1406                         sacked = TCP_SKB_CB(skb)->sacked;
1407
1408                         /* Account D-SACK for retransmitted packet. */
1409                         if ((dup_sack && in_sack) &&
1410                             (sacked & TCPCB_RETRANS) &&
1411                             after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1412                                 tp->undo_retrans--;
1413
1414                         /* The frame is ACKed. */
1415                         if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1416                                 if (sacked&TCPCB_RETRANS) {
1417                                         if ((dup_sack && in_sack) &&
1418                                             (sacked&TCPCB_SACKED_ACKED))
1419                                                 reord = min(fack_count, reord);
1420                                 }
1421
1422                                 /* Nothing to do; acked frame is about to be dropped. */
1423                                 fack_count += tcp_skb_pcount(skb);
1424                                 continue;
1425                         }
1426
1427                         if (!in_sack) {
1428                                 fack_count += tcp_skb_pcount(skb);
1429                                 continue;
1430                         }
1431
1432                         if (!(sacked&TCPCB_SACKED_ACKED)) {
1433                                 if (sacked & TCPCB_SACKED_RETRANS) {
1434                                         /* If the segment is not tagged as lost,
1435                                          * we do not clear RETRANS, believing
1436                                          * that retransmission is still in flight.
1437                                          */
1438                                         if (sacked & TCPCB_LOST) {
1439                                                 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1440                                                 tp->lost_out -= tcp_skb_pcount(skb);
1441                                                 tp->retrans_out -= tcp_skb_pcount(skb);
1442
1443                                                 /* clear lost hint */
1444                                                 tp->retransmit_skb_hint = NULL;
1445                                         }
1446                                 } else {
1447                                         if (!(sacked & TCPCB_RETRANS)) {
1448                                                 /* New sack for not retransmitted frame,
1449                                                  * which was in hole. It is reordering.
1450                                                  */
1451                                                 if (fack_count < prior_fackets)
1452                                                         reord = min(fack_count, reord);
1453
1454                                                 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1455                                                 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1456                                                         flag |= FLAG_ONLY_ORIG_SACKED;
1457                                         }
1458
1459                                         if (sacked & TCPCB_LOST) {
1460                                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1461                                                 tp->lost_out -= tcp_skb_pcount(skb);
1462
1463                                                 /* clear lost hint */
1464                                                 tp->retransmit_skb_hint = NULL;
1465                                         }
1466                                 }
1467
1468                                 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1469                                 flag |= FLAG_DATA_SACKED;
1470                                 tp->sacked_out += tcp_skb_pcount(skb);
1471
1472                                 fack_count += tcp_skb_pcount(skb);
1473                                 if (fack_count > tp->fackets_out)
1474                                         tp->fackets_out = fack_count;
1475
1476                                 if (after(TCP_SKB_CB(skb)->seq, tp->highest_sack)) {
1477                                         tp->highest_sack = TCP_SKB_CB(skb)->seq;
1478                                         highest_sack_end_seq = TCP_SKB_CB(skb)->end_seq;
1479                                 }
1480                         } else {
1481                                 if (dup_sack && (sacked&TCPCB_RETRANS))
1482                                         reord = min(fack_count, reord);
1483
1484                                 fack_count += tcp_skb_pcount(skb);
1485                         }
1486
1487                         /* D-SACK. We can detect redundant retransmission
1488                          * in S|R and plain R frames and clear it.
1489                          * undo_retrans is decreased above, L|R frames
1490                          * are accounted above as well.
1491                          */
1492                         if (dup_sack &&
1493                             (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1494                                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1495                                 tp->retrans_out -= tcp_skb_pcount(skb);
1496                                 tp->retransmit_skb_hint = NULL;
1497                         }
1498                 }
1499
1500                 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1501                  * due to in-order walk
1502                  */
1503                 if (after(end_seq, tp->frto_highmark))
1504                         flag &= ~FLAG_ONLY_ORIG_SACKED;
1505         }
1506
1507         if (tp->retrans_out &&
1508             after(highest_sack_end_seq, tp->lost_retrans_low) &&
1509             icsk->icsk_ca_state == TCP_CA_Recovery)
1510                 flag |= tcp_mark_lost_retrans(sk, highest_sack_end_seq);
1511
1512         tcp_verify_left_out(tp);
1513
1514         if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
1515             (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1516                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
1517
1518 #if FASTRETRANS_DEBUG > 0
1519         BUG_TRAP((int)tp->sacked_out >= 0);
1520         BUG_TRAP((int)tp->lost_out >= 0);
1521         BUG_TRAP((int)tp->retrans_out >= 0);
1522         BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1523 #endif
1524         return flag;
1525 }
1526
1527 /* If we receive more dupacks than we expected counting segments
1528  * in assumption of absent reordering, interpret this as reordering.
1529  * The only another reason could be bug in receiver TCP.
1530  */
1531 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1532 {
1533         struct tcp_sock *tp = tcp_sk(sk);
1534         u32 holes;
1535
1536         holes = max(tp->lost_out, 1U);
1537         holes = min(holes, tp->packets_out);
1538
1539         if ((tp->sacked_out + holes) > tp->packets_out) {
1540                 tp->sacked_out = tp->packets_out - holes;
1541                 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1542         }
1543 }
1544
1545 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1546
1547 static void tcp_add_reno_sack(struct sock *sk)
1548 {
1549         struct tcp_sock *tp = tcp_sk(sk);
1550         tp->sacked_out++;
1551         tcp_check_reno_reordering(sk, 0);
1552         tcp_verify_left_out(tp);
1553 }
1554
1555 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1556
1557 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1558 {
1559         struct tcp_sock *tp = tcp_sk(sk);
1560
1561         if (acked > 0) {
1562                 /* One ACK acked hole. The rest eat duplicate ACKs. */
1563                 if (acked-1 >= tp->sacked_out)
1564                         tp->sacked_out = 0;
1565                 else
1566                         tp->sacked_out -= acked-1;
1567         }
1568         tcp_check_reno_reordering(sk, acked);
1569         tcp_verify_left_out(tp);
1570 }
1571
1572 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1573 {
1574         tp->sacked_out = 0;
1575 }
1576
1577 /* F-RTO can only be used if TCP has never retransmitted anything other than
1578  * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1579  */
1580 int tcp_use_frto(struct sock *sk)
1581 {
1582         const struct tcp_sock *tp = tcp_sk(sk);
1583         struct sk_buff *skb;
1584
1585         if (!sysctl_tcp_frto)
1586                 return 0;
1587
1588         if (IsSackFrto())
1589                 return 1;
1590
1591         /* Avoid expensive walking of rexmit queue if possible */
1592         if (tp->retrans_out > 1)
1593                 return 0;
1594
1595         skb = tcp_write_queue_head(sk);
1596         skb = tcp_write_queue_next(sk, skb);    /* Skips head */
1597         tcp_for_write_queue_from(skb, sk) {
1598                 if (skb == tcp_send_head(sk))
1599                         break;
1600                 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1601                         return 0;
1602                 /* Short-circuit when first non-SACKed skb has been checked */
1603                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1604                         break;
1605         }
1606         return 1;
1607 }
1608
1609 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1610  * recovery a bit and use heuristics in tcp_process_frto() to detect if
1611  * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1612  * keep retrans_out counting accurate (with SACK F-RTO, other than head
1613  * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1614  * bits are handled if the Loss state is really to be entered (in
1615  * tcp_enter_frto_loss).
1616  *
1617  * Do like tcp_enter_loss() would; when RTO expires the second time it
1618  * does:
1619  *  "Reduce ssthresh if it has not yet been made inside this window."
1620  */
1621 void tcp_enter_frto(struct sock *sk)
1622 {
1623         const struct inet_connection_sock *icsk = inet_csk(sk);
1624         struct tcp_sock *tp = tcp_sk(sk);
1625         struct sk_buff *skb;
1626
1627         if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
1628             tp->snd_una == tp->high_seq ||
1629             ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1630              !icsk->icsk_retransmits)) {
1631                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1632                 /* Our state is too optimistic in ssthresh() call because cwnd
1633                  * is not reduced until tcp_enter_frto_loss() when previous F-RTO
1634                  * recovery has not yet completed. Pattern would be this: RTO,
1635                  * Cumulative ACK, RTO (2xRTO for the same segment does not end
1636                  * up here twice).
1637                  * RFC4138 should be more specific on what to do, even though
1638                  * RTO is quite unlikely to occur after the first Cumulative ACK
1639                  * due to back-off and complexity of triggering events ...
1640                  */
1641                 if (tp->frto_counter) {
1642                         u32 stored_cwnd;
1643                         stored_cwnd = tp->snd_cwnd;
1644                         tp->snd_cwnd = 2;
1645                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1646                         tp->snd_cwnd = stored_cwnd;
1647                 } else {
1648                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1649                 }
1650                 /* ... in theory, cong.control module could do "any tricks" in
1651                  * ssthresh(), which means that ca_state, lost bits and lost_out
1652                  * counter would have to be faked before the call occurs. We
1653                  * consider that too expensive, unlikely and hacky, so modules
1654                  * using these in ssthresh() must deal these incompatibility
1655                  * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1656                  */
1657                 tcp_ca_event(sk, CA_EVENT_FRTO);
1658         }
1659
1660         tp->undo_marker = tp->snd_una;
1661         tp->undo_retrans = 0;
1662
1663         skb = tcp_write_queue_head(sk);
1664         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1665                 tp->undo_marker = 0;
1666         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
1667                 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1668                 tp->retrans_out -= tcp_skb_pcount(skb);
1669         }
1670         tcp_verify_left_out(tp);
1671
1672         /* Earlier loss recovery underway (see RFC4138; Appendix B).
1673          * The last condition is necessary at least in tp->frto_counter case.
1674          */
1675         if (IsSackFrto() && (tp->frto_counter ||
1676             ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1677             after(tp->high_seq, tp->snd_una)) {
1678                 tp->frto_highmark = tp->high_seq;
1679         } else {
1680                 tp->frto_highmark = tp->snd_nxt;
1681         }
1682         tcp_set_ca_state(sk, TCP_CA_Disorder);
1683         tp->high_seq = tp->snd_nxt;
1684         tp->frto_counter = 1;
1685 }
1686
1687 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1688  * which indicates that we should follow the traditional RTO recovery,
1689  * i.e. mark everything lost and do go-back-N retransmission.
1690  */
1691 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1692 {
1693         struct tcp_sock *tp = tcp_sk(sk);
1694         struct sk_buff *skb;
1695
1696         tp->lost_out = 0;
1697         tp->retrans_out = 0;
1698         if (tcp_is_reno(tp))
1699                 tcp_reset_reno_sack(tp);
1700
1701         tcp_for_write_queue(skb, sk) {
1702                 if (skb == tcp_send_head(sk))
1703                         break;
1704                 /*
1705                  * Count the retransmission made on RTO correctly (only when
1706                  * waiting for the first ACK and did not get it)...
1707                  */
1708                 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
1709                         /* For some reason this R-bit might get cleared? */
1710                         if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1711                                 tp->retrans_out += tcp_skb_pcount(skb);
1712                         /* ...enter this if branch just for the first segment */
1713                         flag |= FLAG_DATA_ACKED;
1714                 } else {
1715                         if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1716                                 tp->undo_marker = 0;
1717                         TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1718                 }
1719
1720                 /* Don't lost mark skbs that were fwd transmitted after RTO */
1721                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1722                     !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1723                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1724                         tp->lost_out += tcp_skb_pcount(skb);
1725                 }
1726         }
1727         tcp_verify_left_out(tp);
1728
1729         tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1730         tp->snd_cwnd_cnt = 0;
1731         tp->snd_cwnd_stamp = tcp_time_stamp;
1732         tp->frto_counter = 0;
1733         tp->bytes_acked = 0;
1734
1735         tp->reordering = min_t(unsigned int, tp->reordering,
1736                                              sysctl_tcp_reordering);
1737         tcp_set_ca_state(sk, TCP_CA_Loss);
1738         tp->high_seq = tp->frto_highmark;
1739         TCP_ECN_queue_cwr(tp);
1740
1741         tcp_clear_retrans_hints_partial(tp);
1742 }
1743
1744 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
1745 {
1746         tp->retrans_out = 0;
1747         tp->lost_out = 0;
1748
1749         tp->undo_marker = 0;
1750         tp->undo_retrans = 0;
1751 }
1752
1753 void tcp_clear_retrans(struct tcp_sock *tp)
1754 {
1755         tcp_clear_retrans_partial(tp);
1756
1757         tp->fackets_out = 0;
1758         tp->sacked_out = 0;
1759 }
1760
1761 /* Enter Loss state. If "how" is not zero, forget all SACK information
1762  * and reset tags completely, otherwise preserve SACKs. If receiver
1763  * dropped its ofo queue, we will know this due to reneging detection.
1764  */
1765 void tcp_enter_loss(struct sock *sk, int how)
1766 {
1767         const struct inet_connection_sock *icsk = inet_csk(sk);
1768         struct tcp_sock *tp = tcp_sk(sk);
1769         struct sk_buff *skb;
1770
1771         /* Reduce ssthresh if it has not yet been made inside this window. */
1772         if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1773             (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1774                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1775                 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1776                 tcp_ca_event(sk, CA_EVENT_LOSS);
1777         }
1778         tp->snd_cwnd       = 1;
1779         tp->snd_cwnd_cnt   = 0;
1780         tp->snd_cwnd_stamp = tcp_time_stamp;
1781
1782         tp->bytes_acked = 0;
1783         tcp_clear_retrans_partial(tp);
1784
1785         if (tcp_is_reno(tp))
1786                 tcp_reset_reno_sack(tp);
1787
1788         if (!how) {
1789                 /* Push undo marker, if it was plain RTO and nothing
1790                  * was retransmitted. */
1791                 tp->undo_marker = tp->snd_una;
1792                 tcp_clear_retrans_hints_partial(tp);
1793         } else {
1794                 tp->sacked_out = 0;
1795                 tp->fackets_out = 0;
1796                 tcp_clear_all_retrans_hints(tp);
1797         }
1798
1799         tcp_for_write_queue(skb, sk) {
1800                 if (skb == tcp_send_head(sk))
1801                         break;
1802
1803                 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1804                         tp->undo_marker = 0;
1805                 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1806                 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1807                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1808                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1809                         tp->lost_out += tcp_skb_pcount(skb);
1810                 }
1811         }
1812         tcp_verify_left_out(tp);
1813
1814         tp->reordering = min_t(unsigned int, tp->reordering,
1815                                              sysctl_tcp_reordering);
1816         tcp_set_ca_state(sk, TCP_CA_Loss);
1817         tp->high_seq = tp->snd_nxt;
1818         TCP_ECN_queue_cwr(tp);
1819         /* Abort F-RTO algorithm if one is in progress */
1820         tp->frto_counter = 0;
1821 }
1822
1823 static int tcp_check_sack_reneging(struct sock *sk)
1824 {
1825         struct sk_buff *skb;
1826
1827         /* If ACK arrived pointing to a remembered SACK,
1828          * it means that our remembered SACKs do not reflect
1829          * real state of receiver i.e.
1830          * receiver _host_ is heavily congested (or buggy).
1831          * Do processing similar to RTO timeout.
1832          */
1833         if ((skb = tcp_write_queue_head(sk)) != NULL &&
1834             (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
1835                 struct inet_connection_sock *icsk = inet_csk(sk);
1836                 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1837
1838                 tcp_enter_loss(sk, 1);
1839                 icsk->icsk_retransmits++;
1840                 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
1841                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1842                                           icsk->icsk_rto, TCP_RTO_MAX);
1843                 return 1;
1844         }
1845         return 0;
1846 }
1847
1848 static inline int tcp_fackets_out(struct tcp_sock *tp)
1849 {
1850         return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1851 }
1852
1853 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1854 {
1855         return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1856 }
1857
1858 static inline int tcp_head_timedout(struct sock *sk)
1859 {
1860         struct tcp_sock *tp = tcp_sk(sk);
1861
1862         return tp->packets_out &&
1863                tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1864 }
1865
1866 /* Linux NewReno/SACK/FACK/ECN state machine.
1867  * --------------------------------------
1868  *
1869  * "Open"       Normal state, no dubious events, fast path.
1870  * "Disorder"   In all the respects it is "Open",
1871  *              but requires a bit more attention. It is entered when
1872  *              we see some SACKs or dupacks. It is split of "Open"
1873  *              mainly to move some processing from fast path to slow one.
1874  * "CWR"        CWND was reduced due to some Congestion Notification event.
1875  *              It can be ECN, ICMP source quench, local device congestion.
1876  * "Recovery"   CWND was reduced, we are fast-retransmitting.
1877  * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
1878  *
1879  * tcp_fastretrans_alert() is entered:
1880  * - each incoming ACK, if state is not "Open"
1881  * - when arrived ACK is unusual, namely:
1882  *      * SACK
1883  *      * Duplicate ACK.
1884  *      * ECN ECE.
1885  *
1886  * Counting packets in flight is pretty simple.
1887  *
1888  *      in_flight = packets_out - left_out + retrans_out
1889  *
1890  *      packets_out is SND.NXT-SND.UNA counted in packets.
1891  *
1892  *      retrans_out is number of retransmitted segments.
1893  *
1894  *      left_out is number of segments left network, but not ACKed yet.
1895  *
1896  *              left_out = sacked_out + lost_out
1897  *
1898  *     sacked_out: Packets, which arrived to receiver out of order
1899  *                 and hence not ACKed. With SACKs this number is simply
1900  *                 amount of SACKed data. Even without SACKs
1901  *                 it is easy to give pretty reliable estimate of this number,
1902  *                 counting duplicate ACKs.
1903  *
1904  *       lost_out: Packets lost by network. TCP has no explicit
1905  *                 "loss notification" feedback from network (for now).
1906  *                 It means that this number can be only _guessed_.
1907  *                 Actually, it is the heuristics to predict lossage that
1908  *                 distinguishes different algorithms.
1909  *
1910  *      F.e. after RTO, when all the queue is considered as lost,
1911  *      lost_out = packets_out and in_flight = retrans_out.
1912  *
1913  *              Essentially, we have now two algorithms counting
1914  *              lost packets.
1915  *
1916  *              FACK: It is the simplest heuristics. As soon as we decided
1917  *              that something is lost, we decide that _all_ not SACKed
1918  *              packets until the most forward SACK are lost. I.e.
1919  *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
1920  *              It is absolutely correct estimate, if network does not reorder
1921  *              packets. And it loses any connection to reality when reordering
1922  *              takes place. We use FACK by default until reordering
1923  *              is suspected on the path to this destination.
1924  *
1925  *              NewReno: when Recovery is entered, we assume that one segment
1926  *              is lost (classic Reno). While we are in Recovery and
1927  *              a partial ACK arrives, we assume that one more packet
1928  *              is lost (NewReno). This heuristics are the same in NewReno
1929  *              and SACK.
1930  *
1931  *  Imagine, that's all! Forget about all this shamanism about CWND inflation
1932  *  deflation etc. CWND is real congestion window, never inflated, changes
1933  *  only according to classic VJ rules.
1934  *
1935  * Really tricky (and requiring careful tuning) part of algorithm
1936  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1937  * The first determines the moment _when_ we should reduce CWND and,
1938  * hence, slow down forward transmission. In fact, it determines the moment
1939  * when we decide that hole is caused by loss, rather than by a reorder.
1940  *
1941  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1942  * holes, caused by lost packets.
1943  *
1944  * And the most logically complicated part of algorithm is undo
1945  * heuristics. We detect false retransmits due to both too early
1946  * fast retransmit (reordering) and underestimated RTO, analyzing
1947  * timestamps and D-SACKs. When we detect that some segments were
1948  * retransmitted by mistake and CWND reduction was wrong, we undo
1949  * window reduction and abort recovery phase. This logic is hidden
1950  * inside several functions named tcp_try_undo_<something>.
1951  */
1952
1953 /* This function decides, when we should leave Disordered state
1954  * and enter Recovery phase, reducing congestion window.
1955  *
1956  * Main question: may we further continue forward transmission
1957  * with the same cwnd?
1958  */
1959 static int tcp_time_to_recover(struct sock *sk)
1960 {
1961         struct tcp_sock *tp = tcp_sk(sk);
1962         __u32 packets_out;
1963
1964         /* Do not perform any recovery during F-RTO algorithm */
1965         if (tp->frto_counter)
1966                 return 0;
1967
1968         /* Trick#1: The loss is proven. */
1969         if (tp->lost_out)
1970                 return 1;
1971
1972         /* Not-A-Trick#2 : Classic rule... */
1973         if (tcp_fackets_out(tp) > tp->reordering)
1974                 return 1;
1975
1976         /* Trick#3 : when we use RFC2988 timer restart, fast
1977          * retransmit can be triggered by timeout of queue head.
1978          */
1979         if (tcp_head_timedout(sk))
1980                 return 1;
1981
1982         /* Trick#4: It is still not OK... But will it be useful to delay
1983          * recovery more?
1984          */
1985         packets_out = tp->packets_out;
1986         if (packets_out <= tp->reordering &&
1987             tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
1988             !tcp_may_send_now(sk)) {
1989                 /* We have nothing to send. This connection is limited
1990                  * either by receiver window or by application.
1991                  */
1992                 return 1;
1993         }
1994
1995         return 0;
1996 }
1997
1998 /* RFC: This is from the original, I doubt that this is necessary at all:
1999  * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
2000  * retransmitted past LOST markings in the first place? I'm not fully sure
2001  * about undo and end of connection cases, which can cause R without L?
2002  */
2003 static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
2004                                        struct sk_buff *skb)
2005 {
2006         if ((tp->retransmit_skb_hint != NULL) &&
2007             before(TCP_SKB_CB(skb)->seq,
2008             TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
2009                 tp->retransmit_skb_hint = NULL;
2010 }
2011
2012 /* Mark head of queue up as lost. */
2013 static void tcp_mark_head_lost(struct sock *sk, int packets)
2014 {
2015         struct tcp_sock *tp = tcp_sk(sk);
2016         struct sk_buff *skb;
2017         int cnt;
2018
2019         BUG_TRAP(packets <= tp->packets_out);
2020         if (tp->lost_skb_hint) {
2021                 skb = tp->lost_skb_hint;
2022                 cnt = tp->lost_cnt_hint;
2023         } else {
2024                 skb = tcp_write_queue_head(sk);
2025                 cnt = 0;
2026         }
2027
2028         tcp_for_write_queue_from(skb, sk) {
2029                 if (skb == tcp_send_head(sk))
2030                         break;
2031                 /* TODO: do this better */
2032                 /* this is not the most efficient way to do this... */
2033                 tp->lost_skb_hint = skb;
2034                 tp->lost_cnt_hint = cnt;
2035                 cnt += tcp_skb_pcount(skb);
2036                 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2037                         break;
2038                 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2039                         TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2040                         tp->lost_out += tcp_skb_pcount(skb);
2041                         tcp_verify_retransmit_hint(tp, skb);
2042                 }
2043         }
2044         tcp_verify_left_out(tp);
2045 }
2046
2047 /* Account newly detected lost packet(s) */
2048
2049 static void tcp_update_scoreboard(struct sock *sk)
2050 {
2051         struct tcp_sock *tp = tcp_sk(sk);
2052
2053         if (tcp_is_fack(tp)) {
2054                 int lost = tp->fackets_out - tp->reordering;
2055                 if (lost <= 0)
2056                         lost = 1;
2057                 tcp_mark_head_lost(sk, lost);
2058         } else {
2059                 tcp_mark_head_lost(sk, 1);
2060         }
2061
2062         /* New heuristics: it is possible only after we switched
2063          * to restart timer each time when something is ACKed.
2064          * Hence, we can detect timed out packets during fast
2065          * retransmit without falling to slow start.
2066          */
2067         if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
2068                 struct sk_buff *skb;
2069
2070                 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
2071                         : tcp_write_queue_head(sk);
2072
2073                 tcp_for_write_queue_from(skb, sk) {
2074                         if (skb == tcp_send_head(sk))
2075                                 break;
2076                         if (!tcp_skb_timedout(sk, skb))
2077                                 break;
2078
2079                         if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_SACKED_ACKED|TCPCB_LOST))) {
2080                                 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2081                                 tp->lost_out += tcp_skb_pcount(skb);
2082                                 tcp_verify_retransmit_hint(tp, skb);
2083                         }
2084                 }
2085
2086                 tp->scoreboard_skb_hint = skb;
2087
2088                 tcp_verify_left_out(tp);
2089         }
2090 }
2091
2092 /* CWND moderation, preventing bursts due to too big ACKs
2093  * in dubious situations.
2094  */
2095 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2096 {
2097         tp->snd_cwnd = min(tp->snd_cwnd,
2098                            tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2099         tp->snd_cwnd_stamp = tcp_time_stamp;
2100 }
2101
2102 /* Lower bound on congestion window is slow start threshold
2103  * unless congestion avoidance choice decides to overide it.
2104  */
2105 static inline u32 tcp_cwnd_min(const struct sock *sk)
2106 {
2107         const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2108
2109         return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2110 }
2111
2112 /* Decrease cwnd each second ack. */
2113 static void tcp_cwnd_down(struct sock *sk, int flag)
2114 {
2115         struct tcp_sock *tp = tcp_sk(sk);
2116         int decr = tp->snd_cwnd_cnt + 1;
2117
2118         if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
2119             (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
2120                 tp->snd_cwnd_cnt = decr&1;
2121                 decr >>= 1;
2122
2123                 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2124                         tp->snd_cwnd -= decr;
2125
2126                 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2127                 tp->snd_cwnd_stamp = tcp_time_stamp;
2128         }
2129 }
2130
2131 /* Nothing was retransmitted or returned timestamp is less
2132  * than timestamp of the first retransmission.
2133  */
2134 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2135 {
2136         return !tp->retrans_stamp ||
2137                 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2138                  (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2139 }
2140
2141 /* Undo procedures. */
2142
2143 #if FASTRETRANS_DEBUG > 1
2144 static void DBGUNDO(struct sock *sk, const char *msg)
2145 {
2146         struct tcp_sock *tp = tcp_sk(sk);
2147         struct inet_sock *inet = inet_sk(sk);
2148
2149         printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2150                msg,
2151                NIPQUAD(inet->daddr), ntohs(inet->dport),
2152                tp->snd_cwnd, tcp_left_out(tp),
2153                tp->snd_ssthresh, tp->prior_ssthresh,
2154                tp->packets_out);
2155 }
2156 #else
2157 #define DBGUNDO(x...) do { } while (0)
2158 #endif
2159
2160 static void tcp_undo_cwr(struct sock *sk, const int undo)
2161 {
2162         struct tcp_sock *tp = tcp_sk(sk);
2163
2164         if (tp->prior_ssthresh) {
2165                 const struct inet_connection_sock *icsk = inet_csk(sk);
2166
2167                 if (icsk->icsk_ca_ops->undo_cwnd)
2168                         tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2169                 else
2170                         tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2171
2172                 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2173                         tp->snd_ssthresh = tp->prior_ssthresh;
2174                         TCP_ECN_withdraw_cwr(tp);
2175                 }
2176         } else {
2177                 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2178         }
2179         tcp_moderate_cwnd(tp);
2180         tp->snd_cwnd_stamp = tcp_time_stamp;
2181
2182         /* There is something screwy going on with the retrans hints after
2183            an undo */
2184         tcp_clear_all_retrans_hints(tp);
2185 }
2186
2187 static inline int tcp_may_undo(struct tcp_sock *tp)
2188 {
2189         return tp->undo_marker &&
2190                 (!tp->undo_retrans || tcp_packet_delayed(tp));
2191 }
2192
2193 /* People celebrate: "We love our President!" */
2194 static int tcp_try_undo_recovery(struct sock *sk)
2195 {
2196         struct tcp_sock *tp = tcp_sk(sk);
2197
2198         if (tcp_may_undo(tp)) {
2199                 /* Happy end! We did not retransmit anything
2200                  * or our original transmission succeeded.
2201                  */
2202                 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2203                 tcp_undo_cwr(sk, 1);
2204                 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2205                         NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2206                 else
2207                         NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2208                 tp->undo_marker = 0;
2209         }
2210         if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2211                 /* Hold old state until something *above* high_seq
2212                  * is ACKed. For Reno it is MUST to prevent false
2213                  * fast retransmits (RFC2582). SACK TCP is safe. */
2214                 tcp_moderate_cwnd(tp);
2215                 return 1;
2216         }
2217         tcp_set_ca_state(sk, TCP_CA_Open);
2218         return 0;
2219 }
2220
2221 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2222 static void tcp_try_undo_dsack(struct sock *sk)
2223 {
2224         struct tcp_sock *tp = tcp_sk(sk);
2225
2226         if (tp->undo_marker && !tp->undo_retrans) {
2227                 DBGUNDO(sk, "D-SACK");
2228                 tcp_undo_cwr(sk, 1);
2229                 tp->undo_marker = 0;
2230                 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2231         }
2232 }
2233
2234 /* Undo during fast recovery after partial ACK. */
2235
2236 static int tcp_try_undo_partial(struct sock *sk, int acked)
2237 {
2238         struct tcp_sock *tp = tcp_sk(sk);
2239         /* Partial ACK arrived. Force Hoe's retransmit. */
2240         int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
2241
2242         if (tcp_may_undo(tp)) {
2243                 /* Plain luck! Hole if filled with delayed
2244                  * packet, rather than with a retransmit.
2245                  */
2246                 if (tp->retrans_out == 0)
2247                         tp->retrans_stamp = 0;
2248
2249                 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2250
2251                 DBGUNDO(sk, "Hoe");
2252                 tcp_undo_cwr(sk, 0);
2253                 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2254
2255                 /* So... Do not make Hoe's retransmit yet.
2256                  * If the first packet was delayed, the rest
2257                  * ones are most probably delayed as well.
2258                  */
2259                 failed = 0;
2260         }
2261         return failed;
2262 }
2263
2264 /* Undo during loss recovery after partial ACK. */
2265 static int tcp_try_undo_loss(struct sock *sk)
2266 {
2267         struct tcp_sock *tp = tcp_sk(sk);
2268
2269         if (tcp_may_undo(tp)) {
2270                 struct sk_buff *skb;
2271                 tcp_for_write_queue(skb, sk) {
2272                         if (skb == tcp_send_head(sk))
2273                                 break;
2274                         TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2275                 }
2276
2277                 tcp_clear_all_retrans_hints(tp);
2278
2279                 DBGUNDO(sk, "partial loss");
2280                 tp->lost_out = 0;
2281                 tcp_undo_cwr(sk, 1);
2282                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2283                 inet_csk(sk)->icsk_retransmits = 0;
2284                 tp->undo_marker = 0;
2285                 if (tcp_is_sack(tp))
2286                         tcp_set_ca_state(sk, TCP_CA_Open);
2287                 return 1;
2288         }
2289         return 0;
2290 }
2291
2292 static inline void tcp_complete_cwr(struct sock *sk)
2293 {
2294         struct tcp_sock *tp = tcp_sk(sk);
2295         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2296         tp->snd_cwnd_stamp = tcp_time_stamp;
2297         tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2298 }
2299
2300 static void tcp_try_to_open(struct sock *sk, int flag)
2301 {
2302         struct tcp_sock *tp = tcp_sk(sk);
2303
2304         tcp_verify_left_out(tp);
2305
2306         if (tp->retrans_out == 0)
2307                 tp->retrans_stamp = 0;
2308
2309         if (flag&FLAG_ECE)
2310                 tcp_enter_cwr(sk, 1);
2311
2312         if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2313                 int state = TCP_CA_Open;
2314
2315                 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2316                         state = TCP_CA_Disorder;
2317
2318                 if (inet_csk(sk)->icsk_ca_state != state) {
2319                         tcp_set_ca_state(sk, state);
2320                         tp->high_seq = tp->snd_nxt;
2321                 }
2322                 tcp_moderate_cwnd(tp);
2323         } else {
2324                 tcp_cwnd_down(sk, flag);
2325         }
2326 }
2327
2328 static void tcp_mtup_probe_failed(struct sock *sk)
2329 {
2330         struct inet_connection_sock *icsk = inet_csk(sk);
2331
2332         icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2333         icsk->icsk_mtup.probe_size = 0;
2334 }
2335
2336 static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2337 {
2338         struct tcp_sock *tp = tcp_sk(sk);
2339         struct inet_connection_sock *icsk = inet_csk(sk);
2340
2341         /* FIXME: breaks with very large cwnd */
2342         tp->prior_ssthresh = tcp_current_ssthresh(sk);
2343         tp->snd_cwnd = tp->snd_cwnd *
2344                        tcp_mss_to_mtu(sk, tp->mss_cache) /
2345                        icsk->icsk_mtup.probe_size;
2346         tp->snd_cwnd_cnt = 0;
2347         tp->snd_cwnd_stamp = tcp_time_stamp;
2348         tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2349
2350         icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2351         icsk->icsk_mtup.probe_size = 0;
2352         tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2353 }
2354
2355
2356 /* Process an event, which can update packets-in-flight not trivially.
2357  * Main goal of this function is to calculate new estimate for left_out,
2358  * taking into account both packets sitting in receiver's buffer and
2359  * packets lost by network.
2360  *
2361  * Besides that it does CWND reduction, when packet loss is detected
2362  * and changes state of machine.
2363  *
2364  * It does _not_ decide what to send, it is made in function
2365  * tcp_xmit_retransmit_queue().
2366  */
2367 static void
2368 tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2369 {
2370         struct inet_connection_sock *icsk = inet_csk(sk);
2371         struct tcp_sock *tp = tcp_sk(sk);
2372         int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2373         int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2374                                     (tp->fackets_out > tp->reordering));
2375
2376         /* Some technical things:
2377          * 1. Reno does not count dupacks (sacked_out) automatically. */
2378         if (!tp->packets_out)
2379                 tp->sacked_out = 0;
2380
2381         if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2382                 tp->fackets_out = 0;
2383
2384         /* Now state machine starts.
2385          * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2386         if (flag&FLAG_ECE)
2387                 tp->prior_ssthresh = 0;
2388
2389         /* B. In all the states check for reneging SACKs. */
2390         if (tp->sacked_out && tcp_check_sack_reneging(sk))
2391                 return;
2392
2393         /* C. Process data loss notification, provided it is valid. */
2394         if ((flag&FLAG_DATA_LOST) &&
2395             before(tp->snd_una, tp->high_seq) &&
2396             icsk->icsk_ca_state != TCP_CA_Open &&
2397             tp->fackets_out > tp->reordering) {
2398                 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2399                 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2400         }
2401
2402         /* D. Check consistency of the current state. */
2403         tcp_verify_left_out(tp);
2404
2405         /* E. Check state exit conditions. State can be terminated
2406          *    when high_seq is ACKed. */
2407         if (icsk->icsk_ca_state == TCP_CA_Open) {
2408                 BUG_TRAP(tp->retrans_out == 0);
2409                 tp->retrans_stamp = 0;
2410         } else if (!before(tp->snd_una, tp->high_seq)) {
2411                 switch (icsk->icsk_ca_state) {
2412                 case TCP_CA_Loss:
2413                         icsk->icsk_retransmits = 0;
2414                         if (tcp_try_undo_recovery(sk))
2415                                 return;
2416                         break;
2417
2418                 case TCP_CA_CWR:
2419                         /* CWR is to be held something *above* high_seq
2420                          * is ACKed for CWR bit to reach receiver. */
2421                         if (tp->snd_una != tp->high_seq) {
2422                                 tcp_complete_cwr(sk);
2423                                 tcp_set_ca_state(sk, TCP_CA_Open);
2424                         }
2425                         break;
2426
2427                 case TCP_CA_Disorder:
2428                         tcp_try_undo_dsack(sk);
2429                         if (!tp->undo_marker ||
2430                             /* For SACK case do not Open to allow to undo
2431                              * catching for all duplicate ACKs. */
2432                             tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2433                                 tp->undo_marker = 0;
2434                                 tcp_set_ca_state(sk, TCP_CA_Open);
2435                         }
2436                         break;
2437
2438                 case TCP_CA_Recovery:
2439                         if (tcp_is_reno(tp))
2440                                 tcp_reset_reno_sack(tp);
2441                         if (tcp_try_undo_recovery(sk))
2442                                 return;
2443                         tcp_complete_cwr(sk);
2444                         break;
2445                 }
2446         }
2447
2448         /* F. Process state. */
2449         switch (icsk->icsk_ca_state) {
2450         case TCP_CA_Recovery:
2451                 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2452                         if (tcp_is_reno(tp) && is_dupack)
2453                                 tcp_add_reno_sack(sk);
2454                 } else
2455                         do_lost = tcp_try_undo_partial(sk, pkts_acked);
2456                 break;
2457         case TCP_CA_Loss:
2458                 if (flag&FLAG_DATA_ACKED)
2459                         icsk->icsk_retransmits = 0;
2460                 if (!tcp_try_undo_loss(sk)) {
2461                         tcp_moderate_cwnd(tp);
2462                         tcp_xmit_retransmit_queue(sk);
2463                         return;
2464                 }
2465                 if (icsk->icsk_ca_state != TCP_CA_Open)
2466                         return;
2467                 /* Loss is undone; fall through to processing in Open state. */
2468         default:
2469                 if (tcp_is_reno(tp)) {
2470                         if (flag & FLAG_SND_UNA_ADVANCED)
2471                                 tcp_reset_reno_sack(tp);
2472                         if (is_dupack)
2473                                 tcp_add_reno_sack(sk);
2474                 }
2475
2476                 if (icsk->icsk_ca_state == TCP_CA_Disorder)
2477                         tcp_try_undo_dsack(sk);
2478
2479                 if (!tcp_time_to_recover(sk)) {
2480                         tcp_try_to_open(sk, flag);
2481                         return;
2482                 }
2483
2484                 /* MTU probe failure: don't reduce cwnd */
2485                 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2486                     icsk->icsk_mtup.probe_size &&
2487                     tp->snd_una == tp->mtu_probe.probe_seq_start) {
2488                         tcp_mtup_probe_failed(sk);
2489                         /* Restores the reduction we did in tcp_mtup_probe() */
2490                         tp->snd_cwnd++;
2491                         tcp_simple_retransmit(sk);
2492                         return;
2493                 }
2494
2495                 /* Otherwise enter Recovery state */
2496
2497                 if (tcp_is_reno(tp))
2498                         NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2499                 else
2500                         NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2501
2502                 tp->high_seq = tp->snd_nxt;
2503                 tp->prior_ssthresh = 0;
2504                 tp->undo_marker = tp->snd_una;
2505                 tp->undo_retrans = tp->retrans_out;
2506
2507                 if (icsk->icsk_ca_state < TCP_CA_CWR) {
2508                         if (!(flag&FLAG_ECE))
2509                                 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2510                         tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2511                         TCP_ECN_queue_cwr(tp);
2512                 }
2513
2514                 tp->bytes_acked = 0;
2515                 tp->snd_cwnd_cnt = 0;
2516                 tcp_set_ca_state(sk, TCP_CA_Recovery);
2517         }
2518
2519         if (do_lost || tcp_head_timedout(sk))
2520                 tcp_update_scoreboard(sk);
2521         tcp_cwnd_down(sk, flag);
2522         tcp_xmit_retransmit_queue(sk);
2523 }
2524
2525 /* Read draft-ietf-tcplw-high-performance before mucking
2526  * with this code. (Supersedes RFC1323)
2527  */
2528 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
2529 {
2530         /* RTTM Rule: A TSecr value received in a segment is used to
2531          * update the averaged RTT measurement only if the segment
2532          * acknowledges some new data, i.e., only if it advances the
2533          * left edge of the send window.
2534          *
2535          * See draft-ietf-tcplw-high-performance-00, section 3.3.
2536          * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2537          *
2538          * Changed: reset backoff as soon as we see the first valid sample.
2539          * If we do not, we get strongly overestimated rto. With timestamps
2540          * samples are accepted even from very old segments: f.e., when rtt=1
2541          * increases to 8, we retransmit 5 times and after 8 seconds delayed
2542          * answer arrives rto becomes 120 seconds! If at least one of segments
2543          * in window is lost... Voila.                          --ANK (010210)
2544          */
2545         struct tcp_sock *tp = tcp_sk(sk);
2546         const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2547         tcp_rtt_estimator(sk, seq_rtt);
2548         tcp_set_rto(sk);
2549         inet_csk(sk)->icsk_backoff = 0;
2550         tcp_bound_rto(sk);
2551 }
2552
2553 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
2554 {
2555         /* We don't have a timestamp. Can only use
2556          * packets that are not retransmitted to determine
2557          * rtt estimates. Also, we must not reset the
2558          * backoff for rto until we get a non-retransmitted
2559          * packet. This allows us to deal with a situation
2560          * where the network delay has increased suddenly.
2561          * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2562          */
2563
2564         if (flag & FLAG_RETRANS_DATA_ACKED)
2565                 return;
2566
2567         tcp_rtt_estimator(sk, seq_rtt);
2568         tcp_set_rto(sk);
2569         inet_csk(sk)->icsk_backoff = 0;
2570         tcp_bound_rto(sk);
2571 }
2572
2573 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2574                                       const s32 seq_rtt)
2575 {
2576         const struct tcp_sock *tp = tcp_sk(sk);
2577         /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2578         if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2579                 tcp_ack_saw_tstamp(sk, flag);
2580         else if (seq_rtt >= 0)
2581                 tcp_ack_no_tstamp(sk, seq_rtt, flag);
2582 }
2583
2584 static void tcp_cong_avoid(struct sock *sk, u32 ack,
2585                            u32 in_flight, int good)
2586 {
2587         const struct inet_connection_sock *icsk = inet_csk(sk);
2588         icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
2589         tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
2590 }
2591
2592 /* Restart timer after forward progress on connection.
2593  * RFC2988 recommends to restart timer to now+rto.
2594  */
2595 static void tcp_rearm_rto(struct sock *sk)
2596 {
2597         struct tcp_sock *tp = tcp_sk(sk);
2598
2599         if (!tp->packets_out) {
2600                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2601         } else {
2602                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
2603         }
2604 }
2605
2606 /* If we get here, the whole TSO packet has not been acked. */
2607 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
2608 {
2609         struct tcp_sock *tp = tcp_sk(sk);
2610         u32 packets_acked;
2611
2612         BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
2613
2614         packets_acked = tcp_skb_pcount(skb);
2615         if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
2616                 return 0;
2617         packets_acked -= tcp_skb_pcount(skb);
2618
2619         if (packets_acked) {
2620                 BUG_ON(tcp_skb_pcount(skb) == 0);
2621                 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
2622         }
2623
2624         return packets_acked;
2625 }
2626
2627 /* Remove acknowledged frames from the retransmission queue. If our packet
2628  * is before the ack sequence we can discard it as it's confirmed to have
2629  * arrived at the other end.
2630  */
2631 static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p,
2632                                int prior_fackets)
2633 {
2634         struct tcp_sock *tp = tcp_sk(sk);
2635         const struct inet_connection_sock *icsk = inet_csk(sk);
2636         struct sk_buff *skb;
2637         u32 now = tcp_time_stamp;
2638         int fully_acked = 1;
2639         int flag = 0;
2640         int prior_packets = tp->packets_out;
2641         u32 cnt = 0;
2642         u32 reord = tp->packets_out;
2643         s32 seq_rtt = -1;
2644         ktime_t last_ackt = net_invalid_timestamp();
2645
2646         while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
2647                 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
2648                 u32 end_seq;
2649                 u32 packets_acked;
2650                 u8 sacked = scb->sacked;
2651
2652                 if (after(scb->end_seq, tp->snd_una)) {
2653                         if (tcp_skb_pcount(skb) == 1 ||
2654                             !after(tp->snd_una, scb->seq))
2655                                 break;
2656
2657                         packets_acked = tcp_tso_acked(sk, skb);
2658                         if (!packets_acked)
2659                                 break;
2660
2661                         fully_acked = 0;
2662                         end_seq = tp->snd_una;
2663                 } else {
2664                         packets_acked = tcp_skb_pcount(skb);
2665                         end_seq = scb->end_seq;
2666                 }
2667
2668                 /* MTU probing checks */
2669                 if (fully_acked && icsk->icsk_mtup.probe_size &&
2670                     !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2671                         tcp_mtup_probe_success(sk, skb);
2672                 }
2673
2674                 if (sacked) {
2675                         if (sacked & TCPCB_RETRANS) {
2676                                 if (sacked & TCPCB_SACKED_RETRANS)
2677                                         tp->retrans_out -= packets_acked;
2678                                 flag |= FLAG_RETRANS_DATA_ACKED;
2679                                 seq_rtt = -1;
2680                                 if ((flag & FLAG_DATA_ACKED) ||
2681                                     (packets_acked > 1))
2682                                         flag |= FLAG_NONHEAD_RETRANS_ACKED;
2683                         } else {
2684                                 if (seq_rtt < 0) {
2685                                         seq_rtt = now - scb->when;
2686                                         if (fully_acked)
2687                                                 last_ackt = skb->tstamp;
2688                                 }
2689                                 if (!(sacked & TCPCB_SACKED_ACKED))
2690                                         reord = min(cnt, reord);
2691                         }
2692
2693                         if (sacked & TCPCB_SACKED_ACKED)
2694                                 tp->sacked_out -= packets_acked;
2695                         if (sacked & TCPCB_LOST)
2696                                 tp->lost_out -= packets_acked;
2697
2698                         if ((sacked & TCPCB_URG) && tp->urg_mode &&
2699                             !before(end_seq, tp->snd_up))
2700                                 tp->urg_mode = 0;
2701                 } else {
2702                         if (seq_rtt < 0) {
2703                                 seq_rtt = now - scb->when;
2704                                 if (fully_acked)
2705                                         last_ackt = skb->tstamp;
2706                         }
2707                         reord = min(cnt, reord);
2708                 }
2709                 tp->packets_out -= packets_acked;
2710                 cnt += packets_acked;
2711
2712                 /* Initial outgoing SYN's get put onto the write_queue
2713                  * just like anything else we transmit.  It is not
2714                  * true data, and if we misinform our callers that
2715                  * this ACK acks real data, we will erroneously exit
2716                  * connection startup slow start one packet too
2717                  * quickly.  This is severely frowned upon behavior.
2718                  */
2719                 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2720                         flag |= FLAG_DATA_ACKED;
2721                 } else {
2722                         flag |= FLAG_SYN_ACKED;
2723                         tp->retrans_stamp = 0;
2724                 }
2725
2726                 if (!fully_acked)
2727                         break;
2728
2729                 tcp_unlink_write_queue(skb, sk);
2730                 sk_stream_free_skb(sk, skb);
2731                 tcp_clear_all_retrans_hints(tp);
2732         }
2733
2734         if (flag & FLAG_ACKED) {
2735                 u32 pkts_acked = prior_packets - tp->packets_out;
2736                 const struct tcp_congestion_ops *ca_ops
2737                         = inet_csk(sk)->icsk_ca_ops;
2738
2739                 tcp_ack_update_rtt(sk, flag, seq_rtt);
2740                 tcp_rearm_rto(sk);
2741
2742                 if (tcp_is_reno(tp)) {
2743                         tcp_remove_reno_sacks(sk, pkts_acked);
2744                 } else {
2745                         /* Non-retransmitted hole got filled? That's reordering */
2746                         if (reord < prior_fackets)
2747                                 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
2748                 }
2749
2750                 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
2751                 /* hint's skb might be NULL but we don't need to care */
2752                 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2753                                                tp->fastpath_cnt_hint);
2754                 if (ca_ops->pkts_acked) {
2755                         s32 rtt_us = -1;
2756
2757                         /* Is the ACK triggering packet unambiguous? */
2758                         if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
2759                                 /* High resolution needed and available? */
2760                                 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2761                                     !ktime_equal(last_ackt,
2762                                                  net_invalid_timestamp()))
2763                                         rtt_us = ktime_us_delta(ktime_get_real(),
2764                                                                 last_ackt);
2765                                 else if (seq_rtt > 0)
2766                                         rtt_us = jiffies_to_usecs(seq_rtt);
2767                         }
2768
2769                         ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2770                 }
2771         }
2772
2773 #if FASTRETRANS_DEBUG > 0
2774         BUG_TRAP((int)tp->sacked_out >= 0);
2775         BUG_TRAP((int)tp->lost_out >= 0);
2776         BUG_TRAP((int)tp->retrans_out >= 0);
2777         if (!tp->packets_out && tcp_is_sack(tp)) {
2778                 icsk = inet_csk(sk);
2779                 if (tp->lost_out) {
2780                         printk(KERN_DEBUG "Leak l=%u %d\n",
2781                                tp->lost_out, icsk->icsk_ca_state);
2782                         tp->lost_out = 0;
2783                 }
2784                 if (tp->sacked_out) {
2785                         printk(KERN_DEBUG "Leak s=%u %d\n",
2786                                tp->sacked_out, icsk->icsk_ca_state);
2787                         tp->sacked_out = 0;
2788                 }
2789                 if (tp->retrans_out) {
2790                         printk(KERN_DEBUG "Leak r=%u %d\n",
2791                                tp->retrans_out, icsk->icsk_ca_state);
2792                         tp->retrans_out = 0;
2793                 }
2794         }
2795 #endif
2796         *seq_rtt_p = seq_rtt;
2797         return flag;
2798 }
2799
2800 static void tcp_ack_probe(struct sock *sk)
2801 {
2802         const struct tcp_sock *tp = tcp_sk(sk);
2803         struct inet_connection_sock *icsk = inet_csk(sk);
2804
2805         /* Was it a usable window open? */
2806
2807         if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2808                    tp->snd_una + tp->snd_wnd)) {
2809                 icsk->icsk_backoff = 0;
2810                 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
2811                 /* Socket must be waked up by subsequent tcp_data_snd_check().
2812                  * This function is not for random using!
2813                  */
2814         } else {
2815                 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
2816                                           min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2817                                           TCP_RTO_MAX);
2818         }
2819 }
2820
2821 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
2822 {
2823         return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
2824                 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
2825 }
2826
2827 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
2828 {
2829         const struct tcp_sock *tp = tcp_sk(sk);
2830         return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
2831                 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
2832 }
2833
2834 /* Check that window update is acceptable.
2835  * The function assumes that snd_una<=ack<=snd_next.
2836  */
2837 static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2838                                         const u32 ack_seq, const u32 nwin)
2839 {
2840         return (after(ack, tp->snd_una) ||
2841                 after(ack_seq, tp->snd_wl1) ||
2842                 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2843 }
2844
2845 /* Update our send window.
2846  *
2847  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2848  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2849  */
2850 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2851                                  u32 ack_seq)
2852 {
2853         struct tcp_sock *tp = tcp_sk(sk);
2854         int flag = 0;
2855         u32 nwin = ntohs(tcp_hdr(skb)->window);
2856
2857         if (likely(!tcp_hdr(skb)->syn))
2858                 nwin <<= tp->rx_opt.snd_wscale;
2859
2860         if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2861                 flag |= FLAG_WIN_UPDATE;
2862                 tcp_update_wl(tp, ack, ack_seq);
2863
2864                 if (tp->snd_wnd != nwin) {
2865                         tp->snd_wnd = nwin;
2866
2867                         /* Note, it is the only place, where
2868                          * fast path is recovered for sending TCP.
2869                          */
2870                         tp->pred_flags = 0;
2871                         tcp_fast_path_check(sk);
2872
2873                         if (nwin > tp->max_window) {
2874                                 tp->max_window = nwin;
2875                                 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
2876                         }
2877                 }
2878         }
2879
2880         tp->snd_una = ack;
2881
2882         return flag;
2883 }
2884
2885 /* A very conservative spurious RTO response algorithm: reduce cwnd and
2886  * continue in congestion avoidance.
2887  */
2888 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2889 {
2890         tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2891         tp->snd_cwnd_cnt = 0;
2892         tp->bytes_acked = 0;
2893         TCP_ECN_queue_cwr(tp);
2894         tcp_moderate_cwnd(tp);
2895 }
2896
2897 /* A conservative spurious RTO response algorithm: reduce cwnd using
2898  * rate halving and continue in congestion avoidance.
2899  */
2900 static void tcp_ratehalving_spur_to_response(struct sock *sk)
2901 {
2902         tcp_enter_cwr(sk, 0);
2903 }
2904
2905 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
2906 {
2907         if (flag&FLAG_ECE)
2908                 tcp_ratehalving_spur_to_response(sk);
2909         else
2910                 tcp_undo_cwr(sk, 1);
2911 }
2912
2913 /* F-RTO spurious RTO detection algorithm (RFC4138)
2914  *
2915  * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2916  * comments). State (ACK number) is kept in frto_counter. When ACK advances
2917  * window (but not to or beyond highest sequence sent before RTO):
2918  *   On First ACK,  send two new segments out.
2919  *   On Second ACK, RTO was likely spurious. Do spurious response (response
2920  *                  algorithm is not part of the F-RTO detection algorithm
2921  *                  given in RFC4138 but can be selected separately).
2922  * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
2923  * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2924  * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2925  * segment of any size sent during F-RTO, state 2 is upgraded to 3.
2926  *
2927  * Rationale: if the RTO was spurious, new ACKs should arrive from the
2928  * original window even after we transmit two new data segments.
2929  *
2930  * SACK version:
2931  *   on first step, wait until first cumulative ACK arrives, then move to
2932  *   the second step. In second step, the next ACK decides.
2933  *
2934  * F-RTO is implemented (mainly) in four functions:
2935  *   - tcp_use_frto() is used to determine if TCP is can use F-RTO
2936  *   - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2937  *     called when tcp_use_frto() showed green light
2938  *   - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2939  *   - tcp_enter_frto_loss() is called if there is not enough evidence
2940  *     to prove that the RTO is indeed spurious. It transfers the control
2941  *     from F-RTO to the conventional RTO recovery
2942  */
2943 static int tcp_process_frto(struct sock *sk, int flag)
2944 {
2945         struct tcp_sock *tp = tcp_sk(sk);
2946
2947         tcp_verify_left_out(tp);
2948
2949         /* Duplicate the behavior from Loss state (fastretrans_alert) */
2950         if (flag&FLAG_DATA_ACKED)
2951                 inet_csk(sk)->icsk_retransmits = 0;
2952
2953         if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2954             ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2955                 tp->undo_marker = 0;
2956
2957         if (!before(tp->snd_una, tp->frto_highmark)) {
2958                 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
2959                 return 1;
2960         }
2961
2962         if (!IsSackFrto() || tcp_is_reno(tp)) {
2963                 /* RFC4138 shortcoming in step 2; should also have case c):
2964                  * ACK isn't duplicate nor advances window, e.g., opposite dir
2965                  * data, winupdate
2966                  */
2967                 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
2968                         return 1;
2969
2970                 if (!(flag&FLAG_DATA_ACKED)) {
2971                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2972                                             flag);
2973                         return 1;
2974                 }
2975         } else {
2976                 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2977                         /* Prevent sending of new data. */
2978                         tp->snd_cwnd = min(tp->snd_cwnd,
2979                                            tcp_packets_in_flight(tp));
2980                         return 1;
2981                 }
2982
2983                 if ((tp->frto_counter >= 2) &&
2984                     (!(flag&FLAG_FORWARD_PROGRESS) ||
2985                      ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2986                         /* RFC4138 shortcoming (see comment above) */
2987                         if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2988                                 return 1;
2989
2990                         tcp_enter_frto_loss(sk, 3, flag);
2991                         return 1;
2992                 }
2993         }
2994
2995         if (tp->frto_counter == 1) {
2996                 /* Sending of the next skb must be allowed or no F-RTO */
2997                 if (!tcp_send_head(sk) ||
2998                     after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2999                                      tp->snd_una + tp->snd_wnd)) {
3000                         tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
3001                                             flag);
3002                         return 1;
3003                 }
3004
3005                 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3006                 tp->frto_counter = 2;
3007                 return 1;
3008         } else {
3009                 switch (sysctl_tcp_frto_response) {
3010                 case 2:
3011                         tcp_undo_spur_to_response(sk, flag);
3012                         break;
3013                 case 1:
3014                         tcp_conservative_spur_to_response(tp);
3015                         break;
3016                 default:
3017                         tcp_ratehalving_spur_to_response(sk);
3018                         break;
3019                 }
3020                 tp->frto_counter = 0;
3021                 tp->undo_marker = 0;
3022                 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
3023         }
3024         return 0;
3025 }
3026
3027 /* This routine deals with incoming acks, but not outgoing ones. */
3028 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3029 {
3030         struct inet_connection_sock *icsk = inet_csk(sk);
3031         struct tcp_sock *tp = tcp_sk(sk);
3032         u32 prior_snd_una = tp->snd_una;
3033         u32 ack_seq = TCP_SKB_CB(skb)->seq;
3034         u32 ack = TCP_SKB_CB(skb)->ack_seq;
3035         u32 prior_in_flight;
3036         u32 prior_fackets;
3037         s32 seq_rtt;
3038         int prior_packets;
3039         int frto_cwnd = 0;
3040
3041         /* If the ack is newer than sent or older than previous acks
3042          * then we can probably ignore it.
3043          */
3044         if (after(ack, tp->snd_nxt))
3045                 goto uninteresting_ack;
3046
3047         if (before(ack, prior_snd_una))
3048                 goto old_ack;
3049
3050         if (after(ack, prior_snd_una))
3051                 flag |= FLAG_SND_UNA_ADVANCED;
3052
3053         if (sysctl_tcp_abc) {
3054                 if (icsk->icsk_ca_state < TCP_CA_CWR)
3055                         tp->bytes_acked += ack - prior_snd_una;
3056                 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3057                         /* we assume just one segment left network */
3058                         tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
3059         }
3060
3061         prior_fackets = tp->fackets_out;
3062
3063         if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3064                 /* Window is constant, pure forward advance.
3065                  * No more checks are required.
3066                  * Note, we use the fact that SND.UNA>=SND.WL2.
3067                  */
3068                 tcp_update_wl(tp, ack, ack_seq);
3069                 tp->snd_una = ack;
3070                 flag |= FLAG_WIN_UPDATE;
3071
3072                 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3073
3074                 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
3075         } else {
3076                 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3077                         flag |= FLAG_DATA;
3078                 else
3079                         NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
3080
3081                 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3082
3083                 if (TCP_SKB_CB(skb)->sacked)
3084                         flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3085
3086                 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3087     &