Merge tag 'samsung-defconfig-5.4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / net / core / filter.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Linux Socket Filter - Kernel level socket filtering
4  *
5  * Based on the design of the Berkeley Packet Filter. The new
6  * internal format has been designed by PLUMgrid:
7  *
8  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9  *
10  * Authors:
11  *
12  *      Jay Schulist <jschlst@samba.org>
13  *      Alexei Starovoitov <ast@plumgrid.com>
14  *      Daniel Borkmann <dborkman@redhat.com>
15  *
16  * Andi Kleen - Fix a few bad bugs and races.
17  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
18  */
19
20 #include <linux/module.h>
21 #include <linux/types.h>
22 #include <linux/mm.h>
23 #include <linux/fcntl.h>
24 #include <linux/socket.h>
25 #include <linux/sock_diag.h>
26 #include <linux/in.h>
27 #include <linux/inet.h>
28 #include <linux/netdevice.h>
29 #include <linux/if_packet.h>
30 #include <linux/if_arp.h>
31 #include <linux/gfp.h>
32 #include <net/inet_common.h>
33 #include <net/ip.h>
34 #include <net/protocol.h>
35 #include <net/netlink.h>
36 #include <linux/skbuff.h>
37 #include <linux/skmsg.h>
38 #include <net/sock.h>
39 #include <net/flow_dissector.h>
40 #include <linux/errno.h>
41 #include <linux/timer.h>
42 #include <linux/uaccess.h>
43 #include <asm/unaligned.h>
44 #include <asm/cmpxchg.h>
45 #include <linux/filter.h>
46 #include <linux/ratelimit.h>
47 #include <linux/seccomp.h>
48 #include <linux/if_vlan.h>
49 #include <linux/bpf.h>
50 #include <net/sch_generic.h>
51 #include <net/cls_cgroup.h>
52 #include <net/dst_metadata.h>
53 #include <net/dst.h>
54 #include <net/sock_reuseport.h>
55 #include <net/busy_poll.h>
56 #include <net/tcp.h>
57 #include <net/xfrm.h>
58 #include <net/udp.h>
59 #include <linux/bpf_trace.h>
60 #include <net/xdp_sock.h>
61 #include <linux/inetdevice.h>
62 #include <net/inet_hashtables.h>
63 #include <net/inet6_hashtables.h>
64 #include <net/ip_fib.h>
65 #include <net/nexthop.h>
66 #include <net/flow.h>
67 #include <net/arp.h>
68 #include <net/ipv6.h>
69 #include <net/net_namespace.h>
70 #include <linux/seg6_local.h>
71 #include <net/seg6.h>
72 #include <net/seg6_local.h>
73 #include <net/lwtunnel.h>
74 #include <net/ipv6_stubs.h>
75 #include <net/bpf_sk_storage.h>
76
77 /**
78  *      sk_filter_trim_cap - run a packet through a socket filter
79  *      @sk: sock associated with &sk_buff
80  *      @skb: buffer to filter
81  *      @cap: limit on how short the eBPF program may trim the packet
82  *
83  * Run the eBPF program and then cut skb->data to correct size returned by
84  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
85  * than pkt_len we keep whole skb->data. This is the socket level
86  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
87  * be accepted or -EPERM if the packet should be tossed.
88  *
89  */
90 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
91 {
92         int err;
93         struct sk_filter *filter;
94
95         /*
96          * If the skb was allocated from pfmemalloc reserves, only
97          * allow SOCK_MEMALLOC sockets to use it as this socket is
98          * helping free memory
99          */
100         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
101                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
102                 return -ENOMEM;
103         }
104         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
105         if (err)
106                 return err;
107
108         err = security_sock_rcv_skb(sk, skb);
109         if (err)
110                 return err;
111
112         rcu_read_lock();
113         filter = rcu_dereference(sk->sk_filter);
114         if (filter) {
115                 struct sock *save_sk = skb->sk;
116                 unsigned int pkt_len;
117
118                 skb->sk = sk;
119                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
120                 skb->sk = save_sk;
121                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
122         }
123         rcu_read_unlock();
124
125         return err;
126 }
127 EXPORT_SYMBOL(sk_filter_trim_cap);
128
129 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
130 {
131         return skb_get_poff(skb);
132 }
133
134 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
135 {
136         struct nlattr *nla;
137
138         if (skb_is_nonlinear(skb))
139                 return 0;
140
141         if (skb->len < sizeof(struct nlattr))
142                 return 0;
143
144         if (a > skb->len - sizeof(struct nlattr))
145                 return 0;
146
147         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
148         if (nla)
149                 return (void *) nla - (void *) skb->data;
150
151         return 0;
152 }
153
154 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
155 {
156         struct nlattr *nla;
157
158         if (skb_is_nonlinear(skb))
159                 return 0;
160
161         if (skb->len < sizeof(struct nlattr))
162                 return 0;
163
164         if (a > skb->len - sizeof(struct nlattr))
165                 return 0;
166
167         nla = (struct nlattr *) &skb->data[a];
168         if (nla->nla_len > skb->len - a)
169                 return 0;
170
171         nla = nla_find_nested(nla, x);
172         if (nla)
173                 return (void *) nla - (void *) skb->data;
174
175         return 0;
176 }
177
178 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
179            data, int, headlen, int, offset)
180 {
181         u8 tmp, *ptr;
182         const int len = sizeof(tmp);
183
184         if (offset >= 0) {
185                 if (headlen - offset >= len)
186                         return *(u8 *)(data + offset);
187                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
188                         return tmp;
189         } else {
190                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
191                 if (likely(ptr))
192                         return *(u8 *)ptr;
193         }
194
195         return -EFAULT;
196 }
197
198 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
199            int, offset)
200 {
201         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
202                                          offset);
203 }
204
205 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
206            data, int, headlen, int, offset)
207 {
208         u16 tmp, *ptr;
209         const int len = sizeof(tmp);
210
211         if (offset >= 0) {
212                 if (headlen - offset >= len)
213                         return get_unaligned_be16(data + offset);
214                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
215                         return be16_to_cpu(tmp);
216         } else {
217                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
218                 if (likely(ptr))
219                         return get_unaligned_be16(ptr);
220         }
221
222         return -EFAULT;
223 }
224
225 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
226            int, offset)
227 {
228         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
229                                           offset);
230 }
231
232 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
233            data, int, headlen, int, offset)
234 {
235         u32 tmp, *ptr;
236         const int len = sizeof(tmp);
237
238         if (likely(offset >= 0)) {
239                 if (headlen - offset >= len)
240                         return get_unaligned_be32(data + offset);
241                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
242                         return be32_to_cpu(tmp);
243         } else {
244                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
245                 if (likely(ptr))
246                         return get_unaligned_be32(ptr);
247         }
248
249         return -EFAULT;
250 }
251
252 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
253            int, offset)
254 {
255         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
256                                           offset);
257 }
258
259 BPF_CALL_0(bpf_get_raw_cpu_id)
260 {
261         return raw_smp_processor_id();
262 }
263
264 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
265         .func           = bpf_get_raw_cpu_id,
266         .gpl_only       = false,
267         .ret_type       = RET_INTEGER,
268 };
269
270 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
271                               struct bpf_insn *insn_buf)
272 {
273         struct bpf_insn *insn = insn_buf;
274
275         switch (skb_field) {
276         case SKF_AD_MARK:
277                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
278
279                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
280                                       offsetof(struct sk_buff, mark));
281                 break;
282
283         case SKF_AD_PKTTYPE:
284                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
285                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
286 #ifdef __BIG_ENDIAN_BITFIELD
287                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
288 #endif
289                 break;
290
291         case SKF_AD_QUEUE:
292                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
293
294                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
295                                       offsetof(struct sk_buff, queue_mapping));
296                 break;
297
298         case SKF_AD_VLAN_TAG:
299                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
300
301                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
302                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
303                                       offsetof(struct sk_buff, vlan_tci));
304                 break;
305         case SKF_AD_VLAN_TAG_PRESENT:
306                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
307                 if (PKT_VLAN_PRESENT_BIT)
308                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
309                 if (PKT_VLAN_PRESENT_BIT < 7)
310                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
311                 break;
312         }
313
314         return insn - insn_buf;
315 }
316
317 static bool convert_bpf_extensions(struct sock_filter *fp,
318                                    struct bpf_insn **insnp)
319 {
320         struct bpf_insn *insn = *insnp;
321         u32 cnt;
322
323         switch (fp->k) {
324         case SKF_AD_OFF + SKF_AD_PROTOCOL:
325                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
326
327                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
328                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
329                                       offsetof(struct sk_buff, protocol));
330                 /* A = ntohs(A) [emitting a nop or swap16] */
331                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
332                 break;
333
334         case SKF_AD_OFF + SKF_AD_PKTTYPE:
335                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
336                 insn += cnt - 1;
337                 break;
338
339         case SKF_AD_OFF + SKF_AD_IFINDEX:
340         case SKF_AD_OFF + SKF_AD_HATYPE:
341                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
342                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
343
344                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
345                                       BPF_REG_TMP, BPF_REG_CTX,
346                                       offsetof(struct sk_buff, dev));
347                 /* if (tmp != 0) goto pc + 1 */
348                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
349                 *insn++ = BPF_EXIT_INSN();
350                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
351                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
352                                             offsetof(struct net_device, ifindex));
353                 else
354                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
355                                             offsetof(struct net_device, type));
356                 break;
357
358         case SKF_AD_OFF + SKF_AD_MARK:
359                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
360                 insn += cnt - 1;
361                 break;
362
363         case SKF_AD_OFF + SKF_AD_RXHASH:
364                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
365
366                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
367                                     offsetof(struct sk_buff, hash));
368                 break;
369
370         case SKF_AD_OFF + SKF_AD_QUEUE:
371                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
372                 insn += cnt - 1;
373                 break;
374
375         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
376                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
377                                          BPF_REG_A, BPF_REG_CTX, insn);
378                 insn += cnt - 1;
379                 break;
380
381         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
382                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
383                                          BPF_REG_A, BPF_REG_CTX, insn);
384                 insn += cnt - 1;
385                 break;
386
387         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
388                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
389
390                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
391                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
392                                       offsetof(struct sk_buff, vlan_proto));
393                 /* A = ntohs(A) [emitting a nop or swap16] */
394                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
395                 break;
396
397         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
398         case SKF_AD_OFF + SKF_AD_NLATTR:
399         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
400         case SKF_AD_OFF + SKF_AD_CPU:
401         case SKF_AD_OFF + SKF_AD_RANDOM:
402                 /* arg1 = CTX */
403                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
404                 /* arg2 = A */
405                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
406                 /* arg3 = X */
407                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
408                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
409                 switch (fp->k) {
410                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
411                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
412                         break;
413                 case SKF_AD_OFF + SKF_AD_NLATTR:
414                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
415                         break;
416                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
417                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
418                         break;
419                 case SKF_AD_OFF + SKF_AD_CPU:
420                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
421                         break;
422                 case SKF_AD_OFF + SKF_AD_RANDOM:
423                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
424                         bpf_user_rnd_init_once();
425                         break;
426                 }
427                 break;
428
429         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
430                 /* A ^= X */
431                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
432                 break;
433
434         default:
435                 /* This is just a dummy call to avoid letting the compiler
436                  * evict __bpf_call_base() as an optimization. Placed here
437                  * where no-one bothers.
438                  */
439                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
440                 return false;
441         }
442
443         *insnp = insn;
444         return true;
445 }
446
447 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
448 {
449         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
450         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
451         bool endian = BPF_SIZE(fp->code) == BPF_H ||
452                       BPF_SIZE(fp->code) == BPF_W;
453         bool indirect = BPF_MODE(fp->code) == BPF_IND;
454         const int ip_align = NET_IP_ALIGN;
455         struct bpf_insn *insn = *insnp;
456         int offset = fp->k;
457
458         if (!indirect &&
459             ((unaligned_ok && offset >= 0) ||
460              (!unaligned_ok && offset >= 0 &&
461               offset + ip_align >= 0 &&
462               offset + ip_align % size == 0))) {
463                 bool ldx_off_ok = offset <= S16_MAX;
464
465                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
466                 if (offset)
467                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
468                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
469                                       size, 2 + endian + (!ldx_off_ok * 2));
470                 if (ldx_off_ok) {
471                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
472                                               BPF_REG_D, offset);
473                 } else {
474                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
475                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
476                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
477                                               BPF_REG_TMP, 0);
478                 }
479                 if (endian)
480                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
481                 *insn++ = BPF_JMP_A(8);
482         }
483
484         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
485         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
486         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
487         if (!indirect) {
488                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
489         } else {
490                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
491                 if (fp->k)
492                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
493         }
494
495         switch (BPF_SIZE(fp->code)) {
496         case BPF_B:
497                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
498                 break;
499         case BPF_H:
500                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
501                 break;
502         case BPF_W:
503                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
504                 break;
505         default:
506                 return false;
507         }
508
509         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
510         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
511         *insn   = BPF_EXIT_INSN();
512
513         *insnp = insn;
514         return true;
515 }
516
517 /**
518  *      bpf_convert_filter - convert filter program
519  *      @prog: the user passed filter program
520  *      @len: the length of the user passed filter program
521  *      @new_prog: allocated 'struct bpf_prog' or NULL
522  *      @new_len: pointer to store length of converted program
523  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
524  *
525  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
526  * style extended BPF (eBPF).
527  * Conversion workflow:
528  *
529  * 1) First pass for calculating the new program length:
530  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
531  *
532  * 2) 2nd pass to remap in two passes: 1st pass finds new
533  *    jump offsets, 2nd pass remapping:
534  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
535  */
536 static int bpf_convert_filter(struct sock_filter *prog, int len,
537                               struct bpf_prog *new_prog, int *new_len,
538                               bool *seen_ld_abs)
539 {
540         int new_flen = 0, pass = 0, target, i, stack_off;
541         struct bpf_insn *new_insn, *first_insn = NULL;
542         struct sock_filter *fp;
543         int *addrs = NULL;
544         u8 bpf_src;
545
546         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
547         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
548
549         if (len <= 0 || len > BPF_MAXINSNS)
550                 return -EINVAL;
551
552         if (new_prog) {
553                 first_insn = new_prog->insnsi;
554                 addrs = kcalloc(len, sizeof(*addrs),
555                                 GFP_KERNEL | __GFP_NOWARN);
556                 if (!addrs)
557                         return -ENOMEM;
558         }
559
560 do_pass:
561         new_insn = first_insn;
562         fp = prog;
563
564         /* Classic BPF related prologue emission. */
565         if (new_prog) {
566                 /* Classic BPF expects A and X to be reset first. These need
567                  * to be guaranteed to be the first two instructions.
568                  */
569                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
570                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
571
572                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
573                  * In eBPF case it's done by the compiler, here we need to
574                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
575                  */
576                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
577                 if (*seen_ld_abs) {
578                         /* For packet access in classic BPF, cache skb->data
579                          * in callee-saved BPF R8 and skb->len - skb->data_len
580                          * (headlen) in BPF R9. Since classic BPF is read-only
581                          * on CTX, we only need to cache it once.
582                          */
583                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
584                                                   BPF_REG_D, BPF_REG_CTX,
585                                                   offsetof(struct sk_buff, data));
586                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
587                                                   offsetof(struct sk_buff, len));
588                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
589                                                   offsetof(struct sk_buff, data_len));
590                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
591                 }
592         } else {
593                 new_insn += 3;
594         }
595
596         for (i = 0; i < len; fp++, i++) {
597                 struct bpf_insn tmp_insns[32] = { };
598                 struct bpf_insn *insn = tmp_insns;
599
600                 if (addrs)
601                         addrs[i] = new_insn - first_insn;
602
603                 switch (fp->code) {
604                 /* All arithmetic insns and skb loads map as-is. */
605                 case BPF_ALU | BPF_ADD | BPF_X:
606                 case BPF_ALU | BPF_ADD | BPF_K:
607                 case BPF_ALU | BPF_SUB | BPF_X:
608                 case BPF_ALU | BPF_SUB | BPF_K:
609                 case BPF_ALU | BPF_AND | BPF_X:
610                 case BPF_ALU | BPF_AND | BPF_K:
611                 case BPF_ALU | BPF_OR | BPF_X:
612                 case BPF_ALU | BPF_OR | BPF_K:
613                 case BPF_ALU | BPF_LSH | BPF_X:
614                 case BPF_ALU | BPF_LSH | BPF_K:
615                 case BPF_ALU | BPF_RSH | BPF_X:
616                 case BPF_ALU | BPF_RSH | BPF_K:
617                 case BPF_ALU | BPF_XOR | BPF_X:
618                 case BPF_ALU | BPF_XOR | BPF_K:
619                 case BPF_ALU | BPF_MUL | BPF_X:
620                 case BPF_ALU | BPF_MUL | BPF_K:
621                 case BPF_ALU | BPF_DIV | BPF_X:
622                 case BPF_ALU | BPF_DIV | BPF_K:
623                 case BPF_ALU | BPF_MOD | BPF_X:
624                 case BPF_ALU | BPF_MOD | BPF_K:
625                 case BPF_ALU | BPF_NEG:
626                 case BPF_LD | BPF_ABS | BPF_W:
627                 case BPF_LD | BPF_ABS | BPF_H:
628                 case BPF_LD | BPF_ABS | BPF_B:
629                 case BPF_LD | BPF_IND | BPF_W:
630                 case BPF_LD | BPF_IND | BPF_H:
631                 case BPF_LD | BPF_IND | BPF_B:
632                         /* Check for overloaded BPF extension and
633                          * directly convert it if found, otherwise
634                          * just move on with mapping.
635                          */
636                         if (BPF_CLASS(fp->code) == BPF_LD &&
637                             BPF_MODE(fp->code) == BPF_ABS &&
638                             convert_bpf_extensions(fp, &insn))
639                                 break;
640                         if (BPF_CLASS(fp->code) == BPF_LD &&
641                             convert_bpf_ld_abs(fp, &insn)) {
642                                 *seen_ld_abs = true;
643                                 break;
644                         }
645
646                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
647                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
648                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
649                                 /* Error with exception code on div/mod by 0.
650                                  * For cBPF programs, this was always return 0.
651                                  */
652                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
653                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
654                                 *insn++ = BPF_EXIT_INSN();
655                         }
656
657                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
658                         break;
659
660                 /* Jump transformation cannot use BPF block macros
661                  * everywhere as offset calculation and target updates
662                  * require a bit more work than the rest, i.e. jump
663                  * opcodes map as-is, but offsets need adjustment.
664                  */
665
666 #define BPF_EMIT_JMP                                                    \
667         do {                                                            \
668                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
669                 s32 off;                                                \
670                                                                         \
671                 if (target >= len || target < 0)                        \
672                         goto err;                                       \
673                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
674                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
675                 off -= insn - tmp_insns;                                \
676                 /* Reject anything not fitting into insn->off. */       \
677                 if (off < off_min || off > off_max)                     \
678                         goto err;                                       \
679                 insn->off = off;                                        \
680         } while (0)
681
682                 case BPF_JMP | BPF_JA:
683                         target = i + fp->k + 1;
684                         insn->code = fp->code;
685                         BPF_EMIT_JMP;
686                         break;
687
688                 case BPF_JMP | BPF_JEQ | BPF_K:
689                 case BPF_JMP | BPF_JEQ | BPF_X:
690                 case BPF_JMP | BPF_JSET | BPF_K:
691                 case BPF_JMP | BPF_JSET | BPF_X:
692                 case BPF_JMP | BPF_JGT | BPF_K:
693                 case BPF_JMP | BPF_JGT | BPF_X:
694                 case BPF_JMP | BPF_JGE | BPF_K:
695                 case BPF_JMP | BPF_JGE | BPF_X:
696                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
697                                 /* BPF immediates are signed, zero extend
698                                  * immediate into tmp register and use it
699                                  * in compare insn.
700                                  */
701                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
702
703                                 insn->dst_reg = BPF_REG_A;
704                                 insn->src_reg = BPF_REG_TMP;
705                                 bpf_src = BPF_X;
706                         } else {
707                                 insn->dst_reg = BPF_REG_A;
708                                 insn->imm = fp->k;
709                                 bpf_src = BPF_SRC(fp->code);
710                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
711                         }
712
713                         /* Common case where 'jump_false' is next insn. */
714                         if (fp->jf == 0) {
715                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
716                                 target = i + fp->jt + 1;
717                                 BPF_EMIT_JMP;
718                                 break;
719                         }
720
721                         /* Convert some jumps when 'jump_true' is next insn. */
722                         if (fp->jt == 0) {
723                                 switch (BPF_OP(fp->code)) {
724                                 case BPF_JEQ:
725                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
726                                         break;
727                                 case BPF_JGT:
728                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
729                                         break;
730                                 case BPF_JGE:
731                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
732                                         break;
733                                 default:
734                                         goto jmp_rest;
735                                 }
736
737                                 target = i + fp->jf + 1;
738                                 BPF_EMIT_JMP;
739                                 break;
740                         }
741 jmp_rest:
742                         /* Other jumps are mapped into two insns: Jxx and JA. */
743                         target = i + fp->jt + 1;
744                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
745                         BPF_EMIT_JMP;
746                         insn++;
747
748                         insn->code = BPF_JMP | BPF_JA;
749                         target = i + fp->jf + 1;
750                         BPF_EMIT_JMP;
751                         break;
752
753                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
754                 case BPF_LDX | BPF_MSH | BPF_B: {
755                         struct sock_filter tmp = {
756                                 .code   = BPF_LD | BPF_ABS | BPF_B,
757                                 .k      = fp->k,
758                         };
759
760                         *seen_ld_abs = true;
761
762                         /* X = A */
763                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
764                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
765                         convert_bpf_ld_abs(&tmp, &insn);
766                         insn++;
767                         /* A &= 0xf */
768                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
769                         /* A <<= 2 */
770                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
771                         /* tmp = X */
772                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
773                         /* X = A */
774                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
775                         /* A = tmp */
776                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
777                         break;
778                 }
779                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
780                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
781                  */
782                 case BPF_RET | BPF_A:
783                 case BPF_RET | BPF_K:
784                         if (BPF_RVAL(fp->code) == BPF_K)
785                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
786                                                         0, fp->k);
787                         *insn = BPF_EXIT_INSN();
788                         break;
789
790                 /* Store to stack. */
791                 case BPF_ST:
792                 case BPF_STX:
793                         stack_off = fp->k * 4  + 4;
794                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
795                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
796                                             -stack_off);
797                         /* check_load_and_stores() verifies that classic BPF can
798                          * load from stack only after write, so tracking
799                          * stack_depth for ST|STX insns is enough
800                          */
801                         if (new_prog && new_prog->aux->stack_depth < stack_off)
802                                 new_prog->aux->stack_depth = stack_off;
803                         break;
804
805                 /* Load from stack. */
806                 case BPF_LD | BPF_MEM:
807                 case BPF_LDX | BPF_MEM:
808                         stack_off = fp->k * 4  + 4;
809                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
810                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
811                                             -stack_off);
812                         break;
813
814                 /* A = K or X = K */
815                 case BPF_LD | BPF_IMM:
816                 case BPF_LDX | BPF_IMM:
817                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
818                                               BPF_REG_A : BPF_REG_X, fp->k);
819                         break;
820
821                 /* X = A */
822                 case BPF_MISC | BPF_TAX:
823                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824                         break;
825
826                 /* A = X */
827                 case BPF_MISC | BPF_TXA:
828                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
829                         break;
830
831                 /* A = skb->len or X = skb->len */
832                 case BPF_LD | BPF_W | BPF_LEN:
833                 case BPF_LDX | BPF_W | BPF_LEN:
834                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
835                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
836                                             offsetof(struct sk_buff, len));
837                         break;
838
839                 /* Access seccomp_data fields. */
840                 case BPF_LDX | BPF_ABS | BPF_W:
841                         /* A = *(u32 *) (ctx + K) */
842                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
843                         break;
844
845                 /* Unknown instruction. */
846                 default:
847                         goto err;
848                 }
849
850                 insn++;
851                 if (new_prog)
852                         memcpy(new_insn, tmp_insns,
853                                sizeof(*insn) * (insn - tmp_insns));
854                 new_insn += insn - tmp_insns;
855         }
856
857         if (!new_prog) {
858                 /* Only calculating new length. */
859                 *new_len = new_insn - first_insn;
860                 if (*seen_ld_abs)
861                         *new_len += 4; /* Prologue bits. */
862                 return 0;
863         }
864
865         pass++;
866         if (new_flen != new_insn - first_insn) {
867                 new_flen = new_insn - first_insn;
868                 if (pass > 2)
869                         goto err;
870                 goto do_pass;
871         }
872
873         kfree(addrs);
874         BUG_ON(*new_len != new_flen);
875         return 0;
876 err:
877         kfree(addrs);
878         return -EINVAL;
879 }
880
881 /* Security:
882  *
883  * As we dont want to clear mem[] array for each packet going through
884  * __bpf_prog_run(), we check that filter loaded by user never try to read
885  * a cell if not previously written, and we check all branches to be sure
886  * a malicious user doesn't try to abuse us.
887  */
888 static int check_load_and_stores(const struct sock_filter *filter, int flen)
889 {
890         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
891         int pc, ret = 0;
892
893         BUILD_BUG_ON(BPF_MEMWORDS > 16);
894
895         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
896         if (!masks)
897                 return -ENOMEM;
898
899         memset(masks, 0xff, flen * sizeof(*masks));
900
901         for (pc = 0; pc < flen; pc++) {
902                 memvalid &= masks[pc];
903
904                 switch (filter[pc].code) {
905                 case BPF_ST:
906                 case BPF_STX:
907                         memvalid |= (1 << filter[pc].k);
908                         break;
909                 case BPF_LD | BPF_MEM:
910                 case BPF_LDX | BPF_MEM:
911                         if (!(memvalid & (1 << filter[pc].k))) {
912                                 ret = -EINVAL;
913                                 goto error;
914                         }
915                         break;
916                 case BPF_JMP | BPF_JA:
917                         /* A jump must set masks on target */
918                         masks[pc + 1 + filter[pc].k] &= memvalid;
919                         memvalid = ~0;
920                         break;
921                 case BPF_JMP | BPF_JEQ | BPF_K:
922                 case BPF_JMP | BPF_JEQ | BPF_X:
923                 case BPF_JMP | BPF_JGE | BPF_K:
924                 case BPF_JMP | BPF_JGE | BPF_X:
925                 case BPF_JMP | BPF_JGT | BPF_K:
926                 case BPF_JMP | BPF_JGT | BPF_X:
927                 case BPF_JMP | BPF_JSET | BPF_K:
928                 case BPF_JMP | BPF_JSET | BPF_X:
929                         /* A jump must set masks on targets */
930                         masks[pc + 1 + filter[pc].jt] &= memvalid;
931                         masks[pc + 1 + filter[pc].jf] &= memvalid;
932                         memvalid = ~0;
933                         break;
934                 }
935         }
936 error:
937         kfree(masks);
938         return ret;
939 }
940
941 static bool chk_code_allowed(u16 code_to_probe)
942 {
943         static const bool codes[] = {
944                 /* 32 bit ALU operations */
945                 [BPF_ALU | BPF_ADD | BPF_K] = true,
946                 [BPF_ALU | BPF_ADD | BPF_X] = true,
947                 [BPF_ALU | BPF_SUB | BPF_K] = true,
948                 [BPF_ALU | BPF_SUB | BPF_X] = true,
949                 [BPF_ALU | BPF_MUL | BPF_K] = true,
950                 [BPF_ALU | BPF_MUL | BPF_X] = true,
951                 [BPF_ALU | BPF_DIV | BPF_K] = true,
952                 [BPF_ALU | BPF_DIV | BPF_X] = true,
953                 [BPF_ALU | BPF_MOD | BPF_K] = true,
954                 [BPF_ALU | BPF_MOD | BPF_X] = true,
955                 [BPF_ALU | BPF_AND | BPF_K] = true,
956                 [BPF_ALU | BPF_AND | BPF_X] = true,
957                 [BPF_ALU | BPF_OR | BPF_K] = true,
958                 [BPF_ALU | BPF_OR | BPF_X] = true,
959                 [BPF_ALU | BPF_XOR | BPF_K] = true,
960                 [BPF_ALU | BPF_XOR | BPF_X] = true,
961                 [BPF_ALU | BPF_LSH | BPF_K] = true,
962                 [BPF_ALU | BPF_LSH | BPF_X] = true,
963                 [BPF_ALU | BPF_RSH | BPF_K] = true,
964                 [BPF_ALU | BPF_RSH | BPF_X] = true,
965                 [BPF_ALU | BPF_NEG] = true,
966                 /* Load instructions */
967                 [BPF_LD | BPF_W | BPF_ABS] = true,
968                 [BPF_LD | BPF_H | BPF_ABS] = true,
969                 [BPF_LD | BPF_B | BPF_ABS] = true,
970                 [BPF_LD | BPF_W | BPF_LEN] = true,
971                 [BPF_LD | BPF_W | BPF_IND] = true,
972                 [BPF_LD | BPF_H | BPF_IND] = true,
973                 [BPF_LD | BPF_B | BPF_IND] = true,
974                 [BPF_LD | BPF_IMM] = true,
975                 [BPF_LD | BPF_MEM] = true,
976                 [BPF_LDX | BPF_W | BPF_LEN] = true,
977                 [BPF_LDX | BPF_B | BPF_MSH] = true,
978                 [BPF_LDX | BPF_IMM] = true,
979                 [BPF_LDX | BPF_MEM] = true,
980                 /* Store instructions */
981                 [BPF_ST] = true,
982                 [BPF_STX] = true,
983                 /* Misc instructions */
984                 [BPF_MISC | BPF_TAX] = true,
985                 [BPF_MISC | BPF_TXA] = true,
986                 /* Return instructions */
987                 [BPF_RET | BPF_K] = true,
988                 [BPF_RET | BPF_A] = true,
989                 /* Jump instructions */
990                 [BPF_JMP | BPF_JA] = true,
991                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
992                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
993                 [BPF_JMP | BPF_JGE | BPF_K] = true,
994                 [BPF_JMP | BPF_JGE | BPF_X] = true,
995                 [BPF_JMP | BPF_JGT | BPF_K] = true,
996                 [BPF_JMP | BPF_JGT | BPF_X] = true,
997                 [BPF_JMP | BPF_JSET | BPF_K] = true,
998                 [BPF_JMP | BPF_JSET | BPF_X] = true,
999         };
1000
1001         if (code_to_probe >= ARRAY_SIZE(codes))
1002                 return false;
1003
1004         return codes[code_to_probe];
1005 }
1006
1007 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008                                 unsigned int flen)
1009 {
1010         if (filter == NULL)
1011                 return false;
1012         if (flen == 0 || flen > BPF_MAXINSNS)
1013                 return false;
1014
1015         return true;
1016 }
1017
1018 /**
1019  *      bpf_check_classic - verify socket filter code
1020  *      @filter: filter to verify
1021  *      @flen: length of filter
1022  *
1023  * Check the user's filter code. If we let some ugly
1024  * filter code slip through kaboom! The filter must contain
1025  * no references or jumps that are out of range, no illegal
1026  * instructions, and must end with a RET instruction.
1027  *
1028  * All jumps are forward as they are not signed.
1029  *
1030  * Returns 0 if the rule set is legal or -EINVAL if not.
1031  */
1032 static int bpf_check_classic(const struct sock_filter *filter,
1033                              unsigned int flen)
1034 {
1035         bool anc_found;
1036         int pc;
1037
1038         /* Check the filter code now */
1039         for (pc = 0; pc < flen; pc++) {
1040                 const struct sock_filter *ftest = &filter[pc];
1041
1042                 /* May we actually operate on this code? */
1043                 if (!chk_code_allowed(ftest->code))
1044                         return -EINVAL;
1045
1046                 /* Some instructions need special checks */
1047                 switch (ftest->code) {
1048                 case BPF_ALU | BPF_DIV | BPF_K:
1049                 case BPF_ALU | BPF_MOD | BPF_K:
1050                         /* Check for division by zero */
1051                         if (ftest->k == 0)
1052                                 return -EINVAL;
1053                         break;
1054                 case BPF_ALU | BPF_LSH | BPF_K:
1055                 case BPF_ALU | BPF_RSH | BPF_K:
1056                         if (ftest->k >= 32)
1057                                 return -EINVAL;
1058                         break;
1059                 case BPF_LD | BPF_MEM:
1060                 case BPF_LDX | BPF_MEM:
1061                 case BPF_ST:
1062                 case BPF_STX:
1063                         /* Check for invalid memory addresses */
1064                         if (ftest->k >= BPF_MEMWORDS)
1065                                 return -EINVAL;
1066                         break;
1067                 case BPF_JMP | BPF_JA:
1068                         /* Note, the large ftest->k might cause loops.
1069                          * Compare this with conditional jumps below,
1070                          * where offsets are limited. --ANK (981016)
1071                          */
1072                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1073                                 return -EINVAL;
1074                         break;
1075                 case BPF_JMP | BPF_JEQ | BPF_K:
1076                 case BPF_JMP | BPF_JEQ | BPF_X:
1077                 case BPF_JMP | BPF_JGE | BPF_K:
1078                 case BPF_JMP | BPF_JGE | BPF_X:
1079                 case BPF_JMP | BPF_JGT | BPF_K:
1080                 case BPF_JMP | BPF_JGT | BPF_X:
1081                 case BPF_JMP | BPF_JSET | BPF_K:
1082                 case BPF_JMP | BPF_JSET | BPF_X:
1083                         /* Both conditionals must be safe */
1084                         if (pc + ftest->jt + 1 >= flen ||
1085                             pc + ftest->jf + 1 >= flen)
1086                                 return -EINVAL;
1087                         break;
1088                 case BPF_LD | BPF_W | BPF_ABS:
1089                 case BPF_LD | BPF_H | BPF_ABS:
1090                 case BPF_LD | BPF_B | BPF_ABS:
1091                         anc_found = false;
1092                         if (bpf_anc_helper(ftest) & BPF_ANC)
1093                                 anc_found = true;
1094                         /* Ancillary operation unknown or unsupported */
1095                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096                                 return -EINVAL;
1097                 }
1098         }
1099
1100         /* Last instruction must be a RET code */
1101         switch (filter[flen - 1].code) {
1102         case BPF_RET | BPF_K:
1103         case BPF_RET | BPF_A:
1104                 return check_load_and_stores(filter, flen);
1105         }
1106
1107         return -EINVAL;
1108 }
1109
1110 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111                                       const struct sock_fprog *fprog)
1112 {
1113         unsigned int fsize = bpf_classic_proglen(fprog);
1114         struct sock_fprog_kern *fkprog;
1115
1116         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117         if (!fp->orig_prog)
1118                 return -ENOMEM;
1119
1120         fkprog = fp->orig_prog;
1121         fkprog->len = fprog->len;
1122
1123         fkprog->filter = kmemdup(fp->insns, fsize,
1124                                  GFP_KERNEL | __GFP_NOWARN);
1125         if (!fkprog->filter) {
1126                 kfree(fp->orig_prog);
1127                 return -ENOMEM;
1128         }
1129
1130         return 0;
1131 }
1132
1133 static void bpf_release_orig_filter(struct bpf_prog *fp)
1134 {
1135         struct sock_fprog_kern *fprog = fp->orig_prog;
1136
1137         if (fprog) {
1138                 kfree(fprog->filter);
1139                 kfree(fprog);
1140         }
1141 }
1142
1143 static void __bpf_prog_release(struct bpf_prog *prog)
1144 {
1145         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146                 bpf_prog_put(prog);
1147         } else {
1148                 bpf_release_orig_filter(prog);
1149                 bpf_prog_free(prog);
1150         }
1151 }
1152
1153 static void __sk_filter_release(struct sk_filter *fp)
1154 {
1155         __bpf_prog_release(fp->prog);
1156         kfree(fp);
1157 }
1158
1159 /**
1160  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1161  *      @rcu: rcu_head that contains the sk_filter to free
1162  */
1163 static void sk_filter_release_rcu(struct rcu_head *rcu)
1164 {
1165         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166
1167         __sk_filter_release(fp);
1168 }
1169
1170 /**
1171  *      sk_filter_release - release a socket filter
1172  *      @fp: filter to remove
1173  *
1174  *      Remove a filter from a socket and release its resources.
1175  */
1176 static void sk_filter_release(struct sk_filter *fp)
1177 {
1178         if (refcount_dec_and_test(&fp->refcnt))
1179                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1180 }
1181
1182 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183 {
1184         u32 filter_size = bpf_prog_size(fp->prog->len);
1185
1186         atomic_sub(filter_size, &sk->sk_omem_alloc);
1187         sk_filter_release(fp);
1188 }
1189
1190 /* try to charge the socket memory if there is space available
1191  * return true on success
1192  */
1193 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194 {
1195         u32 filter_size = bpf_prog_size(fp->prog->len);
1196
1197         /* same check as in sock_kmalloc() */
1198         if (filter_size <= sysctl_optmem_max &&
1199             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200                 atomic_add(filter_size, &sk->sk_omem_alloc);
1201                 return true;
1202         }
1203         return false;
1204 }
1205
1206 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207 {
1208         if (!refcount_inc_not_zero(&fp->refcnt))
1209                 return false;
1210
1211         if (!__sk_filter_charge(sk, fp)) {
1212                 sk_filter_release(fp);
1213                 return false;
1214         }
1215         return true;
1216 }
1217
1218 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219 {
1220         struct sock_filter *old_prog;
1221         struct bpf_prog *old_fp;
1222         int err, new_len, old_len = fp->len;
1223         bool seen_ld_abs = false;
1224
1225         /* We are free to overwrite insns et al right here as it
1226          * won't be used at this point in time anymore internally
1227          * after the migration to the internal BPF instruction
1228          * representation.
1229          */
1230         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231                      sizeof(struct bpf_insn));
1232
1233         /* Conversion cannot happen on overlapping memory areas,
1234          * so we need to keep the user BPF around until the 2nd
1235          * pass. At this time, the user BPF is stored in fp->insns.
1236          */
1237         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238                            GFP_KERNEL | __GFP_NOWARN);
1239         if (!old_prog) {
1240                 err = -ENOMEM;
1241                 goto out_err;
1242         }
1243
1244         /* 1st pass: calculate the new program length. */
1245         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246                                  &seen_ld_abs);
1247         if (err)
1248                 goto out_err_free;
1249
1250         /* Expand fp for appending the new filter representation. */
1251         old_fp = fp;
1252         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253         if (!fp) {
1254                 /* The old_fp is still around in case we couldn't
1255                  * allocate new memory, so uncharge on that one.
1256                  */
1257                 fp = old_fp;
1258                 err = -ENOMEM;
1259                 goto out_err_free;
1260         }
1261
1262         fp->len = new_len;
1263
1264         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266                                  &seen_ld_abs);
1267         if (err)
1268                 /* 2nd bpf_convert_filter() can fail only if it fails
1269                  * to allocate memory, remapping must succeed. Note,
1270                  * that at this time old_fp has already been released
1271                  * by krealloc().
1272                  */
1273                 goto out_err_free;
1274
1275         fp = bpf_prog_select_runtime(fp, &err);
1276         if (err)
1277                 goto out_err_free;
1278
1279         kfree(old_prog);
1280         return fp;
1281
1282 out_err_free:
1283         kfree(old_prog);
1284 out_err:
1285         __bpf_prog_release(fp);
1286         return ERR_PTR(err);
1287 }
1288
1289 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290                                            bpf_aux_classic_check_t trans)
1291 {
1292         int err;
1293
1294         fp->bpf_func = NULL;
1295         fp->jited = 0;
1296
1297         err = bpf_check_classic(fp->insns, fp->len);
1298         if (err) {
1299                 __bpf_prog_release(fp);
1300                 return ERR_PTR(err);
1301         }
1302
1303         /* There might be additional checks and transformations
1304          * needed on classic filters, f.e. in case of seccomp.
1305          */
1306         if (trans) {
1307                 err = trans(fp->insns, fp->len);
1308                 if (err) {
1309                         __bpf_prog_release(fp);
1310                         return ERR_PTR(err);
1311                 }
1312         }
1313
1314         /* Probe if we can JIT compile the filter and if so, do
1315          * the compilation of the filter.
1316          */
1317         bpf_jit_compile(fp);
1318
1319         /* JIT compiler couldn't process this filter, so do the
1320          * internal BPF translation for the optimized interpreter.
1321          */
1322         if (!fp->jited)
1323                 fp = bpf_migrate_filter(fp);
1324
1325         return fp;
1326 }
1327
1328 /**
1329  *      bpf_prog_create - create an unattached filter
1330  *      @pfp: the unattached filter that is created
1331  *      @fprog: the filter program
1332  *
1333  * Create a filter independent of any socket. We first run some
1334  * sanity checks on it to make sure it does not explode on us later.
1335  * If an error occurs or there is insufficient memory for the filter
1336  * a negative errno code is returned. On success the return is zero.
1337  */
1338 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339 {
1340         unsigned int fsize = bpf_classic_proglen(fprog);
1341         struct bpf_prog *fp;
1342
1343         /* Make sure new filter is there and in the right amounts. */
1344         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345                 return -EINVAL;
1346
1347         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348         if (!fp)
1349                 return -ENOMEM;
1350
1351         memcpy(fp->insns, fprog->filter, fsize);
1352
1353         fp->len = fprog->len;
1354         /* Since unattached filters are not copied back to user
1355          * space through sk_get_filter(), we do not need to hold
1356          * a copy here, and can spare us the work.
1357          */
1358         fp->orig_prog = NULL;
1359
1360         /* bpf_prepare_filter() already takes care of freeing
1361          * memory in case something goes wrong.
1362          */
1363         fp = bpf_prepare_filter(fp, NULL);
1364         if (IS_ERR(fp))
1365                 return PTR_ERR(fp);
1366
1367         *pfp = fp;
1368         return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(bpf_prog_create);
1371
1372 /**
1373  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1374  *      @pfp: the unattached filter that is created
1375  *      @fprog: the filter program
1376  *      @trans: post-classic verifier transformation handler
1377  *      @save_orig: save classic BPF program
1378  *
1379  * This function effectively does the same as bpf_prog_create(), only
1380  * that it builds up its insns buffer from user space provided buffer.
1381  * It also allows for passing a bpf_aux_classic_check_t handler.
1382  */
1383 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384                               bpf_aux_classic_check_t trans, bool save_orig)
1385 {
1386         unsigned int fsize = bpf_classic_proglen(fprog);
1387         struct bpf_prog *fp;
1388         int err;
1389
1390         /* Make sure new filter is there and in the right amounts. */
1391         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392                 return -EINVAL;
1393
1394         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395         if (!fp)
1396                 return -ENOMEM;
1397
1398         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399                 __bpf_prog_free(fp);
1400                 return -EFAULT;
1401         }
1402
1403         fp->len = fprog->len;
1404         fp->orig_prog = NULL;
1405
1406         if (save_orig) {
1407                 err = bpf_prog_store_orig_filter(fp, fprog);
1408                 if (err) {
1409                         __bpf_prog_free(fp);
1410                         return -ENOMEM;
1411                 }
1412         }
1413
1414         /* bpf_prepare_filter() already takes care of freeing
1415          * memory in case something goes wrong.
1416          */
1417         fp = bpf_prepare_filter(fp, trans);
1418         if (IS_ERR(fp))
1419                 return PTR_ERR(fp);
1420
1421         *pfp = fp;
1422         return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425
1426 void bpf_prog_destroy(struct bpf_prog *fp)
1427 {
1428         __bpf_prog_release(fp);
1429 }
1430 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431
1432 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433 {
1434         struct sk_filter *fp, *old_fp;
1435
1436         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437         if (!fp)
1438                 return -ENOMEM;
1439
1440         fp->prog = prog;
1441
1442         if (!__sk_filter_charge(sk, fp)) {
1443                 kfree(fp);
1444                 return -ENOMEM;
1445         }
1446         refcount_set(&fp->refcnt, 1);
1447
1448         old_fp = rcu_dereference_protected(sk->sk_filter,
1449                                            lockdep_sock_is_held(sk));
1450         rcu_assign_pointer(sk->sk_filter, fp);
1451
1452         if (old_fp)
1453                 sk_filter_uncharge(sk, old_fp);
1454
1455         return 0;
1456 }
1457
1458 static
1459 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460 {
1461         unsigned int fsize = bpf_classic_proglen(fprog);
1462         struct bpf_prog *prog;
1463         int err;
1464
1465         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466                 return ERR_PTR(-EPERM);
1467
1468         /* Make sure new filter is there and in the right amounts. */
1469         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470                 return ERR_PTR(-EINVAL);
1471
1472         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473         if (!prog)
1474                 return ERR_PTR(-ENOMEM);
1475
1476         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477                 __bpf_prog_free(prog);
1478                 return ERR_PTR(-EFAULT);
1479         }
1480
1481         prog->len = fprog->len;
1482
1483         err = bpf_prog_store_orig_filter(prog, fprog);
1484         if (err) {
1485                 __bpf_prog_free(prog);
1486                 return ERR_PTR(-ENOMEM);
1487         }
1488
1489         /* bpf_prepare_filter() already takes care of freeing
1490          * memory in case something goes wrong.
1491          */
1492         return bpf_prepare_filter(prog, NULL);
1493 }
1494
1495 /**
1496  *      sk_attach_filter - attach a socket filter
1497  *      @fprog: the filter program
1498  *      @sk: the socket to use
1499  *
1500  * Attach the user's filter code. We first run some sanity checks on
1501  * it to make sure it does not explode on us later. If an error
1502  * occurs or there is insufficient memory for the filter a negative
1503  * errno code is returned. On success the return is zero.
1504  */
1505 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506 {
1507         struct bpf_prog *prog = __get_filter(fprog, sk);
1508         int err;
1509
1510         if (IS_ERR(prog))
1511                 return PTR_ERR(prog);
1512
1513         err = __sk_attach_prog(prog, sk);
1514         if (err < 0) {
1515                 __bpf_prog_release(prog);
1516                 return err;
1517         }
1518
1519         return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(sk_attach_filter);
1522
1523 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524 {
1525         struct bpf_prog *prog = __get_filter(fprog, sk);
1526         int err;
1527
1528         if (IS_ERR(prog))
1529                 return PTR_ERR(prog);
1530
1531         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532                 err = -ENOMEM;
1533         else
1534                 err = reuseport_attach_prog(sk, prog);
1535
1536         if (err)
1537                 __bpf_prog_release(prog);
1538
1539         return err;
1540 }
1541
1542 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543 {
1544         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545                 return ERR_PTR(-EPERM);
1546
1547         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548 }
1549
1550 int sk_attach_bpf(u32 ufd, struct sock *sk)
1551 {
1552         struct bpf_prog *prog = __get_bpf(ufd, sk);
1553         int err;
1554
1555         if (IS_ERR(prog))
1556                 return PTR_ERR(prog);
1557
1558         err = __sk_attach_prog(prog, sk);
1559         if (err < 0) {
1560                 bpf_prog_put(prog);
1561                 return err;
1562         }
1563
1564         return 0;
1565 }
1566
1567 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568 {
1569         struct bpf_prog *prog;
1570         int err;
1571
1572         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573                 return -EPERM;
1574
1575         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576         if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1577                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578         if (IS_ERR(prog))
1579                 return PTR_ERR(prog);
1580
1581         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583                  * bpf prog (e.g. sockmap).  It depends on the
1584                  * limitation imposed by bpf_prog_load().
1585                  * Hence, sysctl_optmem_max is not checked.
1586                  */
1587                 if ((sk->sk_type != SOCK_STREAM &&
1588                      sk->sk_type != SOCK_DGRAM) ||
1589                     (sk->sk_protocol != IPPROTO_UDP &&
1590                      sk->sk_protocol != IPPROTO_TCP) ||
1591                     (sk->sk_family != AF_INET &&
1592                      sk->sk_family != AF_INET6)) {
1593                         err = -ENOTSUPP;
1594                         goto err_prog_put;
1595                 }
1596         } else {
1597                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1598                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599                         err = -ENOMEM;
1600                         goto err_prog_put;
1601                 }
1602         }
1603
1604         err = reuseport_attach_prog(sk, prog);
1605 err_prog_put:
1606         if (err)
1607                 bpf_prog_put(prog);
1608
1609         return err;
1610 }
1611
1612 void sk_reuseport_prog_free(struct bpf_prog *prog)
1613 {
1614         if (!prog)
1615                 return;
1616
1617         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618                 bpf_prog_put(prog);
1619         else
1620                 bpf_prog_destroy(prog);
1621 }
1622
1623 struct bpf_scratchpad {
1624         union {
1625                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626                 u8     buff[MAX_BPF_STACK];
1627         };
1628 };
1629
1630 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631
1632 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633                                           unsigned int write_len)
1634 {
1635         return skb_ensure_writable(skb, write_len);
1636 }
1637
1638 static inline int bpf_try_make_writable(struct sk_buff *skb,
1639                                         unsigned int write_len)
1640 {
1641         int err = __bpf_try_make_writable(skb, write_len);
1642
1643         bpf_compute_data_pointers(skb);
1644         return err;
1645 }
1646
1647 static int bpf_try_make_head_writable(struct sk_buff *skb)
1648 {
1649         return bpf_try_make_writable(skb, skb_headlen(skb));
1650 }
1651
1652 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653 {
1654         if (skb_at_tc_ingress(skb))
1655                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656 }
1657
1658 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659 {
1660         if (skb_at_tc_ingress(skb))
1661                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662 }
1663
1664 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665            const void *, from, u32, len, u64, flags)
1666 {
1667         void *ptr;
1668
1669         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670                 return -EINVAL;
1671         if (unlikely(offset > 0xffff))
1672                 return -EFAULT;
1673         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674                 return -EFAULT;
1675
1676         ptr = skb->data + offset;
1677         if (flags & BPF_F_RECOMPUTE_CSUM)
1678                 __skb_postpull_rcsum(skb, ptr, len, offset);
1679
1680         memcpy(ptr, from, len);
1681
1682         if (flags & BPF_F_RECOMPUTE_CSUM)
1683                 __skb_postpush_rcsum(skb, ptr, len, offset);
1684         if (flags & BPF_F_INVALIDATE_HASH)
1685                 skb_clear_hash(skb);
1686
1687         return 0;
1688 }
1689
1690 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691         .func           = bpf_skb_store_bytes,
1692         .gpl_only       = false,
1693         .ret_type       = RET_INTEGER,
1694         .arg1_type      = ARG_PTR_TO_CTX,
1695         .arg2_type      = ARG_ANYTHING,
1696         .arg3_type      = ARG_PTR_TO_MEM,
1697         .arg4_type      = ARG_CONST_SIZE,
1698         .arg5_type      = ARG_ANYTHING,
1699 };
1700
1701 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702            void *, to, u32, len)
1703 {
1704         void *ptr;
1705
1706         if (unlikely(offset > 0xffff))
1707                 goto err_clear;
1708
1709         ptr = skb_header_pointer(skb, offset, len, to);
1710         if (unlikely(!ptr))
1711                 goto err_clear;
1712         if (ptr != to)
1713                 memcpy(to, ptr, len);
1714
1715         return 0;
1716 err_clear:
1717         memset(to, 0, len);
1718         return -EFAULT;
1719 }
1720
1721 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722         .func           = bpf_skb_load_bytes,
1723         .gpl_only       = false,
1724         .ret_type       = RET_INTEGER,
1725         .arg1_type      = ARG_PTR_TO_CTX,
1726         .arg2_type      = ARG_ANYTHING,
1727         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1728         .arg4_type      = ARG_CONST_SIZE,
1729 };
1730
1731 BPF_CALL_4(bpf_flow_dissector_load_bytes,
1732            const struct bpf_flow_dissector *, ctx, u32, offset,
1733            void *, to, u32, len)
1734 {
1735         void *ptr;
1736
1737         if (unlikely(offset > 0xffff))
1738                 goto err_clear;
1739
1740         if (unlikely(!ctx->skb))
1741                 goto err_clear;
1742
1743         ptr = skb_header_pointer(ctx->skb, offset, len, to);
1744         if (unlikely(!ptr))
1745                 goto err_clear;
1746         if (ptr != to)
1747                 memcpy(to, ptr, len);
1748
1749         return 0;
1750 err_clear:
1751         memset(to, 0, len);
1752         return -EFAULT;
1753 }
1754
1755 static const struct bpf_func_proto bpf_flow_dissector_load_bytes_proto = {
1756         .func           = bpf_flow_dissector_load_bytes,
1757         .gpl_only       = false,
1758         .ret_type       = RET_INTEGER,
1759         .arg1_type      = ARG_PTR_TO_CTX,
1760         .arg2_type      = ARG_ANYTHING,
1761         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1762         .arg4_type      = ARG_CONST_SIZE,
1763 };
1764
1765 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1766            u32, offset, void *, to, u32, len, u32, start_header)
1767 {
1768         u8 *end = skb_tail_pointer(skb);
1769         u8 *net = skb_network_header(skb);
1770         u8 *mac = skb_mac_header(skb);
1771         u8 *ptr;
1772
1773         if (unlikely(offset > 0xffff || len > (end - mac)))
1774                 goto err_clear;
1775
1776         switch (start_header) {
1777         case BPF_HDR_START_MAC:
1778                 ptr = mac + offset;
1779                 break;
1780         case BPF_HDR_START_NET:
1781                 ptr = net + offset;
1782                 break;
1783         default:
1784                 goto err_clear;
1785         }
1786
1787         if (likely(ptr >= mac && ptr + len <= end)) {
1788                 memcpy(to, ptr, len);
1789                 return 0;
1790         }
1791
1792 err_clear:
1793         memset(to, 0, len);
1794         return -EFAULT;
1795 }
1796
1797 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1798         .func           = bpf_skb_load_bytes_relative,
1799         .gpl_only       = false,
1800         .ret_type       = RET_INTEGER,
1801         .arg1_type      = ARG_PTR_TO_CTX,
1802         .arg2_type      = ARG_ANYTHING,
1803         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1804         .arg4_type      = ARG_CONST_SIZE,
1805         .arg5_type      = ARG_ANYTHING,
1806 };
1807
1808 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1809 {
1810         /* Idea is the following: should the needed direct read/write
1811          * test fail during runtime, we can pull in more data and redo
1812          * again, since implicitly, we invalidate previous checks here.
1813          *
1814          * Or, since we know how much we need to make read/writeable,
1815          * this can be done once at the program beginning for direct
1816          * access case. By this we overcome limitations of only current
1817          * headroom being accessible.
1818          */
1819         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1820 }
1821
1822 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1823         .func           = bpf_skb_pull_data,
1824         .gpl_only       = false,
1825         .ret_type       = RET_INTEGER,
1826         .arg1_type      = ARG_PTR_TO_CTX,
1827         .arg2_type      = ARG_ANYTHING,
1828 };
1829
1830 BPF_CALL_1(bpf_sk_fullsock, struct sock *, sk)
1831 {
1832         return sk_fullsock(sk) ? (unsigned long)sk : (unsigned long)NULL;
1833 }
1834
1835 static const struct bpf_func_proto bpf_sk_fullsock_proto = {
1836         .func           = bpf_sk_fullsock,
1837         .gpl_only       = false,
1838         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
1839         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
1840 };
1841
1842 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1843                                            unsigned int write_len)
1844 {
1845         int err = __bpf_try_make_writable(skb, write_len);
1846
1847         bpf_compute_data_end_sk_skb(skb);
1848         return err;
1849 }
1850
1851 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1852 {
1853         /* Idea is the following: should the needed direct read/write
1854          * test fail during runtime, we can pull in more data and redo
1855          * again, since implicitly, we invalidate previous checks here.
1856          *
1857          * Or, since we know how much we need to make read/writeable,
1858          * this can be done once at the program beginning for direct
1859          * access case. By this we overcome limitations of only current
1860          * headroom being accessible.
1861          */
1862         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1863 }
1864
1865 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1866         .func           = sk_skb_pull_data,
1867         .gpl_only       = false,
1868         .ret_type       = RET_INTEGER,
1869         .arg1_type      = ARG_PTR_TO_CTX,
1870         .arg2_type      = ARG_ANYTHING,
1871 };
1872
1873 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1874            u64, from, u64, to, u64, flags)
1875 {
1876         __sum16 *ptr;
1877
1878         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1879                 return -EINVAL;
1880         if (unlikely(offset > 0xffff || offset & 1))
1881                 return -EFAULT;
1882         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883                 return -EFAULT;
1884
1885         ptr = (__sum16 *)(skb->data + offset);
1886         switch (flags & BPF_F_HDR_FIELD_MASK) {
1887         case 0:
1888                 if (unlikely(from != 0))
1889                         return -EINVAL;
1890
1891                 csum_replace_by_diff(ptr, to);
1892                 break;
1893         case 2:
1894                 csum_replace2(ptr, from, to);
1895                 break;
1896         case 4:
1897                 csum_replace4(ptr, from, to);
1898                 break;
1899         default:
1900                 return -EINVAL;
1901         }
1902
1903         return 0;
1904 }
1905
1906 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1907         .func           = bpf_l3_csum_replace,
1908         .gpl_only       = false,
1909         .ret_type       = RET_INTEGER,
1910         .arg1_type      = ARG_PTR_TO_CTX,
1911         .arg2_type      = ARG_ANYTHING,
1912         .arg3_type      = ARG_ANYTHING,
1913         .arg4_type      = ARG_ANYTHING,
1914         .arg5_type      = ARG_ANYTHING,
1915 };
1916
1917 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1918            u64, from, u64, to, u64, flags)
1919 {
1920         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1921         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1922         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1923         __sum16 *ptr;
1924
1925         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1926                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1927                 return -EINVAL;
1928         if (unlikely(offset > 0xffff || offset & 1))
1929                 return -EFAULT;
1930         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1931                 return -EFAULT;
1932
1933         ptr = (__sum16 *)(skb->data + offset);
1934         if (is_mmzero && !do_mforce && !*ptr)
1935                 return 0;
1936
1937         switch (flags & BPF_F_HDR_FIELD_MASK) {
1938         case 0:
1939                 if (unlikely(from != 0))
1940                         return -EINVAL;
1941
1942                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1943                 break;
1944         case 2:
1945                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1946                 break;
1947         case 4:
1948                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1949                 break;
1950         default:
1951                 return -EINVAL;
1952         }
1953
1954         if (is_mmzero && !*ptr)
1955                 *ptr = CSUM_MANGLED_0;
1956         return 0;
1957 }
1958
1959 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1960         .func           = bpf_l4_csum_replace,
1961         .gpl_only       = false,
1962         .ret_type       = RET_INTEGER,
1963         .arg1_type      = ARG_PTR_TO_CTX,
1964         .arg2_type      = ARG_ANYTHING,
1965         .arg3_type      = ARG_ANYTHING,
1966         .arg4_type      = ARG_ANYTHING,
1967         .arg5_type      = ARG_ANYTHING,
1968 };
1969
1970 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1971            __be32 *, to, u32, to_size, __wsum, seed)
1972 {
1973         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1974         u32 diff_size = from_size + to_size;
1975         int i, j = 0;
1976
1977         /* This is quite flexible, some examples:
1978          *
1979          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1980          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1981          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1982          *
1983          * Even for diffing, from_size and to_size don't need to be equal.
1984          */
1985         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1986                      diff_size > sizeof(sp->diff)))
1987                 return -EINVAL;
1988
1989         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1990                 sp->diff[j] = ~from[i];
1991         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1992                 sp->diff[j] = to[i];
1993
1994         return csum_partial(sp->diff, diff_size, seed);
1995 }
1996
1997 static const struct bpf_func_proto bpf_csum_diff_proto = {
1998         .func           = bpf_csum_diff,
1999         .gpl_only       = false,
2000         .pkt_access     = true,
2001         .ret_type       = RET_INTEGER,
2002         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
2003         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
2004         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
2005         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
2006         .arg5_type      = ARG_ANYTHING,
2007 };
2008
2009 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
2010 {
2011         /* The interface is to be used in combination with bpf_csum_diff()
2012          * for direct packet writes. csum rotation for alignment as well
2013          * as emulating csum_sub() can be done from the eBPF program.
2014          */
2015         if (skb->ip_summed == CHECKSUM_COMPLETE)
2016                 return (skb->csum = csum_add(skb->csum, csum));
2017
2018         return -ENOTSUPP;
2019 }
2020
2021 static const struct bpf_func_proto bpf_csum_update_proto = {
2022         .func           = bpf_csum_update,
2023         .gpl_only       = false,
2024         .ret_type       = RET_INTEGER,
2025         .arg1_type      = ARG_PTR_TO_CTX,
2026         .arg2_type      = ARG_ANYTHING,
2027 };
2028
2029 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
2030 {
2031         return dev_forward_skb(dev, skb);
2032 }
2033
2034 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
2035                                       struct sk_buff *skb)
2036 {
2037         int ret = ____dev_forward_skb(dev, skb);
2038
2039         if (likely(!ret)) {
2040                 skb->dev = dev;
2041                 ret = netif_rx(skb);
2042         }
2043
2044         return ret;
2045 }
2046
2047 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2048 {
2049         int ret;
2050
2051         if (dev_xmit_recursion()) {
2052                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2053                 kfree_skb(skb);
2054                 return -ENETDOWN;
2055         }
2056
2057         skb->dev = dev;
2058
2059         dev_xmit_recursion_inc();
2060         ret = dev_queue_xmit(skb);
2061         dev_xmit_recursion_dec();
2062
2063         return ret;
2064 }
2065
2066 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2067                                  u32 flags)
2068 {
2069         unsigned int mlen = skb_network_offset(skb);
2070
2071         if (mlen) {
2072                 __skb_pull(skb, mlen);
2073
2074                 /* At ingress, the mac header has already been pulled once.
2075                  * At egress, skb_pospull_rcsum has to be done in case that
2076                  * the skb is originated from ingress (i.e. a forwarded skb)
2077                  * to ensure that rcsum starts at net header.
2078                  */
2079                 if (!skb_at_tc_ingress(skb))
2080                         skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2081         }
2082         skb_pop_mac_header(skb);
2083         skb_reset_mac_len(skb);
2084         return flags & BPF_F_INGRESS ?
2085                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2086 }
2087
2088 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2089                                  u32 flags)
2090 {
2091         /* Verify that a link layer header is carried */
2092         if (unlikely(skb->mac_header >= skb->network_header)) {
2093                 kfree_skb(skb);
2094                 return -ERANGE;
2095         }
2096
2097         bpf_push_mac_rcsum(skb);
2098         return flags & BPF_F_INGRESS ?
2099                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2100 }
2101
2102 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2103                           u32 flags)
2104 {
2105         if (dev_is_mac_header_xmit(dev))
2106                 return __bpf_redirect_common(skb, dev, flags);
2107         else
2108                 return __bpf_redirect_no_mac(skb, dev, flags);
2109 }
2110
2111 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2112 {
2113         struct net_device *dev;
2114         struct sk_buff *clone;
2115         int ret;
2116
2117         if (unlikely(flags & ~(BPF_F_INGRESS)))
2118                 return -EINVAL;
2119
2120         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2121         if (unlikely(!dev))
2122                 return -EINVAL;
2123
2124         clone = skb_clone(skb, GFP_ATOMIC);
2125         if (unlikely(!clone))
2126                 return -ENOMEM;
2127
2128         /* For direct write, we need to keep the invariant that the skbs
2129          * we're dealing with need to be uncloned. Should uncloning fail
2130          * here, we need to free the just generated clone to unclone once
2131          * again.
2132          */
2133         ret = bpf_try_make_head_writable(skb);
2134         if (unlikely(ret)) {
2135                 kfree_skb(clone);
2136                 return -ENOMEM;
2137         }
2138
2139         return __bpf_redirect(clone, dev, flags);
2140 }
2141
2142 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2143         .func           = bpf_clone_redirect,
2144         .gpl_only       = false,
2145         .ret_type       = RET_INTEGER,
2146         .arg1_type      = ARG_PTR_TO_CTX,
2147         .arg2_type      = ARG_ANYTHING,
2148         .arg3_type      = ARG_ANYTHING,
2149 };
2150
2151 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2152 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2153
2154 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2155 {
2156         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2157
2158         if (unlikely(flags & ~(BPF_F_INGRESS)))
2159                 return TC_ACT_SHOT;
2160
2161         ri->flags = flags;
2162         ri->tgt_index = ifindex;
2163
2164         return TC_ACT_REDIRECT;
2165 }
2166
2167 int skb_do_redirect(struct sk_buff *skb)
2168 {
2169         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2170         struct net_device *dev;
2171
2172         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->tgt_index);
2173         ri->tgt_index = 0;
2174         if (unlikely(!dev)) {
2175                 kfree_skb(skb);
2176                 return -EINVAL;
2177         }
2178
2179         return __bpf_redirect(skb, dev, ri->flags);
2180 }
2181
2182 static const struct bpf_func_proto bpf_redirect_proto = {
2183         .func           = bpf_redirect,
2184         .gpl_only       = false,
2185         .ret_type       = RET_INTEGER,
2186         .arg1_type      = ARG_ANYTHING,
2187         .arg2_type      = ARG_ANYTHING,
2188 };
2189
2190 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2191 {
2192         msg->apply_bytes = bytes;
2193         return 0;
2194 }
2195
2196 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2197         .func           = bpf_msg_apply_bytes,
2198         .gpl_only       = false,
2199         .ret_type       = RET_INTEGER,
2200         .arg1_type      = ARG_PTR_TO_CTX,
2201         .arg2_type      = ARG_ANYTHING,
2202 };
2203
2204 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2205 {
2206         msg->cork_bytes = bytes;
2207         return 0;
2208 }
2209
2210 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2211         .func           = bpf_msg_cork_bytes,
2212         .gpl_only       = false,
2213         .ret_type       = RET_INTEGER,
2214         .arg1_type      = ARG_PTR_TO_CTX,
2215         .arg2_type      = ARG_ANYTHING,
2216 };
2217
2218 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2219            u32, end, u64, flags)
2220 {
2221         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2222         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2223         struct scatterlist *sge;
2224         u8 *raw, *to, *from;
2225         struct page *page;
2226
2227         if (unlikely(flags || end <= start))
2228                 return -EINVAL;
2229
2230         /* First find the starting scatterlist element */
2231         i = msg->sg.start;
2232         do {
2233                 len = sk_msg_elem(msg, i)->length;
2234                 if (start < offset + len)
2235                         break;
2236                 offset += len;
2237                 sk_msg_iter_var_next(i);
2238         } while (i != msg->sg.end);
2239
2240         if (unlikely(start >= offset + len))
2241                 return -EINVAL;
2242
2243         first_sge = i;
2244         /* The start may point into the sg element so we need to also
2245          * account for the headroom.
2246          */
2247         bytes_sg_total = start - offset + bytes;
2248         if (!msg->sg.copy[i] && bytes_sg_total <= len)
2249                 goto out;
2250
2251         /* At this point we need to linearize multiple scatterlist
2252          * elements or a single shared page. Either way we need to
2253          * copy into a linear buffer exclusively owned by BPF. Then
2254          * place the buffer in the scatterlist and fixup the original
2255          * entries by removing the entries now in the linear buffer
2256          * and shifting the remaining entries. For now we do not try
2257          * to copy partial entries to avoid complexity of running out
2258          * of sg_entry slots. The downside is reading a single byte
2259          * will copy the entire sg entry.
2260          */
2261         do {
2262                 copy += sk_msg_elem(msg, i)->length;
2263                 sk_msg_iter_var_next(i);
2264                 if (bytes_sg_total <= copy)
2265                         break;
2266         } while (i != msg->sg.end);
2267         last_sge = i;
2268
2269         if (unlikely(bytes_sg_total > copy))
2270                 return -EINVAL;
2271
2272         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2273                            get_order(copy));
2274         if (unlikely(!page))
2275                 return -ENOMEM;
2276
2277         raw = page_address(page);
2278         i = first_sge;
2279         do {
2280                 sge = sk_msg_elem(msg, i);
2281                 from = sg_virt(sge);
2282                 len = sge->length;
2283                 to = raw + poffset;
2284
2285                 memcpy(to, from, len);
2286                 poffset += len;
2287                 sge->length = 0;
2288                 put_page(sg_page(sge));
2289
2290                 sk_msg_iter_var_next(i);
2291         } while (i != last_sge);
2292
2293         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2294
2295         /* To repair sg ring we need to shift entries. If we only
2296          * had a single entry though we can just replace it and
2297          * be done. Otherwise walk the ring and shift the entries.
2298          */
2299         WARN_ON_ONCE(last_sge == first_sge);
2300         shift = last_sge > first_sge ?
2301                 last_sge - first_sge - 1 :
2302                 MAX_SKB_FRAGS - first_sge + last_sge - 1;
2303         if (!shift)
2304                 goto out;
2305
2306         i = first_sge;
2307         sk_msg_iter_var_next(i);
2308         do {
2309                 u32 move_from;
2310
2311                 if (i + shift >= MAX_MSG_FRAGS)
2312                         move_from = i + shift - MAX_MSG_FRAGS;
2313                 else
2314                         move_from = i + shift;
2315                 if (move_from == msg->sg.end)
2316                         break;
2317
2318                 msg->sg.data[i] = msg->sg.data[move_from];
2319                 msg->sg.data[move_from].length = 0;
2320                 msg->sg.data[move_from].page_link = 0;
2321                 msg->sg.data[move_from].offset = 0;
2322                 sk_msg_iter_var_next(i);
2323         } while (1);
2324
2325         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2326                       msg->sg.end - shift + MAX_MSG_FRAGS :
2327                       msg->sg.end - shift;
2328 out:
2329         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2330         msg->data_end = msg->data + bytes;
2331         return 0;
2332 }
2333
2334 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2335         .func           = bpf_msg_pull_data,
2336         .gpl_only       = false,
2337         .ret_type       = RET_INTEGER,
2338         .arg1_type      = ARG_PTR_TO_CTX,
2339         .arg2_type      = ARG_ANYTHING,
2340         .arg3_type      = ARG_ANYTHING,
2341         .arg4_type      = ARG_ANYTHING,
2342 };
2343
2344 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2345            u32, len, u64, flags)
2346 {
2347         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2348         u32 new, i = 0, l, space, copy = 0, offset = 0;
2349         u8 *raw, *to, *from;
2350         struct page *page;
2351
2352         if (unlikely(flags))
2353                 return -EINVAL;
2354
2355         /* First find the starting scatterlist element */
2356         i = msg->sg.start;
2357         do {
2358                 l = sk_msg_elem(msg, i)->length;
2359
2360                 if (start < offset + l)
2361                         break;
2362                 offset += l;
2363                 sk_msg_iter_var_next(i);
2364         } while (i != msg->sg.end);
2365
2366         if (start >= offset + l)
2367                 return -EINVAL;
2368
2369         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2370
2371         /* If no space available will fallback to copy, we need at
2372          * least one scatterlist elem available to push data into
2373          * when start aligns to the beginning of an element or two
2374          * when it falls inside an element. We handle the start equals
2375          * offset case because its the common case for inserting a
2376          * header.
2377          */
2378         if (!space || (space == 1 && start != offset))
2379                 copy = msg->sg.data[i].length;
2380
2381         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2382                            get_order(copy + len));
2383         if (unlikely(!page))
2384                 return -ENOMEM;
2385
2386         if (copy) {
2387                 int front, back;
2388
2389                 raw = page_address(page);
2390
2391                 psge = sk_msg_elem(msg, i);
2392                 front = start - offset;
2393                 back = psge->length - front;
2394                 from = sg_virt(psge);
2395
2396                 if (front)
2397                         memcpy(raw, from, front);
2398
2399                 if (back) {
2400                         from += front;
2401                         to = raw + front + len;
2402
2403                         memcpy(to, from, back);
2404                 }
2405
2406                 put_page(sg_page(psge));
2407         } else if (start - offset) {
2408                 psge = sk_msg_elem(msg, i);
2409                 rsge = sk_msg_elem_cpy(msg, i);
2410
2411                 psge->length = start - offset;
2412                 rsge.length -= psge->length;
2413                 rsge.offset += start;
2414
2415                 sk_msg_iter_var_next(i);
2416                 sg_unmark_end(psge);
2417                 sk_msg_iter_next(msg, end);
2418         }
2419
2420         /* Slot(s) to place newly allocated data */
2421         new = i;
2422
2423         /* Shift one or two slots as needed */
2424         if (!copy) {
2425                 sge = sk_msg_elem_cpy(msg, i);
2426
2427                 sk_msg_iter_var_next(i);
2428                 sg_unmark_end(&sge);
2429                 sk_msg_iter_next(msg, end);
2430
2431                 nsge = sk_msg_elem_cpy(msg, i);
2432                 if (rsge.length) {
2433                         sk_msg_iter_var_next(i);
2434                         nnsge = sk_msg_elem_cpy(msg, i);
2435                 }
2436
2437                 while (i != msg->sg.end) {
2438                         msg->sg.data[i] = sge;
2439                         sge = nsge;
2440                         sk_msg_iter_var_next(i);
2441                         if (rsge.length) {
2442                                 nsge = nnsge;
2443                                 nnsge = sk_msg_elem_cpy(msg, i);
2444                         } else {
2445                                 nsge = sk_msg_elem_cpy(msg, i);
2446                         }
2447                 }
2448         }
2449
2450         /* Place newly allocated data buffer */
2451         sk_mem_charge(msg->sk, len);
2452         msg->sg.size += len;
2453         msg->sg.copy[new] = false;
2454         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2455         if (rsge.length) {
2456                 get_page(sg_page(&rsge));
2457                 sk_msg_iter_var_next(new);
2458                 msg->sg.data[new] = rsge;
2459         }
2460
2461         sk_msg_compute_data_pointers(msg);
2462         return 0;
2463 }
2464
2465 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2466         .func           = bpf_msg_push_data,
2467         .gpl_only       = false,
2468         .ret_type       = RET_INTEGER,
2469         .arg1_type      = ARG_PTR_TO_CTX,
2470         .arg2_type      = ARG_ANYTHING,
2471         .arg3_type      = ARG_ANYTHING,
2472         .arg4_type      = ARG_ANYTHING,
2473 };
2474
2475 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2476 {
2477         int prev;
2478
2479         do {
2480                 prev = i;
2481                 sk_msg_iter_var_next(i);
2482                 msg->sg.data[prev] = msg->sg.data[i];
2483         } while (i != msg->sg.end);
2484
2485         sk_msg_iter_prev(msg, end);
2486 }
2487
2488 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2489 {
2490         struct scatterlist tmp, sge;
2491
2492         sk_msg_iter_next(msg, end);
2493         sge = sk_msg_elem_cpy(msg, i);
2494         sk_msg_iter_var_next(i);
2495         tmp = sk_msg_elem_cpy(msg, i);
2496
2497         while (i != msg->sg.end) {
2498                 msg->sg.data[i] = sge;
2499                 sk_msg_iter_var_next(i);
2500                 sge = tmp;
2501                 tmp = sk_msg_elem_cpy(msg, i);
2502         }
2503 }
2504
2505 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2506            u32, len, u64, flags)
2507 {
2508         u32 i = 0, l, space, offset = 0;
2509         u64 last = start + len;
2510         int pop;
2511
2512         if (unlikely(flags))
2513                 return -EINVAL;
2514
2515         /* First find the starting scatterlist element */
2516         i = msg->sg.start;
2517         do {
2518                 l = sk_msg_elem(msg, i)->length;
2519
2520                 if (start < offset + l)
2521                         break;
2522                 offset += l;
2523                 sk_msg_iter_var_next(i);
2524         } while (i != msg->sg.end);
2525
2526         /* Bounds checks: start and pop must be inside message */
2527         if (start >= offset + l || last >= msg->sg.size)
2528                 return -EINVAL;
2529
2530         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2531
2532         pop = len;
2533         /* --------------| offset
2534          * -| start      |-------- len -------|
2535          *
2536          *  |----- a ----|-------- pop -------|----- b ----|
2537          *  |______________________________________________| length
2538          *
2539          *
2540          * a:   region at front of scatter element to save
2541          * b:   region at back of scatter element to save when length > A + pop
2542          * pop: region to pop from element, same as input 'pop' here will be
2543          *      decremented below per iteration.
2544          *
2545          * Two top-level cases to handle when start != offset, first B is non
2546          * zero and second B is zero corresponding to when a pop includes more
2547          * than one element.
2548          *
2549          * Then if B is non-zero AND there is no space allocate space and
2550          * compact A, B regions into page. If there is space shift ring to
2551          * the rigth free'ing the next element in ring to place B, leaving
2552          * A untouched except to reduce length.
2553          */
2554         if (start != offset) {
2555                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2556                 int a = start;
2557                 int b = sge->length - pop - a;
2558
2559                 sk_msg_iter_var_next(i);
2560
2561                 if (pop < sge->length - a) {
2562                         if (space) {
2563                                 sge->length = a;
2564                                 sk_msg_shift_right(msg, i);
2565                                 nsge = sk_msg_elem(msg, i);
2566                                 get_page(sg_page(sge));
2567                                 sg_set_page(nsge,
2568                                             sg_page(sge),
2569                                             b, sge->offset + pop + a);
2570                         } else {
2571                                 struct page *page, *orig;
2572                                 u8 *to, *from;
2573
2574                                 page = alloc_pages(__GFP_NOWARN |
2575                                                    __GFP_COMP   | GFP_ATOMIC,
2576                                                    get_order(a + b));
2577                                 if (unlikely(!page))
2578                                         return -ENOMEM;
2579
2580                                 sge->length = a;
2581                                 orig = sg_page(sge);
2582                                 from = sg_virt(sge);
2583                                 to = page_address(page);
2584                                 memcpy(to, from, a);
2585                                 memcpy(to + a, from + a + pop, b);
2586                                 sg_set_page(sge, page, a + b, 0);
2587                                 put_page(orig);
2588                         }
2589                         pop = 0;
2590                 } else if (pop >= sge->length - a) {
2591                         sge->length = a;
2592                         pop -= (sge->length - a);
2593                 }
2594         }
2595
2596         /* From above the current layout _must_ be as follows,
2597          *
2598          * -| offset
2599          * -| start
2600          *
2601          *  |---- pop ---|---------------- b ------------|
2602          *  |____________________________________________| length
2603          *
2604          * Offset and start of the current msg elem are equal because in the
2605          * previous case we handled offset != start and either consumed the
2606          * entire element and advanced to the next element OR pop == 0.
2607          *
2608          * Two cases to handle here are first pop is less than the length
2609          * leaving some remainder b above. Simply adjust the element's layout
2610          * in this case. Or pop >= length of the element so that b = 0. In this
2611          * case advance to next element decrementing pop.
2612          */
2613         while (pop) {
2614                 struct scatterlist *sge = sk_msg_elem(msg, i);
2615
2616                 if (pop < sge->length) {
2617                         sge->length -= pop;
2618                         sge->offset += pop;
2619                         pop = 0;
2620                 } else {
2621                         pop -= sge->length;
2622                         sk_msg_shift_left(msg, i);
2623                 }
2624                 sk_msg_iter_var_next(i);
2625         }
2626
2627         sk_mem_uncharge(msg->sk, len - pop);
2628         msg->sg.size -= (len - pop);
2629         sk_msg_compute_data_pointers(msg);
2630         return 0;
2631 }
2632
2633 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2634         .func           = bpf_msg_pop_data,
2635         .gpl_only       = false,
2636         .ret_type       = RET_INTEGER,
2637         .arg1_type      = ARG_PTR_TO_CTX,
2638         .arg2_type      = ARG_ANYTHING,
2639         .arg3_type      = ARG_ANYTHING,
2640         .arg4_type      = ARG_ANYTHING,
2641 };
2642
2643 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2644 {
2645         return task_get_classid(skb);
2646 }
2647
2648 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2649         .func           = bpf_get_cgroup_classid,
2650         .gpl_only       = false,
2651         .ret_type       = RET_INTEGER,
2652         .arg1_type      = ARG_PTR_TO_CTX,
2653 };
2654
2655 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2656 {
2657         return dst_tclassid(skb);
2658 }
2659
2660 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2661         .func           = bpf_get_route_realm,
2662         .gpl_only       = false,
2663         .ret_type       = RET_INTEGER,
2664         .arg1_type      = ARG_PTR_TO_CTX,
2665 };
2666
2667 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2668 {
2669         /* If skb_clear_hash() was called due to mangling, we can
2670          * trigger SW recalculation here. Later access to hash
2671          * can then use the inline skb->hash via context directly
2672          * instead of calling this helper again.
2673          */
2674         return skb_get_hash(skb);
2675 }
2676
2677 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2678         .func           = bpf_get_hash_recalc,
2679         .gpl_only       = false,
2680         .ret_type       = RET_INTEGER,
2681         .arg1_type      = ARG_PTR_TO_CTX,
2682 };
2683
2684 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2685 {
2686         /* After all direct packet write, this can be used once for
2687          * triggering a lazy recalc on next skb_get_hash() invocation.
2688          */
2689         skb_clear_hash(skb);
2690         return 0;
2691 }
2692
2693 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2694         .func           = bpf_set_hash_invalid,
2695         .gpl_only       = false,
2696         .ret_type       = RET_INTEGER,
2697         .arg1_type      = ARG_PTR_TO_CTX,
2698 };
2699
2700 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2701 {
2702         /* Set user specified hash as L4(+), so that it gets returned
2703          * on skb_get_hash() call unless BPF prog later on triggers a
2704          * skb_clear_hash().
2705          */
2706         __skb_set_sw_hash(skb, hash, true);
2707         return 0;
2708 }
2709
2710 static const struct bpf_func_proto bpf_set_hash_proto = {
2711         .func           = bpf_set_hash,
2712         .gpl_only       = false,
2713         .ret_type       = RET_INTEGER,
2714         .arg1_type      = ARG_PTR_TO_CTX,
2715         .arg2_type      = ARG_ANYTHING,
2716 };
2717
2718 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2719            u16, vlan_tci)
2720 {
2721         int ret;
2722
2723         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2724                      vlan_proto != htons(ETH_P_8021AD)))
2725                 vlan_proto = htons(ETH_P_8021Q);
2726
2727         bpf_push_mac_rcsum(skb);
2728         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2729         bpf_pull_mac_rcsum(skb);
2730
2731         bpf_compute_data_pointers(skb);
2732         return ret;
2733 }
2734
2735 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2736         .func           = bpf_skb_vlan_push,
2737         .gpl_only       = false,
2738         .ret_type       = RET_INTEGER,
2739         .arg1_type      = ARG_PTR_TO_CTX,
2740         .arg2_type      = ARG_ANYTHING,
2741         .arg3_type      = ARG_ANYTHING,
2742 };
2743
2744 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2745 {
2746         int ret;
2747
2748         bpf_push_mac_rcsum(skb);
2749         ret = skb_vlan_pop(skb);
2750         bpf_pull_mac_rcsum(skb);
2751
2752         bpf_compute_data_pointers(skb);
2753         return ret;
2754 }
2755
2756 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2757         .func           = bpf_skb_vlan_pop,
2758         .gpl_only       = false,
2759         .ret_type       = RET_INTEGER,
2760         .arg1_type      = ARG_PTR_TO_CTX,
2761 };
2762
2763 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2764 {
2765         /* Caller already did skb_cow() with len as headroom,
2766          * so no need to do it here.
2767          */
2768         skb_push(skb, len);
2769         memmove(skb->data, skb->data + len, off);
2770         memset(skb->data + off, 0, len);
2771
2772         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2773          * needed here as it does not change the skb->csum
2774          * result for checksum complete when summing over
2775          * zeroed blocks.
2776          */
2777         return 0;
2778 }
2779
2780 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2781 {
2782         /* skb_ensure_writable() is not needed here, as we're
2783          * already working on an uncloned skb.
2784          */
2785         if (unlikely(!pskb_may_pull(skb, off + len)))
2786                 return -ENOMEM;
2787
2788         skb_postpull_rcsum(skb, skb->data + off, len);
2789         memmove(skb->data + len, skb->data, off);
2790         __skb_pull(skb, len);
2791
2792         return 0;
2793 }
2794
2795 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2796 {
2797         bool trans_same = skb->transport_header == skb->network_header;
2798         int ret;
2799
2800         /* There's no need for __skb_push()/__skb_pull() pair to
2801          * get to the start of the mac header as we're guaranteed
2802          * to always start from here under eBPF.
2803          */
2804         ret = bpf_skb_generic_push(skb, off, len);
2805         if (likely(!ret)) {
2806                 skb->mac_header -= len;
2807                 skb->network_header -= len;
2808                 if (trans_same)
2809                         skb->transport_header = skb->network_header;
2810         }
2811
2812         return ret;
2813 }
2814
2815 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2816 {
2817         bool trans_same = skb->transport_header == skb->network_header;
2818         int ret;
2819
2820         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2821         ret = bpf_skb_generic_pop(skb, off, len);
2822         if (likely(!ret)) {
2823                 skb->mac_header += len;
2824                 skb->network_header += len;
2825                 if (trans_same)
2826                         skb->transport_header = skb->network_header;
2827         }
2828
2829         return ret;
2830 }
2831
2832 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2833 {
2834         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2835         u32 off = skb_mac_header_len(skb);
2836         int ret;
2837
2838         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2839                 return -ENOTSUPP;
2840
2841         ret = skb_cow(skb, len_diff);
2842         if (unlikely(ret < 0))
2843                 return ret;
2844
2845         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2846         if (unlikely(ret < 0))
2847                 return ret;
2848
2849         if (skb_is_gso(skb)) {
2850                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2851
2852                 /* SKB_GSO_TCPV4 needs to be changed into
2853                  * SKB_GSO_TCPV6.
2854                  */
2855                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2856                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2857                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2858                 }
2859
2860                 /* Due to IPv6 header, MSS needs to be downgraded. */
2861                 skb_decrease_gso_size(shinfo, len_diff);
2862                 /* Header must be checked, and gso_segs recomputed. */
2863                 shinfo->gso_type |= SKB_GSO_DODGY;
2864                 shinfo->gso_segs = 0;
2865         }
2866
2867         skb->protocol = htons(ETH_P_IPV6);
2868         skb_clear_hash(skb);
2869
2870         return 0;
2871 }
2872
2873 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2874 {
2875         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2876         u32 off = skb_mac_header_len(skb);
2877         int ret;
2878
2879         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb))
2880                 return -ENOTSUPP;
2881
2882         ret = skb_unclone(skb, GFP_ATOMIC);
2883         if (unlikely(ret < 0))
2884                 return ret;
2885
2886         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2887         if (unlikely(ret < 0))
2888                 return ret;
2889
2890         if (skb_is_gso(skb)) {
2891                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2892
2893                 /* SKB_GSO_TCPV6 needs to be changed into
2894                  * SKB_GSO_TCPV4.
2895                  */
2896                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2897                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2898                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2899                 }
2900
2901                 /* Due to IPv4 header, MSS can be upgraded. */
2902                 skb_increase_gso_size(shinfo, len_diff);
2903                 /* Header must be checked, and gso_segs recomputed. */
2904                 shinfo->gso_type |= SKB_GSO_DODGY;
2905                 shinfo->gso_segs = 0;
2906         }
2907
2908         skb->protocol = htons(ETH_P_IP);
2909         skb_clear_hash(skb);
2910
2911         return 0;
2912 }
2913
2914 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2915 {
2916         __be16 from_proto = skb->protocol;
2917
2918         if (from_proto == htons(ETH_P_IP) &&
2919               to_proto == htons(ETH_P_IPV6))
2920                 return bpf_skb_proto_4_to_6(skb);
2921
2922         if (from_proto == htons(ETH_P_IPV6) &&
2923               to_proto == htons(ETH_P_IP))
2924                 return bpf_skb_proto_6_to_4(skb);
2925
2926         return -ENOTSUPP;
2927 }
2928
2929 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2930            u64, flags)
2931 {
2932         int ret;
2933
2934         if (unlikely(flags))
2935                 return -EINVAL;
2936
2937         /* General idea is that this helper does the basic groundwork
2938          * needed for changing the protocol, and eBPF program fills the
2939          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2940          * and other helpers, rather than passing a raw buffer here.
2941          *
2942          * The rationale is to keep this minimal and without a need to
2943          * deal with raw packet data. F.e. even if we would pass buffers
2944          * here, the program still needs to call the bpf_lX_csum_replace()
2945          * helpers anyway. Plus, this way we keep also separation of
2946          * concerns, since f.e. bpf_skb_store_bytes() should only take
2947          * care of stores.
2948          *
2949          * Currently, additional options and extension header space are
2950          * not supported, but flags register is reserved so we can adapt
2951          * that. For offloads, we mark packet as dodgy, so that headers
2952          * need to be verified first.
2953          */
2954         ret = bpf_skb_proto_xlat(skb, proto);
2955         bpf_compute_data_pointers(skb);
2956         return ret;
2957 }
2958
2959 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2960         .func           = bpf_skb_change_proto,
2961         .gpl_only       = false,
2962         .ret_type       = RET_INTEGER,
2963         .arg1_type      = ARG_PTR_TO_CTX,
2964         .arg2_type      = ARG_ANYTHING,
2965         .arg3_type      = ARG_ANYTHING,
2966 };
2967
2968 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2969 {
2970         /* We only allow a restricted subset to be changed for now. */
2971         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2972                      !skb_pkt_type_ok(pkt_type)))
2973                 return -EINVAL;
2974
2975         skb->pkt_type = pkt_type;
2976         return 0;
2977 }
2978
2979 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2980         .func           = bpf_skb_change_type,
2981         .gpl_only       = false,
2982         .ret_type       = RET_INTEGER,
2983         .arg1_type      = ARG_PTR_TO_CTX,
2984         .arg2_type      = ARG_ANYTHING,
2985 };
2986
2987 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2988 {
2989         switch (skb->protocol) {
2990         case htons(ETH_P_IP):
2991                 return sizeof(struct iphdr);
2992         case htons(ETH_P_IPV6):
2993                 return sizeof(struct ipv6hdr);
2994         default:
2995                 return ~0U;
2996         }
2997 }
2998
2999 #define BPF_F_ADJ_ROOM_ENCAP_L3_MASK    (BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 | \
3000                                          BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3001
3002 #define BPF_F_ADJ_ROOM_MASK             (BPF_F_ADJ_ROOM_FIXED_GSO | \
3003                                          BPF_F_ADJ_ROOM_ENCAP_L3_MASK | \
3004                                          BPF_F_ADJ_ROOM_ENCAP_L4_GRE | \
3005                                          BPF_F_ADJ_ROOM_ENCAP_L4_UDP | \
3006                                          BPF_F_ADJ_ROOM_ENCAP_L2( \
3007                                           BPF_ADJ_ROOM_ENCAP_L2_MASK))
3008
3009 static int bpf_skb_net_grow(struct sk_buff *skb, u32 off, u32 len_diff,
3010                             u64 flags)
3011 {
3012         u8 inner_mac_len = flags >> BPF_ADJ_ROOM_ENCAP_L2_SHIFT;
3013         bool encap = flags & BPF_F_ADJ_ROOM_ENCAP_L3_MASK;
3014         u16 mac_len = 0, inner_net = 0, inner_trans = 0;
3015         unsigned int gso_type = SKB_GSO_DODGY;
3016         int ret;
3017
3018         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3019                 /* udp gso_size delineates datagrams, only allow if fixed */
3020                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3021                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3022                         return -ENOTSUPP;
3023         }
3024
3025         ret = skb_cow_head(skb, len_diff);
3026         if (unlikely(ret < 0))
3027                 return ret;
3028
3029         if (encap) {
3030                 if (skb->protocol != htons(ETH_P_IP) &&
3031                     skb->protocol != htons(ETH_P_IPV6))
3032                         return -ENOTSUPP;
3033
3034                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4 &&
3035                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3036                         return -EINVAL;
3037
3038                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE &&
3039                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3040                         return -EINVAL;
3041
3042                 if (skb->encapsulation)
3043                         return -EALREADY;
3044
3045                 mac_len = skb->network_header - skb->mac_header;
3046                 inner_net = skb->network_header;
3047                 if (inner_mac_len > len_diff)
3048                         return -EINVAL;
3049                 inner_trans = skb->transport_header;
3050         }
3051
3052         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
3053         if (unlikely(ret < 0))
3054                 return ret;
3055
3056         if (encap) {
3057                 skb->inner_mac_header = inner_net - inner_mac_len;
3058                 skb->inner_network_header = inner_net;
3059                 skb->inner_transport_header = inner_trans;
3060                 skb_set_inner_protocol(skb, skb->protocol);
3061
3062                 skb->encapsulation = 1;
3063                 skb_set_network_header(skb, mac_len);
3064
3065                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP)
3066                         gso_type |= SKB_GSO_UDP_TUNNEL;
3067                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE)
3068                         gso_type |= SKB_GSO_GRE;
3069                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3070                         gso_type |= SKB_GSO_IPXIP6;
3071                 else if (flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3072                         gso_type |= SKB_GSO_IPXIP4;
3073
3074                 if (flags & BPF_F_ADJ_ROOM_ENCAP_L4_GRE ||
3075                     flags & BPF_F_ADJ_ROOM_ENCAP_L4_UDP) {
3076                         int nh_len = flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6 ?
3077                                         sizeof(struct ipv6hdr) :
3078                                         sizeof(struct iphdr);
3079
3080                         skb_set_transport_header(skb, mac_len + nh_len);
3081                 }
3082
3083                 /* Match skb->protocol to new outer l3 protocol */
3084                 if (skb->protocol == htons(ETH_P_IP) &&
3085                     flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV6)
3086                         skb->protocol = htons(ETH_P_IPV6);
3087                 else if (skb->protocol == htons(ETH_P_IPV6) &&
3088                          flags & BPF_F_ADJ_ROOM_ENCAP_L3_IPV4)
3089                         skb->protocol = htons(ETH_P_IP);
3090         }
3091
3092         if (skb_is_gso(skb)) {
3093                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3094
3095                 /* Due to header grow, MSS needs to be downgraded. */
3096                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3097                         skb_decrease_gso_size(shinfo, len_diff);
3098
3099                 /* Header must be checked, and gso_segs recomputed. */
3100                 shinfo->gso_type |= gso_type;
3101                 shinfo->gso_segs = 0;
3102         }
3103
3104         return 0;
3105 }
3106
3107 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 off, u32 len_diff,
3108                               u64 flags)
3109 {
3110         int ret;
3111
3112         if (flags & ~BPF_F_ADJ_ROOM_FIXED_GSO)
3113                 return -EINVAL;
3114
3115         if (skb_is_gso(skb) && !skb_is_gso_tcp(skb)) {
3116                 /* udp gso_size delineates datagrams, only allow if fixed */
3117                 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ||
3118                     !(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3119                         return -ENOTSUPP;
3120         }
3121
3122         ret = skb_unclone(skb, GFP_ATOMIC);
3123         if (unlikely(ret < 0))
3124                 return ret;
3125
3126         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
3127         if (unlikely(ret < 0))
3128                 return ret;
3129
3130         if (skb_is_gso(skb)) {
3131                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3132
3133                 /* Due to header shrink, MSS can be upgraded. */
3134                 if (!(flags & BPF_F_ADJ_ROOM_FIXED_GSO))
3135                         skb_increase_gso_size(shinfo, len_diff);
3136
3137                 /* Header must be checked, and gso_segs recomputed. */
3138                 shinfo->gso_type |= SKB_GSO_DODGY;
3139                 shinfo->gso_segs = 0;
3140         }
3141
3142         return 0;
3143 }
3144
3145 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3146 {
3147         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3148                           SKB_MAX_ALLOC;
3149 }
3150
3151 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3152            u32, mode, u64, flags)
3153 {
3154         u32 len_cur, len_diff_abs = abs(len_diff);
3155         u32 len_min = bpf_skb_net_base_len(skb);
3156         u32 len_max = __bpf_skb_max_len(skb);
3157         __be16 proto = skb->protocol;
3158         bool shrink = len_diff < 0;
3159         u32 off;
3160         int ret;
3161
3162         if (unlikely(flags & ~BPF_F_ADJ_ROOM_MASK))
3163                 return -EINVAL;
3164         if (unlikely(len_diff_abs > 0xfffU))
3165                 return -EFAULT;
3166         if (unlikely(proto != htons(ETH_P_IP) &&
3167                      proto != htons(ETH_P_IPV6)))
3168                 return -ENOTSUPP;
3169
3170         off = skb_mac_header_len(skb);
3171         switch (mode) {
3172         case BPF_ADJ_ROOM_NET:
3173                 off += bpf_skb_net_base_len(skb);
3174                 break;
3175         case BPF_ADJ_ROOM_MAC:
3176                 break;
3177         default:
3178                 return -ENOTSUPP;
3179         }
3180
3181         len_cur = skb->len - skb_network_offset(skb);
3182         if ((shrink && (len_diff_abs >= len_cur ||
3183                         len_cur - len_diff_abs < len_min)) ||
3184             (!shrink && (skb->len + len_diff_abs > len_max &&
3185                          !skb_is_gso(skb))))
3186                 return -ENOTSUPP;
3187
3188         ret = shrink ? bpf_skb_net_shrink(skb, off, len_diff_abs, flags) :
3189                        bpf_skb_net_grow(skb, off, len_diff_abs, flags);
3190
3191         bpf_compute_data_pointers(skb);
3192         return ret;
3193 }
3194
3195 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3196         .func           = bpf_skb_adjust_room,
3197         .gpl_only       = false,
3198         .ret_type       = RET_INTEGER,
3199         .arg1_type      = ARG_PTR_TO_CTX,
3200         .arg2_type      = ARG_ANYTHING,
3201         .arg3_type      = ARG_ANYTHING,
3202         .arg4_type      = ARG_ANYTHING,
3203 };
3204
3205 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3206 {
3207         u32 min_len = skb_network_offset(skb);
3208
3209         if (skb_transport_header_was_set(skb))
3210                 min_len = skb_transport_offset(skb);
3211         if (skb->ip_summed == CHECKSUM_PARTIAL)
3212                 min_len = skb_checksum_start_offset(skb) +
3213                           skb->csum_offset + sizeof(__sum16);
3214         return min_len;
3215 }
3216
3217 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3218 {
3219         unsigned int old_len = skb->len;
3220         int ret;
3221
3222         ret = __skb_grow_rcsum(skb, new_len);
3223         if (!ret)
3224                 memset(skb->data + old_len, 0, new_len - old_len);
3225         return ret;
3226 }
3227
3228 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3229 {
3230         return __skb_trim_rcsum(skb, new_len);
3231 }
3232
3233 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3234                                         u64 flags)
3235 {
3236         u32 max_len = __bpf_skb_max_len(skb);
3237         u32 min_len = __bpf_skb_min_len(skb);
3238         int ret;
3239
3240         if (unlikely(flags || new_len > max_len || new_len < min_len))
3241                 return -EINVAL;
3242         if (skb->encapsulation)
3243                 return -ENOTSUPP;
3244
3245         /* The basic idea of this helper is that it's performing the
3246          * needed work to either grow or trim an skb, and eBPF program
3247          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3248          * bpf_lX_csum_replace() and others rather than passing a raw
3249          * buffer here. This one is a slow path helper and intended
3250          * for replies with control messages.
3251          *
3252          * Like in bpf_skb_change_proto(), we want to keep this rather
3253          * minimal and without protocol specifics so that we are able
3254          * to separate concerns as in bpf_skb_store_bytes() should only
3255          * be the one responsible for writing buffers.
3256          *
3257          * It's really expected to be a slow path operation here for
3258          * control message replies, so we're implicitly linearizing,
3259          * uncloning and drop offloads from the skb by this.
3260          */
3261         ret = __bpf_try_make_writable(skb, skb->len);
3262         if (!ret) {
3263                 if (new_len > skb->len)
3264                         ret = bpf_skb_grow_rcsum(skb, new_len);
3265                 else if (new_len < skb->len)
3266                         ret = bpf_skb_trim_rcsum(skb, new_len);
3267                 if (!ret && skb_is_gso(skb))
3268                         skb_gso_reset(skb);
3269         }
3270         return ret;
3271 }
3272
3273 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3274            u64, flags)
3275 {
3276         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3277
3278         bpf_compute_data_pointers(skb);
3279         return ret;
3280 }
3281
3282 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3283         .func           = bpf_skb_change_tail,
3284         .gpl_only       = false,
3285         .ret_type       = RET_INTEGER,
3286         .arg1_type      = ARG_PTR_TO_CTX,
3287         .arg2_type      = ARG_ANYTHING,
3288         .arg3_type      = ARG_ANYTHING,
3289 };
3290
3291 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3292            u64, flags)
3293 {
3294         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3295
3296         bpf_compute_data_end_sk_skb(skb);
3297         return ret;
3298 }
3299
3300 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3301         .func           = sk_skb_change_tail,
3302         .gpl_only       = false,
3303         .ret_type       = RET_INTEGER,
3304         .arg1_type      = ARG_PTR_TO_CTX,
3305         .arg2_type      = ARG_ANYTHING,
3306         .arg3_type      = ARG_ANYTHING,
3307 };
3308
3309 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3310                                         u64 flags)
3311 {
3312         u32 max_len = __bpf_skb_max_len(skb);
3313         u32 new_len = skb->len + head_room;
3314         int ret;
3315
3316         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3317                      new_len < skb->len))
3318                 return -EINVAL;
3319
3320         ret = skb_cow(skb, head_room);
3321         if (likely(!ret)) {
3322                 /* Idea for this helper is that we currently only
3323                  * allow to expand on mac header. This means that
3324                  * skb->protocol network header, etc, stay as is.
3325                  * Compared to bpf_skb_change_tail(), we're more
3326                  * flexible due to not needing to linearize or
3327                  * reset GSO. Intention for this helper is to be
3328                  * used by an L3 skb that needs to push mac header
3329                  * for redirection into L2 device.
3330                  */
3331                 __skb_push(skb, head_room);
3332                 memset(skb->data, 0, head_room);
3333                 skb_reset_mac_header(skb);
3334         }
3335
3336         return ret;
3337 }
3338
3339 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3340            u64, flags)
3341 {
3342         int ret = __bpf_skb_change_head(skb, head_room, flags);
3343
3344         bpf_compute_data_pointers(skb);
3345         return ret;
3346 }
3347
3348 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3349         .func           = bpf_skb_change_head,
3350         .gpl_only       = false,
3351         .ret_type       = RET_INTEGER,
3352         .arg1_type      = ARG_PTR_TO_CTX,
3353         .arg2_type      = ARG_ANYTHING,
3354         .arg3_type      = ARG_ANYTHING,
3355 };
3356
3357 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3358            u64, flags)
3359 {
3360         int ret = __bpf_skb_change_head(skb, head_room, flags);
3361
3362         bpf_compute_data_end_sk_skb(skb);
3363         return ret;
3364 }
3365
3366 static const struct bpf_func_proto sk_skb_change_head_proto = {
3367         .func           = sk_skb_change_head,
3368         .gpl_only       = false,
3369         .ret_type       = RET_INTEGER,
3370         .arg1_type      = ARG_PTR_TO_CTX,
3371         .arg2_type      = ARG_ANYTHING,
3372         .arg3_type      = ARG_ANYTHING,
3373 };
3374 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3375 {
3376         return xdp_data_meta_unsupported(xdp) ? 0 :
3377                xdp->data - xdp->data_meta;
3378 }
3379
3380 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3381 {
3382         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3383         unsigned long metalen = xdp_get_metalen(xdp);
3384         void *data_start = xdp_frame_end + metalen;
3385         void *data = xdp->data + offset;
3386
3387         if (unlikely(data < data_start ||
3388                      data > xdp->data_end - ETH_HLEN))
3389                 return -EINVAL;
3390
3391         if (metalen)
3392                 memmove(xdp->data_meta + offset,
3393                         xdp->data_meta, metalen);
3394         xdp->data_meta += offset;
3395         xdp->data = data;
3396
3397         return 0;
3398 }
3399
3400 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3401         .func           = bpf_xdp_adjust_head,
3402         .gpl_only       = false,
3403         .ret_type       = RET_INTEGER,
3404         .arg1_type      = ARG_PTR_TO_CTX,
3405         .arg2_type      = ARG_ANYTHING,
3406 };
3407
3408 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3409 {
3410         void *data_end = xdp->data_end + offset;
3411
3412         /* only shrinking is allowed for now. */
3413         if (unlikely(offset >= 0))
3414                 return -EINVAL;
3415
3416         if (unlikely(data_end < xdp->data + ETH_HLEN))
3417                 return -EINVAL;
3418
3419         xdp->data_end = data_end;
3420
3421         return 0;
3422 }
3423
3424 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3425         .func           = bpf_xdp_adjust_tail,
3426         .gpl_only       = false,
3427         .ret_type       = RET_INTEGER,
3428         .arg1_type      = ARG_PTR_TO_CTX,
3429         .arg2_type      = ARG_ANYTHING,
3430 };
3431
3432 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3433 {
3434         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3435         void *meta = xdp->data_meta + offset;
3436         unsigned long metalen = xdp->data - meta;
3437
3438         if (xdp_data_meta_unsupported(xdp))
3439                 return -ENOTSUPP;
3440         if (unlikely(meta < xdp_frame_end ||
3441                      meta > xdp->data))
3442                 return -EINVAL;
3443         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3444                      (metalen > 32)))
3445                 return -EACCES;
3446
3447         xdp->data_meta = meta;
3448
3449         return 0;
3450 }
3451
3452 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3453         .func           = bpf_xdp_adjust_meta,
3454         .gpl_only       = false,
3455         .ret_type       = RET_INTEGER,
3456         .arg1_type      = ARG_PTR_TO_CTX,
3457         .arg2_type      = ARG_ANYTHING,
3458 };
3459
3460 static int __bpf_tx_xdp(struct net_device *dev,
3461                         struct bpf_map *map,
3462                         struct xdp_buff *xdp,
3463                         u32 index)
3464 {
3465         struct xdp_frame *xdpf;
3466         int err, sent;
3467
3468         if (!dev->netdev_ops->ndo_xdp_xmit) {
3469                 return -EOPNOTSUPP;
3470         }
3471
3472         err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3473         if (unlikely(err))
3474                 return err;
3475
3476         xdpf = convert_to_xdp_frame(xdp);
3477         if (unlikely(!xdpf))
3478                 return -EOVERFLOW;
3479
3480         sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3481         if (sent <= 0)
3482                 return sent;
3483         return 0;
3484 }
3485
3486 static noinline int
3487 xdp_do_redirect_slow(struct net_device *dev, struct xdp_buff *xdp,
3488                      struct bpf_prog *xdp_prog, struct bpf_redirect_info *ri)
3489 {
3490         struct net_device *fwd;
3491         u32 index = ri->tgt_index;
3492         int err;
3493
3494         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3495         ri->tgt_index = 0;
3496         if (unlikely(!fwd)) {
3497                 err = -EINVAL;
3498                 goto err;
3499         }
3500
3501         err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3502         if (unlikely(err))
3503                 goto err;
3504
3505         _trace_xdp_redirect(dev, xdp_prog, index);
3506         return 0;
3507 err:
3508         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3509         return err;
3510 }
3511
3512 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3513                             struct bpf_map *map,
3514                             struct xdp_buff *xdp,
3515                             u32 index)
3516 {
3517         int err;
3518
3519         switch (map->map_type) {
3520         case BPF_MAP_TYPE_DEVMAP: {
3521                 struct bpf_dtab_netdev *dst = fwd;
3522
3523                 err = dev_map_enqueue(dst, xdp, dev_rx);
3524                 if (unlikely(err))
3525                         return err;
3526                 break;
3527         }
3528         case BPF_MAP_TYPE_CPUMAP: {
3529                 struct bpf_cpu_map_entry *rcpu = fwd;
3530
3531                 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3532                 if (unlikely(err))
3533                         return err;
3534                 break;
3535         }
3536         case BPF_MAP_TYPE_XSKMAP: {
3537                 struct xdp_sock *xs = fwd;
3538
3539                 err = __xsk_map_redirect(map, xdp, xs);
3540                 return err;
3541         }
3542         default:
3543                 break;
3544         }
3545         return 0;
3546 }
3547
3548 void xdp_do_flush_map(void)
3549 {
3550         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3551         struct bpf_map *map = ri->map_to_flush;
3552
3553         ri->map_to_flush = NULL;
3554         if (map) {
3555                 switch (map->map_type) {
3556                 case BPF_MAP_TYPE_DEVMAP:
3557                         __dev_map_flush(map);
3558                         break;
3559                 case BPF_MAP_TYPE_CPUMAP:
3560                         __cpu_map_flush(map);
3561                         break;
3562                 case BPF_MAP_TYPE_XSKMAP:
3563                         __xsk_map_flush(map);
3564                         break;
3565                 default:
3566                         break;
3567                 }
3568         }
3569 }
3570 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3571
3572 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3573 {
3574         switch (map->map_type) {
3575         case BPF_MAP_TYPE_DEVMAP:
3576                 return __dev_map_lookup_elem(map, index);
3577         case BPF_MAP_TYPE_CPUMAP:
3578                 return __cpu_map_lookup_elem(map, index);
3579         case BPF_MAP_TYPE_XSKMAP:
3580                 return __xsk_map_lookup_elem(map, index);
3581         default:
3582                 return NULL;
3583         }
3584 }
3585
3586 void bpf_clear_redirect_map(struct bpf_map *map)
3587 {
3588         struct bpf_redirect_info *ri;
3589         int cpu;
3590
3591         for_each_possible_cpu(cpu) {
3592                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3593                 /* Avoid polluting remote cacheline due to writes if
3594                  * not needed. Once we pass this test, we need the
3595                  * cmpxchg() to make sure it hasn't been changed in
3596                  * the meantime by remote CPU.
3597                  */
3598                 if (unlikely(READ_ONCE(ri->map) == map))
3599                         cmpxchg(&ri->map, map, NULL);
3600         }
3601 }
3602
3603 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3604                                struct bpf_prog *xdp_prog, struct bpf_map *map,
3605                                struct bpf_redirect_info *ri)
3606 {
3607         u32 index = ri->tgt_index;
3608         void *fwd = ri->tgt_value;
3609         int err;
3610
3611         ri->tgt_index = 0;
3612         ri->tgt_value = NULL;
3613         WRITE_ONCE(ri->map, NULL);
3614
3615         if (ri->map_to_flush && unlikely(ri->map_to_flush != map))
3616                 xdp_do_flush_map();
3617
3618         err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3619         if (unlikely(err))
3620                 goto err;
3621
3622         ri->map_to_flush = map;
3623         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3624         return 0;
3625 err:
3626         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3627         return err;
3628 }
3629
3630 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3631                     struct bpf_prog *xdp_prog)
3632 {
3633         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3634         struct bpf_map *map = READ_ONCE(ri->map);
3635
3636         if (likely(map))
3637                 return xdp_do_redirect_map(dev, xdp, xdp_prog, map, ri);
3638
3639         return xdp_do_redirect_slow(dev, xdp, xdp_prog, ri);
3640 }
3641 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3642
3643 static int xdp_do_generic_redirect_map(struct net_device *dev,
3644                                        struct sk_buff *skb,
3645                                        struct xdp_buff *xdp,
3646                                        struct bpf_prog *xdp_prog,
3647                                        struct bpf_map *map)
3648 {
3649         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3650         u32 index = ri->tgt_index;
3651         void *fwd = ri->tgt_value;
3652         int err = 0;
3653
3654         ri->tgt_index = 0;
3655         ri->tgt_value = NULL;
3656         WRITE_ONCE(ri->map, NULL);
3657
3658         if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3659                 struct bpf_dtab_netdev *dst = fwd;
3660
3661                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3662                 if (unlikely(err))
3663                         goto err;
3664         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3665                 struct xdp_sock *xs = fwd;
3666
3667                 err = xsk_generic_rcv(xs, xdp);
3668                 if (err)
3669                         goto err;
3670                 consume_skb(skb);
3671         } else {
3672                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3673                 err = -EBADRQC;
3674                 goto err;
3675         }
3676
3677         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3678         return 0;
3679 err:
3680         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3681         return err;
3682 }
3683
3684 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3685                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3686 {
3687         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3688         struct bpf_map *map = READ_ONCE(ri->map);
3689         u32 index = ri->tgt_index;
3690         struct net_device *fwd;
3691         int err = 0;
3692
3693         if (map)
3694                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3695                                                    map);
3696         ri->tgt_index = 0;
3697         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3698         if (unlikely(!fwd)) {
3699                 err = -EINVAL;
3700                 goto err;
3701         }
3702
3703         err = xdp_ok_fwd_dev(fwd, skb->len);
3704         if (unlikely(err))
3705                 goto err;
3706
3707         skb->dev = fwd;
3708         _trace_xdp_redirect(dev, xdp_prog, index);
3709         generic_xdp_tx(skb, xdp_prog);
3710         return 0;
3711 err:
3712         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3713         return err;
3714 }
3715 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3716
3717 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3718 {
3719         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3720
3721         if (unlikely(flags))
3722                 return XDP_ABORTED;
3723
3724         ri->flags = flags;
3725         ri->tgt_index = ifindex;
3726         ri->tgt_value = NULL;
3727         WRITE_ONCE(ri->map, NULL);
3728
3729         return XDP_REDIRECT;
3730 }
3731
3732 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3733         .func           = bpf_xdp_redirect,
3734         .gpl_only       = false,
3735         .ret_type       = RET_INTEGER,
3736         .arg1_type      = ARG_ANYTHING,
3737         .arg2_type      = ARG_ANYTHING,
3738 };
3739
3740 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3741            u64, flags)
3742 {
3743         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3744
3745         /* Lower bits of the flags are used as return code on lookup failure */
3746         if (unlikely(flags > XDP_TX))
3747                 return XDP_ABORTED;
3748
3749         ri->tgt_value = __xdp_map_lookup_elem(map, ifindex);
3750         if (unlikely(!ri->tgt_value)) {
3751                 /* If the lookup fails we want to clear out the state in the
3752                  * redirect_info struct completely, so that if an eBPF program
3753                  * performs multiple lookups, the last one always takes
3754                  * precedence.
3755                  */
3756                 WRITE_ONCE(ri->map, NULL);
3757                 return flags;
3758         }
3759
3760         ri->flags = flags;
3761         ri->tgt_index = ifindex;
3762         WRITE_ONCE(ri->map, map);
3763
3764         return XDP_REDIRECT;
3765 }
3766
3767 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3768         .func           = bpf_xdp_redirect_map,
3769         .gpl_only       = false,
3770         .ret_type       = RET_INTEGER,
3771         .arg1_type      = ARG_CONST_MAP_PTR,
3772         .arg2_type      = ARG_ANYTHING,
3773         .arg3_type      = ARG_ANYTHING,
3774 };
3775
3776 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3777                                   unsigned long off, unsigned long len)
3778 {
3779         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3780
3781         if (unlikely(!ptr))
3782                 return len;
3783         if (ptr != dst_buff)
3784                 memcpy(dst_buff, ptr, len);
3785
3786         return 0;
3787 }
3788
3789 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3790            u64, flags, void *, meta, u64, meta_size)
3791 {
3792         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3793
3794         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3795                 return -EINVAL;
3796         if (unlikely(skb_size > skb->len))
3797                 return -EFAULT;
3798
3799         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3800                                 bpf_skb_copy);
3801 }
3802
3803 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3804         .func           = bpf_skb_event_output,
3805         .gpl_only       = true,
3806         .ret_type       = RET_INTEGER,
3807         .arg1_type      = ARG_PTR_TO_CTX,
3808         .arg2_type      = ARG_CONST_MAP_PTR,
3809         .arg3_type      = ARG_ANYTHING,
3810         .arg4_type      = ARG_PTR_TO_MEM,
3811         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3812 };
3813
3814 static unsigned short bpf_tunnel_key_af(u64 flags)
3815 {
3816         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3817 }
3818
3819 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3820            u32, size, u64, flags)
3821 {
3822         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3823         u8 compat[sizeof(struct bpf_tunnel_key)];
3824         void *to_orig = to;
3825         int err;
3826
3827         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3828                 err = -EINVAL;
3829                 goto err_clear;
3830         }
3831         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3832                 err = -EPROTO;
3833                 goto err_clear;
3834         }
3835         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3836                 err = -EINVAL;
3837                 switch (size) {
3838                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3839                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3840                         goto set_compat;
3841                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3842                         /* Fixup deprecated structure layouts here, so we have
3843                          * a common path later on.
3844                          */
3845                         if (ip_tunnel_info_af(info) != AF_INET)
3846                                 goto err_clear;
3847 set_compat:
3848                         to = (struct bpf_tunnel_key *)compat;
3849                         break;
3850                 default:
3851                         goto err_clear;
3852                 }
3853         }
3854
3855         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3856         to->tunnel_tos = info->key.tos;
3857         to->tunnel_ttl = info->key.ttl;
3858         to->tunnel_ext = 0;
3859
3860         if (flags & BPF_F_TUNINFO_IPV6) {
3861                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3862                        sizeof(to->remote_ipv6));
3863                 to->tunnel_label = be32_to_cpu(info->key.label);
3864         } else {
3865                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3866                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3867                 to->tunnel_label = 0;
3868         }
3869
3870         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3871                 memcpy(to_orig, to, size);
3872
3873         return 0;
3874 err_clear:
3875         memset(to_orig, 0, size);
3876         return err;
3877 }
3878
3879 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3880         .func           = bpf_skb_get_tunnel_key,
3881         .gpl_only       = false,
3882         .ret_type       = RET_INTEGER,
3883         .arg1_type      = ARG_PTR_TO_CTX,
3884         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3885         .arg3_type      = ARG_CONST_SIZE,
3886         .arg4_type      = ARG_ANYTHING,
3887 };
3888
3889 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3890 {
3891         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3892         int err;
3893
3894         if (unlikely(!info ||
3895                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3896                 err = -ENOENT;
3897                 goto err_clear;
3898         }
3899         if (unlikely(size < info->options_len)) {
3900                 err = -ENOMEM;
3901                 goto err_clear;
3902         }
3903
3904         ip_tunnel_info_opts_get(to, info);
3905         if (size > info->options_len)
3906                 memset(to + info->options_len, 0, size - info->options_len);
3907
3908         return info->options_len;
3909 err_clear:
3910         memset(to, 0, size);
3911         return err;
3912 }
3913
3914 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3915         .func           = bpf_skb_get_tunnel_opt,
3916         .gpl_only       = false,
3917         .ret_type       = RET_INTEGER,
3918         .arg1_type      = ARG_PTR_TO_CTX,
3919         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3920         .arg3_type      = ARG_CONST_SIZE,
3921 };
3922
3923 static struct metadata_dst __percpu *md_dst;
3924
3925 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3926            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3927 {
3928         struct metadata_dst *md = this_cpu_ptr(md_dst);
3929         u8 compat[sizeof(struct bpf_tunnel_key)];
3930         struct ip_tunnel_info *info;
3931
3932         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3933                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3934                 return -EINVAL;
3935         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3936                 switch (size) {
3937                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3938                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3939                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3940                         /* Fixup deprecated structure layouts here, so we have
3941                          * a common path later on.
3942                          */
3943                         memcpy(compat, from, size);
3944                         memset(compat + size, 0, sizeof(compat) - size);
3945                         from = (const struct bpf_tunnel_key *) compat;
3946                         break;
3947                 default:
3948                         return -EINVAL;
3949                 }
3950         }
3951         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3952                      from->tunnel_ext))
3953                 return -EINVAL;
3954
3955         skb_dst_drop(skb);
3956         dst_hold((struct dst_entry *) md);
3957         skb_dst_set(skb, (struct dst_entry *) md);
3958
3959         info = &md->u.tun_info;
3960         memset(info, 0, sizeof(*info));
3961         info->mode = IP_TUNNEL_INFO_TX;
3962
3963         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3964         if (flags & BPF_F_DONT_FRAGMENT)
3965                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3966         if (flags & BPF_F_ZERO_CSUM_TX)
3967                 info->key.tun_flags &= ~TUNNEL_CSUM;
3968         if (flags & BPF_F_SEQ_NUMBER)
3969                 info->key.tun_flags |= TUNNEL_SEQ;
3970
3971         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3972         info->key.tos = from->tunnel_tos;
3973         info->key.ttl = from->tunnel_ttl;
3974
3975         if (flags & BPF_F_TUNINFO_IPV6) {
3976                 info->mode |= IP_TUNNEL_INFO_IPV6;
3977                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3978                        sizeof(from->remote_ipv6));
3979                 info->key.label = cpu_to_be32(from->tunnel_label) &
3980                                   IPV6_FLOWLABEL_MASK;
3981         } else {
3982                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3983         }
3984
3985         return 0;
3986 }
3987
3988 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3989         .func           = bpf_skb_set_tunnel_key,
3990         .gpl_only       = false,
3991         .ret_type       = RET_INTEGER,
3992         .arg1_type      = ARG_PTR_TO_CTX,
3993         .arg2_type      = ARG_PTR_TO_MEM,
3994         .arg3_type      = ARG_CONST_SIZE,
3995         .arg4_type      = ARG_ANYTHING,
3996 };
3997
3998 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3999            const u8 *, from, u32, size)
4000 {
4001         struct ip_tunnel_info *info = skb_tunnel_info(skb);
4002         const struct metadata_dst *md = this_cpu_ptr(md_dst);
4003
4004         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
4005                 return -EINVAL;
4006         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
4007                 return -ENOMEM;
4008
4009         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
4010
4011         return 0;
4012 }
4013
4014 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
4015         .func           = bpf_skb_set_tunnel_opt,
4016         .gpl_only       = false,
4017         .ret_type       = RET_INTEGER,
4018         .arg1_type      = ARG_PTR_TO_CTX,
4019         .arg2_type      = ARG_PTR_TO_MEM,
4020         .arg3_type      = ARG_CONST_SIZE,
4021 };
4022
4023 static const struct bpf_func_proto *
4024 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
4025 {
4026         if (!md_dst) {
4027                 struct metadata_dst __percpu *tmp;
4028
4029                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
4030                                                 METADATA_IP_TUNNEL,
4031                                                 GFP_KERNEL);
4032                 if (!tmp)
4033                         return NULL;
4034                 if (cmpxchg(&md_dst, NULL, tmp))
4035                         metadata_dst_free_percpu(tmp);
4036         }
4037
4038         switch (which) {
4039         case BPF_FUNC_skb_set_tunnel_key:
4040                 return &bpf_skb_set_tunnel_key_proto;
4041         case BPF_FUNC_skb_set_tunnel_opt:
4042                 return &bpf_skb_set_tunnel_opt_proto;
4043         default:
4044                 return NULL;
4045         }
4046 }
4047
4048 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
4049            u32, idx)
4050 {
4051         struct bpf_array *array = container_of(map, struct bpf_array, map);
4052         struct cgroup *cgrp;
4053         struct sock *sk;
4054
4055         sk = skb_to_full_sk(skb);
4056         if (!sk || !sk_fullsock(sk))
4057                 return -ENOENT;
4058         if (unlikely(idx >= array->map.max_entries))
4059                 return -E2BIG;
4060
4061         cgrp = READ_ONCE(array->ptrs[idx]);
4062         if (unlikely(!cgrp))
4063                 return -EAGAIN;
4064
4065         return sk_under_cgroup_hierarchy(sk, cgrp);
4066 }
4067
4068 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
4069         .func           = bpf_skb_under_cgroup,
4070         .gpl_only       = false,
4071         .ret_type       = RET_INTEGER,
4072         .arg1_type      = ARG_PTR_TO_CTX,
4073         .arg2_type      = ARG_CONST_MAP_PTR,
4074         .arg3_type      = ARG_ANYTHING,
4075 };
4076
4077 #ifdef CONFIG_SOCK_CGROUP_DATA
4078 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
4079 {
4080         struct sock *sk = skb_to_full_sk(skb);
4081         struct cgroup *cgrp;
4082
4083         if (!sk || !sk_fullsock(sk))
4084                 return 0;
4085
4086         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4087         return cgrp->kn->id.id;
4088 }
4089
4090 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
4091         .func           = bpf_skb_cgroup_id,
4092         .gpl_only       = false,
4093         .ret_type       = RET_INTEGER,
4094         .arg1_type      = ARG_PTR_TO_CTX,
4095 };
4096
4097 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
4098            ancestor_level)
4099 {
4100         struct sock *sk = skb_to_full_sk(skb);
4101         struct cgroup *ancestor;
4102         struct cgroup *cgrp;
4103
4104         if (!sk || !sk_fullsock(sk))
4105                 return 0;
4106
4107         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
4108         ancestor = cgroup_ancestor(cgrp, ancestor_level);
4109         if (!ancestor)
4110                 return 0;
4111
4112         return ancestor->kn->id.id;
4113 }
4114
4115 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
4116         .func           = bpf_skb_ancestor_cgroup_id,
4117         .gpl_only       = false,
4118         .ret_type       = RET_INTEGER,
4119         .arg1_type      = ARG_PTR_TO_CTX,
4120         .arg2_type      = ARG_ANYTHING,
4121 };
4122 #endif
4123
4124 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
4125                                   unsigned long off, unsigned long len)
4126 {
4127         memcpy(dst_buff, src_buff + off, len);
4128         return 0;
4129 }
4130
4131 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
4132            u64, flags, void *, meta, u64, meta_size)
4133 {
4134         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4135
4136         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4137                 return -EINVAL;
4138         if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4139                 return -EFAULT;
4140
4141         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4142                                 xdp_size, bpf_xdp_copy);
4143 }
4144
4145 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4146         .func           = bpf_xdp_event_output,
4147         .gpl_only       = true,
4148         .ret_type       = RET_INTEGER,
4149         .arg1_type      = ARG_PTR_TO_CTX,
4150         .arg2_type      = ARG_CONST_MAP_PTR,
4151         .arg3_type      = ARG_ANYTHING,
4152         .arg4_type      = ARG_PTR_TO_MEM,
4153         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4154 };
4155
4156 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4157 {
4158         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4159 }
4160
4161 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4162         .func           = bpf_get_socket_cookie,
4163         .gpl_only       = false,
4164         .ret_type       = RET_INTEGER,
4165         .arg1_type      = ARG_PTR_TO_CTX,
4166 };
4167
4168 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4169 {
4170         return sock_gen_cookie(ctx->sk);
4171 }
4172
4173 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4174         .func           = bpf_get_socket_cookie_sock_addr,
4175         .gpl_only       = false,
4176         .ret_type       = RET_INTEGER,
4177         .arg1_type      = ARG_PTR_TO_CTX,
4178 };
4179
4180 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4181 {
4182         return sock_gen_cookie(ctx->sk);
4183 }
4184
4185 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4186         .func           = bpf_get_socket_cookie_sock_ops,
4187         .gpl_only       = false,
4188         .ret_type       = RET_INTEGER,
4189         .arg1_type      = ARG_PTR_TO_CTX,
4190 };
4191
4192 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4193 {
4194         struct sock *sk = sk_to_full_sk(skb->sk);
4195         kuid_t kuid;
4196
4197         if (!sk || !sk_fullsock(sk))
4198                 return overflowuid;
4199         kuid = sock_net_uid(sock_net(sk), sk);
4200         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4201 }
4202
4203 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4204         .func           = bpf_get_socket_uid,
4205         .gpl_only       = false,
4206         .ret_type       = RET_INTEGER,
4207         .arg1_type      = ARG_PTR_TO_CTX,
4208 };
4209
4210 BPF_CALL_5(bpf_sockopt_event_output, struct bpf_sock_ops_kern *, bpf_sock,
4211            struct bpf_map *, map, u64, flags, void *, data, u64, size)
4212 {
4213         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4214                 return -EINVAL;
4215
4216         return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4217 }
4218
4219 static const struct bpf_func_proto bpf_sockopt_event_output_proto =  {
4220         .func           = bpf_sockopt_event_output,
4221         .gpl_only       = true,
4222         .ret_type       = RET_INTEGER,
4223         .arg1_type      = ARG_PTR_TO_CTX,
4224         .arg2_type      = ARG_CONST_MAP_PTR,
4225         .arg3_type      = ARG_ANYTHING,
4226         .arg4_type      = ARG_PTR_TO_MEM,
4227         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4228 };
4229
4230 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4231            int, level, int, optname, char *, optval, int, optlen)
4232 {
4233         struct sock *sk = bpf_sock->sk;
4234         int ret = 0;
4235         int val;
4236
4237         if (!sk_fullsock(sk))
4238                 return -EINVAL;
4239
4240         if (level == SOL_SOCKET) {
4241                 if (optlen != sizeof(int))
4242                         return -EINVAL;
4243                 val = *((int *)optval);
4244
4245                 /* Only some socketops are supported */
4246                 switch (optname) {
4247                 case SO_RCVBUF:
4248                         val = min_t(u32, val, sysctl_rmem_max);
4249                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4250                         sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
4251                         break;
4252                 case SO_SNDBUF:
4253                         val = min_t(u32, val, sysctl_wmem_max);
4254                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4255                         sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
4256                         break;
4257                 case SO_MAX_PACING_RATE: /* 32bit version */
4258                         if (val != ~0U)
4259                                 cmpxchg(&sk->sk_pacing_status,
4260                                         SK_PACING_NONE,
4261                                         SK_PACING_NEEDED);
4262                         sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4263                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4264                                                  sk->sk_max_pacing_rate);
4265                         break;
4266                 case SO_PRIORITY:
4267                         sk->sk_priority = val;
4268                         break;
4269                 case SO_RCVLOWAT:
4270                         if (val < 0)
4271                                 val = INT_MAX;
4272                         sk->sk_rcvlowat = val ? : 1;
4273                         break;
4274                 case SO_MARK:
4275                         if (sk->sk_mark != val) {
4276                                 sk->sk_mark = val;
4277                                 sk_dst_reset(sk);
4278                         }
4279                         break;
4280                 default:
4281                         ret = -EINVAL;
4282                 }
4283 #ifdef CONFIG_INET
4284         } else if (level == SOL_IP) {
4285                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4286                         return -EINVAL;
4287
4288                 val = *((int *)optval);
4289                 /* Only some options are supported */
4290                 switch (optname) {
4291                 case IP_TOS:
4292                         if (val < -1 || val > 0xff) {
4293                                 ret = -EINVAL;
4294                         } else {
4295                                 struct inet_sock *inet = inet_sk(sk);
4296
4297                                 if (val == -1)
4298                                         val = 0;
4299                                 inet->tos = val;
4300                         }
4301                         break;
4302                 default:
4303                         ret = -EINVAL;
4304                 }
4305 #if IS_ENABLED(CONFIG_IPV6)
4306         } else if (level == SOL_IPV6) {
4307                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4308                         return -EINVAL;
4309
4310                 val = *((int *)optval);
4311                 /* Only some options are supported */
4312                 switch (optname) {
4313                 case IPV6_TCLASS:
4314                         if (val < -1 || val > 0xff) {
4315                                 ret = -EINVAL;
4316                         } else {
4317                                 struct ipv6_pinfo *np = inet6_sk(sk);
4318
4319                                 if (val == -1)
4320                                         val = 0;
4321                                 np->tclass = val;
4322                         }
4323                         break;
4324                 default:
4325                         ret = -EINVAL;
4326                 }
4327 #endif
4328         } else if (level == SOL_TCP &&
4329                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4330                 if (optname == TCP_CONGESTION) {
4331                         char name[TCP_CA_NAME_MAX];
4332                         bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4333
4334                         strncpy(name, optval, min_t(long, optlen,
4335                                                     TCP_CA_NAME_MAX-1));
4336                         name[TCP_CA_NAME_MAX-1] = 0;
4337                         ret = tcp_set_congestion_control(sk, name, false,
4338                                                          reinit, true);
4339                 } else {
4340                         struct tcp_sock *tp = tcp_sk(sk);
4341
4342                         if (optlen != sizeof(int))
4343                                 return -EINVAL;
4344
4345                         val = *((int *)optval);
4346                         /* Only some options are supported */
4347                         switch (optname) {
4348                         case TCP_BPF_IW:
4349                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4350                                         ret = -EINVAL;
4351                                 else
4352                                         tp->snd_cwnd = val;
4353                                 break;
4354                         case TCP_BPF_SNDCWND_CLAMP:
4355                                 if (val <= 0) {
4356                                         ret = -EINVAL;
4357                                 } else {
4358                                         tp->snd_cwnd_clamp = val;
4359                                         tp->snd_ssthresh = val;
4360                                 }
4361                                 break;
4362                         case TCP_SAVE_SYN:
4363                                 if (val < 0 || val > 1)
4364                                         ret = -EINVAL;
4365                                 else
4366                                         tp->save_syn = val;
4367                                 break;
4368                         default:
4369                                 ret = -EINVAL;
4370                         }
4371                 }
4372 #endif
4373         } else {
4374                 ret = -EINVAL;
4375         }
4376         return ret;
4377 }
4378
4379 static const struct bpf_func_proto bpf_setsockopt_proto = {
4380         .func           = bpf_setsockopt,
4381         .gpl_only       = false,
4382         .ret_type       = RET_INTEGER,
4383         .arg1_type      = ARG_PTR_TO_CTX,
4384         .arg2_type      = ARG_ANYTHING,
4385         .arg3_type      = ARG_ANYTHING,
4386         .arg4_type      = ARG_PTR_TO_MEM,
4387         .arg5_type      = ARG_CONST_SIZE,
4388 };
4389
4390 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4391            int, level, int, optname, char *, optval, int, optlen)
4392 {
4393         struct sock *sk = bpf_sock->sk;
4394
4395         if (!sk_fullsock(sk))
4396                 goto err_clear;
4397 #ifdef CONFIG_INET
4398         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4399                 struct inet_connection_sock *icsk;
4400                 struct tcp_sock *tp;
4401
4402                 switch (optname) {
4403                 case TCP_CONGESTION:
4404                         icsk = inet_csk(sk);
4405
4406                         if (!icsk->icsk_ca_ops || optlen <= 1)
4407                                 goto err_clear;
4408                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4409                         optval[optlen - 1] = 0;
4410                         break;
4411                 case TCP_SAVED_SYN:
4412                         tp = tcp_sk(sk);
4413
4414                         if (optlen <= 0 || !tp->saved_syn ||
4415                             optlen > tp->saved_syn[0])
4416                                 goto err_clear;
4417                         memcpy(optval, tp->saved_syn + 1, optlen);
4418                         break;
4419                 default:
4420                         goto err_clear;
4421                 }
4422         } else if (level == SOL_IP) {
4423                 struct inet_sock *inet = inet_sk(sk);
4424
4425                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4426                         goto err_clear;
4427
4428                 /* Only some options are supported */
4429                 switch (optname) {
4430                 case IP_TOS:
4431                         *((int *)optval) = (int)inet->tos;
4432                         break;
4433                 default:
4434                         goto err_clear;
4435                 }
4436 #if IS_ENABLED(CONFIG_IPV6)
4437         } else if (level == SOL_IPV6) {
4438                 struct ipv6_pinfo *np = inet6_sk(sk);
4439
4440                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4441                         goto err_clear;
4442
4443                 /* Only some options are supported */
4444                 switch (optname) {
4445                 case IPV6_TCLASS:
4446                         *((int *)optval) = (int)np->tclass;
4447                         break;
4448                 default:
4449                         goto err_clear;
4450                 }
4451 #endif
4452         } else {
4453                 goto err_clear;
4454         }
4455         return 0;
4456 #endif
4457 err_clear:
4458         memset(optval, 0, optlen);
4459         return -EINVAL;
4460 }
4461
4462 static const struct bpf_func_proto bpf_getsockopt_proto = {
4463         .func           = bpf_getsockopt,
4464         .gpl_only       = false,
4465         .ret_type       = RET_INTEGER,
4466         .arg1_type      = ARG_PTR_TO_CTX,
4467         .arg2_type      = ARG_ANYTHING,
4468         .arg3_type      = ARG_ANYTHING,
4469         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4470         .arg5_type      = ARG_CONST_SIZE,
4471 };
4472
4473 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4474            int, argval)
4475 {
4476         struct sock *sk = bpf_sock->sk;
4477         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4478
4479         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4480                 return -EINVAL;
4481
4482         tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4483
4484         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4485 }
4486
4487 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4488         .func           = bpf_sock_ops_cb_flags_set,
4489         .gpl_only       = false,
4490         .ret_type       = RET_INTEGER,
4491         .arg1_type      = ARG_PTR_TO_CTX,
4492         .arg2_type      = ARG_ANYTHING,
4493 };
4494
4495 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4496 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4497
4498 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4499            int, addr_len)
4500 {
4501 #ifdef CONFIG_INET
4502         struct sock *sk = ctx->sk;
4503         int err;
4504
4505         /* Binding to port can be expensive so it's prohibited in the helper.
4506          * Only binding to IP is supported.
4507          */
4508         err = -EINVAL;
4509         if (addr_len < offsetofend(struct sockaddr, sa_family))
4510                 return err;
4511         if (addr->sa_family == AF_INET) {
4512                 if (addr_len < sizeof(struct sockaddr_in))
4513                         return err;
4514                 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4515                         return err;
4516                 return __inet_bind(sk, addr, addr_len, true, false);
4517 #if IS_ENABLED(CONFIG_IPV6)
4518         } else if (addr->sa_family == AF_INET6) {
4519                 if (addr_len < SIN6_LEN_RFC2133)
4520                         return err;
4521                 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4522                         return err;
4523                 /* ipv6_bpf_stub cannot be NULL, since it's called from
4524                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4525                  */
4526                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4527 #endif /* CONFIG_IPV6 */
4528         }
4529 #endif /* CONFIG_INET */
4530
4531         return -EAFNOSUPPORT;
4532 }
4533
4534 static const struct bpf_func_proto bpf_bind_proto = {
4535         .func           = bpf_bind,
4536         .gpl_only       = false,
4537         .ret_type       = RET_INTEGER,
4538         .arg1_type      = ARG_PTR_TO_CTX,
4539         .arg2_type      = ARG_PTR_TO_MEM,
4540         .arg3_type      = ARG_CONST_SIZE,
4541 };
4542
4543 #ifdef CONFIG_XFRM
4544 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4545            struct bpf_xfrm_state *, to, u32, size, u64, flags)
4546 {
4547         const struct sec_path *sp = skb_sec_path(skb);
4548         const struct xfrm_state *x;
4549
4550         if (!sp || unlikely(index >= sp->len || flags))
4551                 goto err_clear;
4552
4553         x = sp->xvec[index];
4554
4555         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4556                 goto err_clear;
4557
4558         to->reqid = x->props.reqid;
4559         to->spi = x->id.spi;
4560         to->family = x->props.family;
4561         to->ext = 0;
4562
4563         if (to->family == AF_INET6) {
4564                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4565                        sizeof(to->remote_ipv6));
4566         } else {
4567                 to->remote_ipv4 = x->props.saddr.a4;
4568                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4569         }
4570
4571         return 0;
4572 err_clear:
4573         memset(to, 0, size);
4574         return -EINVAL;
4575 }
4576
4577 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4578         .func           = bpf_skb_get_xfrm_state,
4579         .gpl_only       = false,
4580         .ret_type       = RET_INTEGER,
4581         .arg1_type      = ARG_PTR_TO_CTX,
4582         .arg2_type      = ARG_ANYTHING,
4583         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4584         .arg4_type      = ARG_CONST_SIZE,
4585         .arg5_type      = ARG_ANYTHING,
4586 };
4587 #endif
4588
4589 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4590 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4591                                   const struct neighbour *neigh,
4592                                   const struct net_device *dev)
4593 {
4594         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4595         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4596         params->h_vlan_TCI = 0;
4597         params->h_vlan_proto = 0;
4598         params->ifindex = dev->ifindex;
4599
4600         return 0;
4601 }
4602 #endif
4603
4604 #if IS_ENABLED(CONFIG_INET)
4605 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4606                                u32 flags, bool check_mtu)
4607 {
4608         struct fib_nh_common *nhc;
4609         struct in_device *in_dev;
4610         struct neighbour *neigh;
4611         struct net_device *dev;
4612         struct fib_result res;
4613         struct flowi4 fl4;
4614         int err;
4615         u32 mtu;
4616
4617         dev = dev_get_by_index_rcu(net, params->ifindex);
4618         if (unlikely(!dev))
4619                 return -ENODEV;
4620
4621         /* verify forwarding is enabled on this interface */
4622         in_dev = __in_dev_get_rcu(dev);
4623         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4624                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4625
4626         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4627                 fl4.flowi4_iif = 1;
4628                 fl4.flowi4_oif = params->ifindex;
4629         } else {
4630                 fl4.flowi4_iif = params->ifindex;
4631                 fl4.flowi4_oif = 0;
4632         }
4633         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4634         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4635         fl4.flowi4_flags = 0;
4636
4637         fl4.flowi4_proto = params->l4_protocol;
4638         fl4.daddr = params->ipv4_dst;
4639         fl4.saddr = params->ipv4_src;
4640         fl4.fl4_sport = params->sport;
4641         fl4.fl4_dport = params->dport;
4642
4643         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4644                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4645                 struct fib_table *tb;
4646
4647                 tb = fib_get_table(net, tbid);
4648                 if (unlikely(!tb))
4649                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4650
4651                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4652         } else {
4653                 fl4.flowi4_mark = 0;
4654                 fl4.flowi4_secid = 0;
4655                 fl4.flowi4_tun_key.tun_id = 0;
4656                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4657
4658                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4659         }
4660
4661         if (err) {
4662                 /* map fib lookup errors to RTN_ type */
4663                 if (err == -EINVAL)
4664                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4665                 if (err == -EHOSTUNREACH)
4666                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4667                 if (err == -EACCES)
4668                         return BPF_FIB_LKUP_RET_PROHIBIT;
4669
4670                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4671         }
4672
4673         if (res.type != RTN_UNICAST)
4674                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4675
4676         if (fib_info_num_path(res.fi) > 1)
4677                 fib_select_path(net, &res, &fl4, NULL);
4678
4679         if (check_mtu) {
4680                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4681                 if (params->tot_len > mtu)
4682                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4683         }
4684
4685         nhc = res.nhc;
4686
4687         /* do not handle lwt encaps right now */
4688         if (nhc->nhc_lwtstate)
4689                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4690
4691         dev = nhc->nhc_dev;
4692
4693         params->rt_metric = res.fi->fib_priority;
4694
4695         /* xdp and cls_bpf programs are run in RCU-bh so
4696          * rcu_read_lock_bh is not needed here
4697          */
4698         if (likely(nhc->nhc_gw_family != AF_INET6)) {
4699                 if (nhc->nhc_gw_family)
4700                         params->ipv4_dst = nhc->nhc_gw.ipv4;
4701
4702                 neigh = __ipv4_neigh_lookup_noref(dev,
4703                                                  (__force u32)params->ipv4_dst);
4704         } else {
4705                 struct in6_addr *dst = (struct in6_addr *)params->ipv6_dst;
4706
4707                 params->family = AF_INET6;
4708                 *dst = nhc->nhc_gw.ipv6;
4709                 neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4710         }
4711
4712         if (!neigh)
4713                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4714
4715         return bpf_fib_set_fwd_params(params, neigh, dev);
4716 }
4717 #endif
4718
4719 #if IS_ENABLED(CONFIG_IPV6)
4720 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4721                                u32 flags, bool check_mtu)
4722 {
4723         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4724         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4725         struct fib6_result res = {};
4726         struct neighbour *neigh;
4727         struct net_device *dev;
4728         struct inet6_dev *idev;
4729         struct flowi6 fl6;
4730         int strict = 0;
4731         int oif, err;
4732         u32 mtu;
4733
4734         /* link local addresses are never forwarded */
4735         if (rt6_need_strict(dst) || rt6_need_strict(src))
4736                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4737
4738         dev = dev_get_by_index_rcu(net, params->ifindex);
4739         if (unlikely(!dev))
4740                 return -ENODEV;
4741
4742         idev = __in6_dev_get_safely(dev);
4743         if (unlikely(!idev || !idev->cnf.forwarding))
4744                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4745
4746         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4747                 fl6.flowi6_iif = 1;
4748                 oif = fl6.flowi6_oif = params->ifindex;
4749         } else {
4750                 oif = fl6.flowi6_iif = params->ifindex;
4751                 fl6.flowi6_oif = 0;
4752                 strict = RT6_LOOKUP_F_HAS_SADDR;
4753         }
4754         fl6.flowlabel = params->flowinfo;
4755         fl6.flowi6_scope = 0;
4756         fl6.flowi6_flags = 0;
4757         fl6.mp_hash = 0;
4758
4759         fl6.flowi6_proto = params->l4_protocol;
4760         fl6.daddr = *dst;
4761         fl6.saddr = *src;
4762         fl6.fl6_sport = params->sport;
4763         fl6.fl6_dport = params->dport;
4764
4765         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4766                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4767                 struct fib6_table *tb;
4768
4769                 tb = ipv6_stub->fib6_get_table(net, tbid);
4770                 if (unlikely(!tb))
4771                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4772
4773                 err = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, &res,
4774                                                    strict);
4775         } else {
4776                 fl6.flowi6_mark = 0;
4777                 fl6.flowi6_secid = 0;
4778                 fl6.flowi6_tun_key.tun_id = 0;
4779                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4780
4781                 err = ipv6_stub->fib6_lookup(net, oif, &fl6, &res, strict);
4782         }
4783
4784         if (unlikely(err || IS_ERR_OR_NULL(res.f6i) ||
4785                      res.f6i == net->ipv6.fib6_null_entry))
4786                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4787
4788         switch (res.fib6_type) {
4789         /* only unicast is forwarded */
4790         case RTN_UNICAST:
4791                 break;
4792         case RTN_BLACKHOLE:
4793                 return BPF_FIB_LKUP_RET_BLACKHOLE;
4794         case RTN_UNREACHABLE:
4795                 return BPF_FIB_LKUP_RET_UNREACHABLE;
4796         case RTN_PROHIBIT:
4797                 return BPF_FIB_LKUP_RET_PROHIBIT;
4798         default:
4799                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4800         }
4801
4802         ipv6_stub->fib6_select_path(net, &res, &fl6, fl6.flowi6_oif,
4803                                     fl6.flowi6_oif != 0, NULL, strict);
4804
4805         if (check_mtu) {
4806                 mtu = ipv6_stub->ip6_mtu_from_fib6(&res, dst, src);
4807                 if (params->tot_len > mtu)
4808                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4809         }
4810
4811         if (res.nh->fib_nh_lws)
4812                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4813
4814         if (res.nh->fib_nh_gw_family)
4815                 *dst = res.nh->fib_nh_gw6;
4816
4817         dev = res.nh->fib_nh_dev;
4818         params->rt_metric = res.f6i->fib6_metric;
4819
4820         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4821          * not needed here.
4822          */
4823         neigh = __ipv6_neigh_lookup_noref_stub(dev, dst);
4824         if (!neigh)
4825                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4826
4827         return bpf_fib_set_fwd_params(params, neigh, dev);
4828 }
4829 #endif
4830
4831 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4832            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4833 {
4834         if (plen < sizeof(*params))
4835                 return -EINVAL;
4836
4837         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4838                 return -EINVAL;
4839
4840         switch (params->family) {
4841 #if IS_ENABLED(CONFIG_INET)
4842         case AF_INET:
4843                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4844                                            flags, true);
4845 #endif
4846 #if IS_ENABLED(CONFIG_IPV6)
4847         case AF_INET6:
4848                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4849                                            flags, true);
4850 #endif
4851         }
4852         return -EAFNOSUPPORT;
4853 }
4854
4855 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4856         .func           = bpf_xdp_fib_lookup,
4857         .gpl_only       = true,
4858         .ret_type       = RET_INTEGER,
4859         .arg1_type      = ARG_PTR_TO_CTX,
4860         .arg2_type      = ARG_PTR_TO_MEM,
4861         .arg3_type      = ARG_CONST_SIZE,
4862         .arg4_type      = ARG_ANYTHING,
4863 };
4864
4865 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4866            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4867 {
4868         struct net *net = dev_net(skb->dev);
4869         int rc = -EAFNOSUPPORT;
4870
4871         if (plen < sizeof(*params))
4872                 return -EINVAL;
4873
4874         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4875                 return -EINVAL;
4876
4877         switch (params->family) {
4878 #if IS_ENABLED(CONFIG_INET)
4879         case AF_INET:
4880                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4881                 break;
4882 #endif
4883 #if IS_ENABLED(CONFIG_IPV6)
4884         case AF_INET6:
4885                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4886                 break;
4887 #endif
4888         }
4889
4890         if (!rc) {
4891                 struct net_device *dev;
4892
4893                 dev = dev_get_by_index_rcu(net, params->ifindex);
4894                 if (!is_skb_forwardable(dev, skb))
4895                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4896         }
4897
4898         return rc;
4899 }
4900
4901 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4902         .func           = bpf_skb_fib_lookup,
4903         .gpl_only       = true,
4904         .ret_type       = RET_INTEGER,
4905         .arg1_type      = ARG_PTR_TO_CTX,
4906         .arg2_type      = ARG_PTR_TO_MEM,
4907         .arg3_type      = ARG_CONST_SIZE,
4908         .arg4_type      = ARG_ANYTHING,
4909 };
4910
4911 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4912 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4913 {
4914         int err;
4915         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4916
4917         if (!seg6_validate_srh(srh, len))
4918                 return -EINVAL;
4919
4920         switch (type) {
4921         case BPF_LWT_ENCAP_SEG6_INLINE:
4922                 if (skb->protocol != htons(ETH_P_IPV6))
4923                         return -EBADMSG;
4924
4925                 err = seg6_do_srh_inline(skb, srh);
4926                 break;
4927         case BPF_LWT_ENCAP_SEG6:
4928                 skb_reset_inner_headers(skb);
4929                 skb->encapsulation = 1;
4930                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4931                 break;
4932         default:
4933                 return -EINVAL;
4934         }
4935
4936         bpf_compute_data_pointers(skb);
4937         if (err)
4938                 return err;
4939
4940         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4941         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4942
4943         return seg6_lookup_nexthop(skb, NULL, 0);
4944 }
4945 #endif /* CONFIG_IPV6_SEG6_BPF */
4946
4947 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4948 static int bpf_push_ip_encap(struct sk_buff *skb, void *hdr, u32 len,
4949                              bool ingress)
4950 {
4951         return bpf_lwt_push_ip_encap(skb, hdr, len, ingress);
4952 }
4953 #endif
4954
4955 BPF_CALL_4(bpf_lwt_in_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4956            u32, len)
4957 {
4958         switch (type) {
4959 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4960         case BPF_LWT_ENCAP_SEG6:
4961         case BPF_LWT_ENCAP_SEG6_INLINE:
4962                 return bpf_push_seg6_encap(skb, type, hdr, len);
4963 #endif
4964 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4965         case BPF_LWT_ENCAP_IP:
4966                 return bpf_push_ip_encap(skb, hdr, len, true /* ingress */);
4967 #endif
4968         default:
4969                 return -EINVAL;
4970         }
4971 }
4972
4973 BPF_CALL_4(bpf_lwt_xmit_push_encap, struct sk_buff *, skb, u32, type,
4974            void *, hdr, u32, len)
4975 {
4976         switch (type) {
4977 #if IS_ENABLED(CONFIG_LWTUNNEL_BPF)
4978         case BPF_LWT_ENCAP_IP:
4979                 return bpf_push_ip_encap(skb, hdr, len, false /* egress */);
4980 #endif
4981         default:
4982                 return -EINVAL;
4983         }
4984 }
4985
4986 static const struct bpf_func_proto bpf_lwt_in_push_encap_proto = {
4987         .func           = bpf_lwt_in_push_encap,
4988         .gpl_only       = false,
4989         .ret_type       = RET_INTEGER,
4990         .arg1_type      = ARG_PTR_TO_CTX,
4991         .arg2_type      = ARG_ANYTHING,
4992         .arg3_type      = ARG_PTR_TO_MEM,
4993         .arg4_type      = ARG_CONST_SIZE
4994 };
4995
4996 static const struct bpf_func_proto bpf_lwt_xmit_push_encap_proto = {
4997         .func           = bpf_lwt_xmit_push_encap,
4998         .gpl_only       = false,
4999         .ret_type       = RET_INTEGER,
5000         .arg1_type      = ARG_PTR_TO_CTX,
5001         .arg2_type      = ARG_ANYTHING,
5002         .arg3_type      = ARG_PTR_TO_MEM,
5003         .arg4_type      = ARG_CONST_SIZE
5004 };
5005
5006 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5007 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
5008            const void *, from, u32, len)
5009 {
5010         struct seg6_bpf_srh_state *srh_state =
5011                 this_cpu_ptr(&seg6_bpf_srh_states);
5012         struct ipv6_sr_hdr *srh = srh_state->srh;
5013         void *srh_tlvs, *srh_end, *ptr;
5014         int srhoff = 0;
5015
5016         if (srh == NULL)
5017                 return -EINVAL;
5018
5019         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
5020         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
5021
5022         ptr = skb->data + offset;
5023         if (ptr >= srh_tlvs && ptr + len <= srh_end)
5024                 srh_state->valid = false;
5025         else if (ptr < (void *)&srh->flags ||
5026                  ptr + len > (void *)&srh->segments)
5027                 return -EFAULT;
5028
5029         if (unlikely(bpf_try_make_writable(skb, offset + len)))
5030                 return -EFAULT;
5031         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5032                 return -EINVAL;
5033         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5034
5035         memcpy(skb->data + offset, from, len);
5036         return 0;
5037 }
5038
5039 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
5040         .func           = bpf_lwt_seg6_store_bytes,
5041         .gpl_only       = false,
5042         .ret_type       = RET_INTEGER,
5043         .arg1_type      = ARG_PTR_TO_CTX,
5044         .arg2_type      = ARG_ANYTHING,
5045         .arg3_type      = ARG_PTR_TO_MEM,
5046         .arg4_type      = ARG_CONST_SIZE
5047 };
5048
5049 static void bpf_update_srh_state(struct sk_buff *skb)
5050 {
5051         struct seg6_bpf_srh_state *srh_state =
5052                 this_cpu_ptr(&seg6_bpf_srh_states);
5053         int srhoff = 0;
5054
5055         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
5056                 srh_state->srh = NULL;
5057         } else {
5058                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5059                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
5060                 srh_state->valid = true;
5061         }
5062 }
5063
5064 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
5065            u32, action, void *, param, u32, param_len)
5066 {
5067         struct seg6_bpf_srh_state *srh_state =
5068                 this_cpu_ptr(&seg6_bpf_srh_states);
5069         int hdroff = 0;
5070         int err;
5071
5072         switch (action) {
5073         case SEG6_LOCAL_ACTION_END_X:
5074                 if (!seg6_bpf_has_valid_srh(skb))
5075                         return -EBADMSG;
5076                 if (param_len != sizeof(struct in6_addr))
5077                         return -EINVAL;
5078                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
5079         case SEG6_LOCAL_ACTION_END_T:
5080                 if (!seg6_bpf_has_valid_srh(skb))
5081                         return -EBADMSG;
5082                 if (param_len != sizeof(int))
5083                         return -EINVAL;
5084                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5085         case SEG6_LOCAL_ACTION_END_DT6:
5086                 if (!seg6_bpf_has_valid_srh(skb))
5087                         return -EBADMSG;
5088                 if (param_len != sizeof(int))
5089                         return -EINVAL;
5090
5091                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
5092                         return -EBADMSG;
5093                 if (!pskb_pull(skb, hdroff))
5094                         return -EBADMSG;
5095
5096                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
5097                 skb_reset_network_header(skb);
5098                 skb_reset_transport_header(skb);
5099                 skb->encapsulation = 0;
5100
5101                 bpf_compute_data_pointers(skb);
5102                 bpf_update_srh_state(skb);
5103                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
5104         case SEG6_LOCAL_ACTION_END_B6:
5105                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5106                         return -EBADMSG;
5107                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
5108                                           param, param_len);
5109                 if (!err)
5110                         bpf_update_srh_state(skb);
5111
5112                 return err;
5113         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
5114                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
5115                         return -EBADMSG;
5116                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
5117                                           param, param_len);
5118                 if (!err)
5119                         bpf_update_srh_state(skb);
5120
5121                 return err;
5122         default:
5123                 return -EINVAL;
5124         }
5125 }
5126
5127 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
5128         .func           = bpf_lwt_seg6_action,
5129         .gpl_only       = false,
5130         .ret_type       = RET_INTEGER,
5131         .arg1_type      = ARG_PTR_TO_CTX,
5132         .arg2_type      = ARG_ANYTHING,
5133         .arg3_type      = ARG_PTR_TO_MEM,
5134         .arg4_type      = ARG_CONST_SIZE
5135 };
5136
5137 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
5138            s32, len)
5139 {
5140         struct seg6_bpf_srh_state *srh_state =
5141                 this_cpu_ptr(&seg6_bpf_srh_states);
5142         struct ipv6_sr_hdr *srh = srh_state->srh;
5143         void *srh_end, *srh_tlvs, *ptr;
5144         struct ipv6hdr *hdr;
5145         int srhoff = 0;
5146         int ret;
5147
5148         if (unlikely(srh == NULL))
5149                 return -EINVAL;
5150
5151         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
5152                         ((srh->first_segment + 1) << 4));
5153         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
5154                         srh_state->hdrlen);
5155         ptr = skb->data + offset;
5156
5157         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
5158                 return -EFAULT;
5159         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
5160                 return -EFAULT;
5161
5162         if (len > 0) {
5163                 ret = skb_cow_head(skb, len);
5164                 if (unlikely(ret < 0))
5165                         return ret;
5166
5167                 ret = bpf_skb_net_hdr_push(skb, offset, len);
5168         } else {
5169                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
5170         }
5171
5172         bpf_compute_data_pointers(skb);
5173         if (unlikely(ret < 0))
5174                 return ret;
5175
5176         hdr = (struct ipv6hdr *)skb->data;
5177         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
5178
5179         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
5180                 return -EINVAL;
5181         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
5182         srh_state->hdrlen += len;
5183         srh_state->valid = false;
5184         return 0;
5185 }
5186
5187 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5188         .func           = bpf_lwt_seg6_adjust_srh,
5189         .gpl_only       = false,
5190         .ret_type       = RET_INTEGER,
5191         .arg1_type      = ARG_PTR_TO_CTX,
5192         .arg2_type      = ARG_ANYTHING,
5193         .arg3_type      = ARG_ANYTHING,
5194 };
5195 #endif /* CONFIG_IPV6_SEG6_BPF */
5196
5197 #ifdef CONFIG_INET
5198 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5199                               int dif, int sdif, u8 family, u8 proto)
5200 {
5201         bool refcounted = false;
5202         struct sock *sk = NULL;
5203
5204         if (family == AF_INET) {
5205                 __be32 src4 = tuple->ipv4.saddr;
5206                 __be32 dst4 = tuple->ipv4.daddr;
5207
5208                 if (proto == IPPROTO_TCP)
5209                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5210                                            src4, tuple->ipv4.sport,
5211                                            dst4, tuple->ipv4.dport,
5212                                            dif, sdif, &refcounted);
5213                 else
5214                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5215                                                dst4, tuple->ipv4.dport,
5216                                                dif, sdif, &udp_table, NULL);
5217 #if IS_ENABLED(CONFIG_IPV6)
5218         } else {
5219                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5220                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5221
5222                 if (proto == IPPROTO_TCP)
5223                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5224                                             src6, tuple->ipv6.sport,
5225                                             dst6, ntohs(tuple->ipv6.dport),
5226                                             dif, sdif, &refcounted);
5227                 else if (likely(ipv6_bpf_stub))
5228                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5229                                                             src6, tuple->ipv6.sport,
5230                                                             dst6, tuple->ipv6.dport,
5231                                                             dif, sdif,
5232                                                             &udp_table, NULL);
5233 #endif
5234         }
5235
5236         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5237                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5238                 sk = NULL;
5239         }
5240         return sk;
5241 }
5242
5243 /* bpf_skc_lookup performs the core lookup for different types of sockets,
5244  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5245  * Returns the socket as an 'unsigned long' to simplify the casting in the
5246  * callers to satisfy BPF_CALL declarations.
5247  */
5248 static struct sock *
5249 __bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5250                  struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5251                  u64 flags)
5252 {
5253         struct sock *sk = NULL;
5254         u8 family = AF_UNSPEC;
5255         struct net *net;
5256         int sdif;
5257
5258         if (len == sizeof(tuple->ipv4))
5259                 family = AF_INET;
5260         else if (len == sizeof(tuple->ipv6))
5261                 family = AF_INET6;
5262         else
5263                 return NULL;
5264
5265         if (unlikely(family == AF_UNSPEC || flags ||
5266                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5267                 goto out;
5268
5269         if (family == AF_INET)
5270                 sdif = inet_sdif(skb);
5271         else
5272                 sdif = inet6_sdif(skb);
5273
5274         if ((s32)netns_id < 0) {
5275                 net = caller_net;
5276                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5277         } else {
5278                 net = get_net_ns_by_id(caller_net, netns_id);
5279                 if (unlikely(!net))
5280                         goto out;
5281                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5282                 put_net(net);
5283         }
5284
5285 out:
5286         return sk;
5287 }
5288
5289 static struct sock *
5290 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5291                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5292                 u64 flags)
5293 {
5294         struct sock *sk = __bpf_skc_lookup(skb, tuple, len, caller_net,
5295                                            ifindex, proto, netns_id, flags);
5296
5297         if (sk) {
5298                 sk = sk_to_full_sk(sk);
5299                 if (!sk_fullsock(sk)) {
5300                         if (!sock_flag(sk, SOCK_RCU_FREE))
5301                                 sock_gen_put(sk);
5302                         return NULL;
5303                 }
5304         }
5305
5306         return sk;
5307 }
5308
5309 static struct sock *
5310 bpf_skc_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5311                u8 proto, u64 netns_id, u64 flags)
5312 {
5313         struct net *caller_net;
5314         int ifindex;
5315
5316         if (skb->dev) {
5317                 caller_net = dev_net(skb->dev);
5318                 ifindex = skb->dev->ifindex;
5319         } else {
5320                 caller_net = sock_net(skb->sk);
5321                 ifindex = 0;
5322         }
5323
5324         return __bpf_skc_lookup(skb, tuple, len, caller_net, ifindex, proto,
5325                                 netns_id, flags);
5326 }
5327
5328 static struct sock *
5329 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5330               u8 proto, u64 netns_id, u64 flags)
5331 {
5332         struct sock *sk = bpf_skc_lookup(skb, tuple, len, proto, netns_id,
5333                                          flags);
5334
5335         if (sk) {
5336                 sk = sk_to_full_sk(sk);
5337                 if (!sk_fullsock(sk)) {
5338                         if (!sock_flag(sk, SOCK_RCU_FREE))
5339                                 sock_gen_put(sk);
5340                         return NULL;
5341                 }
5342         }
5343
5344         return sk;
5345 }
5346
5347 BPF_CALL_5(bpf_skc_lookup_tcp, struct sk_buff *, skb,
5348            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5349 {
5350         return (unsigned long)bpf_skc_lookup(skb, tuple, len, IPPROTO_TCP,
5351                                              netns_id, flags);
5352 }
5353
5354 static const struct bpf_func_proto bpf_skc_lookup_tcp_proto = {
5355         .func           = bpf_skc_lookup_tcp,
5356         .gpl_only       = false,
5357         .pkt_access     = true,
5358         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5359         .arg1_type      = ARG_PTR_TO_CTX,
5360         .arg2_type      = ARG_PTR_TO_MEM,
5361         .arg3_type      = ARG_CONST_SIZE,
5362         .arg4_type      = ARG_ANYTHING,
5363         .arg5_type      = ARG_ANYTHING,
5364 };
5365
5366 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5367            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5368 {
5369         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP,
5370                                             netns_id, flags);
5371 }
5372
5373 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5374         .func           = bpf_sk_lookup_tcp,
5375         .gpl_only       = false,
5376         .pkt_access     = true,
5377         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5378         .arg1_type      = ARG_PTR_TO_CTX,
5379         .arg2_type      = ARG_PTR_TO_MEM,
5380         .arg3_type      = ARG_CONST_SIZE,
5381         .arg4_type      = ARG_ANYTHING,
5382         .arg5_type      = ARG_ANYTHING,
5383 };
5384
5385 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5386            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5387 {
5388         return (unsigned long)bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP,
5389                                             netns_id, flags);
5390 }
5391
5392 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5393         .func           = bpf_sk_lookup_udp,
5394         .gpl_only       = false,
5395         .pkt_access     = true,
5396         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5397         .arg1_type      = ARG_PTR_TO_CTX,
5398         .arg2_type      = ARG_PTR_TO_MEM,
5399         .arg3_type      = ARG_CONST_SIZE,
5400         .arg4_type      = ARG_ANYTHING,
5401         .arg5_type      = ARG_ANYTHING,
5402 };
5403
5404 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5405 {
5406         if (!sock_flag(sk, SOCK_RCU_FREE))
5407                 sock_gen_put(sk);
5408         return 0;
5409 }
5410
5411 static const struct bpf_func_proto bpf_sk_release_proto = {
5412         .func           = bpf_sk_release,
5413         .gpl_only       = false,
5414         .ret_type       = RET_INTEGER,
5415         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5416 };
5417
5418 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5419            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5420 {
5421         struct net *caller_net = dev_net(ctx->rxq->dev);
5422         int ifindex = ctx->rxq->dev->ifindex;
5423
5424         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5425                                               ifindex, IPPROTO_UDP, netns_id,
5426                                               flags);
5427 }
5428
5429 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5430         .func           = bpf_xdp_sk_lookup_udp,
5431         .gpl_only       = false,
5432         .pkt_access     = true,
5433         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5434         .arg1_type      = ARG_PTR_TO_CTX,
5435         .arg2_type      = ARG_PTR_TO_MEM,
5436         .arg3_type      = ARG_CONST_SIZE,
5437         .arg4_type      = ARG_ANYTHING,
5438         .arg5_type      = ARG_ANYTHING,
5439 };
5440
5441 BPF_CALL_5(bpf_xdp_skc_lookup_tcp, struct xdp_buff *, ctx,
5442            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5443 {
5444         struct net *caller_net = dev_net(ctx->rxq->dev);
5445         int ifindex = ctx->rxq->dev->ifindex;
5446
5447         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len, caller_net,
5448                                                ifindex, IPPROTO_TCP, netns_id,
5449                                                flags);
5450 }
5451
5452 static const struct bpf_func_proto bpf_xdp_skc_lookup_tcp_proto = {
5453         .func           = bpf_xdp_skc_lookup_tcp,
5454         .gpl_only       = false,
5455         .pkt_access     = true,
5456         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5457         .arg1_type      = ARG_PTR_TO_CTX,
5458         .arg2_type      = ARG_PTR_TO_MEM,
5459         .arg3_type      = ARG_CONST_SIZE,
5460         .arg4_type      = ARG_ANYTHING,
5461         .arg5_type      = ARG_ANYTHING,
5462 };
5463
5464 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5465            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5466 {
5467         struct net *caller_net = dev_net(ctx->rxq->dev);
5468         int ifindex = ctx->rxq->dev->ifindex;
5469
5470         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len, caller_net,
5471                                               ifindex, IPPROTO_TCP, netns_id,
5472                                               flags);
5473 }
5474
5475 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5476         .func           = bpf_xdp_sk_lookup_tcp,
5477         .gpl_only       = false,
5478         .pkt_access     = true,
5479         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5480         .arg1_type      = ARG_PTR_TO_CTX,
5481         .arg2_type      = ARG_PTR_TO_MEM,
5482         .arg3_type      = ARG_CONST_SIZE,
5483         .arg4_type      = ARG_ANYTHING,
5484         .arg5_type      = ARG_ANYTHING,
5485 };
5486
5487 BPF_CALL_5(bpf_sock_addr_skc_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5488            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5489 {
5490         return (unsigned long)__bpf_skc_lookup(NULL, tuple, len,
5491                                                sock_net(ctx->sk), 0,
5492                                                IPPROTO_TCP, netns_id, flags);
5493 }
5494
5495 static const struct bpf_func_proto bpf_sock_addr_skc_lookup_tcp_proto = {
5496         .func           = bpf_sock_addr_skc_lookup_tcp,
5497         .gpl_only       = false,
5498         .ret_type       = RET_PTR_TO_SOCK_COMMON_OR_NULL,
5499         .arg1_type      = ARG_PTR_TO_CTX,
5500         .arg2_type      = ARG_PTR_TO_MEM,
5501         .arg3_type      = ARG_CONST_SIZE,
5502         .arg4_type      = ARG_ANYTHING,
5503         .arg5_type      = ARG_ANYTHING,
5504 };
5505
5506 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5507            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5508 {
5509         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5510                                               sock_net(ctx->sk), 0, IPPROTO_TCP,
5511                                               netns_id, flags);
5512 }
5513
5514 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5515         .func           = bpf_sock_addr_sk_lookup_tcp,
5516         .gpl_only       = false,
5517         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5518         .arg1_type      = ARG_PTR_TO_CTX,
5519         .arg2_type      = ARG_PTR_TO_MEM,
5520         .arg3_type      = ARG_CONST_SIZE,
5521         .arg4_type      = ARG_ANYTHING,
5522         .arg5_type      = ARG_ANYTHING,
5523 };
5524
5525 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5526            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5527 {
5528         return (unsigned long)__bpf_sk_lookup(NULL, tuple, len,
5529                                               sock_net(ctx->sk), 0, IPPROTO_UDP,
5530                                               netns_id, flags);
5531 }
5532
5533 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5534         .func           = bpf_sock_addr_sk_lookup_udp,
5535         .gpl_only       = false,
5536         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5537         .arg1_type      = ARG_PTR_TO_CTX,
5538         .arg2_type      = ARG_PTR_TO_MEM,
5539         .arg3_type      = ARG_CONST_SIZE,
5540         .arg4_type      = ARG_ANYTHING,
5541         .arg5_type      = ARG_ANYTHING,
5542 };
5543
5544 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5545                                   struct bpf_insn_access_aux *info)
5546 {
5547         if (off < 0 || off >= offsetofend(struct bpf_tcp_sock,
5548                                           icsk_retransmits))
5549                 return false;
5550
5551         if (off % size != 0)
5552                 return false;
5553
5554         switch (off) {
5555         case offsetof(struct bpf_tcp_sock, bytes_received):
5556         case offsetof(struct bpf_tcp_sock, bytes_acked):
5557                 return size == sizeof(__u64);
5558         default:
5559                 return size == sizeof(__u32);
5560         }
5561 }
5562
5563 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
5564                                     const struct bpf_insn *si,
5565                                     struct bpf_insn *insn_buf,
5566                                     struct bpf_prog *prog, u32 *target_size)
5567 {
5568         struct bpf_insn *insn = insn_buf;
5569
5570 #define BPF_TCP_SOCK_GET_COMMON(FIELD)                                  \
5571         do {                                                            \
5572                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, FIELD) >     \
5573                              FIELD_SIZEOF(struct bpf_tcp_sock, FIELD)); \
5574                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct tcp_sock, FIELD),\
5575                                       si->dst_reg, si->src_reg,         \
5576                                       offsetof(struct tcp_sock, FIELD)); \
5577         } while (0)
5578
5579 #define BPF_INET_SOCK_GET_COMMON(FIELD)                                 \
5580         do {                                                            \
5581                 BUILD_BUG_ON(FIELD_SIZEOF(struct inet_connection_sock,  \
5582                                           FIELD) >                      \
5583                              FIELD_SIZEOF(struct bpf_tcp_sock, FIELD)); \
5584                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                 \
5585                                         struct inet_connection_sock,    \
5586                                         FIELD),                         \
5587                                       si->dst_reg, si->src_reg,         \
5588                                       offsetof(                         \
5589                                         struct inet_connection_sock,    \
5590                                         FIELD));                        \
5591         } while (0)
5592
5593         if (insn > insn_buf)
5594                 return insn - insn_buf;
5595
5596         switch (si->off) {
5597         case offsetof(struct bpf_tcp_sock, rtt_min):
5598                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
5599                              sizeof(struct minmax));
5600                 BUILD_BUG_ON(sizeof(struct minmax) <
5601                              sizeof(struct minmax_sample));
5602
5603                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5604                                       offsetof(struct tcp_sock, rtt_min) +
5605                                       offsetof(struct minmax_sample, v));
5606                 break;
5607         case offsetof(struct bpf_tcp_sock, snd_cwnd):
5608                 BPF_TCP_SOCK_GET_COMMON(snd_cwnd);
5609                 break;
5610         case offsetof(struct bpf_tcp_sock, srtt_us):
5611                 BPF_TCP_SOCK_GET_COMMON(srtt_us);
5612                 break;
5613         case offsetof(struct bpf_tcp_sock, snd_ssthresh):
5614                 BPF_TCP_SOCK_GET_COMMON(snd_ssthresh);
5615                 break;
5616         case offsetof(struct bpf_tcp_sock, rcv_nxt):
5617                 BPF_TCP_SOCK_GET_COMMON(rcv_nxt);
5618                 break;
5619         case offsetof(struct bpf_tcp_sock, snd_nxt):
5620                 BPF_TCP_SOCK_GET_COMMON(snd_nxt);
5621                 break;
5622         case offsetof(struct bpf_tcp_sock, snd_una):
5623                 BPF_TCP_SOCK_GET_COMMON(snd_una);
5624                 break;
5625         case offsetof(struct bpf_tcp_sock, mss_cache):
5626                 BPF_TCP_SOCK_GET_COMMON(mss_cache);
5627                 break;
5628         case offsetof(struct bpf_tcp_sock, ecn_flags):
5629                 BPF_TCP_SOCK_GET_COMMON(ecn_flags);
5630                 break;
5631         case offsetof(struct bpf_tcp_sock, rate_delivered):
5632                 BPF_TCP_SOCK_GET_COMMON(rate_delivered);
5633                 break;
5634         case offsetof(struct bpf_tcp_sock, rate_interval_us):
5635                 BPF_TCP_SOCK_GET_COMMON(rate_interval_us);
5636                 break;
5637         case offsetof(struct bpf_tcp_sock, packets_out):
5638                 BPF_TCP_SOCK_GET_COMMON(packets_out);
5639                 break;
5640         case offsetof(struct bpf_tcp_sock, retrans_out):
5641                 BPF_TCP_SOCK_GET_COMMON(retrans_out);
5642                 break;
5643         case offsetof(struct bpf_tcp_sock, total_retrans):
5644                 BPF_TCP_SOCK_GET_COMMON(total_retrans);
5645                 break;
5646         case offsetof(struct bpf_tcp_sock, segs_in):
5647                 BPF_TCP_SOCK_GET_COMMON(segs_in);
5648                 break;
5649         case offsetof(struct bpf_tcp_sock, data_segs_in):
5650                 BPF_TCP_SOCK_GET_COMMON(data_segs_in);
5651                 break;
5652         case offsetof(struct bpf_tcp_sock, segs_out):
5653                 BPF_TCP_SOCK_GET_COMMON(segs_out);
5654                 break;
5655         case offsetof(struct bpf_tcp_sock, data_segs_out):
5656                 BPF_TCP_SOCK_GET_COMMON(data_segs_out);
5657                 break;
5658         case offsetof(struct bpf_tcp_sock, lost_out):
5659                 BPF_TCP_SOCK_GET_COMMON(lost_out);
5660                 break;
5661         case offsetof(struct bpf_tcp_sock, sacked_out):
5662                 BPF_TCP_SOCK_GET_COMMON(sacked_out);
5663                 break;
5664         case offsetof(struct bpf_tcp_sock, bytes_received):
5665                 BPF_TCP_SOCK_GET_COMMON(bytes_received);
5666                 break;
5667         case offsetof(struct bpf_tcp_sock, bytes_acked):
5668                 BPF_TCP_SOCK_GET_COMMON(bytes_acked);
5669                 break;
5670         case offsetof(struct bpf_tcp_sock, dsack_dups):
5671                 BPF_TCP_SOCK_GET_COMMON(dsack_dups);
5672                 break;
5673         case offsetof(struct bpf_tcp_sock, delivered):
5674                 BPF_TCP_SOCK_GET_COMMON(delivered);
5675                 break;
5676         case offsetof(struct bpf_tcp_sock, delivered_ce):
5677                 BPF_TCP_SOCK_GET_COMMON(delivered_ce);
5678                 break;
5679         case offsetof(struct bpf_tcp_sock, icsk_retransmits):
5680                 BPF_INET_SOCK_GET_COMMON(icsk_retransmits);
5681                 break;
5682         }
5683
5684         return insn - insn_buf;
5685 }
5686
5687 BPF_CALL_1(bpf_tcp_sock, struct sock *, sk)
5688 {
5689         if (sk_fullsock(sk) && sk->sk_protocol == IPPROTO_TCP)
5690                 return (unsigned long)sk;
5691
5692         return (unsigned long)NULL;
5693 }
5694
5695 const struct bpf_func_proto bpf_tcp_sock_proto = {
5696         .func           = bpf_tcp_sock,
5697         .gpl_only       = false,
5698         .ret_type       = RET_PTR_TO_TCP_SOCK_OR_NULL,
5699         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5700 };
5701
5702 BPF_CALL_1(bpf_get_listener_sock, struct sock *, sk)
5703 {
5704         sk = sk_to_full_sk(sk);
5705
5706         if (sk->sk_state == TCP_LISTEN && sock_flag(sk, SOCK_RCU_FREE))
5707                 return (unsigned long)sk;
5708
5709         return (unsigned long)NULL;
5710 }
5711
5712 static const struct bpf_func_proto bpf_get_listener_sock_proto = {
5713         .func           = bpf_get_listener_sock,
5714         .gpl_only       = false,
5715         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5716         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5717 };
5718
5719 BPF_CALL_1(bpf_skb_ecn_set_ce, struct sk_buff *, skb)
5720 {
5721         unsigned int iphdr_len;
5722
5723         if (skb->protocol == cpu_to_be16(ETH_P_IP))
5724                 iphdr_len = sizeof(struct iphdr);
5725         else if (skb->protocol == cpu_to_be16(ETH_P_IPV6))
5726                 iphdr_len = sizeof(struct ipv6hdr);
5727         else
5728                 return 0;
5729
5730         if (skb_headlen(skb) < iphdr_len)
5731                 return 0;
5732
5733         if (skb_cloned(skb) && !skb_clone_writable(skb, iphdr_len))
5734                 return 0;
5735
5736         return INET_ECN_set_ce(skb);
5737 }
5738
5739 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5740                                   struct bpf_insn_access_aux *info)
5741 {
5742         if (off < 0 || off >= offsetofend(struct bpf_xdp_sock, queue_id))
5743                 return false;
5744
5745         if (off % size != 0)
5746                 return false;
5747
5748         switch (off) {
5749         default:
5750                 return size == sizeof(__u32);
5751         }
5752 }
5753
5754 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
5755                                     const struct bpf_insn *si,
5756                                     struct bpf_insn *insn_buf,
5757                                     struct bpf_prog *prog, u32 *target_size)
5758 {
5759         struct bpf_insn *insn = insn_buf;
5760
5761 #define BPF_XDP_SOCK_GET(FIELD)                                         \
5762         do {                                                            \
5763                 BUILD_BUG_ON(FIELD_SIZEOF(struct xdp_sock, FIELD) >     \
5764                              FIELD_SIZEOF(struct bpf_xdp_sock, FIELD)); \
5765                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_sock, FIELD),\
5766                                       si->dst_reg, si->src_reg,         \
5767                                       offsetof(struct xdp_sock, FIELD)); \
5768         } while (0)
5769
5770         switch (si->off) {
5771         case offsetof(struct bpf_xdp_sock, queue_id):
5772                 BPF_XDP_SOCK_GET(queue_id);
5773                 break;
5774         }
5775
5776         return insn - insn_buf;
5777 }
5778
5779 static const struct bpf_func_proto bpf_skb_ecn_set_ce_proto = {
5780         .func           = bpf_skb_ecn_set_ce,
5781         .gpl_only       = false,
5782         .ret_type       = RET_INTEGER,
5783         .arg1_type      = ARG_PTR_TO_CTX,
5784 };
5785
5786 BPF_CALL_5(bpf_tcp_check_syncookie, struct sock *, sk, void *, iph, u32, iph_len,
5787            struct tcphdr *, th, u32, th_len)
5788 {
5789 #ifdef CONFIG_SYN_COOKIES
5790         u32 cookie;
5791         int ret;
5792
5793         if (unlikely(th_len < sizeof(*th)))
5794                 return -EINVAL;
5795
5796         /* sk_listener() allows TCP_NEW_SYN_RECV, which makes no sense here. */
5797         if (sk->sk_protocol != IPPROTO_TCP || sk->sk_state != TCP_LISTEN)
5798                 return -EINVAL;
5799
5800         if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies)
5801                 return -EINVAL;
5802
5803         if (!th->ack || th->rst || th->syn)
5804                 return -ENOENT;
5805
5806         if (tcp_synq_no_recent_overflow(sk))
5807                 return -ENOENT;
5808
5809         cookie = ntohl(th->ack_seq) - 1;
5810
5811         switch (sk->sk_family) {
5812         case AF_INET:
5813                 if (unlikely(iph_len < sizeof(struct iphdr)))
5814                         return -EINVAL;
5815
5816                 ret = __cookie_v4_check((struct iphdr *)iph, th, cookie);
5817                 break;
5818
5819 #if IS_BUILTIN(CONFIG_IPV6)
5820         case AF_INET6:
5821                 if (unlikely(iph_len < sizeof(struct ipv6hdr)))
5822                         return -EINVAL;
5823
5824                 ret = __cookie_v6_check((struct ipv6hdr *)iph, th, cookie);
5825                 break;
5826 #endif /* CONFIG_IPV6 */
5827
5828         default:
5829                 return -EPROTONOSUPPORT;
5830         }
5831
5832         if (ret > 0)
5833                 return 0;
5834
5835         return -ENOENT;
5836 #else
5837         return -ENOTSUPP;
5838 #endif
5839 }
5840
5841 static const struct bpf_func_proto bpf_tcp_check_syncookie_proto = {
5842         .func           = bpf_tcp_check_syncookie,
5843         .gpl_only       = true,
5844         .pkt_access     = true,
5845         .ret_type       = RET_INTEGER,
5846         .arg1_type      = ARG_PTR_TO_SOCK_COMMON,
5847         .arg2_type      = ARG_PTR_TO_MEM,
5848         .arg3_type      = ARG_CONST_SIZE,
5849         .arg4_type      = ARG_PTR_TO_MEM,
5850         .arg5_type      = ARG_CONST_SIZE,
5851 };
5852
5853 #endif /* CONFIG_INET */
5854
5855 bool bpf_helper_changes_pkt_data(void *func)
5856 {
5857         if (func == bpf_skb_vlan_push ||
5858             func == bpf_skb_vlan_pop ||
5859             func == bpf_skb_store_bytes ||
5860             func == bpf_skb_change_proto ||
5861             func == bpf_skb_change_head ||
5862             func == sk_skb_change_head ||
5863             func == bpf_skb_change_tail ||
5864             func == sk_skb_change_tail ||
5865             func == bpf_skb_adjust_room ||
5866             func == bpf_skb_pull_data ||
5867             func == sk_skb_pull_data ||
5868             func == bpf_clone_redirect ||
5869             func == bpf_l3_csum_replace ||
5870             func == bpf_l4_csum_replace ||
5871             func == bpf_xdp_adjust_head ||
5872             func == bpf_xdp_adjust_meta ||
5873             func == bpf_msg_pull_data ||
5874             func == bpf_msg_push_data ||
5875             func == bpf_msg_pop_data ||
5876             func == bpf_xdp_adjust_tail ||
5877 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5878             func == bpf_lwt_seg6_store_bytes ||
5879             func == bpf_lwt_seg6_adjust_srh ||
5880             func == bpf_lwt_seg6_action ||
5881 #endif
5882             func == bpf_lwt_in_push_encap ||
5883             func == bpf_lwt_xmit_push_encap)
5884                 return true;
5885
5886         return false;
5887 }
5888
5889 static const struct bpf_func_proto *
5890 bpf_base_func_proto(enum bpf_func_id func_id)
5891 {
5892         switch (func_id) {
5893         case BPF_FUNC_map_lookup_elem:
5894                 return &bpf_map_lookup_elem_proto;
5895         case BPF_FUNC_map_update_elem:
5896                 return &bpf_map_update_elem_proto;
5897         case BPF_FUNC_map_delete_elem:
5898                 return &bpf_map_delete_elem_proto;
5899         case BPF_FUNC_map_push_elem:
5900                 return &bpf_map_push_elem_proto;
5901         case BPF_FUNC_map_pop_elem:
5902                 return &bpf_map_pop_elem_proto;
5903         case BPF_FUNC_map_peek_elem:
5904                 return &bpf_map_peek_elem_proto;
5905         case BPF_FUNC_get_prandom_u32:
5906                 return &bpf_get_prandom_u32_proto;
5907         case BPF_FUNC_get_smp_processor_id:
5908                 return &bpf_get_raw_smp_processor_id_proto;
5909         case BPF_FUNC_get_numa_node_id:
5910                 return &bpf_get_numa_node_id_proto;
5911         case BPF_FUNC_tail_call:
5912                 return &bpf_tail_call_proto;
5913         case BPF_FUNC_ktime_get_ns:
5914                 return &bpf_ktime_get_ns_proto;
5915         default:
5916                 break;
5917         }
5918
5919         if (!capable(CAP_SYS_ADMIN))
5920                 return NULL;
5921
5922         switch (func_id) {
5923         case BPF_FUNC_spin_lock:
5924                 return &bpf_spin_lock_proto;
5925         case BPF_FUNC_spin_unlock:
5926                 return &bpf_spin_unlock_proto;
5927         case BPF_FUNC_trace_printk:
5928                 return bpf_get_trace_printk_proto();
5929         default:
5930                 return NULL;
5931         }
5932 }
5933
5934 static const struct bpf_func_proto *
5935 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5936 {
5937         switch (func_id) {
5938         /* inet and inet6 sockets are created in a process
5939          * context so there is always a valid uid/gid
5940          */
5941         case BPF_FUNC_get_current_uid_gid:
5942                 return &bpf_get_current_uid_gid_proto;
5943         case BPF_FUNC_get_local_storage:
5944                 return &bpf_get_local_storage_proto;
5945         default:
5946                 return bpf_base_func_proto(func_id);
5947         }
5948 }
5949
5950 static const struct bpf_func_proto *
5951 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5952 {
5953         switch (func_id) {
5954         /* inet and inet6 sockets are created in a process
5955          * context so there is always a valid uid/gid
5956          */
5957         case BPF_FUNC_get_current_uid_gid:
5958                 return &bpf_get_current_uid_gid_proto;
5959         case BPF_FUNC_bind:
5960                 switch (prog->expected_attach_type) {
5961                 case BPF_CGROUP_INET4_CONNECT:
5962                 case BPF_CGROUP_INET6_CONNECT:
5963                         return &bpf_bind_proto;
5964                 default:
5965                         return NULL;
5966                 }
5967         case BPF_FUNC_get_socket_cookie:
5968                 return &bpf_get_socket_cookie_sock_addr_proto;
5969         case BPF_FUNC_get_local_storage:
5970                 return &bpf_get_local_storage_proto;
5971 #ifdef CONFIG_INET
5972         case BPF_FUNC_sk_lookup_tcp:
5973                 return &bpf_sock_addr_sk_lookup_tcp_proto;
5974         case BPF_FUNC_sk_lookup_udp:
5975                 return &bpf_sock_addr_sk_lookup_udp_proto;
5976         case BPF_FUNC_sk_release:
5977                 return &bpf_sk_release_proto;
5978         case BPF_FUNC_skc_lookup_tcp:
5979                 return &bpf_sock_addr_skc_lookup_tcp_proto;
5980 #endif /* CONFIG_INET */
5981         case BPF_FUNC_sk_storage_get:
5982                 return &bpf_sk_storage_get_proto;
5983         case BPF_FUNC_sk_storage_delete:
5984                 return &bpf_sk_storage_delete_proto;
5985         default:
5986                 return bpf_base_func_proto(func_id);
5987         }
5988 }
5989
5990 static const struct bpf_func_proto *
5991 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5992 {
5993         switch (func_id) {
5994         case BPF_FUNC_skb_load_bytes:
5995                 return &bpf_skb_load_bytes_proto;
5996         case BPF_FUNC_skb_load_bytes_relative:
5997                 return &bpf_skb_load_bytes_relative_proto;
5998         case BPF_FUNC_get_socket_cookie:
5999                 return &bpf_get_socket_cookie_proto;
6000         case BPF_FUNC_get_socket_uid:
6001                 return &bpf_get_socket_uid_proto;
6002         default:
6003                 return bpf_base_func_proto(func_id);
6004         }
6005 }
6006
6007 const struct bpf_func_proto bpf_sk_storage_get_proto __weak;
6008 const struct bpf_func_proto bpf_sk_storage_delete_proto __weak;
6009
6010 static const struct bpf_func_proto *
6011 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6012 {
6013         switch (func_id) {
6014         case BPF_FUNC_get_local_storage:
6015                 return &bpf_get_local_storage_proto;
6016         case BPF_FUNC_sk_fullsock:
6017                 return &bpf_sk_fullsock_proto;
6018         case BPF_FUNC_sk_storage_get:
6019                 return &bpf_sk_storage_get_proto;
6020         case BPF_FUNC_sk_storage_delete:
6021                 return &bpf_sk_storage_delete_proto;
6022 #ifdef CONFIG_SOCK_CGROUP_DATA
6023         case BPF_FUNC_skb_cgroup_id:
6024                 return &bpf_skb_cgroup_id_proto;
6025 #endif
6026 #ifdef CONFIG_INET
6027         case BPF_FUNC_tcp_sock:
6028                 return &bpf_tcp_sock_proto;
6029         case BPF_FUNC_get_listener_sock:
6030                 return &bpf_get_listener_sock_proto;
6031         case BPF_FUNC_skb_ecn_set_ce:
6032                 return &bpf_skb_ecn_set_ce_proto;
6033 #endif
6034         default:
6035                 return sk_filter_func_proto(func_id, prog);
6036         }
6037 }
6038
6039 static const struct bpf_func_proto *
6040 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6041 {
6042         switch (func_id) {
6043         case BPF_FUNC_skb_store_bytes:
6044                 return &bpf_skb_store_bytes_proto;
6045         case BPF_FUNC_skb_load_bytes:
6046                 return &bpf_skb_load_bytes_proto;
6047         case BPF_FUNC_skb_load_bytes_relative:
6048                 return &bpf_skb_load_bytes_relative_proto;
6049         case BPF_FUNC_skb_pull_data:
6050                 return &bpf_skb_pull_data_proto;
6051         case BPF_FUNC_csum_diff:
6052                 return &bpf_csum_diff_proto;
6053         case BPF_FUNC_csum_update:
6054                 return &bpf_csum_update_proto;
6055         case BPF_FUNC_l3_csum_replace:
6056                 return &bpf_l3_csum_replace_proto;
6057         case BPF_FUNC_l4_csum_replace:
6058                 return &bpf_l4_csum_replace_proto;
6059         case BPF_FUNC_clone_redirect:
6060                 return &bpf_clone_redirect_proto;
6061         case BPF_FUNC_get_cgroup_classid:
6062                 return &bpf_get_cgroup_classid_proto;
6063         case BPF_FUNC_skb_vlan_push:
6064                 return &bpf_skb_vlan_push_proto;
6065         case BPF_FUNC_skb_vlan_pop:
6066                 return &bpf_skb_vlan_pop_proto;
6067         case BPF_FUNC_skb_change_proto:
6068                 return &bpf_skb_change_proto_proto;
6069         case BPF_FUNC_skb_change_type:
6070                 return &bpf_skb_change_type_proto;
6071         case BPF_FUNC_skb_adjust_room:
6072                 return &bpf_skb_adjust_room_proto;
6073         case BPF_FUNC_skb_change_tail:
6074                 return &bpf_skb_change_tail_proto;
6075         case BPF_FUNC_skb_get_tunnel_key:
6076                 return &bpf_skb_get_tunnel_key_proto;
6077         case BPF_FUNC_skb_set_tunnel_key:
6078                 return bpf_get_skb_set_tunnel_proto(func_id);
6079         case BPF_FUNC_skb_get_tunnel_opt:
6080                 return &bpf_skb_get_tunnel_opt_proto;
6081         case BPF_FUNC_skb_set_tunnel_opt:
6082                 return bpf_get_skb_set_tunnel_proto(func_id);
6083         case BPF_FUNC_redirect:
6084                 return &bpf_redirect_proto;
6085         case BPF_FUNC_get_route_realm:
6086                 return &bpf_get_route_realm_proto;
6087         case BPF_FUNC_get_hash_recalc:
6088                 return &bpf_get_hash_recalc_proto;
6089         case BPF_FUNC_set_hash_invalid:
6090                 return &bpf_set_hash_invalid_proto;
6091         case BPF_FUNC_set_hash:
6092                 return &bpf_set_hash_proto;
6093         case BPF_FUNC_perf_event_output:
6094                 return &bpf_skb_event_output_proto;
6095         case BPF_FUNC_get_smp_processor_id:
6096                 return &bpf_get_smp_processor_id_proto;
6097         case BPF_FUNC_skb_under_cgroup:
6098                 return &bpf_skb_under_cgroup_proto;
6099         case BPF_FUNC_get_socket_cookie:
6100                 return &bpf_get_socket_cookie_proto;
6101         case BPF_FUNC_get_socket_uid:
6102                 return &bpf_get_socket_uid_proto;
6103         case BPF_FUNC_fib_lookup:
6104                 return &bpf_skb_fib_lookup_proto;
6105         case BPF_FUNC_sk_fullsock:
6106                 return &bpf_sk_fullsock_proto;
6107         case BPF_FUNC_sk_storage_get:
6108                 return &bpf_sk_storage_get_proto;
6109         case BPF_FUNC_sk_storage_delete:
6110                 return &bpf_sk_storage_delete_proto;
6111 #ifdef CONFIG_XFRM
6112         case BPF_FUNC_skb_get_xfrm_state:
6113                 return &bpf_skb_get_xfrm_state_proto;
6114 #endif
6115 #ifdef CONFIG_SOCK_CGROUP_DATA
6116         case BPF_FUNC_skb_cgroup_id:
6117                 return &bpf_skb_cgroup_id_proto;
6118         case BPF_FUNC_skb_ancestor_cgroup_id:
6119                 return &bpf_skb_ancestor_cgroup_id_proto;
6120 #endif
6121 #ifdef CONFIG_INET
6122         case BPF_FUNC_sk_lookup_tcp:
6123                 return &bpf_sk_lookup_tcp_proto;
6124         case BPF_FUNC_sk_lookup_udp:
6125                 return &bpf_sk_lookup_udp_proto;
6126         case BPF_FUNC_sk_release:
6127                 return &bpf_sk_release_proto;
6128         case BPF_FUNC_tcp_sock:
6129                 return &bpf_tcp_sock_proto;
6130         case BPF_FUNC_get_listener_sock:
6131                 return &bpf_get_listener_sock_proto;
6132         case BPF_FUNC_skc_lookup_tcp:
6133                 return &bpf_skc_lookup_tcp_proto;
6134         case BPF_FUNC_tcp_check_syncookie:
6135                 return &bpf_tcp_check_syncookie_proto;
6136         case BPF_FUNC_skb_ecn_set_ce:
6137                 return &bpf_skb_ecn_set_ce_proto;
6138 #endif
6139         default:
6140                 return bpf_base_func_proto(func_id);
6141         }
6142 }
6143
6144 static const struct bpf_func_proto *
6145 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6146 {
6147         switch (func_id) {
6148         case BPF_FUNC_perf_event_output:
6149                 return &bpf_xdp_event_output_proto;
6150         case BPF_FUNC_get_smp_processor_id:
6151                 return &bpf_get_smp_processor_id_proto;
6152         case BPF_FUNC_csum_diff:
6153                 return &bpf_csum_diff_proto;
6154         case BPF_FUNC_xdp_adjust_head:
6155                 return &bpf_xdp_adjust_head_proto;
6156         case BPF_FUNC_xdp_adjust_meta:
6157                 return &bpf_xdp_adjust_meta_proto;
6158         case BPF_FUNC_redirect:
6159                 return &bpf_xdp_redirect_proto;
6160         case BPF_FUNC_redirect_map:
6161                 return &bpf_xdp_redirect_map_proto;
6162         case BPF_FUNC_xdp_adjust_tail:
6163                 return &bpf_xdp_adjust_tail_proto;
6164         case BPF_FUNC_fib_lookup:
6165                 return &bpf_xdp_fib_lookup_proto;
6166 #ifdef CONFIG_INET
6167         case BPF_FUNC_sk_lookup_udp:
6168                 return &bpf_xdp_sk_lookup_udp_proto;
6169         case BPF_FUNC_sk_lookup_tcp:
6170                 return &bpf_xdp_sk_lookup_tcp_proto;
6171         case BPF_FUNC_sk_release:
6172                 return &bpf_sk_release_proto;
6173         case BPF_FUNC_skc_lookup_tcp:
6174                 return &bpf_xdp_skc_lookup_tcp_proto;
6175         case BPF_FUNC_tcp_check_syncookie:
6176                 return &bpf_tcp_check_syncookie_proto;
6177 #endif
6178         default:
6179                 return bpf_base_func_proto(func_id);
6180         }
6181 }
6182
6183 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
6184 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
6185
6186 static const struct bpf_func_proto *
6187 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6188 {
6189         switch (func_id) {
6190         case BPF_FUNC_setsockopt:
6191                 return &bpf_setsockopt_proto;
6192         case BPF_FUNC_getsockopt:
6193                 return &bpf_getsockopt_proto;
6194         case BPF_FUNC_sock_ops_cb_flags_set:
6195                 return &bpf_sock_ops_cb_flags_set_proto;
6196         case BPF_FUNC_sock_map_update:
6197                 return &bpf_sock_map_update_proto;
6198         case BPF_FUNC_sock_hash_update:
6199                 return &bpf_sock_hash_update_proto;
6200         case BPF_FUNC_get_socket_cookie:
6201                 return &bpf_get_socket_cookie_sock_ops_proto;
6202         case BPF_FUNC_get_local_storage:
6203                 return &bpf_get_local_storage_proto;
6204         case BPF_FUNC_perf_event_output:
6205                 return &bpf_sockopt_event_output_proto;
6206         case BPF_FUNC_sk_storage_get:
6207                 return &bpf_sk_storage_get_proto;
6208         case BPF_FUNC_sk_storage_delete:
6209                 return &bpf_sk_storage_delete_proto;
6210 #ifdef CONFIG_INET
6211         case BPF_FUNC_tcp_sock:
6212                 return &bpf_tcp_sock_proto;
6213 #endif /* CONFIG_INET */
6214         default:
6215                 return bpf_base_func_proto(func_id);
6216         }
6217 }
6218
6219 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
6220 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
6221
6222 static const struct bpf_func_proto *
6223 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6224 {
6225         switch (func_id) {
6226         case BPF_FUNC_msg_redirect_map:
6227                 return &bpf_msg_redirect_map_proto;
6228         case BPF_FUNC_msg_redirect_hash:
6229                 return &bpf_msg_redirect_hash_proto;
6230         case BPF_FUNC_msg_apply_bytes:
6231                 return &bpf_msg_apply_bytes_proto;
6232         case BPF_FUNC_msg_cork_bytes:
6233                 return &bpf_msg_cork_bytes_proto;
6234         case BPF_FUNC_msg_pull_data:
6235                 return &bpf_msg_pull_data_proto;
6236         case BPF_FUNC_msg_push_data:
6237                 return &bpf_msg_push_data_proto;
6238         case BPF_FUNC_msg_pop_data:
6239                 return &bpf_msg_pop_data_proto;
6240         default:
6241                 return bpf_base_func_proto(func_id);
6242         }
6243 }
6244
6245 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
6246 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
6247
6248 static const struct bpf_func_proto *
6249 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6250 {
6251         switch (func_id) {
6252         case BPF_FUNC_skb_store_bytes:
6253                 return &bpf_skb_store_bytes_proto;
6254         case BPF_FUNC_skb_load_bytes:
6255                 return &bpf_skb_load_bytes_proto;
6256         case BPF_FUNC_skb_pull_data:
6257                 return &sk_skb_pull_data_proto;
6258         case BPF_FUNC_skb_change_tail:
6259                 return &sk_skb_change_tail_proto;
6260         case BPF_FUNC_skb_change_head:
6261                 return &sk_skb_change_head_proto;
6262         case BPF_FUNC_get_socket_cookie:
6263                 return &bpf_get_socket_cookie_proto;
6264         case BPF_FUNC_get_socket_uid:
6265                 return &bpf_get_socket_uid_proto;
6266         case BPF_FUNC_sk_redirect_map:
6267                 return &bpf_sk_redirect_map_proto;
6268         case BPF_FUNC_sk_redirect_hash:
6269                 return &bpf_sk_redirect_hash_proto;
6270 #ifdef CONFIG_INET
6271         case BPF_FUNC_sk_lookup_tcp:
6272                 return &bpf_sk_lookup_tcp_proto;
6273         case BPF_FUNC_sk_lookup_udp:
6274                 return &bpf_sk_lookup_udp_proto;
6275         case BPF_FUNC_sk_release:
6276                 return &bpf_sk_release_proto;
6277         case BPF_FUNC_skc_lookup_tcp:
6278                 return &bpf_skc_lookup_tcp_proto;
6279 #endif
6280         default:
6281                 return bpf_base_func_proto(func_id);
6282         }
6283 }
6284
6285 static const struct bpf_func_proto *
6286 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6287 {
6288         switch (func_id) {
6289         case BPF_FUNC_skb_load_bytes:
6290                 return &bpf_flow_dissector_load_bytes_proto;
6291         default:
6292                 return bpf_base_func_proto(func_id);
6293         }
6294 }
6295
6296 static const struct bpf_func_proto *
6297 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6298 {
6299         switch (func_id) {
6300         case BPF_FUNC_skb_load_bytes:
6301                 return &bpf_skb_load_bytes_proto;
6302         case BPF_FUNC_skb_pull_data:
6303                 return &bpf_skb_pull_data_proto;
6304         case BPF_FUNC_csum_diff:
6305                 return &bpf_csum_diff_proto;
6306         case BPF_FUNC_get_cgroup_classid:
6307                 return &bpf_get_cgroup_classid_proto;
6308         case BPF_FUNC_get_route_realm:
6309                 return &bpf_get_route_realm_proto;
6310         case BPF_FUNC_get_hash_recalc:
6311                 return &bpf_get_hash_recalc_proto;
6312         case BPF_FUNC_perf_event_output:
6313                 return &bpf_skb_event_output_proto;
6314         case BPF_FUNC_get_smp_processor_id:
6315                 return &bpf_get_smp_processor_id_proto;
6316         case BPF_FUNC_skb_under_cgroup:
6317                 return &bpf_skb_under_cgroup_proto;
6318         default:
6319                 return bpf_base_func_proto(func_id);
6320         }
6321 }
6322
6323 static const struct bpf_func_proto *
6324 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6325 {
6326         switch (func_id) {
6327         case BPF_FUNC_lwt_push_encap:
6328                 return &bpf_lwt_in_push_encap_proto;
6329         default:
6330                 return lwt_out_func_proto(func_id, prog);
6331         }
6332 }
6333
6334 static const struct bpf_func_proto *
6335 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6336 {
6337         switch (func_id) {
6338         case BPF_FUNC_skb_get_tunnel_key:
6339                 return &bpf_skb_get_tunnel_key_proto;
6340         case BPF_FUNC_skb_set_tunnel_key:
6341                 return bpf_get_skb_set_tunnel_proto(func_id);
6342         case BPF_FUNC_skb_get_tunnel_opt:
6343                 return &bpf_skb_get_tunnel_opt_proto;
6344         case BPF_FUNC_skb_set_tunnel_opt:
6345                 return bpf_get_skb_set_tunnel_proto(func_id);
6346         case BPF_FUNC_redirect:
6347                 return &bpf_redirect_proto;
6348         case BPF_FUNC_clone_redirect:
6349                 return &bpf_clone_redirect_proto;
6350         case BPF_FUNC_skb_change_tail:
6351                 return &bpf_skb_change_tail_proto;
6352         case BPF_FUNC_skb_change_head:
6353                 return &bpf_skb_change_head_proto;
6354         case BPF_FUNC_skb_store_bytes:
6355                 return &bpf_skb_store_bytes_proto;
6356         case BPF_FUNC_csum_update:
6357                 return &bpf_csum_update_proto;
6358         case BPF_FUNC_l3_csum_replace:
6359                 return &bpf_l3_csum_replace_proto;
6360         case BPF_FUNC_l4_csum_replace:
6361                 return &bpf_l4_csum_replace_proto;
6362         case BPF_FUNC_set_hash_invalid:
6363                 return &bpf_set_hash_invalid_proto;
6364         case BPF_FUNC_lwt_push_encap:
6365                 return &bpf_lwt_xmit_push_encap_proto;
6366         default:
6367                 return lwt_out_func_proto(func_id, prog);
6368         }
6369 }
6370
6371 static const struct bpf_func_proto *
6372 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
6373 {
6374         switch (func_id) {
6375 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
6376         case BPF_FUNC_lwt_seg6_store_bytes:
6377                 return &bpf_lwt_seg6_store_bytes_proto;
6378         case BPF_FUNC_lwt_seg6_action:
6379                 return &bpf_lwt_seg6_action_proto;
6380         case BPF_FUNC_lwt_seg6_adjust_srh:
6381                 return &bpf_lwt_seg6_adjust_srh_proto;
6382 #endif
6383         default:
6384                 return lwt_out_func_proto(func_id, prog);
6385         }
6386 }
6387
6388 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
6389                                     const struct bpf_prog *prog,
6390                                     struct bpf_insn_access_aux *info)
6391 {
6392         const int size_default = sizeof(__u32);
6393
6394         if (off < 0 || off >= sizeof(struct __sk_buff))
6395                 return false;
6396
6397         /* The verifier guarantees that size > 0. */
6398         if (off % size != 0)
6399                 return false;
6400
6401         switch (off) {
6402         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6403                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
6404                         return false;
6405                 break;
6406         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
6407         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
6408         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
6409         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
6410         case bpf_ctx_range(struct __sk_buff, data):
6411         case bpf_ctx_range(struct __sk_buff, data_meta):
6412         case bpf_ctx_range(struct __sk_buff, data_end):
6413                 if (size != size_default)
6414                         return false;
6415                 break;
6416         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6417                 return false;
6418         case bpf_ctx_range(struct __sk_buff, tstamp):
6419                 if (size != sizeof(__u64))
6420                         return false;
6421                 break;
6422         case offsetof(struct __sk_buff, sk):
6423                 if (type == BPF_WRITE || size != sizeof(__u64))
6424                         return false;
6425                 info->reg_type = PTR_TO_SOCK_COMMON_OR_NULL;
6426                 break;
6427         default:
6428                 /* Only narrow read access allowed for now. */
6429                 if (type == BPF_WRITE) {
6430                         if (size != size_default)
6431                                 return false;
6432                 } else {
6433                         bpf_ctx_record_field_size(info, size_default);
6434                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6435                                 return false;
6436                 }
6437         }
6438
6439         return true;
6440 }
6441
6442 static bool sk_filter_is_valid_access(int off, int size,
6443                                       enum bpf_access_type type,
6444                                       const struct bpf_prog *prog,
6445                                       struct bpf_insn_access_aux *info)
6446 {
6447         switch (off) {
6448         case bpf_ctx_range(struct __sk_buff, tc_classid):
6449         case bpf_ctx_range(struct __sk_buff, data):
6450         case bpf_ctx_range(struct __sk_buff, data_meta):
6451         case bpf_ctx_range(struct __sk_buff, data_end):
6452         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6453         case bpf_ctx_range(struct __sk_buff, tstamp):
6454         case bpf_ctx_range(struct __sk_buff, wire_len):
6455                 return false;
6456         }
6457
6458         if (type == BPF_WRITE) {
6459                 switch (off) {
6460                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6461                         break;
6462                 default:
6463                         return false;
6464                 }
6465         }
6466
6467         return bpf_skb_is_valid_access(off, size, type, prog, info);
6468 }
6469
6470 static bool cg_skb_is_valid_access(int off, int size,
6471                                    enum bpf_access_type type,
6472                                    const struct bpf_prog *prog,
6473                                    struct bpf_insn_access_aux *info)
6474 {
6475         switch (off) {
6476         case bpf_ctx_range(struct __sk_buff, tc_classid):
6477         case bpf_ctx_range(struct __sk_buff, data_meta):
6478         case bpf_ctx_range(struct __sk_buff, wire_len):
6479                 return false;
6480         case bpf_ctx_range(struct __sk_buff, data):
6481         case bpf_ctx_range(struct __sk_buff, data_end):
6482                 if (!capable(CAP_SYS_ADMIN))
6483                         return false;
6484                 break;
6485         }
6486
6487         if (type == BPF_WRITE) {
6488                 switch (off) {
6489                 case bpf_ctx_range(struct __sk_buff, mark):
6490                 case bpf_ctx_range(struct __sk_buff, priority):
6491                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6492                         break;
6493                 case bpf_ctx_range(struct __sk_buff, tstamp):
6494                         if (!capable(CAP_SYS_ADMIN))
6495                                 return false;
6496                         break;
6497                 default:
6498                         return false;
6499                 }
6500         }
6501
6502         switch (off) {
6503         case bpf_ctx_range(struct __sk_buff, data):
6504                 info->reg_type = PTR_TO_PACKET;
6505                 break;
6506         case bpf_ctx_range(struct __sk_buff, data_end):
6507                 info->reg_type = PTR_TO_PACKET_END;
6508                 break;
6509         }
6510
6511         return bpf_skb_is_valid_access(off, size, type, prog, info);
6512 }
6513
6514 static bool lwt_is_valid_access(int off, int size,
6515                                 enum bpf_access_type type,
6516                                 const struct bpf_prog *prog,
6517                                 struct bpf_insn_access_aux *info)
6518 {
6519         switch (off) {
6520         case bpf_ctx_range(struct __sk_buff, tc_classid):
6521         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6522         case bpf_ctx_range(struct __sk_buff, data_meta):
6523         case bpf_ctx_range(struct __sk_buff, tstamp):
6524         case bpf_ctx_range(struct __sk_buff, wire_len):
6525                 return false;
6526         }
6527
6528         if (type == BPF_WRITE) {
6529                 switch (off) {
6530                 case bpf_ctx_range(struct __sk_buff, mark):
6531                 case bpf_ctx_range(struct __sk_buff, priority):
6532                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6533                         break;
6534                 default:
6535                         return false;
6536                 }
6537         }
6538
6539         switch (off) {
6540         case bpf_ctx_range(struct __sk_buff, data):
6541                 info->reg_type = PTR_TO_PACKET;
6542                 break;
6543         case bpf_ctx_range(struct __sk_buff, data_end):
6544                 info->reg_type = PTR_TO_PACKET_END;
6545                 break;
6546         }
6547
6548         return bpf_skb_is_valid_access(off, size, type, prog, info);
6549 }
6550
6551 /* Attach type specific accesses */
6552 static bool __sock_filter_check_attach_type(int off,
6553                                             enum bpf_access_type access_type,
6554                                             enum bpf_attach_type attach_type)
6555 {
6556         switch (off) {
6557         case offsetof(struct bpf_sock, bound_dev_if):
6558         case offsetof(struct bpf_sock, mark):
6559         case offsetof(struct bpf_sock, priority):
6560                 switch (attach_type) {
6561                 case BPF_CGROUP_INET_SOCK_CREATE:
6562                         goto full_access;
6563                 default:
6564                         return false;
6565                 }
6566         case bpf_ctx_range(struct bpf_sock, src_ip4):
6567                 switch (attach_type) {
6568                 case BPF_CGROUP_INET4_POST_BIND:
6569                         goto read_only;
6570                 default:
6571                         return false;
6572                 }
6573         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6574                 switch (attach_type) {
6575                 case BPF_CGROUP_INET6_POST_BIND:
6576                         goto read_only;
6577                 default:
6578                         return false;
6579                 }
6580         case bpf_ctx_range(struct bpf_sock, src_port):
6581                 switch (attach_type) {
6582                 case BPF_CGROUP_INET4_POST_BIND:
6583                 case BPF_CGROUP_INET6_POST_BIND:
6584                         goto read_only;
6585                 default:
6586                         return false;
6587                 }
6588         }
6589 read_only:
6590         return access_type == BPF_READ;
6591 full_access:
6592         return true;
6593 }
6594
6595 bool bpf_sock_common_is_valid_access(int off, int size,
6596                                      enum bpf_access_type type,
6597                                      struct bpf_insn_access_aux *info)
6598 {
6599         switch (off) {
6600         case bpf_ctx_range_till(struct bpf_sock, type, priority):
6601                 return false;
6602         default:
6603                 return bpf_sock_is_valid_access(off, size, type, info);
6604         }
6605 }
6606
6607 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
6608                               struct bpf_insn_access_aux *info)
6609 {
6610         const int size_default = sizeof(__u32);
6611
6612         if (off < 0 || off >= sizeof(struct bpf_sock))
6613                 return false;
6614         if (off % size != 0)
6615                 return false;
6616
6617         switch (off) {
6618         case offsetof(struct bpf_sock, state):
6619         case offsetof(struct bpf_sock, family):
6620         case offsetof(struct bpf_sock, type):
6621         case offsetof(struct bpf_sock, protocol):
6622         case offsetof(struct bpf_sock, dst_port):
6623         case offsetof(struct bpf_sock, src_port):
6624         case bpf_ctx_range(struct bpf_sock, src_ip4):
6625         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6626         case bpf_ctx_range(struct bpf_sock, dst_ip4):
6627         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
6628                 bpf_ctx_record_field_size(info, size_default);
6629                 return bpf_ctx_narrow_access_ok(off, size, size_default);
6630         }
6631
6632         return size == size_default;
6633 }
6634
6635 static bool sock_filter_is_valid_access(int off, int size,
6636                                         enum bpf_access_type type,
6637                                         const struct bpf_prog *prog,
6638                                         struct bpf_insn_access_aux *info)
6639 {
6640         if (!bpf_sock_is_valid_access(off, size, type, info))
6641                 return false;
6642         return __sock_filter_check_attach_type(off, type,
6643                                                prog->expected_attach_type);
6644 }
6645
6646 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
6647                              const struct bpf_prog *prog)
6648 {
6649         /* Neither direct read nor direct write requires any preliminary
6650          * action.
6651          */
6652         return 0;
6653 }
6654
6655 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
6656                                 const struct bpf_prog *prog, int drop_verdict)
6657 {
6658         struct bpf_insn *insn = insn_buf;
6659
6660         if (!direct_write)
6661                 return 0;
6662
6663         /* if (!skb->cloned)
6664          *       goto start;
6665          *
6666          * (Fast-path, otherwise approximation that we might be
6667          *  a clone, do the rest in helper.)
6668          */
6669         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
6670         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
6671         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
6672
6673         /* ret = bpf_skb_pull_data(skb, 0); */
6674         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
6675         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
6676         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
6677                                BPF_FUNC_skb_pull_data);
6678         /* if (!ret)
6679          *      goto restore;
6680          * return TC_ACT_SHOT;
6681          */
6682         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
6683         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
6684         *insn++ = BPF_EXIT_INSN();
6685
6686         /* restore: */
6687         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6688         /* start: */
6689         *insn++ = prog->insnsi[0];
6690
6691         return insn - insn_buf;
6692 }
6693
6694 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6695                           struct bpf_insn *insn_buf)
6696 {
6697         bool indirect = BPF_MODE(orig->code) == BPF_IND;
6698         struct bpf_insn *insn = insn_buf;
6699
6700         /* We're guaranteed here that CTX is in R6. */
6701         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6702         if (!indirect) {
6703                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6704         } else {
6705                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6706                 if (orig->imm)
6707                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6708         }
6709
6710         switch (BPF_SIZE(orig->code)) {
6711         case BPF_B:
6712                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6713                 break;
6714         case BPF_H:
6715                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6716                 break;
6717         case BPF_W:
6718                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6719                 break;
6720         }
6721
6722         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6723         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6724         *insn++ = BPF_EXIT_INSN();
6725
6726         return insn - insn_buf;
6727 }
6728
6729 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6730                                const struct bpf_prog *prog)
6731 {
6732         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6733 }
6734
6735 static bool tc_cls_act_is_valid_access(int off, int size,
6736                                        enum bpf_access_type type,
6737                                        const struct bpf_prog *prog,
6738                                        struct bpf_insn_access_aux *info)
6739 {
6740         if (type == BPF_WRITE) {
6741                 switch (off) {
6742                 case bpf_ctx_range(struct __sk_buff, mark):
6743                 case bpf_ctx_range(struct __sk_buff, tc_index):
6744                 case bpf_ctx_range(struct __sk_buff, priority):
6745                 case bpf_ctx_range(struct __sk_buff, tc_classid):
6746                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6747                 case bpf_ctx_range(struct __sk_buff, tstamp):
6748                 case bpf_ctx_range(struct __sk_buff, queue_mapping):
6749                         break;
6750                 default:
6751                         return false;
6752                 }
6753         }
6754
6755         switch (off) {
6756         case bpf_ctx_range(struct __sk_buff, data):
6757                 info->reg_type = PTR_TO_PACKET;
6758                 break;
6759         case bpf_ctx_range(struct __sk_buff, data_meta):
6760                 info->reg_type = PTR_TO_PACKET_META;
6761                 break;
6762         case bpf_ctx_range(struct __sk_buff, data_end):
6763                 info->reg_type = PTR_TO_PACKET_END;
6764                 break;
6765         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6766                 return false;
6767         }
6768
6769         return bpf_skb_is_valid_access(off, size, type, prog, info);
6770 }
6771
6772 static bool __is_valid_xdp_access(int off, int size)
6773 {
6774         if (off < 0 || off >= sizeof(struct xdp_md))
6775                 return false;
6776         if (off % size != 0)
6777                 return false;
6778         if (size != sizeof(__u32))
6779                 return false;
6780
6781         return true;
6782 }
6783
6784 static bool xdp_is_valid_access(int off, int size,
6785                                 enum bpf_access_type type,
6786                                 const struct bpf_prog *prog,
6787                                 struct bpf_insn_access_aux *info)
6788 {
6789         if (type == BPF_WRITE) {
6790                 if (bpf_prog_is_dev_bound(prog->aux)) {
6791                         switch (off) {
6792                         case offsetof(struct xdp_md, rx_queue_index):
6793                                 return __is_valid_xdp_access(off, size);
6794                         }
6795                 }
6796                 return false;
6797         }
6798
6799         switch (off) {
6800         case offsetof(struct xdp_md, data):
6801                 info->reg_type = PTR_TO_PACKET;
6802                 break;
6803         case offsetof(struct xdp_md, data_meta):
6804                 info->reg_type = PTR_TO_PACKET_META;
6805                 break;
6806         case offsetof(struct xdp_md, data_end):
6807                 info->reg_type = PTR_TO_PACKET_END;
6808                 break;
6809         }
6810
6811         return __is_valid_xdp_access(off, size);
6812 }
6813
6814 void bpf_warn_invalid_xdp_action(u32 act)
6815 {
6816         const u32 act_max = XDP_REDIRECT;
6817
6818         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6819                   act > act_max ? "Illegal" : "Driver unsupported",
6820                   act);
6821 }
6822 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6823
6824 static bool sock_addr_is_valid_access(int off, int size,
6825                                       enum bpf_access_type type,
6826                                       const struct bpf_prog *prog,
6827                                       struct bpf_insn_access_aux *info)
6828 {
6829         const int size_default = sizeof(__u32);
6830
6831         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6832                 return false;
6833         if (off % size != 0)
6834                 return false;
6835
6836         /* Disallow access to IPv6 fields from IPv4 contex and vise
6837          * versa.
6838          */
6839         switch (off) {
6840         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6841                 switch (prog->expected_attach_type) {
6842                 case BPF_CGROUP_INET4_BIND:
6843                 case BPF_CGROUP_INET4_CONNECT:
6844                 case BPF_CGROUP_UDP4_SENDMSG:
6845                 case BPF_CGROUP_UDP4_RECVMSG:
6846                         break;
6847                 default:
6848                         return false;
6849                 }
6850                 break;
6851         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6852                 switch (prog->expected_attach_type) {
6853                 case BPF_CGROUP_INET6_BIND:
6854                 case BPF_CGROUP_INET6_CONNECT:
6855                 case BPF_CGROUP_UDP6_SENDMSG:
6856                 case BPF_CGROUP_UDP6_RECVMSG:
6857                         break;
6858                 default:
6859                         return false;
6860                 }
6861                 break;
6862         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6863                 switch (prog->expected_attach_type) {
6864                 case BPF_CGROUP_UDP4_SENDMSG:
6865                         break;
6866                 default:
6867                         return false;
6868                 }
6869                 break;
6870         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6871                                 msg_src_ip6[3]):
6872                 switch (prog->expected_attach_type) {
6873                 case BPF_CGROUP_UDP6_SENDMSG:
6874                         break;
6875                 default:
6876                         return false;
6877                 }
6878                 break;
6879         }
6880
6881         switch (off) {
6882         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6883         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6884         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6885         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6886                                 msg_src_ip6[3]):
6887                 if (type == BPF_READ) {
6888                         bpf_ctx_record_field_size(info, size_default);
6889
6890                         if (bpf_ctx_wide_access_ok(off, size,
6891                                                    struct bpf_sock_addr,
6892                                                    user_ip6))
6893                                 return true;
6894
6895                         if (bpf_ctx_wide_access_ok(off, size,
6896                                                    struct bpf_sock_addr,
6897                                                    msg_src_ip6))
6898                                 return true;
6899
6900                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6901                                 return false;
6902                 } else {
6903                         if (bpf_ctx_wide_access_ok(off, size,
6904                                                    struct bpf_sock_addr,
6905                                                    user_ip6))
6906                                 return true;
6907
6908                         if (bpf_ctx_wide_access_ok(off, size,
6909                                                    struct bpf_sock_addr,
6910                                                    msg_src_ip6))
6911                                 return true;
6912
6913                         if (size != size_default)
6914                                 return false;
6915                 }
6916                 break;
6917         case bpf_ctx_range(struct bpf_sock_addr, user_port):
6918                 if (size != size_default)
6919                         return false;
6920                 break;
6921         case offsetof(struct bpf_sock_addr, sk):
6922                 if (type != BPF_READ)
6923                         return false;
6924                 if (size != sizeof(__u64))
6925                         return false;
6926                 info->reg_type = PTR_TO_SOCKET;
6927                 break;
6928         default:
6929                 if (type == BPF_READ) {
6930                         if (size != size_default)
6931                                 return false;
6932                 } else {
6933                         return false;
6934                 }
6935         }
6936
6937         return true;
6938 }
6939
6940 static bool sock_ops_is_valid_access(int off, int size,
6941                                      enum bpf_access_type type,
6942                                      const struct bpf_prog *prog,
6943                                      struct bpf_insn_access_aux *info)
6944 {
6945         const int size_default = sizeof(__u32);
6946
6947         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
6948                 return false;
6949
6950         /* The verifier guarantees that size > 0. */
6951         if (off % size != 0)
6952                 return false;
6953
6954         if (type == BPF_WRITE) {
6955                 switch (off) {
6956                 case offsetof(struct bpf_sock_ops, reply):
6957                 case offsetof(struct bpf_sock_ops, sk_txhash):
6958                         if (size != size_default)
6959                                 return false;
6960                         break;
6961                 default:
6962                         return false;
6963                 }
6964         } else {
6965                 switch (off) {
6966                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
6967                                         bytes_acked):
6968                         if (size != sizeof(__u64))
6969                                 return false;
6970                         break;
6971                 case offsetof(struct bpf_sock_ops, sk):
6972                         if (size != sizeof(__u64))
6973                                 return false;
6974                         info->reg_type = PTR_TO_SOCKET_OR_NULL;
6975                         break;
6976                 default:
6977                         if (size != size_default)
6978                                 return false;
6979                         break;
6980                 }
6981         }
6982
6983         return true;
6984 }
6985
6986 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
6987                            const struct bpf_prog *prog)
6988 {
6989         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
6990 }
6991
6992 static bool sk_skb_is_valid_access(int off, int size,
6993                                    enum bpf_access_type type,
6994                                    const struct bpf_prog *prog,
6995                                    struct bpf_insn_access_aux *info)
6996 {
6997         switch (off) {
6998         case bpf_ctx_range(struct __sk_buff, tc_classid):
6999         case bpf_ctx_range(struct __sk_buff, data_meta):
7000         case bpf_ctx_range(struct __sk_buff, tstamp):
7001         case bpf_ctx_range(struct __sk_buff, wire_len):
7002                 return false;
7003         }
7004
7005         if (type == BPF_WRITE) {
7006                 switch (off) {
7007                 case bpf_ctx_range(struct __sk_buff, tc_index):
7008                 case bpf_ctx_range(struct __sk_buff, priority):
7009                         break;
7010                 default:
7011                         return false;
7012                 }
7013         }
7014
7015         switch (off) {
7016         case bpf_ctx_range(struct __sk_buff, mark):
7017                 return false;
7018         case bpf_ctx_range(struct __sk_buff, data):
7019                 info->reg_type = PTR_TO_PACKET;
7020                 break;
7021         case bpf_ctx_range(struct __sk_buff, data_end):
7022                 info->reg_type = PTR_TO_PACKET_END;
7023                 break;
7024         }
7025
7026         return bpf_skb_is_valid_access(off, size, type, prog, info);
7027 }
7028
7029 static bool sk_msg_is_valid_access(int off, int size,
7030                                    enum bpf_access_type type,
7031                                    const struct bpf_prog *prog,
7032                                    struct bpf_insn_access_aux *info)
7033 {
7034         if (type == BPF_WRITE)
7035                 return false;
7036
7037         if (off % size != 0)
7038                 return false;
7039
7040         switch (off) {
7041         case offsetof(struct sk_msg_md, data):
7042                 info->reg_type = PTR_TO_PACKET;
7043                 if (size != sizeof(__u64))
7044                         return false;
7045                 break;
7046         case offsetof(struct sk_msg_md, data_end):
7047                 info->reg_type = PTR_TO_PACKET_END;
7048                 if (size != sizeof(__u64))
7049                         return false;
7050                 break;
7051         case bpf_ctx_range(struct sk_msg_md, family):
7052         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
7053         case bpf_ctx_range(struct sk_msg_md, local_ip4):
7054         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
7055         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
7056         case bpf_ctx_range(struct sk_msg_md, remote_port):
7057         case bpf_ctx_range(struct sk_msg_md, local_port):
7058         case bpf_ctx_range(struct sk_msg_md, size):
7059                 if (size != sizeof(__u32))
7060                         return false;
7061                 break;
7062         default:
7063                 return false;
7064         }
7065         return true;
7066 }
7067
7068 static bool flow_dissector_is_valid_access(int off, int size,
7069                                            enum bpf_access_type type,
7070                                            const struct bpf_prog *prog,
7071                                            struct bpf_insn_access_aux *info)
7072 {
7073         const int size_default = sizeof(__u32);
7074
7075         if (off < 0 || off >= sizeof(struct __sk_buff))
7076                 return false;
7077
7078         if (type == BPF_WRITE)
7079                 return false;
7080
7081         switch (off) {
7082         case bpf_ctx_range(struct __sk_buff, data):
7083                 if (size != size_default)
7084                         return false;
7085                 info->reg_type = PTR_TO_PACKET;
7086                 return true;
7087         case bpf_ctx_range(struct __sk_buff, data_end):
7088                 if (size != size_default)
7089                         return false;
7090                 info->reg_type = PTR_TO_PACKET_END;
7091                 return true;
7092         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
7093                 if (size != sizeof(__u64))
7094                         return false;
7095                 info->reg_type = PTR_TO_FLOW_KEYS;
7096                 return true;
7097         default:
7098                 return false;
7099         }
7100 }
7101
7102 static u32 flow_dissector_convert_ctx_access(enum bpf_access_type type,
7103                                              const struct bpf_insn *si,
7104                                              struct bpf_insn *insn_buf,
7105                                              struct bpf_prog *prog,
7106                                              u32 *target_size)
7107
7108 {
7109         struct bpf_insn *insn = insn_buf;
7110
7111         switch (si->off) {
7112         case offsetof(struct __sk_buff, data):
7113                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data),
7114                                       si->dst_reg, si->src_reg,
7115                                       offsetof(struct bpf_flow_dissector, data));
7116                 break;
7117
7118         case offsetof(struct __sk_buff, data_end):
7119                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, data_end),
7120                                       si->dst_reg, si->src_reg,
7121                                       offsetof(struct bpf_flow_dissector, data_end));
7122                 break;
7123
7124         case offsetof(struct __sk_buff, flow_keys):
7125                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_flow_dissector, flow_keys),
7126                                       si->dst_reg, si->src_reg,
7127                                       offsetof(struct bpf_flow_dissector, flow_keys));
7128                 break;
7129         }
7130
7131         return insn - insn_buf;
7132 }
7133
7134 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
7135                                   const struct bpf_insn *si,
7136                                   struct bpf_insn *insn_buf,
7137                                   struct bpf_prog *prog, u32 *target_size)
7138 {
7139         struct bpf_insn *insn = insn_buf;
7140         int off;
7141
7142         switch (si->off) {
7143         case offsetof(struct __sk_buff, len):
7144                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7145                                       bpf_target_off(struct sk_buff, len, 4,
7146                                                      target_size));
7147                 break;
7148
7149         case offsetof(struct __sk_buff, protocol):
7150                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7151                                       bpf_target_off(struct sk_buff, protocol, 2,
7152                                                      target_size));
7153                 break;
7154
7155         case offsetof(struct __sk_buff, vlan_proto):
7156                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7157                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
7158                                                      target_size));
7159                 break;
7160
7161         case offsetof(struct __sk_buff, priority):
7162                 if (type == BPF_WRITE)
7163                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7164                                               bpf_target_off(struct sk_buff, priority, 4,
7165                                                              target_size));
7166                 else
7167                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7168                                               bpf_target_off(struct sk_buff, priority, 4,
7169                                                              target_size));
7170                 break;
7171
7172         case offsetof(struct __sk_buff, ingress_ifindex):
7173                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7174                                       bpf_target_off(struct sk_buff, skb_iif, 4,
7175                                                      target_size));
7176                 break;
7177
7178         case offsetof(struct __sk_buff, ifindex):
7179                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7180                                       si->dst_reg, si->src_reg,
7181                                       offsetof(struct sk_buff, dev));
7182                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
7183                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7184                                       bpf_target_off(struct net_device, ifindex, 4,
7185                                                      target_size));
7186                 break;
7187
7188         case offsetof(struct __sk_buff, hash):
7189                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7190                                       bpf_target_off(struct sk_buff, hash, 4,
7191                                                      target_size));
7192                 break;
7193
7194         case offsetof(struct __sk_buff, mark):
7195                 if (type == BPF_WRITE)
7196                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7197                                               bpf_target_off(struct sk_buff, mark, 4,
7198                                                              target_size));
7199                 else
7200                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7201                                               bpf_target_off(struct sk_buff, mark, 4,
7202                                                              target_size));
7203                 break;
7204
7205         case offsetof(struct __sk_buff, pkt_type):
7206                 *target_size = 1;
7207                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7208                                       PKT_TYPE_OFFSET());
7209                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
7210 #ifdef __BIG_ENDIAN_BITFIELD
7211                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
7212 #endif
7213                 break;
7214
7215         case offsetof(struct __sk_buff, queue_mapping):
7216                 if (type == BPF_WRITE) {
7217                         *insn++ = BPF_JMP_IMM(BPF_JGE, si->src_reg, NO_QUEUE_MAPPING, 1);
7218                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7219                                               bpf_target_off(struct sk_buff,
7220                                                              queue_mapping,
7221                                                              2, target_size));
7222                 } else {
7223                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7224                                               bpf_target_off(struct sk_buff,
7225                                                              queue_mapping,
7226                                                              2, target_size));
7227                 }
7228                 break;
7229
7230         case offsetof(struct __sk_buff, vlan_present):
7231                 *target_size = 1;
7232                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
7233                                       PKT_VLAN_PRESENT_OFFSET());
7234                 if (PKT_VLAN_PRESENT_BIT)
7235                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
7236                 if (PKT_VLAN_PRESENT_BIT < 7)
7237                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
7238                 break;
7239
7240         case offsetof(struct __sk_buff, vlan_tci):
7241                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7242                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
7243                                                      target_size));
7244                 break;
7245
7246         case offsetof(struct __sk_buff, cb[0]) ...
7247              offsetofend(struct __sk_buff, cb[4]) - 1:
7248                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
7249                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
7250                               offsetof(struct qdisc_skb_cb, data)) %
7251                              sizeof(__u64));
7252
7253                 prog->cb_access = 1;
7254                 off  = si->off;
7255                 off -= offsetof(struct __sk_buff, cb[0]);
7256                 off += offsetof(struct sk_buff, cb);
7257                 off += offsetof(struct qdisc_skb_cb, data);
7258                 if (type == BPF_WRITE)
7259                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
7260                                               si->src_reg, off);
7261                 else
7262                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
7263                                               si->src_reg, off);
7264                 break;
7265
7266         case offsetof(struct __sk_buff, tc_classid):
7267                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
7268
7269                 off  = si->off;
7270                 off -= offsetof(struct __sk_buff, tc_classid);
7271                 off += offsetof(struct sk_buff, cb);
7272                 off += offsetof(struct qdisc_skb_cb, tc_classid);
7273                 *target_size = 2;
7274                 if (type == BPF_WRITE)
7275                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
7276                                               si->src_reg, off);
7277                 else
7278                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
7279                                               si->src_reg, off);
7280                 break;
7281
7282         case offsetof(struct __sk_buff, data):
7283                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
7284                                       si->dst_reg, si->src_reg,
7285                                       offsetof(struct sk_buff, data));
7286                 break;
7287
7288         case offsetof(struct __sk_buff, data_meta):
7289                 off  = si->off;
7290                 off -= offsetof(struct __sk_buff, data_meta);
7291                 off += offsetof(struct sk_buff, cb);
7292                 off += offsetof(struct bpf_skb_data_end, data_meta);
7293                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7294                                       si->src_reg, off);
7295                 break;
7296
7297         case offsetof(struct __sk_buff, data_end):
7298                 off  = si->off;
7299                 off -= offsetof(struct __sk_buff, data_end);
7300                 off += offsetof(struct sk_buff, cb);
7301                 off += offsetof(struct bpf_skb_data_end, data_end);
7302                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7303                                       si->src_reg, off);
7304                 break;
7305
7306         case offsetof(struct __sk_buff, tc_index):
7307 #ifdef CONFIG_NET_SCHED
7308                 if (type == BPF_WRITE)
7309                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
7310                                               bpf_target_off(struct sk_buff, tc_index, 2,
7311                                                              target_size));
7312                 else
7313                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
7314                                               bpf_target_off(struct sk_buff, tc_index, 2,
7315                                                              target_size));
7316 #else
7317                 *target_size = 2;
7318                 if (type == BPF_WRITE)
7319                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
7320                 else
7321                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7322 #endif
7323                 break;
7324
7325         case offsetof(struct __sk_buff, napi_id):
7326 #if defined(CONFIG_NET_RX_BUSY_POLL)
7327                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7328                                       bpf_target_off(struct sk_buff, napi_id, 4,
7329                                                      target_size));
7330                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
7331                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7332 #else
7333                 *target_size = 4;
7334                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
7335 #endif
7336                 break;
7337         case offsetof(struct __sk_buff, family):
7338                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
7339
7340                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7341                                       si->dst_reg, si->src_reg,
7342                                       offsetof(struct sk_buff, sk));
7343                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7344                                       bpf_target_off(struct sock_common,
7345                                                      skc_family,
7346                                                      2, target_size));
7347                 break;
7348         case offsetof(struct __sk_buff, remote_ip4):
7349                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
7350
7351                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7352                                       si->dst_reg, si->src_reg,
7353                                       offsetof(struct sk_buff, sk));
7354                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7355                                       bpf_target_off(struct sock_common,
7356                                                      skc_daddr,
7357                                                      4, target_size));
7358                 break;
7359         case offsetof(struct __sk_buff, local_ip4):
7360                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7361                                           skc_rcv_saddr) != 4);
7362
7363                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7364                                       si->dst_reg, si->src_reg,
7365                                       offsetof(struct sk_buff, sk));
7366                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7367                                       bpf_target_off(struct sock_common,
7368                                                      skc_rcv_saddr,
7369                                                      4, target_size));
7370                 break;
7371         case offsetof(struct __sk_buff, remote_ip6[0]) ...
7372              offsetof(struct __sk_buff, remote_ip6[3]):
7373 #if IS_ENABLED(CONFIG_IPV6)
7374                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7375                                           skc_v6_daddr.s6_addr32[0]) != 4);
7376
7377                 off = si->off;
7378                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
7379
7380                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7381                                       si->dst_reg, si->src_reg,
7382                                       offsetof(struct sk_buff, sk));
7383                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7384                                       offsetof(struct sock_common,
7385                                                skc_v6_daddr.s6_addr32[0]) +
7386                                       off);
7387 #else
7388                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7389 #endif
7390                 break;
7391         case offsetof(struct __sk_buff, local_ip6[0]) ...
7392              offsetof(struct __sk_buff, local_ip6[3]):
7393 #if IS_ENABLED(CONFIG_IPV6)
7394                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7395                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7396
7397                 off = si->off;
7398                 off -= offsetof(struct __sk_buff, local_ip6[0]);
7399
7400                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7401                                       si->dst_reg, si->src_reg,
7402                                       offsetof(struct sk_buff, sk));
7403                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7404                                       offsetof(struct sock_common,
7405                                                skc_v6_rcv_saddr.s6_addr32[0]) +
7406                                       off);
7407 #else
7408                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7409 #endif
7410                 break;
7411
7412         case offsetof(struct __sk_buff, remote_port):
7413                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
7414
7415                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7416                                       si->dst_reg, si->src_reg,
7417                                       offsetof(struct sk_buff, sk));
7418                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7419                                       bpf_target_off(struct sock_common,
7420                                                      skc_dport,
7421                                                      2, target_size));
7422 #ifndef __BIG_ENDIAN_BITFIELD
7423                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7424 #endif
7425                 break;
7426
7427         case offsetof(struct __sk_buff, local_port):
7428                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
7429
7430                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7431                                       si->dst_reg, si->src_reg,
7432                                       offsetof(struct sk_buff, sk));
7433                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7434                                       bpf_target_off(struct sock_common,
7435                                                      skc_num, 2, target_size));
7436                 break;
7437
7438         case offsetof(struct __sk_buff, tstamp):
7439                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tstamp) != 8);
7440
7441                 if (type == BPF_WRITE)
7442                         *insn++ = BPF_STX_MEM(BPF_DW,
7443                                               si->dst_reg, si->src_reg,
7444                                               bpf_target_off(struct sk_buff,
7445                                                              tstamp, 8,
7446                                                              target_size));
7447                 else
7448                         *insn++ = BPF_LDX_MEM(BPF_DW,
7449                                               si->dst_reg, si->src_reg,
7450                                               bpf_target_off(struct sk_buff,
7451                                                              tstamp, 8,
7452                                                              target_size));
7453                 break;
7454
7455         case offsetof(struct __sk_buff, gso_segs):
7456                 /* si->dst_reg = skb_shinfo(SKB); */
7457 #ifdef NET_SKBUFF_DATA_USES_OFFSET
7458                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7459                                       BPF_REG_AX, si->src_reg,
7460                                       offsetof(struct sk_buff, end));
7461                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, head),
7462                                       si->dst_reg, si->src_reg,
7463                                       offsetof(struct sk_buff, head));
7464                 *insn++ = BPF_ALU64_REG(BPF_ADD, si->dst_reg, BPF_REG_AX);
7465 #else
7466                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, end),
7467                                       si->dst_reg, si->src_reg,
7468                                       offsetof(struct sk_buff, end));
7469 #endif
7470                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct skb_shared_info, gso_segs),
7471                                       si->dst_reg, si->dst_reg,
7472                                       bpf_target_off(struct skb_shared_info,
7473                                                      gso_segs, 2,
7474                                                      target_size));
7475                 break;
7476         case offsetof(struct __sk_buff, wire_len):
7477                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, pkt_len) != 4);
7478
7479                 off = si->off;
7480                 off -= offsetof(struct __sk_buff, wire_len);
7481                 off += offsetof(struct sk_buff, cb);
7482                 off += offsetof(struct qdisc_skb_cb, pkt_len);
7483                 *target_size = 4;
7484                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
7485                 break;
7486
7487         case offsetof(struct __sk_buff, sk):
7488                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
7489                                       si->dst_reg, si->src_reg,
7490                                       offsetof(struct sk_buff, sk));
7491                 break;
7492         }
7493
7494         return insn - insn_buf;
7495 }
7496
7497 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
7498                                 const struct bpf_insn *si,
7499                                 struct bpf_insn *insn_buf,
7500                                 struct bpf_prog *prog, u32 *target_size)
7501 {
7502         struct bpf_insn *insn = insn_buf;
7503         int off;
7504
7505         switch (si->off) {
7506         case offsetof(struct bpf_sock, bound_dev_if):
7507                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
7508
7509                 if (type == BPF_WRITE)
7510                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7511                                         offsetof(struct sock, sk_bound_dev_if));
7512                 else
7513                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7514                                       offsetof(struct sock, sk_bound_dev_if));
7515                 break;
7516
7517         case offsetof(struct bpf_sock, mark):
7518                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
7519
7520                 if (type == BPF_WRITE)
7521                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7522                                         offsetof(struct sock, sk_mark));
7523                 else
7524                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7525                                       offsetof(struct sock, sk_mark));
7526                 break;
7527
7528         case offsetof(struct bpf_sock, priority):
7529                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
7530
7531                 if (type == BPF_WRITE)
7532                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7533                                         offsetof(struct sock, sk_priority));
7534                 else
7535                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7536                                       offsetof(struct sock, sk_priority));
7537                 break;
7538
7539         case offsetof(struct bpf_sock, family):
7540                 *insn++ = BPF_LDX_MEM(
7541                         BPF_FIELD_SIZEOF(struct sock_common, skc_family),
7542                         si->dst_reg, si->src_reg,
7543                         bpf_target_off(struct sock_common,
7544                                        skc_family,
7545                                        FIELD_SIZEOF(struct sock_common,
7546                                                     skc_family),
7547                                        target_size));
7548                 break;
7549
7550         case offsetof(struct bpf_sock, type):
7551                 BUILD_BUG_ON(HWEIGHT32(SK_FL_TYPE_MASK) != BITS_PER_BYTE * 2);
7552                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7553                                       offsetof(struct sock, __sk_flags_offset));
7554                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7555                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7556                 *target_size = 2;
7557                 break;
7558
7559         case offsetof(struct bpf_sock, protocol):
7560                 BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7561                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7562                                       offsetof(struct sock, __sk_flags_offset));
7563                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7564                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
7565                 *target_size = 1;
7566                 break;
7567
7568         case offsetof(struct bpf_sock, src_ip4):
7569                 *insn++ = BPF_LDX_MEM(
7570                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7571                         bpf_target_off(struct sock_common, skc_rcv_saddr,
7572                                        FIELD_SIZEOF(struct sock_common,
7573                                                     skc_rcv_saddr),
7574                                        target_size));
7575                 break;
7576
7577         case offsetof(struct bpf_sock, dst_ip4):
7578                 *insn++ = BPF_LDX_MEM(
7579                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7580                         bpf_target_off(struct sock_common, skc_daddr,
7581                                        FIELD_SIZEOF(struct sock_common,
7582                                                     skc_daddr),
7583                                        target_size));
7584                 break;
7585
7586         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
7587 #if IS_ENABLED(CONFIG_IPV6)
7588                 off = si->off;
7589                 off -= offsetof(struct bpf_sock, src_ip6[0]);
7590                 *insn++ = BPF_LDX_MEM(
7591                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7592                         bpf_target_off(
7593                                 struct sock_common,
7594                                 skc_v6_rcv_saddr.s6_addr32[0],
7595                                 FIELD_SIZEOF(struct sock_common,
7596                                              skc_v6_rcv_saddr.s6_addr32[0]),
7597                                 target_size) + off);
7598 #else
7599                 (void)off;
7600                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7601 #endif
7602                 break;
7603
7604         case bpf_ctx_range_till(struct bpf_sock, dst_ip6[0], dst_ip6[3]):
7605 #if IS_ENABLED(CONFIG_IPV6)
7606                 off = si->off;
7607                 off -= offsetof(struct bpf_sock, dst_ip6[0]);
7608                 *insn++ = BPF_LDX_MEM(
7609                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
7610                         bpf_target_off(struct sock_common,
7611                                        skc_v6_daddr.s6_addr32[0],
7612                                        FIELD_SIZEOF(struct sock_common,
7613                                                     skc_v6_daddr.s6_addr32[0]),
7614                                        target_size) + off);
7615 #else
7616                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7617                 *target_size = 4;
7618 #endif
7619                 break;
7620
7621         case offsetof(struct bpf_sock, src_port):
7622                 *insn++ = BPF_LDX_MEM(
7623                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
7624                         si->dst_reg, si->src_reg,
7625                         bpf_target_off(struct sock_common, skc_num,
7626                                        FIELD_SIZEOF(struct sock_common,
7627                                                     skc_num),
7628                                        target_size));
7629                 break;
7630
7631         case offsetof(struct bpf_sock, dst_port):
7632                 *insn++ = BPF_LDX_MEM(
7633                         BPF_FIELD_SIZEOF(struct sock_common, skc_dport),
7634                         si->dst_reg, si->src_reg,
7635                         bpf_target_off(struct sock_common, skc_dport,
7636                                        FIELD_SIZEOF(struct sock_common,
7637                                                     skc_dport),
7638                                        target_size));
7639                 break;
7640
7641         case offsetof(struct bpf_sock, state):
7642                 *insn++ = BPF_LDX_MEM(
7643                         BPF_FIELD_SIZEOF(struct sock_common, skc_state),
7644                         si->dst_reg, si->src_reg,
7645                         bpf_target_off(struct sock_common, skc_state,
7646                                        FIELD_SIZEOF(struct sock_common,
7647                                                     skc_state),
7648                                        target_size));
7649                 break;
7650         }
7651
7652         return insn - insn_buf;
7653 }
7654
7655 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
7656                                          const struct bpf_insn *si,
7657                                          struct bpf_insn *insn_buf,
7658                                          struct bpf_prog *prog, u32 *target_size)
7659 {
7660         struct bpf_insn *insn = insn_buf;
7661
7662         switch (si->off) {
7663         case offsetof(struct __sk_buff, ifindex):
7664                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
7665                                       si->dst_reg, si->src_reg,
7666                                       offsetof(struct sk_buff, dev));
7667                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7668                                       bpf_target_off(struct net_device, ifindex, 4,
7669                                                      target_size));
7670                 break;
7671         default:
7672                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
7673                                               target_size);
7674         }
7675
7676         return insn - insn_buf;
7677 }
7678
7679 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
7680                                   const struct bpf_insn *si,
7681                                   struct bpf_insn *insn_buf,
7682                                   struct bpf_prog *prog, u32 *target_size)
7683 {
7684         struct bpf_insn *insn = insn_buf;
7685
7686         switch (si->off) {
7687         case offsetof(struct xdp_md, data):
7688                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
7689                                       si->dst_reg, si->src_reg,
7690                                       offsetof(struct xdp_buff, data));
7691                 break;
7692         case offsetof(struct xdp_md, data_meta):
7693                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
7694                                       si->dst_reg, si->src_reg,
7695                                       offsetof(struct xdp_buff, data_meta));
7696                 break;
7697         case offsetof(struct xdp_md, data_end):
7698                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
7699                                       si->dst_reg, si->src_reg,
7700                                       offsetof(struct xdp_buff, data_end));
7701                 break;
7702         case offsetof(struct xdp_md, ingress_ifindex):
7703                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7704                                       si->dst_reg, si->src_reg,
7705                                       offsetof(struct xdp_buff, rxq));
7706                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
7707                                       si->dst_reg, si->dst_reg,
7708                                       offsetof(struct xdp_rxq_info, dev));
7709                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7710                                       offsetof(struct net_device, ifindex));
7711                 break;
7712         case offsetof(struct xdp_md, rx_queue_index):
7713                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
7714                                       si->dst_reg, si->src_reg,
7715                                       offsetof(struct xdp_buff, rxq));
7716                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7717                                       offsetof(struct xdp_rxq_info,
7718                                                queue_index));
7719                 break;
7720         }
7721
7722         return insn - insn_buf;
7723 }
7724
7725 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
7726  * context Structure, F is Field in context structure that contains a pointer
7727  * to Nested Structure of type NS that has the field NF.
7728  *
7729  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
7730  * sure that SIZE is not greater than actual size of S.F.NF.
7731  *
7732  * If offset OFF is provided, the load happens from that offset relative to
7733  * offset of NF.
7734  */
7735 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
7736         do {                                                                   \
7737                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
7738                                       si->src_reg, offsetof(S, F));            \
7739                 *insn++ = BPF_LDX_MEM(                                         \
7740                         SIZE, si->dst_reg, si->dst_reg,                        \
7741                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
7742                                        target_size)                            \
7743                                 + OFF);                                        \
7744         } while (0)
7745
7746 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
7747         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
7748                                              BPF_FIELD_SIZEOF(NS, NF), 0)
7749
7750 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
7751  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
7752  *
7753  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
7754  * "register" since two registers available in convert_ctx_access are not
7755  * enough: we can't override neither SRC, since it contains value to store, nor
7756  * DST since it contains pointer to context that may be used by later
7757  * instructions. But we need a temporary place to save pointer to nested
7758  * structure whose field we want to store to.
7759  */
7760 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE, OFF, TF)          \
7761         do {                                                                   \
7762                 int tmp_reg = BPF_REG_9;                                       \
7763                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7764                         --tmp_reg;                                             \
7765                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
7766                         --tmp_reg;                                             \
7767                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
7768                                       offsetof(S, TF));                        \
7769                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
7770                                       si->dst_reg, offsetof(S, F));            \
7771                 *insn++ = BPF_STX_MEM(SIZE, tmp_reg, si->src_reg,              \
7772                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
7773                                        target_size)                            \
7774                                 + OFF);                                        \
7775                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
7776                                       offsetof(S, TF));                        \
7777         } while (0)
7778
7779 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
7780                                                       TF)                      \
7781         do {                                                                   \
7782                 if (type == BPF_WRITE) {                                       \
7783                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, SIZE,   \
7784                                                          OFF, TF);             \
7785                 } else {                                                       \
7786                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
7787                                 S, NS, F, NF, SIZE, OFF);  \
7788                 }                                                              \
7789         } while (0)
7790
7791 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
7792         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
7793                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
7794
7795 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
7796                                         const struct bpf_insn *si,
7797                                         struct bpf_insn *insn_buf,
7798                                         struct bpf_prog *prog, u32 *target_size)
7799 {
7800         struct bpf_insn *insn = insn_buf;
7801         int off;
7802
7803         switch (si->off) {
7804         case offsetof(struct bpf_sock_addr, user_family):
7805                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7806                                             struct sockaddr, uaddr, sa_family);
7807                 break;
7808
7809         case offsetof(struct bpf_sock_addr, user_ip4):
7810                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7811                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
7812                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
7813                 break;
7814
7815         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
7816                 off = si->off;
7817                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
7818                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7819                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
7820                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
7821                         tmp_reg);
7822                 break;
7823
7824         case offsetof(struct bpf_sock_addr, user_port):
7825                 /* To get port we need to know sa_family first and then treat
7826                  * sockaddr as either sockaddr_in or sockaddr_in6.
7827                  * Though we can simplify since port field has same offset and
7828                  * size in both structures.
7829                  * Here we check this invariant and use just one of the
7830                  * structures if it's true.
7831                  */
7832                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7833                              offsetof(struct sockaddr_in6, sin6_port));
7834                 BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
7835                              FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
7836                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
7837                                                      struct sockaddr_in6, uaddr,
7838                                                      sin6_port, tmp_reg);
7839                 break;
7840
7841         case offsetof(struct bpf_sock_addr, family):
7842                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7843                                             struct sock, sk, sk_family);
7844                 break;
7845
7846         case offsetof(struct bpf_sock_addr, type):
7847                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7848                         struct bpf_sock_addr_kern, struct sock, sk,
7849                         __sk_flags_offset, BPF_W, 0);
7850                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7851                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7852                 break;
7853
7854         case offsetof(struct bpf_sock_addr, protocol):
7855                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7856                         struct bpf_sock_addr_kern, struct sock, sk,
7857                         __sk_flags_offset, BPF_W, 0);
7858                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7859                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7860                                         SK_FL_PROTO_SHIFT);
7861                 break;
7862
7863         case offsetof(struct bpf_sock_addr, msg_src_ip4):
7864                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
7865                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7866                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
7867                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
7868                 break;
7869
7870         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7871                                 msg_src_ip6[3]):
7872                 off = si->off;
7873                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
7874                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
7875                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7876                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
7877                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
7878                 break;
7879         case offsetof(struct bpf_sock_addr, sk):
7880                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_sock_addr_kern, sk),
7881                                       si->dst_reg, si->src_reg,
7882                                       offsetof(struct bpf_sock_addr_kern, sk));
7883                 break;
7884         }
7885
7886         return insn - insn_buf;
7887 }
7888
7889 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
7890                                        const struct bpf_insn *si,
7891                                        struct bpf_insn *insn_buf,
7892                                        struct bpf_prog *prog,
7893                                        u32 *target_size)
7894 {
7895         struct bpf_insn *insn = insn_buf;
7896         int off;
7897
7898 /* Helper macro for adding read access to tcp_sock or sock fields. */
7899 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7900         do {                                                                  \
7901                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
7902                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
7903                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7904                                                 struct bpf_sock_ops_kern,     \
7905                                                 is_fullsock),                 \
7906                                       si->dst_reg, si->src_reg,               \
7907                                       offsetof(struct bpf_sock_ops_kern,      \
7908                                                is_fullsock));                 \
7909                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
7910                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7911                                                 struct bpf_sock_ops_kern, sk),\
7912                                       si->dst_reg, si->src_reg,               \
7913                                       offsetof(struct bpf_sock_ops_kern, sk));\
7914                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
7915                                                        OBJ_FIELD),            \
7916                                       si->dst_reg, si->dst_reg,               \
7917                                       offsetof(OBJ, OBJ_FIELD));              \
7918         } while (0)
7919
7920 #define SOCK_OPS_GET_TCP_SOCK_FIELD(FIELD) \
7921                 SOCK_OPS_GET_FIELD(FIELD, FIELD, struct tcp_sock)
7922
7923 /* Helper macro for adding write access to tcp_sock or sock fields.
7924  * The macro is called with two registers, dst_reg which contains a pointer
7925  * to ctx (context) and src_reg which contains the value that should be
7926  * stored. However, we need an additional register since we cannot overwrite
7927  * dst_reg because it may be used later in the program.
7928  * Instead we "borrow" one of the other register. We first save its value
7929  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
7930  * it at the end of the macro.
7931  */
7932 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7933         do {                                                                  \
7934                 int reg = BPF_REG_9;                                          \
7935                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
7936                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
7937                 if (si->dst_reg == reg || si->src_reg == reg)                 \
7938                         reg--;                                                \
7939                 if (si->dst_reg == reg || si->src_reg == reg)                 \
7940                         reg--;                                                \
7941                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
7942                                       offsetof(struct bpf_sock_ops_kern,      \
7943                                                temp));                        \
7944                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7945                                                 struct bpf_sock_ops_kern,     \
7946                                                 is_fullsock),                 \
7947                                       reg, si->dst_reg,                       \
7948                                       offsetof(struct bpf_sock_ops_kern,      \
7949                                                is_fullsock));                 \
7950                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
7951                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7952                                                 struct bpf_sock_ops_kern, sk),\
7953                                       reg, si->dst_reg,                       \
7954                                       offsetof(struct bpf_sock_ops_kern, sk));\
7955                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
7956                                       reg, si->src_reg,                       \
7957                                       offsetof(OBJ, OBJ_FIELD));              \
7958                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
7959                                       offsetof(struct bpf_sock_ops_kern,      \
7960                                                temp));                        \
7961         } while (0)
7962
7963 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
7964         do {                                                                  \
7965                 if (TYPE == BPF_WRITE)                                        \
7966                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
7967                 else                                                          \
7968                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
7969         } while (0)
7970
7971         if (insn > insn_buf)
7972                 return insn - insn_buf;
7973
7974         switch (si->off) {
7975         case offsetof(struct bpf_sock_ops, op) ...
7976              offsetof(struct bpf_sock_ops, replylong[3]):
7977                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
7978                              FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
7979                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
7980                              FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
7981                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
7982                              FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
7983                 off = si->off;
7984                 off -= offsetof(struct bpf_sock_ops, op);
7985                 off += offsetof(struct bpf_sock_ops_kern, op);
7986                 if (type == BPF_WRITE)
7987                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7988                                               off);
7989                 else
7990                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7991                                               off);
7992                 break;
7993
7994         case offsetof(struct bpf_sock_ops, family):
7995                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
7996
7997                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7998                                               struct bpf_sock_ops_kern, sk),
7999                                       si->dst_reg, si->src_reg,
8000                                       offsetof(struct bpf_sock_ops_kern, sk));
8001                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8002                                       offsetof(struct sock_common, skc_family));
8003                 break;
8004
8005         case offsetof(struct bpf_sock_ops, remote_ip4):
8006                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
8007
8008                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8009                                                 struct bpf_sock_ops_kern, sk),
8010                                       si->dst_reg, si->src_reg,
8011                                       offsetof(struct bpf_sock_ops_kern, sk));
8012                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8013                                       offsetof(struct sock_common, skc_daddr));
8014                 break;
8015
8016         case offsetof(struct bpf_sock_ops, local_ip4):
8017                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8018                                           skc_rcv_saddr) != 4);
8019
8020                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8021                                               struct bpf_sock_ops_kern, sk),
8022                                       si->dst_reg, si->src_reg,
8023                                       offsetof(struct bpf_sock_ops_kern, sk));
8024                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8025                                       offsetof(struct sock_common,
8026                                                skc_rcv_saddr));
8027                 break;
8028
8029         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
8030              offsetof(struct bpf_sock_ops, remote_ip6[3]):
8031 #if IS_ENABLED(CONFIG_IPV6)
8032                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8033                                           skc_v6_daddr.s6_addr32[0]) != 4);
8034
8035                 off = si->off;
8036                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
8037                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8038                                                 struct bpf_sock_ops_kern, sk),
8039                                       si->dst_reg, si->src_reg,
8040                                       offsetof(struct bpf_sock_ops_kern, sk));
8041                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8042                                       offsetof(struct sock_common,
8043                                                skc_v6_daddr.s6_addr32[0]) +
8044                                       off);
8045 #else
8046                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8047 #endif
8048                 break;
8049
8050         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
8051              offsetof(struct bpf_sock_ops, local_ip6[3]):
8052 #if IS_ENABLED(CONFIG_IPV6)
8053                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8054                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8055
8056                 off = si->off;
8057                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
8058                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8059                                                 struct bpf_sock_ops_kern, sk),
8060                                       si->dst_reg, si->src_reg,
8061                                       offsetof(struct bpf_sock_ops_kern, sk));
8062                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8063                                       offsetof(struct sock_common,
8064                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8065                                       off);
8066 #else
8067                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8068 #endif
8069                 break;
8070
8071         case offsetof(struct bpf_sock_ops, remote_port):
8072                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
8073
8074                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8075                                                 struct bpf_sock_ops_kern, sk),
8076                                       si->dst_reg, si->src_reg,
8077                                       offsetof(struct bpf_sock_ops_kern, sk));
8078                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8079                                       offsetof(struct sock_common, skc_dport));
8080 #ifndef __BIG_ENDIAN_BITFIELD
8081                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8082 #endif
8083                 break;
8084
8085         case offsetof(struct bpf_sock_ops, local_port):
8086                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
8087
8088                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8089                                                 struct bpf_sock_ops_kern, sk),
8090                                       si->dst_reg, si->src_reg,
8091                                       offsetof(struct bpf_sock_ops_kern, sk));
8092                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8093                                       offsetof(struct sock_common, skc_num));
8094                 break;
8095
8096         case offsetof(struct bpf_sock_ops, is_fullsock):
8097                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8098                                                 struct bpf_sock_ops_kern,
8099                                                 is_fullsock),
8100                                       si->dst_reg, si->src_reg,
8101                                       offsetof(struct bpf_sock_ops_kern,
8102                                                is_fullsock));
8103                 break;
8104
8105         case offsetof(struct bpf_sock_ops, state):
8106                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
8107
8108                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8109                                                 struct bpf_sock_ops_kern, sk),
8110                                       si->dst_reg, si->src_reg,
8111                                       offsetof(struct bpf_sock_ops_kern, sk));
8112                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
8113                                       offsetof(struct sock_common, skc_state));
8114                 break;
8115
8116         case offsetof(struct bpf_sock_ops, rtt_min):
8117                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
8118                              sizeof(struct minmax));
8119                 BUILD_BUG_ON(sizeof(struct minmax) <
8120                              sizeof(struct minmax_sample));
8121
8122                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8123                                                 struct bpf_sock_ops_kern, sk),
8124                                       si->dst_reg, si->src_reg,
8125                                       offsetof(struct bpf_sock_ops_kern, sk));
8126                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8127                                       offsetof(struct tcp_sock, rtt_min) +
8128                                       FIELD_SIZEOF(struct minmax_sample, t));
8129                 break;
8130
8131         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
8132                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
8133                                    struct tcp_sock);
8134                 break;
8135
8136         case offsetof(struct bpf_sock_ops, sk_txhash):
8137                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
8138                                           struct sock, type);
8139                 break;
8140         case offsetof(struct bpf_sock_ops, snd_cwnd):
8141                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_cwnd);
8142                 break;
8143         case offsetof(struct bpf_sock_ops, srtt_us):
8144                 SOCK_OPS_GET_TCP_SOCK_FIELD(srtt_us);
8145                 break;
8146         case offsetof(struct bpf_sock_ops, snd_ssthresh):
8147                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_ssthresh);
8148                 break;
8149         case offsetof(struct bpf_sock_ops, rcv_nxt):
8150                 SOCK_OPS_GET_TCP_SOCK_FIELD(rcv_nxt);
8151                 break;
8152         case offsetof(struct bpf_sock_ops, snd_nxt):
8153                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_nxt);
8154                 break;
8155         case offsetof(struct bpf_sock_ops, snd_una):
8156                 SOCK_OPS_GET_TCP_SOCK_FIELD(snd_una);
8157                 break;
8158         case offsetof(struct bpf_sock_ops, mss_cache):
8159                 SOCK_OPS_GET_TCP_SOCK_FIELD(mss_cache);
8160                 break;
8161         case offsetof(struct bpf_sock_ops, ecn_flags):
8162                 SOCK_OPS_GET_TCP_SOCK_FIELD(ecn_flags);
8163                 break;
8164         case offsetof(struct bpf_sock_ops, rate_delivered):
8165                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_delivered);
8166                 break;
8167         case offsetof(struct bpf_sock_ops, rate_interval_us):
8168                 SOCK_OPS_GET_TCP_SOCK_FIELD(rate_interval_us);
8169                 break;
8170         case offsetof(struct bpf_sock_ops, packets_out):
8171                 SOCK_OPS_GET_TCP_SOCK_FIELD(packets_out);
8172                 break;
8173         case offsetof(struct bpf_sock_ops, retrans_out):
8174                 SOCK_OPS_GET_TCP_SOCK_FIELD(retrans_out);
8175                 break;
8176         case offsetof(struct bpf_sock_ops, total_retrans):
8177                 SOCK_OPS_GET_TCP_SOCK_FIELD(total_retrans);
8178                 break;
8179         case offsetof(struct bpf_sock_ops, segs_in):
8180                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_in);
8181                 break;
8182         case offsetof(struct bpf_sock_ops, data_segs_in):
8183                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_in);
8184                 break;
8185         case offsetof(struct bpf_sock_ops, segs_out):
8186                 SOCK_OPS_GET_TCP_SOCK_FIELD(segs_out);
8187                 break;
8188         case offsetof(struct bpf_sock_ops, data_segs_out):
8189                 SOCK_OPS_GET_TCP_SOCK_FIELD(data_segs_out);
8190                 break;
8191         case offsetof(struct bpf_sock_ops, lost_out):
8192                 SOCK_OPS_GET_TCP_SOCK_FIELD(lost_out);
8193                 break;
8194         case offsetof(struct bpf_sock_ops, sacked_out):
8195                 SOCK_OPS_GET_TCP_SOCK_FIELD(sacked_out);
8196                 break;
8197         case offsetof(struct bpf_sock_ops, bytes_received):
8198                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_received);
8199                 break;
8200         case offsetof(struct bpf_sock_ops, bytes_acked):
8201                 SOCK_OPS_GET_TCP_SOCK_FIELD(bytes_acked);
8202                 break;
8203         case offsetof(struct bpf_sock_ops, sk):
8204                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8205                                                 struct bpf_sock_ops_kern,
8206                                                 is_fullsock),
8207                                       si->dst_reg, si->src_reg,
8208                                       offsetof(struct bpf_sock_ops_kern,
8209                                                is_fullsock));
8210                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
8211                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8212                                                 struct bpf_sock_ops_kern, sk),
8213                                       si->dst_reg, si->src_reg,
8214                                       offsetof(struct bpf_sock_ops_kern, sk));
8215                 break;
8216         }
8217         return insn - insn_buf;
8218 }
8219
8220 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
8221                                      const struct bpf_insn *si,
8222                                      struct bpf_insn *insn_buf,
8223                                      struct bpf_prog *prog, u32 *target_size)
8224 {
8225         struct bpf_insn *insn = insn_buf;
8226         int off;
8227
8228         switch (si->off) {
8229         case offsetof(struct __sk_buff, data_end):
8230                 off  = si->off;
8231                 off -= offsetof(struct __sk_buff, data_end);
8232                 off += offsetof(struct sk_buff, cb);
8233                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
8234                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
8235                                       si->src_reg, off);
8236                 break;
8237         default:
8238                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
8239                                               target_size);
8240         }
8241
8242         return insn - insn_buf;
8243 }
8244
8245 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
8246                                      const struct bpf_insn *si,
8247                                      struct bpf_insn *insn_buf,
8248                                      struct bpf_prog *prog, u32 *target_size)
8249 {
8250         struct bpf_insn *insn = insn_buf;
8251 #if IS_ENABLED(CONFIG_IPV6)
8252         int off;
8253 #endif
8254
8255         /* convert ctx uses the fact sg element is first in struct */
8256         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
8257
8258         switch (si->off) {
8259         case offsetof(struct sk_msg_md, data):
8260                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
8261                                       si->dst_reg, si->src_reg,
8262                                       offsetof(struct sk_msg, data));
8263                 break;
8264         case offsetof(struct sk_msg_md, data_end):
8265                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
8266                                       si->dst_reg, si->src_reg,
8267                                       offsetof(struct sk_msg, data_end));
8268                 break;
8269         case offsetof(struct sk_msg_md, family):
8270                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
8271
8272                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8273                                               struct sk_msg, sk),
8274                                       si->dst_reg, si->src_reg,
8275                                       offsetof(struct sk_msg, sk));
8276                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8277                                       offsetof(struct sock_common, skc_family));
8278                 break;
8279
8280         case offsetof(struct sk_msg_md, remote_ip4):
8281                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
8282
8283                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8284                                                 struct sk_msg, sk),
8285                                       si->dst_reg, si->src_reg,
8286                                       offsetof(struct sk_msg, sk));
8287                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8288                                       offsetof(struct sock_common, skc_daddr));
8289                 break;
8290
8291         case offsetof(struct sk_msg_md, local_ip4):
8292                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8293                                           skc_rcv_saddr) != 4);
8294
8295                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8296                                               struct sk_msg, sk),
8297                                       si->dst_reg, si->src_reg,
8298                                       offsetof(struct sk_msg, sk));
8299                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8300                                       offsetof(struct sock_common,
8301                                                skc_rcv_saddr));
8302                 break;
8303
8304         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
8305              offsetof(struct sk_msg_md, remote_ip6[3]):
8306 #if IS_ENABLED(CONFIG_IPV6)
8307                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8308                                           skc_v6_daddr.s6_addr32[0]) != 4);
8309
8310                 off = si->off;
8311                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
8312                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8313                                                 struct sk_msg, sk),
8314                                       si->dst_reg, si->src_reg,
8315                                       offsetof(struct sk_msg, sk));
8316                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8317                                       offsetof(struct sock_common,
8318                                                skc_v6_daddr.s6_addr32[0]) +
8319                                       off);
8320 #else
8321                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8322 #endif
8323                 break;
8324
8325         case offsetof(struct sk_msg_md, local_ip6[0]) ...
8326              offsetof(struct sk_msg_md, local_ip6[3]):
8327 #if IS_ENABLED(CONFIG_IPV6)
8328                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
8329                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
8330
8331                 off = si->off;
8332                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
8333                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8334                                                 struct sk_msg, sk),
8335                                       si->dst_reg, si->src_reg,
8336                                       offsetof(struct sk_msg, sk));
8337                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
8338                                       offsetof(struct sock_common,
8339                                                skc_v6_rcv_saddr.s6_addr32[0]) +
8340                                       off);
8341 #else
8342                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
8343 #endif
8344                 break;
8345
8346         case offsetof(struct sk_msg_md, remote_port):
8347                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
8348
8349                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8350                                                 struct sk_msg, sk),
8351                                       si->dst_reg, si->src_reg,
8352                                       offsetof(struct sk_msg, sk));
8353                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8354                                       offsetof(struct sock_common, skc_dport));
8355 #ifndef __BIG_ENDIAN_BITFIELD
8356                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
8357 #endif
8358                 break;
8359
8360         case offsetof(struct sk_msg_md, local_port):
8361                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
8362
8363                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
8364                                                 struct sk_msg, sk),
8365                                       si->dst_reg, si->src_reg,
8366                                       offsetof(struct sk_msg, sk));
8367                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
8368                                       offsetof(struct sock_common, skc_num));
8369                 break;
8370
8371         case offsetof(struct sk_msg_md, size):
8372                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
8373                                       si->dst_reg, si->src_reg,
8374                                       offsetof(struct sk_msg_sg, size));
8375                 break;
8376         }
8377
8378         return insn - insn_buf;
8379 }
8380
8381 const struct bpf_verifier_ops sk_filter_verifier_ops = {
8382         .get_func_proto         = sk_filter_func_proto,
8383         .is_valid_access        = sk_filter_is_valid_access,
8384         .convert_ctx_access     = bpf_convert_ctx_access,
8385         .gen_ld_abs             = bpf_gen_ld_abs,
8386 };
8387
8388 const struct bpf_prog_ops sk_filter_prog_ops = {
8389         .test_run               = bpf_prog_test_run_skb,
8390 };
8391
8392 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
8393         .get_func_proto         = tc_cls_act_func_proto,
8394         .is_valid_access        = tc_cls_act_is_valid_access,
8395         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
8396         .gen_prologue           = tc_cls_act_prologue,
8397         .gen_ld_abs             = bpf_gen_ld_abs,
8398 };
8399
8400 const struct bpf_prog_ops tc_cls_act_prog_ops = {
8401         .test_run               = bpf_prog_test_run_skb,
8402 };
8403
8404 const struct bpf_verifier_ops xdp_verifier_ops = {
8405         .get_func_proto         = xdp_func_proto,
8406         .is_valid_access        = xdp_is_valid_access,
8407         .convert_ctx_access     = xdp_convert_ctx_access,
8408         .gen_prologue           = bpf_noop_prologue,
8409 };
8410
8411 const struct bpf_prog_ops xdp_prog_ops = {
8412         .test_run               = bpf_prog_test_run_xdp,
8413 };
8414
8415 const struct bpf_verifier_ops cg_skb_verifier_ops = {
8416         .get_func_proto         = cg_skb_func_proto,
8417         .is_valid_access        = cg_skb_is_valid_access,
8418         .convert_ctx_access     = bpf_convert_ctx_access,
8419 };
8420
8421 const struct bpf_prog_ops cg_skb_prog_ops = {
8422         .test_run               = bpf_prog_test_run_skb,
8423 };
8424
8425 const struct bpf_verifier_ops lwt_in_verifier_ops = {
8426         .get_func_proto         = lwt_in_func_proto,
8427         .is_valid_access        = lwt_is_valid_access,
8428         .convert_ctx_access     = bpf_convert_ctx_access,
8429 };
8430
8431 const struct bpf_prog_ops lwt_in_prog_ops = {
8432         .test_run               = bpf_prog_test_run_skb,
8433 };
8434
8435 const struct bpf_verifier_ops lwt_out_verifier_ops = {
8436         .get_func_proto         = lwt_out_func_proto,
8437         .is_valid_access        = lwt_is_valid_access,
8438         .convert_ctx_access     = bpf_convert_ctx_access,
8439 };
8440
8441 const struct bpf_prog_ops lwt_out_prog_ops = {
8442         .test_run               = bpf_prog_test_run_skb,
8443 };
8444
8445 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
8446         .get_func_proto         = lwt_xmit_func_proto,
8447         .is_valid_access        = lwt_is_valid_access,
8448         .convert_ctx_access     = bpf_convert_ctx_access,
8449         .gen_prologue           = tc_cls_act_prologue,
8450 };
8451
8452 const struct bpf_prog_ops lwt_xmit_prog_ops = {
8453         .test_run               = bpf_prog_test_run_skb,
8454 };
8455
8456 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
8457         .get_func_proto         = lwt_seg6local_func_proto,
8458         .is_valid_access        = lwt_is_valid_access,
8459         .convert_ctx_access     = bpf_convert_ctx_access,
8460 };
8461
8462 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
8463         .test_run               = bpf_prog_test_run_skb,
8464 };
8465
8466 const struct bpf_verifier_ops cg_sock_verifier_ops = {
8467         .get_func_proto         = sock_filter_func_proto,
8468         .is_valid_access        = sock_filter_is_valid_access,
8469         .convert_ctx_access     = bpf_sock_convert_ctx_access,
8470 };
8471
8472 const struct bpf_prog_ops cg_sock_prog_ops = {
8473 };
8474
8475 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
8476         .get_func_proto         = sock_addr_func_proto,
8477         .is_valid_access        = sock_addr_is_valid_access,
8478         .convert_ctx_access     = sock_addr_convert_ctx_access,
8479 };
8480
8481 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
8482 };
8483
8484 const struct bpf_verifier_ops sock_ops_verifier_ops = {
8485         .get_func_proto         = sock_ops_func_proto,
8486         .is_valid_access        = sock_ops_is_valid_access,
8487         .convert_ctx_access     = sock_ops_convert_ctx_access,
8488 };
8489
8490 const struct bpf_prog_ops sock_ops_prog_ops = {
8491 };
8492
8493 const struct bpf_verifier_ops sk_skb_verifier_ops = {
8494         .get_func_proto         = sk_skb_func_proto,
8495         .is_valid_access        = sk_skb_is_valid_access,
8496         .convert_ctx_access     = sk_skb_convert_ctx_access,
8497         .gen_prologue           = sk_skb_prologue,
8498 };
8499
8500 const struct bpf_prog_ops sk_skb_prog_ops = {
8501 };
8502
8503 const struct bpf_verifier_ops sk_msg_verifier_ops = {
8504         .get_func_proto         = sk_msg_func_proto,
8505         .is_valid_access        = sk_msg_is_valid_access,
8506         .convert_ctx_access     = sk_msg_convert_ctx_access,
8507         .gen_prologue           = bpf_noop_prologue,
8508 };
8509
8510 const struct bpf_prog_ops sk_msg_prog_ops = {
8511 };
8512
8513 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
8514         .get_func_proto         = flow_dissector_func_proto,
8515         .is_valid_access        = flow_dissector_is_valid_access,
8516         .convert_ctx_access     = flow_dissector_convert_ctx_access,
8517 };
8518
8519 const struct bpf_prog_ops flow_dissector_prog_ops = {
8520         .test_run               = bpf_prog_test_run_flow_dissector,
8521 };
8522
8523 int sk_detach_filter(struct sock *sk)
8524 {
8525         int ret = -ENOENT;
8526         struct sk_filter *filter;
8527
8528         if (sock_flag(sk, SOCK_FILTER_LOCKED))
8529                 return -EPERM;
8530
8531         filter = rcu_dereference_protected(sk->sk_filter,
8532                                            lockdep_sock_is_held(sk));
8533         if (filter) {
8534                 RCU_INIT_POINTER(sk->sk_filter, NULL);
8535                 sk_filter_uncharge(sk, filter);
8536                 ret = 0;
8537         }
8538
8539         return ret;
8540 }
8541 EXPORT_SYMBOL_GPL(sk_detach_filter);
8542
8543 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
8544                   unsigned int len)
8545 {
8546         struct sock_fprog_kern *fprog;
8547         struct sk_filter *filter;
8548         int ret = 0;
8549
8550         lock_sock(sk);
8551         filter = rcu_dereference_protected(sk->sk_filter,
8552                                            lockdep_sock_is_held(sk));
8553         if (!filter)
8554                 goto out;
8555
8556         /* We're copying the filter that has been originally attached,
8557          * so no conversion/decode needed anymore. eBPF programs that
8558          * have no original program cannot be dumped through this.
8559          */
8560         ret = -EACCES;
8561         fprog = filter->prog->orig_prog;
8562         if (!fprog)
8563                 goto out;
8564
8565         ret = fprog->len;
8566         if (!len)
8567                 /* User space only enquires number of filter blocks. */
8568                 goto out;
8569
8570         ret = -EINVAL;
8571         if (len < fprog->len)
8572                 goto out;
8573
8574         ret = -EFAULT;
8575         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
8576                 goto out;
8577
8578         /* Instead of bytes, the API requests to return the number
8579          * of filter blocks.
8580          */
8581         ret = fprog->len;
8582 out:
8583         release_sock(sk);
8584         return ret;
8585 }
8586
8587 #ifdef CONFIG_INET
8588 struct sk_reuseport_kern {
8589         struct sk_buff *skb;
8590         struct sock *sk;
8591         struct sock *selected_sk;
8592         void *data_end;
8593         u32 hash;
8594         u32 reuseport_id;
8595         bool bind_inany;
8596 };
8597
8598 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
8599                                     struct sock_reuseport *reuse,
8600                                     struct sock *sk, struct sk_buff *skb,
8601                                     u32 hash)
8602 {
8603         reuse_kern->skb = skb;
8604         reuse_kern->sk = sk;
8605         reuse_kern->selected_sk = NULL;
8606         reuse_kern->data_end = skb->data + skb_headlen(skb);
8607         reuse_kern->hash = hash;
8608         reuse_kern->reuseport_id = reuse->reuseport_id;
8609         reuse_kern->bind_inany = reuse->bind_inany;
8610 }
8611
8612 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
8613                                   struct bpf_prog *prog, struct sk_buff *skb,
8614                                   u32 hash)
8615 {
8616         struct sk_reuseport_kern reuse_kern;
8617         enum sk_action action;
8618
8619         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
8620         action = BPF_PROG_RUN(prog, &reuse_kern);
8621
8622         if (action == SK_PASS)
8623                 return reuse_kern.selected_sk;
8624         else
8625                 return ERR_PTR(-ECONNREFUSED);
8626 }
8627
8628 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
8629            struct bpf_map *, map, void *, key, u32, flags)
8630 {
8631         struct sock_reuseport *reuse;
8632         struct sock *selected_sk;
8633
8634         selected_sk = map->ops->map_lookup_elem(map, key);
8635         if (!selected_sk)
8636                 return -ENOENT;
8637
8638         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
8639         if (!reuse)
8640                 /* selected_sk is unhashed (e.g. by close()) after the
8641                  * above map_lookup_elem().  Treat selected_sk has already
8642                  * been removed from the map.
8643                  */
8644                 return -ENOENT;
8645
8646         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
8647                 struct sock *sk;
8648
8649                 if (unlikely(!reuse_kern->reuseport_id))
8650                         /* There is a small race between adding the
8651                          * sk to the map and setting the
8652                          * reuse_kern->reuseport_id.
8653                          * Treat it as the sk has not been added to
8654                          * the bpf map yet.
8655                          */
8656                         return -ENOENT;
8657
8658                 sk = reuse_kern->sk;
8659                 if (sk->sk_protocol != selected_sk->sk_protocol)
8660                         return -EPROTOTYPE;
8661                 else if (sk->sk_family != selected_sk->sk_family)
8662                         return -EAFNOSUPPORT;
8663
8664                 /* Catch all. Likely bound to a different sockaddr. */
8665                 return -EBADFD;
8666         }
8667
8668         reuse_kern->selected_sk = selected_sk;
8669
8670         return 0;
8671 }
8672
8673 static const struct bpf_func_proto sk_select_reuseport_proto = {
8674         .func           = sk_select_reuseport,
8675         .gpl_only       = false,
8676         .ret_type       = RET_INTEGER,
8677         .arg1_type      = ARG_PTR_TO_CTX,
8678         .arg2_type      = ARG_CONST_MAP_PTR,
8679         .arg3_type      = ARG_PTR_TO_MAP_KEY,
8680         .arg4_type      = ARG_ANYTHING,
8681 };
8682
8683 BPF_CALL_4(sk_reuseport_load_bytes,
8684            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8685            void *, to, u32, len)
8686 {
8687         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
8688 }
8689
8690 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
8691         .func           = sk_reuseport_load_bytes,
8692         .gpl_only       = false,
8693         .ret_type       = RET_INTEGER,
8694         .arg1_type      = ARG_PTR_TO_CTX,
8695         .arg2_type      = ARG_ANYTHING,
8696         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8697         .arg4_type      = ARG_CONST_SIZE,
8698 };
8699
8700 BPF_CALL_5(sk_reuseport_load_bytes_relative,
8701            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
8702            void *, to, u32, len, u32, start_header)
8703 {
8704         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
8705                                                len, start_header);
8706 }
8707
8708 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
8709         .func           = sk_reuseport_load_bytes_relative,
8710         .gpl_only       = false,
8711         .ret_type       = RET_INTEGER,
8712         .arg1_type      = ARG_PTR_TO_CTX,
8713         .arg2_type      = ARG_ANYTHING,
8714         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
8715         .arg4_type      = ARG_CONST_SIZE,
8716         .arg5_type      = ARG_ANYTHING,
8717 };
8718
8719 static const struct bpf_func_proto *
8720 sk_reuseport_func_proto(enum bpf_func_id func_id,
8721                         const struct bpf_prog *prog)
8722 {
8723         switch (func_id) {
8724         case BPF_FUNC_sk_select_reuseport:
8725                 return &sk_select_reuseport_proto;
8726         case BPF_FUNC_skb_load_bytes:
8727                 return &sk_reuseport_load_bytes_proto;
8728         case BPF_FUNC_skb_load_bytes_relative:
8729                 return &sk_reuseport_load_bytes_relative_proto;
8730         default:
8731                 return bpf_base_func_proto(func_id);
8732         }
8733 }
8734
8735 static bool
8736 sk_reuseport_is_valid_access(int off, int size,
8737                              enum bpf_access_type type,
8738                              const struct bpf_prog *prog,
8739                              struct bpf_insn_access_aux *info)
8740 {
8741         const u32 size_default = sizeof(__u32);
8742
8743         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
8744             off % size || type != BPF_READ)
8745                 return false;
8746
8747         switch (off) {
8748         case offsetof(struct sk_reuseport_md, data):
8749                 info->reg_type = PTR_TO_PACKET;
8750                 return size == sizeof(__u64);
8751
8752         case offsetof(struct sk_reuseport_md, data_end):
8753                 info->reg_type = PTR_TO_PACKET_END;
8754                 return size == sizeof(__u64);
8755
8756         case offsetof(struct sk_reuseport_md, hash):
8757                 return size == size_default;
8758
8759         /* Fields that allow narrowing */
8760         case offsetof(struct sk_reuseport_md, eth_protocol):
8761                 if (size < FIELD_SIZEOF(struct sk_buff, protocol))
8762                         return false;
8763                 /* fall through */
8764         case offsetof(struct sk_reuseport_md, ip_protocol):
8765         case offsetof(struct sk_reuseport_md, bind_inany):
8766         case offsetof(struct sk_reuseport_md, len):
8767                 bpf_ctx_record_field_size(info, size_default);
8768                 return bpf_ctx_narrow_access_ok(off, size, size_default);
8769
8770         default:
8771                 return false;
8772         }
8773 }
8774
8775 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
8776         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8777                               si->dst_reg, si->src_reg,                 \
8778                               bpf_target_off(struct sk_reuseport_kern, F, \
8779                                              FIELD_SIZEOF(struct sk_reuseport_kern, F), \
8780                                              target_size));             \
8781         })
8782
8783 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
8784         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
8785                                     struct sk_buff,                     \
8786                                     skb,                                \
8787                                     SKB_FIELD)
8788
8789 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
8790         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,  \
8791                                              struct sock,               \
8792                                              sk,                        \
8793                                              SK_FIELD, BPF_SIZE, EXTRA_OFF)
8794
8795 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
8796                                            const struct bpf_insn *si,
8797                                            struct bpf_insn *insn_buf,
8798                                            struct bpf_prog *prog,
8799                                            u32 *target_size)
8800 {
8801         struct bpf_insn *insn = insn_buf;
8802
8803         switch (si->off) {
8804         case offsetof(struct sk_reuseport_md, data):
8805                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
8806                 break;
8807
8808         case offsetof(struct sk_reuseport_md, len):
8809                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
8810                 break;
8811
8812         case offsetof(struct sk_reuseport_md, eth_protocol):
8813                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
8814                 break;
8815
8816         case offsetof(struct sk_reuseport_md, ip_protocol):
8817                 BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
8818                 SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
8819                                                     BPF_W, 0);
8820                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
8821                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
8822                                         SK_FL_PROTO_SHIFT);
8823                 /* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
8824                  * aware.  No further narrowing or masking is needed.
8825                  */
8826                 *target_size = 1;
8827                 break;
8828
8829         case offsetof(struct sk_reuseport_md, data_end):
8830                 SK_REUSEPORT_LOAD_FIELD(data_end);
8831                 break;
8832
8833         case offsetof(struct sk_reuseport_md, hash):
8834                 SK_REUSEPORT_LOAD_FIELD(hash);
8835                 break;
8836
8837         case offsetof(struct sk_reuseport_md, bind_inany):
8838                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
8839                 break;
8840         }
8841
8842         return insn - insn_buf;
8843 }
8844
8845 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8846         .get_func_proto         = sk_reuseport_func_proto,
8847         .is_valid_access        = sk_reuseport_is_valid_access,
8848         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
8849 };
8850
8851 const struct bpf_prog_ops sk_reuseport_prog_ops = {
8852 };
8853 #endif /* CONFIG_INET */