net/flow_dissector: add support for dissection of misc ip header fields
[sfrench/cifs-2.6.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <net/gre.h>
10 #include <net/pptp.h>
11 #include <linux/igmp.h>
12 #include <linux/icmp.h>
13 #include <linux/sctp.h>
14 #include <linux/dccp.h>
15 #include <linux/if_tunnel.h>
16 #include <linux/if_pppox.h>
17 #include <linux/ppp_defs.h>
18 #include <linux/stddef.h>
19 #include <linux/if_ether.h>
20 #include <linux/mpls.h>
21 #include <linux/tcp.h>
22 #include <net/flow_dissector.h>
23 #include <scsi/fc/fc_fcoe.h>
24
25 static void dissector_set_key(struct flow_dissector *flow_dissector,
26                               enum flow_dissector_key_id key_id)
27 {
28         flow_dissector->used_keys |= (1 << key_id);
29 }
30
31 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
32                              const struct flow_dissector_key *key,
33                              unsigned int key_count)
34 {
35         unsigned int i;
36
37         memset(flow_dissector, 0, sizeof(*flow_dissector));
38
39         for (i = 0; i < key_count; i++, key++) {
40                 /* User should make sure that every key target offset is withing
41                  * boundaries of unsigned short.
42                  */
43                 BUG_ON(key->offset > USHRT_MAX);
44                 BUG_ON(dissector_uses_key(flow_dissector,
45                                           key->key_id));
46
47                 dissector_set_key(flow_dissector, key->key_id);
48                 flow_dissector->offset[key->key_id] = key->offset;
49         }
50
51         /* Ensure that the dissector always includes control and basic key.
52          * That way we are able to avoid handling lack of these in fast path.
53          */
54         BUG_ON(!dissector_uses_key(flow_dissector,
55                                    FLOW_DISSECTOR_KEY_CONTROL));
56         BUG_ON(!dissector_uses_key(flow_dissector,
57                                    FLOW_DISSECTOR_KEY_BASIC));
58 }
59 EXPORT_SYMBOL(skb_flow_dissector_init);
60
61 /**
62  * skb_flow_get_be16 - extract be16 entity
63  * @skb: sk_buff to extract from
64  * @poff: offset to extract at
65  * @data: raw buffer pointer to the packet
66  * @hlen: packet header length
67  *
68  * The function will try to retrieve a be32 entity at
69  * offset poff
70  */
71 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
72                                 void *data, int hlen)
73 {
74         __be16 *u, _u;
75
76         u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
77         if (u)
78                 return *u;
79
80         return 0;
81 }
82
83 /**
84  * __skb_flow_get_ports - extract the upper layer ports and return them
85  * @skb: sk_buff to extract the ports from
86  * @thoff: transport header offset
87  * @ip_proto: protocol for which to get port offset
88  * @data: raw buffer pointer to the packet, if NULL use skb->data
89  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
90  *
91  * The function will try to retrieve the ports at offset thoff + poff where poff
92  * is the protocol port offset returned from proto_ports_offset
93  */
94 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
95                             void *data, int hlen)
96 {
97         int poff = proto_ports_offset(ip_proto);
98
99         if (!data) {
100                 data = skb->data;
101                 hlen = skb_headlen(skb);
102         }
103
104         if (poff >= 0) {
105                 __be32 *ports, _ports;
106
107                 ports = __skb_header_pointer(skb, thoff + poff,
108                                              sizeof(_ports), data, hlen, &_ports);
109                 if (ports)
110                         return *ports;
111         }
112
113         return 0;
114 }
115 EXPORT_SYMBOL(__skb_flow_get_ports);
116
117 enum flow_dissect_ret {
118         FLOW_DISSECT_RET_OUT_GOOD,
119         FLOW_DISSECT_RET_OUT_BAD,
120         FLOW_DISSECT_RET_OUT_PROTO_AGAIN,
121 };
122
123 static enum flow_dissect_ret
124 __skb_flow_dissect_mpls(const struct sk_buff *skb,
125                         struct flow_dissector *flow_dissector,
126                         void *target_container, void *data, int nhoff, int hlen)
127 {
128         struct flow_dissector_key_keyid *key_keyid;
129         struct mpls_label *hdr, _hdr[2];
130         u32 entry, label;
131
132         if (!dissector_uses_key(flow_dissector,
133                                 FLOW_DISSECTOR_KEY_MPLS_ENTROPY) &&
134             !dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS))
135                 return FLOW_DISSECT_RET_OUT_GOOD;
136
137         hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
138                                    hlen, &_hdr);
139         if (!hdr)
140                 return FLOW_DISSECT_RET_OUT_BAD;
141
142         entry = ntohl(hdr[0].entry);
143         label = (entry & MPLS_LS_LABEL_MASK) >> MPLS_LS_LABEL_SHIFT;
144
145         if (dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_MPLS)) {
146                 struct flow_dissector_key_mpls *key_mpls;
147
148                 key_mpls = skb_flow_dissector_target(flow_dissector,
149                                                      FLOW_DISSECTOR_KEY_MPLS,
150                                                      target_container);
151                 key_mpls->mpls_label = label;
152                 key_mpls->mpls_ttl = (entry & MPLS_LS_TTL_MASK)
153                                         >> MPLS_LS_TTL_SHIFT;
154                 key_mpls->mpls_tc = (entry & MPLS_LS_TC_MASK)
155                                         >> MPLS_LS_TC_SHIFT;
156                 key_mpls->mpls_bos = (entry & MPLS_LS_S_MASK)
157                                         >> MPLS_LS_S_SHIFT;
158         }
159
160         if (label == MPLS_LABEL_ENTROPY) {
161                 key_keyid = skb_flow_dissector_target(flow_dissector,
162                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
163                                                       target_container);
164                 key_keyid->keyid = hdr[1].entry & htonl(MPLS_LS_LABEL_MASK);
165         }
166         return FLOW_DISSECT_RET_OUT_GOOD;
167 }
168
169 static enum flow_dissect_ret
170 __skb_flow_dissect_arp(const struct sk_buff *skb,
171                        struct flow_dissector *flow_dissector,
172                        void *target_container, void *data, int nhoff, int hlen)
173 {
174         struct flow_dissector_key_arp *key_arp;
175         struct {
176                 unsigned char ar_sha[ETH_ALEN];
177                 unsigned char ar_sip[4];
178                 unsigned char ar_tha[ETH_ALEN];
179                 unsigned char ar_tip[4];
180         } *arp_eth, _arp_eth;
181         const struct arphdr *arp;
182         struct arphdr _arp;
183
184         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_ARP))
185                 return FLOW_DISSECT_RET_OUT_GOOD;
186
187         arp = __skb_header_pointer(skb, nhoff, sizeof(_arp), data,
188                                    hlen, &_arp);
189         if (!arp)
190                 return FLOW_DISSECT_RET_OUT_BAD;
191
192         if (arp->ar_hrd != htons(ARPHRD_ETHER) ||
193             arp->ar_pro != htons(ETH_P_IP) ||
194             arp->ar_hln != ETH_ALEN ||
195             arp->ar_pln != 4 ||
196             (arp->ar_op != htons(ARPOP_REPLY) &&
197              arp->ar_op != htons(ARPOP_REQUEST)))
198                 return FLOW_DISSECT_RET_OUT_BAD;
199
200         arp_eth = __skb_header_pointer(skb, nhoff + sizeof(_arp),
201                                        sizeof(_arp_eth), data,
202                                        hlen, &_arp_eth);
203         if (!arp_eth)
204                 return FLOW_DISSECT_RET_OUT_BAD;
205
206         key_arp = skb_flow_dissector_target(flow_dissector,
207                                             FLOW_DISSECTOR_KEY_ARP,
208                                             target_container);
209
210         memcpy(&key_arp->sip, arp_eth->ar_sip, sizeof(key_arp->sip));
211         memcpy(&key_arp->tip, arp_eth->ar_tip, sizeof(key_arp->tip));
212
213         /* Only store the lower byte of the opcode;
214          * this covers ARPOP_REPLY and ARPOP_REQUEST.
215          */
216         key_arp->op = ntohs(arp->ar_op) & 0xff;
217
218         ether_addr_copy(key_arp->sha, arp_eth->ar_sha);
219         ether_addr_copy(key_arp->tha, arp_eth->ar_tha);
220
221         return FLOW_DISSECT_RET_OUT_GOOD;
222 }
223
224 static enum flow_dissect_ret
225 __skb_flow_dissect_gre(const struct sk_buff *skb,
226                        struct flow_dissector_key_control *key_control,
227                        struct flow_dissector *flow_dissector,
228                        void *target_container, void *data,
229                        __be16 *p_proto, int *p_nhoff, int *p_hlen,
230                        unsigned int flags)
231 {
232         struct flow_dissector_key_keyid *key_keyid;
233         struct gre_base_hdr *hdr, _hdr;
234         int offset = 0;
235         u16 gre_ver;
236
237         hdr = __skb_header_pointer(skb, *p_nhoff, sizeof(_hdr),
238                                    data, *p_hlen, &_hdr);
239         if (!hdr)
240                 return FLOW_DISSECT_RET_OUT_BAD;
241
242         /* Only look inside GRE without routing */
243         if (hdr->flags & GRE_ROUTING)
244                 return FLOW_DISSECT_RET_OUT_GOOD;
245
246         /* Only look inside GRE for version 0 and 1 */
247         gre_ver = ntohs(hdr->flags & GRE_VERSION);
248         if (gre_ver > 1)
249                 return FLOW_DISSECT_RET_OUT_GOOD;
250
251         *p_proto = hdr->protocol;
252         if (gre_ver) {
253                 /* Version1 must be PPTP, and check the flags */
254                 if (!(*p_proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
255                         return FLOW_DISSECT_RET_OUT_GOOD;
256         }
257
258         offset += sizeof(struct gre_base_hdr);
259
260         if (hdr->flags & GRE_CSUM)
261                 offset += sizeof(((struct gre_full_hdr *) 0)->csum) +
262                           sizeof(((struct gre_full_hdr *) 0)->reserved1);
263
264         if (hdr->flags & GRE_KEY) {
265                 const __be32 *keyid;
266                 __be32 _keyid;
267
268                 keyid = __skb_header_pointer(skb, *p_nhoff + offset,
269                                              sizeof(_keyid),
270                                              data, *p_hlen, &_keyid);
271                 if (!keyid)
272                         return FLOW_DISSECT_RET_OUT_BAD;
273
274                 if (dissector_uses_key(flow_dissector,
275                                        FLOW_DISSECTOR_KEY_GRE_KEYID)) {
276                         key_keyid = skb_flow_dissector_target(flow_dissector,
277                                                               FLOW_DISSECTOR_KEY_GRE_KEYID,
278                                                               target_container);
279                         if (gre_ver == 0)
280                                 key_keyid->keyid = *keyid;
281                         else
282                                 key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
283                 }
284                 offset += sizeof(((struct gre_full_hdr *) 0)->key);
285         }
286
287         if (hdr->flags & GRE_SEQ)
288                 offset += sizeof(((struct pptp_gre_header *) 0)->seq);
289
290         if (gre_ver == 0) {
291                 if (*p_proto == htons(ETH_P_TEB)) {
292                         const struct ethhdr *eth;
293                         struct ethhdr _eth;
294
295                         eth = __skb_header_pointer(skb, *p_nhoff + offset,
296                                                    sizeof(_eth),
297                                                    data, *p_hlen, &_eth);
298                         if (!eth)
299                                 return FLOW_DISSECT_RET_OUT_BAD;
300                         *p_proto = eth->h_proto;
301                         offset += sizeof(*eth);
302
303                         /* Cap headers that we access via pointers at the
304                          * end of the Ethernet header as our maximum alignment
305                          * at that point is only 2 bytes.
306                          */
307                         if (NET_IP_ALIGN)
308                                 *p_hlen = *p_nhoff + offset;
309                 }
310         } else { /* version 1, must be PPTP */
311                 u8 _ppp_hdr[PPP_HDRLEN];
312                 u8 *ppp_hdr;
313
314                 if (hdr->flags & GRE_ACK)
315                         offset += sizeof(((struct pptp_gre_header *) 0)->ack);
316
317                 ppp_hdr = __skb_header_pointer(skb, *p_nhoff + offset,
318                                                sizeof(_ppp_hdr),
319                                                data, *p_hlen, _ppp_hdr);
320                 if (!ppp_hdr)
321                         return FLOW_DISSECT_RET_OUT_BAD;
322
323                 switch (PPP_PROTOCOL(ppp_hdr)) {
324                 case PPP_IP:
325                         *p_proto = htons(ETH_P_IP);
326                         break;
327                 case PPP_IPV6:
328                         *p_proto = htons(ETH_P_IPV6);
329                         break;
330                 default:
331                         /* Could probably catch some more like MPLS */
332                         break;
333                 }
334
335                 offset += PPP_HDRLEN;
336         }
337
338         *p_nhoff += offset;
339         key_control->flags |= FLOW_DIS_ENCAPSULATION;
340         if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
341                 return FLOW_DISSECT_RET_OUT_GOOD;
342
343         return FLOW_DISSECT_RET_OUT_PROTO_AGAIN;
344 }
345
346 static void
347 __skb_flow_dissect_tcp(const struct sk_buff *skb,
348                        struct flow_dissector *flow_dissector,
349                        void *target_container, void *data, int thoff, int hlen)
350 {
351         struct flow_dissector_key_tcp *key_tcp;
352         struct tcphdr *th, _th;
353
354         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_TCP))
355                 return;
356
357         th = __skb_header_pointer(skb, thoff, sizeof(_th), data, hlen, &_th);
358         if (!th)
359                 return;
360
361         if (unlikely(__tcp_hdrlen(th) < sizeof(_th)))
362                 return;
363
364         key_tcp = skb_flow_dissector_target(flow_dissector,
365                                             FLOW_DISSECTOR_KEY_TCP,
366                                             target_container);
367         key_tcp->flags = (*(__be16 *) &tcp_flag_word(th) & htons(0x0FFF));
368 }
369
370 static void
371 __skb_flow_dissect_ipv4(const struct sk_buff *skb,
372                         struct flow_dissector *flow_dissector,
373                         void *target_container, void *data, const struct iphdr *iph)
374 {
375         struct flow_dissector_key_ip *key_ip;
376
377         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
378                 return;
379
380         key_ip = skb_flow_dissector_target(flow_dissector,
381                                            FLOW_DISSECTOR_KEY_IP,
382                                            target_container);
383         key_ip->tos = iph->tos;
384         key_ip->ttl = iph->ttl;
385 }
386
387 static void
388 __skb_flow_dissect_ipv6(const struct sk_buff *skb,
389                         struct flow_dissector *flow_dissector,
390                         void *target_container, void *data, const struct ipv6hdr *iph)
391 {
392         struct flow_dissector_key_ip *key_ip;
393
394         if (!dissector_uses_key(flow_dissector, FLOW_DISSECTOR_KEY_IP))
395                 return;
396
397         key_ip = skb_flow_dissector_target(flow_dissector,
398                                            FLOW_DISSECTOR_KEY_IP,
399                                            target_container);
400         key_ip->tos = ipv6_get_dsfield(iph);
401         key_ip->ttl = iph->hop_limit;
402 }
403
404 /**
405  * __skb_flow_dissect - extract the flow_keys struct and return it
406  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
407  * @flow_dissector: list of keys to dissect
408  * @target_container: target structure to put dissected values into
409  * @data: raw buffer pointer to the packet, if NULL use skb->data
410  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
411  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
412  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
413  *
414  * The function will try to retrieve individual keys into target specified
415  * by flow_dissector from either the skbuff or a raw buffer specified by the
416  * rest parameters.
417  *
418  * Caller must take care of zeroing target container memory.
419  */
420 bool __skb_flow_dissect(const struct sk_buff *skb,
421                         struct flow_dissector *flow_dissector,
422                         void *target_container,
423                         void *data, __be16 proto, int nhoff, int hlen,
424                         unsigned int flags)
425 {
426         struct flow_dissector_key_control *key_control;
427         struct flow_dissector_key_basic *key_basic;
428         struct flow_dissector_key_addrs *key_addrs;
429         struct flow_dissector_key_ports *key_ports;
430         struct flow_dissector_key_icmp *key_icmp;
431         struct flow_dissector_key_tags *key_tags;
432         struct flow_dissector_key_vlan *key_vlan;
433         bool skip_vlan = false;
434         u8 ip_proto = 0;
435         bool ret;
436
437         if (!data) {
438                 data = skb->data;
439                 proto = skb_vlan_tag_present(skb) ?
440                          skb->vlan_proto : skb->protocol;
441                 nhoff = skb_network_offset(skb);
442                 hlen = skb_headlen(skb);
443         }
444
445         /* It is ensured by skb_flow_dissector_init() that control key will
446          * be always present.
447          */
448         key_control = skb_flow_dissector_target(flow_dissector,
449                                                 FLOW_DISSECTOR_KEY_CONTROL,
450                                                 target_container);
451
452         /* It is ensured by skb_flow_dissector_init() that basic key will
453          * be always present.
454          */
455         key_basic = skb_flow_dissector_target(flow_dissector,
456                                               FLOW_DISSECTOR_KEY_BASIC,
457                                               target_container);
458
459         if (dissector_uses_key(flow_dissector,
460                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
461                 struct ethhdr *eth = eth_hdr(skb);
462                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
463
464                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
465                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
466                                                           target_container);
467                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
468         }
469
470 proto_again:
471         switch (proto) {
472         case htons(ETH_P_IP): {
473                 const struct iphdr *iph;
474                 struct iphdr _iph;
475 ip:
476                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
477                 if (!iph || iph->ihl < 5)
478                         goto out_bad;
479                 nhoff += iph->ihl * 4;
480
481                 ip_proto = iph->protocol;
482
483                 if (dissector_uses_key(flow_dissector,
484                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
485                         key_addrs = skb_flow_dissector_target(flow_dissector,
486                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
487                                                               target_container);
488
489                         memcpy(&key_addrs->v4addrs, &iph->saddr,
490                                sizeof(key_addrs->v4addrs));
491                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
492                 }
493
494                 if (ip_is_fragment(iph)) {
495                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
496
497                         if (iph->frag_off & htons(IP_OFFSET)) {
498                                 goto out_good;
499                         } else {
500                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
501                                 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
502                                         goto out_good;
503                         }
504                 }
505
506                 __skb_flow_dissect_ipv4(skb, flow_dissector,
507                                         target_container, data, iph);
508
509                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
510                         goto out_good;
511
512                 break;
513         }
514         case htons(ETH_P_IPV6): {
515                 const struct ipv6hdr *iph;
516                 struct ipv6hdr _iph;
517
518 ipv6:
519                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
520                 if (!iph)
521                         goto out_bad;
522
523                 ip_proto = iph->nexthdr;
524                 nhoff += sizeof(struct ipv6hdr);
525
526                 if (dissector_uses_key(flow_dissector,
527                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
528                         key_addrs = skb_flow_dissector_target(flow_dissector,
529                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
530                                                               target_container);
531
532                         memcpy(&key_addrs->v6addrs, &iph->saddr,
533                                sizeof(key_addrs->v6addrs));
534                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
535                 }
536
537                 if ((dissector_uses_key(flow_dissector,
538                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
539                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
540                     ip6_flowlabel(iph)) {
541                         __be32 flow_label = ip6_flowlabel(iph);
542
543                         if (dissector_uses_key(flow_dissector,
544                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
545                                 key_tags = skb_flow_dissector_target(flow_dissector,
546                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
547                                                                      target_container);
548                                 key_tags->flow_label = ntohl(flow_label);
549                         }
550                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
551                                 goto out_good;
552                 }
553
554                 __skb_flow_dissect_ipv6(skb, flow_dissector,
555                                         target_container, data, iph);
556
557                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
558                         goto out_good;
559
560                 break;
561         }
562         case htons(ETH_P_8021AD):
563         case htons(ETH_P_8021Q): {
564                 const struct vlan_hdr *vlan;
565                 struct vlan_hdr _vlan;
566                 bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
567
568                 if (vlan_tag_present)
569                         proto = skb->protocol;
570
571                 if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
572                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
573                                                     data, hlen, &_vlan);
574                         if (!vlan)
575                                 goto out_bad;
576                         proto = vlan->h_vlan_encapsulated_proto;
577                         nhoff += sizeof(*vlan);
578                         if (skip_vlan)
579                                 goto proto_again;
580                 }
581
582                 skip_vlan = true;
583                 if (dissector_uses_key(flow_dissector,
584                                        FLOW_DISSECTOR_KEY_VLAN)) {
585                         key_vlan = skb_flow_dissector_target(flow_dissector,
586                                                              FLOW_DISSECTOR_KEY_VLAN,
587                                                              target_container);
588
589                         if (vlan_tag_present) {
590                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
591                                 key_vlan->vlan_priority =
592                                         (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
593                         } else {
594                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
595                                         VLAN_VID_MASK;
596                                 key_vlan->vlan_priority =
597                                         (ntohs(vlan->h_vlan_TCI) &
598                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
599                         }
600                 }
601
602                 goto proto_again;
603         }
604         case htons(ETH_P_PPP_SES): {
605                 struct {
606                         struct pppoe_hdr hdr;
607                         __be16 proto;
608                 } *hdr, _hdr;
609                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
610                 if (!hdr)
611                         goto out_bad;
612                 proto = hdr->proto;
613                 nhoff += PPPOE_SES_HLEN;
614                 switch (proto) {
615                 case htons(PPP_IP):
616                         goto ip;
617                 case htons(PPP_IPV6):
618                         goto ipv6;
619                 default:
620                         goto out_bad;
621                 }
622         }
623         case htons(ETH_P_TIPC): {
624                 struct {
625                         __be32 pre[3];
626                         __be32 srcnode;
627                 } *hdr, _hdr;
628                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
629                 if (!hdr)
630                         goto out_bad;
631
632                 if (dissector_uses_key(flow_dissector,
633                                        FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
634                         key_addrs = skb_flow_dissector_target(flow_dissector,
635                                                               FLOW_DISSECTOR_KEY_TIPC_ADDRS,
636                                                               target_container);
637                         key_addrs->tipcaddrs.srcnode = hdr->srcnode;
638                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
639                 }
640                 goto out_good;
641         }
642
643         case htons(ETH_P_MPLS_UC):
644         case htons(ETH_P_MPLS_MC):
645 mpls:
646                 switch (__skb_flow_dissect_mpls(skb, flow_dissector,
647                                                 target_container, data,
648                                                 nhoff, hlen)) {
649                 case FLOW_DISSECT_RET_OUT_GOOD:
650                         goto out_good;
651                 case FLOW_DISSECT_RET_OUT_BAD:
652                 default:
653                         goto out_bad;
654                 }
655         case htons(ETH_P_FCOE):
656                 if ((hlen - nhoff) < FCOE_HEADER_LEN)
657                         goto out_bad;
658
659                 nhoff += FCOE_HEADER_LEN;
660                 goto out_good;
661
662         case htons(ETH_P_ARP):
663         case htons(ETH_P_RARP):
664                 switch (__skb_flow_dissect_arp(skb, flow_dissector,
665                                                target_container, data,
666                                                nhoff, hlen)) {
667                 case FLOW_DISSECT_RET_OUT_GOOD:
668                         goto out_good;
669                 case FLOW_DISSECT_RET_OUT_BAD:
670                 default:
671                         goto out_bad;
672                 }
673         default:
674                 goto out_bad;
675         }
676
677 ip_proto_again:
678         switch (ip_proto) {
679         case IPPROTO_GRE:
680                 switch (__skb_flow_dissect_gre(skb, key_control, flow_dissector,
681                                                target_container, data,
682                                                &proto, &nhoff, &hlen, flags)) {
683                 case FLOW_DISSECT_RET_OUT_GOOD:
684                         goto out_good;
685                 case FLOW_DISSECT_RET_OUT_BAD:
686                         goto out_bad;
687                 case FLOW_DISSECT_RET_OUT_PROTO_AGAIN:
688                         goto proto_again;
689                 }
690         case NEXTHDR_HOP:
691         case NEXTHDR_ROUTING:
692         case NEXTHDR_DEST: {
693                 u8 _opthdr[2], *opthdr;
694
695                 if (proto != htons(ETH_P_IPV6))
696                         break;
697
698                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
699                                               data, hlen, &_opthdr);
700                 if (!opthdr)
701                         goto out_bad;
702
703                 ip_proto = opthdr[0];
704                 nhoff += (opthdr[1] + 1) << 3;
705
706                 goto ip_proto_again;
707         }
708         case NEXTHDR_FRAGMENT: {
709                 struct frag_hdr _fh, *fh;
710
711                 if (proto != htons(ETH_P_IPV6))
712                         break;
713
714                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
715                                           data, hlen, &_fh);
716
717                 if (!fh)
718                         goto out_bad;
719
720                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
721
722                 nhoff += sizeof(_fh);
723                 ip_proto = fh->nexthdr;
724
725                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
726                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
727                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
728                                 goto ip_proto_again;
729                 }
730                 goto out_good;
731         }
732         case IPPROTO_IPIP:
733                 proto = htons(ETH_P_IP);
734
735                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
736                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
737                         goto out_good;
738
739                 goto ip;
740         case IPPROTO_IPV6:
741                 proto = htons(ETH_P_IPV6);
742
743                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
744                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
745                         goto out_good;
746
747                 goto ipv6;
748         case IPPROTO_MPLS:
749                 proto = htons(ETH_P_MPLS_UC);
750                 goto mpls;
751         case IPPROTO_TCP:
752                 __skb_flow_dissect_tcp(skb, flow_dissector, target_container,
753                                        data, nhoff, hlen);
754                 break;
755         default:
756                 break;
757         }
758
759         if (dissector_uses_key(flow_dissector,
760                                FLOW_DISSECTOR_KEY_PORTS)) {
761                 key_ports = skb_flow_dissector_target(flow_dissector,
762                                                       FLOW_DISSECTOR_KEY_PORTS,
763                                                       target_container);
764                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
765                                                         data, hlen);
766         }
767
768         if (dissector_uses_key(flow_dissector,
769                                FLOW_DISSECTOR_KEY_ICMP)) {
770                 key_icmp = skb_flow_dissector_target(flow_dissector,
771                                                      FLOW_DISSECTOR_KEY_ICMP,
772                                                      target_container);
773                 key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
774         }
775
776 out_good:
777         ret = true;
778
779         key_control->thoff = (u16)nhoff;
780 out:
781         key_basic->n_proto = proto;
782         key_basic->ip_proto = ip_proto;
783
784         return ret;
785
786 out_bad:
787         ret = false;
788         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
789         goto out;
790 }
791 EXPORT_SYMBOL(__skb_flow_dissect);
792
793 static u32 hashrnd __read_mostly;
794 static __always_inline void __flow_hash_secret_init(void)
795 {
796         net_get_random_once(&hashrnd, sizeof(hashrnd));
797 }
798
799 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
800                                              u32 keyval)
801 {
802         return jhash2(words, length, keyval);
803 }
804
805 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
806 {
807         const void *p = flow;
808
809         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
810         return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
811 }
812
813 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
814 {
815         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
816         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
817         BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
818                      sizeof(*flow) - sizeof(flow->addrs));
819
820         switch (flow->control.addr_type) {
821         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
822                 diff -= sizeof(flow->addrs.v4addrs);
823                 break;
824         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
825                 diff -= sizeof(flow->addrs.v6addrs);
826                 break;
827         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
828                 diff -= sizeof(flow->addrs.tipcaddrs);
829                 break;
830         }
831         return (sizeof(*flow) - diff) / sizeof(u32);
832 }
833
834 __be32 flow_get_u32_src(const struct flow_keys *flow)
835 {
836         switch (flow->control.addr_type) {
837         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
838                 return flow->addrs.v4addrs.src;
839         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
840                 return (__force __be32)ipv6_addr_hash(
841                         &flow->addrs.v6addrs.src);
842         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
843                 return flow->addrs.tipcaddrs.srcnode;
844         default:
845                 return 0;
846         }
847 }
848 EXPORT_SYMBOL(flow_get_u32_src);
849
850 __be32 flow_get_u32_dst(const struct flow_keys *flow)
851 {
852         switch (flow->control.addr_type) {
853         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
854                 return flow->addrs.v4addrs.dst;
855         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
856                 return (__force __be32)ipv6_addr_hash(
857                         &flow->addrs.v6addrs.dst);
858         default:
859                 return 0;
860         }
861 }
862 EXPORT_SYMBOL(flow_get_u32_dst);
863
864 static inline void __flow_hash_consistentify(struct flow_keys *keys)
865 {
866         int addr_diff, i;
867
868         switch (keys->control.addr_type) {
869         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
870                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
871                             (__force u32)keys->addrs.v4addrs.src;
872                 if ((addr_diff < 0) ||
873                     (addr_diff == 0 &&
874                      ((__force u16)keys->ports.dst <
875                       (__force u16)keys->ports.src))) {
876                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
877                         swap(keys->ports.src, keys->ports.dst);
878                 }
879                 break;
880         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
881                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
882                                    &keys->addrs.v6addrs.src,
883                                    sizeof(keys->addrs.v6addrs.dst));
884                 if ((addr_diff < 0) ||
885                     (addr_diff == 0 &&
886                      ((__force u16)keys->ports.dst <
887                       (__force u16)keys->ports.src))) {
888                         for (i = 0; i < 4; i++)
889                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
890                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
891                         swap(keys->ports.src, keys->ports.dst);
892                 }
893                 break;
894         }
895 }
896
897 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
898 {
899         u32 hash;
900
901         __flow_hash_consistentify(keys);
902
903         hash = __flow_hash_words(flow_keys_hash_start(keys),
904                                  flow_keys_hash_length(keys), keyval);
905         if (!hash)
906                 hash = 1;
907
908         return hash;
909 }
910
911 u32 flow_hash_from_keys(struct flow_keys *keys)
912 {
913         __flow_hash_secret_init();
914         return __flow_hash_from_keys(keys, hashrnd);
915 }
916 EXPORT_SYMBOL(flow_hash_from_keys);
917
918 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
919                                   struct flow_keys *keys, u32 keyval)
920 {
921         skb_flow_dissect_flow_keys(skb, keys,
922                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
923
924         return __flow_hash_from_keys(keys, keyval);
925 }
926
927 struct _flow_keys_digest_data {
928         __be16  n_proto;
929         u8      ip_proto;
930         u8      padding;
931         __be32  ports;
932         __be32  src;
933         __be32  dst;
934 };
935
936 void make_flow_keys_digest(struct flow_keys_digest *digest,
937                            const struct flow_keys *flow)
938 {
939         struct _flow_keys_digest_data *data =
940             (struct _flow_keys_digest_data *)digest;
941
942         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
943
944         memset(digest, 0, sizeof(*digest));
945
946         data->n_proto = flow->basic.n_proto;
947         data->ip_proto = flow->basic.ip_proto;
948         data->ports = flow->ports.ports;
949         data->src = flow->addrs.v4addrs.src;
950         data->dst = flow->addrs.v4addrs.dst;
951 }
952 EXPORT_SYMBOL(make_flow_keys_digest);
953
954 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
955
956 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
957 {
958         struct flow_keys keys;
959
960         __flow_hash_secret_init();
961
962         memset(&keys, 0, sizeof(keys));
963         __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
964                            NULL, 0, 0, 0,
965                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
966
967         return __flow_hash_from_keys(&keys, hashrnd);
968 }
969 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
970
971 /**
972  * __skb_get_hash: calculate a flow hash
973  * @skb: sk_buff to calculate flow hash from
974  *
975  * This function calculates a flow hash based on src/dst addresses
976  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
977  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
978  * if hash is a canonical 4-tuple hash over transport ports.
979  */
980 void __skb_get_hash(struct sk_buff *skb)
981 {
982         struct flow_keys keys;
983         u32 hash;
984
985         __flow_hash_secret_init();
986
987         hash = ___skb_get_hash(skb, &keys, hashrnd);
988
989         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
990 }
991 EXPORT_SYMBOL(__skb_get_hash);
992
993 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
994 {
995         struct flow_keys keys;
996
997         return ___skb_get_hash(skb, &keys, perturb);
998 }
999 EXPORT_SYMBOL(skb_get_hash_perturb);
1000
1001 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1002 {
1003         struct flow_keys keys;
1004
1005         memset(&keys, 0, sizeof(keys));
1006
1007         memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
1008                sizeof(keys.addrs.v6addrs.src));
1009         memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
1010                sizeof(keys.addrs.v6addrs.dst));
1011         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1012         keys.ports.src = fl6->fl6_sport;
1013         keys.ports.dst = fl6->fl6_dport;
1014         keys.keyid.keyid = fl6->fl6_gre_key;
1015         keys.tags.flow_label = (__force u32)fl6->flowlabel;
1016         keys.basic.ip_proto = fl6->flowi6_proto;
1017
1018         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
1019                           flow_keys_have_l4(&keys));
1020
1021         return skb->hash;
1022 }
1023 EXPORT_SYMBOL(__skb_get_hash_flowi6);
1024
1025 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
1026 {
1027         struct flow_keys keys;
1028
1029         memset(&keys, 0, sizeof(keys));
1030
1031         keys.addrs.v4addrs.src = fl4->saddr;
1032         keys.addrs.v4addrs.dst = fl4->daddr;
1033         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1034         keys.ports.src = fl4->fl4_sport;
1035         keys.ports.dst = fl4->fl4_dport;
1036         keys.keyid.keyid = fl4->fl4_gre_key;
1037         keys.basic.ip_proto = fl4->flowi4_proto;
1038
1039         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
1040                           flow_keys_have_l4(&keys));
1041
1042         return skb->hash;
1043 }
1044 EXPORT_SYMBOL(__skb_get_hash_flowi4);
1045
1046 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1047                    const struct flow_keys *keys, int hlen)
1048 {
1049         u32 poff = keys->control.thoff;
1050
1051         /* skip L4 headers for fragments after the first */
1052         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
1053             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
1054                 return poff;
1055
1056         switch (keys->basic.ip_proto) {
1057         case IPPROTO_TCP: {
1058                 /* access doff as u8 to avoid unaligned access */
1059                 const u8 *doff;
1060                 u8 _doff;
1061
1062                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
1063                                             data, hlen, &_doff);
1064                 if (!doff)
1065                         return poff;
1066
1067                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
1068                 break;
1069         }
1070         case IPPROTO_UDP:
1071         case IPPROTO_UDPLITE:
1072                 poff += sizeof(struct udphdr);
1073                 break;
1074         /* For the rest, we do not really care about header
1075          * extensions at this point for now.
1076          */
1077         case IPPROTO_ICMP:
1078                 poff += sizeof(struct icmphdr);
1079                 break;
1080         case IPPROTO_ICMPV6:
1081                 poff += sizeof(struct icmp6hdr);
1082                 break;
1083         case IPPROTO_IGMP:
1084                 poff += sizeof(struct igmphdr);
1085                 break;
1086         case IPPROTO_DCCP:
1087                 poff += sizeof(struct dccp_hdr);
1088                 break;
1089         case IPPROTO_SCTP:
1090                 poff += sizeof(struct sctphdr);
1091                 break;
1092         }
1093
1094         return poff;
1095 }
1096
1097 /**
1098  * skb_get_poff - get the offset to the payload
1099  * @skb: sk_buff to get the payload offset from
1100  *
1101  * The function will get the offset to the payload as far as it could
1102  * be dissected.  The main user is currently BPF, so that we can dynamically
1103  * truncate packets without needing to push actual payload to the user
1104  * space and can analyze headers only, instead.
1105  */
1106 u32 skb_get_poff(const struct sk_buff *skb)
1107 {
1108         struct flow_keys keys;
1109
1110         if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
1111                 return 0;
1112
1113         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
1114 }
1115
1116 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
1117 {
1118         memset(keys, 0, sizeof(*keys));
1119
1120         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
1121             sizeof(keys->addrs.v6addrs.src));
1122         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
1123             sizeof(keys->addrs.v6addrs.dst));
1124         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
1125         keys->ports.src = fl6->fl6_sport;
1126         keys->ports.dst = fl6->fl6_dport;
1127         keys->keyid.keyid = fl6->fl6_gre_key;
1128         keys->tags.flow_label = (__force u32)fl6->flowlabel;
1129         keys->basic.ip_proto = fl6->flowi6_proto;
1130
1131         return flow_hash_from_keys(keys);
1132 }
1133 EXPORT_SYMBOL(__get_hash_from_flowi6);
1134
1135 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
1136 {
1137         memset(keys, 0, sizeof(*keys));
1138
1139         keys->addrs.v4addrs.src = fl4->saddr;
1140         keys->addrs.v4addrs.dst = fl4->daddr;
1141         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
1142         keys->ports.src = fl4->fl4_sport;
1143         keys->ports.dst = fl4->fl4_dport;
1144         keys->keyid.keyid = fl4->fl4_gre_key;
1145         keys->basic.ip_proto = fl4->flowi4_proto;
1146
1147         return flow_hash_from_keys(keys);
1148 }
1149 EXPORT_SYMBOL(__get_hash_from_flowi4);
1150
1151 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
1152         {
1153                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1154                 .offset = offsetof(struct flow_keys, control),
1155         },
1156         {
1157                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1158                 .offset = offsetof(struct flow_keys, basic),
1159         },
1160         {
1161                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1162                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1163         },
1164         {
1165                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1166                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1167         },
1168         {
1169                 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
1170                 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
1171         },
1172         {
1173                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1174                 .offset = offsetof(struct flow_keys, ports),
1175         },
1176         {
1177                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
1178                 .offset = offsetof(struct flow_keys, vlan),
1179         },
1180         {
1181                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
1182                 .offset = offsetof(struct flow_keys, tags),
1183         },
1184         {
1185                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
1186                 .offset = offsetof(struct flow_keys, keyid),
1187         },
1188 };
1189
1190 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
1191         {
1192                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1193                 .offset = offsetof(struct flow_keys, control),
1194         },
1195         {
1196                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1197                 .offset = offsetof(struct flow_keys, basic),
1198         },
1199         {
1200                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1201                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1202         },
1203         {
1204                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1205                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1206         },
1207         {
1208                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1209                 .offset = offsetof(struct flow_keys, ports),
1210         },
1211 };
1212
1213 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
1214         {
1215                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1216                 .offset = offsetof(struct flow_keys, control),
1217         },
1218         {
1219                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1220                 .offset = offsetof(struct flow_keys, basic),
1221         },
1222 };
1223
1224 struct flow_dissector flow_keys_dissector __read_mostly;
1225 EXPORT_SYMBOL(flow_keys_dissector);
1226
1227 struct flow_dissector flow_keys_buf_dissector __read_mostly;
1228
1229 static int __init init_default_flow_dissectors(void)
1230 {
1231         skb_flow_dissector_init(&flow_keys_dissector,
1232                                 flow_keys_dissector_keys,
1233                                 ARRAY_SIZE(flow_keys_dissector_keys));
1234         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1235                                 flow_keys_dissector_symmetric_keys,
1236                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1237         skb_flow_dissector_init(&flow_keys_buf_dissector,
1238                                 flow_keys_buf_dissector_keys,
1239                                 ARRAY_SIZE(flow_keys_buf_dissector_keys));
1240         return 0;
1241 }
1242
1243 core_initcall(init_default_flow_dissectors);