Merge tag 'regmap-fix-v5.0-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / net / core / filter.c
1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *      Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *      Jay Schulist <jschlst@samba.org>
12  *      Alexei Starovoitov <ast@plumgrid.com>
13  *      Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <linux/skmsg.h>
42 #include <net/sock.h>
43 #include <net/flow_dissector.h>
44 #include <linux/errno.h>
45 #include <linux/timer.h>
46 #include <linux/uaccess.h>
47 #include <asm/unaligned.h>
48 #include <asm/cmpxchg.h>
49 #include <linux/filter.h>
50 #include <linux/ratelimit.h>
51 #include <linux/seccomp.h>
52 #include <linux/if_vlan.h>
53 #include <linux/bpf.h>
54 #include <net/sch_generic.h>
55 #include <net/cls_cgroup.h>
56 #include <net/dst_metadata.h>
57 #include <net/dst.h>
58 #include <net/sock_reuseport.h>
59 #include <net/busy_poll.h>
60 #include <net/tcp.h>
61 #include <net/xfrm.h>
62 #include <net/udp.h>
63 #include <linux/bpf_trace.h>
64 #include <net/xdp_sock.h>
65 #include <linux/inetdevice.h>
66 #include <net/inet_hashtables.h>
67 #include <net/inet6_hashtables.h>
68 #include <net/ip_fib.h>
69 #include <net/flow.h>
70 #include <net/arp.h>
71 #include <net/ipv6.h>
72 #include <net/net_namespace.h>
73 #include <linux/seg6_local.h>
74 #include <net/seg6.h>
75 #include <net/seg6_local.h>
76
77 /**
78  *      sk_filter_trim_cap - run a packet through a socket filter
79  *      @sk: sock associated with &sk_buff
80  *      @skb: buffer to filter
81  *      @cap: limit on how short the eBPF program may trim the packet
82  *
83  * Run the eBPF program and then cut skb->data to correct size returned by
84  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
85  * than pkt_len we keep whole skb->data. This is the socket level
86  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
87  * be accepted or -EPERM if the packet should be tossed.
88  *
89  */
90 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
91 {
92         int err;
93         struct sk_filter *filter;
94
95         /*
96          * If the skb was allocated from pfmemalloc reserves, only
97          * allow SOCK_MEMALLOC sockets to use it as this socket is
98          * helping free memory
99          */
100         if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
101                 NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
102                 return -ENOMEM;
103         }
104         err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
105         if (err)
106                 return err;
107
108         err = security_sock_rcv_skb(sk, skb);
109         if (err)
110                 return err;
111
112         rcu_read_lock();
113         filter = rcu_dereference(sk->sk_filter);
114         if (filter) {
115                 struct sock *save_sk = skb->sk;
116                 unsigned int pkt_len;
117
118                 skb->sk = sk;
119                 pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
120                 skb->sk = save_sk;
121                 err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
122         }
123         rcu_read_unlock();
124
125         return err;
126 }
127 EXPORT_SYMBOL(sk_filter_trim_cap);
128
129 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
130 {
131         return skb_get_poff(skb);
132 }
133
134 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
135 {
136         struct nlattr *nla;
137
138         if (skb_is_nonlinear(skb))
139                 return 0;
140
141         if (skb->len < sizeof(struct nlattr))
142                 return 0;
143
144         if (a > skb->len - sizeof(struct nlattr))
145                 return 0;
146
147         nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
148         if (nla)
149                 return (void *) nla - (void *) skb->data;
150
151         return 0;
152 }
153
154 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
155 {
156         struct nlattr *nla;
157
158         if (skb_is_nonlinear(skb))
159                 return 0;
160
161         if (skb->len < sizeof(struct nlattr))
162                 return 0;
163
164         if (a > skb->len - sizeof(struct nlattr))
165                 return 0;
166
167         nla = (struct nlattr *) &skb->data[a];
168         if (nla->nla_len > skb->len - a)
169                 return 0;
170
171         nla = nla_find_nested(nla, x);
172         if (nla)
173                 return (void *) nla - (void *) skb->data;
174
175         return 0;
176 }
177
178 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
179            data, int, headlen, int, offset)
180 {
181         u8 tmp, *ptr;
182         const int len = sizeof(tmp);
183
184         if (offset >= 0) {
185                 if (headlen - offset >= len)
186                         return *(u8 *)(data + offset);
187                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
188                         return tmp;
189         } else {
190                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
191                 if (likely(ptr))
192                         return *(u8 *)ptr;
193         }
194
195         return -EFAULT;
196 }
197
198 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
199            int, offset)
200 {
201         return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
202                                          offset);
203 }
204
205 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
206            data, int, headlen, int, offset)
207 {
208         u16 tmp, *ptr;
209         const int len = sizeof(tmp);
210
211         if (offset >= 0) {
212                 if (headlen - offset >= len)
213                         return get_unaligned_be16(data + offset);
214                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
215                         return be16_to_cpu(tmp);
216         } else {
217                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
218                 if (likely(ptr))
219                         return get_unaligned_be16(ptr);
220         }
221
222         return -EFAULT;
223 }
224
225 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
226            int, offset)
227 {
228         return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
229                                           offset);
230 }
231
232 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
233            data, int, headlen, int, offset)
234 {
235         u32 tmp, *ptr;
236         const int len = sizeof(tmp);
237
238         if (likely(offset >= 0)) {
239                 if (headlen - offset >= len)
240                         return get_unaligned_be32(data + offset);
241                 if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
242                         return be32_to_cpu(tmp);
243         } else {
244                 ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
245                 if (likely(ptr))
246                         return get_unaligned_be32(ptr);
247         }
248
249         return -EFAULT;
250 }
251
252 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
253            int, offset)
254 {
255         return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
256                                           offset);
257 }
258
259 BPF_CALL_0(bpf_get_raw_cpu_id)
260 {
261         return raw_smp_processor_id();
262 }
263
264 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
265         .func           = bpf_get_raw_cpu_id,
266         .gpl_only       = false,
267         .ret_type       = RET_INTEGER,
268 };
269
270 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
271                               struct bpf_insn *insn_buf)
272 {
273         struct bpf_insn *insn = insn_buf;
274
275         switch (skb_field) {
276         case SKF_AD_MARK:
277                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
278
279                 *insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
280                                       offsetof(struct sk_buff, mark));
281                 break;
282
283         case SKF_AD_PKTTYPE:
284                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
285                 *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
286 #ifdef __BIG_ENDIAN_BITFIELD
287                 *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
288 #endif
289                 break;
290
291         case SKF_AD_QUEUE:
292                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
293
294                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
295                                       offsetof(struct sk_buff, queue_mapping));
296                 break;
297
298         case SKF_AD_VLAN_TAG:
299                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
300
301                 /* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
302                 *insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
303                                       offsetof(struct sk_buff, vlan_tci));
304                 break;
305         case SKF_AD_VLAN_TAG_PRESENT:
306                 *insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_VLAN_PRESENT_OFFSET());
307                 if (PKT_VLAN_PRESENT_BIT)
308                         *insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, PKT_VLAN_PRESENT_BIT);
309                 if (PKT_VLAN_PRESENT_BIT < 7)
310                         *insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
311                 break;
312         }
313
314         return insn - insn_buf;
315 }
316
317 static bool convert_bpf_extensions(struct sock_filter *fp,
318                                    struct bpf_insn **insnp)
319 {
320         struct bpf_insn *insn = *insnp;
321         u32 cnt;
322
323         switch (fp->k) {
324         case SKF_AD_OFF + SKF_AD_PROTOCOL:
325                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
326
327                 /* A = *(u16 *) (CTX + offsetof(protocol)) */
328                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
329                                       offsetof(struct sk_buff, protocol));
330                 /* A = ntohs(A) [emitting a nop or swap16] */
331                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
332                 break;
333
334         case SKF_AD_OFF + SKF_AD_PKTTYPE:
335                 cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
336                 insn += cnt - 1;
337                 break;
338
339         case SKF_AD_OFF + SKF_AD_IFINDEX:
340         case SKF_AD_OFF + SKF_AD_HATYPE:
341                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
342                 BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
343
344                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
345                                       BPF_REG_TMP, BPF_REG_CTX,
346                                       offsetof(struct sk_buff, dev));
347                 /* if (tmp != 0) goto pc + 1 */
348                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
349                 *insn++ = BPF_EXIT_INSN();
350                 if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
351                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
352                                             offsetof(struct net_device, ifindex));
353                 else
354                         *insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
355                                             offsetof(struct net_device, type));
356                 break;
357
358         case SKF_AD_OFF + SKF_AD_MARK:
359                 cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
360                 insn += cnt - 1;
361                 break;
362
363         case SKF_AD_OFF + SKF_AD_RXHASH:
364                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
365
366                 *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
367                                     offsetof(struct sk_buff, hash));
368                 break;
369
370         case SKF_AD_OFF + SKF_AD_QUEUE:
371                 cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
372                 insn += cnt - 1;
373                 break;
374
375         case SKF_AD_OFF + SKF_AD_VLAN_TAG:
376                 cnt = convert_skb_access(SKF_AD_VLAN_TAG,
377                                          BPF_REG_A, BPF_REG_CTX, insn);
378                 insn += cnt - 1;
379                 break;
380
381         case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
382                 cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
383                                          BPF_REG_A, BPF_REG_CTX, insn);
384                 insn += cnt - 1;
385                 break;
386
387         case SKF_AD_OFF + SKF_AD_VLAN_TPID:
388                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
389
390                 /* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
391                 *insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
392                                       offsetof(struct sk_buff, vlan_proto));
393                 /* A = ntohs(A) [emitting a nop or swap16] */
394                 *insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
395                 break;
396
397         case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
398         case SKF_AD_OFF + SKF_AD_NLATTR:
399         case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
400         case SKF_AD_OFF + SKF_AD_CPU:
401         case SKF_AD_OFF + SKF_AD_RANDOM:
402                 /* arg1 = CTX */
403                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
404                 /* arg2 = A */
405                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
406                 /* arg3 = X */
407                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
408                 /* Emit call(arg1=CTX, arg2=A, arg3=X) */
409                 switch (fp->k) {
410                 case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
411                         *insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
412                         break;
413                 case SKF_AD_OFF + SKF_AD_NLATTR:
414                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
415                         break;
416                 case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
417                         *insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
418                         break;
419                 case SKF_AD_OFF + SKF_AD_CPU:
420                         *insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
421                         break;
422                 case SKF_AD_OFF + SKF_AD_RANDOM:
423                         *insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
424                         bpf_user_rnd_init_once();
425                         break;
426                 }
427                 break;
428
429         case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
430                 /* A ^= X */
431                 *insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
432                 break;
433
434         default:
435                 /* This is just a dummy call to avoid letting the compiler
436                  * evict __bpf_call_base() as an optimization. Placed here
437                  * where no-one bothers.
438                  */
439                 BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
440                 return false;
441         }
442
443         *insnp = insn;
444         return true;
445 }
446
447 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
448 {
449         const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
450         int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
451         bool endian = BPF_SIZE(fp->code) == BPF_H ||
452                       BPF_SIZE(fp->code) == BPF_W;
453         bool indirect = BPF_MODE(fp->code) == BPF_IND;
454         const int ip_align = NET_IP_ALIGN;
455         struct bpf_insn *insn = *insnp;
456         int offset = fp->k;
457
458         if (!indirect &&
459             ((unaligned_ok && offset >= 0) ||
460              (!unaligned_ok && offset >= 0 &&
461               offset + ip_align >= 0 &&
462               offset + ip_align % size == 0))) {
463                 bool ldx_off_ok = offset <= S16_MAX;
464
465                 *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
466                 if (offset)
467                         *insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
468                 *insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
469                                       size, 2 + endian + (!ldx_off_ok * 2));
470                 if (ldx_off_ok) {
471                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
472                                               BPF_REG_D, offset);
473                 } else {
474                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
475                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
476                         *insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
477                                               BPF_REG_TMP, 0);
478                 }
479                 if (endian)
480                         *insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
481                 *insn++ = BPF_JMP_A(8);
482         }
483
484         *insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
485         *insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
486         *insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
487         if (!indirect) {
488                 *insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
489         } else {
490                 *insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
491                 if (fp->k)
492                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
493         }
494
495         switch (BPF_SIZE(fp->code)) {
496         case BPF_B:
497                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
498                 break;
499         case BPF_H:
500                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
501                 break;
502         case BPF_W:
503                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
504                 break;
505         default:
506                 return false;
507         }
508
509         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
510         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
511         *insn   = BPF_EXIT_INSN();
512
513         *insnp = insn;
514         return true;
515 }
516
517 /**
518  *      bpf_convert_filter - convert filter program
519  *      @prog: the user passed filter program
520  *      @len: the length of the user passed filter program
521  *      @new_prog: allocated 'struct bpf_prog' or NULL
522  *      @new_len: pointer to store length of converted program
523  *      @seen_ld_abs: bool whether we've seen ld_abs/ind
524  *
525  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
526  * style extended BPF (eBPF).
527  * Conversion workflow:
528  *
529  * 1) First pass for calculating the new program length:
530  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
531  *
532  * 2) 2nd pass to remap in two passes: 1st pass finds new
533  *    jump offsets, 2nd pass remapping:
534  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
535  */
536 static int bpf_convert_filter(struct sock_filter *prog, int len,
537                               struct bpf_prog *new_prog, int *new_len,
538                               bool *seen_ld_abs)
539 {
540         int new_flen = 0, pass = 0, target, i, stack_off;
541         struct bpf_insn *new_insn, *first_insn = NULL;
542         struct sock_filter *fp;
543         int *addrs = NULL;
544         u8 bpf_src;
545
546         BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
547         BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
548
549         if (len <= 0 || len > BPF_MAXINSNS)
550                 return -EINVAL;
551
552         if (new_prog) {
553                 first_insn = new_prog->insnsi;
554                 addrs = kcalloc(len, sizeof(*addrs),
555                                 GFP_KERNEL | __GFP_NOWARN);
556                 if (!addrs)
557                         return -ENOMEM;
558         }
559
560 do_pass:
561         new_insn = first_insn;
562         fp = prog;
563
564         /* Classic BPF related prologue emission. */
565         if (new_prog) {
566                 /* Classic BPF expects A and X to be reset first. These need
567                  * to be guaranteed to be the first two instructions.
568                  */
569                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
570                 *new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
571
572                 /* All programs must keep CTX in callee saved BPF_REG_CTX.
573                  * In eBPF case it's done by the compiler, here we need to
574                  * do this ourself. Initial CTX is present in BPF_REG_ARG1.
575                  */
576                 *new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
577                 if (*seen_ld_abs) {
578                         /* For packet access in classic BPF, cache skb->data
579                          * in callee-saved BPF R8 and skb->len - skb->data_len
580                          * (headlen) in BPF R9. Since classic BPF is read-only
581                          * on CTX, we only need to cache it once.
582                          */
583                         *new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
584                                                   BPF_REG_D, BPF_REG_CTX,
585                                                   offsetof(struct sk_buff, data));
586                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
587                                                   offsetof(struct sk_buff, len));
588                         *new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
589                                                   offsetof(struct sk_buff, data_len));
590                         *new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
591                 }
592         } else {
593                 new_insn += 3;
594         }
595
596         for (i = 0; i < len; fp++, i++) {
597                 struct bpf_insn tmp_insns[32] = { };
598                 struct bpf_insn *insn = tmp_insns;
599
600                 if (addrs)
601                         addrs[i] = new_insn - first_insn;
602
603                 switch (fp->code) {
604                 /* All arithmetic insns and skb loads map as-is. */
605                 case BPF_ALU | BPF_ADD | BPF_X:
606                 case BPF_ALU | BPF_ADD | BPF_K:
607                 case BPF_ALU | BPF_SUB | BPF_X:
608                 case BPF_ALU | BPF_SUB | BPF_K:
609                 case BPF_ALU | BPF_AND | BPF_X:
610                 case BPF_ALU | BPF_AND | BPF_K:
611                 case BPF_ALU | BPF_OR | BPF_X:
612                 case BPF_ALU | BPF_OR | BPF_K:
613                 case BPF_ALU | BPF_LSH | BPF_X:
614                 case BPF_ALU | BPF_LSH | BPF_K:
615                 case BPF_ALU | BPF_RSH | BPF_X:
616                 case BPF_ALU | BPF_RSH | BPF_K:
617                 case BPF_ALU | BPF_XOR | BPF_X:
618                 case BPF_ALU | BPF_XOR | BPF_K:
619                 case BPF_ALU | BPF_MUL | BPF_X:
620                 case BPF_ALU | BPF_MUL | BPF_K:
621                 case BPF_ALU | BPF_DIV | BPF_X:
622                 case BPF_ALU | BPF_DIV | BPF_K:
623                 case BPF_ALU | BPF_MOD | BPF_X:
624                 case BPF_ALU | BPF_MOD | BPF_K:
625                 case BPF_ALU | BPF_NEG:
626                 case BPF_LD | BPF_ABS | BPF_W:
627                 case BPF_LD | BPF_ABS | BPF_H:
628                 case BPF_LD | BPF_ABS | BPF_B:
629                 case BPF_LD | BPF_IND | BPF_W:
630                 case BPF_LD | BPF_IND | BPF_H:
631                 case BPF_LD | BPF_IND | BPF_B:
632                         /* Check for overloaded BPF extension and
633                          * directly convert it if found, otherwise
634                          * just move on with mapping.
635                          */
636                         if (BPF_CLASS(fp->code) == BPF_LD &&
637                             BPF_MODE(fp->code) == BPF_ABS &&
638                             convert_bpf_extensions(fp, &insn))
639                                 break;
640                         if (BPF_CLASS(fp->code) == BPF_LD &&
641                             convert_bpf_ld_abs(fp, &insn)) {
642                                 *seen_ld_abs = true;
643                                 break;
644                         }
645
646                         if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
647                             fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
648                                 *insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
649                                 /* Error with exception code on div/mod by 0.
650                                  * For cBPF programs, this was always return 0.
651                                  */
652                                 *insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
653                                 *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
654                                 *insn++ = BPF_EXIT_INSN();
655                         }
656
657                         *insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
658                         break;
659
660                 /* Jump transformation cannot use BPF block macros
661                  * everywhere as offset calculation and target updates
662                  * require a bit more work than the rest, i.e. jump
663                  * opcodes map as-is, but offsets need adjustment.
664                  */
665
666 #define BPF_EMIT_JMP                                                    \
667         do {                                                            \
668                 const s32 off_min = S16_MIN, off_max = S16_MAX;         \
669                 s32 off;                                                \
670                                                                         \
671                 if (target >= len || target < 0)                        \
672                         goto err;                                       \
673                 off = addrs ? addrs[target] - addrs[i] - 1 : 0;         \
674                 /* Adjust pc relative offset for 2nd or 3rd insn. */    \
675                 off -= insn - tmp_insns;                                \
676                 /* Reject anything not fitting into insn->off. */       \
677                 if (off < off_min || off > off_max)                     \
678                         goto err;                                       \
679                 insn->off = off;                                        \
680         } while (0)
681
682                 case BPF_JMP | BPF_JA:
683                         target = i + fp->k + 1;
684                         insn->code = fp->code;
685                         BPF_EMIT_JMP;
686                         break;
687
688                 case BPF_JMP | BPF_JEQ | BPF_K:
689                 case BPF_JMP | BPF_JEQ | BPF_X:
690                 case BPF_JMP | BPF_JSET | BPF_K:
691                 case BPF_JMP | BPF_JSET | BPF_X:
692                 case BPF_JMP | BPF_JGT | BPF_K:
693                 case BPF_JMP | BPF_JGT | BPF_X:
694                 case BPF_JMP | BPF_JGE | BPF_K:
695                 case BPF_JMP | BPF_JGE | BPF_X:
696                         if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
697                                 /* BPF immediates are signed, zero extend
698                                  * immediate into tmp register and use it
699                                  * in compare insn.
700                                  */
701                                 *insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
702
703                                 insn->dst_reg = BPF_REG_A;
704                                 insn->src_reg = BPF_REG_TMP;
705                                 bpf_src = BPF_X;
706                         } else {
707                                 insn->dst_reg = BPF_REG_A;
708                                 insn->imm = fp->k;
709                                 bpf_src = BPF_SRC(fp->code);
710                                 insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
711                         }
712
713                         /* Common case where 'jump_false' is next insn. */
714                         if (fp->jf == 0) {
715                                 insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
716                                 target = i + fp->jt + 1;
717                                 BPF_EMIT_JMP;
718                                 break;
719                         }
720
721                         /* Convert some jumps when 'jump_true' is next insn. */
722                         if (fp->jt == 0) {
723                                 switch (BPF_OP(fp->code)) {
724                                 case BPF_JEQ:
725                                         insn->code = BPF_JMP | BPF_JNE | bpf_src;
726                                         break;
727                                 case BPF_JGT:
728                                         insn->code = BPF_JMP | BPF_JLE | bpf_src;
729                                         break;
730                                 case BPF_JGE:
731                                         insn->code = BPF_JMP | BPF_JLT | bpf_src;
732                                         break;
733                                 default:
734                                         goto jmp_rest;
735                                 }
736
737                                 target = i + fp->jf + 1;
738                                 BPF_EMIT_JMP;
739                                 break;
740                         }
741 jmp_rest:
742                         /* Other jumps are mapped into two insns: Jxx and JA. */
743                         target = i + fp->jt + 1;
744                         insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
745                         BPF_EMIT_JMP;
746                         insn++;
747
748                         insn->code = BPF_JMP | BPF_JA;
749                         target = i + fp->jf + 1;
750                         BPF_EMIT_JMP;
751                         break;
752
753                 /* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
754                 case BPF_LDX | BPF_MSH | BPF_B: {
755                         struct sock_filter tmp = {
756                                 .code   = BPF_LD | BPF_ABS | BPF_B,
757                                 .k      = fp->k,
758                         };
759
760                         *seen_ld_abs = true;
761
762                         /* X = A */
763                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
764                         /* A = BPF_R0 = *(u8 *) (skb->data + K) */
765                         convert_bpf_ld_abs(&tmp, &insn);
766                         insn++;
767                         /* A &= 0xf */
768                         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
769                         /* A <<= 2 */
770                         *insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
771                         /* tmp = X */
772                         *insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
773                         /* X = A */
774                         *insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
775                         /* A = tmp */
776                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
777                         break;
778                 }
779                 /* RET_K is remaped into 2 insns. RET_A case doesn't need an
780                  * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
781                  */
782                 case BPF_RET | BPF_A:
783                 case BPF_RET | BPF_K:
784                         if (BPF_RVAL(fp->code) == BPF_K)
785                                 *insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
786                                                         0, fp->k);
787                         *insn = BPF_EXIT_INSN();
788                         break;
789
790                 /* Store to stack. */
791                 case BPF_ST:
792                 case BPF_STX:
793                         stack_off = fp->k * 4  + 4;
794                         *insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
795                                             BPF_ST ? BPF_REG_A : BPF_REG_X,
796                                             -stack_off);
797                         /* check_load_and_stores() verifies that classic BPF can
798                          * load from stack only after write, so tracking
799                          * stack_depth for ST|STX insns is enough
800                          */
801                         if (new_prog && new_prog->aux->stack_depth < stack_off)
802                                 new_prog->aux->stack_depth = stack_off;
803                         break;
804
805                 /* Load from stack. */
806                 case BPF_LD | BPF_MEM:
807                 case BPF_LDX | BPF_MEM:
808                         stack_off = fp->k * 4  + 4;
809                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
810                                             BPF_REG_A : BPF_REG_X, BPF_REG_FP,
811                                             -stack_off);
812                         break;
813
814                 /* A = K or X = K */
815                 case BPF_LD | BPF_IMM:
816                 case BPF_LDX | BPF_IMM:
817                         *insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
818                                               BPF_REG_A : BPF_REG_X, fp->k);
819                         break;
820
821                 /* X = A */
822                 case BPF_MISC | BPF_TAX:
823                         *insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
824                         break;
825
826                 /* A = X */
827                 case BPF_MISC | BPF_TXA:
828                         *insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
829                         break;
830
831                 /* A = skb->len or X = skb->len */
832                 case BPF_LD | BPF_W | BPF_LEN:
833                 case BPF_LDX | BPF_W | BPF_LEN:
834                         *insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
835                                             BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
836                                             offsetof(struct sk_buff, len));
837                         break;
838
839                 /* Access seccomp_data fields. */
840                 case BPF_LDX | BPF_ABS | BPF_W:
841                         /* A = *(u32 *) (ctx + K) */
842                         *insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
843                         break;
844
845                 /* Unknown instruction. */
846                 default:
847                         goto err;
848                 }
849
850                 insn++;
851                 if (new_prog)
852                         memcpy(new_insn, tmp_insns,
853                                sizeof(*insn) * (insn - tmp_insns));
854                 new_insn += insn - tmp_insns;
855         }
856
857         if (!new_prog) {
858                 /* Only calculating new length. */
859                 *new_len = new_insn - first_insn;
860                 if (*seen_ld_abs)
861                         *new_len += 4; /* Prologue bits. */
862                 return 0;
863         }
864
865         pass++;
866         if (new_flen != new_insn - first_insn) {
867                 new_flen = new_insn - first_insn;
868                 if (pass > 2)
869                         goto err;
870                 goto do_pass;
871         }
872
873         kfree(addrs);
874         BUG_ON(*new_len != new_flen);
875         return 0;
876 err:
877         kfree(addrs);
878         return -EINVAL;
879 }
880
881 /* Security:
882  *
883  * As we dont want to clear mem[] array for each packet going through
884  * __bpf_prog_run(), we check that filter loaded by user never try to read
885  * a cell if not previously written, and we check all branches to be sure
886  * a malicious user doesn't try to abuse us.
887  */
888 static int check_load_and_stores(const struct sock_filter *filter, int flen)
889 {
890         u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
891         int pc, ret = 0;
892
893         BUILD_BUG_ON(BPF_MEMWORDS > 16);
894
895         masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
896         if (!masks)
897                 return -ENOMEM;
898
899         memset(masks, 0xff, flen * sizeof(*masks));
900
901         for (pc = 0; pc < flen; pc++) {
902                 memvalid &= masks[pc];
903
904                 switch (filter[pc].code) {
905                 case BPF_ST:
906                 case BPF_STX:
907                         memvalid |= (1 << filter[pc].k);
908                         break;
909                 case BPF_LD | BPF_MEM:
910                 case BPF_LDX | BPF_MEM:
911                         if (!(memvalid & (1 << filter[pc].k))) {
912                                 ret = -EINVAL;
913                                 goto error;
914                         }
915                         break;
916                 case BPF_JMP | BPF_JA:
917                         /* A jump must set masks on target */
918                         masks[pc + 1 + filter[pc].k] &= memvalid;
919                         memvalid = ~0;
920                         break;
921                 case BPF_JMP | BPF_JEQ | BPF_K:
922                 case BPF_JMP | BPF_JEQ | BPF_X:
923                 case BPF_JMP | BPF_JGE | BPF_K:
924                 case BPF_JMP | BPF_JGE | BPF_X:
925                 case BPF_JMP | BPF_JGT | BPF_K:
926                 case BPF_JMP | BPF_JGT | BPF_X:
927                 case BPF_JMP | BPF_JSET | BPF_K:
928                 case BPF_JMP | BPF_JSET | BPF_X:
929                         /* A jump must set masks on targets */
930                         masks[pc + 1 + filter[pc].jt] &= memvalid;
931                         masks[pc + 1 + filter[pc].jf] &= memvalid;
932                         memvalid = ~0;
933                         break;
934                 }
935         }
936 error:
937         kfree(masks);
938         return ret;
939 }
940
941 static bool chk_code_allowed(u16 code_to_probe)
942 {
943         static const bool codes[] = {
944                 /* 32 bit ALU operations */
945                 [BPF_ALU | BPF_ADD | BPF_K] = true,
946                 [BPF_ALU | BPF_ADD | BPF_X] = true,
947                 [BPF_ALU | BPF_SUB | BPF_K] = true,
948                 [BPF_ALU | BPF_SUB | BPF_X] = true,
949                 [BPF_ALU | BPF_MUL | BPF_K] = true,
950                 [BPF_ALU | BPF_MUL | BPF_X] = true,
951                 [BPF_ALU | BPF_DIV | BPF_K] = true,
952                 [BPF_ALU | BPF_DIV | BPF_X] = true,
953                 [BPF_ALU | BPF_MOD | BPF_K] = true,
954                 [BPF_ALU | BPF_MOD | BPF_X] = true,
955                 [BPF_ALU | BPF_AND | BPF_K] = true,
956                 [BPF_ALU | BPF_AND | BPF_X] = true,
957                 [BPF_ALU | BPF_OR | BPF_K] = true,
958                 [BPF_ALU | BPF_OR | BPF_X] = true,
959                 [BPF_ALU | BPF_XOR | BPF_K] = true,
960                 [BPF_ALU | BPF_XOR | BPF_X] = true,
961                 [BPF_ALU | BPF_LSH | BPF_K] = true,
962                 [BPF_ALU | BPF_LSH | BPF_X] = true,
963                 [BPF_ALU | BPF_RSH | BPF_K] = true,
964                 [BPF_ALU | BPF_RSH | BPF_X] = true,
965                 [BPF_ALU | BPF_NEG] = true,
966                 /* Load instructions */
967                 [BPF_LD | BPF_W | BPF_ABS] = true,
968                 [BPF_LD | BPF_H | BPF_ABS] = true,
969                 [BPF_LD | BPF_B | BPF_ABS] = true,
970                 [BPF_LD | BPF_W | BPF_LEN] = true,
971                 [BPF_LD | BPF_W | BPF_IND] = true,
972                 [BPF_LD | BPF_H | BPF_IND] = true,
973                 [BPF_LD | BPF_B | BPF_IND] = true,
974                 [BPF_LD | BPF_IMM] = true,
975                 [BPF_LD | BPF_MEM] = true,
976                 [BPF_LDX | BPF_W | BPF_LEN] = true,
977                 [BPF_LDX | BPF_B | BPF_MSH] = true,
978                 [BPF_LDX | BPF_IMM] = true,
979                 [BPF_LDX | BPF_MEM] = true,
980                 /* Store instructions */
981                 [BPF_ST] = true,
982                 [BPF_STX] = true,
983                 /* Misc instructions */
984                 [BPF_MISC | BPF_TAX] = true,
985                 [BPF_MISC | BPF_TXA] = true,
986                 /* Return instructions */
987                 [BPF_RET | BPF_K] = true,
988                 [BPF_RET | BPF_A] = true,
989                 /* Jump instructions */
990                 [BPF_JMP | BPF_JA] = true,
991                 [BPF_JMP | BPF_JEQ | BPF_K] = true,
992                 [BPF_JMP | BPF_JEQ | BPF_X] = true,
993                 [BPF_JMP | BPF_JGE | BPF_K] = true,
994                 [BPF_JMP | BPF_JGE | BPF_X] = true,
995                 [BPF_JMP | BPF_JGT | BPF_K] = true,
996                 [BPF_JMP | BPF_JGT | BPF_X] = true,
997                 [BPF_JMP | BPF_JSET | BPF_K] = true,
998                 [BPF_JMP | BPF_JSET | BPF_X] = true,
999         };
1000
1001         if (code_to_probe >= ARRAY_SIZE(codes))
1002                 return false;
1003
1004         return codes[code_to_probe];
1005 }
1006
1007 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1008                                 unsigned int flen)
1009 {
1010         if (filter == NULL)
1011                 return false;
1012         if (flen == 0 || flen > BPF_MAXINSNS)
1013                 return false;
1014
1015         return true;
1016 }
1017
1018 /**
1019  *      bpf_check_classic - verify socket filter code
1020  *      @filter: filter to verify
1021  *      @flen: length of filter
1022  *
1023  * Check the user's filter code. If we let some ugly
1024  * filter code slip through kaboom! The filter must contain
1025  * no references or jumps that are out of range, no illegal
1026  * instructions, and must end with a RET instruction.
1027  *
1028  * All jumps are forward as they are not signed.
1029  *
1030  * Returns 0 if the rule set is legal or -EINVAL if not.
1031  */
1032 static int bpf_check_classic(const struct sock_filter *filter,
1033                              unsigned int flen)
1034 {
1035         bool anc_found;
1036         int pc;
1037
1038         /* Check the filter code now */
1039         for (pc = 0; pc < flen; pc++) {
1040                 const struct sock_filter *ftest = &filter[pc];
1041
1042                 /* May we actually operate on this code? */
1043                 if (!chk_code_allowed(ftest->code))
1044                         return -EINVAL;
1045
1046                 /* Some instructions need special checks */
1047                 switch (ftest->code) {
1048                 case BPF_ALU | BPF_DIV | BPF_K:
1049                 case BPF_ALU | BPF_MOD | BPF_K:
1050                         /* Check for division by zero */
1051                         if (ftest->k == 0)
1052                                 return -EINVAL;
1053                         break;
1054                 case BPF_ALU | BPF_LSH | BPF_K:
1055                 case BPF_ALU | BPF_RSH | BPF_K:
1056                         if (ftest->k >= 32)
1057                                 return -EINVAL;
1058                         break;
1059                 case BPF_LD | BPF_MEM:
1060                 case BPF_LDX | BPF_MEM:
1061                 case BPF_ST:
1062                 case BPF_STX:
1063                         /* Check for invalid memory addresses */
1064                         if (ftest->k >= BPF_MEMWORDS)
1065                                 return -EINVAL;
1066                         break;
1067                 case BPF_JMP | BPF_JA:
1068                         /* Note, the large ftest->k might cause loops.
1069                          * Compare this with conditional jumps below,
1070                          * where offsets are limited. --ANK (981016)
1071                          */
1072                         if (ftest->k >= (unsigned int)(flen - pc - 1))
1073                                 return -EINVAL;
1074                         break;
1075                 case BPF_JMP | BPF_JEQ | BPF_K:
1076                 case BPF_JMP | BPF_JEQ | BPF_X:
1077                 case BPF_JMP | BPF_JGE | BPF_K:
1078                 case BPF_JMP | BPF_JGE | BPF_X:
1079                 case BPF_JMP | BPF_JGT | BPF_K:
1080                 case BPF_JMP | BPF_JGT | BPF_X:
1081                 case BPF_JMP | BPF_JSET | BPF_K:
1082                 case BPF_JMP | BPF_JSET | BPF_X:
1083                         /* Both conditionals must be safe */
1084                         if (pc + ftest->jt + 1 >= flen ||
1085                             pc + ftest->jf + 1 >= flen)
1086                                 return -EINVAL;
1087                         break;
1088                 case BPF_LD | BPF_W | BPF_ABS:
1089                 case BPF_LD | BPF_H | BPF_ABS:
1090                 case BPF_LD | BPF_B | BPF_ABS:
1091                         anc_found = false;
1092                         if (bpf_anc_helper(ftest) & BPF_ANC)
1093                                 anc_found = true;
1094                         /* Ancillary operation unknown or unsupported */
1095                         if (anc_found == false && ftest->k >= SKF_AD_OFF)
1096                                 return -EINVAL;
1097                 }
1098         }
1099
1100         /* Last instruction must be a RET code */
1101         switch (filter[flen - 1].code) {
1102         case BPF_RET | BPF_K:
1103         case BPF_RET | BPF_A:
1104                 return check_load_and_stores(filter, flen);
1105         }
1106
1107         return -EINVAL;
1108 }
1109
1110 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1111                                       const struct sock_fprog *fprog)
1112 {
1113         unsigned int fsize = bpf_classic_proglen(fprog);
1114         struct sock_fprog_kern *fkprog;
1115
1116         fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1117         if (!fp->orig_prog)
1118                 return -ENOMEM;
1119
1120         fkprog = fp->orig_prog;
1121         fkprog->len = fprog->len;
1122
1123         fkprog->filter = kmemdup(fp->insns, fsize,
1124                                  GFP_KERNEL | __GFP_NOWARN);
1125         if (!fkprog->filter) {
1126                 kfree(fp->orig_prog);
1127                 return -ENOMEM;
1128         }
1129
1130         return 0;
1131 }
1132
1133 static void bpf_release_orig_filter(struct bpf_prog *fp)
1134 {
1135         struct sock_fprog_kern *fprog = fp->orig_prog;
1136
1137         if (fprog) {
1138                 kfree(fprog->filter);
1139                 kfree(fprog);
1140         }
1141 }
1142
1143 static void __bpf_prog_release(struct bpf_prog *prog)
1144 {
1145         if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1146                 bpf_prog_put(prog);
1147         } else {
1148                 bpf_release_orig_filter(prog);
1149                 bpf_prog_free(prog);
1150         }
1151 }
1152
1153 static void __sk_filter_release(struct sk_filter *fp)
1154 {
1155         __bpf_prog_release(fp->prog);
1156         kfree(fp);
1157 }
1158
1159 /**
1160  *      sk_filter_release_rcu - Release a socket filter by rcu_head
1161  *      @rcu: rcu_head that contains the sk_filter to free
1162  */
1163 static void sk_filter_release_rcu(struct rcu_head *rcu)
1164 {
1165         struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1166
1167         __sk_filter_release(fp);
1168 }
1169
1170 /**
1171  *      sk_filter_release - release a socket filter
1172  *      @fp: filter to remove
1173  *
1174  *      Remove a filter from a socket and release its resources.
1175  */
1176 static void sk_filter_release(struct sk_filter *fp)
1177 {
1178         if (refcount_dec_and_test(&fp->refcnt))
1179                 call_rcu(&fp->rcu, sk_filter_release_rcu);
1180 }
1181
1182 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1183 {
1184         u32 filter_size = bpf_prog_size(fp->prog->len);
1185
1186         atomic_sub(filter_size, &sk->sk_omem_alloc);
1187         sk_filter_release(fp);
1188 }
1189
1190 /* try to charge the socket memory if there is space available
1191  * return true on success
1192  */
1193 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1194 {
1195         u32 filter_size = bpf_prog_size(fp->prog->len);
1196
1197         /* same check as in sock_kmalloc() */
1198         if (filter_size <= sysctl_optmem_max &&
1199             atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1200                 atomic_add(filter_size, &sk->sk_omem_alloc);
1201                 return true;
1202         }
1203         return false;
1204 }
1205
1206 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1207 {
1208         if (!refcount_inc_not_zero(&fp->refcnt))
1209                 return false;
1210
1211         if (!__sk_filter_charge(sk, fp)) {
1212                 sk_filter_release(fp);
1213                 return false;
1214         }
1215         return true;
1216 }
1217
1218 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1219 {
1220         struct sock_filter *old_prog;
1221         struct bpf_prog *old_fp;
1222         int err, new_len, old_len = fp->len;
1223         bool seen_ld_abs = false;
1224
1225         /* We are free to overwrite insns et al right here as it
1226          * won't be used at this point in time anymore internally
1227          * after the migration to the internal BPF instruction
1228          * representation.
1229          */
1230         BUILD_BUG_ON(sizeof(struct sock_filter) !=
1231                      sizeof(struct bpf_insn));
1232
1233         /* Conversion cannot happen on overlapping memory areas,
1234          * so we need to keep the user BPF around until the 2nd
1235          * pass. At this time, the user BPF is stored in fp->insns.
1236          */
1237         old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1238                            GFP_KERNEL | __GFP_NOWARN);
1239         if (!old_prog) {
1240                 err = -ENOMEM;
1241                 goto out_err;
1242         }
1243
1244         /* 1st pass: calculate the new program length. */
1245         err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1246                                  &seen_ld_abs);
1247         if (err)
1248                 goto out_err_free;
1249
1250         /* Expand fp for appending the new filter representation. */
1251         old_fp = fp;
1252         fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1253         if (!fp) {
1254                 /* The old_fp is still around in case we couldn't
1255                  * allocate new memory, so uncharge on that one.
1256                  */
1257                 fp = old_fp;
1258                 err = -ENOMEM;
1259                 goto out_err_free;
1260         }
1261
1262         fp->len = new_len;
1263
1264         /* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1265         err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1266                                  &seen_ld_abs);
1267         if (err)
1268                 /* 2nd bpf_convert_filter() can fail only if it fails
1269                  * to allocate memory, remapping must succeed. Note,
1270                  * that at this time old_fp has already been released
1271                  * by krealloc().
1272                  */
1273                 goto out_err_free;
1274
1275         fp = bpf_prog_select_runtime(fp, &err);
1276         if (err)
1277                 goto out_err_free;
1278
1279         kfree(old_prog);
1280         return fp;
1281
1282 out_err_free:
1283         kfree(old_prog);
1284 out_err:
1285         __bpf_prog_release(fp);
1286         return ERR_PTR(err);
1287 }
1288
1289 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1290                                            bpf_aux_classic_check_t trans)
1291 {
1292         int err;
1293
1294         fp->bpf_func = NULL;
1295         fp->jited = 0;
1296
1297         err = bpf_check_classic(fp->insns, fp->len);
1298         if (err) {
1299                 __bpf_prog_release(fp);
1300                 return ERR_PTR(err);
1301         }
1302
1303         /* There might be additional checks and transformations
1304          * needed on classic filters, f.e. in case of seccomp.
1305          */
1306         if (trans) {
1307                 err = trans(fp->insns, fp->len);
1308                 if (err) {
1309                         __bpf_prog_release(fp);
1310                         return ERR_PTR(err);
1311                 }
1312         }
1313
1314         /* Probe if we can JIT compile the filter and if so, do
1315          * the compilation of the filter.
1316          */
1317         bpf_jit_compile(fp);
1318
1319         /* JIT compiler couldn't process this filter, so do the
1320          * internal BPF translation for the optimized interpreter.
1321          */
1322         if (!fp->jited)
1323                 fp = bpf_migrate_filter(fp);
1324
1325         return fp;
1326 }
1327
1328 /**
1329  *      bpf_prog_create - create an unattached filter
1330  *      @pfp: the unattached filter that is created
1331  *      @fprog: the filter program
1332  *
1333  * Create a filter independent of any socket. We first run some
1334  * sanity checks on it to make sure it does not explode on us later.
1335  * If an error occurs or there is insufficient memory for the filter
1336  * a negative errno code is returned. On success the return is zero.
1337  */
1338 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1339 {
1340         unsigned int fsize = bpf_classic_proglen(fprog);
1341         struct bpf_prog *fp;
1342
1343         /* Make sure new filter is there and in the right amounts. */
1344         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1345                 return -EINVAL;
1346
1347         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1348         if (!fp)
1349                 return -ENOMEM;
1350
1351         memcpy(fp->insns, fprog->filter, fsize);
1352
1353         fp->len = fprog->len;
1354         /* Since unattached filters are not copied back to user
1355          * space through sk_get_filter(), we do not need to hold
1356          * a copy here, and can spare us the work.
1357          */
1358         fp->orig_prog = NULL;
1359
1360         /* bpf_prepare_filter() already takes care of freeing
1361          * memory in case something goes wrong.
1362          */
1363         fp = bpf_prepare_filter(fp, NULL);
1364         if (IS_ERR(fp))
1365                 return PTR_ERR(fp);
1366
1367         *pfp = fp;
1368         return 0;
1369 }
1370 EXPORT_SYMBOL_GPL(bpf_prog_create);
1371
1372 /**
1373  *      bpf_prog_create_from_user - create an unattached filter from user buffer
1374  *      @pfp: the unattached filter that is created
1375  *      @fprog: the filter program
1376  *      @trans: post-classic verifier transformation handler
1377  *      @save_orig: save classic BPF program
1378  *
1379  * This function effectively does the same as bpf_prog_create(), only
1380  * that it builds up its insns buffer from user space provided buffer.
1381  * It also allows for passing a bpf_aux_classic_check_t handler.
1382  */
1383 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1384                               bpf_aux_classic_check_t trans, bool save_orig)
1385 {
1386         unsigned int fsize = bpf_classic_proglen(fprog);
1387         struct bpf_prog *fp;
1388         int err;
1389
1390         /* Make sure new filter is there and in the right amounts. */
1391         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1392                 return -EINVAL;
1393
1394         fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1395         if (!fp)
1396                 return -ENOMEM;
1397
1398         if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1399                 __bpf_prog_free(fp);
1400                 return -EFAULT;
1401         }
1402
1403         fp->len = fprog->len;
1404         fp->orig_prog = NULL;
1405
1406         if (save_orig) {
1407                 err = bpf_prog_store_orig_filter(fp, fprog);
1408                 if (err) {
1409                         __bpf_prog_free(fp);
1410                         return -ENOMEM;
1411                 }
1412         }
1413
1414         /* bpf_prepare_filter() already takes care of freeing
1415          * memory in case something goes wrong.
1416          */
1417         fp = bpf_prepare_filter(fp, trans);
1418         if (IS_ERR(fp))
1419                 return PTR_ERR(fp);
1420
1421         *pfp = fp;
1422         return 0;
1423 }
1424 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1425
1426 void bpf_prog_destroy(struct bpf_prog *fp)
1427 {
1428         __bpf_prog_release(fp);
1429 }
1430 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1431
1432 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1433 {
1434         struct sk_filter *fp, *old_fp;
1435
1436         fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1437         if (!fp)
1438                 return -ENOMEM;
1439
1440         fp->prog = prog;
1441
1442         if (!__sk_filter_charge(sk, fp)) {
1443                 kfree(fp);
1444                 return -ENOMEM;
1445         }
1446         refcount_set(&fp->refcnt, 1);
1447
1448         old_fp = rcu_dereference_protected(sk->sk_filter,
1449                                            lockdep_sock_is_held(sk));
1450         rcu_assign_pointer(sk->sk_filter, fp);
1451
1452         if (old_fp)
1453                 sk_filter_uncharge(sk, old_fp);
1454
1455         return 0;
1456 }
1457
1458 static
1459 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1460 {
1461         unsigned int fsize = bpf_classic_proglen(fprog);
1462         struct bpf_prog *prog;
1463         int err;
1464
1465         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1466                 return ERR_PTR(-EPERM);
1467
1468         /* Make sure new filter is there and in the right amounts. */
1469         if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1470                 return ERR_PTR(-EINVAL);
1471
1472         prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1473         if (!prog)
1474                 return ERR_PTR(-ENOMEM);
1475
1476         if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1477                 __bpf_prog_free(prog);
1478                 return ERR_PTR(-EFAULT);
1479         }
1480
1481         prog->len = fprog->len;
1482
1483         err = bpf_prog_store_orig_filter(prog, fprog);
1484         if (err) {
1485                 __bpf_prog_free(prog);
1486                 return ERR_PTR(-ENOMEM);
1487         }
1488
1489         /* bpf_prepare_filter() already takes care of freeing
1490          * memory in case something goes wrong.
1491          */
1492         return bpf_prepare_filter(prog, NULL);
1493 }
1494
1495 /**
1496  *      sk_attach_filter - attach a socket filter
1497  *      @fprog: the filter program
1498  *      @sk: the socket to use
1499  *
1500  * Attach the user's filter code. We first run some sanity checks on
1501  * it to make sure it does not explode on us later. If an error
1502  * occurs or there is insufficient memory for the filter a negative
1503  * errno code is returned. On success the return is zero.
1504  */
1505 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1506 {
1507         struct bpf_prog *prog = __get_filter(fprog, sk);
1508         int err;
1509
1510         if (IS_ERR(prog))
1511                 return PTR_ERR(prog);
1512
1513         err = __sk_attach_prog(prog, sk);
1514         if (err < 0) {
1515                 __bpf_prog_release(prog);
1516                 return err;
1517         }
1518
1519         return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(sk_attach_filter);
1522
1523 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1524 {
1525         struct bpf_prog *prog = __get_filter(fprog, sk);
1526         int err;
1527
1528         if (IS_ERR(prog))
1529                 return PTR_ERR(prog);
1530
1531         if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1532                 err = -ENOMEM;
1533         else
1534                 err = reuseport_attach_prog(sk, prog);
1535
1536         if (err)
1537                 __bpf_prog_release(prog);
1538
1539         return err;
1540 }
1541
1542 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1543 {
1544         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1545                 return ERR_PTR(-EPERM);
1546
1547         return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1548 }
1549
1550 int sk_attach_bpf(u32 ufd, struct sock *sk)
1551 {
1552         struct bpf_prog *prog = __get_bpf(ufd, sk);
1553         int err;
1554
1555         if (IS_ERR(prog))
1556                 return PTR_ERR(prog);
1557
1558         err = __sk_attach_prog(prog, sk);
1559         if (err < 0) {
1560                 bpf_prog_put(prog);
1561                 return err;
1562         }
1563
1564         return 0;
1565 }
1566
1567 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1568 {
1569         struct bpf_prog *prog;
1570         int err;
1571
1572         if (sock_flag(sk, SOCK_FILTER_LOCKED))
1573                 return -EPERM;
1574
1575         prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1576         if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1577                 prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1578         if (IS_ERR(prog))
1579                 return PTR_ERR(prog);
1580
1581         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1582                 /* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1583                  * bpf prog (e.g. sockmap).  It depends on the
1584                  * limitation imposed by bpf_prog_load().
1585                  * Hence, sysctl_optmem_max is not checked.
1586                  */
1587                 if ((sk->sk_type != SOCK_STREAM &&
1588                      sk->sk_type != SOCK_DGRAM) ||
1589                     (sk->sk_protocol != IPPROTO_UDP &&
1590                      sk->sk_protocol != IPPROTO_TCP) ||
1591                     (sk->sk_family != AF_INET &&
1592                      sk->sk_family != AF_INET6)) {
1593                         err = -ENOTSUPP;
1594                         goto err_prog_put;
1595                 }
1596         } else {
1597                 /* BPF_PROG_TYPE_SOCKET_FILTER */
1598                 if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1599                         err = -ENOMEM;
1600                         goto err_prog_put;
1601                 }
1602         }
1603
1604         err = reuseport_attach_prog(sk, prog);
1605 err_prog_put:
1606         if (err)
1607                 bpf_prog_put(prog);
1608
1609         return err;
1610 }
1611
1612 void sk_reuseport_prog_free(struct bpf_prog *prog)
1613 {
1614         if (!prog)
1615                 return;
1616
1617         if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1618                 bpf_prog_put(prog);
1619         else
1620                 bpf_prog_destroy(prog);
1621 }
1622
1623 struct bpf_scratchpad {
1624         union {
1625                 __be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1626                 u8     buff[MAX_BPF_STACK];
1627         };
1628 };
1629
1630 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1631
1632 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1633                                           unsigned int write_len)
1634 {
1635         return skb_ensure_writable(skb, write_len);
1636 }
1637
1638 static inline int bpf_try_make_writable(struct sk_buff *skb,
1639                                         unsigned int write_len)
1640 {
1641         int err = __bpf_try_make_writable(skb, write_len);
1642
1643         bpf_compute_data_pointers(skb);
1644         return err;
1645 }
1646
1647 static int bpf_try_make_head_writable(struct sk_buff *skb)
1648 {
1649         return bpf_try_make_writable(skb, skb_headlen(skb));
1650 }
1651
1652 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1653 {
1654         if (skb_at_tc_ingress(skb))
1655                 skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1656 }
1657
1658 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1659 {
1660         if (skb_at_tc_ingress(skb))
1661                 skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1662 }
1663
1664 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1665            const void *, from, u32, len, u64, flags)
1666 {
1667         void *ptr;
1668
1669         if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1670                 return -EINVAL;
1671         if (unlikely(offset > 0xffff))
1672                 return -EFAULT;
1673         if (unlikely(bpf_try_make_writable(skb, offset + len)))
1674                 return -EFAULT;
1675
1676         ptr = skb->data + offset;
1677         if (flags & BPF_F_RECOMPUTE_CSUM)
1678                 __skb_postpull_rcsum(skb, ptr, len, offset);
1679
1680         memcpy(ptr, from, len);
1681
1682         if (flags & BPF_F_RECOMPUTE_CSUM)
1683                 __skb_postpush_rcsum(skb, ptr, len, offset);
1684         if (flags & BPF_F_INVALIDATE_HASH)
1685                 skb_clear_hash(skb);
1686
1687         return 0;
1688 }
1689
1690 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1691         .func           = bpf_skb_store_bytes,
1692         .gpl_only       = false,
1693         .ret_type       = RET_INTEGER,
1694         .arg1_type      = ARG_PTR_TO_CTX,
1695         .arg2_type      = ARG_ANYTHING,
1696         .arg3_type      = ARG_PTR_TO_MEM,
1697         .arg4_type      = ARG_CONST_SIZE,
1698         .arg5_type      = ARG_ANYTHING,
1699 };
1700
1701 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1702            void *, to, u32, len)
1703 {
1704         void *ptr;
1705
1706         if (unlikely(offset > 0xffff))
1707                 goto err_clear;
1708
1709         ptr = skb_header_pointer(skb, offset, len, to);
1710         if (unlikely(!ptr))
1711                 goto err_clear;
1712         if (ptr != to)
1713                 memcpy(to, ptr, len);
1714
1715         return 0;
1716 err_clear:
1717         memset(to, 0, len);
1718         return -EFAULT;
1719 }
1720
1721 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1722         .func           = bpf_skb_load_bytes,
1723         .gpl_only       = false,
1724         .ret_type       = RET_INTEGER,
1725         .arg1_type      = ARG_PTR_TO_CTX,
1726         .arg2_type      = ARG_ANYTHING,
1727         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1728         .arg4_type      = ARG_CONST_SIZE,
1729 };
1730
1731 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1732            u32, offset, void *, to, u32, len, u32, start_header)
1733 {
1734         u8 *end = skb_tail_pointer(skb);
1735         u8 *net = skb_network_header(skb);
1736         u8 *mac = skb_mac_header(skb);
1737         u8 *ptr;
1738
1739         if (unlikely(offset > 0xffff || len > (end - mac)))
1740                 goto err_clear;
1741
1742         switch (start_header) {
1743         case BPF_HDR_START_MAC:
1744                 ptr = mac + offset;
1745                 break;
1746         case BPF_HDR_START_NET:
1747                 ptr = net + offset;
1748                 break;
1749         default:
1750                 goto err_clear;
1751         }
1752
1753         if (likely(ptr >= mac && ptr + len <= end)) {
1754                 memcpy(to, ptr, len);
1755                 return 0;
1756         }
1757
1758 err_clear:
1759         memset(to, 0, len);
1760         return -EFAULT;
1761 }
1762
1763 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1764         .func           = bpf_skb_load_bytes_relative,
1765         .gpl_only       = false,
1766         .ret_type       = RET_INTEGER,
1767         .arg1_type      = ARG_PTR_TO_CTX,
1768         .arg2_type      = ARG_ANYTHING,
1769         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
1770         .arg4_type      = ARG_CONST_SIZE,
1771         .arg5_type      = ARG_ANYTHING,
1772 };
1773
1774 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1775 {
1776         /* Idea is the following: should the needed direct read/write
1777          * test fail during runtime, we can pull in more data and redo
1778          * again, since implicitly, we invalidate previous checks here.
1779          *
1780          * Or, since we know how much we need to make read/writeable,
1781          * this can be done once at the program beginning for direct
1782          * access case. By this we overcome limitations of only current
1783          * headroom being accessible.
1784          */
1785         return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1786 }
1787
1788 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1789         .func           = bpf_skb_pull_data,
1790         .gpl_only       = false,
1791         .ret_type       = RET_INTEGER,
1792         .arg1_type      = ARG_PTR_TO_CTX,
1793         .arg2_type      = ARG_ANYTHING,
1794 };
1795
1796 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1797                                            unsigned int write_len)
1798 {
1799         int err = __bpf_try_make_writable(skb, write_len);
1800
1801         bpf_compute_data_end_sk_skb(skb);
1802         return err;
1803 }
1804
1805 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1806 {
1807         /* Idea is the following: should the needed direct read/write
1808          * test fail during runtime, we can pull in more data and redo
1809          * again, since implicitly, we invalidate previous checks here.
1810          *
1811          * Or, since we know how much we need to make read/writeable,
1812          * this can be done once at the program beginning for direct
1813          * access case. By this we overcome limitations of only current
1814          * headroom being accessible.
1815          */
1816         return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1817 }
1818
1819 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1820         .func           = sk_skb_pull_data,
1821         .gpl_only       = false,
1822         .ret_type       = RET_INTEGER,
1823         .arg1_type      = ARG_PTR_TO_CTX,
1824         .arg2_type      = ARG_ANYTHING,
1825 };
1826
1827 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1828            u64, from, u64, to, u64, flags)
1829 {
1830         __sum16 *ptr;
1831
1832         if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1833                 return -EINVAL;
1834         if (unlikely(offset > 0xffff || offset & 1))
1835                 return -EFAULT;
1836         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1837                 return -EFAULT;
1838
1839         ptr = (__sum16 *)(skb->data + offset);
1840         switch (flags & BPF_F_HDR_FIELD_MASK) {
1841         case 0:
1842                 if (unlikely(from != 0))
1843                         return -EINVAL;
1844
1845                 csum_replace_by_diff(ptr, to);
1846                 break;
1847         case 2:
1848                 csum_replace2(ptr, from, to);
1849                 break;
1850         case 4:
1851                 csum_replace4(ptr, from, to);
1852                 break;
1853         default:
1854                 return -EINVAL;
1855         }
1856
1857         return 0;
1858 }
1859
1860 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1861         .func           = bpf_l3_csum_replace,
1862         .gpl_only       = false,
1863         .ret_type       = RET_INTEGER,
1864         .arg1_type      = ARG_PTR_TO_CTX,
1865         .arg2_type      = ARG_ANYTHING,
1866         .arg3_type      = ARG_ANYTHING,
1867         .arg4_type      = ARG_ANYTHING,
1868         .arg5_type      = ARG_ANYTHING,
1869 };
1870
1871 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1872            u64, from, u64, to, u64, flags)
1873 {
1874         bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1875         bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1876         bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1877         __sum16 *ptr;
1878
1879         if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1880                                BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1881                 return -EINVAL;
1882         if (unlikely(offset > 0xffff || offset & 1))
1883                 return -EFAULT;
1884         if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1885                 return -EFAULT;
1886
1887         ptr = (__sum16 *)(skb->data + offset);
1888         if (is_mmzero && !do_mforce && !*ptr)
1889                 return 0;
1890
1891         switch (flags & BPF_F_HDR_FIELD_MASK) {
1892         case 0:
1893                 if (unlikely(from != 0))
1894                         return -EINVAL;
1895
1896                 inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1897                 break;
1898         case 2:
1899                 inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1900                 break;
1901         case 4:
1902                 inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1903                 break;
1904         default:
1905                 return -EINVAL;
1906         }
1907
1908         if (is_mmzero && !*ptr)
1909                 *ptr = CSUM_MANGLED_0;
1910         return 0;
1911 }
1912
1913 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1914         .func           = bpf_l4_csum_replace,
1915         .gpl_only       = false,
1916         .ret_type       = RET_INTEGER,
1917         .arg1_type      = ARG_PTR_TO_CTX,
1918         .arg2_type      = ARG_ANYTHING,
1919         .arg3_type      = ARG_ANYTHING,
1920         .arg4_type      = ARG_ANYTHING,
1921         .arg5_type      = ARG_ANYTHING,
1922 };
1923
1924 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1925            __be32 *, to, u32, to_size, __wsum, seed)
1926 {
1927         struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1928         u32 diff_size = from_size + to_size;
1929         int i, j = 0;
1930
1931         /* This is quite flexible, some examples:
1932          *
1933          * from_size == 0, to_size > 0,  seed := csum --> pushing data
1934          * from_size > 0,  to_size == 0, seed := csum --> pulling data
1935          * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1936          *
1937          * Even for diffing, from_size and to_size don't need to be equal.
1938          */
1939         if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1940                      diff_size > sizeof(sp->diff)))
1941                 return -EINVAL;
1942
1943         for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1944                 sp->diff[j] = ~from[i];
1945         for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1946                 sp->diff[j] = to[i];
1947
1948         return csum_partial(sp->diff, diff_size, seed);
1949 }
1950
1951 static const struct bpf_func_proto bpf_csum_diff_proto = {
1952         .func           = bpf_csum_diff,
1953         .gpl_only       = false,
1954         .pkt_access     = true,
1955         .ret_type       = RET_INTEGER,
1956         .arg1_type      = ARG_PTR_TO_MEM_OR_NULL,
1957         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
1958         .arg3_type      = ARG_PTR_TO_MEM_OR_NULL,
1959         .arg4_type      = ARG_CONST_SIZE_OR_ZERO,
1960         .arg5_type      = ARG_ANYTHING,
1961 };
1962
1963 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1964 {
1965         /* The interface is to be used in combination with bpf_csum_diff()
1966          * for direct packet writes. csum rotation for alignment as well
1967          * as emulating csum_sub() can be done from the eBPF program.
1968          */
1969         if (skb->ip_summed == CHECKSUM_COMPLETE)
1970                 return (skb->csum = csum_add(skb->csum, csum));
1971
1972         return -ENOTSUPP;
1973 }
1974
1975 static const struct bpf_func_proto bpf_csum_update_proto = {
1976         .func           = bpf_csum_update,
1977         .gpl_only       = false,
1978         .ret_type       = RET_INTEGER,
1979         .arg1_type      = ARG_PTR_TO_CTX,
1980         .arg2_type      = ARG_ANYTHING,
1981 };
1982
1983 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1984 {
1985         return dev_forward_skb(dev, skb);
1986 }
1987
1988 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1989                                       struct sk_buff *skb)
1990 {
1991         int ret = ____dev_forward_skb(dev, skb);
1992
1993         if (likely(!ret)) {
1994                 skb->dev = dev;
1995                 ret = netif_rx(skb);
1996         }
1997
1998         return ret;
1999 }
2000
2001 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2002 {
2003         int ret;
2004
2005         if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
2006                 net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2007                 kfree_skb(skb);
2008                 return -ENETDOWN;
2009         }
2010
2011         skb->dev = dev;
2012
2013         __this_cpu_inc(xmit_recursion);
2014         ret = dev_queue_xmit(skb);
2015         __this_cpu_dec(xmit_recursion);
2016
2017         return ret;
2018 }
2019
2020 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2021                                  u32 flags)
2022 {
2023         /* skb->mac_len is not set on normal egress */
2024         unsigned int mlen = skb->network_header - skb->mac_header;
2025
2026         __skb_pull(skb, mlen);
2027
2028         /* At ingress, the mac header has already been pulled once.
2029          * At egress, skb_pospull_rcsum has to be done in case that
2030          * the skb is originated from ingress (i.e. a forwarded skb)
2031          * to ensure that rcsum starts at net header.
2032          */
2033         if (!skb_at_tc_ingress(skb))
2034                 skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2035         skb_pop_mac_header(skb);
2036         skb_reset_mac_len(skb);
2037         return flags & BPF_F_INGRESS ?
2038                __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2039 }
2040
2041 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2042                                  u32 flags)
2043 {
2044         /* Verify that a link layer header is carried */
2045         if (unlikely(skb->mac_header >= skb->network_header)) {
2046                 kfree_skb(skb);
2047                 return -ERANGE;
2048         }
2049
2050         bpf_push_mac_rcsum(skb);
2051         return flags & BPF_F_INGRESS ?
2052                __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2053 }
2054
2055 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2056                           u32 flags)
2057 {
2058         if (dev_is_mac_header_xmit(dev))
2059                 return __bpf_redirect_common(skb, dev, flags);
2060         else
2061                 return __bpf_redirect_no_mac(skb, dev, flags);
2062 }
2063
2064 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2065 {
2066         struct net_device *dev;
2067         struct sk_buff *clone;
2068         int ret;
2069
2070         if (unlikely(flags & ~(BPF_F_INGRESS)))
2071                 return -EINVAL;
2072
2073         dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2074         if (unlikely(!dev))
2075                 return -EINVAL;
2076
2077         clone = skb_clone(skb, GFP_ATOMIC);
2078         if (unlikely(!clone))
2079                 return -ENOMEM;
2080
2081         /* For direct write, we need to keep the invariant that the skbs
2082          * we're dealing with need to be uncloned. Should uncloning fail
2083          * here, we need to free the just generated clone to unclone once
2084          * again.
2085          */
2086         ret = bpf_try_make_head_writable(skb);
2087         if (unlikely(ret)) {
2088                 kfree_skb(clone);
2089                 return -ENOMEM;
2090         }
2091
2092         return __bpf_redirect(clone, dev, flags);
2093 }
2094
2095 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2096         .func           = bpf_clone_redirect,
2097         .gpl_only       = false,
2098         .ret_type       = RET_INTEGER,
2099         .arg1_type      = ARG_PTR_TO_CTX,
2100         .arg2_type      = ARG_ANYTHING,
2101         .arg3_type      = ARG_ANYTHING,
2102 };
2103
2104 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2105 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2106
2107 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2108 {
2109         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2110
2111         if (unlikely(flags & ~(BPF_F_INGRESS)))
2112                 return TC_ACT_SHOT;
2113
2114         ri->ifindex = ifindex;
2115         ri->flags = flags;
2116
2117         return TC_ACT_REDIRECT;
2118 }
2119
2120 int skb_do_redirect(struct sk_buff *skb)
2121 {
2122         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2123         struct net_device *dev;
2124
2125         dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
2126         ri->ifindex = 0;
2127         if (unlikely(!dev)) {
2128                 kfree_skb(skb);
2129                 return -EINVAL;
2130         }
2131
2132         return __bpf_redirect(skb, dev, ri->flags);
2133 }
2134
2135 static const struct bpf_func_proto bpf_redirect_proto = {
2136         .func           = bpf_redirect,
2137         .gpl_only       = false,
2138         .ret_type       = RET_INTEGER,
2139         .arg1_type      = ARG_ANYTHING,
2140         .arg2_type      = ARG_ANYTHING,
2141 };
2142
2143 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg *, msg, u32, bytes)
2144 {
2145         msg->apply_bytes = bytes;
2146         return 0;
2147 }
2148
2149 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2150         .func           = bpf_msg_apply_bytes,
2151         .gpl_only       = false,
2152         .ret_type       = RET_INTEGER,
2153         .arg1_type      = ARG_PTR_TO_CTX,
2154         .arg2_type      = ARG_ANYTHING,
2155 };
2156
2157 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg *, msg, u32, bytes)
2158 {
2159         msg->cork_bytes = bytes;
2160         return 0;
2161 }
2162
2163 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2164         .func           = bpf_msg_cork_bytes,
2165         .gpl_only       = false,
2166         .ret_type       = RET_INTEGER,
2167         .arg1_type      = ARG_PTR_TO_CTX,
2168         .arg2_type      = ARG_ANYTHING,
2169 };
2170
2171 BPF_CALL_4(bpf_msg_pull_data, struct sk_msg *, msg, u32, start,
2172            u32, end, u64, flags)
2173 {
2174         u32 len = 0, offset = 0, copy = 0, poffset = 0, bytes = end - start;
2175         u32 first_sge, last_sge, i, shift, bytes_sg_total;
2176         struct scatterlist *sge;
2177         u8 *raw, *to, *from;
2178         struct page *page;
2179
2180         if (unlikely(flags || end <= start))
2181                 return -EINVAL;
2182
2183         /* First find the starting scatterlist element */
2184         i = msg->sg.start;
2185         do {
2186                 len = sk_msg_elem(msg, i)->length;
2187                 if (start < offset + len)
2188                         break;
2189                 offset += len;
2190                 sk_msg_iter_var_next(i);
2191         } while (i != msg->sg.end);
2192
2193         if (unlikely(start >= offset + len))
2194                 return -EINVAL;
2195
2196         first_sge = i;
2197         /* The start may point into the sg element so we need to also
2198          * account for the headroom.
2199          */
2200         bytes_sg_total = start - offset + bytes;
2201         if (!msg->sg.copy[i] && bytes_sg_total <= len)
2202                 goto out;
2203
2204         /* At this point we need to linearize multiple scatterlist
2205          * elements or a single shared page. Either way we need to
2206          * copy into a linear buffer exclusively owned by BPF. Then
2207          * place the buffer in the scatterlist and fixup the original
2208          * entries by removing the entries now in the linear buffer
2209          * and shifting the remaining entries. For now we do not try
2210          * to copy partial entries to avoid complexity of running out
2211          * of sg_entry slots. The downside is reading a single byte
2212          * will copy the entire sg entry.
2213          */
2214         do {
2215                 copy += sk_msg_elem(msg, i)->length;
2216                 sk_msg_iter_var_next(i);
2217                 if (bytes_sg_total <= copy)
2218                         break;
2219         } while (i != msg->sg.end);
2220         last_sge = i;
2221
2222         if (unlikely(bytes_sg_total > copy))
2223                 return -EINVAL;
2224
2225         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2226                            get_order(copy));
2227         if (unlikely(!page))
2228                 return -ENOMEM;
2229
2230         raw = page_address(page);
2231         i = first_sge;
2232         do {
2233                 sge = sk_msg_elem(msg, i);
2234                 from = sg_virt(sge);
2235                 len = sge->length;
2236                 to = raw + poffset;
2237
2238                 memcpy(to, from, len);
2239                 poffset += len;
2240                 sge->length = 0;
2241                 put_page(sg_page(sge));
2242
2243                 sk_msg_iter_var_next(i);
2244         } while (i != last_sge);
2245
2246         sg_set_page(&msg->sg.data[first_sge], page, copy, 0);
2247
2248         /* To repair sg ring we need to shift entries. If we only
2249          * had a single entry though we can just replace it and
2250          * be done. Otherwise walk the ring and shift the entries.
2251          */
2252         WARN_ON_ONCE(last_sge == first_sge);
2253         shift = last_sge > first_sge ?
2254                 last_sge - first_sge - 1 :
2255                 MAX_SKB_FRAGS - first_sge + last_sge - 1;
2256         if (!shift)
2257                 goto out;
2258
2259         i = first_sge;
2260         sk_msg_iter_var_next(i);
2261         do {
2262                 u32 move_from;
2263
2264                 if (i + shift >= MAX_MSG_FRAGS)
2265                         move_from = i + shift - MAX_MSG_FRAGS;
2266                 else
2267                         move_from = i + shift;
2268                 if (move_from == msg->sg.end)
2269                         break;
2270
2271                 msg->sg.data[i] = msg->sg.data[move_from];
2272                 msg->sg.data[move_from].length = 0;
2273                 msg->sg.data[move_from].page_link = 0;
2274                 msg->sg.data[move_from].offset = 0;
2275                 sk_msg_iter_var_next(i);
2276         } while (1);
2277
2278         msg->sg.end = msg->sg.end - shift > msg->sg.end ?
2279                       msg->sg.end - shift + MAX_MSG_FRAGS :
2280                       msg->sg.end - shift;
2281 out:
2282         msg->data = sg_virt(&msg->sg.data[first_sge]) + start - offset;
2283         msg->data_end = msg->data + bytes;
2284         return 0;
2285 }
2286
2287 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2288         .func           = bpf_msg_pull_data,
2289         .gpl_only       = false,
2290         .ret_type       = RET_INTEGER,
2291         .arg1_type      = ARG_PTR_TO_CTX,
2292         .arg2_type      = ARG_ANYTHING,
2293         .arg3_type      = ARG_ANYTHING,
2294         .arg4_type      = ARG_ANYTHING,
2295 };
2296
2297 BPF_CALL_4(bpf_msg_push_data, struct sk_msg *, msg, u32, start,
2298            u32, len, u64, flags)
2299 {
2300         struct scatterlist sge, nsge, nnsge, rsge = {0}, *psge;
2301         u32 new, i = 0, l, space, copy = 0, offset = 0;
2302         u8 *raw, *to, *from;
2303         struct page *page;
2304
2305         if (unlikely(flags))
2306                 return -EINVAL;
2307
2308         /* First find the starting scatterlist element */
2309         i = msg->sg.start;
2310         do {
2311                 l = sk_msg_elem(msg, i)->length;
2312
2313                 if (start < offset + l)
2314                         break;
2315                 offset += l;
2316                 sk_msg_iter_var_next(i);
2317         } while (i != msg->sg.end);
2318
2319         if (start >= offset + l)
2320                 return -EINVAL;
2321
2322         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2323
2324         /* If no space available will fallback to copy, we need at
2325          * least one scatterlist elem available to push data into
2326          * when start aligns to the beginning of an element or two
2327          * when it falls inside an element. We handle the start equals
2328          * offset case because its the common case for inserting a
2329          * header.
2330          */
2331         if (!space || (space == 1 && start != offset))
2332                 copy = msg->sg.data[i].length;
2333
2334         page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2335                            get_order(copy + len));
2336         if (unlikely(!page))
2337                 return -ENOMEM;
2338
2339         if (copy) {
2340                 int front, back;
2341
2342                 raw = page_address(page);
2343
2344                 psge = sk_msg_elem(msg, i);
2345                 front = start - offset;
2346                 back = psge->length - front;
2347                 from = sg_virt(psge);
2348
2349                 if (front)
2350                         memcpy(raw, from, front);
2351
2352                 if (back) {
2353                         from += front;
2354                         to = raw + front + len;
2355
2356                         memcpy(to, from, back);
2357                 }
2358
2359                 put_page(sg_page(psge));
2360         } else if (start - offset) {
2361                 psge = sk_msg_elem(msg, i);
2362                 rsge = sk_msg_elem_cpy(msg, i);
2363
2364                 psge->length = start - offset;
2365                 rsge.length -= psge->length;
2366                 rsge.offset += start;
2367
2368                 sk_msg_iter_var_next(i);
2369                 sg_unmark_end(psge);
2370                 sk_msg_iter_next(msg, end);
2371         }
2372
2373         /* Slot(s) to place newly allocated data */
2374         new = i;
2375
2376         /* Shift one or two slots as needed */
2377         if (!copy) {
2378                 sge = sk_msg_elem_cpy(msg, i);
2379
2380                 sk_msg_iter_var_next(i);
2381                 sg_unmark_end(&sge);
2382                 sk_msg_iter_next(msg, end);
2383
2384                 nsge = sk_msg_elem_cpy(msg, i);
2385                 if (rsge.length) {
2386                         sk_msg_iter_var_next(i);
2387                         nnsge = sk_msg_elem_cpy(msg, i);
2388                 }
2389
2390                 while (i != msg->sg.end) {
2391                         msg->sg.data[i] = sge;
2392                         sge = nsge;
2393                         sk_msg_iter_var_next(i);
2394                         if (rsge.length) {
2395                                 nsge = nnsge;
2396                                 nnsge = sk_msg_elem_cpy(msg, i);
2397                         } else {
2398                                 nsge = sk_msg_elem_cpy(msg, i);
2399                         }
2400                 }
2401         }
2402
2403         /* Place newly allocated data buffer */
2404         sk_mem_charge(msg->sk, len);
2405         msg->sg.size += len;
2406         msg->sg.copy[new] = false;
2407         sg_set_page(&msg->sg.data[new], page, len + copy, 0);
2408         if (rsge.length) {
2409                 get_page(sg_page(&rsge));
2410                 sk_msg_iter_var_next(new);
2411                 msg->sg.data[new] = rsge;
2412         }
2413
2414         sk_msg_compute_data_pointers(msg);
2415         return 0;
2416 }
2417
2418 static const struct bpf_func_proto bpf_msg_push_data_proto = {
2419         .func           = bpf_msg_push_data,
2420         .gpl_only       = false,
2421         .ret_type       = RET_INTEGER,
2422         .arg1_type      = ARG_PTR_TO_CTX,
2423         .arg2_type      = ARG_ANYTHING,
2424         .arg3_type      = ARG_ANYTHING,
2425         .arg4_type      = ARG_ANYTHING,
2426 };
2427
2428 static void sk_msg_shift_left(struct sk_msg *msg, int i)
2429 {
2430         int prev;
2431
2432         do {
2433                 prev = i;
2434                 sk_msg_iter_var_next(i);
2435                 msg->sg.data[prev] = msg->sg.data[i];
2436         } while (i != msg->sg.end);
2437
2438         sk_msg_iter_prev(msg, end);
2439 }
2440
2441 static void sk_msg_shift_right(struct sk_msg *msg, int i)
2442 {
2443         struct scatterlist tmp, sge;
2444
2445         sk_msg_iter_next(msg, end);
2446         sge = sk_msg_elem_cpy(msg, i);
2447         sk_msg_iter_var_next(i);
2448         tmp = sk_msg_elem_cpy(msg, i);
2449
2450         while (i != msg->sg.end) {
2451                 msg->sg.data[i] = sge;
2452                 sk_msg_iter_var_next(i);
2453                 sge = tmp;
2454                 tmp = sk_msg_elem_cpy(msg, i);
2455         }
2456 }
2457
2458 BPF_CALL_4(bpf_msg_pop_data, struct sk_msg *, msg, u32, start,
2459            u32, len, u64, flags)
2460 {
2461         u32 i = 0, l, space, offset = 0;
2462         u64 last = start + len;
2463         int pop;
2464
2465         if (unlikely(flags))
2466                 return -EINVAL;
2467
2468         /* First find the starting scatterlist element */
2469         i = msg->sg.start;
2470         do {
2471                 l = sk_msg_elem(msg, i)->length;
2472
2473                 if (start < offset + l)
2474                         break;
2475                 offset += l;
2476                 sk_msg_iter_var_next(i);
2477         } while (i != msg->sg.end);
2478
2479         /* Bounds checks: start and pop must be inside message */
2480         if (start >= offset + l || last >= msg->sg.size)
2481                 return -EINVAL;
2482
2483         space = MAX_MSG_FRAGS - sk_msg_elem_used(msg);
2484
2485         pop = len;
2486         /* --------------| offset
2487          * -| start      |-------- len -------|
2488          *
2489          *  |----- a ----|-------- pop -------|----- b ----|
2490          *  |______________________________________________| length
2491          *
2492          *
2493          * a:   region at front of scatter element to save
2494          * b:   region at back of scatter element to save when length > A + pop
2495          * pop: region to pop from element, same as input 'pop' here will be
2496          *      decremented below per iteration.
2497          *
2498          * Two top-level cases to handle when start != offset, first B is non
2499          * zero and second B is zero corresponding to when a pop includes more
2500          * than one element.
2501          *
2502          * Then if B is non-zero AND there is no space allocate space and
2503          * compact A, B regions into page. If there is space shift ring to
2504          * the rigth free'ing the next element in ring to place B, leaving
2505          * A untouched except to reduce length.
2506          */
2507         if (start != offset) {
2508                 struct scatterlist *nsge, *sge = sk_msg_elem(msg, i);
2509                 int a = start;
2510                 int b = sge->length - pop - a;
2511
2512                 sk_msg_iter_var_next(i);
2513
2514                 if (pop < sge->length - a) {
2515                         if (space) {
2516                                 sge->length = a;
2517                                 sk_msg_shift_right(msg, i);
2518                                 nsge = sk_msg_elem(msg, i);
2519                                 get_page(sg_page(sge));
2520                                 sg_set_page(nsge,
2521                                             sg_page(sge),
2522                                             b, sge->offset + pop + a);
2523                         } else {
2524                                 struct page *page, *orig;
2525                                 u8 *to, *from;
2526
2527                                 page = alloc_pages(__GFP_NOWARN |
2528                                                    __GFP_COMP   | GFP_ATOMIC,
2529                                                    get_order(a + b));
2530                                 if (unlikely(!page))
2531                                         return -ENOMEM;
2532
2533                                 sge->length = a;
2534                                 orig = sg_page(sge);
2535                                 from = sg_virt(sge);
2536                                 to = page_address(page);
2537                                 memcpy(to, from, a);
2538                                 memcpy(to + a, from + a + pop, b);
2539                                 sg_set_page(sge, page, a + b, 0);
2540                                 put_page(orig);
2541                         }
2542                         pop = 0;
2543                 } else if (pop >= sge->length - a) {
2544                         sge->length = a;
2545                         pop -= (sge->length - a);
2546                 }
2547         }
2548
2549         /* From above the current layout _must_ be as follows,
2550          *
2551          * -| offset
2552          * -| start
2553          *
2554          *  |---- pop ---|---------------- b ------------|
2555          *  |____________________________________________| length
2556          *
2557          * Offset and start of the current msg elem are equal because in the
2558          * previous case we handled offset != start and either consumed the
2559          * entire element and advanced to the next element OR pop == 0.
2560          *
2561          * Two cases to handle here are first pop is less than the length
2562          * leaving some remainder b above. Simply adjust the element's layout
2563          * in this case. Or pop >= length of the element so that b = 0. In this
2564          * case advance to next element decrementing pop.
2565          */
2566         while (pop) {
2567                 struct scatterlist *sge = sk_msg_elem(msg, i);
2568
2569                 if (pop < sge->length) {
2570                         sge->length -= pop;
2571                         sge->offset += pop;
2572                         pop = 0;
2573                 } else {
2574                         pop -= sge->length;
2575                         sk_msg_shift_left(msg, i);
2576                 }
2577                 sk_msg_iter_var_next(i);
2578         }
2579
2580         sk_mem_uncharge(msg->sk, len - pop);
2581         msg->sg.size -= (len - pop);
2582         sk_msg_compute_data_pointers(msg);
2583         return 0;
2584 }
2585
2586 static const struct bpf_func_proto bpf_msg_pop_data_proto = {
2587         .func           = bpf_msg_pop_data,
2588         .gpl_only       = false,
2589         .ret_type       = RET_INTEGER,
2590         .arg1_type      = ARG_PTR_TO_CTX,
2591         .arg2_type      = ARG_ANYTHING,
2592         .arg3_type      = ARG_ANYTHING,
2593         .arg4_type      = ARG_ANYTHING,
2594 };
2595
2596 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2597 {
2598         return task_get_classid(skb);
2599 }
2600
2601 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2602         .func           = bpf_get_cgroup_classid,
2603         .gpl_only       = false,
2604         .ret_type       = RET_INTEGER,
2605         .arg1_type      = ARG_PTR_TO_CTX,
2606 };
2607
2608 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2609 {
2610         return dst_tclassid(skb);
2611 }
2612
2613 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2614         .func           = bpf_get_route_realm,
2615         .gpl_only       = false,
2616         .ret_type       = RET_INTEGER,
2617         .arg1_type      = ARG_PTR_TO_CTX,
2618 };
2619
2620 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2621 {
2622         /* If skb_clear_hash() was called due to mangling, we can
2623          * trigger SW recalculation here. Later access to hash
2624          * can then use the inline skb->hash via context directly
2625          * instead of calling this helper again.
2626          */
2627         return skb_get_hash(skb);
2628 }
2629
2630 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2631         .func           = bpf_get_hash_recalc,
2632         .gpl_only       = false,
2633         .ret_type       = RET_INTEGER,
2634         .arg1_type      = ARG_PTR_TO_CTX,
2635 };
2636
2637 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2638 {
2639         /* After all direct packet write, this can be used once for
2640          * triggering a lazy recalc on next skb_get_hash() invocation.
2641          */
2642         skb_clear_hash(skb);
2643         return 0;
2644 }
2645
2646 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2647         .func           = bpf_set_hash_invalid,
2648         .gpl_only       = false,
2649         .ret_type       = RET_INTEGER,
2650         .arg1_type      = ARG_PTR_TO_CTX,
2651 };
2652
2653 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2654 {
2655         /* Set user specified hash as L4(+), so that it gets returned
2656          * on skb_get_hash() call unless BPF prog later on triggers a
2657          * skb_clear_hash().
2658          */
2659         __skb_set_sw_hash(skb, hash, true);
2660         return 0;
2661 }
2662
2663 static const struct bpf_func_proto bpf_set_hash_proto = {
2664         .func           = bpf_set_hash,
2665         .gpl_only       = false,
2666         .ret_type       = RET_INTEGER,
2667         .arg1_type      = ARG_PTR_TO_CTX,
2668         .arg2_type      = ARG_ANYTHING,
2669 };
2670
2671 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2672            u16, vlan_tci)
2673 {
2674         int ret;
2675
2676         if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2677                      vlan_proto != htons(ETH_P_8021AD)))
2678                 vlan_proto = htons(ETH_P_8021Q);
2679
2680         bpf_push_mac_rcsum(skb);
2681         ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2682         bpf_pull_mac_rcsum(skb);
2683
2684         bpf_compute_data_pointers(skb);
2685         return ret;
2686 }
2687
2688 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2689         .func           = bpf_skb_vlan_push,
2690         .gpl_only       = false,
2691         .ret_type       = RET_INTEGER,
2692         .arg1_type      = ARG_PTR_TO_CTX,
2693         .arg2_type      = ARG_ANYTHING,
2694         .arg3_type      = ARG_ANYTHING,
2695 };
2696
2697 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2698 {
2699         int ret;
2700
2701         bpf_push_mac_rcsum(skb);
2702         ret = skb_vlan_pop(skb);
2703         bpf_pull_mac_rcsum(skb);
2704
2705         bpf_compute_data_pointers(skb);
2706         return ret;
2707 }
2708
2709 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2710         .func           = bpf_skb_vlan_pop,
2711         .gpl_only       = false,
2712         .ret_type       = RET_INTEGER,
2713         .arg1_type      = ARG_PTR_TO_CTX,
2714 };
2715
2716 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2717 {
2718         /* Caller already did skb_cow() with len as headroom,
2719          * so no need to do it here.
2720          */
2721         skb_push(skb, len);
2722         memmove(skb->data, skb->data + len, off);
2723         memset(skb->data + off, 0, len);
2724
2725         /* No skb_postpush_rcsum(skb, skb->data + off, len)
2726          * needed here as it does not change the skb->csum
2727          * result for checksum complete when summing over
2728          * zeroed blocks.
2729          */
2730         return 0;
2731 }
2732
2733 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2734 {
2735         /* skb_ensure_writable() is not needed here, as we're
2736          * already working on an uncloned skb.
2737          */
2738         if (unlikely(!pskb_may_pull(skb, off + len)))
2739                 return -ENOMEM;
2740
2741         skb_postpull_rcsum(skb, skb->data + off, len);
2742         memmove(skb->data + len, skb->data, off);
2743         __skb_pull(skb, len);
2744
2745         return 0;
2746 }
2747
2748 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2749 {
2750         bool trans_same = skb->transport_header == skb->network_header;
2751         int ret;
2752
2753         /* There's no need for __skb_push()/__skb_pull() pair to
2754          * get to the start of the mac header as we're guaranteed
2755          * to always start from here under eBPF.
2756          */
2757         ret = bpf_skb_generic_push(skb, off, len);
2758         if (likely(!ret)) {
2759                 skb->mac_header -= len;
2760                 skb->network_header -= len;
2761                 if (trans_same)
2762                         skb->transport_header = skb->network_header;
2763         }
2764
2765         return ret;
2766 }
2767
2768 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2769 {
2770         bool trans_same = skb->transport_header == skb->network_header;
2771         int ret;
2772
2773         /* Same here, __skb_push()/__skb_pull() pair not needed. */
2774         ret = bpf_skb_generic_pop(skb, off, len);
2775         if (likely(!ret)) {
2776                 skb->mac_header += len;
2777                 skb->network_header += len;
2778                 if (trans_same)
2779                         skb->transport_header = skb->network_header;
2780         }
2781
2782         return ret;
2783 }
2784
2785 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2786 {
2787         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2788         u32 off = skb_mac_header_len(skb);
2789         int ret;
2790
2791         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2792         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2793                 return -ENOTSUPP;
2794
2795         ret = skb_cow(skb, len_diff);
2796         if (unlikely(ret < 0))
2797                 return ret;
2798
2799         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2800         if (unlikely(ret < 0))
2801                 return ret;
2802
2803         if (skb_is_gso(skb)) {
2804                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2805
2806                 /* SKB_GSO_TCPV4 needs to be changed into
2807                  * SKB_GSO_TCPV6.
2808                  */
2809                 if (shinfo->gso_type & SKB_GSO_TCPV4) {
2810                         shinfo->gso_type &= ~SKB_GSO_TCPV4;
2811                         shinfo->gso_type |=  SKB_GSO_TCPV6;
2812                 }
2813
2814                 /* Due to IPv6 header, MSS needs to be downgraded. */
2815                 skb_decrease_gso_size(shinfo, len_diff);
2816                 /* Header must be checked, and gso_segs recomputed. */
2817                 shinfo->gso_type |= SKB_GSO_DODGY;
2818                 shinfo->gso_segs = 0;
2819         }
2820
2821         skb->protocol = htons(ETH_P_IPV6);
2822         skb_clear_hash(skb);
2823
2824         return 0;
2825 }
2826
2827 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2828 {
2829         const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2830         u32 off = skb_mac_header_len(skb);
2831         int ret;
2832
2833         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2834         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2835                 return -ENOTSUPP;
2836
2837         ret = skb_unclone(skb, GFP_ATOMIC);
2838         if (unlikely(ret < 0))
2839                 return ret;
2840
2841         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2842         if (unlikely(ret < 0))
2843                 return ret;
2844
2845         if (skb_is_gso(skb)) {
2846                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2847
2848                 /* SKB_GSO_TCPV6 needs to be changed into
2849                  * SKB_GSO_TCPV4.
2850                  */
2851                 if (shinfo->gso_type & SKB_GSO_TCPV6) {
2852                         shinfo->gso_type &= ~SKB_GSO_TCPV6;
2853                         shinfo->gso_type |=  SKB_GSO_TCPV4;
2854                 }
2855
2856                 /* Due to IPv4 header, MSS can be upgraded. */
2857                 skb_increase_gso_size(shinfo, len_diff);
2858                 /* Header must be checked, and gso_segs recomputed. */
2859                 shinfo->gso_type |= SKB_GSO_DODGY;
2860                 shinfo->gso_segs = 0;
2861         }
2862
2863         skb->protocol = htons(ETH_P_IP);
2864         skb_clear_hash(skb);
2865
2866         return 0;
2867 }
2868
2869 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2870 {
2871         __be16 from_proto = skb->protocol;
2872
2873         if (from_proto == htons(ETH_P_IP) &&
2874               to_proto == htons(ETH_P_IPV6))
2875                 return bpf_skb_proto_4_to_6(skb);
2876
2877         if (from_proto == htons(ETH_P_IPV6) &&
2878               to_proto == htons(ETH_P_IP))
2879                 return bpf_skb_proto_6_to_4(skb);
2880
2881         return -ENOTSUPP;
2882 }
2883
2884 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2885            u64, flags)
2886 {
2887         int ret;
2888
2889         if (unlikely(flags))
2890                 return -EINVAL;
2891
2892         /* General idea is that this helper does the basic groundwork
2893          * needed for changing the protocol, and eBPF program fills the
2894          * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2895          * and other helpers, rather than passing a raw buffer here.
2896          *
2897          * The rationale is to keep this minimal and without a need to
2898          * deal with raw packet data. F.e. even if we would pass buffers
2899          * here, the program still needs to call the bpf_lX_csum_replace()
2900          * helpers anyway. Plus, this way we keep also separation of
2901          * concerns, since f.e. bpf_skb_store_bytes() should only take
2902          * care of stores.
2903          *
2904          * Currently, additional options and extension header space are
2905          * not supported, but flags register is reserved so we can adapt
2906          * that. For offloads, we mark packet as dodgy, so that headers
2907          * need to be verified first.
2908          */
2909         ret = bpf_skb_proto_xlat(skb, proto);
2910         bpf_compute_data_pointers(skb);
2911         return ret;
2912 }
2913
2914 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2915         .func           = bpf_skb_change_proto,
2916         .gpl_only       = false,
2917         .ret_type       = RET_INTEGER,
2918         .arg1_type      = ARG_PTR_TO_CTX,
2919         .arg2_type      = ARG_ANYTHING,
2920         .arg3_type      = ARG_ANYTHING,
2921 };
2922
2923 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2924 {
2925         /* We only allow a restricted subset to be changed for now. */
2926         if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2927                      !skb_pkt_type_ok(pkt_type)))
2928                 return -EINVAL;
2929
2930         skb->pkt_type = pkt_type;
2931         return 0;
2932 }
2933
2934 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2935         .func           = bpf_skb_change_type,
2936         .gpl_only       = false,
2937         .ret_type       = RET_INTEGER,
2938         .arg1_type      = ARG_PTR_TO_CTX,
2939         .arg2_type      = ARG_ANYTHING,
2940 };
2941
2942 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2943 {
2944         switch (skb->protocol) {
2945         case htons(ETH_P_IP):
2946                 return sizeof(struct iphdr);
2947         case htons(ETH_P_IPV6):
2948                 return sizeof(struct ipv6hdr);
2949         default:
2950                 return ~0U;
2951         }
2952 }
2953
2954 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2955 {
2956         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2957         int ret;
2958
2959         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2960         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2961                 return -ENOTSUPP;
2962
2963         ret = skb_cow(skb, len_diff);
2964         if (unlikely(ret < 0))
2965                 return ret;
2966
2967         ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2968         if (unlikely(ret < 0))
2969                 return ret;
2970
2971         if (skb_is_gso(skb)) {
2972                 struct skb_shared_info *shinfo = skb_shinfo(skb);
2973
2974                 /* Due to header grow, MSS needs to be downgraded. */
2975                 skb_decrease_gso_size(shinfo, len_diff);
2976                 /* Header must be checked, and gso_segs recomputed. */
2977                 shinfo->gso_type |= SKB_GSO_DODGY;
2978                 shinfo->gso_segs = 0;
2979         }
2980
2981         return 0;
2982 }
2983
2984 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2985 {
2986         u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2987         int ret;
2988
2989         /* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2990         if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2991                 return -ENOTSUPP;
2992
2993         ret = skb_unclone(skb, GFP_ATOMIC);
2994         if (unlikely(ret < 0))
2995                 return ret;
2996
2997         ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2998         if (unlikely(ret < 0))
2999                 return ret;
3000
3001         if (skb_is_gso(skb)) {
3002                 struct skb_shared_info *shinfo = skb_shinfo(skb);
3003
3004                 /* Due to header shrink, MSS can be upgraded. */
3005                 skb_increase_gso_size(shinfo, len_diff);
3006                 /* Header must be checked, and gso_segs recomputed. */
3007                 shinfo->gso_type |= SKB_GSO_DODGY;
3008                 shinfo->gso_segs = 0;
3009         }
3010
3011         return 0;
3012 }
3013
3014 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
3015 {
3016         return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
3017                           SKB_MAX_ALLOC;
3018 }
3019
3020 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
3021 {
3022         bool trans_same = skb->transport_header == skb->network_header;
3023         u32 len_cur, len_diff_abs = abs(len_diff);
3024         u32 len_min = bpf_skb_net_base_len(skb);
3025         u32 len_max = __bpf_skb_max_len(skb);
3026         __be16 proto = skb->protocol;
3027         bool shrink = len_diff < 0;
3028         int ret;
3029
3030         if (unlikely(len_diff_abs > 0xfffU))
3031                 return -EFAULT;
3032         if (unlikely(proto != htons(ETH_P_IP) &&
3033                      proto != htons(ETH_P_IPV6)))
3034                 return -ENOTSUPP;
3035
3036         len_cur = skb->len - skb_network_offset(skb);
3037         if (skb_transport_header_was_set(skb) && !trans_same)
3038                 len_cur = skb_network_header_len(skb);
3039         if ((shrink && (len_diff_abs >= len_cur ||
3040                         len_cur - len_diff_abs < len_min)) ||
3041             (!shrink && (skb->len + len_diff_abs > len_max &&
3042                          !skb_is_gso(skb))))
3043                 return -ENOTSUPP;
3044
3045         ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
3046                        bpf_skb_net_grow(skb, len_diff_abs);
3047
3048         bpf_compute_data_pointers(skb);
3049         return ret;
3050 }
3051
3052 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
3053            u32, mode, u64, flags)
3054 {
3055         if (unlikely(flags))
3056                 return -EINVAL;
3057         if (likely(mode == BPF_ADJ_ROOM_NET))
3058                 return bpf_skb_adjust_net(skb, len_diff);
3059
3060         return -ENOTSUPP;
3061 }
3062
3063 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
3064         .func           = bpf_skb_adjust_room,
3065         .gpl_only       = false,
3066         .ret_type       = RET_INTEGER,
3067         .arg1_type      = ARG_PTR_TO_CTX,
3068         .arg2_type      = ARG_ANYTHING,
3069         .arg3_type      = ARG_ANYTHING,
3070         .arg4_type      = ARG_ANYTHING,
3071 };
3072
3073 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
3074 {
3075         u32 min_len = skb_network_offset(skb);
3076
3077         if (skb_transport_header_was_set(skb))
3078                 min_len = skb_transport_offset(skb);
3079         if (skb->ip_summed == CHECKSUM_PARTIAL)
3080                 min_len = skb_checksum_start_offset(skb) +
3081                           skb->csum_offset + sizeof(__sum16);
3082         return min_len;
3083 }
3084
3085 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
3086 {
3087         unsigned int old_len = skb->len;
3088         int ret;
3089
3090         ret = __skb_grow_rcsum(skb, new_len);
3091         if (!ret)
3092                 memset(skb->data + old_len, 0, new_len - old_len);
3093         return ret;
3094 }
3095
3096 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
3097 {
3098         return __skb_trim_rcsum(skb, new_len);
3099 }
3100
3101 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
3102                                         u64 flags)
3103 {
3104         u32 max_len = __bpf_skb_max_len(skb);
3105         u32 min_len = __bpf_skb_min_len(skb);
3106         int ret;
3107
3108         if (unlikely(flags || new_len > max_len || new_len < min_len))
3109                 return -EINVAL;
3110         if (skb->encapsulation)
3111                 return -ENOTSUPP;
3112
3113         /* The basic idea of this helper is that it's performing the
3114          * needed work to either grow or trim an skb, and eBPF program
3115          * rewrites the rest via helpers like bpf_skb_store_bytes(),
3116          * bpf_lX_csum_replace() and others rather than passing a raw
3117          * buffer here. This one is a slow path helper and intended
3118          * for replies with control messages.
3119          *
3120          * Like in bpf_skb_change_proto(), we want to keep this rather
3121          * minimal and without protocol specifics so that we are able
3122          * to separate concerns as in bpf_skb_store_bytes() should only
3123          * be the one responsible for writing buffers.
3124          *
3125          * It's really expected to be a slow path operation here for
3126          * control message replies, so we're implicitly linearizing,
3127          * uncloning and drop offloads from the skb by this.
3128          */
3129         ret = __bpf_try_make_writable(skb, skb->len);
3130         if (!ret) {
3131                 if (new_len > skb->len)
3132                         ret = bpf_skb_grow_rcsum(skb, new_len);
3133                 else if (new_len < skb->len)
3134                         ret = bpf_skb_trim_rcsum(skb, new_len);
3135                 if (!ret && skb_is_gso(skb))
3136                         skb_gso_reset(skb);
3137         }
3138         return ret;
3139 }
3140
3141 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3142            u64, flags)
3143 {
3144         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3145
3146         bpf_compute_data_pointers(skb);
3147         return ret;
3148 }
3149
3150 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
3151         .func           = bpf_skb_change_tail,
3152         .gpl_only       = false,
3153         .ret_type       = RET_INTEGER,
3154         .arg1_type      = ARG_PTR_TO_CTX,
3155         .arg2_type      = ARG_ANYTHING,
3156         .arg3_type      = ARG_ANYTHING,
3157 };
3158
3159 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
3160            u64, flags)
3161 {
3162         int ret = __bpf_skb_change_tail(skb, new_len, flags);
3163
3164         bpf_compute_data_end_sk_skb(skb);
3165         return ret;
3166 }
3167
3168 static const struct bpf_func_proto sk_skb_change_tail_proto = {
3169         .func           = sk_skb_change_tail,
3170         .gpl_only       = false,
3171         .ret_type       = RET_INTEGER,
3172         .arg1_type      = ARG_PTR_TO_CTX,
3173         .arg2_type      = ARG_ANYTHING,
3174         .arg3_type      = ARG_ANYTHING,
3175 };
3176
3177 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3178                                         u64 flags)
3179 {
3180         u32 max_len = __bpf_skb_max_len(skb);
3181         u32 new_len = skb->len + head_room;
3182         int ret;
3183
3184         if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3185                      new_len < skb->len))
3186                 return -EINVAL;
3187
3188         ret = skb_cow(skb, head_room);
3189         if (likely(!ret)) {
3190                 /* Idea for this helper is that we currently only
3191                  * allow to expand on mac header. This means that
3192                  * skb->protocol network header, etc, stay as is.
3193                  * Compared to bpf_skb_change_tail(), we're more
3194                  * flexible due to not needing to linearize or
3195                  * reset GSO. Intention for this helper is to be
3196                  * used by an L3 skb that needs to push mac header
3197                  * for redirection into L2 device.
3198                  */
3199                 __skb_push(skb, head_room);
3200                 memset(skb->data, 0, head_room);
3201                 skb_reset_mac_header(skb);
3202         }
3203
3204         return ret;
3205 }
3206
3207 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3208            u64, flags)
3209 {
3210         int ret = __bpf_skb_change_head(skb, head_room, flags);
3211
3212         bpf_compute_data_pointers(skb);
3213         return ret;
3214 }
3215
3216 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3217         .func           = bpf_skb_change_head,
3218         .gpl_only       = false,
3219         .ret_type       = RET_INTEGER,
3220         .arg1_type      = ARG_PTR_TO_CTX,
3221         .arg2_type      = ARG_ANYTHING,
3222         .arg3_type      = ARG_ANYTHING,
3223 };
3224
3225 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3226            u64, flags)
3227 {
3228         int ret = __bpf_skb_change_head(skb, head_room, flags);
3229
3230         bpf_compute_data_end_sk_skb(skb);
3231         return ret;
3232 }
3233
3234 static const struct bpf_func_proto sk_skb_change_head_proto = {
3235         .func           = sk_skb_change_head,
3236         .gpl_only       = false,
3237         .ret_type       = RET_INTEGER,
3238         .arg1_type      = ARG_PTR_TO_CTX,
3239         .arg2_type      = ARG_ANYTHING,
3240         .arg3_type      = ARG_ANYTHING,
3241 };
3242 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3243 {
3244         return xdp_data_meta_unsupported(xdp) ? 0 :
3245                xdp->data - xdp->data_meta;
3246 }
3247
3248 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3249 {
3250         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3251         unsigned long metalen = xdp_get_metalen(xdp);
3252         void *data_start = xdp_frame_end + metalen;
3253         void *data = xdp->data + offset;
3254
3255         if (unlikely(data < data_start ||
3256                      data > xdp->data_end - ETH_HLEN))
3257                 return -EINVAL;
3258
3259         if (metalen)
3260                 memmove(xdp->data_meta + offset,
3261                         xdp->data_meta, metalen);
3262         xdp->data_meta += offset;
3263         xdp->data = data;
3264
3265         return 0;
3266 }
3267
3268 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3269         .func           = bpf_xdp_adjust_head,
3270         .gpl_only       = false,
3271         .ret_type       = RET_INTEGER,
3272         .arg1_type      = ARG_PTR_TO_CTX,
3273         .arg2_type      = ARG_ANYTHING,
3274 };
3275
3276 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3277 {
3278         void *data_end = xdp->data_end + offset;
3279
3280         /* only shrinking is allowed for now. */
3281         if (unlikely(offset >= 0))
3282                 return -EINVAL;
3283
3284         if (unlikely(data_end < xdp->data + ETH_HLEN))
3285                 return -EINVAL;
3286
3287         xdp->data_end = data_end;
3288
3289         return 0;
3290 }
3291
3292 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3293         .func           = bpf_xdp_adjust_tail,
3294         .gpl_only       = false,
3295         .ret_type       = RET_INTEGER,
3296         .arg1_type      = ARG_PTR_TO_CTX,
3297         .arg2_type      = ARG_ANYTHING,
3298 };
3299
3300 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3301 {
3302         void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3303         void *meta = xdp->data_meta + offset;
3304         unsigned long metalen = xdp->data - meta;
3305
3306         if (xdp_data_meta_unsupported(xdp))
3307                 return -ENOTSUPP;
3308         if (unlikely(meta < xdp_frame_end ||
3309                      meta > xdp->data))
3310                 return -EINVAL;
3311         if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3312                      (metalen > 32)))
3313                 return -EACCES;
3314
3315         xdp->data_meta = meta;
3316
3317         return 0;
3318 }
3319
3320 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3321         .func           = bpf_xdp_adjust_meta,
3322         .gpl_only       = false,
3323         .ret_type       = RET_INTEGER,
3324         .arg1_type      = ARG_PTR_TO_CTX,
3325         .arg2_type      = ARG_ANYTHING,
3326 };
3327
3328 static int __bpf_tx_xdp(struct net_device *dev,
3329                         struct bpf_map *map,
3330                         struct xdp_buff *xdp,
3331                         u32 index)
3332 {
3333         struct xdp_frame *xdpf;
3334         int err, sent;
3335
3336         if (!dev->netdev_ops->ndo_xdp_xmit) {
3337                 return -EOPNOTSUPP;
3338         }
3339
3340         err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3341         if (unlikely(err))
3342                 return err;
3343
3344         xdpf = convert_to_xdp_frame(xdp);
3345         if (unlikely(!xdpf))
3346                 return -EOVERFLOW;
3347
3348         sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3349         if (sent <= 0)
3350                 return sent;
3351         return 0;
3352 }
3353
3354 static noinline int
3355 xdp_do_redirect_slow(struct net_device *dev, struct xdp_buff *xdp,
3356                      struct bpf_prog *xdp_prog, struct bpf_redirect_info *ri)
3357 {
3358         struct net_device *fwd;
3359         u32 index = ri->ifindex;
3360         int err;
3361
3362         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3363         ri->ifindex = 0;
3364         if (unlikely(!fwd)) {
3365                 err = -EINVAL;
3366                 goto err;
3367         }
3368
3369         err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3370         if (unlikely(err))
3371                 goto err;
3372
3373         _trace_xdp_redirect(dev, xdp_prog, index);
3374         return 0;
3375 err:
3376         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3377         return err;
3378 }
3379
3380 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3381                             struct bpf_map *map,
3382                             struct xdp_buff *xdp,
3383                             u32 index)
3384 {
3385         int err;
3386
3387         switch (map->map_type) {
3388         case BPF_MAP_TYPE_DEVMAP: {
3389                 struct bpf_dtab_netdev *dst = fwd;
3390
3391                 err = dev_map_enqueue(dst, xdp, dev_rx);
3392                 if (unlikely(err))
3393                         return err;
3394                 __dev_map_insert_ctx(map, index);
3395                 break;
3396         }
3397         case BPF_MAP_TYPE_CPUMAP: {
3398                 struct bpf_cpu_map_entry *rcpu = fwd;
3399
3400                 err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3401                 if (unlikely(err))
3402                         return err;
3403                 __cpu_map_insert_ctx(map, index);
3404                 break;
3405         }
3406         case BPF_MAP_TYPE_XSKMAP: {
3407                 struct xdp_sock *xs = fwd;
3408
3409                 err = __xsk_map_redirect(map, xdp, xs);
3410                 return err;
3411         }
3412         default:
3413                 break;
3414         }
3415         return 0;
3416 }
3417
3418 void xdp_do_flush_map(void)
3419 {
3420         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3421         struct bpf_map *map = ri->map_to_flush;
3422
3423         ri->map_to_flush = NULL;
3424         if (map) {
3425                 switch (map->map_type) {
3426                 case BPF_MAP_TYPE_DEVMAP:
3427                         __dev_map_flush(map);
3428                         break;
3429                 case BPF_MAP_TYPE_CPUMAP:
3430                         __cpu_map_flush(map);
3431                         break;
3432                 case BPF_MAP_TYPE_XSKMAP:
3433                         __xsk_map_flush(map);
3434                         break;
3435                 default:
3436                         break;
3437                 }
3438         }
3439 }
3440 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3441
3442 static inline void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3443 {
3444         switch (map->map_type) {
3445         case BPF_MAP_TYPE_DEVMAP:
3446                 return __dev_map_lookup_elem(map, index);
3447         case BPF_MAP_TYPE_CPUMAP:
3448                 return __cpu_map_lookup_elem(map, index);
3449         case BPF_MAP_TYPE_XSKMAP:
3450                 return __xsk_map_lookup_elem(map, index);
3451         default:
3452                 return NULL;
3453         }
3454 }
3455
3456 void bpf_clear_redirect_map(struct bpf_map *map)
3457 {
3458         struct bpf_redirect_info *ri;
3459         int cpu;
3460
3461         for_each_possible_cpu(cpu) {
3462                 ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3463                 /* Avoid polluting remote cacheline due to writes if
3464                  * not needed. Once we pass this test, we need the
3465                  * cmpxchg() to make sure it hasn't been changed in
3466                  * the meantime by remote CPU.
3467                  */
3468                 if (unlikely(READ_ONCE(ri->map) == map))
3469                         cmpxchg(&ri->map, map, NULL);
3470         }
3471 }
3472
3473 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3474                                struct bpf_prog *xdp_prog, struct bpf_map *map,
3475                                struct bpf_redirect_info *ri)
3476 {
3477         u32 index = ri->ifindex;
3478         void *fwd = NULL;
3479         int err;
3480
3481         ri->ifindex = 0;
3482         WRITE_ONCE(ri->map, NULL);
3483
3484         fwd = __xdp_map_lookup_elem(map, index);
3485         if (unlikely(!fwd)) {
3486                 err = -EINVAL;
3487                 goto err;
3488         }
3489         if (ri->map_to_flush && unlikely(ri->map_to_flush != map))
3490                 xdp_do_flush_map();
3491
3492         err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3493         if (unlikely(err))
3494                 goto err;
3495
3496         ri->map_to_flush = map;
3497         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3498         return 0;
3499 err:
3500         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3501         return err;
3502 }
3503
3504 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3505                     struct bpf_prog *xdp_prog)
3506 {
3507         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3508         struct bpf_map *map = READ_ONCE(ri->map);
3509
3510         if (likely(map))
3511                 return xdp_do_redirect_map(dev, xdp, xdp_prog, map, ri);
3512
3513         return xdp_do_redirect_slow(dev, xdp, xdp_prog, ri);
3514 }
3515 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3516
3517 static int xdp_do_generic_redirect_map(struct net_device *dev,
3518                                        struct sk_buff *skb,
3519                                        struct xdp_buff *xdp,
3520                                        struct bpf_prog *xdp_prog,
3521                                        struct bpf_map *map)
3522 {
3523         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3524         u32 index = ri->ifindex;
3525         void *fwd = NULL;
3526         int err = 0;
3527
3528         ri->ifindex = 0;
3529         WRITE_ONCE(ri->map, NULL);
3530
3531         fwd = __xdp_map_lookup_elem(map, index);
3532         if (unlikely(!fwd)) {
3533                 err = -EINVAL;
3534                 goto err;
3535         }
3536
3537         if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3538                 struct bpf_dtab_netdev *dst = fwd;
3539
3540                 err = dev_map_generic_redirect(dst, skb, xdp_prog);
3541                 if (unlikely(err))
3542                         goto err;
3543         } else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3544                 struct xdp_sock *xs = fwd;
3545
3546                 err = xsk_generic_rcv(xs, xdp);
3547                 if (err)
3548                         goto err;
3549                 consume_skb(skb);
3550         } else {
3551                 /* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3552                 err = -EBADRQC;
3553                 goto err;
3554         }
3555
3556         _trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3557         return 0;
3558 err:
3559         _trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3560         return err;
3561 }
3562
3563 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3564                             struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3565 {
3566         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3567         struct bpf_map *map = READ_ONCE(ri->map);
3568         u32 index = ri->ifindex;
3569         struct net_device *fwd;
3570         int err = 0;
3571
3572         if (map)
3573                 return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3574                                                    map);
3575         ri->ifindex = 0;
3576         fwd = dev_get_by_index_rcu(dev_net(dev), index);
3577         if (unlikely(!fwd)) {
3578                 err = -EINVAL;
3579                 goto err;
3580         }
3581
3582         err = xdp_ok_fwd_dev(fwd, skb->len);
3583         if (unlikely(err))
3584                 goto err;
3585
3586         skb->dev = fwd;
3587         _trace_xdp_redirect(dev, xdp_prog, index);
3588         generic_xdp_tx(skb, xdp_prog);
3589         return 0;
3590 err:
3591         _trace_xdp_redirect_err(dev, xdp_prog, index, err);
3592         return err;
3593 }
3594 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3595
3596 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3597 {
3598         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3599
3600         if (unlikely(flags))
3601                 return XDP_ABORTED;
3602
3603         ri->ifindex = ifindex;
3604         ri->flags = flags;
3605         WRITE_ONCE(ri->map, NULL);
3606
3607         return XDP_REDIRECT;
3608 }
3609
3610 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3611         .func           = bpf_xdp_redirect,
3612         .gpl_only       = false,
3613         .ret_type       = RET_INTEGER,
3614         .arg1_type      = ARG_ANYTHING,
3615         .arg2_type      = ARG_ANYTHING,
3616 };
3617
3618 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3619            u64, flags)
3620 {
3621         struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3622
3623         if (unlikely(flags))
3624                 return XDP_ABORTED;
3625
3626         ri->ifindex = ifindex;
3627         ri->flags = flags;
3628         WRITE_ONCE(ri->map, map);
3629
3630         return XDP_REDIRECT;
3631 }
3632
3633 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3634         .func           = bpf_xdp_redirect_map,
3635         .gpl_only       = false,
3636         .ret_type       = RET_INTEGER,
3637         .arg1_type      = ARG_CONST_MAP_PTR,
3638         .arg2_type      = ARG_ANYTHING,
3639         .arg3_type      = ARG_ANYTHING,
3640 };
3641
3642 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3643                                   unsigned long off, unsigned long len)
3644 {
3645         void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3646
3647         if (unlikely(!ptr))
3648                 return len;
3649         if (ptr != dst_buff)
3650                 memcpy(dst_buff, ptr, len);
3651
3652         return 0;
3653 }
3654
3655 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3656            u64, flags, void *, meta, u64, meta_size)
3657 {
3658         u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3659
3660         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3661                 return -EINVAL;
3662         if (unlikely(skb_size > skb->len))
3663                 return -EFAULT;
3664
3665         return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3666                                 bpf_skb_copy);
3667 }
3668
3669 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3670         .func           = bpf_skb_event_output,
3671         .gpl_only       = true,
3672         .ret_type       = RET_INTEGER,
3673         .arg1_type      = ARG_PTR_TO_CTX,
3674         .arg2_type      = ARG_CONST_MAP_PTR,
3675         .arg3_type      = ARG_ANYTHING,
3676         .arg4_type      = ARG_PTR_TO_MEM,
3677         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
3678 };
3679
3680 static unsigned short bpf_tunnel_key_af(u64 flags)
3681 {
3682         return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3683 }
3684
3685 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3686            u32, size, u64, flags)
3687 {
3688         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3689         u8 compat[sizeof(struct bpf_tunnel_key)];
3690         void *to_orig = to;
3691         int err;
3692
3693         if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3694                 err = -EINVAL;
3695                 goto err_clear;
3696         }
3697         if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3698                 err = -EPROTO;
3699                 goto err_clear;
3700         }
3701         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3702                 err = -EINVAL;
3703                 switch (size) {
3704                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3705                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3706                         goto set_compat;
3707                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3708                         /* Fixup deprecated structure layouts here, so we have
3709                          * a common path later on.
3710                          */
3711                         if (ip_tunnel_info_af(info) != AF_INET)
3712                                 goto err_clear;
3713 set_compat:
3714                         to = (struct bpf_tunnel_key *)compat;
3715                         break;
3716                 default:
3717                         goto err_clear;
3718                 }
3719         }
3720
3721         to->tunnel_id = be64_to_cpu(info->key.tun_id);
3722         to->tunnel_tos = info->key.tos;
3723         to->tunnel_ttl = info->key.ttl;
3724         to->tunnel_ext = 0;
3725
3726         if (flags & BPF_F_TUNINFO_IPV6) {
3727                 memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3728                        sizeof(to->remote_ipv6));
3729                 to->tunnel_label = be32_to_cpu(info->key.label);
3730         } else {
3731                 to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3732                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3733                 to->tunnel_label = 0;
3734         }
3735
3736         if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3737                 memcpy(to_orig, to, size);
3738
3739         return 0;
3740 err_clear:
3741         memset(to_orig, 0, size);
3742         return err;
3743 }
3744
3745 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3746         .func           = bpf_skb_get_tunnel_key,
3747         .gpl_only       = false,
3748         .ret_type       = RET_INTEGER,
3749         .arg1_type      = ARG_PTR_TO_CTX,
3750         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3751         .arg3_type      = ARG_CONST_SIZE,
3752         .arg4_type      = ARG_ANYTHING,
3753 };
3754
3755 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3756 {
3757         const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3758         int err;
3759
3760         if (unlikely(!info ||
3761                      !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3762                 err = -ENOENT;
3763                 goto err_clear;
3764         }
3765         if (unlikely(size < info->options_len)) {
3766                 err = -ENOMEM;
3767                 goto err_clear;
3768         }
3769
3770         ip_tunnel_info_opts_get(to, info);
3771         if (size > info->options_len)
3772                 memset(to + info->options_len, 0, size - info->options_len);
3773
3774         return info->options_len;
3775 err_clear:
3776         memset(to, 0, size);
3777         return err;
3778 }
3779
3780 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3781         .func           = bpf_skb_get_tunnel_opt,
3782         .gpl_only       = false,
3783         .ret_type       = RET_INTEGER,
3784         .arg1_type      = ARG_PTR_TO_CTX,
3785         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
3786         .arg3_type      = ARG_CONST_SIZE,
3787 };
3788
3789 static struct metadata_dst __percpu *md_dst;
3790
3791 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3792            const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3793 {
3794         struct metadata_dst *md = this_cpu_ptr(md_dst);
3795         u8 compat[sizeof(struct bpf_tunnel_key)];
3796         struct ip_tunnel_info *info;
3797
3798         if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3799                                BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3800                 return -EINVAL;
3801         if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3802                 switch (size) {
3803                 case offsetof(struct bpf_tunnel_key, tunnel_label):
3804                 case offsetof(struct bpf_tunnel_key, tunnel_ext):
3805                 case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3806                         /* Fixup deprecated structure layouts here, so we have
3807                          * a common path later on.
3808                          */
3809                         memcpy(compat, from, size);
3810                         memset(compat + size, 0, sizeof(compat) - size);
3811                         from = (const struct bpf_tunnel_key *) compat;
3812                         break;
3813                 default:
3814                         return -EINVAL;
3815                 }
3816         }
3817         if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3818                      from->tunnel_ext))
3819                 return -EINVAL;
3820
3821         skb_dst_drop(skb);
3822         dst_hold((struct dst_entry *) md);
3823         skb_dst_set(skb, (struct dst_entry *) md);
3824
3825         info = &md->u.tun_info;
3826         memset(info, 0, sizeof(*info));
3827         info->mode = IP_TUNNEL_INFO_TX;
3828
3829         info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3830         if (flags & BPF_F_DONT_FRAGMENT)
3831                 info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3832         if (flags & BPF_F_ZERO_CSUM_TX)
3833                 info->key.tun_flags &= ~TUNNEL_CSUM;
3834         if (flags & BPF_F_SEQ_NUMBER)
3835                 info->key.tun_flags |= TUNNEL_SEQ;
3836
3837         info->key.tun_id = cpu_to_be64(from->tunnel_id);
3838         info->key.tos = from->tunnel_tos;
3839         info->key.ttl = from->tunnel_ttl;
3840
3841         if (flags & BPF_F_TUNINFO_IPV6) {
3842                 info->mode |= IP_TUNNEL_INFO_IPV6;
3843                 memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3844                        sizeof(from->remote_ipv6));
3845                 info->key.label = cpu_to_be32(from->tunnel_label) &
3846                                   IPV6_FLOWLABEL_MASK;
3847         } else {
3848                 info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3849         }
3850
3851         return 0;
3852 }
3853
3854 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3855         .func           = bpf_skb_set_tunnel_key,
3856         .gpl_only       = false,
3857         .ret_type       = RET_INTEGER,
3858         .arg1_type      = ARG_PTR_TO_CTX,
3859         .arg2_type      = ARG_PTR_TO_MEM,
3860         .arg3_type      = ARG_CONST_SIZE,
3861         .arg4_type      = ARG_ANYTHING,
3862 };
3863
3864 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3865            const u8 *, from, u32, size)
3866 {
3867         struct ip_tunnel_info *info = skb_tunnel_info(skb);
3868         const struct metadata_dst *md = this_cpu_ptr(md_dst);
3869
3870         if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3871                 return -EINVAL;
3872         if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3873                 return -ENOMEM;
3874
3875         ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3876
3877         return 0;
3878 }
3879
3880 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3881         .func           = bpf_skb_set_tunnel_opt,
3882         .gpl_only       = false,
3883         .ret_type       = RET_INTEGER,
3884         .arg1_type      = ARG_PTR_TO_CTX,
3885         .arg2_type      = ARG_PTR_TO_MEM,
3886         .arg3_type      = ARG_CONST_SIZE,
3887 };
3888
3889 static const struct bpf_func_proto *
3890 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3891 {
3892         if (!md_dst) {
3893                 struct metadata_dst __percpu *tmp;
3894
3895                 tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3896                                                 METADATA_IP_TUNNEL,
3897                                                 GFP_KERNEL);
3898                 if (!tmp)
3899                         return NULL;
3900                 if (cmpxchg(&md_dst, NULL, tmp))
3901                         metadata_dst_free_percpu(tmp);
3902         }
3903
3904         switch (which) {
3905         case BPF_FUNC_skb_set_tunnel_key:
3906                 return &bpf_skb_set_tunnel_key_proto;
3907         case BPF_FUNC_skb_set_tunnel_opt:
3908                 return &bpf_skb_set_tunnel_opt_proto;
3909         default:
3910                 return NULL;
3911         }
3912 }
3913
3914 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3915            u32, idx)
3916 {
3917         struct bpf_array *array = container_of(map, struct bpf_array, map);
3918         struct cgroup *cgrp;
3919         struct sock *sk;
3920
3921         sk = skb_to_full_sk(skb);
3922         if (!sk || !sk_fullsock(sk))
3923                 return -ENOENT;
3924         if (unlikely(idx >= array->map.max_entries))
3925                 return -E2BIG;
3926
3927         cgrp = READ_ONCE(array->ptrs[idx]);
3928         if (unlikely(!cgrp))
3929                 return -EAGAIN;
3930
3931         return sk_under_cgroup_hierarchy(sk, cgrp);
3932 }
3933
3934 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3935         .func           = bpf_skb_under_cgroup,
3936         .gpl_only       = false,
3937         .ret_type       = RET_INTEGER,
3938         .arg1_type      = ARG_PTR_TO_CTX,
3939         .arg2_type      = ARG_CONST_MAP_PTR,
3940         .arg3_type      = ARG_ANYTHING,
3941 };
3942
3943 #ifdef CONFIG_SOCK_CGROUP_DATA
3944 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
3945 {
3946         struct sock *sk = skb_to_full_sk(skb);
3947         struct cgroup *cgrp;
3948
3949         if (!sk || !sk_fullsock(sk))
3950                 return 0;
3951
3952         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3953         return cgrp->kn->id.id;
3954 }
3955
3956 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
3957         .func           = bpf_skb_cgroup_id,
3958         .gpl_only       = false,
3959         .ret_type       = RET_INTEGER,
3960         .arg1_type      = ARG_PTR_TO_CTX,
3961 };
3962
3963 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
3964            ancestor_level)
3965 {
3966         struct sock *sk = skb_to_full_sk(skb);
3967         struct cgroup *ancestor;
3968         struct cgroup *cgrp;
3969
3970         if (!sk || !sk_fullsock(sk))
3971                 return 0;
3972
3973         cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3974         ancestor = cgroup_ancestor(cgrp, ancestor_level);
3975         if (!ancestor)
3976                 return 0;
3977
3978         return ancestor->kn->id.id;
3979 }
3980
3981 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
3982         .func           = bpf_skb_ancestor_cgroup_id,
3983         .gpl_only       = false,
3984         .ret_type       = RET_INTEGER,
3985         .arg1_type      = ARG_PTR_TO_CTX,
3986         .arg2_type      = ARG_ANYTHING,
3987 };
3988 #endif
3989
3990 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3991                                   unsigned long off, unsigned long len)
3992 {
3993         memcpy(dst_buff, src_buff + off, len);
3994         return 0;
3995 }
3996
3997 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3998            u64, flags, void *, meta, u64, meta_size)
3999 {
4000         u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
4001
4002         if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
4003                 return -EINVAL;
4004         if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
4005                 return -EFAULT;
4006
4007         return bpf_event_output(map, flags, meta, meta_size, xdp->data,
4008                                 xdp_size, bpf_xdp_copy);
4009 }
4010
4011 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
4012         .func           = bpf_xdp_event_output,
4013         .gpl_only       = true,
4014         .ret_type       = RET_INTEGER,
4015         .arg1_type      = ARG_PTR_TO_CTX,
4016         .arg2_type      = ARG_CONST_MAP_PTR,
4017         .arg3_type      = ARG_ANYTHING,
4018         .arg4_type      = ARG_PTR_TO_MEM,
4019         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4020 };
4021
4022 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
4023 {
4024         return skb->sk ? sock_gen_cookie(skb->sk) : 0;
4025 }
4026
4027 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
4028         .func           = bpf_get_socket_cookie,
4029         .gpl_only       = false,
4030         .ret_type       = RET_INTEGER,
4031         .arg1_type      = ARG_PTR_TO_CTX,
4032 };
4033
4034 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
4035 {
4036         return sock_gen_cookie(ctx->sk);
4037 }
4038
4039 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
4040         .func           = bpf_get_socket_cookie_sock_addr,
4041         .gpl_only       = false,
4042         .ret_type       = RET_INTEGER,
4043         .arg1_type      = ARG_PTR_TO_CTX,
4044 };
4045
4046 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
4047 {
4048         return sock_gen_cookie(ctx->sk);
4049 }
4050
4051 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
4052         .func           = bpf_get_socket_cookie_sock_ops,
4053         .gpl_only       = false,
4054         .ret_type       = RET_INTEGER,
4055         .arg1_type      = ARG_PTR_TO_CTX,
4056 };
4057
4058 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
4059 {
4060         struct sock *sk = sk_to_full_sk(skb->sk);
4061         kuid_t kuid;
4062
4063         if (!sk || !sk_fullsock(sk))
4064                 return overflowuid;
4065         kuid = sock_net_uid(sock_net(sk), sk);
4066         return from_kuid_munged(sock_net(sk)->user_ns, kuid);
4067 }
4068
4069 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
4070         .func           = bpf_get_socket_uid,
4071         .gpl_only       = false,
4072         .ret_type       = RET_INTEGER,
4073         .arg1_type      = ARG_PTR_TO_CTX,
4074 };
4075
4076 BPF_CALL_5(bpf_sockopt_event_output, struct bpf_sock_ops_kern *, bpf_sock,
4077            struct bpf_map *, map, u64, flags, void *, data, u64, size)
4078 {
4079         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
4080                 return -EINVAL;
4081
4082         return bpf_event_output(map, flags, data, size, NULL, 0, NULL);
4083 }
4084
4085 static const struct bpf_func_proto bpf_sockopt_event_output_proto =  {
4086         .func           = bpf_sockopt_event_output,
4087         .gpl_only       = true,
4088         .ret_type       = RET_INTEGER,
4089         .arg1_type      = ARG_PTR_TO_CTX,
4090         .arg2_type      = ARG_CONST_MAP_PTR,
4091         .arg3_type      = ARG_ANYTHING,
4092         .arg4_type      = ARG_PTR_TO_MEM,
4093         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
4094 };
4095
4096 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4097            int, level, int, optname, char *, optval, int, optlen)
4098 {
4099         struct sock *sk = bpf_sock->sk;
4100         int ret = 0;
4101         int val;
4102
4103         if (!sk_fullsock(sk))
4104                 return -EINVAL;
4105
4106         if (level == SOL_SOCKET) {
4107                 if (optlen != sizeof(int))
4108                         return -EINVAL;
4109                 val = *((int *)optval);
4110
4111                 /* Only some socketops are supported */
4112                 switch (optname) {
4113                 case SO_RCVBUF:
4114                         sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
4115                         sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
4116                         break;
4117                 case SO_SNDBUF:
4118                         sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
4119                         sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
4120                         break;
4121                 case SO_MAX_PACING_RATE: /* 32bit version */
4122                         sk->sk_max_pacing_rate = (val == ~0U) ? ~0UL : val;
4123                         sk->sk_pacing_rate = min(sk->sk_pacing_rate,
4124                                                  sk->sk_max_pacing_rate);
4125                         break;
4126                 case SO_PRIORITY:
4127                         sk->sk_priority = val;
4128                         break;
4129                 case SO_RCVLOWAT:
4130                         if (val < 0)
4131                                 val = INT_MAX;
4132                         sk->sk_rcvlowat = val ? : 1;
4133                         break;
4134                 case SO_MARK:
4135                         sk->sk_mark = val;
4136                         break;
4137                 default:
4138                         ret = -EINVAL;
4139                 }
4140 #ifdef CONFIG_INET
4141         } else if (level == SOL_IP) {
4142                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4143                         return -EINVAL;
4144
4145                 val = *((int *)optval);
4146                 /* Only some options are supported */
4147                 switch (optname) {
4148                 case IP_TOS:
4149                         if (val < -1 || val > 0xff) {
4150                                 ret = -EINVAL;
4151                         } else {
4152                                 struct inet_sock *inet = inet_sk(sk);
4153
4154                                 if (val == -1)
4155                                         val = 0;
4156                                 inet->tos = val;
4157                         }
4158                         break;
4159                 default:
4160                         ret = -EINVAL;
4161                 }
4162 #if IS_ENABLED(CONFIG_IPV6)
4163         } else if (level == SOL_IPV6) {
4164                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4165                         return -EINVAL;
4166
4167                 val = *((int *)optval);
4168                 /* Only some options are supported */
4169                 switch (optname) {
4170                 case IPV6_TCLASS:
4171                         if (val < -1 || val > 0xff) {
4172                                 ret = -EINVAL;
4173                         } else {
4174                                 struct ipv6_pinfo *np = inet6_sk(sk);
4175
4176                                 if (val == -1)
4177                                         val = 0;
4178                                 np->tclass = val;
4179                         }
4180                         break;
4181                 default:
4182                         ret = -EINVAL;
4183                 }
4184 #endif
4185         } else if (level == SOL_TCP &&
4186                    sk->sk_prot->setsockopt == tcp_setsockopt) {
4187                 if (optname == TCP_CONGESTION) {
4188                         char name[TCP_CA_NAME_MAX];
4189                         bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
4190
4191                         strncpy(name, optval, min_t(long, optlen,
4192                                                     TCP_CA_NAME_MAX-1));
4193                         name[TCP_CA_NAME_MAX-1] = 0;
4194                         ret = tcp_set_congestion_control(sk, name, false,
4195                                                          reinit);
4196                 } else {
4197                         struct tcp_sock *tp = tcp_sk(sk);
4198
4199                         if (optlen != sizeof(int))
4200                                 return -EINVAL;
4201
4202                         val = *((int *)optval);
4203                         /* Only some options are supported */
4204                         switch (optname) {
4205                         case TCP_BPF_IW:
4206                                 if (val <= 0 || tp->data_segs_out > tp->syn_data)
4207                                         ret = -EINVAL;
4208                                 else
4209                                         tp->snd_cwnd = val;
4210                                 break;
4211                         case TCP_BPF_SNDCWND_CLAMP:
4212                                 if (val <= 0) {
4213                                         ret = -EINVAL;
4214                                 } else {
4215                                         tp->snd_cwnd_clamp = val;
4216                                         tp->snd_ssthresh = val;
4217                                 }
4218                                 break;
4219                         case TCP_SAVE_SYN:
4220                                 if (val < 0 || val > 1)
4221                                         ret = -EINVAL;
4222                                 else
4223                                         tp->save_syn = val;
4224                                 break;
4225                         default:
4226                                 ret = -EINVAL;
4227                         }
4228                 }
4229 #endif
4230         } else {
4231                 ret = -EINVAL;
4232         }
4233         return ret;
4234 }
4235
4236 static const struct bpf_func_proto bpf_setsockopt_proto = {
4237         .func           = bpf_setsockopt,
4238         .gpl_only       = false,
4239         .ret_type       = RET_INTEGER,
4240         .arg1_type      = ARG_PTR_TO_CTX,
4241         .arg2_type      = ARG_ANYTHING,
4242         .arg3_type      = ARG_ANYTHING,
4243         .arg4_type      = ARG_PTR_TO_MEM,
4244         .arg5_type      = ARG_CONST_SIZE,
4245 };
4246
4247 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4248            int, level, int, optname, char *, optval, int, optlen)
4249 {
4250         struct sock *sk = bpf_sock->sk;
4251
4252         if (!sk_fullsock(sk))
4253                 goto err_clear;
4254 #ifdef CONFIG_INET
4255         if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4256                 struct inet_connection_sock *icsk;
4257                 struct tcp_sock *tp;
4258
4259                 switch (optname) {
4260                 case TCP_CONGESTION:
4261                         icsk = inet_csk(sk);
4262
4263                         if (!icsk->icsk_ca_ops || optlen <= 1)
4264                                 goto err_clear;
4265                         strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4266                         optval[optlen - 1] = 0;
4267                         break;
4268                 case TCP_SAVED_SYN:
4269                         tp = tcp_sk(sk);
4270
4271                         if (optlen <= 0 || !tp->saved_syn ||
4272                             optlen > tp->saved_syn[0])
4273                                 goto err_clear;
4274                         memcpy(optval, tp->saved_syn + 1, optlen);
4275                         break;
4276                 default:
4277                         goto err_clear;
4278                 }
4279         } else if (level == SOL_IP) {
4280                 struct inet_sock *inet = inet_sk(sk);
4281
4282                 if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4283                         goto err_clear;
4284
4285                 /* Only some options are supported */
4286                 switch (optname) {
4287                 case IP_TOS:
4288                         *((int *)optval) = (int)inet->tos;
4289                         break;
4290                 default:
4291                         goto err_clear;
4292                 }
4293 #if IS_ENABLED(CONFIG_IPV6)
4294         } else if (level == SOL_IPV6) {
4295                 struct ipv6_pinfo *np = inet6_sk(sk);
4296
4297                 if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4298                         goto err_clear;
4299
4300                 /* Only some options are supported */
4301                 switch (optname) {
4302                 case IPV6_TCLASS:
4303                         *((int *)optval) = (int)np->tclass;
4304                         break;
4305                 default:
4306                         goto err_clear;
4307                 }
4308 #endif
4309         } else {
4310                 goto err_clear;
4311         }
4312         return 0;
4313 #endif
4314 err_clear:
4315         memset(optval, 0, optlen);
4316         return -EINVAL;
4317 }
4318
4319 static const struct bpf_func_proto bpf_getsockopt_proto = {
4320         .func           = bpf_getsockopt,
4321         .gpl_only       = false,
4322         .ret_type       = RET_INTEGER,
4323         .arg1_type      = ARG_PTR_TO_CTX,
4324         .arg2_type      = ARG_ANYTHING,
4325         .arg3_type      = ARG_ANYTHING,
4326         .arg4_type      = ARG_PTR_TO_UNINIT_MEM,
4327         .arg5_type      = ARG_CONST_SIZE,
4328 };
4329
4330 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4331            int, argval)
4332 {
4333         struct sock *sk = bpf_sock->sk;
4334         int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4335
4336         if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4337                 return -EINVAL;
4338
4339         if (val)
4340                 tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4341
4342         return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4343 }
4344
4345 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4346         .func           = bpf_sock_ops_cb_flags_set,
4347         .gpl_only       = false,
4348         .ret_type       = RET_INTEGER,
4349         .arg1_type      = ARG_PTR_TO_CTX,
4350         .arg2_type      = ARG_ANYTHING,
4351 };
4352
4353 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4354 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4355
4356 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4357            int, addr_len)
4358 {
4359 #ifdef CONFIG_INET
4360         struct sock *sk = ctx->sk;
4361         int err;
4362
4363         /* Binding to port can be expensive so it's prohibited in the helper.
4364          * Only binding to IP is supported.
4365          */
4366         err = -EINVAL;
4367         if (addr->sa_family == AF_INET) {
4368                 if (addr_len < sizeof(struct sockaddr_in))
4369                         return err;
4370                 if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4371                         return err;
4372                 return __inet_bind(sk, addr, addr_len, true, false);
4373 #if IS_ENABLED(CONFIG_IPV6)
4374         } else if (addr->sa_family == AF_INET6) {
4375                 if (addr_len < SIN6_LEN_RFC2133)
4376                         return err;
4377                 if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4378                         return err;
4379                 /* ipv6_bpf_stub cannot be NULL, since it's called from
4380                  * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4381                  */
4382                 return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4383 #endif /* CONFIG_IPV6 */
4384         }
4385 #endif /* CONFIG_INET */
4386
4387         return -EAFNOSUPPORT;
4388 }
4389
4390 static const struct bpf_func_proto bpf_bind_proto = {
4391         .func           = bpf_bind,
4392         .gpl_only       = false,
4393         .ret_type       = RET_INTEGER,
4394         .arg1_type      = ARG_PTR_TO_CTX,
4395         .arg2_type      = ARG_PTR_TO_MEM,
4396         .arg3_type      = ARG_CONST_SIZE,
4397 };
4398
4399 #ifdef CONFIG_XFRM
4400 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4401            struct bpf_xfrm_state *, to, u32, size, u64, flags)
4402 {
4403         const struct sec_path *sp = skb_sec_path(skb);
4404         const struct xfrm_state *x;
4405
4406         if (!sp || unlikely(index >= sp->len || flags))
4407                 goto err_clear;
4408
4409         x = sp->xvec[index];
4410
4411         if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4412                 goto err_clear;
4413
4414         to->reqid = x->props.reqid;
4415         to->spi = x->id.spi;
4416         to->family = x->props.family;
4417         to->ext = 0;
4418
4419         if (to->family == AF_INET6) {
4420                 memcpy(to->remote_ipv6, x->props.saddr.a6,
4421                        sizeof(to->remote_ipv6));
4422         } else {
4423                 to->remote_ipv4 = x->props.saddr.a4;
4424                 memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4425         }
4426
4427         return 0;
4428 err_clear:
4429         memset(to, 0, size);
4430         return -EINVAL;
4431 }
4432
4433 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4434         .func           = bpf_skb_get_xfrm_state,
4435         .gpl_only       = false,
4436         .ret_type       = RET_INTEGER,
4437         .arg1_type      = ARG_PTR_TO_CTX,
4438         .arg2_type      = ARG_ANYTHING,
4439         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
4440         .arg4_type      = ARG_CONST_SIZE,
4441         .arg5_type      = ARG_ANYTHING,
4442 };
4443 #endif
4444
4445 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
4446 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4447                                   const struct neighbour *neigh,
4448                                   const struct net_device *dev)
4449 {
4450         memcpy(params->dmac, neigh->ha, ETH_ALEN);
4451         memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4452         params->h_vlan_TCI = 0;
4453         params->h_vlan_proto = 0;
4454         params->ifindex = dev->ifindex;
4455
4456         return 0;
4457 }
4458 #endif
4459
4460 #if IS_ENABLED(CONFIG_INET)
4461 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4462                                u32 flags, bool check_mtu)
4463 {
4464         struct in_device *in_dev;
4465         struct neighbour *neigh;
4466         struct net_device *dev;
4467         struct fib_result res;
4468         struct fib_nh *nh;
4469         struct flowi4 fl4;
4470         int err;
4471         u32 mtu;
4472
4473         dev = dev_get_by_index_rcu(net, params->ifindex);
4474         if (unlikely(!dev))
4475                 return -ENODEV;
4476
4477         /* verify forwarding is enabled on this interface */
4478         in_dev = __in_dev_get_rcu(dev);
4479         if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4480                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4481
4482         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4483                 fl4.flowi4_iif = 1;
4484                 fl4.flowi4_oif = params->ifindex;
4485         } else {
4486                 fl4.flowi4_iif = params->ifindex;
4487                 fl4.flowi4_oif = 0;
4488         }
4489         fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4490         fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4491         fl4.flowi4_flags = 0;
4492
4493         fl4.flowi4_proto = params->l4_protocol;
4494         fl4.daddr = params->ipv4_dst;
4495         fl4.saddr = params->ipv4_src;
4496         fl4.fl4_sport = params->sport;
4497         fl4.fl4_dport = params->dport;
4498
4499         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4500                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4501                 struct fib_table *tb;
4502
4503                 tb = fib_get_table(net, tbid);
4504                 if (unlikely(!tb))
4505                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4506
4507                 err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4508         } else {
4509                 fl4.flowi4_mark = 0;
4510                 fl4.flowi4_secid = 0;
4511                 fl4.flowi4_tun_key.tun_id = 0;
4512                 fl4.flowi4_uid = sock_net_uid(net, NULL);
4513
4514                 err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4515         }
4516
4517         if (err) {
4518                 /* map fib lookup errors to RTN_ type */
4519                 if (err == -EINVAL)
4520                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4521                 if (err == -EHOSTUNREACH)
4522                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4523                 if (err == -EACCES)
4524                         return BPF_FIB_LKUP_RET_PROHIBIT;
4525
4526                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4527         }
4528
4529         if (res.type != RTN_UNICAST)
4530                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4531
4532         if (res.fi->fib_nhs > 1)
4533                 fib_select_path(net, &res, &fl4, NULL);
4534
4535         if (check_mtu) {
4536                 mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4537                 if (params->tot_len > mtu)
4538                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4539         }
4540
4541         nh = &res.fi->fib_nh[res.nh_sel];
4542
4543         /* do not handle lwt encaps right now */
4544         if (nh->nh_lwtstate)
4545                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4546
4547         dev = nh->nh_dev;
4548         if (nh->nh_gw)
4549                 params->ipv4_dst = nh->nh_gw;
4550
4551         params->rt_metric = res.fi->fib_priority;
4552
4553         /* xdp and cls_bpf programs are run in RCU-bh so
4554          * rcu_read_lock_bh is not needed here
4555          */
4556         neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4557         if (!neigh)
4558                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4559
4560         return bpf_fib_set_fwd_params(params, neigh, dev);
4561 }
4562 #endif
4563
4564 #if IS_ENABLED(CONFIG_IPV6)
4565 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4566                                u32 flags, bool check_mtu)
4567 {
4568         struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4569         struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4570         struct neighbour *neigh;
4571         struct net_device *dev;
4572         struct inet6_dev *idev;
4573         struct fib6_info *f6i;
4574         struct flowi6 fl6;
4575         int strict = 0;
4576         int oif;
4577         u32 mtu;
4578
4579         /* link local addresses are never forwarded */
4580         if (rt6_need_strict(dst) || rt6_need_strict(src))
4581                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4582
4583         dev = dev_get_by_index_rcu(net, params->ifindex);
4584         if (unlikely(!dev))
4585                 return -ENODEV;
4586
4587         idev = __in6_dev_get_safely(dev);
4588         if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4589                 return BPF_FIB_LKUP_RET_FWD_DISABLED;
4590
4591         if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4592                 fl6.flowi6_iif = 1;
4593                 oif = fl6.flowi6_oif = params->ifindex;
4594         } else {
4595                 oif = fl6.flowi6_iif = params->ifindex;
4596                 fl6.flowi6_oif = 0;
4597                 strict = RT6_LOOKUP_F_HAS_SADDR;
4598         }
4599         fl6.flowlabel = params->flowinfo;
4600         fl6.flowi6_scope = 0;
4601         fl6.flowi6_flags = 0;
4602         fl6.mp_hash = 0;
4603
4604         fl6.flowi6_proto = params->l4_protocol;
4605         fl6.daddr = *dst;
4606         fl6.saddr = *src;
4607         fl6.fl6_sport = params->sport;
4608         fl6.fl6_dport = params->dport;
4609
4610         if (flags & BPF_FIB_LOOKUP_DIRECT) {
4611                 u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4612                 struct fib6_table *tb;
4613
4614                 tb = ipv6_stub->fib6_get_table(net, tbid);
4615                 if (unlikely(!tb))
4616                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4617
4618                 f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
4619         } else {
4620                 fl6.flowi6_mark = 0;
4621                 fl6.flowi6_secid = 0;
4622                 fl6.flowi6_tun_key.tun_id = 0;
4623                 fl6.flowi6_uid = sock_net_uid(net, NULL);
4624
4625                 f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
4626         }
4627
4628         if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4629                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4630
4631         if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
4632                 switch (f6i->fib6_type) {
4633                 case RTN_BLACKHOLE:
4634                         return BPF_FIB_LKUP_RET_BLACKHOLE;
4635                 case RTN_UNREACHABLE:
4636                         return BPF_FIB_LKUP_RET_UNREACHABLE;
4637                 case RTN_PROHIBIT:
4638                         return BPF_FIB_LKUP_RET_PROHIBIT;
4639                 default:
4640                         return BPF_FIB_LKUP_RET_NOT_FWDED;
4641                 }
4642         }
4643
4644         if (f6i->fib6_type != RTN_UNICAST)
4645                 return BPF_FIB_LKUP_RET_NOT_FWDED;
4646
4647         if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
4648                 f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
4649                                                        fl6.flowi6_oif, NULL,
4650                                                        strict);
4651
4652         if (check_mtu) {
4653                 mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
4654                 if (params->tot_len > mtu)
4655                         return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4656         }
4657
4658         if (f6i->fib6_nh.nh_lwtstate)
4659                 return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4660
4661         if (f6i->fib6_flags & RTF_GATEWAY)
4662                 *dst = f6i->fib6_nh.nh_gw;
4663
4664         dev = f6i->fib6_nh.nh_dev;
4665         params->rt_metric = f6i->fib6_metric;
4666
4667         /* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4668          * not needed here. Can not use __ipv6_neigh_lookup_noref here
4669          * because we need to get nd_tbl via the stub
4670          */
4671         neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
4672                                       ndisc_hashfn, dst, dev);
4673         if (!neigh)
4674                 return BPF_FIB_LKUP_RET_NO_NEIGH;
4675
4676         return bpf_fib_set_fwd_params(params, neigh, dev);
4677 }
4678 #endif
4679
4680 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4681            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4682 {
4683         if (plen < sizeof(*params))
4684                 return -EINVAL;
4685
4686         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4687                 return -EINVAL;
4688
4689         switch (params->family) {
4690 #if IS_ENABLED(CONFIG_INET)
4691         case AF_INET:
4692                 return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4693                                            flags, true);
4694 #endif
4695 #if IS_ENABLED(CONFIG_IPV6)
4696         case AF_INET6:
4697                 return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4698                                            flags, true);
4699 #endif
4700         }
4701         return -EAFNOSUPPORT;
4702 }
4703
4704 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4705         .func           = bpf_xdp_fib_lookup,
4706         .gpl_only       = true,
4707         .ret_type       = RET_INTEGER,
4708         .arg1_type      = ARG_PTR_TO_CTX,
4709         .arg2_type      = ARG_PTR_TO_MEM,
4710         .arg3_type      = ARG_CONST_SIZE,
4711         .arg4_type      = ARG_ANYTHING,
4712 };
4713
4714 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4715            struct bpf_fib_lookup *, params, int, plen, u32, flags)
4716 {
4717         struct net *net = dev_net(skb->dev);
4718         int rc = -EAFNOSUPPORT;
4719
4720         if (plen < sizeof(*params))
4721                 return -EINVAL;
4722
4723         if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4724                 return -EINVAL;
4725
4726         switch (params->family) {
4727 #if IS_ENABLED(CONFIG_INET)
4728         case AF_INET:
4729                 rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4730                 break;
4731 #endif
4732 #if IS_ENABLED(CONFIG_IPV6)
4733         case AF_INET6:
4734                 rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4735                 break;
4736 #endif
4737         }
4738
4739         if (!rc) {
4740                 struct net_device *dev;
4741
4742                 dev = dev_get_by_index_rcu(net, params->ifindex);
4743                 if (!is_skb_forwardable(dev, skb))
4744                         rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4745         }
4746
4747         return rc;
4748 }
4749
4750 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4751         .func           = bpf_skb_fib_lookup,
4752         .gpl_only       = true,
4753         .ret_type       = RET_INTEGER,
4754         .arg1_type      = ARG_PTR_TO_CTX,
4755         .arg2_type      = ARG_PTR_TO_MEM,
4756         .arg3_type      = ARG_CONST_SIZE,
4757         .arg4_type      = ARG_ANYTHING,
4758 };
4759
4760 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4761 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4762 {
4763         int err;
4764         struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4765
4766         if (!seg6_validate_srh(srh, len))
4767                 return -EINVAL;
4768
4769         switch (type) {
4770         case BPF_LWT_ENCAP_SEG6_INLINE:
4771                 if (skb->protocol != htons(ETH_P_IPV6))
4772                         return -EBADMSG;
4773
4774                 err = seg6_do_srh_inline(skb, srh);
4775                 break;
4776         case BPF_LWT_ENCAP_SEG6:
4777                 skb_reset_inner_headers(skb);
4778                 skb->encapsulation = 1;
4779                 err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4780                 break;
4781         default:
4782                 return -EINVAL;
4783         }
4784
4785         bpf_compute_data_pointers(skb);
4786         if (err)
4787                 return err;
4788
4789         ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4790         skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4791
4792         return seg6_lookup_nexthop(skb, NULL, 0);
4793 }
4794 #endif /* CONFIG_IPV6_SEG6_BPF */
4795
4796 BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4797            u32, len)
4798 {
4799         switch (type) {
4800 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4801         case BPF_LWT_ENCAP_SEG6:
4802         case BPF_LWT_ENCAP_SEG6_INLINE:
4803                 return bpf_push_seg6_encap(skb, type, hdr, len);
4804 #endif
4805         default:
4806                 return -EINVAL;
4807         }
4808 }
4809
4810 static const struct bpf_func_proto bpf_lwt_push_encap_proto = {
4811         .func           = bpf_lwt_push_encap,
4812         .gpl_only       = false,
4813         .ret_type       = RET_INTEGER,
4814         .arg1_type      = ARG_PTR_TO_CTX,
4815         .arg2_type      = ARG_ANYTHING,
4816         .arg3_type      = ARG_PTR_TO_MEM,
4817         .arg4_type      = ARG_CONST_SIZE
4818 };
4819
4820 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4821 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4822            const void *, from, u32, len)
4823 {
4824         struct seg6_bpf_srh_state *srh_state =
4825                 this_cpu_ptr(&seg6_bpf_srh_states);
4826         struct ipv6_sr_hdr *srh = srh_state->srh;
4827         void *srh_tlvs, *srh_end, *ptr;
4828         int srhoff = 0;
4829
4830         if (srh == NULL)
4831                 return -EINVAL;
4832
4833         srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4834         srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4835
4836         ptr = skb->data + offset;
4837         if (ptr >= srh_tlvs && ptr + len <= srh_end)
4838                 srh_state->valid = false;
4839         else if (ptr < (void *)&srh->flags ||
4840                  ptr + len > (void *)&srh->segments)
4841                 return -EFAULT;
4842
4843         if (unlikely(bpf_try_make_writable(skb, offset + len)))
4844                 return -EFAULT;
4845         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4846                 return -EINVAL;
4847         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4848
4849         memcpy(skb->data + offset, from, len);
4850         return 0;
4851 }
4852
4853 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4854         .func           = bpf_lwt_seg6_store_bytes,
4855         .gpl_only       = false,
4856         .ret_type       = RET_INTEGER,
4857         .arg1_type      = ARG_PTR_TO_CTX,
4858         .arg2_type      = ARG_ANYTHING,
4859         .arg3_type      = ARG_PTR_TO_MEM,
4860         .arg4_type      = ARG_CONST_SIZE
4861 };
4862
4863 static void bpf_update_srh_state(struct sk_buff *skb)
4864 {
4865         struct seg6_bpf_srh_state *srh_state =
4866                 this_cpu_ptr(&seg6_bpf_srh_states);
4867         int srhoff = 0;
4868
4869         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
4870                 srh_state->srh = NULL;
4871         } else {
4872                 srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4873                 srh_state->hdrlen = srh_state->srh->hdrlen << 3;
4874                 srh_state->valid = true;
4875         }
4876 }
4877
4878 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4879            u32, action, void *, param, u32, param_len)
4880 {
4881         struct seg6_bpf_srh_state *srh_state =
4882                 this_cpu_ptr(&seg6_bpf_srh_states);
4883         int hdroff = 0;
4884         int err;
4885
4886         switch (action) {
4887         case SEG6_LOCAL_ACTION_END_X:
4888                 if (!seg6_bpf_has_valid_srh(skb))
4889                         return -EBADMSG;
4890                 if (param_len != sizeof(struct in6_addr))
4891                         return -EINVAL;
4892                 return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
4893         case SEG6_LOCAL_ACTION_END_T:
4894                 if (!seg6_bpf_has_valid_srh(skb))
4895                         return -EBADMSG;
4896                 if (param_len != sizeof(int))
4897                         return -EINVAL;
4898                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4899         case SEG6_LOCAL_ACTION_END_DT6:
4900                 if (!seg6_bpf_has_valid_srh(skb))
4901                         return -EBADMSG;
4902                 if (param_len != sizeof(int))
4903                         return -EINVAL;
4904
4905                 if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
4906                         return -EBADMSG;
4907                 if (!pskb_pull(skb, hdroff))
4908                         return -EBADMSG;
4909
4910                 skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
4911                 skb_reset_network_header(skb);
4912                 skb_reset_transport_header(skb);
4913                 skb->encapsulation = 0;
4914
4915                 bpf_compute_data_pointers(skb);
4916                 bpf_update_srh_state(skb);
4917                 return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4918         case SEG6_LOCAL_ACTION_END_B6:
4919                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4920                         return -EBADMSG;
4921                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
4922                                           param, param_len);
4923                 if (!err)
4924                         bpf_update_srh_state(skb);
4925
4926                 return err;
4927         case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4928                 if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4929                         return -EBADMSG;
4930                 err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
4931                                           param, param_len);
4932                 if (!err)
4933                         bpf_update_srh_state(skb);
4934
4935                 return err;
4936         default:
4937                 return -EINVAL;
4938         }
4939 }
4940
4941 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
4942         .func           = bpf_lwt_seg6_action,
4943         .gpl_only       = false,
4944         .ret_type       = RET_INTEGER,
4945         .arg1_type      = ARG_PTR_TO_CTX,
4946         .arg2_type      = ARG_ANYTHING,
4947         .arg3_type      = ARG_PTR_TO_MEM,
4948         .arg4_type      = ARG_CONST_SIZE
4949 };
4950
4951 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
4952            s32, len)
4953 {
4954         struct seg6_bpf_srh_state *srh_state =
4955                 this_cpu_ptr(&seg6_bpf_srh_states);
4956         struct ipv6_sr_hdr *srh = srh_state->srh;
4957         void *srh_end, *srh_tlvs, *ptr;
4958         struct ipv6hdr *hdr;
4959         int srhoff = 0;
4960         int ret;
4961
4962         if (unlikely(srh == NULL))
4963                 return -EINVAL;
4964
4965         srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
4966                         ((srh->first_segment + 1) << 4));
4967         srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
4968                         srh_state->hdrlen);
4969         ptr = skb->data + offset;
4970
4971         if (unlikely(ptr < srh_tlvs || ptr > srh_end))
4972                 return -EFAULT;
4973         if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
4974                 return -EFAULT;
4975
4976         if (len > 0) {
4977                 ret = skb_cow_head(skb, len);
4978                 if (unlikely(ret < 0))
4979                         return ret;
4980
4981                 ret = bpf_skb_net_hdr_push(skb, offset, len);
4982         } else {
4983                 ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
4984         }
4985
4986         bpf_compute_data_pointers(skb);
4987         if (unlikely(ret < 0))
4988                 return ret;
4989
4990         hdr = (struct ipv6hdr *)skb->data;
4991         hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4992
4993         if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4994                 return -EINVAL;
4995         srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4996         srh_state->hdrlen += len;
4997         srh_state->valid = false;
4998         return 0;
4999 }
5000
5001 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
5002         .func           = bpf_lwt_seg6_adjust_srh,
5003         .gpl_only       = false,
5004         .ret_type       = RET_INTEGER,
5005         .arg1_type      = ARG_PTR_TO_CTX,
5006         .arg2_type      = ARG_ANYTHING,
5007         .arg3_type      = ARG_ANYTHING,
5008 };
5009 #endif /* CONFIG_IPV6_SEG6_BPF */
5010
5011 #ifdef CONFIG_INET
5012 static struct sock *sk_lookup(struct net *net, struct bpf_sock_tuple *tuple,
5013                               int dif, int sdif, u8 family, u8 proto)
5014 {
5015         bool refcounted = false;
5016         struct sock *sk = NULL;
5017
5018         if (family == AF_INET) {
5019                 __be32 src4 = tuple->ipv4.saddr;
5020                 __be32 dst4 = tuple->ipv4.daddr;
5021
5022                 if (proto == IPPROTO_TCP)
5023                         sk = __inet_lookup(net, &tcp_hashinfo, NULL, 0,
5024                                            src4, tuple->ipv4.sport,
5025                                            dst4, tuple->ipv4.dport,
5026                                            dif, sdif, &refcounted);
5027                 else
5028                         sk = __udp4_lib_lookup(net, src4, tuple->ipv4.sport,
5029                                                dst4, tuple->ipv4.dport,
5030                                                dif, sdif, &udp_table, NULL);
5031 #if IS_ENABLED(CONFIG_IPV6)
5032         } else {
5033                 struct in6_addr *src6 = (struct in6_addr *)&tuple->ipv6.saddr;
5034                 struct in6_addr *dst6 = (struct in6_addr *)&tuple->ipv6.daddr;
5035
5036                 if (proto == IPPROTO_TCP)
5037                         sk = __inet6_lookup(net, &tcp_hashinfo, NULL, 0,
5038                                             src6, tuple->ipv6.sport,
5039                                             dst6, ntohs(tuple->ipv6.dport),
5040                                             dif, sdif, &refcounted);
5041                 else if (likely(ipv6_bpf_stub))
5042                         sk = ipv6_bpf_stub->udp6_lib_lookup(net,
5043                                                             src6, tuple->ipv6.sport,
5044                                                             dst6, tuple->ipv6.dport,
5045                                                             dif, sdif,
5046                                                             &udp_table, NULL);
5047 #endif
5048         }
5049
5050         if (unlikely(sk && !refcounted && !sock_flag(sk, SOCK_RCU_FREE))) {
5051                 WARN_ONCE(1, "Found non-RCU, unreferenced socket!");
5052                 sk = NULL;
5053         }
5054         return sk;
5055 }
5056
5057 /* bpf_sk_lookup performs the core lookup for different types of sockets,
5058  * taking a reference on the socket if it doesn't have the flag SOCK_RCU_FREE.
5059  * Returns the socket as an 'unsigned long' to simplify the casting in the
5060  * callers to satisfy BPF_CALL declarations.
5061  */
5062 static unsigned long
5063 __bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5064                 struct net *caller_net, u32 ifindex, u8 proto, u64 netns_id,
5065                 u64 flags)
5066 {
5067         struct sock *sk = NULL;
5068         u8 family = AF_UNSPEC;
5069         struct net *net;
5070         int sdif;
5071
5072         family = len == sizeof(tuple->ipv4) ? AF_INET : AF_INET6;
5073         if (unlikely(family == AF_UNSPEC || flags ||
5074                      !((s32)netns_id < 0 || netns_id <= S32_MAX)))
5075                 goto out;
5076
5077         if (family == AF_INET)
5078                 sdif = inet_sdif(skb);
5079         else
5080                 sdif = inet6_sdif(skb);
5081
5082         if ((s32)netns_id < 0) {
5083                 net = caller_net;
5084                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5085         } else {
5086                 net = get_net_ns_by_id(caller_net, netns_id);
5087                 if (unlikely(!net))
5088                         goto out;
5089                 sk = sk_lookup(net, tuple, ifindex, sdif, family, proto);
5090                 put_net(net);
5091         }
5092
5093         if (sk)
5094                 sk = sk_to_full_sk(sk);
5095 out:
5096         return (unsigned long) sk;
5097 }
5098
5099 static unsigned long
5100 bpf_sk_lookup(struct sk_buff *skb, struct bpf_sock_tuple *tuple, u32 len,
5101               u8 proto, u64 netns_id, u64 flags)
5102 {
5103         struct net *caller_net;
5104         int ifindex;
5105
5106         if (skb->dev) {
5107                 caller_net = dev_net(skb->dev);
5108                 ifindex = skb->dev->ifindex;
5109         } else {
5110                 caller_net = sock_net(skb->sk);
5111                 ifindex = 0;
5112         }
5113
5114         return __bpf_sk_lookup(skb, tuple, len, caller_net, ifindex,
5115                               proto, netns_id, flags);
5116 }
5117
5118 BPF_CALL_5(bpf_sk_lookup_tcp, struct sk_buff *, skb,
5119            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5120 {
5121         return bpf_sk_lookup(skb, tuple, len, IPPROTO_TCP, netns_id, flags);
5122 }
5123
5124 static const struct bpf_func_proto bpf_sk_lookup_tcp_proto = {
5125         .func           = bpf_sk_lookup_tcp,
5126         .gpl_only       = false,
5127         .pkt_access     = true,
5128         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5129         .arg1_type      = ARG_PTR_TO_CTX,
5130         .arg2_type      = ARG_PTR_TO_MEM,
5131         .arg3_type      = ARG_CONST_SIZE,
5132         .arg4_type      = ARG_ANYTHING,
5133         .arg5_type      = ARG_ANYTHING,
5134 };
5135
5136 BPF_CALL_5(bpf_sk_lookup_udp, struct sk_buff *, skb,
5137            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5138 {
5139         return bpf_sk_lookup(skb, tuple, len, IPPROTO_UDP, netns_id, flags);
5140 }
5141
5142 static const struct bpf_func_proto bpf_sk_lookup_udp_proto = {
5143         .func           = bpf_sk_lookup_udp,
5144         .gpl_only       = false,
5145         .pkt_access     = true,
5146         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5147         .arg1_type      = ARG_PTR_TO_CTX,
5148         .arg2_type      = ARG_PTR_TO_MEM,
5149         .arg3_type      = ARG_CONST_SIZE,
5150         .arg4_type      = ARG_ANYTHING,
5151         .arg5_type      = ARG_ANYTHING,
5152 };
5153
5154 BPF_CALL_1(bpf_sk_release, struct sock *, sk)
5155 {
5156         if (!sock_flag(sk, SOCK_RCU_FREE))
5157                 sock_gen_put(sk);
5158         return 0;
5159 }
5160
5161 static const struct bpf_func_proto bpf_sk_release_proto = {
5162         .func           = bpf_sk_release,
5163         .gpl_only       = false,
5164         .ret_type       = RET_INTEGER,
5165         .arg1_type      = ARG_PTR_TO_SOCKET,
5166 };
5167
5168 BPF_CALL_5(bpf_xdp_sk_lookup_udp, struct xdp_buff *, ctx,
5169            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5170 {
5171         struct net *caller_net = dev_net(ctx->rxq->dev);
5172         int ifindex = ctx->rxq->dev->ifindex;
5173
5174         return __bpf_sk_lookup(NULL, tuple, len, caller_net, ifindex,
5175                               IPPROTO_UDP, netns_id, flags);
5176 }
5177
5178 static const struct bpf_func_proto bpf_xdp_sk_lookup_udp_proto = {
5179         .func           = bpf_xdp_sk_lookup_udp,
5180         .gpl_only       = false,
5181         .pkt_access     = true,
5182         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5183         .arg1_type      = ARG_PTR_TO_CTX,
5184         .arg2_type      = ARG_PTR_TO_MEM,
5185         .arg3_type      = ARG_CONST_SIZE,
5186         .arg4_type      = ARG_ANYTHING,
5187         .arg5_type      = ARG_ANYTHING,
5188 };
5189
5190 BPF_CALL_5(bpf_xdp_sk_lookup_tcp, struct xdp_buff *, ctx,
5191            struct bpf_sock_tuple *, tuple, u32, len, u32, netns_id, u64, flags)
5192 {
5193         struct net *caller_net = dev_net(ctx->rxq->dev);
5194         int ifindex = ctx->rxq->dev->ifindex;
5195
5196         return __bpf_sk_lookup(NULL, tuple, len, caller_net, ifindex,
5197                               IPPROTO_TCP, netns_id, flags);
5198 }
5199
5200 static const struct bpf_func_proto bpf_xdp_sk_lookup_tcp_proto = {
5201         .func           = bpf_xdp_sk_lookup_tcp,
5202         .gpl_only       = false,
5203         .pkt_access     = true,
5204         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5205         .arg1_type      = ARG_PTR_TO_CTX,
5206         .arg2_type      = ARG_PTR_TO_MEM,
5207         .arg3_type      = ARG_CONST_SIZE,
5208         .arg4_type      = ARG_ANYTHING,
5209         .arg5_type      = ARG_ANYTHING,
5210 };
5211
5212 BPF_CALL_5(bpf_sock_addr_sk_lookup_tcp, struct bpf_sock_addr_kern *, ctx,
5213            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5214 {
5215         return __bpf_sk_lookup(NULL, tuple, len, sock_net(ctx->sk), 0,
5216                                IPPROTO_TCP, netns_id, flags);
5217 }
5218
5219 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_tcp_proto = {
5220         .func           = bpf_sock_addr_sk_lookup_tcp,
5221         .gpl_only       = false,
5222         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5223         .arg1_type      = ARG_PTR_TO_CTX,
5224         .arg2_type      = ARG_PTR_TO_MEM,
5225         .arg3_type      = ARG_CONST_SIZE,
5226         .arg4_type      = ARG_ANYTHING,
5227         .arg5_type      = ARG_ANYTHING,
5228 };
5229
5230 BPF_CALL_5(bpf_sock_addr_sk_lookup_udp, struct bpf_sock_addr_kern *, ctx,
5231            struct bpf_sock_tuple *, tuple, u32, len, u64, netns_id, u64, flags)
5232 {
5233         return __bpf_sk_lookup(NULL, tuple, len, sock_net(ctx->sk), 0,
5234                                IPPROTO_UDP, netns_id, flags);
5235 }
5236
5237 static const struct bpf_func_proto bpf_sock_addr_sk_lookup_udp_proto = {
5238         .func           = bpf_sock_addr_sk_lookup_udp,
5239         .gpl_only       = false,
5240         .ret_type       = RET_PTR_TO_SOCKET_OR_NULL,
5241         .arg1_type      = ARG_PTR_TO_CTX,
5242         .arg2_type      = ARG_PTR_TO_MEM,
5243         .arg3_type      = ARG_CONST_SIZE,
5244         .arg4_type      = ARG_ANYTHING,
5245         .arg5_type      = ARG_ANYTHING,
5246 };
5247
5248 #endif /* CONFIG_INET */
5249
5250 bool bpf_helper_changes_pkt_data(void *func)
5251 {
5252         if (func == bpf_skb_vlan_push ||
5253             func == bpf_skb_vlan_pop ||
5254             func == bpf_skb_store_bytes ||
5255             func == bpf_skb_change_proto ||
5256             func == bpf_skb_change_head ||
5257             func == sk_skb_change_head ||
5258             func == bpf_skb_change_tail ||
5259             func == sk_skb_change_tail ||
5260             func == bpf_skb_adjust_room ||
5261             func == bpf_skb_pull_data ||
5262             func == sk_skb_pull_data ||
5263             func == bpf_clone_redirect ||
5264             func == bpf_l3_csum_replace ||
5265             func == bpf_l4_csum_replace ||
5266             func == bpf_xdp_adjust_head ||
5267             func == bpf_xdp_adjust_meta ||
5268             func == bpf_msg_pull_data ||
5269             func == bpf_msg_push_data ||
5270             func == bpf_msg_pop_data ||
5271             func == bpf_xdp_adjust_tail ||
5272 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5273             func == bpf_lwt_seg6_store_bytes ||
5274             func == bpf_lwt_seg6_adjust_srh ||
5275             func == bpf_lwt_seg6_action ||
5276 #endif
5277             func == bpf_lwt_push_encap)
5278                 return true;
5279
5280         return false;
5281 }
5282
5283 static const struct bpf_func_proto *
5284 bpf_base_func_proto(enum bpf_func_id func_id)
5285 {
5286         switch (func_id) {
5287         case BPF_FUNC_map_lookup_elem:
5288                 return &bpf_map_lookup_elem_proto;
5289         case BPF_FUNC_map_update_elem:
5290                 return &bpf_map_update_elem_proto;
5291         case BPF_FUNC_map_delete_elem:
5292                 return &bpf_map_delete_elem_proto;
5293         case BPF_FUNC_map_push_elem:
5294                 return &bpf_map_push_elem_proto;
5295         case BPF_FUNC_map_pop_elem:
5296                 return &bpf_map_pop_elem_proto;
5297         case BPF_FUNC_map_peek_elem:
5298                 return &bpf_map_peek_elem_proto;
5299         case BPF_FUNC_get_prandom_u32:
5300                 return &bpf_get_prandom_u32_proto;
5301         case BPF_FUNC_get_smp_processor_id:
5302                 return &bpf_get_raw_smp_processor_id_proto;
5303         case BPF_FUNC_get_numa_node_id:
5304                 return &bpf_get_numa_node_id_proto;
5305         case BPF_FUNC_tail_call:
5306                 return &bpf_tail_call_proto;
5307         case BPF_FUNC_ktime_get_ns:
5308                 return &bpf_ktime_get_ns_proto;
5309         case BPF_FUNC_trace_printk:
5310                 if (capable(CAP_SYS_ADMIN))
5311                         return bpf_get_trace_printk_proto();
5312                 /* else: fall through */
5313         default:
5314                 return NULL;
5315         }
5316 }
5317
5318 static const struct bpf_func_proto *
5319 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5320 {
5321         switch (func_id) {
5322         /* inet and inet6 sockets are created in a process
5323          * context so there is always a valid uid/gid
5324          */
5325         case BPF_FUNC_get_current_uid_gid:
5326                 return &bpf_get_current_uid_gid_proto;
5327         case BPF_FUNC_get_local_storage:
5328                 return &bpf_get_local_storage_proto;
5329         default:
5330                 return bpf_base_func_proto(func_id);
5331         }
5332 }
5333
5334 static const struct bpf_func_proto *
5335 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5336 {
5337         switch (func_id) {
5338         /* inet and inet6 sockets are created in a process
5339          * context so there is always a valid uid/gid
5340          */
5341         case BPF_FUNC_get_current_uid_gid:
5342                 return &bpf_get_current_uid_gid_proto;
5343         case BPF_FUNC_bind:
5344                 switch (prog->expected_attach_type) {
5345                 case BPF_CGROUP_INET4_CONNECT:
5346                 case BPF_CGROUP_INET6_CONNECT:
5347                         return &bpf_bind_proto;
5348                 default:
5349                         return NULL;
5350                 }
5351         case BPF_FUNC_get_socket_cookie:
5352                 return &bpf_get_socket_cookie_sock_addr_proto;
5353         case BPF_FUNC_get_local_storage:
5354                 return &bpf_get_local_storage_proto;
5355 #ifdef CONFIG_INET
5356         case BPF_FUNC_sk_lookup_tcp:
5357                 return &bpf_sock_addr_sk_lookup_tcp_proto;
5358         case BPF_FUNC_sk_lookup_udp:
5359                 return &bpf_sock_addr_sk_lookup_udp_proto;
5360         case BPF_FUNC_sk_release:
5361                 return &bpf_sk_release_proto;
5362 #endif /* CONFIG_INET */
5363         default:
5364                 return bpf_base_func_proto(func_id);
5365         }
5366 }
5367
5368 static const struct bpf_func_proto *
5369 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5370 {
5371         switch (func_id) {
5372         case BPF_FUNC_skb_load_bytes:
5373                 return &bpf_skb_load_bytes_proto;
5374         case BPF_FUNC_skb_load_bytes_relative:
5375                 return &bpf_skb_load_bytes_relative_proto;
5376         case BPF_FUNC_get_socket_cookie:
5377                 return &bpf_get_socket_cookie_proto;
5378         case BPF_FUNC_get_socket_uid:
5379                 return &bpf_get_socket_uid_proto;
5380         default:
5381                 return bpf_base_func_proto(func_id);
5382         }
5383 }
5384
5385 static const struct bpf_func_proto *
5386 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5387 {
5388         switch (func_id) {
5389         case BPF_FUNC_get_local_storage:
5390                 return &bpf_get_local_storage_proto;
5391         default:
5392                 return sk_filter_func_proto(func_id, prog);
5393         }
5394 }
5395
5396 static const struct bpf_func_proto *
5397 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5398 {
5399         switch (func_id) {
5400         case BPF_FUNC_skb_store_bytes:
5401                 return &bpf_skb_store_bytes_proto;
5402         case BPF_FUNC_skb_load_bytes:
5403                 return &bpf_skb_load_bytes_proto;
5404         case BPF_FUNC_skb_load_bytes_relative:
5405                 return &bpf_skb_load_bytes_relative_proto;
5406         case BPF_FUNC_skb_pull_data:
5407                 return &bpf_skb_pull_data_proto;
5408         case BPF_FUNC_csum_diff:
5409                 return &bpf_csum_diff_proto;
5410         case BPF_FUNC_csum_update:
5411                 return &bpf_csum_update_proto;
5412         case BPF_FUNC_l3_csum_replace:
5413                 return &bpf_l3_csum_replace_proto;
5414         case BPF_FUNC_l4_csum_replace:
5415                 return &bpf_l4_csum_replace_proto;
5416         case BPF_FUNC_clone_redirect:
5417                 return &bpf_clone_redirect_proto;
5418         case BPF_FUNC_get_cgroup_classid:
5419                 return &bpf_get_cgroup_classid_proto;
5420         case BPF_FUNC_skb_vlan_push:
5421                 return &bpf_skb_vlan_push_proto;
5422         case BPF_FUNC_skb_vlan_pop:
5423                 return &bpf_skb_vlan_pop_proto;
5424         case BPF_FUNC_skb_change_proto:
5425                 return &bpf_skb_change_proto_proto;
5426         case BPF_FUNC_skb_change_type:
5427                 return &bpf_skb_change_type_proto;
5428         case BPF_FUNC_skb_adjust_room:
5429                 return &bpf_skb_adjust_room_proto;
5430         case BPF_FUNC_skb_change_tail:
5431                 return &bpf_skb_change_tail_proto;
5432         case BPF_FUNC_skb_get_tunnel_key:
5433                 return &bpf_skb_get_tunnel_key_proto;
5434         case BPF_FUNC_skb_set_tunnel_key:
5435                 return bpf_get_skb_set_tunnel_proto(func_id);
5436         case BPF_FUNC_skb_get_tunnel_opt:
5437                 return &bpf_skb_get_tunnel_opt_proto;
5438         case BPF_FUNC_skb_set_tunnel_opt:
5439                 return bpf_get_skb_set_tunnel_proto(func_id);
5440         case BPF_FUNC_redirect:
5441                 return &bpf_redirect_proto;
5442         case BPF_FUNC_get_route_realm:
5443                 return &bpf_get_route_realm_proto;
5444         case BPF_FUNC_get_hash_recalc:
5445                 return &bpf_get_hash_recalc_proto;
5446         case BPF_FUNC_set_hash_invalid:
5447                 return &bpf_set_hash_invalid_proto;
5448         case BPF_FUNC_set_hash:
5449                 return &bpf_set_hash_proto;
5450         case BPF_FUNC_perf_event_output:
5451                 return &bpf_skb_event_output_proto;
5452         case BPF_FUNC_get_smp_processor_id:
5453                 return &bpf_get_smp_processor_id_proto;
5454         case BPF_FUNC_skb_under_cgroup:
5455                 return &bpf_skb_under_cgroup_proto;
5456         case BPF_FUNC_get_socket_cookie:
5457                 return &bpf_get_socket_cookie_proto;
5458         case BPF_FUNC_get_socket_uid:
5459                 return &bpf_get_socket_uid_proto;
5460         case BPF_FUNC_fib_lookup:
5461                 return &bpf_skb_fib_lookup_proto;
5462 #ifdef CONFIG_XFRM
5463         case BPF_FUNC_skb_get_xfrm_state:
5464                 return &bpf_skb_get_xfrm_state_proto;
5465 #endif
5466 #ifdef CONFIG_SOCK_CGROUP_DATA
5467         case BPF_FUNC_skb_cgroup_id:
5468                 return &bpf_skb_cgroup_id_proto;
5469         case BPF_FUNC_skb_ancestor_cgroup_id:
5470                 return &bpf_skb_ancestor_cgroup_id_proto;
5471 #endif
5472 #ifdef CONFIG_INET
5473         case BPF_FUNC_sk_lookup_tcp:
5474                 return &bpf_sk_lookup_tcp_proto;
5475         case BPF_FUNC_sk_lookup_udp:
5476                 return &bpf_sk_lookup_udp_proto;
5477         case BPF_FUNC_sk_release:
5478                 return &bpf_sk_release_proto;
5479 #endif
5480         default:
5481                 return bpf_base_func_proto(func_id);
5482         }
5483 }
5484
5485 static const struct bpf_func_proto *
5486 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5487 {
5488         switch (func_id) {
5489         case BPF_FUNC_perf_event_output:
5490                 return &bpf_xdp_event_output_proto;
5491         case BPF_FUNC_get_smp_processor_id:
5492                 return &bpf_get_smp_processor_id_proto;
5493         case BPF_FUNC_csum_diff:
5494                 return &bpf_csum_diff_proto;
5495         case BPF_FUNC_xdp_adjust_head:
5496                 return &bpf_xdp_adjust_head_proto;
5497         case BPF_FUNC_xdp_adjust_meta:
5498                 return &bpf_xdp_adjust_meta_proto;
5499         case BPF_FUNC_redirect:
5500                 return &bpf_xdp_redirect_proto;
5501         case BPF_FUNC_redirect_map:
5502                 return &bpf_xdp_redirect_map_proto;
5503         case BPF_FUNC_xdp_adjust_tail:
5504                 return &bpf_xdp_adjust_tail_proto;
5505         case BPF_FUNC_fib_lookup:
5506                 return &bpf_xdp_fib_lookup_proto;
5507 #ifdef CONFIG_INET
5508         case BPF_FUNC_sk_lookup_udp:
5509                 return &bpf_xdp_sk_lookup_udp_proto;
5510         case BPF_FUNC_sk_lookup_tcp:
5511                 return &bpf_xdp_sk_lookup_tcp_proto;
5512         case BPF_FUNC_sk_release:
5513                 return &bpf_sk_release_proto;
5514 #endif
5515         default:
5516                 return bpf_base_func_proto(func_id);
5517         }
5518 }
5519
5520 const struct bpf_func_proto bpf_sock_map_update_proto __weak;
5521 const struct bpf_func_proto bpf_sock_hash_update_proto __weak;
5522
5523 static const struct bpf_func_proto *
5524 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5525 {
5526         switch (func_id) {
5527         case BPF_FUNC_setsockopt:
5528                 return &bpf_setsockopt_proto;
5529         case BPF_FUNC_getsockopt:
5530                 return &bpf_getsockopt_proto;
5531         case BPF_FUNC_sock_ops_cb_flags_set:
5532                 return &bpf_sock_ops_cb_flags_set_proto;
5533         case BPF_FUNC_sock_map_update:
5534                 return &bpf_sock_map_update_proto;
5535         case BPF_FUNC_sock_hash_update:
5536                 return &bpf_sock_hash_update_proto;
5537         case BPF_FUNC_get_socket_cookie:
5538                 return &bpf_get_socket_cookie_sock_ops_proto;
5539         case BPF_FUNC_get_local_storage:
5540                 return &bpf_get_local_storage_proto;
5541         case BPF_FUNC_perf_event_output:
5542                 return &bpf_sockopt_event_output_proto;
5543         default:
5544                 return bpf_base_func_proto(func_id);
5545         }
5546 }
5547
5548 const struct bpf_func_proto bpf_msg_redirect_map_proto __weak;
5549 const struct bpf_func_proto bpf_msg_redirect_hash_proto __weak;
5550
5551 static const struct bpf_func_proto *
5552 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5553 {
5554         switch (func_id) {
5555         case BPF_FUNC_msg_redirect_map:
5556                 return &bpf_msg_redirect_map_proto;
5557         case BPF_FUNC_msg_redirect_hash:
5558                 return &bpf_msg_redirect_hash_proto;
5559         case BPF_FUNC_msg_apply_bytes:
5560                 return &bpf_msg_apply_bytes_proto;
5561         case BPF_FUNC_msg_cork_bytes:
5562                 return &bpf_msg_cork_bytes_proto;
5563         case BPF_FUNC_msg_pull_data:
5564                 return &bpf_msg_pull_data_proto;
5565         case BPF_FUNC_msg_push_data:
5566                 return &bpf_msg_push_data_proto;
5567         case BPF_FUNC_msg_pop_data:
5568                 return &bpf_msg_pop_data_proto;
5569         default:
5570                 return bpf_base_func_proto(func_id);
5571         }
5572 }
5573
5574 const struct bpf_func_proto bpf_sk_redirect_map_proto __weak;
5575 const struct bpf_func_proto bpf_sk_redirect_hash_proto __weak;
5576
5577 static const struct bpf_func_proto *
5578 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5579 {
5580         switch (func_id) {
5581         case BPF_FUNC_skb_store_bytes:
5582                 return &bpf_skb_store_bytes_proto;
5583         case BPF_FUNC_skb_load_bytes:
5584                 return &bpf_skb_load_bytes_proto;
5585         case BPF_FUNC_skb_pull_data:
5586                 return &sk_skb_pull_data_proto;
5587         case BPF_FUNC_skb_change_tail:
5588                 return &sk_skb_change_tail_proto;
5589         case BPF_FUNC_skb_change_head:
5590                 return &sk_skb_change_head_proto;
5591         case BPF_FUNC_get_socket_cookie:
5592                 return &bpf_get_socket_cookie_proto;
5593         case BPF_FUNC_get_socket_uid:
5594                 return &bpf_get_socket_uid_proto;
5595         case BPF_FUNC_sk_redirect_map:
5596                 return &bpf_sk_redirect_map_proto;
5597         case BPF_FUNC_sk_redirect_hash:
5598                 return &bpf_sk_redirect_hash_proto;
5599 #ifdef CONFIG_INET
5600         case BPF_FUNC_sk_lookup_tcp:
5601                 return &bpf_sk_lookup_tcp_proto;
5602         case BPF_FUNC_sk_lookup_udp:
5603                 return &bpf_sk_lookup_udp_proto;
5604         case BPF_FUNC_sk_release:
5605                 return &bpf_sk_release_proto;
5606 #endif
5607         default:
5608                 return bpf_base_func_proto(func_id);
5609         }
5610 }
5611
5612 static const struct bpf_func_proto *
5613 flow_dissector_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5614 {
5615         switch (func_id) {
5616         case BPF_FUNC_skb_load_bytes:
5617                 return &bpf_skb_load_bytes_proto;
5618         default:
5619                 return bpf_base_func_proto(func_id);
5620         }
5621 }
5622
5623 static const struct bpf_func_proto *
5624 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5625 {
5626         switch (func_id) {
5627         case BPF_FUNC_skb_load_bytes:
5628                 return &bpf_skb_load_bytes_proto;
5629         case BPF_FUNC_skb_pull_data:
5630                 return &bpf_skb_pull_data_proto;
5631         case BPF_FUNC_csum_diff:
5632                 return &bpf_csum_diff_proto;
5633         case BPF_FUNC_get_cgroup_classid:
5634                 return &bpf_get_cgroup_classid_proto;
5635         case BPF_FUNC_get_route_realm:
5636                 return &bpf_get_route_realm_proto;
5637         case BPF_FUNC_get_hash_recalc:
5638                 return &bpf_get_hash_recalc_proto;
5639         case BPF_FUNC_perf_event_output:
5640                 return &bpf_skb_event_output_proto;
5641         case BPF_FUNC_get_smp_processor_id:
5642                 return &bpf_get_smp_processor_id_proto;
5643         case BPF_FUNC_skb_under_cgroup:
5644                 return &bpf_skb_under_cgroup_proto;
5645         default:
5646                 return bpf_base_func_proto(func_id);
5647         }
5648 }
5649
5650 static const struct bpf_func_proto *
5651 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5652 {
5653         switch (func_id) {
5654         case BPF_FUNC_lwt_push_encap:
5655                 return &bpf_lwt_push_encap_proto;
5656         default:
5657                 return lwt_out_func_proto(func_id, prog);
5658         }
5659 }
5660
5661 static const struct bpf_func_proto *
5662 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5663 {
5664         switch (func_id) {
5665         case BPF_FUNC_skb_get_tunnel_key:
5666                 return &bpf_skb_get_tunnel_key_proto;
5667         case BPF_FUNC_skb_set_tunnel_key:
5668                 return bpf_get_skb_set_tunnel_proto(func_id);
5669         case BPF_FUNC_skb_get_tunnel_opt:
5670                 return &bpf_skb_get_tunnel_opt_proto;
5671         case BPF_FUNC_skb_set_tunnel_opt:
5672                 return bpf_get_skb_set_tunnel_proto(func_id);
5673         case BPF_FUNC_redirect:
5674                 return &bpf_redirect_proto;
5675         case BPF_FUNC_clone_redirect:
5676                 return &bpf_clone_redirect_proto;
5677         case BPF_FUNC_skb_change_tail:
5678                 return &bpf_skb_change_tail_proto;
5679         case BPF_FUNC_skb_change_head:
5680                 return &bpf_skb_change_head_proto;
5681         case BPF_FUNC_skb_store_bytes:
5682                 return &bpf_skb_store_bytes_proto;
5683         case BPF_FUNC_csum_update:
5684                 return &bpf_csum_update_proto;
5685         case BPF_FUNC_l3_csum_replace:
5686                 return &bpf_l3_csum_replace_proto;
5687         case BPF_FUNC_l4_csum_replace:
5688                 return &bpf_l4_csum_replace_proto;
5689         case BPF_FUNC_set_hash_invalid:
5690                 return &bpf_set_hash_invalid_proto;
5691         default:
5692                 return lwt_out_func_proto(func_id, prog);
5693         }
5694 }
5695
5696 static const struct bpf_func_proto *
5697 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5698 {
5699         switch (func_id) {
5700 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5701         case BPF_FUNC_lwt_seg6_store_bytes:
5702                 return &bpf_lwt_seg6_store_bytes_proto;
5703         case BPF_FUNC_lwt_seg6_action:
5704                 return &bpf_lwt_seg6_action_proto;
5705         case BPF_FUNC_lwt_seg6_adjust_srh:
5706                 return &bpf_lwt_seg6_adjust_srh_proto;
5707 #endif
5708         default:
5709                 return lwt_out_func_proto(func_id, prog);
5710         }
5711 }
5712
5713 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
5714                                     const struct bpf_prog *prog,
5715                                     struct bpf_insn_access_aux *info)
5716 {
5717         const int size_default = sizeof(__u32);
5718
5719         if (off < 0 || off >= sizeof(struct __sk_buff))
5720                 return false;
5721
5722         /* The verifier guarantees that size > 0. */
5723         if (off % size != 0)
5724                 return false;
5725
5726         switch (off) {
5727         case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5728                 if (off + size > offsetofend(struct __sk_buff, cb[4]))
5729                         return false;
5730                 break;
5731         case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
5732         case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
5733         case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
5734         case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5735         case bpf_ctx_range(struct __sk_buff, data):
5736         case bpf_ctx_range(struct __sk_buff, data_meta):
5737         case bpf_ctx_range(struct __sk_buff, data_end):
5738                 if (size != size_default)
5739                         return false;
5740                 break;
5741         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
5742                 if (size != sizeof(__u64))
5743                         return false;
5744                 break;
5745         case bpf_ctx_range(struct __sk_buff, tstamp):
5746                 if (size != sizeof(__u64))
5747                         return false;
5748                 break;
5749         default:
5750                 /* Only narrow read access allowed for now. */
5751                 if (type == BPF_WRITE) {
5752                         if (size != size_default)
5753                                 return false;
5754                 } else {
5755                         bpf_ctx_record_field_size(info, size_default);
5756                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5757                                 return false;
5758                 }
5759         }
5760
5761         return true;
5762 }
5763
5764 static bool sk_filter_is_valid_access(int off, int size,
5765                                       enum bpf_access_type type,
5766                                       const struct bpf_prog *prog,
5767                                       struct bpf_insn_access_aux *info)
5768 {
5769         switch (off) {
5770         case bpf_ctx_range(struct __sk_buff, tc_classid):
5771         case bpf_ctx_range(struct __sk_buff, data):
5772         case bpf_ctx_range(struct __sk_buff, data_meta):
5773         case bpf_ctx_range(struct __sk_buff, data_end):
5774         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
5775         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5776         case bpf_ctx_range(struct __sk_buff, tstamp):
5777         case bpf_ctx_range(struct __sk_buff, wire_len):
5778                 return false;
5779         }
5780
5781         if (type == BPF_WRITE) {
5782                 switch (off) {
5783                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5784                         break;
5785                 default:
5786                         return false;
5787                 }
5788         }
5789
5790         return bpf_skb_is_valid_access(off, size, type, prog, info);
5791 }
5792
5793 static bool cg_skb_is_valid_access(int off, int size,
5794                                    enum bpf_access_type type,
5795                                    const struct bpf_prog *prog,
5796                                    struct bpf_insn_access_aux *info)
5797 {
5798         switch (off) {
5799         case bpf_ctx_range(struct __sk_buff, tc_classid):
5800         case bpf_ctx_range(struct __sk_buff, data_meta):
5801         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
5802         case bpf_ctx_range(struct __sk_buff, wire_len):
5803                 return false;
5804         case bpf_ctx_range(struct __sk_buff, data):
5805         case bpf_ctx_range(struct __sk_buff, data_end):
5806                 if (!capable(CAP_SYS_ADMIN))
5807                         return false;
5808                 break;
5809         }
5810
5811         if (type == BPF_WRITE) {
5812                 switch (off) {
5813                 case bpf_ctx_range(struct __sk_buff, mark):
5814                 case bpf_ctx_range(struct __sk_buff, priority):
5815                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5816                         break;
5817                 case bpf_ctx_range(struct __sk_buff, tstamp):
5818                         if (!capable(CAP_SYS_ADMIN))
5819                                 return false;
5820                         break;
5821                 default:
5822                         return false;
5823                 }
5824         }
5825
5826         switch (off) {
5827         case bpf_ctx_range(struct __sk_buff, data):
5828                 info->reg_type = PTR_TO_PACKET;
5829                 break;
5830         case bpf_ctx_range(struct __sk_buff, data_end):
5831                 info->reg_type = PTR_TO_PACKET_END;
5832                 break;
5833         }
5834
5835         return bpf_skb_is_valid_access(off, size, type, prog, info);
5836 }
5837
5838 static bool lwt_is_valid_access(int off, int size,
5839                                 enum bpf_access_type type,
5840                                 const struct bpf_prog *prog,
5841                                 struct bpf_insn_access_aux *info)
5842 {
5843         switch (off) {
5844         case bpf_ctx_range(struct __sk_buff, tc_classid):
5845         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5846         case bpf_ctx_range(struct __sk_buff, data_meta):
5847         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
5848         case bpf_ctx_range(struct __sk_buff, tstamp):
5849         case bpf_ctx_range(struct __sk_buff, wire_len):
5850                 return false;
5851         }
5852
5853         if (type == BPF_WRITE) {
5854                 switch (off) {
5855                 case bpf_ctx_range(struct __sk_buff, mark):
5856                 case bpf_ctx_range(struct __sk_buff, priority):
5857                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5858                         break;
5859                 default:
5860                         return false;
5861                 }
5862         }
5863
5864         switch (off) {
5865         case bpf_ctx_range(struct __sk_buff, data):
5866                 info->reg_type = PTR_TO_PACKET;
5867                 break;
5868         case bpf_ctx_range(struct __sk_buff, data_end):
5869                 info->reg_type = PTR_TO_PACKET_END;
5870                 break;
5871         }
5872
5873         return bpf_skb_is_valid_access(off, size, type, prog, info);
5874 }
5875
5876 /* Attach type specific accesses */
5877 static bool __sock_filter_check_attach_type(int off,
5878                                             enum bpf_access_type access_type,
5879                                             enum bpf_attach_type attach_type)
5880 {
5881         switch (off) {
5882         case offsetof(struct bpf_sock, bound_dev_if):
5883         case offsetof(struct bpf_sock, mark):
5884         case offsetof(struct bpf_sock, priority):
5885                 switch (attach_type) {
5886                 case BPF_CGROUP_INET_SOCK_CREATE:
5887                         goto full_access;
5888                 default:
5889                         return false;
5890                 }
5891         case bpf_ctx_range(struct bpf_sock, src_ip4):
5892                 switch (attach_type) {
5893                 case BPF_CGROUP_INET4_POST_BIND:
5894                         goto read_only;
5895                 default:
5896                         return false;
5897                 }
5898         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5899                 switch (attach_type) {
5900                 case BPF_CGROUP_INET6_POST_BIND:
5901                         goto read_only;
5902                 default:
5903                         return false;
5904                 }
5905         case bpf_ctx_range(struct bpf_sock, src_port):
5906                 switch (attach_type) {
5907                 case BPF_CGROUP_INET4_POST_BIND:
5908                 case BPF_CGROUP_INET6_POST_BIND:
5909                         goto read_only;
5910                 default:
5911                         return false;
5912                 }
5913         }
5914 read_only:
5915         return access_type == BPF_READ;
5916 full_access:
5917         return true;
5918 }
5919
5920 static bool __sock_filter_check_size(int off, int size,
5921                                      struct bpf_insn_access_aux *info)
5922 {
5923         const int size_default = sizeof(__u32);
5924
5925         switch (off) {
5926         case bpf_ctx_range(struct bpf_sock, src_ip4):
5927         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5928                 bpf_ctx_record_field_size(info, size_default);
5929                 return bpf_ctx_narrow_access_ok(off, size, size_default);
5930         }
5931
5932         return size == size_default;
5933 }
5934
5935 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
5936                               struct bpf_insn_access_aux *info)
5937 {
5938         if (off < 0 || off >= sizeof(struct bpf_sock))
5939                 return false;
5940         if (off % size != 0)
5941                 return false;
5942         if (!__sock_filter_check_size(off, size, info))
5943                 return false;
5944         return true;
5945 }
5946
5947 static bool sock_filter_is_valid_access(int off, int size,
5948                                         enum bpf_access_type type,
5949                                         const struct bpf_prog *prog,
5950                                         struct bpf_insn_access_aux *info)
5951 {
5952         if (!bpf_sock_is_valid_access(off, size, type, info))
5953                 return false;
5954         return __sock_filter_check_attach_type(off, type,
5955                                                prog->expected_attach_type);
5956 }
5957
5958 static int bpf_noop_prologue(struct bpf_insn *insn_buf, bool direct_write,
5959                              const struct bpf_prog *prog)
5960 {
5961         /* Neither direct read nor direct write requires any preliminary
5962          * action.
5963          */
5964         return 0;
5965 }
5966
5967 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
5968                                 const struct bpf_prog *prog, int drop_verdict)
5969 {
5970         struct bpf_insn *insn = insn_buf;
5971
5972         if (!direct_write)
5973                 return 0;
5974
5975         /* if (!skb->cloned)
5976          *       goto start;
5977          *
5978          * (Fast-path, otherwise approximation that we might be
5979          *  a clone, do the rest in helper.)
5980          */
5981         *insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
5982         *insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
5983         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
5984
5985         /* ret = bpf_skb_pull_data(skb, 0); */
5986         *insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
5987         *insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
5988         *insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
5989                                BPF_FUNC_skb_pull_data);
5990         /* if (!ret)
5991          *      goto restore;
5992          * return TC_ACT_SHOT;
5993          */
5994         *insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
5995         *insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
5996         *insn++ = BPF_EXIT_INSN();
5997
5998         /* restore: */
5999         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
6000         /* start: */
6001         *insn++ = prog->insnsi[0];
6002
6003         return insn - insn_buf;
6004 }
6005
6006 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
6007                           struct bpf_insn *insn_buf)
6008 {
6009         bool indirect = BPF_MODE(orig->code) == BPF_IND;
6010         struct bpf_insn *insn = insn_buf;
6011
6012         /* We're guaranteed here that CTX is in R6. */
6013         *insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
6014         if (!indirect) {
6015                 *insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
6016         } else {
6017                 *insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
6018                 if (orig->imm)
6019                         *insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
6020         }
6021
6022         switch (BPF_SIZE(orig->code)) {
6023         case BPF_B:
6024                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
6025                 break;
6026         case BPF_H:
6027                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
6028                 break;
6029         case BPF_W:
6030                 *insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
6031                 break;
6032         }
6033
6034         *insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
6035         *insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
6036         *insn++ = BPF_EXIT_INSN();
6037
6038         return insn - insn_buf;
6039 }
6040
6041 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
6042                                const struct bpf_prog *prog)
6043 {
6044         return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
6045 }
6046
6047 static bool tc_cls_act_is_valid_access(int off, int size,
6048                                        enum bpf_access_type type,
6049                                        const struct bpf_prog *prog,
6050                                        struct bpf_insn_access_aux *info)
6051 {
6052         if (type == BPF_WRITE) {
6053                 switch (off) {
6054                 case bpf_ctx_range(struct __sk_buff, mark):
6055                 case bpf_ctx_range(struct __sk_buff, tc_index):
6056                 case bpf_ctx_range(struct __sk_buff, priority):
6057                 case bpf_ctx_range(struct __sk_buff, tc_classid):
6058                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6059                 case bpf_ctx_range(struct __sk_buff, tstamp):
6060                         break;
6061                 default:
6062                         return false;
6063                 }
6064         }
6065
6066         switch (off) {
6067         case bpf_ctx_range(struct __sk_buff, data):
6068                 info->reg_type = PTR_TO_PACKET;
6069                 break;
6070         case bpf_ctx_range(struct __sk_buff, data_meta):
6071                 info->reg_type = PTR_TO_PACKET_META;
6072                 break;
6073         case bpf_ctx_range(struct __sk_buff, data_end):
6074                 info->reg_type = PTR_TO_PACKET_END;
6075                 break;
6076         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6077         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6078                 return false;
6079         }
6080
6081         return bpf_skb_is_valid_access(off, size, type, prog, info);
6082 }
6083
6084 static bool __is_valid_xdp_access(int off, int size)
6085 {
6086         if (off < 0 || off >= sizeof(struct xdp_md))
6087                 return false;
6088         if (off % size != 0)
6089                 return false;
6090         if (size != sizeof(__u32))
6091                 return false;
6092
6093         return true;
6094 }
6095
6096 static bool xdp_is_valid_access(int off, int size,
6097                                 enum bpf_access_type type,
6098                                 const struct bpf_prog *prog,
6099                                 struct bpf_insn_access_aux *info)
6100 {
6101         if (type == BPF_WRITE) {
6102                 if (bpf_prog_is_dev_bound(prog->aux)) {
6103                         switch (off) {
6104                         case offsetof(struct xdp_md, rx_queue_index):
6105                                 return __is_valid_xdp_access(off, size);
6106                         }
6107                 }
6108                 return false;
6109         }
6110
6111         switch (off) {
6112         case offsetof(struct xdp_md, data):
6113                 info->reg_type = PTR_TO_PACKET;
6114                 break;
6115         case offsetof(struct xdp_md, data_meta):
6116                 info->reg_type = PTR_TO_PACKET_META;
6117                 break;
6118         case offsetof(struct xdp_md, data_end):
6119                 info->reg_type = PTR_TO_PACKET_END;
6120                 break;
6121         }
6122
6123         return __is_valid_xdp_access(off, size);
6124 }
6125
6126 void bpf_warn_invalid_xdp_action(u32 act)
6127 {
6128         const u32 act_max = XDP_REDIRECT;
6129
6130         WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
6131                   act > act_max ? "Illegal" : "Driver unsupported",
6132                   act);
6133 }
6134 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
6135
6136 static bool sock_addr_is_valid_access(int off, int size,
6137                                       enum bpf_access_type type,
6138                                       const struct bpf_prog *prog,
6139                                       struct bpf_insn_access_aux *info)
6140 {
6141         const int size_default = sizeof(__u32);
6142
6143         if (off < 0 || off >= sizeof(struct bpf_sock_addr))
6144                 return false;
6145         if (off % size != 0)
6146                 return false;
6147
6148         /* Disallow access to IPv6 fields from IPv4 contex and vise
6149          * versa.
6150          */
6151         switch (off) {
6152         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6153                 switch (prog->expected_attach_type) {
6154                 case BPF_CGROUP_INET4_BIND:
6155                 case BPF_CGROUP_INET4_CONNECT:
6156                 case BPF_CGROUP_UDP4_SENDMSG:
6157                         break;
6158                 default:
6159                         return false;
6160                 }
6161                 break;
6162         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6163                 switch (prog->expected_attach_type) {
6164                 case BPF_CGROUP_INET6_BIND:
6165                 case BPF_CGROUP_INET6_CONNECT:
6166                 case BPF_CGROUP_UDP6_SENDMSG:
6167                         break;
6168                 default:
6169                         return false;
6170                 }
6171                 break;
6172         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6173                 switch (prog->expected_attach_type) {
6174                 case BPF_CGROUP_UDP4_SENDMSG:
6175                         break;
6176                 default:
6177                         return false;
6178                 }
6179                 break;
6180         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6181                                 msg_src_ip6[3]):
6182                 switch (prog->expected_attach_type) {
6183                 case BPF_CGROUP_UDP6_SENDMSG:
6184                         break;
6185                 default:
6186                         return false;
6187                 }
6188                 break;
6189         }
6190
6191         switch (off) {
6192         case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
6193         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6194         case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
6195         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6196                                 msg_src_ip6[3]):
6197                 /* Only narrow read access allowed for now. */
6198                 if (type == BPF_READ) {
6199                         bpf_ctx_record_field_size(info, size_default);
6200                         if (!bpf_ctx_narrow_access_ok(off, size, size_default))
6201                                 return false;
6202                 } else {
6203                         if (size != size_default)
6204                                 return false;
6205                 }
6206                 break;
6207         case bpf_ctx_range(struct bpf_sock_addr, user_port):
6208                 if (size != size_default)
6209                         return false;
6210                 break;
6211         default:
6212                 if (type == BPF_READ) {
6213                         if (size != size_default)
6214                                 return false;
6215                 } else {
6216                         return false;
6217                 }
6218         }
6219
6220         return true;
6221 }
6222
6223 static bool sock_ops_is_valid_access(int off, int size,
6224                                      enum bpf_access_type type,
6225                                      const struct bpf_prog *prog,
6226                                      struct bpf_insn_access_aux *info)
6227 {
6228         const int size_default = sizeof(__u32);
6229
6230         if (off < 0 || off >= sizeof(struct bpf_sock_ops))
6231                 return false;
6232
6233         /* The verifier guarantees that size > 0. */
6234         if (off % size != 0)
6235                 return false;
6236
6237         if (type == BPF_WRITE) {
6238                 switch (off) {
6239                 case offsetof(struct bpf_sock_ops, reply):
6240                 case offsetof(struct bpf_sock_ops, sk_txhash):
6241                         if (size != size_default)
6242                                 return false;
6243                         break;
6244                 default:
6245                         return false;
6246                 }
6247         } else {
6248                 switch (off) {
6249                 case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
6250                                         bytes_acked):
6251                         if (size != sizeof(__u64))
6252                                 return false;
6253                         break;
6254                 default:
6255                         if (size != size_default)
6256                                 return false;
6257                         break;
6258                 }
6259         }
6260
6261         return true;
6262 }
6263
6264 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
6265                            const struct bpf_prog *prog)
6266 {
6267         return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
6268 }
6269
6270 static bool sk_skb_is_valid_access(int off, int size,
6271                                    enum bpf_access_type type,
6272                                    const struct bpf_prog *prog,
6273                                    struct bpf_insn_access_aux *info)
6274 {
6275         switch (off) {
6276         case bpf_ctx_range(struct __sk_buff, tc_classid):
6277         case bpf_ctx_range(struct __sk_buff, data_meta):
6278         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6279         case bpf_ctx_range(struct __sk_buff, tstamp):
6280         case bpf_ctx_range(struct __sk_buff, wire_len):
6281                 return false;
6282         }
6283
6284         if (type == BPF_WRITE) {
6285                 switch (off) {
6286                 case bpf_ctx_range(struct __sk_buff, tc_index):
6287                 case bpf_ctx_range(struct __sk_buff, priority):
6288                         break;
6289                 default:
6290                         return false;
6291                 }
6292         }
6293
6294         switch (off) {
6295         case bpf_ctx_range(struct __sk_buff, mark):
6296                 return false;
6297         case bpf_ctx_range(struct __sk_buff, data):
6298                 info->reg_type = PTR_TO_PACKET;
6299                 break;
6300         case bpf_ctx_range(struct __sk_buff, data_end):
6301                 info->reg_type = PTR_TO_PACKET_END;
6302                 break;
6303         }
6304
6305         return bpf_skb_is_valid_access(off, size, type, prog, info);
6306 }
6307
6308 static bool sk_msg_is_valid_access(int off, int size,
6309                                    enum bpf_access_type type,
6310                                    const struct bpf_prog *prog,
6311                                    struct bpf_insn_access_aux *info)
6312 {
6313         if (type == BPF_WRITE)
6314                 return false;
6315
6316         if (off % size != 0)
6317                 return false;
6318
6319         switch (off) {
6320         case offsetof(struct sk_msg_md, data):
6321                 info->reg_type = PTR_TO_PACKET;
6322                 if (size != sizeof(__u64))
6323                         return false;
6324                 break;
6325         case offsetof(struct sk_msg_md, data_end):
6326                 info->reg_type = PTR_TO_PACKET_END;
6327                 if (size != sizeof(__u64))
6328                         return false;
6329                 break;
6330         case bpf_ctx_range(struct sk_msg_md, family):
6331         case bpf_ctx_range(struct sk_msg_md, remote_ip4):
6332         case bpf_ctx_range(struct sk_msg_md, local_ip4):
6333         case bpf_ctx_range_till(struct sk_msg_md, remote_ip6[0], remote_ip6[3]):
6334         case bpf_ctx_range_till(struct sk_msg_md, local_ip6[0], local_ip6[3]):
6335         case bpf_ctx_range(struct sk_msg_md, remote_port):
6336         case bpf_ctx_range(struct sk_msg_md, local_port):
6337         case bpf_ctx_range(struct sk_msg_md, size):
6338                 if (size != sizeof(__u32))
6339                         return false;
6340                 break;
6341         default:
6342                 return false;
6343         }
6344         return true;
6345 }
6346
6347 static bool flow_dissector_is_valid_access(int off, int size,
6348                                            enum bpf_access_type type,
6349                                            const struct bpf_prog *prog,
6350                                            struct bpf_insn_access_aux *info)
6351 {
6352         if (type == BPF_WRITE) {
6353                 switch (off) {
6354                 case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
6355                         break;
6356                 default:
6357                         return false;
6358                 }
6359         }
6360
6361         switch (off) {
6362         case bpf_ctx_range(struct __sk_buff, data):
6363                 info->reg_type = PTR_TO_PACKET;
6364                 break;
6365         case bpf_ctx_range(struct __sk_buff, data_end):
6366                 info->reg_type = PTR_TO_PACKET_END;
6367                 break;
6368         case bpf_ctx_range_ptr(struct __sk_buff, flow_keys):
6369                 info->reg_type = PTR_TO_FLOW_KEYS;
6370                 break;
6371         case bpf_ctx_range(struct __sk_buff, tc_classid):
6372         case bpf_ctx_range(struct __sk_buff, data_meta):
6373         case bpf_ctx_range_till(struct __sk_buff, family, local_port):
6374         case bpf_ctx_range(struct __sk_buff, tstamp):
6375         case bpf_ctx_range(struct __sk_buff, wire_len):
6376                 return false;
6377         }
6378
6379         return bpf_skb_is_valid_access(off, size, type, prog, info);
6380 }
6381
6382 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
6383                                   const struct bpf_insn *si,
6384                                   struct bpf_insn *insn_buf,
6385                                   struct bpf_prog *prog, u32 *target_size)
6386 {
6387         struct bpf_insn *insn = insn_buf;
6388         int off;
6389
6390         switch (si->off) {
6391         case offsetof(struct __sk_buff, len):
6392                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6393                                       bpf_target_off(struct sk_buff, len, 4,
6394                                                      target_size));
6395                 break;
6396
6397         case offsetof(struct __sk_buff, protocol):
6398                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6399                                       bpf_target_off(struct sk_buff, protocol, 2,
6400                                                      target_size));
6401                 break;
6402
6403         case offsetof(struct __sk_buff, vlan_proto):
6404                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6405                                       bpf_target_off(struct sk_buff, vlan_proto, 2,
6406                                                      target_size));
6407                 break;
6408
6409         case offsetof(struct __sk_buff, priority):
6410                 if (type == BPF_WRITE)
6411                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6412                                               bpf_target_off(struct sk_buff, priority, 4,
6413                                                              target_size));
6414                 else
6415                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6416                                               bpf_target_off(struct sk_buff, priority, 4,
6417                                                              target_size));
6418                 break;
6419
6420         case offsetof(struct __sk_buff, ingress_ifindex):
6421                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6422                                       bpf_target_off(struct sk_buff, skb_iif, 4,
6423                                                      target_size));
6424                 break;
6425
6426         case offsetof(struct __sk_buff, ifindex):
6427                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6428                                       si->dst_reg, si->src_reg,
6429                                       offsetof(struct sk_buff, dev));
6430                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
6431                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6432                                       bpf_target_off(struct net_device, ifindex, 4,
6433                                                      target_size));
6434                 break;
6435
6436         case offsetof(struct __sk_buff, hash):
6437                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6438                                       bpf_target_off(struct sk_buff, hash, 4,
6439                                                      target_size));
6440                 break;
6441
6442         case offsetof(struct __sk_buff, mark):
6443                 if (type == BPF_WRITE)
6444                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6445                                               bpf_target_off(struct sk_buff, mark, 4,
6446                                                              target_size));
6447                 else
6448                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6449                                               bpf_target_off(struct sk_buff, mark, 4,
6450                                                              target_size));
6451                 break;
6452
6453         case offsetof(struct __sk_buff, pkt_type):
6454                 *target_size = 1;
6455                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
6456                                       PKT_TYPE_OFFSET());
6457                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
6458 #ifdef __BIG_ENDIAN_BITFIELD
6459                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
6460 #endif
6461                 break;
6462
6463         case offsetof(struct __sk_buff, queue_mapping):
6464                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6465                                       bpf_target_off(struct sk_buff, queue_mapping, 2,
6466                                                      target_size));
6467                 break;
6468
6469         case offsetof(struct __sk_buff, vlan_present):
6470                 *target_size = 1;
6471                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
6472                                       PKT_VLAN_PRESENT_OFFSET());
6473                 if (PKT_VLAN_PRESENT_BIT)
6474                         *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, PKT_VLAN_PRESENT_BIT);
6475                 if (PKT_VLAN_PRESENT_BIT < 7)
6476                         *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
6477                 break;
6478
6479         case offsetof(struct __sk_buff, vlan_tci):
6480                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6481                                       bpf_target_off(struct sk_buff, vlan_tci, 2,
6482                                                      target_size));
6483                 break;
6484
6485         case offsetof(struct __sk_buff, cb[0]) ...
6486              offsetofend(struct __sk_buff, cb[4]) - 1:
6487                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
6488                 BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
6489                               offsetof(struct qdisc_skb_cb, data)) %
6490                              sizeof(__u64));
6491
6492                 prog->cb_access = 1;
6493                 off  = si->off;
6494                 off -= offsetof(struct __sk_buff, cb[0]);
6495                 off += offsetof(struct sk_buff, cb);
6496                 off += offsetof(struct qdisc_skb_cb, data);
6497                 if (type == BPF_WRITE)
6498                         *insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
6499                                               si->src_reg, off);
6500                 else
6501                         *insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
6502                                               si->src_reg, off);
6503                 break;
6504
6505         case offsetof(struct __sk_buff, tc_classid):
6506                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
6507
6508                 off  = si->off;
6509                 off -= offsetof(struct __sk_buff, tc_classid);
6510                 off += offsetof(struct sk_buff, cb);
6511                 off += offsetof(struct qdisc_skb_cb, tc_classid);
6512                 *target_size = 2;
6513                 if (type == BPF_WRITE)
6514                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
6515                                               si->src_reg, off);
6516                 else
6517                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
6518                                               si->src_reg, off);
6519                 break;
6520
6521         case offsetof(struct __sk_buff, data):
6522                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
6523                                       si->dst_reg, si->src_reg,
6524                                       offsetof(struct sk_buff, data));
6525                 break;
6526
6527         case offsetof(struct __sk_buff, data_meta):
6528                 off  = si->off;
6529                 off -= offsetof(struct __sk_buff, data_meta);
6530                 off += offsetof(struct sk_buff, cb);
6531                 off += offsetof(struct bpf_skb_data_end, data_meta);
6532                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6533                                       si->src_reg, off);
6534                 break;
6535
6536         case offsetof(struct __sk_buff, data_end):
6537                 off  = si->off;
6538                 off -= offsetof(struct __sk_buff, data_end);
6539                 off += offsetof(struct sk_buff, cb);
6540                 off += offsetof(struct bpf_skb_data_end, data_end);
6541                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6542                                       si->src_reg, off);
6543                 break;
6544
6545         case offsetof(struct __sk_buff, tc_index):
6546 #ifdef CONFIG_NET_SCHED
6547                 if (type == BPF_WRITE)
6548                         *insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
6549                                               bpf_target_off(struct sk_buff, tc_index, 2,
6550                                                              target_size));
6551                 else
6552                         *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6553                                               bpf_target_off(struct sk_buff, tc_index, 2,
6554                                                              target_size));
6555 #else
6556                 *target_size = 2;
6557                 if (type == BPF_WRITE)
6558                         *insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
6559                 else
6560                         *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
6561 #endif
6562                 break;
6563
6564         case offsetof(struct __sk_buff, napi_id):
6565 #if defined(CONFIG_NET_RX_BUSY_POLL)
6566                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6567                                       bpf_target_off(struct sk_buff, napi_id, 4,
6568                                                      target_size));
6569                 *insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
6570                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
6571 #else
6572                 *target_size = 4;
6573                 *insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
6574 #endif
6575                 break;
6576         case offsetof(struct __sk_buff, family):
6577                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6578
6579                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6580                                       si->dst_reg, si->src_reg,
6581                                       offsetof(struct sk_buff, sk));
6582                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6583                                       bpf_target_off(struct sock_common,
6584                                                      skc_family,
6585                                                      2, target_size));
6586                 break;
6587         case offsetof(struct __sk_buff, remote_ip4):
6588                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6589
6590                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6591                                       si->dst_reg, si->src_reg,
6592                                       offsetof(struct sk_buff, sk));
6593                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6594                                       bpf_target_off(struct sock_common,
6595                                                      skc_daddr,
6596                                                      4, target_size));
6597                 break;
6598         case offsetof(struct __sk_buff, local_ip4):
6599                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6600                                           skc_rcv_saddr) != 4);
6601
6602                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6603                                       si->dst_reg, si->src_reg,
6604                                       offsetof(struct sk_buff, sk));
6605                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6606                                       bpf_target_off(struct sock_common,
6607                                                      skc_rcv_saddr,
6608                                                      4, target_size));
6609                 break;
6610         case offsetof(struct __sk_buff, remote_ip6[0]) ...
6611              offsetof(struct __sk_buff, remote_ip6[3]):
6612 #if IS_ENABLED(CONFIG_IPV6)
6613                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6614                                           skc_v6_daddr.s6_addr32[0]) != 4);
6615
6616                 off = si->off;
6617                 off -= offsetof(struct __sk_buff, remote_ip6[0]);
6618
6619                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6620                                       si->dst_reg, si->src_reg,
6621                                       offsetof(struct sk_buff, sk));
6622                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6623                                       offsetof(struct sock_common,
6624                                                skc_v6_daddr.s6_addr32[0]) +
6625                                       off);
6626 #else
6627                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6628 #endif
6629                 break;
6630         case offsetof(struct __sk_buff, local_ip6[0]) ...
6631              offsetof(struct __sk_buff, local_ip6[3]):
6632 #if IS_ENABLED(CONFIG_IPV6)
6633                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6634                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6635
6636                 off = si->off;
6637                 off -= offsetof(struct __sk_buff, local_ip6[0]);
6638
6639                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6640                                       si->dst_reg, si->src_reg,
6641                                       offsetof(struct sk_buff, sk));
6642                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6643                                       offsetof(struct sock_common,
6644                                                skc_v6_rcv_saddr.s6_addr32[0]) +
6645                                       off);
6646 #else
6647                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6648 #endif
6649                 break;
6650
6651         case offsetof(struct __sk_buff, remote_port):
6652                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6653
6654                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6655                                       si->dst_reg, si->src_reg,
6656                                       offsetof(struct sk_buff, sk));
6657                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6658                                       bpf_target_off(struct sock_common,
6659                                                      skc_dport,
6660                                                      2, target_size));
6661 #ifndef __BIG_ENDIAN_BITFIELD
6662                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6663 #endif
6664                 break;
6665
6666         case offsetof(struct __sk_buff, local_port):
6667                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6668
6669                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6670                                       si->dst_reg, si->src_reg,
6671                                       offsetof(struct sk_buff, sk));
6672                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6673                                       bpf_target_off(struct sock_common,
6674                                                      skc_num, 2, target_size));
6675                 break;
6676
6677         case offsetof(struct __sk_buff, flow_keys):
6678                 off  = si->off;
6679                 off -= offsetof(struct __sk_buff, flow_keys);
6680                 off += offsetof(struct sk_buff, cb);
6681                 off += offsetof(struct qdisc_skb_cb, flow_keys);
6682                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6683                                       si->src_reg, off);
6684                 break;
6685
6686         case offsetof(struct __sk_buff, tstamp):
6687                 BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, tstamp) != 8);
6688
6689                 if (type == BPF_WRITE)
6690                         *insn++ = BPF_STX_MEM(BPF_DW,
6691                                               si->dst_reg, si->src_reg,
6692                                               bpf_target_off(struct sk_buff,
6693                                                              tstamp, 8,
6694                                                              target_size));
6695                 else
6696                         *insn++ = BPF_LDX_MEM(BPF_DW,
6697                                               si->dst_reg, si->src_reg,
6698                                               bpf_target_off(struct sk_buff,
6699                                                              tstamp, 8,
6700                                                              target_size));
6701                 break;
6702
6703         case offsetof(struct __sk_buff, wire_len):
6704                 BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, pkt_len) != 4);
6705
6706                 off = si->off;
6707                 off -= offsetof(struct __sk_buff, wire_len);
6708                 off += offsetof(struct sk_buff, cb);
6709                 off += offsetof(struct qdisc_skb_cb, pkt_len);
6710                 *target_size = 4;
6711                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg, off);
6712         }
6713
6714         return insn - insn_buf;
6715 }
6716
6717 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
6718                                 const struct bpf_insn *si,
6719                                 struct bpf_insn *insn_buf,
6720                                 struct bpf_prog *prog, u32 *target_size)
6721 {
6722         struct bpf_insn *insn = insn_buf;
6723         int off;
6724
6725         switch (si->off) {
6726         case offsetof(struct bpf_sock, bound_dev_if):
6727                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
6728
6729                 if (type == BPF_WRITE)
6730                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6731                                         offsetof(struct sock, sk_bound_dev_if));
6732                 else
6733                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6734                                       offsetof(struct sock, sk_bound_dev_if));
6735                 break;
6736
6737         case offsetof(struct bpf_sock, mark):
6738                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
6739
6740                 if (type == BPF_WRITE)
6741                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6742                                         offsetof(struct sock, sk_mark));
6743                 else
6744                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6745                                       offsetof(struct sock, sk_mark));
6746                 break;
6747
6748         case offsetof(struct bpf_sock, priority):
6749                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
6750
6751                 if (type == BPF_WRITE)
6752                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6753                                         offsetof(struct sock, sk_priority));
6754                 else
6755                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6756                                       offsetof(struct sock, sk_priority));
6757                 break;
6758
6759         case offsetof(struct bpf_sock, family):
6760                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
6761
6762                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6763                                       offsetof(struct sock, sk_family));
6764                 break;
6765
6766         case offsetof(struct bpf_sock, type):
6767                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6768                                       offsetof(struct sock, __sk_flags_offset));
6769                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6770                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6771                 break;
6772
6773         case offsetof(struct bpf_sock, protocol):
6774                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6775                                       offsetof(struct sock, __sk_flags_offset));
6776                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6777                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
6778                 break;
6779
6780         case offsetof(struct bpf_sock, src_ip4):
6781                 *insn++ = BPF_LDX_MEM(
6782                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6783                         bpf_target_off(struct sock_common, skc_rcv_saddr,
6784                                        FIELD_SIZEOF(struct sock_common,
6785                                                     skc_rcv_saddr),
6786                                        target_size));
6787                 break;
6788
6789         case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6790 #if IS_ENABLED(CONFIG_IPV6)
6791                 off = si->off;
6792                 off -= offsetof(struct bpf_sock, src_ip6[0]);
6793                 *insn++ = BPF_LDX_MEM(
6794                         BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6795                         bpf_target_off(
6796                                 struct sock_common,
6797                                 skc_v6_rcv_saddr.s6_addr32[0],
6798                                 FIELD_SIZEOF(struct sock_common,
6799                                              skc_v6_rcv_saddr.s6_addr32[0]),
6800                                 target_size) + off);
6801 #else
6802                 (void)off;
6803                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6804 #endif
6805                 break;
6806
6807         case offsetof(struct bpf_sock, src_port):
6808                 *insn++ = BPF_LDX_MEM(
6809                         BPF_FIELD_SIZEOF(struct sock_common, skc_num),
6810                         si->dst_reg, si->src_reg,
6811                         bpf_target_off(struct sock_common, skc_num,
6812                                        FIELD_SIZEOF(struct sock_common,
6813                                                     skc_num),
6814                                        target_size));
6815                 break;
6816         }
6817
6818         return insn - insn_buf;
6819 }
6820
6821 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
6822                                          const struct bpf_insn *si,
6823                                          struct bpf_insn *insn_buf,
6824                                          struct bpf_prog *prog, u32 *target_size)
6825 {
6826         struct bpf_insn *insn = insn_buf;
6827
6828         switch (si->off) {
6829         case offsetof(struct __sk_buff, ifindex):
6830                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6831                                       si->dst_reg, si->src_reg,
6832                                       offsetof(struct sk_buff, dev));
6833                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6834                                       bpf_target_off(struct net_device, ifindex, 4,
6835                                                      target_size));
6836                 break;
6837         default:
6838                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
6839                                               target_size);
6840         }
6841
6842         return insn - insn_buf;
6843 }
6844
6845 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
6846                                   const struct bpf_insn *si,
6847                                   struct bpf_insn *insn_buf,
6848                                   struct bpf_prog *prog, u32 *target_size)
6849 {
6850         struct bpf_insn *insn = insn_buf;
6851
6852         switch (si->off) {
6853         case offsetof(struct xdp_md, data):
6854                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
6855                                       si->dst_reg, si->src_reg,
6856                                       offsetof(struct xdp_buff, data));
6857                 break;
6858         case offsetof(struct xdp_md, data_meta):
6859                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
6860                                       si->dst_reg, si->src_reg,
6861                                       offsetof(struct xdp_buff, data_meta));
6862                 break;
6863         case offsetof(struct xdp_md, data_end):
6864                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
6865                                       si->dst_reg, si->src_reg,
6866                                       offsetof(struct xdp_buff, data_end));
6867                 break;
6868         case offsetof(struct xdp_md, ingress_ifindex):
6869                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6870                                       si->dst_reg, si->src_reg,
6871                                       offsetof(struct xdp_buff, rxq));
6872                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
6873                                       si->dst_reg, si->dst_reg,
6874                                       offsetof(struct xdp_rxq_info, dev));
6875                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6876                                       offsetof(struct net_device, ifindex));
6877                 break;
6878         case offsetof(struct xdp_md, rx_queue_index):
6879                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6880                                       si->dst_reg, si->src_reg,
6881                                       offsetof(struct xdp_buff, rxq));
6882                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6883                                       offsetof(struct xdp_rxq_info,
6884                                                queue_index));
6885                 break;
6886         }
6887
6888         return insn - insn_buf;
6889 }
6890
6891 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
6892  * context Structure, F is Field in context structure that contains a pointer
6893  * to Nested Structure of type NS that has the field NF.
6894  *
6895  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
6896  * sure that SIZE is not greater than actual size of S.F.NF.
6897  *
6898  * If offset OFF is provided, the load happens from that offset relative to
6899  * offset of NF.
6900  */
6901 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)          \
6902         do {                                                                   \
6903                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
6904                                       si->src_reg, offsetof(S, F));            \
6905                 *insn++ = BPF_LDX_MEM(                                         \
6906                         SIZE, si->dst_reg, si->dst_reg,                        \
6907                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
6908                                        target_size)                            \
6909                                 + OFF);                                        \
6910         } while (0)
6911
6912 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)                              \
6913         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,                     \
6914                                              BPF_FIELD_SIZEOF(NS, NF), 0)
6915
6916 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
6917  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
6918  *
6919  * It doesn't support SIZE argument though since narrow stores are not
6920  * supported for now.
6921  *
6922  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
6923  * "register" since two registers available in convert_ctx_access are not
6924  * enough: we can't override neither SRC, since it contains value to store, nor
6925  * DST since it contains pointer to context that may be used by later
6926  * instructions. But we need a temporary place to save pointer to nested
6927  * structure whose field we want to store to.
6928  */
6929 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)                \
6930         do {                                                                   \
6931                 int tmp_reg = BPF_REG_9;                                       \
6932                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
6933                         --tmp_reg;                                             \
6934                 if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)          \
6935                         --tmp_reg;                                             \
6936                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,            \
6937                                       offsetof(S, TF));                        \
6938                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,         \
6939                                       si->dst_reg, offsetof(S, F));            \
6940                 *insn++ = BPF_STX_MEM(                                         \
6941                         BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,        \
6942                         bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),           \
6943                                        target_size)                            \
6944                                 + OFF);                                        \
6945                 *insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,            \
6946                                       offsetof(S, TF));                        \
6947         } while (0)
6948
6949 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
6950                                                       TF)                      \
6951         do {                                                                   \
6952                 if (type == BPF_WRITE) {                                       \
6953                         SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
6954                                                          TF);                  \
6955                 } else {                                                       \
6956                         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(                  \
6957                                 S, NS, F, NF, SIZE, OFF);  \
6958                 }                                                              \
6959         } while (0)
6960
6961 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)                 \
6962         SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(                         \
6963                 S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
6964
6965 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
6966                                         const struct bpf_insn *si,
6967                                         struct bpf_insn *insn_buf,
6968                                         struct bpf_prog *prog, u32 *target_size)
6969 {
6970         struct bpf_insn *insn = insn_buf;
6971         int off;
6972
6973         switch (si->off) {
6974         case offsetof(struct bpf_sock_addr, user_family):
6975                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6976                                             struct sockaddr, uaddr, sa_family);
6977                 break;
6978
6979         case offsetof(struct bpf_sock_addr, user_ip4):
6980                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6981                         struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
6982                         sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
6983                 break;
6984
6985         case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6986                 off = si->off;
6987                 off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
6988                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6989                         struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
6990                         sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
6991                         tmp_reg);
6992                 break;
6993
6994         case offsetof(struct bpf_sock_addr, user_port):
6995                 /* To get port we need to know sa_family first and then treat
6996                  * sockaddr as either sockaddr_in or sockaddr_in6.
6997                  * Though we can simplify since port field has same offset and
6998                  * size in both structures.
6999                  * Here we check this invariant and use just one of the
7000                  * structures if it's true.
7001                  */
7002                 BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
7003                              offsetof(struct sockaddr_in6, sin6_port));
7004                 BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
7005                              FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
7006                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
7007                                                      struct sockaddr_in6, uaddr,
7008                                                      sin6_port, tmp_reg);
7009                 break;
7010
7011         case offsetof(struct bpf_sock_addr, family):
7012                 SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
7013                                             struct sock, sk, sk_family);
7014                 break;
7015
7016         case offsetof(struct bpf_sock_addr, type):
7017                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7018                         struct bpf_sock_addr_kern, struct sock, sk,
7019                         __sk_flags_offset, BPF_W, 0);
7020                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
7021                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
7022                 break;
7023
7024         case offsetof(struct bpf_sock_addr, protocol):
7025                 SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
7026                         struct bpf_sock_addr_kern, struct sock, sk,
7027                         __sk_flags_offset, BPF_W, 0);
7028                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7029                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7030                                         SK_FL_PROTO_SHIFT);
7031                 break;
7032
7033         case offsetof(struct bpf_sock_addr, msg_src_ip4):
7034                 /* Treat t_ctx as struct in_addr for msg_src_ip4. */
7035                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7036                         struct bpf_sock_addr_kern, struct in_addr, t_ctx,
7037                         s_addr, BPF_SIZE(si->code), 0, tmp_reg);
7038                 break;
7039
7040         case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
7041                                 msg_src_ip6[3]):
7042                 off = si->off;
7043                 off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
7044                 /* Treat t_ctx as struct in6_addr for msg_src_ip6. */
7045                 SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
7046                         struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
7047                         s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
7048                 break;
7049         }
7050
7051         return insn - insn_buf;
7052 }
7053
7054 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
7055                                        const struct bpf_insn *si,
7056                                        struct bpf_insn *insn_buf,
7057                                        struct bpf_prog *prog,
7058                                        u32 *target_size)
7059 {
7060         struct bpf_insn *insn = insn_buf;
7061         int off;
7062
7063         switch (si->off) {
7064         case offsetof(struct bpf_sock_ops, op) ...
7065              offsetof(struct bpf_sock_ops, replylong[3]):
7066                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
7067                              FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
7068                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
7069                              FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
7070                 BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
7071                              FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
7072                 off = si->off;
7073                 off -= offsetof(struct bpf_sock_ops, op);
7074                 off += offsetof(struct bpf_sock_ops_kern, op);
7075                 if (type == BPF_WRITE)
7076                         *insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
7077                                               off);
7078                 else
7079                         *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
7080                                               off);
7081                 break;
7082
7083         case offsetof(struct bpf_sock_ops, family):
7084                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
7085
7086                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7087                                               struct bpf_sock_ops_kern, sk),
7088                                       si->dst_reg, si->src_reg,
7089                                       offsetof(struct bpf_sock_ops_kern, sk));
7090                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7091                                       offsetof(struct sock_common, skc_family));
7092                 break;
7093
7094         case offsetof(struct bpf_sock_ops, remote_ip4):
7095                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
7096
7097                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7098                                                 struct bpf_sock_ops_kern, sk),
7099                                       si->dst_reg, si->src_reg,
7100                                       offsetof(struct bpf_sock_ops_kern, sk));
7101                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7102                                       offsetof(struct sock_common, skc_daddr));
7103                 break;
7104
7105         case offsetof(struct bpf_sock_ops, local_ip4):
7106                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7107                                           skc_rcv_saddr) != 4);
7108
7109                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7110                                               struct bpf_sock_ops_kern, sk),
7111                                       si->dst_reg, si->src_reg,
7112                                       offsetof(struct bpf_sock_ops_kern, sk));
7113                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7114                                       offsetof(struct sock_common,
7115                                                skc_rcv_saddr));
7116                 break;
7117
7118         case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
7119              offsetof(struct bpf_sock_ops, remote_ip6[3]):
7120 #if IS_ENABLED(CONFIG_IPV6)
7121                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7122                                           skc_v6_daddr.s6_addr32[0]) != 4);
7123
7124                 off = si->off;
7125                 off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
7126                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7127                                                 struct bpf_sock_ops_kern, sk),
7128                                       si->dst_reg, si->src_reg,
7129                                       offsetof(struct bpf_sock_ops_kern, sk));
7130                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7131                                       offsetof(struct sock_common,
7132                                                skc_v6_daddr.s6_addr32[0]) +
7133                                       off);
7134 #else
7135                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7136 #endif
7137                 break;
7138
7139         case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
7140              offsetof(struct bpf_sock_ops, local_ip6[3]):
7141 #if IS_ENABLED(CONFIG_IPV6)
7142                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7143                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7144
7145                 off = si->off;
7146                 off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
7147                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7148                                                 struct bpf_sock_ops_kern, sk),
7149                                       si->dst_reg, si->src_reg,
7150                                       offsetof(struct bpf_sock_ops_kern, sk));
7151                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7152                                       offsetof(struct sock_common,
7153                                                skc_v6_rcv_saddr.s6_addr32[0]) +
7154                                       off);
7155 #else
7156                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7157 #endif
7158                 break;
7159
7160         case offsetof(struct bpf_sock_ops, remote_port):
7161                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
7162
7163                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7164                                                 struct bpf_sock_ops_kern, sk),
7165                                       si->dst_reg, si->src_reg,
7166                                       offsetof(struct bpf_sock_ops_kern, sk));
7167                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7168                                       offsetof(struct sock_common, skc_dport));
7169 #ifndef __BIG_ENDIAN_BITFIELD
7170                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7171 #endif
7172                 break;
7173
7174         case offsetof(struct bpf_sock_ops, local_port):
7175                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
7176
7177                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7178                                                 struct bpf_sock_ops_kern, sk),
7179                                       si->dst_reg, si->src_reg,
7180                                       offsetof(struct bpf_sock_ops_kern, sk));
7181                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7182                                       offsetof(struct sock_common, skc_num));
7183                 break;
7184
7185         case offsetof(struct bpf_sock_ops, is_fullsock):
7186                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7187                                                 struct bpf_sock_ops_kern,
7188                                                 is_fullsock),
7189                                       si->dst_reg, si->src_reg,
7190                                       offsetof(struct bpf_sock_ops_kern,
7191                                                is_fullsock));
7192                 break;
7193
7194         case offsetof(struct bpf_sock_ops, state):
7195                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
7196
7197                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7198                                                 struct bpf_sock_ops_kern, sk),
7199                                       si->dst_reg, si->src_reg,
7200                                       offsetof(struct bpf_sock_ops_kern, sk));
7201                 *insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
7202                                       offsetof(struct sock_common, skc_state));
7203                 break;
7204
7205         case offsetof(struct bpf_sock_ops, rtt_min):
7206                 BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
7207                              sizeof(struct minmax));
7208                 BUILD_BUG_ON(sizeof(struct minmax) <
7209                              sizeof(struct minmax_sample));
7210
7211                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7212                                                 struct bpf_sock_ops_kern, sk),
7213                                       si->dst_reg, si->src_reg,
7214                                       offsetof(struct bpf_sock_ops_kern, sk));
7215                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7216                                       offsetof(struct tcp_sock, rtt_min) +
7217                                       FIELD_SIZEOF(struct minmax_sample, t));
7218                 break;
7219
7220 /* Helper macro for adding read access to tcp_sock or sock fields. */
7221 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7222         do {                                                                  \
7223                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
7224                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
7225                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7226                                                 struct bpf_sock_ops_kern,     \
7227                                                 is_fullsock),                 \
7228                                       si->dst_reg, si->src_reg,               \
7229                                       offsetof(struct bpf_sock_ops_kern,      \
7230                                                is_fullsock));                 \
7231                 *insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);            \
7232                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7233                                                 struct bpf_sock_ops_kern, sk),\
7234                                       si->dst_reg, si->src_reg,               \
7235                                       offsetof(struct bpf_sock_ops_kern, sk));\
7236                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,                   \
7237                                                        OBJ_FIELD),            \
7238                                       si->dst_reg, si->dst_reg,               \
7239                                       offsetof(OBJ, OBJ_FIELD));              \
7240         } while (0)
7241
7242 /* Helper macro for adding write access to tcp_sock or sock fields.
7243  * The macro is called with two registers, dst_reg which contains a pointer
7244  * to ctx (context) and src_reg which contains the value that should be
7245  * stored. However, we need an additional register since we cannot overwrite
7246  * dst_reg because it may be used later in the program.
7247  * Instead we "borrow" one of the other register. We first save its value
7248  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
7249  * it at the end of the macro.
7250  */
7251 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)                         \
7252         do {                                                                  \
7253                 int reg = BPF_REG_9;                                          \
7254                 BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >                   \
7255                              FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
7256                 if (si->dst_reg == reg || si->src_reg == reg)                 \
7257                         reg--;                                                \
7258                 if (si->dst_reg == reg || si->src_reg == reg)                 \
7259                         reg--;                                                \
7260                 *insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,               \
7261                                       offsetof(struct bpf_sock_ops_kern,      \
7262                                                temp));                        \
7263                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7264                                                 struct bpf_sock_ops_kern,     \
7265                                                 is_fullsock),                 \
7266                                       reg, si->dst_reg,                       \
7267                                       offsetof(struct bpf_sock_ops_kern,      \
7268                                                is_fullsock));                 \
7269                 *insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);                    \
7270                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(                       \
7271                                                 struct bpf_sock_ops_kern, sk),\
7272                                       reg, si->dst_reg,                       \
7273                                       offsetof(struct bpf_sock_ops_kern, sk));\
7274                 *insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),       \
7275                                       reg, si->src_reg,                       \
7276                                       offsetof(OBJ, OBJ_FIELD));              \
7277                 *insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,               \
7278                                       offsetof(struct bpf_sock_ops_kern,      \
7279                                                temp));                        \
7280         } while (0)
7281
7282 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)            \
7283         do {                                                                  \
7284                 if (TYPE == BPF_WRITE)                                        \
7285                         SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
7286                 else                                                          \
7287                         SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);        \
7288         } while (0)
7289
7290         case offsetof(struct bpf_sock_ops, snd_cwnd):
7291                 SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
7292                 break;
7293
7294         case offsetof(struct bpf_sock_ops, srtt_us):
7295                 SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
7296                 break;
7297
7298         case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
7299                 SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
7300                                    struct tcp_sock);
7301                 break;
7302
7303         case offsetof(struct bpf_sock_ops, snd_ssthresh):
7304                 SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
7305                 break;
7306
7307         case offsetof(struct bpf_sock_ops, rcv_nxt):
7308                 SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
7309                 break;
7310
7311         case offsetof(struct bpf_sock_ops, snd_nxt):
7312                 SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
7313                 break;
7314
7315         case offsetof(struct bpf_sock_ops, snd_una):
7316                 SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
7317                 break;
7318
7319         case offsetof(struct bpf_sock_ops, mss_cache):
7320                 SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
7321                 break;
7322
7323         case offsetof(struct bpf_sock_ops, ecn_flags):
7324                 SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
7325                 break;
7326
7327         case offsetof(struct bpf_sock_ops, rate_delivered):
7328                 SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
7329                                    struct tcp_sock);
7330                 break;
7331
7332         case offsetof(struct bpf_sock_ops, rate_interval_us):
7333                 SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
7334                                    struct tcp_sock);
7335                 break;
7336
7337         case offsetof(struct bpf_sock_ops, packets_out):
7338                 SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
7339                 break;
7340
7341         case offsetof(struct bpf_sock_ops, retrans_out):
7342                 SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
7343                 break;
7344
7345         case offsetof(struct bpf_sock_ops, total_retrans):
7346                 SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
7347                                    struct tcp_sock);
7348                 break;
7349
7350         case offsetof(struct bpf_sock_ops, segs_in):
7351                 SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
7352                 break;
7353
7354         case offsetof(struct bpf_sock_ops, data_segs_in):
7355                 SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
7356                 break;
7357
7358         case offsetof(struct bpf_sock_ops, segs_out):
7359                 SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
7360                 break;
7361
7362         case offsetof(struct bpf_sock_ops, data_segs_out):
7363                 SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
7364                                    struct tcp_sock);
7365                 break;
7366
7367         case offsetof(struct bpf_sock_ops, lost_out):
7368                 SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
7369                 break;
7370
7371         case offsetof(struct bpf_sock_ops, sacked_out):
7372                 SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
7373                 break;
7374
7375         case offsetof(struct bpf_sock_ops, sk_txhash):
7376                 SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
7377                                           struct sock, type);
7378                 break;
7379
7380         case offsetof(struct bpf_sock_ops, bytes_received):
7381                 SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
7382                                    struct tcp_sock);
7383                 break;
7384
7385         case offsetof(struct bpf_sock_ops, bytes_acked):
7386                 SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
7387                 break;
7388
7389         }
7390         return insn - insn_buf;
7391 }
7392
7393 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
7394                                      const struct bpf_insn *si,
7395                                      struct bpf_insn *insn_buf,
7396                                      struct bpf_prog *prog, u32 *target_size)
7397 {
7398         struct bpf_insn *insn = insn_buf;
7399         int off;
7400
7401         switch (si->off) {
7402         case offsetof(struct __sk_buff, data_end):
7403                 off  = si->off;
7404                 off -= offsetof(struct __sk_buff, data_end);
7405                 off += offsetof(struct sk_buff, cb);
7406                 off += offsetof(struct tcp_skb_cb, bpf.data_end);
7407                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
7408                                       si->src_reg, off);
7409                 break;
7410         default:
7411                 return bpf_convert_ctx_access(type, si, insn_buf, prog,
7412                                               target_size);
7413         }
7414
7415         return insn - insn_buf;
7416 }
7417
7418 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
7419                                      const struct bpf_insn *si,
7420                                      struct bpf_insn *insn_buf,
7421                                      struct bpf_prog *prog, u32 *target_size)
7422 {
7423         struct bpf_insn *insn = insn_buf;
7424 #if IS_ENABLED(CONFIG_IPV6)
7425         int off;
7426 #endif
7427
7428         /* convert ctx uses the fact sg element is first in struct */
7429         BUILD_BUG_ON(offsetof(struct sk_msg, sg) != 0);
7430
7431         switch (si->off) {
7432         case offsetof(struct sk_msg_md, data):
7433                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data),
7434                                       si->dst_reg, si->src_reg,
7435                                       offsetof(struct sk_msg, data));
7436                 break;
7437         case offsetof(struct sk_msg_md, data_end):
7438                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg, data_end),
7439                                       si->dst_reg, si->src_reg,
7440                                       offsetof(struct sk_msg, data_end));
7441                 break;
7442         case offsetof(struct sk_msg_md, family):
7443                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
7444
7445                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7446                                               struct sk_msg, sk),
7447                                       si->dst_reg, si->src_reg,
7448                                       offsetof(struct sk_msg, sk));
7449                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7450                                       offsetof(struct sock_common, skc_family));
7451                 break;
7452
7453         case offsetof(struct sk_msg_md, remote_ip4):
7454                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
7455
7456                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7457                                                 struct sk_msg, sk),
7458                                       si->dst_reg, si->src_reg,
7459                                       offsetof(struct sk_msg, sk));
7460                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7461                                       offsetof(struct sock_common, skc_daddr));
7462                 break;
7463
7464         case offsetof(struct sk_msg_md, local_ip4):
7465                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7466                                           skc_rcv_saddr) != 4);
7467
7468                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7469                                               struct sk_msg, sk),
7470                                       si->dst_reg, si->src_reg,
7471                                       offsetof(struct sk_msg, sk));
7472                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7473                                       offsetof(struct sock_common,
7474                                                skc_rcv_saddr));
7475                 break;
7476
7477         case offsetof(struct sk_msg_md, remote_ip6[0]) ...
7478              offsetof(struct sk_msg_md, remote_ip6[3]):
7479 #if IS_ENABLED(CONFIG_IPV6)
7480                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7481                                           skc_v6_daddr.s6_addr32[0]) != 4);
7482
7483                 off = si->off;
7484                 off -= offsetof(struct sk_msg_md, remote_ip6[0]);
7485                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7486                                                 struct sk_msg, sk),
7487                                       si->dst_reg, si->src_reg,
7488                                       offsetof(struct sk_msg, sk));
7489                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7490                                       offsetof(struct sock_common,
7491                                                skc_v6_daddr.s6_addr32[0]) +
7492                                       off);
7493 #else
7494                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7495 #endif
7496                 break;
7497
7498         case offsetof(struct sk_msg_md, local_ip6[0]) ...
7499              offsetof(struct sk_msg_md, local_ip6[3]):
7500 #if IS_ENABLED(CONFIG_IPV6)
7501                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
7502                                           skc_v6_rcv_saddr.s6_addr32[0]) != 4);
7503
7504                 off = si->off;
7505                 off -= offsetof(struct sk_msg_md, local_ip6[0]);
7506                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7507                                                 struct sk_msg, sk),
7508                                       si->dst_reg, si->src_reg,
7509                                       offsetof(struct sk_msg, sk));
7510                 *insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
7511                                       offsetof(struct sock_common,
7512                                                skc_v6_rcv_saddr.s6_addr32[0]) +
7513                                       off);
7514 #else
7515                 *insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
7516 #endif
7517                 break;
7518
7519         case offsetof(struct sk_msg_md, remote_port):
7520                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
7521
7522                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7523                                                 struct sk_msg, sk),
7524                                       si->dst_reg, si->src_reg,
7525                                       offsetof(struct sk_msg, sk));
7526                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7527                                       offsetof(struct sock_common, skc_dport));
7528 #ifndef __BIG_ENDIAN_BITFIELD
7529                 *insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
7530 #endif
7531                 break;
7532
7533         case offsetof(struct sk_msg_md, local_port):
7534                 BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
7535
7536                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
7537                                                 struct sk_msg, sk),
7538                                       si->dst_reg, si->src_reg,
7539                                       offsetof(struct sk_msg, sk));
7540                 *insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
7541                                       offsetof(struct sock_common, skc_num));
7542                 break;
7543
7544         case offsetof(struct sk_msg_md, size):
7545                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_sg, size),
7546                                       si->dst_reg, si->src_reg,
7547                                       offsetof(struct sk_msg_sg, size));
7548                 break;
7549         }
7550
7551         return insn - insn_buf;
7552 }
7553
7554 const struct bpf_verifier_ops sk_filter_verifier_ops = {
7555         .get_func_proto         = sk_filter_func_proto,
7556         .is_valid_access        = sk_filter_is_valid_access,
7557         .convert_ctx_access     = bpf_convert_ctx_access,
7558         .gen_ld_abs             = bpf_gen_ld_abs,
7559 };
7560
7561 const struct bpf_prog_ops sk_filter_prog_ops = {
7562         .test_run               = bpf_prog_test_run_skb,
7563 };
7564
7565 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
7566         .get_func_proto         = tc_cls_act_func_proto,
7567         .is_valid_access        = tc_cls_act_is_valid_access,
7568         .convert_ctx_access     = tc_cls_act_convert_ctx_access,
7569         .gen_prologue           = tc_cls_act_prologue,
7570         .gen_ld_abs             = bpf_gen_ld_abs,
7571 };
7572
7573 const struct bpf_prog_ops tc_cls_act_prog_ops = {
7574         .test_run               = bpf_prog_test_run_skb,
7575 };
7576
7577 const struct bpf_verifier_ops xdp_verifier_ops = {
7578         .get_func_proto         = xdp_func_proto,
7579         .is_valid_access        = xdp_is_valid_access,
7580         .convert_ctx_access     = xdp_convert_ctx_access,
7581         .gen_prologue           = bpf_noop_prologue,
7582 };
7583
7584 const struct bpf_prog_ops xdp_prog_ops = {
7585         .test_run               = bpf_prog_test_run_xdp,
7586 };
7587
7588 const struct bpf_verifier_ops cg_skb_verifier_ops = {
7589         .get_func_proto         = cg_skb_func_proto,
7590         .is_valid_access        = cg_skb_is_valid_access,
7591         .convert_ctx_access     = bpf_convert_ctx_access,
7592 };
7593
7594 const struct bpf_prog_ops cg_skb_prog_ops = {
7595         .test_run               = bpf_prog_test_run_skb,
7596 };
7597
7598 const struct bpf_verifier_ops lwt_in_verifier_ops = {
7599         .get_func_proto         = lwt_in_func_proto,
7600         .is_valid_access        = lwt_is_valid_access,
7601         .convert_ctx_access     = bpf_convert_ctx_access,
7602 };
7603
7604 const struct bpf_prog_ops lwt_in_prog_ops = {
7605         .test_run               = bpf_prog_test_run_skb,
7606 };
7607
7608 const struct bpf_verifier_ops lwt_out_verifier_ops = {
7609         .get_func_proto         = lwt_out_func_proto,
7610         .is_valid_access        = lwt_is_valid_access,
7611         .convert_ctx_access     = bpf_convert_ctx_access,
7612 };
7613
7614 const struct bpf_prog_ops lwt_out_prog_ops = {
7615         .test_run               = bpf_prog_test_run_skb,
7616 };
7617
7618 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
7619         .get_func_proto         = lwt_xmit_func_proto,
7620         .is_valid_access        = lwt_is_valid_access,
7621         .convert_ctx_access     = bpf_convert_ctx_access,
7622         .gen_prologue           = tc_cls_act_prologue,
7623 };
7624
7625 const struct bpf_prog_ops lwt_xmit_prog_ops = {
7626         .test_run               = bpf_prog_test_run_skb,
7627 };
7628
7629 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
7630         .get_func_proto         = lwt_seg6local_func_proto,
7631         .is_valid_access        = lwt_is_valid_access,
7632         .convert_ctx_access     = bpf_convert_ctx_access,
7633 };
7634
7635 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
7636         .test_run               = bpf_prog_test_run_skb,
7637 };
7638
7639 const struct bpf_verifier_ops cg_sock_verifier_ops = {
7640         .get_func_proto         = sock_filter_func_proto,
7641         .is_valid_access        = sock_filter_is_valid_access,
7642         .convert_ctx_access     = bpf_sock_convert_ctx_access,
7643 };
7644
7645 const struct bpf_prog_ops cg_sock_prog_ops = {
7646 };
7647
7648 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
7649         .get_func_proto         = sock_addr_func_proto,
7650         .is_valid_access        = sock_addr_is_valid_access,
7651         .convert_ctx_access     = sock_addr_convert_ctx_access,
7652 };
7653
7654 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
7655 };
7656
7657 const struct bpf_verifier_ops sock_ops_verifier_ops = {
7658         .get_func_proto         = sock_ops_func_proto,
7659         .is_valid_access        = sock_ops_is_valid_access,
7660         .convert_ctx_access     = sock_ops_convert_ctx_access,
7661 };
7662
7663 const struct bpf_prog_ops sock_ops_prog_ops = {
7664 };
7665
7666 const struct bpf_verifier_ops sk_skb_verifier_ops = {
7667         .get_func_proto         = sk_skb_func_proto,
7668         .is_valid_access        = sk_skb_is_valid_access,
7669         .convert_ctx_access     = sk_skb_convert_ctx_access,
7670         .gen_prologue           = sk_skb_prologue,
7671 };
7672
7673 const struct bpf_prog_ops sk_skb_prog_ops = {
7674 };
7675
7676 const struct bpf_verifier_ops sk_msg_verifier_ops = {
7677         .get_func_proto         = sk_msg_func_proto,
7678         .is_valid_access        = sk_msg_is_valid_access,
7679         .convert_ctx_access     = sk_msg_convert_ctx_access,
7680         .gen_prologue           = bpf_noop_prologue,
7681 };
7682
7683 const struct bpf_prog_ops sk_msg_prog_ops = {
7684 };
7685
7686 const struct bpf_verifier_ops flow_dissector_verifier_ops = {
7687         .get_func_proto         = flow_dissector_func_proto,
7688         .is_valid_access        = flow_dissector_is_valid_access,
7689         .convert_ctx_access     = bpf_convert_ctx_access,
7690 };
7691
7692 const struct bpf_prog_ops flow_dissector_prog_ops = {
7693 };
7694
7695 int sk_detach_filter(struct sock *sk)
7696 {
7697         int ret = -ENOENT;
7698         struct sk_filter *filter;
7699
7700         if (sock_flag(sk, SOCK_FILTER_LOCKED))
7701                 return -EPERM;
7702
7703         filter = rcu_dereference_protected(sk->sk_filter,
7704                                            lockdep_sock_is_held(sk));
7705         if (filter) {
7706                 RCU_INIT_POINTER(sk->sk_filter, NULL);
7707                 sk_filter_uncharge(sk, filter);
7708                 ret = 0;
7709         }
7710
7711         return ret;
7712 }
7713 EXPORT_SYMBOL_GPL(sk_detach_filter);
7714
7715 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
7716                   unsigned int len)
7717 {
7718         struct sock_fprog_kern *fprog;
7719         struct sk_filter *filter;
7720         int ret = 0;
7721
7722         lock_sock(sk);
7723         filter = rcu_dereference_protected(sk->sk_filter,
7724                                            lockdep_sock_is_held(sk));
7725         if (!filter)
7726                 goto out;
7727
7728         /* We're copying the filter that has been originally attached,
7729          * so no conversion/decode needed anymore. eBPF programs that
7730          * have no original program cannot be dumped through this.
7731          */
7732         ret = -EACCES;
7733         fprog = filter->prog->orig_prog;
7734         if (!fprog)
7735                 goto out;
7736
7737         ret = fprog->len;
7738         if (!len)
7739                 /* User space only enquires number of filter blocks. */
7740                 goto out;
7741
7742         ret = -EINVAL;
7743         if (len < fprog->len)
7744                 goto out;
7745
7746         ret = -EFAULT;
7747         if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
7748                 goto out;
7749
7750         /* Instead of bytes, the API requests to return the number
7751          * of filter blocks.
7752          */
7753         ret = fprog->len;
7754 out:
7755         release_sock(sk);
7756         return ret;
7757 }
7758
7759 #ifdef CONFIG_INET
7760 struct sk_reuseport_kern {
7761         struct sk_buff *skb;
7762         struct sock *sk;
7763         struct sock *selected_sk;
7764         void *data_end;
7765         u32 hash;
7766         u32 reuseport_id;
7767         bool bind_inany;
7768 };
7769
7770 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
7771                                     struct sock_reuseport *reuse,
7772                                     struct sock *sk, struct sk_buff *skb,
7773                                     u32 hash)
7774 {
7775         reuse_kern->skb = skb;
7776         reuse_kern->sk = sk;
7777         reuse_kern->selected_sk = NULL;
7778         reuse_kern->data_end = skb->data + skb_headlen(skb);
7779         reuse_kern->hash = hash;
7780         reuse_kern->reuseport_id = reuse->reuseport_id;
7781         reuse_kern->bind_inany = reuse->bind_inany;
7782 }
7783
7784 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
7785                                   struct bpf_prog *prog, struct sk_buff *skb,
7786                                   u32 hash)
7787 {
7788         struct sk_reuseport_kern reuse_kern;
7789         enum sk_action action;
7790
7791         bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
7792         action = BPF_PROG_RUN(prog, &reuse_kern);
7793
7794         if (action == SK_PASS)
7795                 return reuse_kern.selected_sk;
7796         else
7797                 return ERR_PTR(-ECONNREFUSED);
7798 }
7799
7800 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
7801            struct bpf_map *, map, void *, key, u32, flags)
7802 {
7803         struct sock_reuseport *reuse;
7804         struct sock *selected_sk;
7805
7806         selected_sk = map->ops->map_lookup_elem(map, key);
7807         if (!selected_sk)
7808                 return -ENOENT;
7809
7810         reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
7811         if (!reuse)
7812                 /* selected_sk is unhashed (e.g. by close()) after the
7813                  * above map_lookup_elem().  Treat selected_sk has already
7814                  * been removed from the map.
7815                  */
7816                 return -ENOENT;
7817
7818         if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
7819                 struct sock *sk;
7820
7821                 if (unlikely(!reuse_kern->reuseport_id))
7822                         /* There is a small race between adding the
7823                          * sk to the map and setting the
7824                          * reuse_kern->reuseport_id.
7825                          * Treat it as the sk has not been added to
7826                          * the bpf map yet.
7827                          */
7828                         return -ENOENT;
7829
7830                 sk = reuse_kern->sk;
7831                 if (sk->sk_protocol != selected_sk->sk_protocol)
7832                         return -EPROTOTYPE;
7833                 else if (sk->sk_family != selected_sk->sk_family)
7834                         return -EAFNOSUPPORT;
7835
7836                 /* Catch all. Likely bound to a different sockaddr. */
7837                 return -EBADFD;
7838         }
7839
7840         reuse_kern->selected_sk = selected_sk;
7841
7842         return 0;
7843 }
7844
7845 static const struct bpf_func_proto sk_select_reuseport_proto = {
7846         .func           = sk_select_reuseport,
7847         .gpl_only       = false,
7848         .ret_type       = RET_INTEGER,
7849         .arg1_type      = ARG_PTR_TO_CTX,
7850         .arg2_type      = ARG_CONST_MAP_PTR,
7851         .arg3_type      = ARG_PTR_TO_MAP_KEY,
7852         .arg4_type      = ARG_ANYTHING,
7853 };
7854
7855 BPF_CALL_4(sk_reuseport_load_bytes,
7856            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7857            void *, to, u32, len)
7858 {
7859         return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
7860 }
7861
7862 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
7863         .func           = sk_reuseport_load_bytes,
7864         .gpl_only       = false,
7865         .ret_type       = RET_INTEGER,
7866         .arg1_type      = ARG_PTR_TO_CTX,
7867         .arg2_type      = ARG_ANYTHING,
7868         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
7869         .arg4_type      = ARG_CONST_SIZE,
7870 };
7871
7872 BPF_CALL_5(sk_reuseport_load_bytes_relative,
7873            const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7874            void *, to, u32, len, u32, start_header)
7875 {
7876         return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
7877                                                len, start_header);
7878 }
7879
7880 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
7881         .func           = sk_reuseport_load_bytes_relative,
7882         .gpl_only       = false,
7883         .ret_type       = RET_INTEGER,
7884         .arg1_type      = ARG_PTR_TO_CTX,
7885         .arg2_type      = ARG_ANYTHING,
7886         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
7887         .arg4_type      = ARG_CONST_SIZE,
7888         .arg5_type      = ARG_ANYTHING,
7889 };
7890
7891 static const struct bpf_func_proto *
7892 sk_reuseport_func_proto(enum bpf_func_id func_id,
7893                         const struct bpf_prog *prog)
7894 {
7895         switch (func_id) {
7896         case BPF_FUNC_sk_select_reuseport:
7897                 return &sk_select_reuseport_proto;
7898         case BPF_FUNC_skb_load_bytes:
7899                 return &sk_reuseport_load_bytes_proto;
7900         case BPF_FUNC_skb_load_bytes_relative:
7901                 return &sk_reuseport_load_bytes_relative_proto;
7902         default:
7903                 return bpf_base_func_proto(func_id);
7904         }
7905 }
7906
7907 static bool
7908 sk_reuseport_is_valid_access(int off, int size,
7909                              enum bpf_access_type type,
7910                              const struct bpf_prog *prog,
7911                              struct bpf_insn_access_aux *info)
7912 {
7913         const u32 size_default = sizeof(__u32);
7914
7915         if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
7916             off % size || type != BPF_READ)
7917                 return false;
7918
7919         switch (off) {
7920         case offsetof(struct sk_reuseport_md, data):
7921                 info->reg_type = PTR_TO_PACKET;
7922                 return size == sizeof(__u64);
7923
7924         case offsetof(struct sk_reuseport_md, data_end):
7925                 info->reg_type = PTR_TO_PACKET_END;
7926                 return size == sizeof(__u64);
7927
7928         case offsetof(struct sk_reuseport_md, hash):
7929                 return size == size_default;
7930
7931         /* Fields that allow narrowing */
7932         case offsetof(struct sk_reuseport_md, eth_protocol):
7933                 if (size < FIELD_SIZEOF(struct sk_buff, protocol))
7934                         return false;
7935                 /* fall through */
7936         case offsetof(struct sk_reuseport_md, ip_protocol):
7937         case offsetof(struct sk_reuseport_md, bind_inany):
7938         case offsetof(struct sk_reuseport_md, len):
7939                 bpf_ctx_record_field_size(info, size_default);
7940                 return bpf_ctx_narrow_access_ok(off, size, size_default);
7941
7942         default:
7943                 return false;
7944         }
7945 }
7946
7947 #define SK_REUSEPORT_LOAD_FIELD(F) ({                                   \
7948         *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7949                               si->dst_reg, si->src_reg,                 \
7950                               bpf_target_off(struct sk_reuseport_kern, F, \
7951                                              FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7952                                              target_size));             \
7953         })
7954
7955 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)                          \
7956         SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,           \
7957                                     struct sk_buff,                     \
7958                                     skb,                                \
7959                                     SKB_FIELD)
7960
7961 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
7962         SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,  \
7963                                              struct sock,               \
7964                                              sk,                        \
7965                                              SK_FIELD, BPF_SIZE, EXTRA_OFF)
7966
7967 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
7968                                            const struct bpf_insn *si,
7969                                            struct bpf_insn *insn_buf,
7970                                            struct bpf_prog *prog,
7971                                            u32 *target_size)
7972 {
7973         struct bpf_insn *insn = insn_buf;
7974
7975         switch (si->off) {
7976         case offsetof(struct sk_reuseport_md, data):
7977                 SK_REUSEPORT_LOAD_SKB_FIELD(data);
7978                 break;
7979
7980         case offsetof(struct sk_reuseport_md, len):
7981                 SK_REUSEPORT_LOAD_SKB_FIELD(len);
7982                 break;
7983
7984         case offsetof(struct sk_reuseport_md, eth_protocol):
7985                 SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
7986                 break;
7987
7988         case offsetof(struct sk_reuseport_md, ip_protocol):
7989                 BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7990                 SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
7991                                                     BPF_W, 0);
7992                 *insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7993                 *insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7994                                         SK_FL_PROTO_SHIFT);
7995                 /* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
7996                  * aware.  No further narrowing or masking is needed.
7997                  */
7998                 *target_size = 1;
7999                 break;
8000
8001         case offsetof(struct sk_reuseport_md, data_end):
8002                 SK_REUSEPORT_LOAD_FIELD(data_end);
8003                 break;
8004
8005         case offsetof(struct sk_reuseport_md, hash):
8006                 SK_REUSEPORT_LOAD_FIELD(hash);
8007                 break;
8008
8009         case offsetof(struct sk_reuseport_md, bind_inany):
8010                 SK_REUSEPORT_LOAD_FIELD(bind_inany);
8011                 break;
8012         }
8013
8014         return insn - insn_buf;
8015 }
8016
8017 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
8018         .get_func_proto         = sk_reuseport_func_proto,
8019         .is_valid_access        = sk_reuseport_is_valid_access,
8020         .convert_ctx_access     = sk_reuseport_convert_ctx_access,
8021 };
8022
8023 const struct bpf_prog_ops sk_reuseport_prog_ops = {
8024 };
8025 #endif /* CONFIG_INET */