Merge tag 'sound-4.10-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / net / core / flow_dissector.c
1 #include <linux/kernel.h>
2 #include <linux/skbuff.h>
3 #include <linux/export.h>
4 #include <linux/ip.h>
5 #include <linux/ipv6.h>
6 #include <linux/if_vlan.h>
7 #include <net/ip.h>
8 #include <net/ipv6.h>
9 #include <net/gre.h>
10 #include <net/pptp.h>
11 #include <linux/igmp.h>
12 #include <linux/icmp.h>
13 #include <linux/sctp.h>
14 #include <linux/dccp.h>
15 #include <linux/if_tunnel.h>
16 #include <linux/if_pppox.h>
17 #include <linux/ppp_defs.h>
18 #include <linux/stddef.h>
19 #include <linux/if_ether.h>
20 #include <linux/mpls.h>
21 #include <net/flow_dissector.h>
22 #include <scsi/fc/fc_fcoe.h>
23
24 static void dissector_set_key(struct flow_dissector *flow_dissector,
25                               enum flow_dissector_key_id key_id)
26 {
27         flow_dissector->used_keys |= (1 << key_id);
28 }
29
30 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
31                              const struct flow_dissector_key *key,
32                              unsigned int key_count)
33 {
34         unsigned int i;
35
36         memset(flow_dissector, 0, sizeof(*flow_dissector));
37
38         for (i = 0; i < key_count; i++, key++) {
39                 /* User should make sure that every key target offset is withing
40                  * boundaries of unsigned short.
41                  */
42                 BUG_ON(key->offset > USHRT_MAX);
43                 BUG_ON(dissector_uses_key(flow_dissector,
44                                           key->key_id));
45
46                 dissector_set_key(flow_dissector, key->key_id);
47                 flow_dissector->offset[key->key_id] = key->offset;
48         }
49
50         /* Ensure that the dissector always includes control and basic key.
51          * That way we are able to avoid handling lack of these in fast path.
52          */
53         BUG_ON(!dissector_uses_key(flow_dissector,
54                                    FLOW_DISSECTOR_KEY_CONTROL));
55         BUG_ON(!dissector_uses_key(flow_dissector,
56                                    FLOW_DISSECTOR_KEY_BASIC));
57 }
58 EXPORT_SYMBOL(skb_flow_dissector_init);
59
60 /**
61  * skb_flow_get_be16 - extract be16 entity
62  * @skb: sk_buff to extract from
63  * @poff: offset to extract at
64  * @data: raw buffer pointer to the packet
65  * @hlen: packet header length
66  *
67  * The function will try to retrieve a be32 entity at
68  * offset poff
69  */
70 static __be16 skb_flow_get_be16(const struct sk_buff *skb, int poff,
71                                 void *data, int hlen)
72 {
73         __be16 *u, _u;
74
75         u = __skb_header_pointer(skb, poff, sizeof(_u), data, hlen, &_u);
76         if (u)
77                 return *u;
78
79         return 0;
80 }
81
82 /**
83  * __skb_flow_get_ports - extract the upper layer ports and return them
84  * @skb: sk_buff to extract the ports from
85  * @thoff: transport header offset
86  * @ip_proto: protocol for which to get port offset
87  * @data: raw buffer pointer to the packet, if NULL use skb->data
88  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
89  *
90  * The function will try to retrieve the ports at offset thoff + poff where poff
91  * is the protocol port offset returned from proto_ports_offset
92  */
93 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
94                             void *data, int hlen)
95 {
96         int poff = proto_ports_offset(ip_proto);
97
98         if (!data) {
99                 data = skb->data;
100                 hlen = skb_headlen(skb);
101         }
102
103         if (poff >= 0) {
104                 __be32 *ports, _ports;
105
106                 ports = __skb_header_pointer(skb, thoff + poff,
107                                              sizeof(_ports), data, hlen, &_ports);
108                 if (ports)
109                         return *ports;
110         }
111
112         return 0;
113 }
114 EXPORT_SYMBOL(__skb_flow_get_ports);
115
116 /**
117  * __skb_flow_dissect - extract the flow_keys struct and return it
118  * @skb: sk_buff to extract the flow from, can be NULL if the rest are specified
119  * @flow_dissector: list of keys to dissect
120  * @target_container: target structure to put dissected values into
121  * @data: raw buffer pointer to the packet, if NULL use skb->data
122  * @proto: protocol for which to get the flow, if @data is NULL use skb->protocol
123  * @nhoff: network header offset, if @data is NULL use skb_network_offset(skb)
124  * @hlen: packet header length, if @data is NULL use skb_headlen(skb)
125  *
126  * The function will try to retrieve individual keys into target specified
127  * by flow_dissector from either the skbuff or a raw buffer specified by the
128  * rest parameters.
129  *
130  * Caller must take care of zeroing target container memory.
131  */
132 bool __skb_flow_dissect(const struct sk_buff *skb,
133                         struct flow_dissector *flow_dissector,
134                         void *target_container,
135                         void *data, __be16 proto, int nhoff, int hlen,
136                         unsigned int flags)
137 {
138         struct flow_dissector_key_control *key_control;
139         struct flow_dissector_key_basic *key_basic;
140         struct flow_dissector_key_addrs *key_addrs;
141         struct flow_dissector_key_ports *key_ports;
142         struct flow_dissector_key_icmp *key_icmp;
143         struct flow_dissector_key_tags *key_tags;
144         struct flow_dissector_key_vlan *key_vlan;
145         struct flow_dissector_key_keyid *key_keyid;
146         bool skip_vlan = false;
147         u8 ip_proto = 0;
148         bool ret;
149
150         if (!data) {
151                 data = skb->data;
152                 proto = skb_vlan_tag_present(skb) ?
153                          skb->vlan_proto : skb->protocol;
154                 nhoff = skb_network_offset(skb);
155                 hlen = skb_headlen(skb);
156         }
157
158         /* It is ensured by skb_flow_dissector_init() that control key will
159          * be always present.
160          */
161         key_control = skb_flow_dissector_target(flow_dissector,
162                                                 FLOW_DISSECTOR_KEY_CONTROL,
163                                                 target_container);
164
165         /* It is ensured by skb_flow_dissector_init() that basic key will
166          * be always present.
167          */
168         key_basic = skb_flow_dissector_target(flow_dissector,
169                                               FLOW_DISSECTOR_KEY_BASIC,
170                                               target_container);
171
172         if (dissector_uses_key(flow_dissector,
173                                FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
174                 struct ethhdr *eth = eth_hdr(skb);
175                 struct flow_dissector_key_eth_addrs *key_eth_addrs;
176
177                 key_eth_addrs = skb_flow_dissector_target(flow_dissector,
178                                                           FLOW_DISSECTOR_KEY_ETH_ADDRS,
179                                                           target_container);
180                 memcpy(key_eth_addrs, &eth->h_dest, sizeof(*key_eth_addrs));
181         }
182
183 again:
184         switch (proto) {
185         case htons(ETH_P_IP): {
186                 const struct iphdr *iph;
187                 struct iphdr _iph;
188 ip:
189                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
190                 if (!iph || iph->ihl < 5)
191                         goto out_bad;
192                 nhoff += iph->ihl * 4;
193
194                 ip_proto = iph->protocol;
195
196                 if (dissector_uses_key(flow_dissector,
197                                        FLOW_DISSECTOR_KEY_IPV4_ADDRS)) {
198                         key_addrs = skb_flow_dissector_target(flow_dissector,
199                                                               FLOW_DISSECTOR_KEY_IPV4_ADDRS,
200                                                               target_container);
201
202                         memcpy(&key_addrs->v4addrs, &iph->saddr,
203                                sizeof(key_addrs->v4addrs));
204                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
205                 }
206
207                 if (ip_is_fragment(iph)) {
208                         key_control->flags |= FLOW_DIS_IS_FRAGMENT;
209
210                         if (iph->frag_off & htons(IP_OFFSET)) {
211                                 goto out_good;
212                         } else {
213                                 key_control->flags |= FLOW_DIS_FIRST_FRAG;
214                                 if (!(flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG))
215                                         goto out_good;
216                         }
217                 }
218
219                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
220                         goto out_good;
221
222                 break;
223         }
224         case htons(ETH_P_IPV6): {
225                 const struct ipv6hdr *iph;
226                 struct ipv6hdr _iph;
227
228 ipv6:
229                 iph = __skb_header_pointer(skb, nhoff, sizeof(_iph), data, hlen, &_iph);
230                 if (!iph)
231                         goto out_bad;
232
233                 ip_proto = iph->nexthdr;
234                 nhoff += sizeof(struct ipv6hdr);
235
236                 if (dissector_uses_key(flow_dissector,
237                                        FLOW_DISSECTOR_KEY_IPV6_ADDRS)) {
238                         key_addrs = skb_flow_dissector_target(flow_dissector,
239                                                               FLOW_DISSECTOR_KEY_IPV6_ADDRS,
240                                                               target_container);
241
242                         memcpy(&key_addrs->v6addrs, &iph->saddr,
243                                sizeof(key_addrs->v6addrs));
244                         key_control->addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
245                 }
246
247                 if ((dissector_uses_key(flow_dissector,
248                                         FLOW_DISSECTOR_KEY_FLOW_LABEL) ||
249                      (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)) &&
250                     ip6_flowlabel(iph)) {
251                         __be32 flow_label = ip6_flowlabel(iph);
252
253                         if (dissector_uses_key(flow_dissector,
254                                                FLOW_DISSECTOR_KEY_FLOW_LABEL)) {
255                                 key_tags = skb_flow_dissector_target(flow_dissector,
256                                                                      FLOW_DISSECTOR_KEY_FLOW_LABEL,
257                                                                      target_container);
258                                 key_tags->flow_label = ntohl(flow_label);
259                         }
260                         if (flags & FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL)
261                                 goto out_good;
262                 }
263
264                 if (flags & FLOW_DISSECTOR_F_STOP_AT_L3)
265                         goto out_good;
266
267                 break;
268         }
269         case htons(ETH_P_8021AD):
270         case htons(ETH_P_8021Q): {
271                 const struct vlan_hdr *vlan;
272                 struct vlan_hdr _vlan;
273                 bool vlan_tag_present = skb && skb_vlan_tag_present(skb);
274
275                 if (vlan_tag_present)
276                         proto = skb->protocol;
277
278                 if (!vlan_tag_present || eth_type_vlan(skb->protocol)) {
279                         vlan = __skb_header_pointer(skb, nhoff, sizeof(_vlan),
280                                                     data, hlen, &_vlan);
281                         if (!vlan)
282                                 goto out_bad;
283                         proto = vlan->h_vlan_encapsulated_proto;
284                         nhoff += sizeof(*vlan);
285                         if (skip_vlan)
286                                 goto again;
287                 }
288
289                 skip_vlan = true;
290                 if (dissector_uses_key(flow_dissector,
291                                        FLOW_DISSECTOR_KEY_VLAN)) {
292                         key_vlan = skb_flow_dissector_target(flow_dissector,
293                                                              FLOW_DISSECTOR_KEY_VLAN,
294                                                              target_container);
295
296                         if (vlan_tag_present) {
297                                 key_vlan->vlan_id = skb_vlan_tag_get_id(skb);
298                                 key_vlan->vlan_priority =
299                                         (skb_vlan_tag_get_prio(skb) >> VLAN_PRIO_SHIFT);
300                         } else {
301                                 key_vlan->vlan_id = ntohs(vlan->h_vlan_TCI) &
302                                         VLAN_VID_MASK;
303                                 key_vlan->vlan_priority =
304                                         (ntohs(vlan->h_vlan_TCI) &
305                                          VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
306                         }
307                 }
308
309                 goto again;
310         }
311         case htons(ETH_P_PPP_SES): {
312                 struct {
313                         struct pppoe_hdr hdr;
314                         __be16 proto;
315                 } *hdr, _hdr;
316                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
317                 if (!hdr)
318                         goto out_bad;
319                 proto = hdr->proto;
320                 nhoff += PPPOE_SES_HLEN;
321                 switch (proto) {
322                 case htons(PPP_IP):
323                         goto ip;
324                 case htons(PPP_IPV6):
325                         goto ipv6;
326                 default:
327                         goto out_bad;
328                 }
329         }
330         case htons(ETH_P_TIPC): {
331                 struct {
332                         __be32 pre[3];
333                         __be32 srcnode;
334                 } *hdr, _hdr;
335                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
336                 if (!hdr)
337                         goto out_bad;
338
339                 if (dissector_uses_key(flow_dissector,
340                                        FLOW_DISSECTOR_KEY_TIPC_ADDRS)) {
341                         key_addrs = skb_flow_dissector_target(flow_dissector,
342                                                               FLOW_DISSECTOR_KEY_TIPC_ADDRS,
343                                                               target_container);
344                         key_addrs->tipcaddrs.srcnode = hdr->srcnode;
345                         key_control->addr_type = FLOW_DISSECTOR_KEY_TIPC_ADDRS;
346                 }
347                 goto out_good;
348         }
349
350         case htons(ETH_P_MPLS_UC):
351         case htons(ETH_P_MPLS_MC): {
352                 struct mpls_label *hdr, _hdr[2];
353 mpls:
354                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data,
355                                            hlen, &_hdr);
356                 if (!hdr)
357                         goto out_bad;
358
359                 if ((ntohl(hdr[0].entry) & MPLS_LS_LABEL_MASK) >>
360                      MPLS_LS_LABEL_SHIFT == MPLS_LABEL_ENTROPY) {
361                         if (dissector_uses_key(flow_dissector,
362                                                FLOW_DISSECTOR_KEY_MPLS_ENTROPY)) {
363                                 key_keyid = skb_flow_dissector_target(flow_dissector,
364                                                                       FLOW_DISSECTOR_KEY_MPLS_ENTROPY,
365                                                                       target_container);
366                                 key_keyid->keyid = hdr[1].entry &
367                                         htonl(MPLS_LS_LABEL_MASK);
368                         }
369
370                         goto out_good;
371                 }
372
373                 goto out_good;
374         }
375
376         case htons(ETH_P_FCOE):
377                 if ((hlen - nhoff) < FCOE_HEADER_LEN)
378                         goto out_bad;
379
380                 nhoff += FCOE_HEADER_LEN;
381                 goto out_good;
382         default:
383                 goto out_bad;
384         }
385
386 ip_proto_again:
387         switch (ip_proto) {
388         case IPPROTO_GRE: {
389                 struct gre_base_hdr *hdr, _hdr;
390                 u16 gre_ver;
391                 int offset = 0;
392
393                 hdr = __skb_header_pointer(skb, nhoff, sizeof(_hdr), data, hlen, &_hdr);
394                 if (!hdr)
395                         goto out_bad;
396
397                 /* Only look inside GRE without routing */
398                 if (hdr->flags & GRE_ROUTING)
399                         break;
400
401                 /* Only look inside GRE for version 0 and 1 */
402                 gre_ver = ntohs(hdr->flags & GRE_VERSION);
403                 if (gre_ver > 1)
404                         break;
405
406                 proto = hdr->protocol;
407                 if (gre_ver) {
408                         /* Version1 must be PPTP, and check the flags */
409                         if (!(proto == GRE_PROTO_PPP && (hdr->flags & GRE_KEY)))
410                                 break;
411                 }
412
413                 offset += sizeof(struct gre_base_hdr);
414
415                 if (hdr->flags & GRE_CSUM)
416                         offset += sizeof(((struct gre_full_hdr *)0)->csum) +
417                                   sizeof(((struct gre_full_hdr *)0)->reserved1);
418
419                 if (hdr->flags & GRE_KEY) {
420                         const __be32 *keyid;
421                         __be32 _keyid;
422
423                         keyid = __skb_header_pointer(skb, nhoff + offset, sizeof(_keyid),
424                                                      data, hlen, &_keyid);
425                         if (!keyid)
426                                 goto out_bad;
427
428                         if (dissector_uses_key(flow_dissector,
429                                                FLOW_DISSECTOR_KEY_GRE_KEYID)) {
430                                 key_keyid = skb_flow_dissector_target(flow_dissector,
431                                                                       FLOW_DISSECTOR_KEY_GRE_KEYID,
432                                                                       target_container);
433                                 if (gre_ver == 0)
434                                         key_keyid->keyid = *keyid;
435                                 else
436                                         key_keyid->keyid = *keyid & GRE_PPTP_KEY_MASK;
437                         }
438                         offset += sizeof(((struct gre_full_hdr *)0)->key);
439                 }
440
441                 if (hdr->flags & GRE_SEQ)
442                         offset += sizeof(((struct pptp_gre_header *)0)->seq);
443
444                 if (gre_ver == 0) {
445                         if (proto == htons(ETH_P_TEB)) {
446                                 const struct ethhdr *eth;
447                                 struct ethhdr _eth;
448
449                                 eth = __skb_header_pointer(skb, nhoff + offset,
450                                                            sizeof(_eth),
451                                                            data, hlen, &_eth);
452                                 if (!eth)
453                                         goto out_bad;
454                                 proto = eth->h_proto;
455                                 offset += sizeof(*eth);
456
457                                 /* Cap headers that we access via pointers at the
458                                  * end of the Ethernet header as our maximum alignment
459                                  * at that point is only 2 bytes.
460                                  */
461                                 if (NET_IP_ALIGN)
462                                         hlen = (nhoff + offset);
463                         }
464                 } else { /* version 1, must be PPTP */
465                         u8 _ppp_hdr[PPP_HDRLEN];
466                         u8 *ppp_hdr;
467
468                         if (hdr->flags & GRE_ACK)
469                                 offset += sizeof(((struct pptp_gre_header *)0)->ack);
470
471                         ppp_hdr = __skb_header_pointer(skb, nhoff + offset,
472                                                      sizeof(_ppp_hdr),
473                                                      data, hlen, _ppp_hdr);
474                         if (!ppp_hdr)
475                                 goto out_bad;
476
477                         switch (PPP_PROTOCOL(ppp_hdr)) {
478                         case PPP_IP:
479                                 proto = htons(ETH_P_IP);
480                                 break;
481                         case PPP_IPV6:
482                                 proto = htons(ETH_P_IPV6);
483                                 break;
484                         default:
485                                 /* Could probably catch some more like MPLS */
486                                 break;
487                         }
488
489                         offset += PPP_HDRLEN;
490                 }
491
492                 nhoff += offset;
493                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
494                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
495                         goto out_good;
496
497                 goto again;
498         }
499         case NEXTHDR_HOP:
500         case NEXTHDR_ROUTING:
501         case NEXTHDR_DEST: {
502                 u8 _opthdr[2], *opthdr;
503
504                 if (proto != htons(ETH_P_IPV6))
505                         break;
506
507                 opthdr = __skb_header_pointer(skb, nhoff, sizeof(_opthdr),
508                                               data, hlen, &_opthdr);
509                 if (!opthdr)
510                         goto out_bad;
511
512                 ip_proto = opthdr[0];
513                 nhoff += (opthdr[1] + 1) << 3;
514
515                 goto ip_proto_again;
516         }
517         case NEXTHDR_FRAGMENT: {
518                 struct frag_hdr _fh, *fh;
519
520                 if (proto != htons(ETH_P_IPV6))
521                         break;
522
523                 fh = __skb_header_pointer(skb, nhoff, sizeof(_fh),
524                                           data, hlen, &_fh);
525
526                 if (!fh)
527                         goto out_bad;
528
529                 key_control->flags |= FLOW_DIS_IS_FRAGMENT;
530
531                 nhoff += sizeof(_fh);
532                 ip_proto = fh->nexthdr;
533
534                 if (!(fh->frag_off & htons(IP6_OFFSET))) {
535                         key_control->flags |= FLOW_DIS_FIRST_FRAG;
536                         if (flags & FLOW_DISSECTOR_F_PARSE_1ST_FRAG)
537                                 goto ip_proto_again;
538                 }
539                 goto out_good;
540         }
541         case IPPROTO_IPIP:
542                 proto = htons(ETH_P_IP);
543
544                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
545                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
546                         goto out_good;
547
548                 goto ip;
549         case IPPROTO_IPV6:
550                 proto = htons(ETH_P_IPV6);
551
552                 key_control->flags |= FLOW_DIS_ENCAPSULATION;
553                 if (flags & FLOW_DISSECTOR_F_STOP_AT_ENCAP)
554                         goto out_good;
555
556                 goto ipv6;
557         case IPPROTO_MPLS:
558                 proto = htons(ETH_P_MPLS_UC);
559                 goto mpls;
560         default:
561                 break;
562         }
563
564         if (dissector_uses_key(flow_dissector,
565                                FLOW_DISSECTOR_KEY_PORTS)) {
566                 key_ports = skb_flow_dissector_target(flow_dissector,
567                                                       FLOW_DISSECTOR_KEY_PORTS,
568                                                       target_container);
569                 key_ports->ports = __skb_flow_get_ports(skb, nhoff, ip_proto,
570                                                         data, hlen);
571         }
572
573         if (dissector_uses_key(flow_dissector,
574                                FLOW_DISSECTOR_KEY_ICMP)) {
575                 key_icmp = skb_flow_dissector_target(flow_dissector,
576                                                      FLOW_DISSECTOR_KEY_ICMP,
577                                                      target_container);
578                 key_icmp->icmp = skb_flow_get_be16(skb, nhoff, data, hlen);
579         }
580
581 out_good:
582         ret = true;
583
584         key_control->thoff = (u16)nhoff;
585 out:
586         key_basic->n_proto = proto;
587         key_basic->ip_proto = ip_proto;
588
589         return ret;
590
591 out_bad:
592         ret = false;
593         key_control->thoff = min_t(u16, nhoff, skb ? skb->len : hlen);
594         goto out;
595 }
596 EXPORT_SYMBOL(__skb_flow_dissect);
597
598 static u32 hashrnd __read_mostly;
599 static __always_inline void __flow_hash_secret_init(void)
600 {
601         net_get_random_once(&hashrnd, sizeof(hashrnd));
602 }
603
604 static __always_inline u32 __flow_hash_words(const u32 *words, u32 length,
605                                              u32 keyval)
606 {
607         return jhash2(words, length, keyval);
608 }
609
610 static inline const u32 *flow_keys_hash_start(const struct flow_keys *flow)
611 {
612         const void *p = flow;
613
614         BUILD_BUG_ON(FLOW_KEYS_HASH_OFFSET % sizeof(u32));
615         return (const u32 *)(p + FLOW_KEYS_HASH_OFFSET);
616 }
617
618 static inline size_t flow_keys_hash_length(const struct flow_keys *flow)
619 {
620         size_t diff = FLOW_KEYS_HASH_OFFSET + sizeof(flow->addrs);
621         BUILD_BUG_ON((sizeof(*flow) - FLOW_KEYS_HASH_OFFSET) % sizeof(u32));
622         BUILD_BUG_ON(offsetof(typeof(*flow), addrs) !=
623                      sizeof(*flow) - sizeof(flow->addrs));
624
625         switch (flow->control.addr_type) {
626         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
627                 diff -= sizeof(flow->addrs.v4addrs);
628                 break;
629         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
630                 diff -= sizeof(flow->addrs.v6addrs);
631                 break;
632         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
633                 diff -= sizeof(flow->addrs.tipcaddrs);
634                 break;
635         }
636         return (sizeof(*flow) - diff) / sizeof(u32);
637 }
638
639 __be32 flow_get_u32_src(const struct flow_keys *flow)
640 {
641         switch (flow->control.addr_type) {
642         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
643                 return flow->addrs.v4addrs.src;
644         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
645                 return (__force __be32)ipv6_addr_hash(
646                         &flow->addrs.v6addrs.src);
647         case FLOW_DISSECTOR_KEY_TIPC_ADDRS:
648                 return flow->addrs.tipcaddrs.srcnode;
649         default:
650                 return 0;
651         }
652 }
653 EXPORT_SYMBOL(flow_get_u32_src);
654
655 __be32 flow_get_u32_dst(const struct flow_keys *flow)
656 {
657         switch (flow->control.addr_type) {
658         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
659                 return flow->addrs.v4addrs.dst;
660         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
661                 return (__force __be32)ipv6_addr_hash(
662                         &flow->addrs.v6addrs.dst);
663         default:
664                 return 0;
665         }
666 }
667 EXPORT_SYMBOL(flow_get_u32_dst);
668
669 static inline void __flow_hash_consistentify(struct flow_keys *keys)
670 {
671         int addr_diff, i;
672
673         switch (keys->control.addr_type) {
674         case FLOW_DISSECTOR_KEY_IPV4_ADDRS:
675                 addr_diff = (__force u32)keys->addrs.v4addrs.dst -
676                             (__force u32)keys->addrs.v4addrs.src;
677                 if ((addr_diff < 0) ||
678                     (addr_diff == 0 &&
679                      ((__force u16)keys->ports.dst <
680                       (__force u16)keys->ports.src))) {
681                         swap(keys->addrs.v4addrs.src, keys->addrs.v4addrs.dst);
682                         swap(keys->ports.src, keys->ports.dst);
683                 }
684                 break;
685         case FLOW_DISSECTOR_KEY_IPV6_ADDRS:
686                 addr_diff = memcmp(&keys->addrs.v6addrs.dst,
687                                    &keys->addrs.v6addrs.src,
688                                    sizeof(keys->addrs.v6addrs.dst));
689                 if ((addr_diff < 0) ||
690                     (addr_diff == 0 &&
691                      ((__force u16)keys->ports.dst <
692                       (__force u16)keys->ports.src))) {
693                         for (i = 0; i < 4; i++)
694                                 swap(keys->addrs.v6addrs.src.s6_addr32[i],
695                                      keys->addrs.v6addrs.dst.s6_addr32[i]);
696                         swap(keys->ports.src, keys->ports.dst);
697                 }
698                 break;
699         }
700 }
701
702 static inline u32 __flow_hash_from_keys(struct flow_keys *keys, u32 keyval)
703 {
704         u32 hash;
705
706         __flow_hash_consistentify(keys);
707
708         hash = __flow_hash_words(flow_keys_hash_start(keys),
709                                  flow_keys_hash_length(keys), keyval);
710         if (!hash)
711                 hash = 1;
712
713         return hash;
714 }
715
716 u32 flow_hash_from_keys(struct flow_keys *keys)
717 {
718         __flow_hash_secret_init();
719         return __flow_hash_from_keys(keys, hashrnd);
720 }
721 EXPORT_SYMBOL(flow_hash_from_keys);
722
723 static inline u32 ___skb_get_hash(const struct sk_buff *skb,
724                                   struct flow_keys *keys, u32 keyval)
725 {
726         skb_flow_dissect_flow_keys(skb, keys,
727                                    FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
728
729         return __flow_hash_from_keys(keys, keyval);
730 }
731
732 struct _flow_keys_digest_data {
733         __be16  n_proto;
734         u8      ip_proto;
735         u8      padding;
736         __be32  ports;
737         __be32  src;
738         __be32  dst;
739 };
740
741 void make_flow_keys_digest(struct flow_keys_digest *digest,
742                            const struct flow_keys *flow)
743 {
744         struct _flow_keys_digest_data *data =
745             (struct _flow_keys_digest_data *)digest;
746
747         BUILD_BUG_ON(sizeof(*data) > sizeof(*digest));
748
749         memset(digest, 0, sizeof(*digest));
750
751         data->n_proto = flow->basic.n_proto;
752         data->ip_proto = flow->basic.ip_proto;
753         data->ports = flow->ports.ports;
754         data->src = flow->addrs.v4addrs.src;
755         data->dst = flow->addrs.v4addrs.dst;
756 }
757 EXPORT_SYMBOL(make_flow_keys_digest);
758
759 static struct flow_dissector flow_keys_dissector_symmetric __read_mostly;
760
761 u32 __skb_get_hash_symmetric(const struct sk_buff *skb)
762 {
763         struct flow_keys keys;
764
765         __flow_hash_secret_init();
766
767         memset(&keys, 0, sizeof(keys));
768         __skb_flow_dissect(skb, &flow_keys_dissector_symmetric, &keys,
769                            NULL, 0, 0, 0,
770                            FLOW_DISSECTOR_F_STOP_AT_FLOW_LABEL);
771
772         return __flow_hash_from_keys(&keys, hashrnd);
773 }
774 EXPORT_SYMBOL_GPL(__skb_get_hash_symmetric);
775
776 /**
777  * __skb_get_hash: calculate a flow hash
778  * @skb: sk_buff to calculate flow hash from
779  *
780  * This function calculates a flow hash based on src/dst addresses
781  * and src/dst port numbers.  Sets hash in skb to non-zero hash value
782  * on success, zero indicates no valid hash.  Also, sets l4_hash in skb
783  * if hash is a canonical 4-tuple hash over transport ports.
784  */
785 void __skb_get_hash(struct sk_buff *skb)
786 {
787         struct flow_keys keys;
788         u32 hash;
789
790         __flow_hash_secret_init();
791
792         hash = ___skb_get_hash(skb, &keys, hashrnd);
793
794         __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
795 }
796 EXPORT_SYMBOL(__skb_get_hash);
797
798 __u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb)
799 {
800         struct flow_keys keys;
801
802         return ___skb_get_hash(skb, &keys, perturb);
803 }
804 EXPORT_SYMBOL(skb_get_hash_perturb);
805
806 __u32 __skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
807 {
808         struct flow_keys keys;
809
810         memset(&keys, 0, sizeof(keys));
811
812         memcpy(&keys.addrs.v6addrs.src, &fl6->saddr,
813                sizeof(keys.addrs.v6addrs.src));
814         memcpy(&keys.addrs.v6addrs.dst, &fl6->daddr,
815                sizeof(keys.addrs.v6addrs.dst));
816         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
817         keys.ports.src = fl6->fl6_sport;
818         keys.ports.dst = fl6->fl6_dport;
819         keys.keyid.keyid = fl6->fl6_gre_key;
820         keys.tags.flow_label = (__force u32)fl6->flowlabel;
821         keys.basic.ip_proto = fl6->flowi6_proto;
822
823         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
824                           flow_keys_have_l4(&keys));
825
826         return skb->hash;
827 }
828 EXPORT_SYMBOL(__skb_get_hash_flowi6);
829
830 __u32 __skb_get_hash_flowi4(struct sk_buff *skb, const struct flowi4 *fl4)
831 {
832         struct flow_keys keys;
833
834         memset(&keys, 0, sizeof(keys));
835
836         keys.addrs.v4addrs.src = fl4->saddr;
837         keys.addrs.v4addrs.dst = fl4->daddr;
838         keys.control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
839         keys.ports.src = fl4->fl4_sport;
840         keys.ports.dst = fl4->fl4_dport;
841         keys.keyid.keyid = fl4->fl4_gre_key;
842         keys.basic.ip_proto = fl4->flowi4_proto;
843
844         __skb_set_sw_hash(skb, flow_hash_from_keys(&keys),
845                           flow_keys_have_l4(&keys));
846
847         return skb->hash;
848 }
849 EXPORT_SYMBOL(__skb_get_hash_flowi4);
850
851 u32 __skb_get_poff(const struct sk_buff *skb, void *data,
852                    const struct flow_keys *keys, int hlen)
853 {
854         u32 poff = keys->control.thoff;
855
856         /* skip L4 headers for fragments after the first */
857         if ((keys->control.flags & FLOW_DIS_IS_FRAGMENT) &&
858             !(keys->control.flags & FLOW_DIS_FIRST_FRAG))
859                 return poff;
860
861         switch (keys->basic.ip_proto) {
862         case IPPROTO_TCP: {
863                 /* access doff as u8 to avoid unaligned access */
864                 const u8 *doff;
865                 u8 _doff;
866
867                 doff = __skb_header_pointer(skb, poff + 12, sizeof(_doff),
868                                             data, hlen, &_doff);
869                 if (!doff)
870                         return poff;
871
872                 poff += max_t(u32, sizeof(struct tcphdr), (*doff & 0xF0) >> 2);
873                 break;
874         }
875         case IPPROTO_UDP:
876         case IPPROTO_UDPLITE:
877                 poff += sizeof(struct udphdr);
878                 break;
879         /* For the rest, we do not really care about header
880          * extensions at this point for now.
881          */
882         case IPPROTO_ICMP:
883                 poff += sizeof(struct icmphdr);
884                 break;
885         case IPPROTO_ICMPV6:
886                 poff += sizeof(struct icmp6hdr);
887                 break;
888         case IPPROTO_IGMP:
889                 poff += sizeof(struct igmphdr);
890                 break;
891         case IPPROTO_DCCP:
892                 poff += sizeof(struct dccp_hdr);
893                 break;
894         case IPPROTO_SCTP:
895                 poff += sizeof(struct sctphdr);
896                 break;
897         }
898
899         return poff;
900 }
901
902 /**
903  * skb_get_poff - get the offset to the payload
904  * @skb: sk_buff to get the payload offset from
905  *
906  * The function will get the offset to the payload as far as it could
907  * be dissected.  The main user is currently BPF, so that we can dynamically
908  * truncate packets without needing to push actual payload to the user
909  * space and can analyze headers only, instead.
910  */
911 u32 skb_get_poff(const struct sk_buff *skb)
912 {
913         struct flow_keys keys;
914
915         if (!skb_flow_dissect_flow_keys(skb, &keys, 0))
916                 return 0;
917
918         return __skb_get_poff(skb, skb->data, &keys, skb_headlen(skb));
919 }
920
921 __u32 __get_hash_from_flowi6(const struct flowi6 *fl6, struct flow_keys *keys)
922 {
923         memset(keys, 0, sizeof(*keys));
924
925         memcpy(&keys->addrs.v6addrs.src, &fl6->saddr,
926             sizeof(keys->addrs.v6addrs.src));
927         memcpy(&keys->addrs.v6addrs.dst, &fl6->daddr,
928             sizeof(keys->addrs.v6addrs.dst));
929         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
930         keys->ports.src = fl6->fl6_sport;
931         keys->ports.dst = fl6->fl6_dport;
932         keys->keyid.keyid = fl6->fl6_gre_key;
933         keys->tags.flow_label = (__force u32)fl6->flowlabel;
934         keys->basic.ip_proto = fl6->flowi6_proto;
935
936         return flow_hash_from_keys(keys);
937 }
938 EXPORT_SYMBOL(__get_hash_from_flowi6);
939
940 __u32 __get_hash_from_flowi4(const struct flowi4 *fl4, struct flow_keys *keys)
941 {
942         memset(keys, 0, sizeof(*keys));
943
944         keys->addrs.v4addrs.src = fl4->saddr;
945         keys->addrs.v4addrs.dst = fl4->daddr;
946         keys->control.addr_type = FLOW_DISSECTOR_KEY_IPV4_ADDRS;
947         keys->ports.src = fl4->fl4_sport;
948         keys->ports.dst = fl4->fl4_dport;
949         keys->keyid.keyid = fl4->fl4_gre_key;
950         keys->basic.ip_proto = fl4->flowi4_proto;
951
952         return flow_hash_from_keys(keys);
953 }
954 EXPORT_SYMBOL(__get_hash_from_flowi4);
955
956 static const struct flow_dissector_key flow_keys_dissector_keys[] = {
957         {
958                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
959                 .offset = offsetof(struct flow_keys, control),
960         },
961         {
962                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
963                 .offset = offsetof(struct flow_keys, basic),
964         },
965         {
966                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
967                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
968         },
969         {
970                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
971                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
972         },
973         {
974                 .key_id = FLOW_DISSECTOR_KEY_TIPC_ADDRS,
975                 .offset = offsetof(struct flow_keys, addrs.tipcaddrs),
976         },
977         {
978                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
979                 .offset = offsetof(struct flow_keys, ports),
980         },
981         {
982                 .key_id = FLOW_DISSECTOR_KEY_VLAN,
983                 .offset = offsetof(struct flow_keys, vlan),
984         },
985         {
986                 .key_id = FLOW_DISSECTOR_KEY_FLOW_LABEL,
987                 .offset = offsetof(struct flow_keys, tags),
988         },
989         {
990                 .key_id = FLOW_DISSECTOR_KEY_GRE_KEYID,
991                 .offset = offsetof(struct flow_keys, keyid),
992         },
993 };
994
995 static const struct flow_dissector_key flow_keys_dissector_symmetric_keys[] = {
996         {
997                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
998                 .offset = offsetof(struct flow_keys, control),
999         },
1000         {
1001                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1002                 .offset = offsetof(struct flow_keys, basic),
1003         },
1004         {
1005                 .key_id = FLOW_DISSECTOR_KEY_IPV4_ADDRS,
1006                 .offset = offsetof(struct flow_keys, addrs.v4addrs),
1007         },
1008         {
1009                 .key_id = FLOW_DISSECTOR_KEY_IPV6_ADDRS,
1010                 .offset = offsetof(struct flow_keys, addrs.v6addrs),
1011         },
1012         {
1013                 .key_id = FLOW_DISSECTOR_KEY_PORTS,
1014                 .offset = offsetof(struct flow_keys, ports),
1015         },
1016 };
1017
1018 static const struct flow_dissector_key flow_keys_buf_dissector_keys[] = {
1019         {
1020                 .key_id = FLOW_DISSECTOR_KEY_CONTROL,
1021                 .offset = offsetof(struct flow_keys, control),
1022         },
1023         {
1024                 .key_id = FLOW_DISSECTOR_KEY_BASIC,
1025                 .offset = offsetof(struct flow_keys, basic),
1026         },
1027 };
1028
1029 struct flow_dissector flow_keys_dissector __read_mostly;
1030 EXPORT_SYMBOL(flow_keys_dissector);
1031
1032 struct flow_dissector flow_keys_buf_dissector __read_mostly;
1033
1034 static int __init init_default_flow_dissectors(void)
1035 {
1036         skb_flow_dissector_init(&flow_keys_dissector,
1037                                 flow_keys_dissector_keys,
1038                                 ARRAY_SIZE(flow_keys_dissector_keys));
1039         skb_flow_dissector_init(&flow_keys_dissector_symmetric,
1040                                 flow_keys_dissector_symmetric_keys,
1041                                 ARRAY_SIZE(flow_keys_dissector_symmetric_keys));
1042         skb_flow_dissector_init(&flow_keys_buf_dissector,
1043                                 flow_keys_buf_dissector_keys,
1044                                 ARRAY_SIZE(flow_keys_buf_dissector_keys));
1045         return 0;
1046 }
1047
1048 core_initcall(init_default_flow_dissectors);