Merge branch 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163                                            struct net_device *dev,
164                                            struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         if (!dev_valid_name(name))
1066                 return -EINVAL;
1067
1068         p = strchr(name, '%');
1069         if (p) {
1070                 /*
1071                  * Verify the string as this thing may have come from
1072                  * the user.  There must be either one "%d" and no other "%"
1073                  * characters.
1074                  */
1075                 if (p[1] != 'd' || strchr(p + 2, '%'))
1076                         return -EINVAL;
1077
1078                 /* Use one page as a bit array of possible slots */
1079                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                 if (!inuse)
1081                         return -ENOMEM;
1082
1083                 for_each_netdev(net, d) {
1084                         if (!sscanf(d->name, name, &i))
1085                                 continue;
1086                         if (i < 0 || i >= max_netdevices)
1087                                 continue;
1088
1089                         /*  avoid cases where sscanf is not exact inverse of printf */
1090                         snprintf(buf, IFNAMSIZ, name, i);
1091                         if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                 set_bit(i, inuse);
1093                 }
1094
1095                 i = find_first_zero_bit(inuse, max_netdevices);
1096                 free_page((unsigned long) inuse);
1097         }
1098
1099         snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 static int dev_alloc_name_ns(struct net *net,
1111                              struct net_device *dev,
1112                              const char *name)
1113 {
1114         char buf[IFNAMSIZ];
1115         int ret;
1116
1117         BUG_ON(!net);
1118         ret = __dev_alloc_name(net, name, buf);
1119         if (ret >= 0)
1120                 strlcpy(dev->name, buf, IFNAMSIZ);
1121         return ret;
1122 }
1123
1124 /**
1125  *      dev_alloc_name - allocate a name for a device
1126  *      @dev: device
1127  *      @name: name format string
1128  *
1129  *      Passed a format string - eg "lt%d" it will try and find a suitable
1130  *      id. It scans list of devices to build up a free map, then chooses
1131  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *      while allocating the name and adding the device in order to avoid
1133  *      duplicates.
1134  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *      Returns the number of the unit assigned or a negative errno code.
1136  */
1137
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140         return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                        const char *name)
1146 {
1147         BUG_ON(!net);
1148
1149         if (!dev_valid_name(name))
1150                 return -EINVAL;
1151
1152         if (strchr(name, '%'))
1153                 return dev_alloc_name_ns(net, dev, name);
1154         else if (__dev_get_by_name(net, name))
1155                 return -EEXIST;
1156         else if (dev->name != name)
1157                 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162
1163 /**
1164  *      dev_change_name - change name of a device
1165  *      @dev: device
1166  *      @newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *      Change name of a device, can pass format strings "eth%d".
1169  *      for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173         unsigned char old_assign_type;
1174         char oldname[IFNAMSIZ];
1175         int err = 0;
1176         int ret;
1177         struct net *net;
1178
1179         ASSERT_RTNL();
1180         BUG_ON(!dev_net(dev));
1181
1182         net = dev_net(dev);
1183
1184         /* Some auto-enslaved devices e.g. failover slaves are
1185          * special, as userspace might rename the device after
1186          * the interface had been brought up and running since
1187          * the point kernel initiated auto-enslavement. Allow
1188          * live name change even when these slave devices are
1189          * up and running.
1190          *
1191          * Typically, users of these auto-enslaving devices
1192          * don't actually care about slave name change, as
1193          * they are supposed to operate on master interface
1194          * directly.
1195          */
1196         if (dev->flags & IFF_UP &&
1197             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198                 return -EBUSY;
1199
1200         write_seqcount_begin(&devnet_rename_seq);
1201
1202         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203                 write_seqcount_end(&devnet_rename_seq);
1204                 return 0;
1205         }
1206
1207         memcpy(oldname, dev->name, IFNAMSIZ);
1208
1209         err = dev_get_valid_name(net, dev, newname);
1210         if (err < 0) {
1211                 write_seqcount_end(&devnet_rename_seq);
1212                 return err;
1213         }
1214
1215         if (oldname[0] && !strchr(oldname, '%'))
1216                 netdev_info(dev, "renamed from %s\n", oldname);
1217
1218         old_assign_type = dev->name_assign_type;
1219         dev->name_assign_type = NET_NAME_RENAMED;
1220
1221 rollback:
1222         ret = device_rename(&dev->dev, dev->name);
1223         if (ret) {
1224                 memcpy(dev->name, oldname, IFNAMSIZ);
1225                 dev->name_assign_type = old_assign_type;
1226                 write_seqcount_end(&devnet_rename_seq);
1227                 return ret;
1228         }
1229
1230         write_seqcount_end(&devnet_rename_seq);
1231
1232         netdev_adjacent_rename_links(dev, oldname);
1233
1234         write_lock_bh(&dev_base_lock);
1235         hlist_del_rcu(&dev->name_hlist);
1236         write_unlock_bh(&dev_base_lock);
1237
1238         synchronize_rcu();
1239
1240         write_lock_bh(&dev_base_lock);
1241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242         write_unlock_bh(&dev_base_lock);
1243
1244         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245         ret = notifier_to_errno(ret);
1246
1247         if (ret) {
1248                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249                 if (err >= 0) {
1250                         err = ret;
1251                         write_seqcount_begin(&devnet_rename_seq);
1252                         memcpy(dev->name, oldname, IFNAMSIZ);
1253                         memcpy(oldname, newname, IFNAMSIZ);
1254                         dev->name_assign_type = old_assign_type;
1255                         old_assign_type = NET_NAME_RENAMED;
1256                         goto rollback;
1257                 } else {
1258                         pr_err("%s: name change rollback failed: %d\n",
1259                                dev->name, ret);
1260                 }
1261         }
1262
1263         return err;
1264 }
1265
1266 /**
1267  *      dev_set_alias - change ifalias of a device
1268  *      @dev: device
1269  *      @alias: name up to IFALIASZ
1270  *      @len: limit of bytes to copy from info
1271  *
1272  *      Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276         struct dev_ifalias *new_alias = NULL;
1277
1278         if (len >= IFALIASZ)
1279                 return -EINVAL;
1280
1281         if (len) {
1282                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283                 if (!new_alias)
1284                         return -ENOMEM;
1285
1286                 memcpy(new_alias->ifalias, alias, len);
1287                 new_alias->ifalias[len] = 0;
1288         }
1289
1290         mutex_lock(&ifalias_mutex);
1291         rcu_swap_protected(dev->ifalias, new_alias,
1292                            mutex_is_locked(&ifalias_mutex));
1293         mutex_unlock(&ifalias_mutex);
1294
1295         if (new_alias)
1296                 kfree_rcu(new_alias, rcuhead);
1297
1298         return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301
1302 /**
1303  *      dev_get_alias - get ifalias of a device
1304  *      @dev: device
1305  *      @name: buffer to store name of ifalias
1306  *      @len: size of buffer
1307  *
1308  *      get ifalias for a device.  Caller must make sure dev cannot go
1309  *      away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313         const struct dev_ifalias *alias;
1314         int ret = 0;
1315
1316         rcu_read_lock();
1317         alias = rcu_dereference(dev->ifalias);
1318         if (alias)
1319                 ret = snprintf(name, len, "%s", alias->ifalias);
1320         rcu_read_unlock();
1321
1322         return ret;
1323 }
1324
1325 /**
1326  *      netdev_features_change - device changes features
1327  *      @dev: device to cause notification
1328  *
1329  *      Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336
1337 /**
1338  *      netdev_state_change - device changes state
1339  *      @dev: device to cause notification
1340  *
1341  *      Called to indicate a device has changed state. This function calls
1342  *      the notifier chains for netdev_chain and sends a NEWLINK message
1343  *      to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347         if (dev->flags & IFF_UP) {
1348                 struct netdev_notifier_change_info change_info = {
1349                         .info.dev = dev,
1350                 };
1351
1352                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1353                                               &change_info.info);
1354                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1355         }
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358
1359 /**
1360  * netdev_notify_peers - notify network peers about existence of @dev
1361  * @dev: network device
1362  *
1363  * Generate traffic such that interested network peers are aware of
1364  * @dev, such as by generating a gratuitous ARP. This may be used when
1365  * a device wants to inform the rest of the network about some sort of
1366  * reconfiguration such as a failover event or virtual machine
1367  * migration.
1368  */
1369 void netdev_notify_peers(struct net_device *dev)
1370 {
1371         rtnl_lock();
1372         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377
1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379 {
1380         const struct net_device_ops *ops = dev->netdev_ops;
1381         int ret;
1382
1383         ASSERT_RTNL();
1384
1385         if (!netif_device_present(dev))
1386                 return -ENODEV;
1387
1388         /* Block netpoll from trying to do any rx path servicing.
1389          * If we don't do this there is a chance ndo_poll_controller
1390          * or ndo_poll may be running while we open the device
1391          */
1392         netpoll_poll_disable(dev);
1393
1394         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395         ret = notifier_to_errno(ret);
1396         if (ret)
1397                 return ret;
1398
1399         set_bit(__LINK_STATE_START, &dev->state);
1400
1401         if (ops->ndo_validate_addr)
1402                 ret = ops->ndo_validate_addr(dev);
1403
1404         if (!ret && ops->ndo_open)
1405                 ret = ops->ndo_open(dev);
1406
1407         netpoll_poll_enable(dev);
1408
1409         if (ret)
1410                 clear_bit(__LINK_STATE_START, &dev->state);
1411         else {
1412                 dev->flags |= IFF_UP;
1413                 dev_set_rx_mode(dev);
1414                 dev_activate(dev);
1415                 add_device_randomness(dev->dev_addr, dev->addr_len);
1416         }
1417
1418         return ret;
1419 }
1420
1421 /**
1422  *      dev_open        - prepare an interface for use.
1423  *      @dev: device to open
1424  *      @extack: netlink extended ack
1425  *
1426  *      Takes a device from down to up state. The device's private open
1427  *      function is invoked and then the multicast lists are loaded. Finally
1428  *      the device is moved into the up state and a %NETDEV_UP message is
1429  *      sent to the netdev notifier chain.
1430  *
1431  *      Calling this function on an active interface is a nop. On a failure
1432  *      a negative errno code is returned.
1433  */
1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1435 {
1436         int ret;
1437
1438         if (dev->flags & IFF_UP)
1439                 return 0;
1440
1441         ret = __dev_open(dev, extack);
1442         if (ret < 0)
1443                 return ret;
1444
1445         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446         call_netdevice_notifiers(NETDEV_UP, dev);
1447
1448         return ret;
1449 }
1450 EXPORT_SYMBOL(dev_open);
1451
1452 static void __dev_close_many(struct list_head *head)
1453 {
1454         struct net_device *dev;
1455
1456         ASSERT_RTNL();
1457         might_sleep();
1458
1459         list_for_each_entry(dev, head, close_list) {
1460                 /* Temporarily disable netpoll until the interface is down */
1461                 netpoll_poll_disable(dev);
1462
1463                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1464
1465                 clear_bit(__LINK_STATE_START, &dev->state);
1466
1467                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1468                  * can be even on different cpu. So just clear netif_running().
1469                  *
1470                  * dev->stop() will invoke napi_disable() on all of it's
1471                  * napi_struct instances on this device.
1472                  */
1473                 smp_mb__after_atomic(); /* Commit netif_running(). */
1474         }
1475
1476         dev_deactivate_many(head);
1477
1478         list_for_each_entry(dev, head, close_list) {
1479                 const struct net_device_ops *ops = dev->netdev_ops;
1480
1481                 /*
1482                  *      Call the device specific close. This cannot fail.
1483                  *      Only if device is UP
1484                  *
1485                  *      We allow it to be called even after a DETACH hot-plug
1486                  *      event.
1487                  */
1488                 if (ops->ndo_stop)
1489                         ops->ndo_stop(dev);
1490
1491                 dev->flags &= ~IFF_UP;
1492                 netpoll_poll_enable(dev);
1493         }
1494 }
1495
1496 static void __dev_close(struct net_device *dev)
1497 {
1498         LIST_HEAD(single);
1499
1500         list_add(&dev->close_list, &single);
1501         __dev_close_many(&single);
1502         list_del(&single);
1503 }
1504
1505 void dev_close_many(struct list_head *head, bool unlink)
1506 {
1507         struct net_device *dev, *tmp;
1508
1509         /* Remove the devices that don't need to be closed */
1510         list_for_each_entry_safe(dev, tmp, head, close_list)
1511                 if (!(dev->flags & IFF_UP))
1512                         list_del_init(&dev->close_list);
1513
1514         __dev_close_many(head);
1515
1516         list_for_each_entry_safe(dev, tmp, head, close_list) {
1517                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1519                 if (unlink)
1520                         list_del_init(&dev->close_list);
1521         }
1522 }
1523 EXPORT_SYMBOL(dev_close_many);
1524
1525 /**
1526  *      dev_close - shutdown an interface.
1527  *      @dev: device to shutdown
1528  *
1529  *      This function moves an active device into down state. A
1530  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532  *      chain.
1533  */
1534 void dev_close(struct net_device *dev)
1535 {
1536         if (dev->flags & IFF_UP) {
1537                 LIST_HEAD(single);
1538
1539                 list_add(&dev->close_list, &single);
1540                 dev_close_many(&single, true);
1541                 list_del(&single);
1542         }
1543 }
1544 EXPORT_SYMBOL(dev_close);
1545
1546
1547 /**
1548  *      dev_disable_lro - disable Large Receive Offload on a device
1549  *      @dev: device
1550  *
1551  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1552  *      called under RTNL.  This is needed if received packets may be
1553  *      forwarded to another interface.
1554  */
1555 void dev_disable_lro(struct net_device *dev)
1556 {
1557         struct net_device *lower_dev;
1558         struct list_head *iter;
1559
1560         dev->wanted_features &= ~NETIF_F_LRO;
1561         netdev_update_features(dev);
1562
1563         if (unlikely(dev->features & NETIF_F_LRO))
1564                 netdev_WARN(dev, "failed to disable LRO!\n");
1565
1566         netdev_for_each_lower_dev(dev, lower_dev, iter)
1567                 dev_disable_lro(lower_dev);
1568 }
1569 EXPORT_SYMBOL(dev_disable_lro);
1570
1571 /**
1572  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573  *      @dev: device
1574  *
1575  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1576  *      called under RTNL.  This is needed if Generic XDP is installed on
1577  *      the device.
1578  */
1579 static void dev_disable_gro_hw(struct net_device *dev)
1580 {
1581         dev->wanted_features &= ~NETIF_F_GRO_HW;
1582         netdev_update_features(dev);
1583
1584         if (unlikely(dev->features & NETIF_F_GRO_HW))
1585                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586 }
1587
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589 {
1590 #define N(val)                                          \
1591         case NETDEV_##val:                              \
1592                 return "NETDEV_" __stringify(val);
1593         switch (cmd) {
1594         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603         N(PRE_CHANGEADDR)
1604         }
1605 #undef N
1606         return "UNKNOWN_NETDEV_EVENT";
1607 }
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609
1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611                                    struct net_device *dev)
1612 {
1613         struct netdev_notifier_info info = {
1614                 .dev = dev,
1615         };
1616
1617         return nb->notifier_call(nb, val, &info);
1618 }
1619
1620 static int dev_boot_phase = 1;
1621
1622 /**
1623  * register_netdevice_notifier - register a network notifier block
1624  * @nb: notifier
1625  *
1626  * Register a notifier to be called when network device events occur.
1627  * The notifier passed is linked into the kernel structures and must
1628  * not be reused until it has been unregistered. A negative errno code
1629  * is returned on a failure.
1630  *
1631  * When registered all registration and up events are replayed
1632  * to the new notifier to allow device to have a race free
1633  * view of the network device list.
1634  */
1635
1636 int register_netdevice_notifier(struct notifier_block *nb)
1637 {
1638         struct net_device *dev;
1639         struct net_device *last;
1640         struct net *net;
1641         int err;
1642
1643         /* Close race with setup_net() and cleanup_net() */
1644         down_write(&pernet_ops_rwsem);
1645         rtnl_lock();
1646         err = raw_notifier_chain_register(&netdev_chain, nb);
1647         if (err)
1648                 goto unlock;
1649         if (dev_boot_phase)
1650                 goto unlock;
1651         for_each_net(net) {
1652                 for_each_netdev(net, dev) {
1653                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654                         err = notifier_to_errno(err);
1655                         if (err)
1656                                 goto rollback;
1657
1658                         if (!(dev->flags & IFF_UP))
1659                                 continue;
1660
1661                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662                 }
1663         }
1664
1665 unlock:
1666         rtnl_unlock();
1667         up_write(&pernet_ops_rwsem);
1668         return err;
1669
1670 rollback:
1671         last = dev;
1672         for_each_net(net) {
1673                 for_each_netdev(net, dev) {
1674                         if (dev == last)
1675                                 goto outroll;
1676
1677                         if (dev->flags & IFF_UP) {
1678                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679                                                         dev);
1680                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1681                         }
1682                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1683                 }
1684         }
1685
1686 outroll:
1687         raw_notifier_chain_unregister(&netdev_chain, nb);
1688         goto unlock;
1689 }
1690 EXPORT_SYMBOL(register_netdevice_notifier);
1691
1692 /**
1693  * unregister_netdevice_notifier - unregister a network notifier block
1694  * @nb: notifier
1695  *
1696  * Unregister a notifier previously registered by
1697  * register_netdevice_notifier(). The notifier is unlinked into the
1698  * kernel structures and may then be reused. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * After unregistering unregister and down device events are synthesized
1702  * for all devices on the device list to the removed notifier to remove
1703  * the need for special case cleanup code.
1704  */
1705
1706 int unregister_netdevice_notifier(struct notifier_block *nb)
1707 {
1708         struct net_device *dev;
1709         struct net *net;
1710         int err;
1711
1712         /* Close race with setup_net() and cleanup_net() */
1713         down_write(&pernet_ops_rwsem);
1714         rtnl_lock();
1715         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716         if (err)
1717                 goto unlock;
1718
1719         for_each_net(net) {
1720                 for_each_netdev(net, dev) {
1721                         if (dev->flags & IFF_UP) {
1722                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723                                                         dev);
1724                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725                         }
1726                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727                 }
1728         }
1729 unlock:
1730         rtnl_unlock();
1731         up_write(&pernet_ops_rwsem);
1732         return err;
1733 }
1734 EXPORT_SYMBOL(unregister_netdevice_notifier);
1735
1736 /**
1737  *      call_netdevice_notifiers_info - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @info: notifier information data
1740  *
1741  *      Call all network notifier blocks.  Parameters and return value
1742  *      are as for raw_notifier_call_chain().
1743  */
1744
1745 static int call_netdevice_notifiers_info(unsigned long val,
1746                                          struct netdev_notifier_info *info)
1747 {
1748         ASSERT_RTNL();
1749         return raw_notifier_call_chain(&netdev_chain, val, info);
1750 }
1751
1752 static int call_netdevice_notifiers_extack(unsigned long val,
1753                                            struct net_device *dev,
1754                                            struct netlink_ext_ack *extack)
1755 {
1756         struct netdev_notifier_info info = {
1757                 .dev = dev,
1758                 .extack = extack,
1759         };
1760
1761         return call_netdevice_notifiers_info(val, &info);
1762 }
1763
1764 /**
1765  *      call_netdevice_notifiers - call all network notifier blocks
1766  *      @val: value passed unmodified to notifier function
1767  *      @dev: net_device pointer passed unmodified to notifier function
1768  *
1769  *      Call all network notifier blocks.  Parameters and return value
1770  *      are as for raw_notifier_call_chain().
1771  */
1772
1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1774 {
1775         return call_netdevice_notifiers_extack(val, dev, NULL);
1776 }
1777 EXPORT_SYMBOL(call_netdevice_notifiers);
1778
1779 /**
1780  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1781  *      @val: value passed unmodified to notifier function
1782  *      @dev: net_device pointer passed unmodified to notifier function
1783  *      @arg: additional u32 argument passed to the notifier function
1784  *
1785  *      Call all network notifier blocks.  Parameters and return value
1786  *      are as for raw_notifier_call_chain().
1787  */
1788 static int call_netdevice_notifiers_mtu(unsigned long val,
1789                                         struct net_device *dev, u32 arg)
1790 {
1791         struct netdev_notifier_info_ext info = {
1792                 .info.dev = dev,
1793                 .ext.mtu = arg,
1794         };
1795
1796         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797
1798         return call_netdevice_notifiers_info(val, &info.info);
1799 }
1800
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1803
1804 void net_inc_ingress_queue(void)
1805 {
1806         static_branch_inc(&ingress_needed_key);
1807 }
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809
1810 void net_dec_ingress_queue(void)
1811 {
1812         static_branch_dec(&ingress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815 #endif
1816
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1819
1820 void net_inc_egress_queue(void)
1821 {
1822         static_branch_inc(&egress_needed_key);
1823 }
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825
1826 void net_dec_egress_queue(void)
1827 {
1828         static_branch_dec(&egress_needed_key);
1829 }
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831 #endif
1832
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred;
1836 static atomic_t netstamp_wanted;
1837 static void netstamp_clear(struct work_struct *work)
1838 {
1839         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840         int wanted;
1841
1842         wanted = atomic_add_return(deferred, &netstamp_wanted);
1843         if (wanted > 0)
1844                 static_branch_enable(&netstamp_needed_key);
1845         else
1846                 static_branch_disable(&netstamp_needed_key);
1847 }
1848 static DECLARE_WORK(netstamp_work, netstamp_clear);
1849 #endif
1850
1851 void net_enable_timestamp(void)
1852 {
1853 #ifdef CONFIG_JUMP_LABEL
1854         int wanted;
1855
1856         while (1) {
1857                 wanted = atomic_read(&netstamp_wanted);
1858                 if (wanted <= 0)
1859                         break;
1860                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861                         return;
1862         }
1863         atomic_inc(&netstamp_needed_deferred);
1864         schedule_work(&netstamp_work);
1865 #else
1866         static_branch_inc(&netstamp_needed_key);
1867 #endif
1868 }
1869 EXPORT_SYMBOL(net_enable_timestamp);
1870
1871 void net_disable_timestamp(void)
1872 {
1873 #ifdef CONFIG_JUMP_LABEL
1874         int wanted;
1875
1876         while (1) {
1877                 wanted = atomic_read(&netstamp_wanted);
1878                 if (wanted <= 1)
1879                         break;
1880                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881                         return;
1882         }
1883         atomic_dec(&netstamp_needed_deferred);
1884         schedule_work(&netstamp_work);
1885 #else
1886         static_branch_dec(&netstamp_needed_key);
1887 #endif
1888 }
1889 EXPORT_SYMBOL(net_disable_timestamp);
1890
1891 static inline void net_timestamp_set(struct sk_buff *skb)
1892 {
1893         skb->tstamp = 0;
1894         if (static_branch_unlikely(&netstamp_needed_key))
1895                 __net_timestamp(skb);
1896 }
1897
1898 #define net_timestamp_check(COND, SKB)                          \
1899         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1900                 if ((COND) && !(SKB)->tstamp)                   \
1901                         __net_timestamp(SKB);                   \
1902         }                                                       \
1903
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1905 {
1906         unsigned int len;
1907
1908         if (!(dev->flags & IFF_UP))
1909                 return false;
1910
1911         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912         if (skb->len <= len)
1913                 return true;
1914
1915         /* if TSO is enabled, we don't care about the length as the packet
1916          * could be forwarded without being segmented before
1917          */
1918         if (skb_is_gso(skb))
1919                 return true;
1920
1921         return false;
1922 }
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1924
1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926 {
1927         int ret = ____dev_forward_skb(dev, skb);
1928
1929         if (likely(!ret)) {
1930                 skb->protocol = eth_type_trans(skb, dev);
1931                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932         }
1933
1934         return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937
1938 /**
1939  * dev_forward_skb - loopback an skb to another netif
1940  *
1941  * @dev: destination network device
1942  * @skb: buffer to forward
1943  *
1944  * return values:
1945  *      NET_RX_SUCCESS  (no congestion)
1946  *      NET_RX_DROP     (packet was dropped, but freed)
1947  *
1948  * dev_forward_skb can be used for injecting an skb from the
1949  * start_xmit function of one device into the receive queue
1950  * of another device.
1951  *
1952  * The receiving device may be in another namespace, so
1953  * we have to clear all information in the skb that could
1954  * impact namespace isolation.
1955  */
1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957 {
1958         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1959 }
1960 EXPORT_SYMBOL_GPL(dev_forward_skb);
1961
1962 static inline int deliver_skb(struct sk_buff *skb,
1963                               struct packet_type *pt_prev,
1964                               struct net_device *orig_dev)
1965 {
1966         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967                 return -ENOMEM;
1968         refcount_inc(&skb->users);
1969         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970 }
1971
1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973                                           struct packet_type **pt,
1974                                           struct net_device *orig_dev,
1975                                           __be16 type,
1976                                           struct list_head *ptype_list)
1977 {
1978         struct packet_type *ptype, *pt_prev = *pt;
1979
1980         list_for_each_entry_rcu(ptype, ptype_list, list) {
1981                 if (ptype->type != type)
1982                         continue;
1983                 if (pt_prev)
1984                         deliver_skb(skb, pt_prev, orig_dev);
1985                 pt_prev = ptype;
1986         }
1987         *pt = pt_prev;
1988 }
1989
1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991 {
1992         if (!ptype->af_packet_priv || !skb->sk)
1993                 return false;
1994
1995         if (ptype->id_match)
1996                 return ptype->id_match(ptype, skb->sk);
1997         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998                 return true;
1999
2000         return false;
2001 }
2002
2003 /**
2004  * dev_nit_active - return true if any network interface taps are in use
2005  *
2006  * @dev: network device to check for the presence of taps
2007  */
2008 bool dev_nit_active(struct net_device *dev)
2009 {
2010         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011 }
2012 EXPORT_SYMBOL_GPL(dev_nit_active);
2013
2014 /*
2015  *      Support routine. Sends outgoing frames to any network
2016  *      taps currently in use.
2017  */
2018
2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2020 {
2021         struct packet_type *ptype;
2022         struct sk_buff *skb2 = NULL;
2023         struct packet_type *pt_prev = NULL;
2024         struct list_head *ptype_list = &ptype_all;
2025
2026         rcu_read_lock();
2027 again:
2028         list_for_each_entry_rcu(ptype, ptype_list, list) {
2029                 if (ptype->ignore_outgoing)
2030                         continue;
2031
2032                 /* Never send packets back to the socket
2033                  * they originated from - MvS (miquels@drinkel.ow.org)
2034                  */
2035                 if (skb_loop_sk(ptype, skb))
2036                         continue;
2037
2038                 if (pt_prev) {
2039                         deliver_skb(skb2, pt_prev, skb->dev);
2040                         pt_prev = ptype;
2041                         continue;
2042                 }
2043
2044                 /* need to clone skb, done only once */
2045                 skb2 = skb_clone(skb, GFP_ATOMIC);
2046                 if (!skb2)
2047                         goto out_unlock;
2048
2049                 net_timestamp_set(skb2);
2050
2051                 /* skb->nh should be correctly
2052                  * set by sender, so that the second statement is
2053                  * just protection against buggy protocols.
2054                  */
2055                 skb_reset_mac_header(skb2);
2056
2057                 if (skb_network_header(skb2) < skb2->data ||
2058                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060                                              ntohs(skb2->protocol),
2061                                              dev->name);
2062                         skb_reset_network_header(skb2);
2063                 }
2064
2065                 skb2->transport_header = skb2->network_header;
2066                 skb2->pkt_type = PACKET_OUTGOING;
2067                 pt_prev = ptype;
2068         }
2069
2070         if (ptype_list == &ptype_all) {
2071                 ptype_list = &dev->ptype_all;
2072                 goto again;
2073         }
2074 out_unlock:
2075         if (pt_prev) {
2076                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078                 else
2079                         kfree_skb(skb2);
2080         }
2081         rcu_read_unlock();
2082 }
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2084
2085 /**
2086  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087  * @dev: Network device
2088  * @txq: number of queues available
2089  *
2090  * If real_num_tx_queues is changed the tc mappings may no longer be
2091  * valid. To resolve this verify the tc mapping remains valid and if
2092  * not NULL the mapping. With no priorities mapping to this
2093  * offset/count pair it will no longer be used. In the worst case TC0
2094  * is invalid nothing can be done so disable priority mappings. If is
2095  * expected that drivers will fix this mapping if they can before
2096  * calling netif_set_real_num_tx_queues.
2097  */
2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2099 {
2100         int i;
2101         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102
2103         /* If TC0 is invalidated disable TC mapping */
2104         if (tc->offset + tc->count > txq) {
2105                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106                 dev->num_tc = 0;
2107                 return;
2108         }
2109
2110         /* Invalidated prio to tc mappings set to TC0 */
2111         for (i = 1; i < TC_BITMASK + 1; i++) {
2112                 int q = netdev_get_prio_tc_map(dev, i);
2113
2114                 tc = &dev->tc_to_txq[q];
2115                 if (tc->offset + tc->count > txq) {
2116                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117                                 i, q);
2118                         netdev_set_prio_tc_map(dev, i, 0);
2119                 }
2120         }
2121 }
2122
2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124 {
2125         if (dev->num_tc) {
2126                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127                 int i;
2128
2129                 /* walk through the TCs and see if it falls into any of them */
2130                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131                         if ((txq - tc->offset) < tc->count)
2132                                 return i;
2133                 }
2134
2135                 /* didn't find it, just return -1 to indicate no match */
2136                 return -1;
2137         }
2138
2139         return 0;
2140 }
2141 EXPORT_SYMBOL(netdev_txq_to_tc);
2142
2143 #ifdef CONFIG_XPS
2144 struct static_key xps_needed __read_mostly;
2145 EXPORT_SYMBOL(xps_needed);
2146 struct static_key xps_rxqs_needed __read_mostly;
2147 EXPORT_SYMBOL(xps_rxqs_needed);
2148 static DEFINE_MUTEX(xps_map_mutex);
2149 #define xmap_dereference(P)             \
2150         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151
2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153                              int tci, u16 index)
2154 {
2155         struct xps_map *map = NULL;
2156         int pos;
2157
2158         if (dev_maps)
2159                 map = xmap_dereference(dev_maps->attr_map[tci]);
2160         if (!map)
2161                 return false;
2162
2163         for (pos = map->len; pos--;) {
2164                 if (map->queues[pos] != index)
2165                         continue;
2166
2167                 if (map->len > 1) {
2168                         map->queues[pos] = map->queues[--map->len];
2169                         break;
2170                 }
2171
2172                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173                 kfree_rcu(map, rcu);
2174                 return false;
2175         }
2176
2177         return true;
2178 }
2179
2180 static bool remove_xps_queue_cpu(struct net_device *dev,
2181                                  struct xps_dev_maps *dev_maps,
2182                                  int cpu, u16 offset, u16 count)
2183 {
2184         int num_tc = dev->num_tc ? : 1;
2185         bool active = false;
2186         int tci;
2187
2188         for (tci = cpu * num_tc; num_tc--; tci++) {
2189                 int i, j;
2190
2191                 for (i = count, j = offset; i--; j++) {
2192                         if (!remove_xps_queue(dev_maps, tci, j))
2193                                 break;
2194                 }
2195
2196                 active |= i < 0;
2197         }
2198
2199         return active;
2200 }
2201
2202 static void reset_xps_maps(struct net_device *dev,
2203                            struct xps_dev_maps *dev_maps,
2204                            bool is_rxqs_map)
2205 {
2206         if (is_rxqs_map) {
2207                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209         } else {
2210                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211         }
2212         static_key_slow_dec_cpuslocked(&xps_needed);
2213         kfree_rcu(dev_maps, rcu);
2214 }
2215
2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218                            u16 offset, u16 count, bool is_rxqs_map)
2219 {
2220         bool active = false;
2221         int i, j;
2222
2223         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224              j < nr_ids;)
2225                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226                                                count);
2227         if (!active)
2228                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2229
2230         if (!is_rxqs_map) {
2231                 for (i = offset + (count - 1); count--; i--) {
2232                         netdev_queue_numa_node_write(
2233                                 netdev_get_tx_queue(dev, i),
2234                                 NUMA_NO_NODE);
2235                 }
2236         }
2237 }
2238
2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240                                    u16 count)
2241 {
2242         const unsigned long *possible_mask = NULL;
2243         struct xps_dev_maps *dev_maps;
2244         unsigned int nr_ids;
2245
2246         if (!static_key_false(&xps_needed))
2247                 return;
2248
2249         cpus_read_lock();
2250         mutex_lock(&xps_map_mutex);
2251
2252         if (static_key_false(&xps_rxqs_needed)) {
2253                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254                 if (dev_maps) {
2255                         nr_ids = dev->num_rx_queues;
2256                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257                                        offset, count, true);
2258                 }
2259         }
2260
2261         dev_maps = xmap_dereference(dev->xps_cpus_map);
2262         if (!dev_maps)
2263                 goto out_no_maps;
2264
2265         if (num_possible_cpus() > 1)
2266                 possible_mask = cpumask_bits(cpu_possible_mask);
2267         nr_ids = nr_cpu_ids;
2268         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269                        false);
2270
2271 out_no_maps:
2272         mutex_unlock(&xps_map_mutex);
2273         cpus_read_unlock();
2274 }
2275
2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277 {
2278         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279 }
2280
2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282                                       u16 index, bool is_rxqs_map)
2283 {
2284         struct xps_map *new_map;
2285         int alloc_len = XPS_MIN_MAP_ALLOC;
2286         int i, pos;
2287
2288         for (pos = 0; map && pos < map->len; pos++) {
2289                 if (map->queues[pos] != index)
2290                         continue;
2291                 return map;
2292         }
2293
2294         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295         if (map) {
2296                 if (pos < map->alloc_len)
2297                         return map;
2298
2299                 alloc_len = map->alloc_len * 2;
2300         }
2301
2302         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303          *  map
2304          */
2305         if (is_rxqs_map)
2306                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307         else
2308                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309                                        cpu_to_node(attr_index));
2310         if (!new_map)
2311                 return NULL;
2312
2313         for (i = 0; i < pos; i++)
2314                 new_map->queues[i] = map->queues[i];
2315         new_map->alloc_len = alloc_len;
2316         new_map->len = pos;
2317
2318         return new_map;
2319 }
2320
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323                           u16 index, bool is_rxqs_map)
2324 {
2325         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327         int i, j, tci, numa_node_id = -2;
2328         int maps_sz, num_tc = 1, tc = 0;
2329         struct xps_map *map, *new_map;
2330         bool active = false;
2331         unsigned int nr_ids;
2332
2333         if (dev->num_tc) {
2334                 /* Do not allow XPS on subordinate device directly */
2335                 num_tc = dev->num_tc;
2336                 if (num_tc < 0)
2337                         return -EINVAL;
2338
2339                 /* If queue belongs to subordinate dev use its map */
2340                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341
2342                 tc = netdev_txq_to_tc(dev, index);
2343                 if (tc < 0)
2344                         return -EINVAL;
2345         }
2346
2347         mutex_lock(&xps_map_mutex);
2348         if (is_rxqs_map) {
2349                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351                 nr_ids = dev->num_rx_queues;
2352         } else {
2353                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354                 if (num_possible_cpus() > 1) {
2355                         online_mask = cpumask_bits(cpu_online_mask);
2356                         possible_mask = cpumask_bits(cpu_possible_mask);
2357                 }
2358                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2359                 nr_ids = nr_cpu_ids;
2360         }
2361
2362         if (maps_sz < L1_CACHE_BYTES)
2363                 maps_sz = L1_CACHE_BYTES;
2364
2365         /* allocate memory for queue storage */
2366         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367              j < nr_ids;) {
2368                 if (!new_dev_maps)
2369                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370                 if (!new_dev_maps) {
2371                         mutex_unlock(&xps_map_mutex);
2372                         return -ENOMEM;
2373                 }
2374
2375                 tci = j * num_tc + tc;
2376                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377                                  NULL;
2378
2379                 map = expand_xps_map(map, j, index, is_rxqs_map);
2380                 if (!map)
2381                         goto error;
2382
2383                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2384         }
2385
2386         if (!new_dev_maps)
2387                 goto out_no_new_maps;
2388
2389         if (!dev_maps) {
2390                 /* Increment static keys at most once per type */
2391                 static_key_slow_inc_cpuslocked(&xps_needed);
2392                 if (is_rxqs_map)
2393                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394         }
2395
2396         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397              j < nr_ids;) {
2398                 /* copy maps belonging to foreign traffic classes */
2399                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400                         /* fill in the new device map from the old device map */
2401                         map = xmap_dereference(dev_maps->attr_map[tci]);
2402                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2403                 }
2404
2405                 /* We need to explicitly update tci as prevous loop
2406                  * could break out early if dev_maps is NULL.
2407                  */
2408                 tci = j * num_tc + tc;
2409
2410                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2411                     netif_attr_test_online(j, online_mask, nr_ids)) {
2412                         /* add tx-queue to CPU/rx-queue maps */
2413                         int pos = 0;
2414
2415                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416                         while ((pos < map->len) && (map->queues[pos] != index))
2417                                 pos++;
2418
2419                         if (pos == map->len)
2420                                 map->queues[map->len++] = index;
2421 #ifdef CONFIG_NUMA
2422                         if (!is_rxqs_map) {
2423                                 if (numa_node_id == -2)
2424                                         numa_node_id = cpu_to_node(j);
2425                                 else if (numa_node_id != cpu_to_node(j))
2426                                         numa_node_id = -1;
2427                         }
2428 #endif
2429                 } else if (dev_maps) {
2430                         /* fill in the new device map from the old device map */
2431                         map = xmap_dereference(dev_maps->attr_map[tci]);
2432                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2433                 }
2434
2435                 /* copy maps belonging to foreign traffic classes */
2436                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437                         /* fill in the new device map from the old device map */
2438                         map = xmap_dereference(dev_maps->attr_map[tci]);
2439                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2440                 }
2441         }
2442
2443         if (is_rxqs_map)
2444                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445         else
2446                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2447
2448         /* Cleanup old maps */
2449         if (!dev_maps)
2450                 goto out_no_old_maps;
2451
2452         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453              j < nr_ids;) {
2454                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456                         map = xmap_dereference(dev_maps->attr_map[tci]);
2457                         if (map && map != new_map)
2458                                 kfree_rcu(map, rcu);
2459                 }
2460         }
2461
2462         kfree_rcu(dev_maps, rcu);
2463
2464 out_no_old_maps:
2465         dev_maps = new_dev_maps;
2466         active = true;
2467
2468 out_no_new_maps:
2469         if (!is_rxqs_map) {
2470                 /* update Tx queue numa node */
2471                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472                                              (numa_node_id >= 0) ?
2473                                              numa_node_id : NUMA_NO_NODE);
2474         }
2475
2476         if (!dev_maps)
2477                 goto out_no_maps;
2478
2479         /* removes tx-queue from unused CPUs/rx-queues */
2480         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481              j < nr_ids;) {
2482                 for (i = tc, tci = j * num_tc; i--; tci++)
2483                         active |= remove_xps_queue(dev_maps, tci, index);
2484                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485                     !netif_attr_test_online(j, online_mask, nr_ids))
2486                         active |= remove_xps_queue(dev_maps, tci, index);
2487                 for (i = num_tc - tc, tci++; --i; tci++)
2488                         active |= remove_xps_queue(dev_maps, tci, index);
2489         }
2490
2491         /* free map if not active */
2492         if (!active)
2493                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2494
2495 out_no_maps:
2496         mutex_unlock(&xps_map_mutex);
2497
2498         return 0;
2499 error:
2500         /* remove any maps that we added */
2501         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502              j < nr_ids;) {
2503                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505                         map = dev_maps ?
2506                               xmap_dereference(dev_maps->attr_map[tci]) :
2507                               NULL;
2508                         if (new_map && new_map != map)
2509                                 kfree(new_map);
2510                 }
2511         }
2512
2513         mutex_unlock(&xps_map_mutex);
2514
2515         kfree(new_dev_maps);
2516         return -ENOMEM;
2517 }
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2519
2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521                         u16 index)
2522 {
2523         int ret;
2524
2525         cpus_read_lock();
2526         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527         cpus_read_unlock();
2528
2529         return ret;
2530 }
2531 EXPORT_SYMBOL(netif_set_xps_queue);
2532
2533 #endif
2534 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535 {
2536         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537
2538         /* Unbind any subordinate channels */
2539         while (txq-- != &dev->_tx[0]) {
2540                 if (txq->sb_dev)
2541                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2542         }
2543 }
2544
2545 void netdev_reset_tc(struct net_device *dev)
2546 {
2547 #ifdef CONFIG_XPS
2548         netif_reset_xps_queues_gt(dev, 0);
2549 #endif
2550         netdev_unbind_all_sb_channels(dev);
2551
2552         /* Reset TC configuration of device */
2553         dev->num_tc = 0;
2554         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556 }
2557 EXPORT_SYMBOL(netdev_reset_tc);
2558
2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560 {
2561         if (tc >= dev->num_tc)
2562                 return -EINVAL;
2563
2564 #ifdef CONFIG_XPS
2565         netif_reset_xps_queues(dev, offset, count);
2566 #endif
2567         dev->tc_to_txq[tc].count = count;
2568         dev->tc_to_txq[tc].offset = offset;
2569         return 0;
2570 }
2571 EXPORT_SYMBOL(netdev_set_tc_queue);
2572
2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574 {
2575         if (num_tc > TC_MAX_QUEUE)
2576                 return -EINVAL;
2577
2578 #ifdef CONFIG_XPS
2579         netif_reset_xps_queues_gt(dev, 0);
2580 #endif
2581         netdev_unbind_all_sb_channels(dev);
2582
2583         dev->num_tc = num_tc;
2584         return 0;
2585 }
2586 EXPORT_SYMBOL(netdev_set_num_tc);
2587
2588 void netdev_unbind_sb_channel(struct net_device *dev,
2589                               struct net_device *sb_dev)
2590 {
2591         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592
2593 #ifdef CONFIG_XPS
2594         netif_reset_xps_queues_gt(sb_dev, 0);
2595 #endif
2596         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598
2599         while (txq-- != &dev->_tx[0]) {
2600                 if (txq->sb_dev == sb_dev)
2601                         txq->sb_dev = NULL;
2602         }
2603 }
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605
2606 int netdev_bind_sb_channel_queue(struct net_device *dev,
2607                                  struct net_device *sb_dev,
2608                                  u8 tc, u16 count, u16 offset)
2609 {
2610         /* Make certain the sb_dev and dev are already configured */
2611         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612                 return -EINVAL;
2613
2614         /* We cannot hand out queues we don't have */
2615         if ((offset + count) > dev->real_num_tx_queues)
2616                 return -EINVAL;
2617
2618         /* Record the mapping */
2619         sb_dev->tc_to_txq[tc].count = count;
2620         sb_dev->tc_to_txq[tc].offset = offset;
2621
2622         /* Provide a way for Tx queue to find the tc_to_txq map or
2623          * XPS map for itself.
2624          */
2625         while (count--)
2626                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627
2628         return 0;
2629 }
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631
2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633 {
2634         /* Do not use a multiqueue device to represent a subordinate channel */
2635         if (netif_is_multiqueue(dev))
2636                 return -ENODEV;
2637
2638         /* We allow channels 1 - 32767 to be used for subordinate channels.
2639          * Channel 0 is meant to be "native" mode and used only to represent
2640          * the main root device. We allow writing 0 to reset the device back
2641          * to normal mode after being used as a subordinate channel.
2642          */
2643         if (channel > S16_MAX)
2644                 return -EINVAL;
2645
2646         dev->num_tc = -channel;
2647
2648         return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_set_sb_channel);
2651
2652 /*
2653  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2655  */
2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2657 {
2658         bool disabling;
2659         int rc;
2660
2661         disabling = txq < dev->real_num_tx_queues;
2662
2663         if (txq < 1 || txq > dev->num_tx_queues)
2664                 return -EINVAL;
2665
2666         if (dev->reg_state == NETREG_REGISTERED ||
2667             dev->reg_state == NETREG_UNREGISTERING) {
2668                 ASSERT_RTNL();
2669
2670                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671                                                   txq);
2672                 if (rc)
2673                         return rc;
2674
2675                 if (dev->num_tc)
2676                         netif_setup_tc(dev, txq);
2677
2678                 dev->real_num_tx_queues = txq;
2679
2680                 if (disabling) {
2681                         synchronize_net();
2682                         qdisc_reset_all_tx_gt(dev, txq);
2683 #ifdef CONFIG_XPS
2684                         netif_reset_xps_queues_gt(dev, txq);
2685 #endif
2686                 }
2687         } else {
2688                 dev->real_num_tx_queues = txq;
2689         }
2690
2691         return 0;
2692 }
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2694
2695 #ifdef CONFIG_SYSFS
2696 /**
2697  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2698  *      @dev: Network device
2699  *      @rxq: Actual number of RX queues
2700  *
2701  *      This must be called either with the rtnl_lock held or before
2702  *      registration of the net device.  Returns 0 on success, or a
2703  *      negative error code.  If called before registration, it always
2704  *      succeeds.
2705  */
2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707 {
2708         int rc;
2709
2710         if (rxq < 1 || rxq > dev->num_rx_queues)
2711                 return -EINVAL;
2712
2713         if (dev->reg_state == NETREG_REGISTERED) {
2714                 ASSERT_RTNL();
2715
2716                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717                                                   rxq);
2718                 if (rc)
2719                         return rc;
2720         }
2721
2722         dev->real_num_rx_queues = rxq;
2723         return 0;
2724 }
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726 #endif
2727
2728 /**
2729  * netif_get_num_default_rss_queues - default number of RSS queues
2730  *
2731  * This routine should set an upper limit on the number of RSS queues
2732  * used by default by multiqueue devices.
2733  */
2734 int netif_get_num_default_rss_queues(void)
2735 {
2736         return is_kdump_kernel() ?
2737                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2738 }
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740
2741 static void __netif_reschedule(struct Qdisc *q)
2742 {
2743         struct softnet_data *sd;
2744         unsigned long flags;
2745
2746         local_irq_save(flags);
2747         sd = this_cpu_ptr(&softnet_data);
2748         q->next_sched = NULL;
2749         *sd->output_queue_tailp = q;
2750         sd->output_queue_tailp = &q->next_sched;
2751         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752         local_irq_restore(flags);
2753 }
2754
2755 void __netif_schedule(struct Qdisc *q)
2756 {
2757         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758                 __netif_reschedule(q);
2759 }
2760 EXPORT_SYMBOL(__netif_schedule);
2761
2762 struct dev_kfree_skb_cb {
2763         enum skb_free_reason reason;
2764 };
2765
2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2767 {
2768         return (struct dev_kfree_skb_cb *)skb->cb;
2769 }
2770
2771 void netif_schedule_queue(struct netdev_queue *txq)
2772 {
2773         rcu_read_lock();
2774         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2776
2777                 __netif_schedule(q);
2778         }
2779         rcu_read_unlock();
2780 }
2781 EXPORT_SYMBOL(netif_schedule_queue);
2782
2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784 {
2785         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786                 struct Qdisc *q;
2787
2788                 rcu_read_lock();
2789                 q = rcu_dereference(dev_queue->qdisc);
2790                 __netif_schedule(q);
2791                 rcu_read_unlock();
2792         }
2793 }
2794 EXPORT_SYMBOL(netif_tx_wake_queue);
2795
2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2797 {
2798         unsigned long flags;
2799
2800         if (unlikely(!skb))
2801                 return;
2802
2803         if (likely(refcount_read(&skb->users) == 1)) {
2804                 smp_rmb();
2805                 refcount_set(&skb->users, 0);
2806         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2807                 return;
2808         }
2809         get_kfree_skb_cb(skb)->reason = reason;
2810         local_irq_save(flags);
2811         skb->next = __this_cpu_read(softnet_data.completion_queue);
2812         __this_cpu_write(softnet_data.completion_queue, skb);
2813         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814         local_irq_restore(flags);
2815 }
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2817
2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2819 {
2820         if (in_irq() || irqs_disabled())
2821                 __dev_kfree_skb_irq(skb, reason);
2822         else
2823                 dev_kfree_skb(skb);
2824 }
2825 EXPORT_SYMBOL(__dev_kfree_skb_any);
2826
2827
2828 /**
2829  * netif_device_detach - mark device as removed
2830  * @dev: network device
2831  *
2832  * Mark device as removed from system and therefore no longer available.
2833  */
2834 void netif_device_detach(struct net_device *dev)
2835 {
2836         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837             netif_running(dev)) {
2838                 netif_tx_stop_all_queues(dev);
2839         }
2840 }
2841 EXPORT_SYMBOL(netif_device_detach);
2842
2843 /**
2844  * netif_device_attach - mark device as attached
2845  * @dev: network device
2846  *
2847  * Mark device as attached from system and restart if needed.
2848  */
2849 void netif_device_attach(struct net_device *dev)
2850 {
2851         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852             netif_running(dev)) {
2853                 netif_tx_wake_all_queues(dev);
2854                 __netdev_watchdog_up(dev);
2855         }
2856 }
2857 EXPORT_SYMBOL(netif_device_attach);
2858
2859 /*
2860  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861  * to be used as a distribution range.
2862  */
2863 static u16 skb_tx_hash(const struct net_device *dev,
2864                        const struct net_device *sb_dev,
2865                        struct sk_buff *skb)
2866 {
2867         u32 hash;
2868         u16 qoffset = 0;
2869         u16 qcount = dev->real_num_tx_queues;
2870
2871         if (dev->num_tc) {
2872                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873
2874                 qoffset = sb_dev->tc_to_txq[tc].offset;
2875                 qcount = sb_dev->tc_to_txq[tc].count;
2876         }
2877
2878         if (skb_rx_queue_recorded(skb)) {
2879                 hash = skb_get_rx_queue(skb);
2880                 while (unlikely(hash >= qcount))
2881                         hash -= qcount;
2882                 return hash + qoffset;
2883         }
2884
2885         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886 }
2887
2888 static void skb_warn_bad_offload(const struct sk_buff *skb)
2889 {
2890         static const netdev_features_t null_features;
2891         struct net_device *dev = skb->dev;
2892         const char *name = "";
2893
2894         if (!net_ratelimit())
2895                 return;
2896
2897         if (dev) {
2898                 if (dev->dev.parent)
2899                         name = dev_driver_string(dev->dev.parent);
2900                 else
2901                         name = netdev_name(dev);
2902         }
2903         skb_dump(KERN_WARNING, skb, false);
2904         WARN(1, "%s: caps=(%pNF, %pNF)\n",
2905              name, dev ? &dev->features : &null_features,
2906              skb->sk ? &skb->sk->sk_route_caps : &null_features);
2907 }
2908
2909 /*
2910  * Invalidate hardware checksum when packet is to be mangled, and
2911  * complete checksum manually on outgoing path.
2912  */
2913 int skb_checksum_help(struct sk_buff *skb)
2914 {
2915         __wsum csum;
2916         int ret = 0, offset;
2917
2918         if (skb->ip_summed == CHECKSUM_COMPLETE)
2919                 goto out_set_summed;
2920
2921         if (unlikely(skb_shinfo(skb)->gso_size)) {
2922                 skb_warn_bad_offload(skb);
2923                 return -EINVAL;
2924         }
2925
2926         /* Before computing a checksum, we should make sure no frag could
2927          * be modified by an external entity : checksum could be wrong.
2928          */
2929         if (skb_has_shared_frag(skb)) {
2930                 ret = __skb_linearize(skb);
2931                 if (ret)
2932                         goto out;
2933         }
2934
2935         offset = skb_checksum_start_offset(skb);
2936         BUG_ON(offset >= skb_headlen(skb));
2937         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2938
2939         offset += skb->csum_offset;
2940         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2941
2942         if (skb_cloned(skb) &&
2943             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2944                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2945                 if (ret)
2946                         goto out;
2947         }
2948
2949         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2950 out_set_summed:
2951         skb->ip_summed = CHECKSUM_NONE;
2952 out:
2953         return ret;
2954 }
2955 EXPORT_SYMBOL(skb_checksum_help);
2956
2957 int skb_crc32c_csum_help(struct sk_buff *skb)
2958 {
2959         __le32 crc32c_csum;
2960         int ret = 0, offset, start;
2961
2962         if (skb->ip_summed != CHECKSUM_PARTIAL)
2963                 goto out;
2964
2965         if (unlikely(skb_is_gso(skb)))
2966                 goto out;
2967
2968         /* Before computing a checksum, we should make sure no frag could
2969          * be modified by an external entity : checksum could be wrong.
2970          */
2971         if (unlikely(skb_has_shared_frag(skb))) {
2972                 ret = __skb_linearize(skb);
2973                 if (ret)
2974                         goto out;
2975         }
2976         start = skb_checksum_start_offset(skb);
2977         offset = start + offsetof(struct sctphdr, checksum);
2978         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2979                 ret = -EINVAL;
2980                 goto out;
2981         }
2982         if (skb_cloned(skb) &&
2983             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2984                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2985                 if (ret)
2986                         goto out;
2987         }
2988         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2989                                                   skb->len - start, ~(__u32)0,
2990                                                   crc32c_csum_stub));
2991         *(__le32 *)(skb->data + offset) = crc32c_csum;
2992         skb->ip_summed = CHECKSUM_NONE;
2993         skb->csum_not_inet = 0;
2994 out:
2995         return ret;
2996 }
2997
2998 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2999 {
3000         __be16 type = skb->protocol;
3001
3002         /* Tunnel gso handlers can set protocol to ethernet. */
3003         if (type == htons(ETH_P_TEB)) {
3004                 struct ethhdr *eth;
3005
3006                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3007                         return 0;
3008
3009                 eth = (struct ethhdr *)skb->data;
3010                 type = eth->h_proto;
3011         }
3012
3013         return __vlan_get_protocol(skb, type, depth);
3014 }
3015
3016 /**
3017  *      skb_mac_gso_segment - mac layer segmentation handler.
3018  *      @skb: buffer to segment
3019  *      @features: features for the output path (see dev->features)
3020  */
3021 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3022                                     netdev_features_t features)
3023 {
3024         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3025         struct packet_offload *ptype;
3026         int vlan_depth = skb->mac_len;
3027         __be16 type = skb_network_protocol(skb, &vlan_depth);
3028
3029         if (unlikely(!type))
3030                 return ERR_PTR(-EINVAL);
3031
3032         __skb_pull(skb, vlan_depth);
3033
3034         rcu_read_lock();
3035         list_for_each_entry_rcu(ptype, &offload_base, list) {
3036                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3037                         segs = ptype->callbacks.gso_segment(skb, features);
3038                         break;
3039                 }
3040         }
3041         rcu_read_unlock();
3042
3043         __skb_push(skb, skb->data - skb_mac_header(skb));
3044
3045         return segs;
3046 }
3047 EXPORT_SYMBOL(skb_mac_gso_segment);
3048
3049
3050 /* openvswitch calls this on rx path, so we need a different check.
3051  */
3052 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3053 {
3054         if (tx_path)
3055                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3056                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3057
3058         return skb->ip_summed == CHECKSUM_NONE;
3059 }
3060
3061 /**
3062  *      __skb_gso_segment - Perform segmentation on skb.
3063  *      @skb: buffer to segment
3064  *      @features: features for the output path (see dev->features)
3065  *      @tx_path: whether it is called in TX path
3066  *
3067  *      This function segments the given skb and returns a list of segments.
3068  *
3069  *      It may return NULL if the skb requires no segmentation.  This is
3070  *      only possible when GSO is used for verifying header integrity.
3071  *
3072  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3073  */
3074 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3075                                   netdev_features_t features, bool tx_path)
3076 {
3077         struct sk_buff *segs;
3078
3079         if (unlikely(skb_needs_check(skb, tx_path))) {
3080                 int err;
3081
3082                 /* We're going to init ->check field in TCP or UDP header */
3083                 err = skb_cow_head(skb, 0);
3084                 if (err < 0)
3085                         return ERR_PTR(err);
3086         }
3087
3088         /* Only report GSO partial support if it will enable us to
3089          * support segmentation on this frame without needing additional
3090          * work.
3091          */
3092         if (features & NETIF_F_GSO_PARTIAL) {
3093                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3094                 struct net_device *dev = skb->dev;
3095
3096                 partial_features |= dev->features & dev->gso_partial_features;
3097                 if (!skb_gso_ok(skb, features | partial_features))
3098                         features &= ~NETIF_F_GSO_PARTIAL;
3099         }
3100
3101         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3102                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3103
3104         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3105         SKB_GSO_CB(skb)->encap_level = 0;
3106
3107         skb_reset_mac_header(skb);
3108         skb_reset_mac_len(skb);
3109
3110         segs = skb_mac_gso_segment(skb, features);
3111
3112         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3113                 skb_warn_bad_offload(skb);
3114
3115         return segs;
3116 }
3117 EXPORT_SYMBOL(__skb_gso_segment);
3118
3119 /* Take action when hardware reception checksum errors are detected. */
3120 #ifdef CONFIG_BUG
3121 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3122 {
3123         if (net_ratelimit()) {
3124                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3125                 skb_dump(KERN_ERR, skb, true);
3126                 dump_stack();
3127         }
3128 }
3129 EXPORT_SYMBOL(netdev_rx_csum_fault);
3130 #endif
3131
3132 /* XXX: check that highmem exists at all on the given machine. */
3133 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3134 {
3135 #ifdef CONFIG_HIGHMEM
3136         int i;
3137
3138         if (!(dev->features & NETIF_F_HIGHDMA)) {
3139                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3140                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3141
3142                         if (PageHighMem(skb_frag_page(frag)))
3143                                 return 1;
3144                 }
3145         }
3146 #endif
3147         return 0;
3148 }
3149
3150 /* If MPLS offload request, verify we are testing hardware MPLS features
3151  * instead of standard features for the netdev.
3152  */
3153 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3154 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3155                                            netdev_features_t features,
3156                                            __be16 type)
3157 {
3158         if (eth_p_mpls(type))
3159                 features &= skb->dev->mpls_features;
3160
3161         return features;
3162 }
3163 #else
3164 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3165                                            netdev_features_t features,
3166                                            __be16 type)
3167 {
3168         return features;
3169 }
3170 #endif
3171
3172 static netdev_features_t harmonize_features(struct sk_buff *skb,
3173         netdev_features_t features)
3174 {
3175         int tmp;
3176         __be16 type;
3177
3178         type = skb_network_protocol(skb, &tmp);
3179         features = net_mpls_features(skb, features, type);
3180
3181         if (skb->ip_summed != CHECKSUM_NONE &&
3182             !can_checksum_protocol(features, type)) {
3183                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3184         }
3185         if (illegal_highdma(skb->dev, skb))
3186                 features &= ~NETIF_F_SG;
3187
3188         return features;
3189 }
3190
3191 netdev_features_t passthru_features_check(struct sk_buff *skb,
3192                                           struct net_device *dev,
3193                                           netdev_features_t features)
3194 {
3195         return features;
3196 }
3197 EXPORT_SYMBOL(passthru_features_check);
3198
3199 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3200                                              struct net_device *dev,
3201                                              netdev_features_t features)
3202 {
3203         return vlan_features_check(skb, features);
3204 }
3205
3206 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3207                                             struct net_device *dev,
3208                                             netdev_features_t features)
3209 {
3210         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3211
3212         if (gso_segs > dev->gso_max_segs)
3213                 return features & ~NETIF_F_GSO_MASK;
3214
3215         /* Support for GSO partial features requires software
3216          * intervention before we can actually process the packets
3217          * so we need to strip support for any partial features now
3218          * and we can pull them back in after we have partially
3219          * segmented the frame.
3220          */
3221         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3222                 features &= ~dev->gso_partial_features;
3223
3224         /* Make sure to clear the IPv4 ID mangling feature if the
3225          * IPv4 header has the potential to be fragmented.
3226          */
3227         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3228                 struct iphdr *iph = skb->encapsulation ?
3229                                     inner_ip_hdr(skb) : ip_hdr(skb);
3230
3231                 if (!(iph->frag_off & htons(IP_DF)))
3232                         features &= ~NETIF_F_TSO_MANGLEID;
3233         }
3234
3235         return features;
3236 }
3237
3238 netdev_features_t netif_skb_features(struct sk_buff *skb)
3239 {
3240         struct net_device *dev = skb->dev;
3241         netdev_features_t features = dev->features;
3242
3243         if (skb_is_gso(skb))
3244                 features = gso_features_check(skb, dev, features);
3245
3246         /* If encapsulation offload request, verify we are testing
3247          * hardware encapsulation features instead of standard
3248          * features for the netdev
3249          */
3250         if (skb->encapsulation)
3251                 features &= dev->hw_enc_features;
3252
3253         if (skb_vlan_tagged(skb))
3254                 features = netdev_intersect_features(features,
3255                                                      dev->vlan_features |
3256                                                      NETIF_F_HW_VLAN_CTAG_TX |
3257                                                      NETIF_F_HW_VLAN_STAG_TX);
3258
3259         if (dev->netdev_ops->ndo_features_check)
3260                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3261                                                                 features);
3262         else
3263                 features &= dflt_features_check(skb, dev, features);
3264
3265         return harmonize_features(skb, features);
3266 }
3267 EXPORT_SYMBOL(netif_skb_features);
3268
3269 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3270                     struct netdev_queue *txq, bool more)
3271 {
3272         unsigned int len;
3273         int rc;
3274
3275         if (dev_nit_active(dev))
3276                 dev_queue_xmit_nit(skb, dev);
3277
3278         len = skb->len;
3279         trace_net_dev_start_xmit(skb, dev);
3280         rc = netdev_start_xmit(skb, dev, txq, more);
3281         trace_net_dev_xmit(skb, rc, dev, len);
3282
3283         return rc;
3284 }
3285
3286 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3287                                     struct netdev_queue *txq, int *ret)
3288 {
3289         struct sk_buff *skb = first;
3290         int rc = NETDEV_TX_OK;
3291
3292         while (skb) {
3293                 struct sk_buff *next = skb->next;
3294
3295                 skb_mark_not_on_list(skb);
3296                 rc = xmit_one(skb, dev, txq, next != NULL);
3297                 if (unlikely(!dev_xmit_complete(rc))) {
3298                         skb->next = next;
3299                         goto out;
3300                 }
3301
3302                 skb = next;
3303                 if (netif_tx_queue_stopped(txq) && skb) {
3304                         rc = NETDEV_TX_BUSY;
3305                         break;
3306                 }
3307         }
3308
3309 out:
3310         *ret = rc;
3311         return skb;
3312 }
3313
3314 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3315                                           netdev_features_t features)
3316 {
3317         if (skb_vlan_tag_present(skb) &&
3318             !vlan_hw_offload_capable(features, skb->vlan_proto))
3319                 skb = __vlan_hwaccel_push_inside(skb);
3320         return skb;
3321 }
3322
3323 int skb_csum_hwoffload_help(struct sk_buff *skb,
3324                             const netdev_features_t features)
3325 {
3326         if (unlikely(skb->csum_not_inet))
3327                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3328                         skb_crc32c_csum_help(skb);
3329
3330         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3331 }
3332 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3333
3334 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3335 {
3336         netdev_features_t features;
3337
3338         features = netif_skb_features(skb);
3339         skb = validate_xmit_vlan(skb, features);
3340         if (unlikely(!skb))
3341                 goto out_null;
3342
3343         skb = sk_validate_xmit_skb(skb, dev);
3344         if (unlikely(!skb))
3345                 goto out_null;
3346
3347         if (netif_needs_gso(skb, features)) {
3348                 struct sk_buff *segs;
3349
3350                 segs = skb_gso_segment(skb, features);
3351                 if (IS_ERR(segs)) {
3352                         goto out_kfree_skb;
3353                 } else if (segs) {
3354                         consume_skb(skb);
3355                         skb = segs;
3356                 }
3357         } else {
3358                 if (skb_needs_linearize(skb, features) &&
3359                     __skb_linearize(skb))
3360                         goto out_kfree_skb;
3361
3362                 /* If packet is not checksummed and device does not
3363                  * support checksumming for this protocol, complete
3364                  * checksumming here.
3365                  */
3366                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3367                         if (skb->encapsulation)
3368                                 skb_set_inner_transport_header(skb,
3369                                                                skb_checksum_start_offset(skb));
3370                         else
3371                                 skb_set_transport_header(skb,
3372                                                          skb_checksum_start_offset(skb));
3373                         if (skb_csum_hwoffload_help(skb, features))
3374                                 goto out_kfree_skb;
3375                 }
3376         }
3377
3378         skb = validate_xmit_xfrm(skb, features, again);
3379
3380         return skb;
3381
3382 out_kfree_skb:
3383         kfree_skb(skb);
3384 out_null:
3385         atomic_long_inc(&dev->tx_dropped);
3386         return NULL;
3387 }
3388
3389 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3390 {
3391         struct sk_buff *next, *head = NULL, *tail;
3392
3393         for (; skb != NULL; skb = next) {
3394                 next = skb->next;
3395                 skb_mark_not_on_list(skb);
3396
3397                 /* in case skb wont be segmented, point to itself */
3398                 skb->prev = skb;
3399
3400                 skb = validate_xmit_skb(skb, dev, again);
3401                 if (!skb)
3402                         continue;
3403
3404                 if (!head)
3405                         head = skb;
3406                 else
3407                         tail->next = skb;
3408                 /* If skb was segmented, skb->prev points to
3409                  * the last segment. If not, it still contains skb.
3410                  */
3411                 tail = skb->prev;
3412         }
3413         return head;
3414 }
3415 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3416
3417 static void qdisc_pkt_len_init(struct sk_buff *skb)
3418 {
3419         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3420
3421         qdisc_skb_cb(skb)->pkt_len = skb->len;
3422
3423         /* To get more precise estimation of bytes sent on wire,
3424          * we add to pkt_len the headers size of all segments
3425          */
3426         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3427                 unsigned int hdr_len;
3428                 u16 gso_segs = shinfo->gso_segs;
3429
3430                 /* mac layer + network layer */
3431                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3432
3433                 /* + transport layer */
3434                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3435                         const struct tcphdr *th;
3436                         struct tcphdr _tcphdr;
3437
3438                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3439                                                 sizeof(_tcphdr), &_tcphdr);
3440                         if (likely(th))
3441                                 hdr_len += __tcp_hdrlen(th);
3442                 } else {
3443                         struct udphdr _udphdr;
3444
3445                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3446                                                sizeof(_udphdr), &_udphdr))
3447                                 hdr_len += sizeof(struct udphdr);
3448                 }
3449
3450                 if (shinfo->gso_type & SKB_GSO_DODGY)
3451                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3452                                                 shinfo->gso_size);
3453
3454                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3455         }
3456 }
3457
3458 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3459                                  struct net_device *dev,
3460                                  struct netdev_queue *txq)
3461 {
3462         spinlock_t *root_lock = qdisc_lock(q);
3463         struct sk_buff *to_free = NULL;
3464         bool contended;
3465         int rc;
3466
3467         qdisc_calculate_pkt_len(skb, q);
3468
3469         if (q->flags & TCQ_F_NOLOCK) {
3470                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3471                         __qdisc_drop(skb, &to_free);
3472                         rc = NET_XMIT_DROP;
3473                 } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3474                            qdisc_run_begin(q)) {
3475                         qdisc_bstats_cpu_update(q, skb);
3476
3477                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3478                                 __qdisc_run(q);
3479
3480                         qdisc_run_end(q);
3481                         rc = NET_XMIT_SUCCESS;
3482                 } else {
3483                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3484                         qdisc_run(q);
3485                 }
3486
3487                 if (unlikely(to_free))
3488                         kfree_skb_list(to_free);
3489                 return rc;
3490         }
3491
3492         /*
3493          * Heuristic to force contended enqueues to serialize on a
3494          * separate lock before trying to get qdisc main lock.
3495          * This permits qdisc->running owner to get the lock more
3496          * often and dequeue packets faster.
3497          */
3498         contended = qdisc_is_running(q);
3499         if (unlikely(contended))
3500                 spin_lock(&q->busylock);
3501
3502         spin_lock(root_lock);
3503         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3504                 __qdisc_drop(skb, &to_free);
3505                 rc = NET_XMIT_DROP;
3506         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3507                    qdisc_run_begin(q)) {
3508                 /*
3509                  * This is a work-conserving queue; there are no old skbs
3510                  * waiting to be sent out; and the qdisc is not running -
3511                  * xmit the skb directly.
3512                  */
3513
3514                 qdisc_bstats_update(q, skb);
3515
3516                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3517                         if (unlikely(contended)) {
3518                                 spin_unlock(&q->busylock);
3519                                 contended = false;
3520                         }
3521                         __qdisc_run(q);
3522                 }
3523
3524                 qdisc_run_end(q);
3525                 rc = NET_XMIT_SUCCESS;
3526         } else {
3527                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3528                 if (qdisc_run_begin(q)) {
3529                         if (unlikely(contended)) {
3530                                 spin_unlock(&q->busylock);
3531                                 contended = false;
3532                         }
3533                         __qdisc_run(q);
3534                         qdisc_run_end(q);
3535                 }
3536         }
3537         spin_unlock(root_lock);
3538         if (unlikely(to_free))
3539                 kfree_skb_list(to_free);
3540         if (unlikely(contended))
3541                 spin_unlock(&q->busylock);
3542         return rc;
3543 }
3544
3545 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3546 static void skb_update_prio(struct sk_buff *skb)
3547 {
3548         const struct netprio_map *map;
3549         const struct sock *sk;
3550         unsigned int prioidx;
3551
3552         if (skb->priority)
3553                 return;
3554         map = rcu_dereference_bh(skb->dev->priomap);
3555         if (!map)
3556                 return;
3557         sk = skb_to_full_sk(skb);
3558         if (!sk)
3559                 return;
3560
3561         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3562
3563         if (prioidx < map->priomap_len)
3564                 skb->priority = map->priomap[prioidx];
3565 }
3566 #else
3567 #define skb_update_prio(skb)
3568 #endif
3569
3570 /**
3571  *      dev_loopback_xmit - loop back @skb
3572  *      @net: network namespace this loopback is happening in
3573  *      @sk:  sk needed to be a netfilter okfn
3574  *      @skb: buffer to transmit
3575  */
3576 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3577 {
3578         skb_reset_mac_header(skb);
3579         __skb_pull(skb, skb_network_offset(skb));
3580         skb->pkt_type = PACKET_LOOPBACK;
3581         skb->ip_summed = CHECKSUM_UNNECESSARY;
3582         WARN_ON(!skb_dst(skb));
3583         skb_dst_force(skb);
3584         netif_rx_ni(skb);
3585         return 0;
3586 }
3587 EXPORT_SYMBOL(dev_loopback_xmit);
3588
3589 #ifdef CONFIG_NET_EGRESS
3590 static struct sk_buff *
3591 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3592 {
3593         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3594         struct tcf_result cl_res;
3595
3596         if (!miniq)
3597                 return skb;
3598
3599         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3600         mini_qdisc_bstats_cpu_update(miniq, skb);
3601
3602         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3603         case TC_ACT_OK:
3604         case TC_ACT_RECLASSIFY:
3605                 skb->tc_index = TC_H_MIN(cl_res.classid);
3606                 break;
3607         case TC_ACT_SHOT:
3608                 mini_qdisc_qstats_cpu_drop(miniq);
3609                 *ret = NET_XMIT_DROP;
3610                 kfree_skb(skb);
3611                 return NULL;
3612         case TC_ACT_STOLEN:
3613         case TC_ACT_QUEUED:
3614         case TC_ACT_TRAP:
3615                 *ret = NET_XMIT_SUCCESS;
3616                 consume_skb(skb);
3617                 return NULL;
3618         case TC_ACT_REDIRECT:
3619                 /* No need to push/pop skb's mac_header here on egress! */
3620                 skb_do_redirect(skb);
3621                 *ret = NET_XMIT_SUCCESS;
3622                 return NULL;
3623         default:
3624                 break;
3625         }
3626
3627         return skb;
3628 }
3629 #endif /* CONFIG_NET_EGRESS */
3630
3631 #ifdef CONFIG_XPS
3632 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3633                                struct xps_dev_maps *dev_maps, unsigned int tci)
3634 {
3635         struct xps_map *map;
3636         int queue_index = -1;
3637
3638         if (dev->num_tc) {
3639                 tci *= dev->num_tc;
3640                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3641         }
3642
3643         map = rcu_dereference(dev_maps->attr_map[tci]);
3644         if (map) {
3645                 if (map->len == 1)
3646                         queue_index = map->queues[0];
3647                 else
3648                         queue_index = map->queues[reciprocal_scale(
3649                                                 skb_get_hash(skb), map->len)];
3650                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3651                         queue_index = -1;
3652         }
3653         return queue_index;
3654 }
3655 #endif
3656
3657 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3658                          struct sk_buff *skb)
3659 {
3660 #ifdef CONFIG_XPS
3661         struct xps_dev_maps *dev_maps;
3662         struct sock *sk = skb->sk;
3663         int queue_index = -1;
3664
3665         if (!static_key_false(&xps_needed))
3666                 return -1;
3667
3668         rcu_read_lock();
3669         if (!static_key_false(&xps_rxqs_needed))
3670                 goto get_cpus_map;
3671
3672         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3673         if (dev_maps) {
3674                 int tci = sk_rx_queue_get(sk);
3675
3676                 if (tci >= 0 && tci < dev->num_rx_queues)
3677                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3678                                                           tci);
3679         }
3680
3681 get_cpus_map:
3682         if (queue_index < 0) {
3683                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3684                 if (dev_maps) {
3685                         unsigned int tci = skb->sender_cpu - 1;
3686
3687                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3688                                                           tci);
3689                 }
3690         }
3691         rcu_read_unlock();
3692
3693         return queue_index;
3694 #else
3695         return -1;
3696 #endif
3697 }
3698
3699 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3700                      struct net_device *sb_dev)
3701 {
3702         return 0;
3703 }
3704 EXPORT_SYMBOL(dev_pick_tx_zero);
3705
3706 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3707                        struct net_device *sb_dev)
3708 {
3709         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3710 }
3711 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3712
3713 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3714                      struct net_device *sb_dev)
3715 {
3716         struct sock *sk = skb->sk;
3717         int queue_index = sk_tx_queue_get(sk);
3718
3719         sb_dev = sb_dev ? : dev;
3720
3721         if (queue_index < 0 || skb->ooo_okay ||
3722             queue_index >= dev->real_num_tx_queues) {
3723                 int new_index = get_xps_queue(dev, sb_dev, skb);
3724
3725                 if (new_index < 0)
3726                         new_index = skb_tx_hash(dev, sb_dev, skb);
3727
3728                 if (queue_index != new_index && sk &&
3729                     sk_fullsock(sk) &&
3730                     rcu_access_pointer(sk->sk_dst_cache))
3731                         sk_tx_queue_set(sk, new_index);
3732
3733                 queue_index = new_index;
3734         }
3735
3736         return queue_index;
3737 }
3738 EXPORT_SYMBOL(netdev_pick_tx);
3739
3740 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3741                                          struct sk_buff *skb,
3742                                          struct net_device *sb_dev)
3743 {
3744         int queue_index = 0;
3745
3746 #ifdef CONFIG_XPS
3747         u32 sender_cpu = skb->sender_cpu - 1;
3748
3749         if (sender_cpu >= (u32)NR_CPUS)
3750                 skb->sender_cpu = raw_smp_processor_id() + 1;
3751 #endif
3752
3753         if (dev->real_num_tx_queues != 1) {
3754                 const struct net_device_ops *ops = dev->netdev_ops;
3755
3756                 if (ops->ndo_select_queue)
3757                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3758                 else
3759                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3760
3761                 queue_index = netdev_cap_txqueue(dev, queue_index);
3762         }
3763
3764         skb_set_queue_mapping(skb, queue_index);
3765         return netdev_get_tx_queue(dev, queue_index);
3766 }
3767
3768 /**
3769  *      __dev_queue_xmit - transmit a buffer
3770  *      @skb: buffer to transmit
3771  *      @sb_dev: suboordinate device used for L2 forwarding offload
3772  *
3773  *      Queue a buffer for transmission to a network device. The caller must
3774  *      have set the device and priority and built the buffer before calling
3775  *      this function. The function can be called from an interrupt.
3776  *
3777  *      A negative errno code is returned on a failure. A success does not
3778  *      guarantee the frame will be transmitted as it may be dropped due
3779  *      to congestion or traffic shaping.
3780  *
3781  * -----------------------------------------------------------------------------------
3782  *      I notice this method can also return errors from the queue disciplines,
3783  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3784  *      be positive.
3785  *
3786  *      Regardless of the return value, the skb is consumed, so it is currently
3787  *      difficult to retry a send to this method.  (You can bump the ref count
3788  *      before sending to hold a reference for retry if you are careful.)
3789  *
3790  *      When calling this method, interrupts MUST be enabled.  This is because
3791  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3792  *          --BLG
3793  */
3794 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3795 {
3796         struct net_device *dev = skb->dev;
3797         struct netdev_queue *txq;
3798         struct Qdisc *q;
3799         int rc = -ENOMEM;
3800         bool again = false;
3801
3802         skb_reset_mac_header(skb);
3803
3804         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3805                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3806
3807         /* Disable soft irqs for various locks below. Also
3808          * stops preemption for RCU.
3809          */
3810         rcu_read_lock_bh();
3811
3812         skb_update_prio(skb);
3813
3814         qdisc_pkt_len_init(skb);
3815 #ifdef CONFIG_NET_CLS_ACT
3816         skb->tc_at_ingress = 0;
3817 # ifdef CONFIG_NET_EGRESS
3818         if (static_branch_unlikely(&egress_needed_key)) {
3819                 skb = sch_handle_egress(skb, &rc, dev);
3820                 if (!skb)
3821                         goto out;
3822         }
3823 # endif
3824 #endif
3825         /* If device/qdisc don't need skb->dst, release it right now while
3826          * its hot in this cpu cache.
3827          */
3828         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3829                 skb_dst_drop(skb);
3830         else
3831                 skb_dst_force(skb);
3832
3833         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3834         q = rcu_dereference_bh(txq->qdisc);
3835
3836         trace_net_dev_queue(skb);
3837         if (q->enqueue) {
3838                 rc = __dev_xmit_skb(skb, q, dev, txq);
3839                 goto out;
3840         }
3841
3842         /* The device has no queue. Common case for software devices:
3843          * loopback, all the sorts of tunnels...
3844
3845          * Really, it is unlikely that netif_tx_lock protection is necessary
3846          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3847          * counters.)
3848          * However, it is possible, that they rely on protection
3849          * made by us here.
3850
3851          * Check this and shot the lock. It is not prone from deadlocks.
3852          *Either shot noqueue qdisc, it is even simpler 8)
3853          */
3854         if (dev->flags & IFF_UP) {
3855                 int cpu = smp_processor_id(); /* ok because BHs are off */
3856
3857                 if (txq->xmit_lock_owner != cpu) {
3858                         if (dev_xmit_recursion())
3859                                 goto recursion_alert;
3860
3861                         skb = validate_xmit_skb(skb, dev, &again);
3862                         if (!skb)
3863                                 goto out;
3864
3865                         HARD_TX_LOCK(dev, txq, cpu);
3866
3867                         if (!netif_xmit_stopped(txq)) {
3868                                 dev_xmit_recursion_inc();
3869                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3870                                 dev_xmit_recursion_dec();
3871                                 if (dev_xmit_complete(rc)) {
3872                                         HARD_TX_UNLOCK(dev, txq);
3873                                         goto out;
3874                                 }
3875                         }
3876                         HARD_TX_UNLOCK(dev, txq);
3877                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3878                                              dev->name);
3879                 } else {
3880                         /* Recursion is detected! It is possible,
3881                          * unfortunately
3882                          */
3883 recursion_alert:
3884                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3885                                              dev->name);
3886                 }
3887         }
3888
3889         rc = -ENETDOWN;
3890         rcu_read_unlock_bh();
3891
3892         atomic_long_inc(&dev->tx_dropped);
3893         kfree_skb_list(skb);
3894         return rc;
3895 out:
3896         rcu_read_unlock_bh();
3897         return rc;
3898 }
3899
3900 int dev_queue_xmit(struct sk_buff *skb)
3901 {
3902         return __dev_queue_xmit(skb, NULL);
3903 }
3904 EXPORT_SYMBOL(dev_queue_xmit);
3905
3906 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3907 {
3908         return __dev_queue_xmit(skb, sb_dev);
3909 }
3910 EXPORT_SYMBOL(dev_queue_xmit_accel);
3911
3912 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3913 {
3914         struct net_device *dev = skb->dev;
3915         struct sk_buff *orig_skb = skb;
3916         struct netdev_queue *txq;
3917         int ret = NETDEV_TX_BUSY;
3918         bool again = false;
3919
3920         if (unlikely(!netif_running(dev) ||
3921                      !netif_carrier_ok(dev)))
3922                 goto drop;
3923
3924         skb = validate_xmit_skb_list(skb, dev, &again);
3925         if (skb != orig_skb)
3926                 goto drop;
3927
3928         skb_set_queue_mapping(skb, queue_id);
3929         txq = skb_get_tx_queue(dev, skb);
3930
3931         local_bh_disable();
3932
3933         HARD_TX_LOCK(dev, txq, smp_processor_id());
3934         if (!netif_xmit_frozen_or_drv_stopped(txq))
3935                 ret = netdev_start_xmit(skb, dev, txq, false);
3936         HARD_TX_UNLOCK(dev, txq);
3937
3938         local_bh_enable();
3939
3940         if (!dev_xmit_complete(ret))
3941                 kfree_skb(skb);
3942
3943         return ret;
3944 drop:
3945         atomic_long_inc(&dev->tx_dropped);
3946         kfree_skb_list(skb);
3947         return NET_XMIT_DROP;
3948 }
3949 EXPORT_SYMBOL(dev_direct_xmit);
3950
3951 /*************************************************************************
3952  *                      Receiver routines
3953  *************************************************************************/
3954
3955 int netdev_max_backlog __read_mostly = 1000;
3956 EXPORT_SYMBOL(netdev_max_backlog);
3957
3958 int netdev_tstamp_prequeue __read_mostly = 1;
3959 int netdev_budget __read_mostly = 300;
3960 unsigned int __read_mostly netdev_budget_usecs = 2000;
3961 int weight_p __read_mostly = 64;           /* old backlog weight */
3962 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3963 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3964 int dev_rx_weight __read_mostly = 64;
3965 int dev_tx_weight __read_mostly = 64;
3966
3967 /* Called with irq disabled */
3968 static inline void ____napi_schedule(struct softnet_data *sd,
3969                                      struct napi_struct *napi)
3970 {
3971         list_add_tail(&napi->poll_list, &sd->poll_list);
3972         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3973 }
3974
3975 #ifdef CONFIG_RPS
3976
3977 /* One global table that all flow-based protocols share. */
3978 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3979 EXPORT_SYMBOL(rps_sock_flow_table);
3980 u32 rps_cpu_mask __read_mostly;
3981 EXPORT_SYMBOL(rps_cpu_mask);
3982
3983 struct static_key_false rps_needed __read_mostly;
3984 EXPORT_SYMBOL(rps_needed);
3985 struct static_key_false rfs_needed __read_mostly;
3986 EXPORT_SYMBOL(rfs_needed);
3987
3988 static struct rps_dev_flow *
3989 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3990             struct rps_dev_flow *rflow, u16 next_cpu)
3991 {
3992         if (next_cpu < nr_cpu_ids) {
3993 #ifdef CONFIG_RFS_ACCEL
3994                 struct netdev_rx_queue *rxqueue;
3995                 struct rps_dev_flow_table *flow_table;
3996                 struct rps_dev_flow *old_rflow;
3997                 u32 flow_id;
3998                 u16 rxq_index;
3999                 int rc;
4000
4001                 /* Should we steer this flow to a different hardware queue? */
4002                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4003                     !(dev->features & NETIF_F_NTUPLE))
4004                         goto out;
4005                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4006                 if (rxq_index == skb_get_rx_queue(skb))
4007                         goto out;
4008
4009                 rxqueue = dev->_rx + rxq_index;
4010                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4011                 if (!flow_table)
4012                         goto out;
4013                 flow_id = skb_get_hash(skb) & flow_table->mask;
4014                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4015                                                         rxq_index, flow_id);
4016                 if (rc < 0)
4017                         goto out;
4018                 old_rflow = rflow;
4019                 rflow = &flow_table->flows[flow_id];
4020                 rflow->filter = rc;
4021                 if (old_rflow->filter == rflow->filter)
4022                         old_rflow->filter = RPS_NO_FILTER;
4023         out:
4024 #endif
4025                 rflow->last_qtail =
4026                         per_cpu(softnet_data, next_cpu).input_queue_head;
4027         }
4028
4029         rflow->cpu = next_cpu;
4030         return rflow;
4031 }
4032
4033 /*
4034  * get_rps_cpu is called from netif_receive_skb and returns the target
4035  * CPU from the RPS map of the receiving queue for a given skb.
4036  * rcu_read_lock must be held on entry.
4037  */
4038 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4039                        struct rps_dev_flow **rflowp)
4040 {
4041         const struct rps_sock_flow_table *sock_flow_table;
4042         struct netdev_rx_queue *rxqueue = dev->_rx;
4043         struct rps_dev_flow_table *flow_table;
4044         struct rps_map *map;
4045         int cpu = -1;
4046         u32 tcpu;
4047         u32 hash;
4048
4049         if (skb_rx_queue_recorded(skb)) {
4050                 u16 index = skb_get_rx_queue(skb);
4051
4052                 if (unlikely(index >= dev->real_num_rx_queues)) {
4053                         WARN_ONCE(dev->real_num_rx_queues > 1,
4054                                   "%s received packet on queue %u, but number "
4055                                   "of RX queues is %u\n",
4056                                   dev->name, index, dev->real_num_rx_queues);
4057                         goto done;
4058                 }
4059                 rxqueue += index;
4060         }
4061
4062         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4063
4064         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4065         map = rcu_dereference(rxqueue->rps_map);
4066         if (!flow_table && !map)
4067                 goto done;
4068
4069         skb_reset_network_header(skb);
4070         hash = skb_get_hash(skb);
4071         if (!hash)
4072                 goto done;
4073
4074         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4075         if (flow_table && sock_flow_table) {
4076                 struct rps_dev_flow *rflow;
4077                 u32 next_cpu;
4078                 u32 ident;
4079
4080                 /* First check into global flow table if there is a match */
4081                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4082                 if ((ident ^ hash) & ~rps_cpu_mask)
4083                         goto try_rps;
4084
4085                 next_cpu = ident & rps_cpu_mask;
4086
4087                 /* OK, now we know there is a match,
4088                  * we can look at the local (per receive queue) flow table
4089                  */
4090                 rflow = &flow_table->flows[hash & flow_table->mask];
4091                 tcpu = rflow->cpu;
4092
4093                 /*
4094                  * If the desired CPU (where last recvmsg was done) is
4095                  * different from current CPU (one in the rx-queue flow
4096                  * table entry), switch if one of the following holds:
4097                  *   - Current CPU is unset (>= nr_cpu_ids).
4098                  *   - Current CPU is offline.
4099                  *   - The current CPU's queue tail has advanced beyond the
4100                  *     last packet that was enqueued using this table entry.
4101                  *     This guarantees that all previous packets for the flow
4102                  *     have been dequeued, thus preserving in order delivery.
4103                  */
4104                 if (unlikely(tcpu != next_cpu) &&
4105                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4106                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4107                       rflow->last_qtail)) >= 0)) {
4108                         tcpu = next_cpu;
4109                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4110                 }
4111
4112                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4113                         *rflowp = rflow;
4114                         cpu = tcpu;
4115                         goto done;
4116                 }
4117         }
4118
4119 try_rps:
4120
4121         if (map) {
4122                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4123                 if (cpu_online(tcpu)) {
4124                         cpu = tcpu;
4125                         goto done;
4126                 }
4127         }
4128
4129 done:
4130         return cpu;
4131 }
4132
4133 #ifdef CONFIG_RFS_ACCEL
4134
4135 /**
4136  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4137  * @dev: Device on which the filter was set
4138  * @rxq_index: RX queue index
4139  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4140  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4141  *
4142  * Drivers that implement ndo_rx_flow_steer() should periodically call
4143  * this function for each installed filter and remove the filters for
4144  * which it returns %true.
4145  */
4146 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4147                          u32 flow_id, u16 filter_id)
4148 {
4149         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4150         struct rps_dev_flow_table *flow_table;
4151         struct rps_dev_flow *rflow;
4152         bool expire = true;
4153         unsigned int cpu;
4154
4155         rcu_read_lock();
4156         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4157         if (flow_table && flow_id <= flow_table->mask) {
4158                 rflow = &flow_table->flows[flow_id];
4159                 cpu = READ_ONCE(rflow->cpu);
4160                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4161                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4162                            rflow->last_qtail) <
4163                      (int)(10 * flow_table->mask)))
4164                         expire = false;
4165         }
4166         rcu_read_unlock();
4167         return expire;
4168 }
4169 EXPORT_SYMBOL(rps_may_expire_flow);
4170
4171 #endif /* CONFIG_RFS_ACCEL */
4172
4173 /* Called from hardirq (IPI) context */
4174 static void rps_trigger_softirq(void *data)
4175 {
4176         struct softnet_data *sd = data;
4177
4178         ____napi_schedule(sd, &sd->backlog);
4179         sd->received_rps++;
4180 }
4181
4182 #endif /* CONFIG_RPS */
4183
4184 /*
4185  * Check if this softnet_data structure is another cpu one
4186  * If yes, queue it to our IPI list and return 1
4187  * If no, return 0
4188  */
4189 static int rps_ipi_queued(struct softnet_data *sd)
4190 {
4191 #ifdef CONFIG_RPS
4192         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4193
4194         if (sd != mysd) {
4195                 sd->rps_ipi_next = mysd->rps_ipi_list;
4196                 mysd->rps_ipi_list = sd;
4197
4198                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4199                 return 1;
4200         }
4201 #endif /* CONFIG_RPS */
4202         return 0;
4203 }
4204
4205 #ifdef CONFIG_NET_FLOW_LIMIT
4206 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4207 #endif
4208
4209 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4210 {
4211 #ifdef CONFIG_NET_FLOW_LIMIT
4212         struct sd_flow_limit *fl;
4213         struct softnet_data *sd;
4214         unsigned int old_flow, new_flow;
4215
4216         if (qlen < (netdev_max_backlog >> 1))
4217                 return false;
4218
4219         sd = this_cpu_ptr(&softnet_data);
4220
4221         rcu_read_lock();
4222         fl = rcu_dereference(sd->flow_limit);
4223         if (fl) {
4224                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4225                 old_flow = fl->history[fl->history_head];
4226                 fl->history[fl->history_head] = new_flow;
4227
4228                 fl->history_head++;
4229                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4230
4231                 if (likely(fl->buckets[old_flow]))
4232                         fl->buckets[old_flow]--;
4233
4234                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4235                         fl->count++;
4236                         rcu_read_unlock();
4237                         return true;
4238                 }
4239         }
4240         rcu_read_unlock();
4241 #endif
4242         return false;
4243 }
4244
4245 /*
4246  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4247  * queue (may be a remote CPU queue).
4248  */
4249 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4250                               unsigned int *qtail)
4251 {
4252         struct softnet_data *sd;
4253         unsigned long flags;
4254         unsigned int qlen;
4255
4256         sd = &per_cpu(softnet_data, cpu);
4257
4258         local_irq_save(flags);
4259
4260         rps_lock(sd);
4261         if (!netif_running(skb->dev))
4262                 goto drop;
4263         qlen = skb_queue_len(&sd->input_pkt_queue);
4264         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4265                 if (qlen) {
4266 enqueue:
4267                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4268                         input_queue_tail_incr_save(sd, qtail);
4269                         rps_unlock(sd);
4270                         local_irq_restore(flags);
4271                         return NET_RX_SUCCESS;
4272                 }
4273
4274                 /* Schedule NAPI for backlog device
4275                  * We can use non atomic operation since we own the queue lock
4276                  */
4277                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4278                         if (!rps_ipi_queued(sd))
4279                                 ____napi_schedule(sd, &sd->backlog);
4280                 }
4281                 goto enqueue;
4282         }
4283
4284 drop:
4285         sd->dropped++;
4286         rps_unlock(sd);
4287
4288         local_irq_restore(flags);
4289
4290         atomic_long_inc(&skb->dev->rx_dropped);
4291         kfree_skb(skb);
4292         return NET_RX_DROP;
4293 }
4294
4295 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4296 {
4297         struct net_device *dev = skb->dev;
4298         struct netdev_rx_queue *rxqueue;
4299
4300         rxqueue = dev->_rx;
4301
4302         if (skb_rx_queue_recorded(skb)) {
4303                 u16 index = skb_get_rx_queue(skb);
4304
4305                 if (unlikely(index >= dev->real_num_rx_queues)) {
4306                         WARN_ONCE(dev->real_num_rx_queues > 1,
4307                                   "%s received packet on queue %u, but number "
4308                                   "of RX queues is %u\n",
4309                                   dev->name, index, dev->real_num_rx_queues);
4310
4311                         return rxqueue; /* Return first rxqueue */
4312                 }
4313                 rxqueue += index;
4314         }
4315         return rxqueue;
4316 }
4317
4318 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4319                                      struct xdp_buff *xdp,
4320                                      struct bpf_prog *xdp_prog)
4321 {
4322         struct netdev_rx_queue *rxqueue;
4323         void *orig_data, *orig_data_end;
4324         u32 metalen, act = XDP_DROP;
4325         __be16 orig_eth_type;
4326         struct ethhdr *eth;
4327         bool orig_bcast;
4328         int hlen, off;
4329         u32 mac_len;
4330
4331         /* Reinjected packets coming from act_mirred or similar should
4332          * not get XDP generic processing.
4333          */
4334         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4335                 return XDP_PASS;
4336
4337         /* XDP packets must be linear and must have sufficient headroom
4338          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4339          * native XDP provides, thus we need to do it here as well.
4340          */
4341         if (skb_is_nonlinear(skb) ||
4342             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4343                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4344                 int troom = skb->tail + skb->data_len - skb->end;
4345
4346                 /* In case we have to go down the path and also linearize,
4347                  * then lets do the pskb_expand_head() work just once here.
4348                  */
4349                 if (pskb_expand_head(skb,
4350                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4351                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4352                         goto do_drop;
4353                 if (skb_linearize(skb))
4354                         goto do_drop;
4355         }
4356
4357         /* The XDP program wants to see the packet starting at the MAC
4358          * header.
4359          */
4360         mac_len = skb->data - skb_mac_header(skb);
4361         hlen = skb_headlen(skb) + mac_len;
4362         xdp->data = skb->data - mac_len;
4363         xdp->data_meta = xdp->data;
4364         xdp->data_end = xdp->data + hlen;
4365         xdp->data_hard_start = skb->data - skb_headroom(skb);
4366         orig_data_end = xdp->data_end;
4367         orig_data = xdp->data;
4368         eth = (struct ethhdr *)xdp->data;
4369         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4370         orig_eth_type = eth->h_proto;
4371
4372         rxqueue = netif_get_rxqueue(skb);
4373         xdp->rxq = &rxqueue->xdp_rxq;
4374
4375         act = bpf_prog_run_xdp(xdp_prog, xdp);
4376
4377         /* check if bpf_xdp_adjust_head was used */
4378         off = xdp->data - orig_data;
4379         if (off) {
4380                 if (off > 0)
4381                         __skb_pull(skb, off);
4382                 else if (off < 0)
4383                         __skb_push(skb, -off);
4384
4385                 skb->mac_header += off;
4386                 skb_reset_network_header(skb);
4387         }
4388
4389         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4390          * pckt.
4391          */
4392         off = orig_data_end - xdp->data_end;
4393         if (off != 0) {
4394                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4395                 skb->len -= off;
4396
4397         }
4398
4399         /* check if XDP changed eth hdr such SKB needs update */
4400         eth = (struct ethhdr *)xdp->data;
4401         if ((orig_eth_type != eth->h_proto) ||
4402             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4403                 __skb_push(skb, ETH_HLEN);
4404                 skb->protocol = eth_type_trans(skb, skb->dev);
4405         }
4406
4407         switch (act) {
4408         case XDP_REDIRECT:
4409         case XDP_TX:
4410                 __skb_push(skb, mac_len);
4411                 break;
4412         case XDP_PASS:
4413                 metalen = xdp->data - xdp->data_meta;
4414                 if (metalen)
4415                         skb_metadata_set(skb, metalen);
4416                 break;
4417         default:
4418                 bpf_warn_invalid_xdp_action(act);
4419                 /* fall through */
4420         case XDP_ABORTED:
4421                 trace_xdp_exception(skb->dev, xdp_prog, act);
4422                 /* fall through */
4423         case XDP_DROP:
4424         do_drop:
4425                 kfree_skb(skb);
4426                 break;
4427         }
4428
4429         return act;
4430 }
4431
4432 /* When doing generic XDP we have to bypass the qdisc layer and the
4433  * network taps in order to match in-driver-XDP behavior.
4434  */
4435 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4436 {
4437         struct net_device *dev = skb->dev;
4438         struct netdev_queue *txq;
4439         bool free_skb = true;
4440         int cpu, rc;
4441
4442         txq = netdev_core_pick_tx(dev, skb, NULL);
4443         cpu = smp_processor_id();
4444         HARD_TX_LOCK(dev, txq, cpu);
4445         if (!netif_xmit_stopped(txq)) {
4446                 rc = netdev_start_xmit(skb, dev, txq, 0);
4447                 if (dev_xmit_complete(rc))
4448                         free_skb = false;
4449         }
4450         HARD_TX_UNLOCK(dev, txq);
4451         if (free_skb) {
4452                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4453                 kfree_skb(skb);
4454         }
4455 }
4456 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4457
4458 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4459
4460 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4461 {
4462         if (xdp_prog) {
4463                 struct xdp_buff xdp;
4464                 u32 act;
4465                 int err;
4466
4467                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4468                 if (act != XDP_PASS) {
4469                         switch (act) {
4470                         case XDP_REDIRECT:
4471                                 err = xdp_do_generic_redirect(skb->dev, skb,
4472                                                               &xdp, xdp_prog);
4473                                 if (err)
4474                                         goto out_redir;
4475                                 break;
4476                         case XDP_TX:
4477                                 generic_xdp_tx(skb, xdp_prog);
4478                                 break;
4479                         }
4480                         return XDP_DROP;
4481                 }
4482         }
4483         return XDP_PASS;
4484 out_redir:
4485         kfree_skb(skb);
4486         return XDP_DROP;
4487 }
4488 EXPORT_SYMBOL_GPL(do_xdp_generic);
4489
4490 static int netif_rx_internal(struct sk_buff *skb)
4491 {
4492         int ret;
4493
4494         net_timestamp_check(netdev_tstamp_prequeue, skb);
4495
4496         trace_netif_rx(skb);
4497
4498 #ifdef CONFIG_RPS
4499         if (static_branch_unlikely(&rps_needed)) {
4500                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4501                 int cpu;
4502
4503                 preempt_disable();
4504                 rcu_read_lock();
4505
4506                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4507                 if (cpu < 0)
4508                         cpu = smp_processor_id();
4509
4510                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4511
4512                 rcu_read_unlock();
4513                 preempt_enable();
4514         } else
4515 #endif
4516         {
4517                 unsigned int qtail;
4518
4519                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4520                 put_cpu();
4521         }
4522         return ret;
4523 }
4524
4525 /**
4526  *      netif_rx        -       post buffer to the network code
4527  *      @skb: buffer to post
4528  *
4529  *      This function receives a packet from a device driver and queues it for
4530  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4531  *      may be dropped during processing for congestion control or by the
4532  *      protocol layers.
4533  *
4534  *      return values:
4535  *      NET_RX_SUCCESS  (no congestion)
4536  *      NET_RX_DROP     (packet was dropped)
4537  *
4538  */
4539
4540 int netif_rx(struct sk_buff *skb)
4541 {
4542         int ret;
4543
4544         trace_netif_rx_entry(skb);
4545
4546         ret = netif_rx_internal(skb);
4547         trace_netif_rx_exit(ret);
4548
4549         return ret;
4550 }
4551 EXPORT_SYMBOL(netif_rx);
4552
4553 int netif_rx_ni(struct sk_buff *skb)
4554 {
4555         int err;
4556
4557         trace_netif_rx_ni_entry(skb);
4558
4559         preempt_disable();
4560         err = netif_rx_internal(skb);
4561         if (local_softirq_pending())
4562                 do_softirq();
4563         preempt_enable();
4564         trace_netif_rx_ni_exit(err);
4565
4566         return err;
4567 }
4568 EXPORT_SYMBOL(netif_rx_ni);
4569
4570 static __latent_entropy void net_tx_action(struct softirq_action *h)
4571 {
4572         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4573
4574         if (sd->completion_queue) {
4575                 struct sk_buff *clist;
4576
4577                 local_irq_disable();
4578                 clist = sd->completion_queue;
4579                 sd->completion_queue = NULL;
4580                 local_irq_enable();
4581
4582                 while (clist) {
4583                         struct sk_buff *skb = clist;
4584
4585                         clist = clist->next;
4586
4587                         WARN_ON(refcount_read(&skb->users));
4588                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4589                                 trace_consume_skb(skb);
4590                         else
4591                                 trace_kfree_skb(skb, net_tx_action);
4592
4593                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4594                                 __kfree_skb(skb);
4595                         else
4596                                 __kfree_skb_defer(skb);
4597                 }
4598
4599                 __kfree_skb_flush();
4600         }
4601
4602         if (sd->output_queue) {
4603                 struct Qdisc *head;
4604
4605                 local_irq_disable();
4606                 head = sd->output_queue;
4607                 sd->output_queue = NULL;
4608                 sd->output_queue_tailp = &sd->output_queue;
4609                 local_irq_enable();
4610
4611                 while (head) {
4612                         struct Qdisc *q = head;
4613                         spinlock_t *root_lock = NULL;
4614
4615                         head = head->next_sched;
4616
4617                         if (!(q->flags & TCQ_F_NOLOCK)) {
4618                                 root_lock = qdisc_lock(q);
4619                                 spin_lock(root_lock);
4620                         }
4621                         /* We need to make sure head->next_sched is read
4622                          * before clearing __QDISC_STATE_SCHED
4623                          */
4624                         smp_mb__before_atomic();
4625                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4626                         qdisc_run(q);
4627                         if (root_lock)
4628                                 spin_unlock(root_lock);
4629                 }
4630         }
4631
4632         xfrm_dev_backlog(sd);
4633 }
4634
4635 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4636 /* This hook is defined here for ATM LANE */
4637 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4638                              unsigned char *addr) __read_mostly;
4639 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4640 #endif
4641
4642 static inline struct sk_buff *
4643 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4644                    struct net_device *orig_dev)
4645 {
4646 #ifdef CONFIG_NET_CLS_ACT
4647         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4648         struct tcf_result cl_res;
4649
4650         /* If there's at least one ingress present somewhere (so
4651          * we get here via enabled static key), remaining devices
4652          * that are not configured with an ingress qdisc will bail
4653          * out here.
4654          */
4655         if (!miniq)
4656                 return skb;
4657
4658         if (*pt_prev) {
4659                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4660                 *pt_prev = NULL;
4661         }
4662
4663         qdisc_skb_cb(skb)->pkt_len = skb->len;
4664         skb->tc_at_ingress = 1;
4665         mini_qdisc_bstats_cpu_update(miniq, skb);
4666
4667         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4668         case TC_ACT_OK:
4669         case TC_ACT_RECLASSIFY:
4670                 skb->tc_index = TC_H_MIN(cl_res.classid);
4671                 break;
4672         case TC_ACT_SHOT:
4673                 mini_qdisc_qstats_cpu_drop(miniq);
4674                 kfree_skb(skb);
4675                 return NULL;
4676         case TC_ACT_STOLEN:
4677         case TC_ACT_QUEUED:
4678         case TC_ACT_TRAP:
4679                 consume_skb(skb);
4680                 return NULL;
4681         case TC_ACT_REDIRECT:
4682                 /* skb_mac_header check was done by cls/act_bpf, so
4683                  * we can safely push the L2 header back before
4684                  * redirecting to another netdev
4685                  */
4686                 __skb_push(skb, skb->mac_len);
4687                 skb_do_redirect(skb);
4688                 return NULL;
4689         case TC_ACT_CONSUMED:
4690                 return NULL;
4691         default:
4692                 break;
4693         }
4694 #endif /* CONFIG_NET_CLS_ACT */
4695         return skb;
4696 }
4697
4698 /**
4699  *      netdev_is_rx_handler_busy - check if receive handler is registered
4700  *      @dev: device to check
4701  *
4702  *      Check if a receive handler is already registered for a given device.
4703  *      Return true if there one.
4704  *
4705  *      The caller must hold the rtnl_mutex.
4706  */
4707 bool netdev_is_rx_handler_busy(struct net_device *dev)
4708 {
4709         ASSERT_RTNL();
4710         return dev && rtnl_dereference(dev->rx_handler);
4711 }
4712 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4713
4714 /**
4715  *      netdev_rx_handler_register - register receive handler
4716  *      @dev: device to register a handler for
4717  *      @rx_handler: receive handler to register
4718  *      @rx_handler_data: data pointer that is used by rx handler
4719  *
4720  *      Register a receive handler for a device. This handler will then be
4721  *      called from __netif_receive_skb. A negative errno code is returned
4722  *      on a failure.
4723  *
4724  *      The caller must hold the rtnl_mutex.
4725  *
4726  *      For a general description of rx_handler, see enum rx_handler_result.
4727  */
4728 int netdev_rx_handler_register(struct net_device *dev,
4729                                rx_handler_func_t *rx_handler,
4730                                void *rx_handler_data)
4731 {
4732         if (netdev_is_rx_handler_busy(dev))
4733                 return -EBUSY;
4734
4735         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4736                 return -EINVAL;
4737
4738         /* Note: rx_handler_data must be set before rx_handler */
4739         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4740         rcu_assign_pointer(dev->rx_handler, rx_handler);
4741
4742         return 0;
4743 }
4744 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4745
4746 /**
4747  *      netdev_rx_handler_unregister - unregister receive handler
4748  *      @dev: device to unregister a handler from
4749  *
4750  *      Unregister a receive handler from a device.
4751  *
4752  *      The caller must hold the rtnl_mutex.
4753  */
4754 void netdev_rx_handler_unregister(struct net_device *dev)
4755 {
4756
4757         ASSERT_RTNL();
4758         RCU_INIT_POINTER(dev->rx_handler, NULL);
4759         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4760          * section has a guarantee to see a non NULL rx_handler_data
4761          * as well.
4762          */
4763         synchronize_net();
4764         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4765 }
4766 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4767
4768 /*
4769  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4770  * the special handling of PFMEMALLOC skbs.
4771  */
4772 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4773 {
4774         switch (skb->protocol) {
4775         case htons(ETH_P_ARP):
4776         case htons(ETH_P_IP):
4777         case htons(ETH_P_IPV6):
4778         case htons(ETH_P_8021Q):
4779         case htons(ETH_P_8021AD):
4780                 return true;
4781         default:
4782                 return false;
4783         }
4784 }
4785
4786 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4787                              int *ret, struct net_device *orig_dev)
4788 {
4789 #ifdef CONFIG_NETFILTER_INGRESS
4790         if (nf_hook_ingress_active(skb)) {
4791                 int ingress_retval;
4792
4793                 if (*pt_prev) {
4794                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4795                         *pt_prev = NULL;
4796                 }
4797
4798                 rcu_read_lock();
4799                 ingress_retval = nf_hook_ingress(skb);
4800                 rcu_read_unlock();
4801                 return ingress_retval;
4802         }
4803 #endif /* CONFIG_NETFILTER_INGRESS */
4804         return 0;
4805 }
4806
4807 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4808                                     struct packet_type **ppt_prev)
4809 {
4810         struct packet_type *ptype, *pt_prev;
4811         rx_handler_func_t *rx_handler;
4812         struct net_device *orig_dev;
4813         bool deliver_exact = false;
4814         int ret = NET_RX_DROP;
4815         __be16 type;
4816
4817         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4818
4819         trace_netif_receive_skb(skb);
4820
4821         orig_dev = skb->dev;
4822
4823         skb_reset_network_header(skb);
4824         if (!skb_transport_header_was_set(skb))
4825                 skb_reset_transport_header(skb);
4826         skb_reset_mac_len(skb);
4827
4828         pt_prev = NULL;
4829
4830 another_round:
4831         skb->skb_iif = skb->dev->ifindex;
4832
4833         __this_cpu_inc(softnet_data.processed);
4834
4835         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4836                 int ret2;
4837
4838                 preempt_disable();
4839                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4840                 preempt_enable();
4841
4842                 if (ret2 != XDP_PASS)
4843                         return NET_RX_DROP;
4844                 skb_reset_mac_len(skb);
4845         }
4846
4847         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4848             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4849                 skb = skb_vlan_untag(skb);
4850                 if (unlikely(!skb))
4851                         goto out;
4852         }
4853
4854         if (skb_skip_tc_classify(skb))
4855                 goto skip_classify;
4856
4857         if (pfmemalloc)
4858                 goto skip_taps;
4859
4860         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4861                 if (pt_prev)
4862                         ret = deliver_skb(skb, pt_prev, orig_dev);
4863                 pt_prev = ptype;
4864         }
4865
4866         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4867                 if (pt_prev)
4868                         ret = deliver_skb(skb, pt_prev, orig_dev);
4869                 pt_prev = ptype;
4870         }
4871
4872 skip_taps:
4873 #ifdef CONFIG_NET_INGRESS
4874         if (static_branch_unlikely(&ingress_needed_key)) {
4875                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4876                 if (!skb)
4877                         goto out;
4878
4879                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4880                         goto out;
4881         }
4882 #endif
4883         skb_reset_tc(skb);
4884 skip_classify:
4885         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4886                 goto drop;
4887
4888         if (skb_vlan_tag_present(skb)) {
4889                 if (pt_prev) {
4890                         ret = deliver_skb(skb, pt_prev, orig_dev);
4891                         pt_prev = NULL;
4892                 }
4893                 if (vlan_do_receive(&skb))
4894                         goto another_round;
4895                 else if (unlikely(!skb))
4896                         goto out;
4897         }
4898
4899         rx_handler = rcu_dereference(skb->dev->rx_handler);
4900         if (rx_handler) {
4901                 if (pt_prev) {
4902                         ret = deliver_skb(skb, pt_prev, orig_dev);
4903                         pt_prev = NULL;
4904                 }
4905                 switch (rx_handler(&skb)) {
4906                 case RX_HANDLER_CONSUMED:
4907                         ret = NET_RX_SUCCESS;
4908                         goto out;
4909                 case RX_HANDLER_ANOTHER:
4910                         goto another_round;
4911                 case RX_HANDLER_EXACT:
4912                         deliver_exact = true;
4913                 case RX_HANDLER_PASS:
4914                         break;
4915                 default:
4916                         BUG();
4917                 }
4918         }
4919
4920         if (unlikely(skb_vlan_tag_present(skb))) {
4921 check_vlan_id:
4922                 if (skb_vlan_tag_get_id(skb)) {
4923                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
4924                          * find vlan device.
4925                          */
4926                         skb->pkt_type = PACKET_OTHERHOST;
4927                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4928                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4929                         /* Outer header is 802.1P with vlan 0, inner header is
4930                          * 802.1Q or 802.1AD and vlan_do_receive() above could
4931                          * not find vlan dev for vlan id 0.
4932                          */
4933                         __vlan_hwaccel_clear_tag(skb);
4934                         skb = skb_vlan_untag(skb);
4935                         if (unlikely(!skb))
4936                                 goto out;
4937                         if (vlan_do_receive(&skb))
4938                                 /* After stripping off 802.1P header with vlan 0
4939                                  * vlan dev is found for inner header.
4940                                  */
4941                                 goto another_round;
4942                         else if (unlikely(!skb))
4943                                 goto out;
4944                         else
4945                                 /* We have stripped outer 802.1P vlan 0 header.
4946                                  * But could not find vlan dev.
4947                                  * check again for vlan id to set OTHERHOST.
4948                                  */
4949                                 goto check_vlan_id;
4950                 }
4951                 /* Note: we might in the future use prio bits
4952                  * and set skb->priority like in vlan_do_receive()
4953                  * For the time being, just ignore Priority Code Point
4954                  */
4955                 __vlan_hwaccel_clear_tag(skb);
4956         }
4957
4958         type = skb->protocol;
4959
4960         /* deliver only exact match when indicated */
4961         if (likely(!deliver_exact)) {
4962                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4963                                        &ptype_base[ntohs(type) &
4964                                                    PTYPE_HASH_MASK]);
4965         }
4966
4967         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4968                                &orig_dev->ptype_specific);
4969
4970         if (unlikely(skb->dev != orig_dev)) {
4971                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4972                                        &skb->dev->ptype_specific);
4973         }
4974
4975         if (pt_prev) {
4976                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4977                         goto drop;
4978                 *ppt_prev = pt_prev;
4979         } else {
4980 drop:
4981                 if (!deliver_exact)
4982                         atomic_long_inc(&skb->dev->rx_dropped);
4983                 else
4984                         atomic_long_inc(&skb->dev->rx_nohandler);
4985                 kfree_skb(skb);
4986                 /* Jamal, now you will not able to escape explaining
4987                  * me how you were going to use this. :-)
4988                  */
4989                 ret = NET_RX_DROP;
4990         }
4991
4992 out:
4993         return ret;
4994 }
4995
4996 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4997 {
4998         struct net_device *orig_dev = skb->dev;
4999         struct packet_type *pt_prev = NULL;
5000         int ret;
5001
5002         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5003         if (pt_prev)
5004                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5005                                          skb->dev, pt_prev, orig_dev);
5006         return ret;
5007 }
5008
5009 /**
5010  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5011  *      @skb: buffer to process
5012  *
5013  *      More direct receive version of netif_receive_skb().  It should
5014  *      only be used by callers that have a need to skip RPS and Generic XDP.
5015  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5016  *
5017  *      This function may only be called from softirq context and interrupts
5018  *      should be enabled.
5019  *
5020  *      Return values (usually ignored):
5021  *      NET_RX_SUCCESS: no congestion
5022  *      NET_RX_DROP: packet was dropped
5023  */
5024 int netif_receive_skb_core(struct sk_buff *skb)
5025 {
5026         int ret;
5027
5028         rcu_read_lock();
5029         ret = __netif_receive_skb_one_core(skb, false);
5030         rcu_read_unlock();
5031
5032         return ret;
5033 }
5034 EXPORT_SYMBOL(netif_receive_skb_core);
5035
5036 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5037                                                   struct packet_type *pt_prev,
5038                                                   struct net_device *orig_dev)
5039 {
5040         struct sk_buff *skb, *next;
5041
5042         if (!pt_prev)
5043                 return;
5044         if (list_empty(head))
5045                 return;
5046         if (pt_prev->list_func != NULL)
5047                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5048                                    ip_list_rcv, head, pt_prev, orig_dev);
5049         else
5050                 list_for_each_entry_safe(skb, next, head, list) {
5051                         skb_list_del_init(skb);
5052                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5053                 }
5054 }
5055
5056 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5057 {
5058         /* Fast-path assumptions:
5059          * - There is no RX handler.
5060          * - Only one packet_type matches.
5061          * If either of these fails, we will end up doing some per-packet
5062          * processing in-line, then handling the 'last ptype' for the whole
5063          * sublist.  This can't cause out-of-order delivery to any single ptype,
5064          * because the 'last ptype' must be constant across the sublist, and all
5065          * other ptypes are handled per-packet.
5066          */
5067         /* Current (common) ptype of sublist */
5068         struct packet_type *pt_curr = NULL;
5069         /* Current (common) orig_dev of sublist */
5070         struct net_device *od_curr = NULL;
5071         struct list_head sublist;
5072         struct sk_buff *skb, *next;
5073
5074         INIT_LIST_HEAD(&sublist);
5075         list_for_each_entry_safe(skb, next, head, list) {
5076                 struct net_device *orig_dev = skb->dev;
5077                 struct packet_type *pt_prev = NULL;
5078
5079                 skb_list_del_init(skb);
5080                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5081                 if (!pt_prev)
5082                         continue;
5083                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5084                         /* dispatch old sublist */
5085                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5086                         /* start new sublist */
5087                         INIT_LIST_HEAD(&sublist);
5088                         pt_curr = pt_prev;
5089                         od_curr = orig_dev;
5090                 }
5091                 list_add_tail(&skb->list, &sublist);
5092         }
5093
5094         /* dispatch final sublist */
5095         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5096 }
5097
5098 static int __netif_receive_skb(struct sk_buff *skb)
5099 {
5100         int ret;
5101
5102         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5103                 unsigned int noreclaim_flag;
5104
5105                 /*
5106                  * PFMEMALLOC skbs are special, they should
5107                  * - be delivered to SOCK_MEMALLOC sockets only
5108                  * - stay away from userspace
5109                  * - have bounded memory usage
5110                  *
5111                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5112                  * context down to all allocation sites.
5113                  */
5114                 noreclaim_flag = memalloc_noreclaim_save();
5115                 ret = __netif_receive_skb_one_core(skb, true);
5116                 memalloc_noreclaim_restore(noreclaim_flag);
5117         } else
5118                 ret = __netif_receive_skb_one_core(skb, false);
5119
5120         return ret;
5121 }
5122
5123 static void __netif_receive_skb_list(struct list_head *head)
5124 {
5125         unsigned long noreclaim_flag = 0;
5126         struct sk_buff *skb, *next;
5127         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5128
5129         list_for_each_entry_safe(skb, next, head, list) {
5130                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5131                         struct list_head sublist;
5132
5133                         /* Handle the previous sublist */
5134                         list_cut_before(&sublist, head, &skb->list);
5135                         if (!list_empty(&sublist))
5136                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5137                         pfmemalloc = !pfmemalloc;
5138                         /* See comments in __netif_receive_skb */
5139                         if (pfmemalloc)
5140                                 noreclaim_flag = memalloc_noreclaim_save();
5141                         else
5142                                 memalloc_noreclaim_restore(noreclaim_flag);
5143                 }
5144         }
5145         /* Handle the remaining sublist */
5146         if (!list_empty(head))
5147                 __netif_receive_skb_list_core(head, pfmemalloc);
5148         /* Restore pflags */
5149         if (pfmemalloc)
5150                 memalloc_noreclaim_restore(noreclaim_flag);
5151 }
5152
5153 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5154 {
5155         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5156         struct bpf_prog *new = xdp->prog;
5157         int ret = 0;
5158
5159         switch (xdp->command) {
5160         case XDP_SETUP_PROG:
5161                 rcu_assign_pointer(dev->xdp_prog, new);
5162                 if (old)
5163                         bpf_prog_put(old);
5164
5165                 if (old && !new) {
5166                         static_branch_dec(&generic_xdp_needed_key);
5167                 } else if (new && !old) {
5168                         static_branch_inc(&generic_xdp_needed_key);
5169                         dev_disable_lro(dev);
5170                         dev_disable_gro_hw(dev);
5171                 }
5172                 break;
5173
5174         case XDP_QUERY_PROG:
5175                 xdp->prog_id = old ? old->aux->id : 0;
5176                 break;
5177
5178         default:
5179                 ret = -EINVAL;
5180                 break;
5181         }
5182
5183         return ret;
5184 }
5185
5186 static int netif_receive_skb_internal(struct sk_buff *skb)
5187 {
5188         int ret;
5189
5190         net_timestamp_check(netdev_tstamp_prequeue, skb);
5191
5192         if (skb_defer_rx_timestamp(skb))
5193                 return NET_RX_SUCCESS;
5194
5195         rcu_read_lock();
5196 #ifdef CONFIG_RPS
5197         if (static_branch_unlikely(&rps_needed)) {
5198                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5199                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5200
5201                 if (cpu >= 0) {
5202                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5203                         rcu_read_unlock();
5204                         return ret;
5205                 }
5206         }
5207 #endif
5208         ret = __netif_receive_skb(skb);
5209         rcu_read_unlock();
5210         return ret;
5211 }
5212
5213 static void netif_receive_skb_list_internal(struct list_head *head)
5214 {
5215         struct sk_buff *skb, *next;
5216         struct list_head sublist;
5217
5218         INIT_LIST_HEAD(&sublist);
5219         list_for_each_entry_safe(skb, next, head, list) {
5220                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5221                 skb_list_del_init(skb);
5222                 if (!skb_defer_rx_timestamp(skb))
5223                         list_add_tail(&skb->list, &sublist);
5224         }
5225         list_splice_init(&sublist, head);
5226
5227         rcu_read_lock();
5228 #ifdef CONFIG_RPS
5229         if (static_branch_unlikely(&rps_needed)) {
5230                 list_for_each_entry_safe(skb, next, head, list) {
5231                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5232                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5233
5234                         if (cpu >= 0) {
5235                                 /* Will be handled, remove from list */
5236                                 skb_list_del_init(skb);
5237                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5238                         }
5239                 }
5240         }
5241 #endif
5242         __netif_receive_skb_list(head);
5243         rcu_read_unlock();
5244 }
5245
5246 /**
5247  *      netif_receive_skb - process receive buffer from network
5248  *      @skb: buffer to process
5249  *
5250  *      netif_receive_skb() is the main receive data processing function.
5251  *      It always succeeds. The buffer may be dropped during processing
5252  *      for congestion control or by the protocol layers.
5253  *
5254  *      This function may only be called from softirq context and interrupts
5255  *      should be enabled.
5256  *
5257  *      Return values (usually ignored):
5258  *      NET_RX_SUCCESS: no congestion
5259  *      NET_RX_DROP: packet was dropped
5260  */
5261 int netif_receive_skb(struct sk_buff *skb)
5262 {
5263         int ret;
5264
5265         trace_netif_receive_skb_entry(skb);
5266
5267         ret = netif_receive_skb_internal(skb);
5268         trace_netif_receive_skb_exit(ret);
5269
5270         return ret;
5271 }
5272 EXPORT_SYMBOL(netif_receive_skb);
5273
5274 /**
5275  *      netif_receive_skb_list - process many receive buffers from network
5276  *      @head: list of skbs to process.
5277  *
5278  *      Since return value of netif_receive_skb() is normally ignored, and
5279  *      wouldn't be meaningful for a list, this function returns void.
5280  *
5281  *      This function may only be called from softirq context and interrupts
5282  *      should be enabled.
5283  */
5284 void netif_receive_skb_list(struct list_head *head)
5285 {
5286         struct sk_buff *skb;
5287
5288         if (list_empty(head))
5289                 return;
5290         if (trace_netif_receive_skb_list_entry_enabled()) {
5291                 list_for_each_entry(skb, head, list)
5292                         trace_netif_receive_skb_list_entry(skb);
5293         }
5294         netif_receive_skb_list_internal(head);
5295         trace_netif_receive_skb_list_exit(0);
5296 }
5297 EXPORT_SYMBOL(netif_receive_skb_list);
5298
5299 DEFINE_PER_CPU(struct work_struct, flush_works);
5300
5301 /* Network device is going away, flush any packets still pending */
5302 static void flush_backlog(struct work_struct *work)
5303 {
5304         struct sk_buff *skb, *tmp;
5305         struct softnet_data *sd;
5306
5307         local_bh_disable();
5308         sd = this_cpu_ptr(&softnet_data);
5309
5310         local_irq_disable();
5311         rps_lock(sd);
5312         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5313                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5314                         __skb_unlink(skb, &sd->input_pkt_queue);
5315                         kfree_skb(skb);
5316                         input_queue_head_incr(sd);
5317                 }
5318         }
5319         rps_unlock(sd);
5320         local_irq_enable();
5321
5322         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5323                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5324                         __skb_unlink(skb, &sd->process_queue);
5325                         kfree_skb(skb);
5326                         input_queue_head_incr(sd);
5327                 }
5328         }
5329         local_bh_enable();
5330 }
5331
5332 static void flush_all_backlogs(void)
5333 {
5334         unsigned int cpu;
5335
5336         get_online_cpus();
5337
5338         for_each_online_cpu(cpu)
5339                 queue_work_on(cpu, system_highpri_wq,
5340                               per_cpu_ptr(&flush_works, cpu));
5341
5342         for_each_online_cpu(cpu)
5343                 flush_work(per_cpu_ptr(&flush_works, cpu));
5344
5345         put_online_cpus();
5346 }
5347
5348 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5349 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5350 static int napi_gro_complete(struct sk_buff *skb)
5351 {
5352         struct packet_offload *ptype;
5353         __be16 type = skb->protocol;
5354         struct list_head *head = &offload_base;
5355         int err = -ENOENT;
5356
5357         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5358
5359         if (NAPI_GRO_CB(skb)->count == 1) {
5360                 skb_shinfo(skb)->gso_size = 0;
5361                 goto out;
5362         }
5363
5364         rcu_read_lock();
5365         list_for_each_entry_rcu(ptype, head, list) {
5366                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5367                         continue;
5368
5369                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5370                                          ipv6_gro_complete, inet_gro_complete,
5371                                          skb, 0);
5372                 break;
5373         }
5374         rcu_read_unlock();
5375
5376         if (err) {
5377                 WARN_ON(&ptype->list == head);
5378                 kfree_skb(skb);
5379                 return NET_RX_SUCCESS;
5380         }
5381
5382 out:
5383         return netif_receive_skb_internal(skb);
5384 }
5385
5386 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5387                                    bool flush_old)
5388 {
5389         struct list_head *head = &napi->gro_hash[index].list;
5390         struct sk_buff *skb, *p;
5391
5392         list_for_each_entry_safe_reverse(skb, p, head, list) {
5393                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5394                         return;
5395                 skb_list_del_init(skb);
5396                 napi_gro_complete(skb);
5397                 napi->gro_hash[index].count--;
5398         }
5399
5400         if (!napi->gro_hash[index].count)
5401                 __clear_bit(index, &napi->gro_bitmask);
5402 }
5403
5404 /* napi->gro_hash[].list contains packets ordered by age.
5405  * youngest packets at the head of it.
5406  * Complete skbs in reverse order to reduce latencies.
5407  */
5408 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5409 {
5410         unsigned long bitmask = napi->gro_bitmask;
5411         unsigned int i, base = ~0U;
5412
5413         while ((i = ffs(bitmask)) != 0) {
5414                 bitmask >>= i;
5415                 base += i;
5416                 __napi_gro_flush_chain(napi, base, flush_old);
5417         }
5418 }
5419 EXPORT_SYMBOL(napi_gro_flush);
5420
5421 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5422                                           struct sk_buff *skb)
5423 {
5424         unsigned int maclen = skb->dev->hard_header_len;
5425         u32 hash = skb_get_hash_raw(skb);
5426         struct list_head *head;
5427         struct sk_buff *p;
5428
5429         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5430         list_for_each_entry(p, head, list) {
5431                 unsigned long diffs;
5432
5433                 NAPI_GRO_CB(p)->flush = 0;
5434
5435                 if (hash != skb_get_hash_raw(p)) {
5436                         NAPI_GRO_CB(p)->same_flow = 0;
5437                         continue;
5438                 }
5439
5440                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5441                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5442                 if (skb_vlan_tag_present(p))
5443                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5444                 diffs |= skb_metadata_dst_cmp(p, skb);
5445                 diffs |= skb_metadata_differs(p, skb);
5446                 if (maclen == ETH_HLEN)
5447                         diffs |= compare_ether_header(skb_mac_header(p),
5448                                                       skb_mac_header(skb));
5449                 else if (!diffs)
5450                         diffs = memcmp(skb_mac_header(p),
5451                                        skb_mac_header(skb),
5452                                        maclen);
5453                 NAPI_GRO_CB(p)->same_flow = !diffs;
5454         }
5455
5456         return head;
5457 }
5458
5459 static void skb_gro_reset_offset(struct sk_buff *skb)
5460 {
5461         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5462         const skb_frag_t *frag0 = &pinfo->frags[0];
5463
5464         NAPI_GRO_CB(skb)->data_offset = 0;
5465         NAPI_GRO_CB(skb)->frag0 = NULL;
5466         NAPI_GRO_CB(skb)->frag0_len = 0;
5467
5468         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5469             pinfo->nr_frags &&
5470             !PageHighMem(skb_frag_page(frag0))) {
5471                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5472                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5473                                                     skb_frag_size(frag0),
5474                                                     skb->end - skb->tail);
5475         }
5476 }
5477
5478 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5479 {
5480         struct skb_shared_info *pinfo = skb_shinfo(skb);
5481
5482         BUG_ON(skb->end - skb->tail < grow);
5483
5484         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5485
5486         skb->data_len -= grow;
5487         skb->tail += grow;
5488
5489         pinfo->frags[0].page_offset += grow;
5490         skb_frag_size_sub(&pinfo->frags[0], grow);
5491
5492         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5493                 skb_frag_unref(skb, 0);
5494                 memmove(pinfo->frags, pinfo->frags + 1,
5495                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5496         }
5497 }
5498
5499 static void gro_flush_oldest(struct list_head *head)
5500 {
5501         struct sk_buff *oldest;
5502
5503         oldest = list_last_entry(head, struct sk_buff, list);
5504
5505         /* We are called with head length >= MAX_GRO_SKBS, so this is
5506          * impossible.
5507          */
5508         if (WARN_ON_ONCE(!oldest))
5509                 return;
5510
5511         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5512          * SKB to the chain.
5513          */
5514         skb_list_del_init(oldest);
5515         napi_gro_complete(oldest);
5516 }
5517
5518 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5519                                                            struct sk_buff *));
5520 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5521                                                            struct sk_buff *));
5522 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5523 {
5524         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5525         struct list_head *head = &offload_base;
5526         struct packet_offload *ptype;
5527         __be16 type = skb->protocol;
5528         struct list_head *gro_head;
5529         struct sk_buff *pp = NULL;
5530         enum gro_result ret;
5531         int same_flow;
5532         int grow;
5533
5534         if (netif_elide_gro(skb->dev))
5535                 goto normal;
5536
5537         gro_head = gro_list_prepare(napi, skb);
5538
5539         rcu_read_lock();
5540         list_for_each_entry_rcu(ptype, head, list) {
5541                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5542                         continue;
5543
5544                 skb_set_network_header(skb, skb_gro_offset(skb));
5545                 skb_reset_mac_len(skb);
5546                 NAPI_GRO_CB(skb)->same_flow = 0;
5547                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5548                 NAPI_GRO_CB(skb)->free = 0;
5549                 NAPI_GRO_CB(skb)->encap_mark = 0;
5550                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5551                 NAPI_GRO_CB(skb)->is_fou = 0;
5552                 NAPI_GRO_CB(skb)->is_atomic = 1;
5553                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5554
5555                 /* Setup for GRO checksum validation */
5556                 switch (skb->ip_summed) {
5557                 case CHECKSUM_COMPLETE:
5558                         NAPI_GRO_CB(skb)->csum = skb->csum;
5559                         NAPI_GRO_CB(skb)->csum_valid = 1;
5560                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5561                         break;
5562                 case CHECKSUM_UNNECESSARY:
5563                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5564                         NAPI_GRO_CB(skb)->csum_valid = 0;
5565                         break;
5566                 default:
5567                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5568                         NAPI_GRO_CB(skb)->csum_valid = 0;
5569                 }
5570
5571                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5572                                         ipv6_gro_receive, inet_gro_receive,
5573                                         gro_head, skb);
5574                 break;
5575         }
5576         rcu_read_unlock();
5577
5578         if (&ptype->list == head)
5579                 goto normal;
5580
5581         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5582                 ret = GRO_CONSUMED;
5583                 goto ok;
5584         }
5585
5586         same_flow = NAPI_GRO_CB(skb)->same_flow;
5587         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5588
5589         if (pp) {
5590                 skb_list_del_init(pp);
5591                 napi_gro_complete(pp);
5592                 napi->gro_hash[hash].count--;
5593         }
5594
5595         if (same_flow)
5596                 goto ok;
5597
5598         if (NAPI_GRO_CB(skb)->flush)
5599                 goto normal;
5600
5601         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5602                 gro_flush_oldest(gro_head);
5603         } else {
5604                 napi->gro_hash[hash].count++;
5605         }
5606         NAPI_GRO_CB(skb)->count = 1;
5607         NAPI_GRO_CB(skb)->age = jiffies;
5608         NAPI_GRO_CB(skb)->last = skb;
5609         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5610         list_add(&skb->list, gro_head);
5611         ret = GRO_HELD;
5612
5613 pull:
5614         grow = skb_gro_offset(skb) - skb_headlen(skb);
5615         if (grow > 0)
5616                 gro_pull_from_frag0(skb, grow);
5617 ok:
5618         if (napi->gro_hash[hash].count) {
5619                 if (!test_bit(hash, &napi->gro_bitmask))
5620                         __set_bit(hash, &napi->gro_bitmask);
5621         } else if (test_bit(hash, &napi->gro_bitmask)) {
5622                 __clear_bit(hash, &napi->gro_bitmask);
5623         }
5624
5625         return ret;
5626
5627 normal:
5628         ret = GRO_NORMAL;
5629         goto pull;
5630 }
5631
5632 struct packet_offload *gro_find_receive_by_type(__be16 type)
5633 {
5634         struct list_head *offload_head = &offload_base;
5635         struct packet_offload *ptype;
5636
5637         list_for_each_entry_rcu(ptype, offload_head, list) {
5638                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5639                         continue;
5640                 return ptype;
5641         }
5642         return NULL;
5643 }
5644 EXPORT_SYMBOL(gro_find_receive_by_type);
5645
5646 struct packet_offload *gro_find_complete_by_type(__be16 type)
5647 {
5648         struct list_head *offload_head = &offload_base;
5649         struct packet_offload *ptype;
5650
5651         list_for_each_entry_rcu(ptype, offload_head, list) {
5652                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5653                         continue;
5654                 return ptype;
5655         }
5656         return NULL;
5657 }
5658 EXPORT_SYMBOL(gro_find_complete_by_type);
5659
5660 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5661 {
5662         skb_dst_drop(skb);
5663         secpath_reset(skb);
5664         kmem_cache_free(skbuff_head_cache, skb);
5665 }
5666
5667 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5668 {
5669         switch (ret) {
5670         case GRO_NORMAL:
5671                 if (netif_receive_skb_internal(skb))
5672                         ret = GRO_DROP;
5673                 break;
5674
5675         case GRO_DROP:
5676                 kfree_skb(skb);
5677                 break;
5678
5679         case GRO_MERGED_FREE:
5680                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5681                         napi_skb_free_stolen_head(skb);
5682                 else
5683                         __kfree_skb(skb);
5684                 break;
5685
5686         case GRO_HELD:
5687         case GRO_MERGED:
5688         case GRO_CONSUMED:
5689                 break;
5690         }
5691
5692         return ret;
5693 }
5694
5695 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5696 {
5697         gro_result_t ret;
5698
5699         skb_mark_napi_id(skb, napi);
5700         trace_napi_gro_receive_entry(skb);
5701
5702         skb_gro_reset_offset(skb);
5703
5704         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5705         trace_napi_gro_receive_exit(ret);
5706
5707         return ret;
5708 }
5709 EXPORT_SYMBOL(napi_gro_receive);
5710
5711 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5712 {
5713         if (unlikely(skb->pfmemalloc)) {
5714                 consume_skb(skb);
5715                 return;
5716         }
5717         __skb_pull(skb, skb_headlen(skb));
5718         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5719         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5720         __vlan_hwaccel_clear_tag(skb);
5721         skb->dev = napi->dev;
5722         skb->skb_iif = 0;
5723
5724         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5725         skb->pkt_type = PACKET_HOST;
5726
5727         skb->encapsulation = 0;
5728         skb_shinfo(skb)->gso_type = 0;
5729         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5730         secpath_reset(skb);
5731
5732         napi->skb = skb;
5733 }
5734
5735 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5736 {
5737         struct sk_buff *skb = napi->skb;
5738
5739         if (!skb) {
5740                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5741                 if (skb) {
5742                         napi->skb = skb;
5743                         skb_mark_napi_id(skb, napi);
5744                 }
5745         }
5746         return skb;
5747 }
5748 EXPORT_SYMBOL(napi_get_frags);
5749
5750 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5751                                       struct sk_buff *skb,
5752                                       gro_result_t ret)
5753 {
5754         switch (ret) {
5755         case GRO_NORMAL:
5756         case GRO_HELD:
5757                 __skb_push(skb, ETH_HLEN);
5758                 skb->protocol = eth_type_trans(skb, skb->dev);
5759                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5760                         ret = GRO_DROP;
5761                 break;
5762
5763         case GRO_DROP:
5764                 napi_reuse_skb(napi, skb);
5765                 break;
5766
5767         case GRO_MERGED_FREE:
5768                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5769                         napi_skb_free_stolen_head(skb);
5770                 else
5771                         napi_reuse_skb(napi, skb);
5772                 break;
5773
5774         case GRO_MERGED:
5775         case GRO_CONSUMED:
5776                 break;
5777         }
5778
5779         return ret;
5780 }
5781
5782 /* Upper GRO stack assumes network header starts at gro_offset=0
5783  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5784  * We copy ethernet header into skb->data to have a common layout.
5785  */
5786 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5787 {
5788         struct sk_buff *skb = napi->skb;
5789         const struct ethhdr *eth;
5790         unsigned int hlen = sizeof(*eth);
5791
5792         napi->skb = NULL;
5793
5794         skb_reset_mac_header(skb);
5795         skb_gro_reset_offset(skb);
5796
5797         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5798                 eth = skb_gro_header_slow(skb, hlen, 0);
5799                 if (unlikely(!eth)) {
5800                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5801                                              __func__, napi->dev->name);
5802                         napi_reuse_skb(napi, skb);
5803                         return NULL;
5804                 }
5805         } else {
5806                 eth = (const struct ethhdr *)skb->data;
5807                 gro_pull_from_frag0(skb, hlen);
5808                 NAPI_GRO_CB(skb)->frag0 += hlen;
5809                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5810         }
5811         __skb_pull(skb, hlen);
5812
5813         /*
5814          * This works because the only protocols we care about don't require
5815          * special handling.
5816          * We'll fix it up properly in napi_frags_finish()
5817          */
5818         skb->protocol = eth->h_proto;
5819
5820         return skb;
5821 }
5822
5823 gro_result_t napi_gro_frags(struct napi_struct *napi)
5824 {
5825         gro_result_t ret;
5826         struct sk_buff *skb = napi_frags_skb(napi);
5827
5828         if (!skb)
5829                 return GRO_DROP;
5830
5831         trace_napi_gro_frags_entry(skb);
5832
5833         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5834         trace_napi_gro_frags_exit(ret);
5835
5836         return ret;
5837 }
5838 EXPORT_SYMBOL(napi_gro_frags);
5839
5840 /* Compute the checksum from gro_offset and return the folded value
5841  * after adding in any pseudo checksum.
5842  */
5843 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5844 {
5845         __wsum wsum;
5846         __sum16 sum;
5847
5848         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5849
5850         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5851         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5852         /* See comments in __skb_checksum_complete(). */
5853         if (likely(!sum)) {
5854                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5855                     !skb->csum_complete_sw)
5856                         netdev_rx_csum_fault(skb->dev, skb);
5857         }
5858
5859         NAPI_GRO_CB(skb)->csum = wsum;
5860         NAPI_GRO_CB(skb)->csum_valid = 1;
5861
5862         return sum;
5863 }
5864 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5865
5866 static void net_rps_send_ipi(struct softnet_data *remsd)
5867 {
5868 #ifdef CONFIG_RPS
5869         while (remsd) {
5870                 struct softnet_data *next = remsd->rps_ipi_next;
5871
5872                 if (cpu_online(remsd->cpu))
5873                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5874                 remsd = next;
5875         }
5876 #endif
5877 }
5878
5879 /*
5880  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5881  * Note: called with local irq disabled, but exits with local irq enabled.
5882  */
5883 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5884 {
5885 #ifdef CONFIG_RPS
5886         struct softnet_data *remsd = sd->rps_ipi_list;
5887
5888         if (remsd) {
5889                 sd->rps_ipi_list = NULL;
5890
5891                 local_irq_enable();
5892
5893                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5894                 net_rps_send_ipi(remsd);
5895         } else
5896 #endif
5897                 local_irq_enable();
5898 }
5899
5900 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5901 {
5902 #ifdef CONFIG_RPS
5903         return sd->rps_ipi_list != NULL;
5904 #else
5905         return false;
5906 #endif
5907 }
5908
5909 static int process_backlog(struct napi_struct *napi, int quota)
5910 {
5911         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5912         bool again = true;
5913         int work = 0;
5914
5915         /* Check if we have pending ipi, its better to send them now,
5916          * not waiting net_rx_action() end.
5917          */
5918         if (sd_has_rps_ipi_waiting(sd)) {
5919                 local_irq_disable();
5920                 net_rps_action_and_irq_enable(sd);
5921         }
5922
5923         napi->weight = dev_rx_weight;
5924         while (again) {
5925                 struct sk_buff *skb;
5926
5927                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5928                         rcu_read_lock();
5929                         __netif_receive_skb(skb);
5930                         rcu_read_unlock();
5931                         input_queue_head_incr(sd);
5932                         if (++work >= quota)
5933                                 return work;
5934
5935                 }
5936
5937                 local_irq_disable();
5938                 rps_lock(sd);
5939                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5940                         /*
5941                          * Inline a custom version of __napi_complete().
5942                          * only current cpu owns and manipulates this napi,
5943                          * and NAPI_STATE_SCHED is the only possible flag set
5944                          * on backlog.
5945                          * We can use a plain write instead of clear_bit(),
5946                          * and we dont need an smp_mb() memory barrier.
5947                          */
5948                         napi->state = 0;
5949                         again = false;
5950                 } else {
5951                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5952                                                    &sd->process_queue);
5953                 }
5954                 rps_unlock(sd);
5955                 local_irq_enable();
5956         }
5957
5958         return work;
5959 }
5960
5961 /**
5962  * __napi_schedule - schedule for receive
5963  * @n: entry to schedule
5964  *
5965  * The entry's receive function will be scheduled to run.
5966  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5967  */
5968 void __napi_schedule(struct napi_struct *n)
5969 {
5970         unsigned long flags;
5971
5972         local_irq_save(flags);
5973         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5974         local_irq_restore(flags);
5975 }
5976 EXPORT_SYMBOL(__napi_schedule);
5977
5978 /**
5979  *      napi_schedule_prep - check if napi can be scheduled
5980  *      @n: napi context
5981  *
5982  * Test if NAPI routine is already running, and if not mark
5983  * it as running.  This is used as a condition variable
5984  * insure only one NAPI poll instance runs.  We also make
5985  * sure there is no pending NAPI disable.
5986  */
5987 bool napi_schedule_prep(struct napi_struct *n)
5988 {
5989         unsigned long val, new;
5990
5991         do {
5992                 val = READ_ONCE(n->state);
5993                 if (unlikely(val & NAPIF_STATE_DISABLE))
5994                         return false;
5995                 new = val | NAPIF_STATE_SCHED;
5996
5997                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5998                  * This was suggested by Alexander Duyck, as compiler
5999                  * emits better code than :
6000                  * if (val & NAPIF_STATE_SCHED)
6001                  *     new |= NAPIF_STATE_MISSED;
6002                  */
6003                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6004                                                    NAPIF_STATE_MISSED;
6005         } while (cmpxchg(&n->state, val, new) != val);
6006
6007         return !(val & NAPIF_STATE_SCHED);
6008 }
6009 EXPORT_SYMBOL(napi_schedule_prep);
6010
6011 /**
6012  * __napi_schedule_irqoff - schedule for receive
6013  * @n: entry to schedule
6014  *
6015  * Variant of __napi_schedule() assuming hard irqs are masked
6016  */
6017 void __napi_schedule_irqoff(struct napi_struct *n)
6018 {
6019         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6020 }
6021 EXPORT_SYMBOL(__napi_schedule_irqoff);
6022
6023 bool napi_complete_done(struct napi_struct *n, int work_done)
6024 {
6025         unsigned long flags, val, new;
6026
6027         /*
6028          * 1) Don't let napi dequeue from the cpu poll list
6029          *    just in case its running on a different cpu.
6030          * 2) If we are busy polling, do nothing here, we have
6031          *    the guarantee we will be called later.
6032          */
6033         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6034                                  NAPIF_STATE_IN_BUSY_POLL)))
6035                 return false;
6036
6037         if (n->gro_bitmask) {
6038                 unsigned long timeout = 0;
6039
6040                 if (work_done)
6041                         timeout = n->dev->gro_flush_timeout;
6042
6043                 /* When the NAPI instance uses a timeout and keeps postponing
6044                  * it, we need to bound somehow the time packets are kept in
6045                  * the GRO layer
6046                  */
6047                 napi_gro_flush(n, !!timeout);
6048                 if (timeout)
6049                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6050                                       HRTIMER_MODE_REL_PINNED);
6051         }
6052         if (unlikely(!list_empty(&n->poll_list))) {
6053                 /* If n->poll_list is not empty, we need to mask irqs */
6054                 local_irq_save(flags);
6055                 list_del_init(&n->poll_list);
6056                 local_irq_restore(flags);
6057         }
6058
6059         do {
6060                 val = READ_ONCE(n->state);
6061
6062                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6063
6064                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6065
6066                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6067                  * because we will call napi->poll() one more time.
6068                  * This C code was suggested by Alexander Duyck to help gcc.
6069                  */
6070                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6071                                                     NAPIF_STATE_SCHED;
6072         } while (cmpxchg(&n->state, val, new) != val);
6073
6074         if (unlikely(val & NAPIF_STATE_MISSED)) {
6075                 __napi_schedule(n);
6076                 return false;
6077         }
6078
6079         return true;
6080 }
6081 EXPORT_SYMBOL(napi_complete_done);
6082
6083 /* must be called under rcu_read_lock(), as we dont take a reference */
6084 static struct napi_struct *napi_by_id(unsigned int napi_id)
6085 {
6086         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6087         struct napi_struct *napi;
6088
6089         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6090                 if (napi->napi_id == napi_id)
6091                         return napi;
6092
6093         return NULL;
6094 }
6095
6096 #if defined(CONFIG_NET_RX_BUSY_POLL)
6097
6098 #define BUSY_POLL_BUDGET 8
6099
6100 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6101 {
6102         int rc;
6103
6104         /* Busy polling means there is a high chance device driver hard irq
6105          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6106          * set in napi_schedule_prep().
6107          * Since we are about to call napi->poll() once more, we can safely
6108          * clear NAPI_STATE_MISSED.
6109          *
6110          * Note: x86 could use a single "lock and ..." instruction
6111          * to perform these two clear_bit()
6112          */
6113         clear_bit(NAPI_STATE_MISSED, &napi->state);
6114         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6115
6116         local_bh_disable();
6117
6118         /* All we really want here is to re-enable device interrupts.
6119          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6120          */
6121         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6122         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6123         netpoll_poll_unlock(have_poll_lock);
6124         if (rc == BUSY_POLL_BUDGET)
6125                 __napi_schedule(napi);
6126         local_bh_enable();
6127 }
6128
6129 void napi_busy_loop(unsigned int napi_id,
6130                     bool (*loop_end)(void *, unsigned long),
6131                     void *loop_end_arg)
6132 {
6133         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6134         int (*napi_poll)(struct napi_struct *napi, int budget);
6135         void *have_poll_lock = NULL;
6136         struct napi_struct *napi;
6137
6138 restart:
6139         napi_poll = NULL;
6140
6141         rcu_read_lock();
6142
6143         napi = napi_by_id(napi_id);
6144         if (!napi)
6145                 goto out;
6146
6147         preempt_disable();
6148         for (;;) {
6149                 int work = 0;
6150
6151                 local_bh_disable();
6152                 if (!napi_poll) {
6153                         unsigned long val = READ_ONCE(napi->state);
6154
6155                         /* If multiple threads are competing for this napi,
6156                          * we avoid dirtying napi->state as much as we can.
6157                          */
6158                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6159                                    NAPIF_STATE_IN_BUSY_POLL))
6160                                 goto count;
6161                         if (cmpxchg(&napi->state, val,
6162                                     val | NAPIF_STATE_IN_BUSY_POLL |
6163                                           NAPIF_STATE_SCHED) != val)
6164                                 goto count;
6165                         have_poll_lock = netpoll_poll_lock(napi);
6166                         napi_poll = napi->poll;
6167                 }
6168                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6169                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6170 count:
6171                 if (work > 0)
6172                         __NET_ADD_STATS(dev_net(napi->dev),
6173                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6174                 local_bh_enable();
6175
6176                 if (!loop_end || loop_end(loop_end_arg, start_time))
6177                         break;
6178
6179                 if (unlikely(need_resched())) {
6180                         if (napi_poll)
6181                                 busy_poll_stop(napi, have_poll_lock);
6182                         preempt_enable();
6183                         rcu_read_unlock();
6184                         cond_resched();
6185                         if (loop_end(loop_end_arg, start_time))
6186                                 return;
6187                         goto restart;
6188                 }
6189                 cpu_relax();
6190         }
6191         if (napi_poll)
6192                 busy_poll_stop(napi, have_poll_lock);
6193         preempt_enable();
6194 out:
6195         rcu_read_unlock();
6196 }
6197 EXPORT_SYMBOL(napi_busy_loop);
6198
6199 #endif /* CONFIG_NET_RX_BUSY_POLL */
6200
6201 static void napi_hash_add(struct napi_struct *napi)
6202 {
6203         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6204             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6205                 return;
6206
6207         spin_lock(&napi_hash_lock);
6208
6209         /* 0..NR_CPUS range is reserved for sender_cpu use */
6210         do {
6211                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6212                         napi_gen_id = MIN_NAPI_ID;
6213         } while (napi_by_id(napi_gen_id));
6214         napi->napi_id = napi_gen_id;
6215
6216         hlist_add_head_rcu(&napi->napi_hash_node,
6217                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6218
6219         spin_unlock(&napi_hash_lock);
6220 }
6221
6222 /* Warning : caller is responsible to make sure rcu grace period
6223  * is respected before freeing memory containing @napi
6224  */
6225 bool napi_hash_del(struct napi_struct *napi)
6226 {
6227         bool rcu_sync_needed = false;
6228
6229         spin_lock(&napi_hash_lock);
6230
6231         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6232                 rcu_sync_needed = true;
6233                 hlist_del_rcu(&napi->napi_hash_node);
6234         }
6235         spin_unlock(&napi_hash_lock);
6236         return rcu_sync_needed;
6237 }
6238 EXPORT_SYMBOL_GPL(napi_hash_del);
6239
6240 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6241 {
6242         struct napi_struct *napi;
6243
6244         napi = container_of(timer, struct napi_struct, timer);
6245
6246         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6247          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6248          */
6249         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6250             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6251                 __napi_schedule_irqoff(napi);
6252
6253         return HRTIMER_NORESTART;
6254 }
6255
6256 static void init_gro_hash(struct napi_struct *napi)
6257 {
6258         int i;
6259
6260         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6261                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6262                 napi->gro_hash[i].count = 0;
6263         }
6264         napi->gro_bitmask = 0;
6265 }
6266
6267 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6268                     int (*poll)(struct napi_struct *, int), int weight)
6269 {
6270         INIT_LIST_HEAD(&napi->poll_list);
6271         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6272         napi->timer.function = napi_watchdog;
6273         init_gro_hash(napi);
6274         napi->skb = NULL;
6275         napi->poll = poll;
6276         if (weight > NAPI_POLL_WEIGHT)
6277                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6278                                 weight);
6279         napi->weight = weight;
6280         list_add(&napi->dev_list, &dev->napi_list);
6281         napi->dev = dev;
6282 #ifdef CONFIG_NETPOLL
6283         napi->poll_owner = -1;
6284 #endif
6285         set_bit(NAPI_STATE_SCHED, &napi->state);
6286         napi_hash_add(napi);
6287 }
6288 EXPORT_SYMBOL(netif_napi_add);
6289
6290 void napi_disable(struct napi_struct *n)
6291 {
6292         might_sleep();
6293         set_bit(NAPI_STATE_DISABLE, &n->state);
6294
6295         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6296                 msleep(1);
6297         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6298                 msleep(1);
6299
6300         hrtimer_cancel(&n->timer);
6301
6302         clear_bit(NAPI_STATE_DISABLE, &n->state);
6303 }
6304 EXPORT_SYMBOL(napi_disable);
6305
6306 static void flush_gro_hash(struct napi_struct *napi)
6307 {
6308         int i;
6309
6310         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6311                 struct sk_buff *skb, *n;
6312
6313                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6314                         kfree_skb(skb);
6315                 napi->gro_hash[i].count = 0;
6316         }
6317 }
6318
6319 /* Must be called in process context */
6320 void netif_napi_del(struct napi_struct *napi)
6321 {
6322         might_sleep();
6323         if (napi_hash_del(napi))
6324                 synchronize_net();
6325         list_del_init(&napi->dev_list);
6326         napi_free_frags(napi);
6327
6328         flush_gro_hash(napi);
6329         napi->gro_bitmask = 0;
6330 }
6331 EXPORT_SYMBOL(netif_napi_del);
6332
6333 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6334 {
6335         void *have;
6336         int work, weight;
6337
6338         list_del_init(&n->poll_list);
6339
6340         have = netpoll_poll_lock(n);
6341
6342         weight = n->weight;
6343
6344         /* This NAPI_STATE_SCHED test is for avoiding a race
6345          * with netpoll's poll_napi().  Only the entity which
6346          * obtains the lock and sees NAPI_STATE_SCHED set will
6347          * actually make the ->poll() call.  Therefore we avoid
6348          * accidentally calling ->poll() when NAPI is not scheduled.
6349          */
6350         work = 0;
6351         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6352                 work = n->poll(n, weight);
6353                 trace_napi_poll(n, work, weight);
6354         }
6355
6356         WARN_ON_ONCE(work > weight);
6357
6358         if (likely(work < weight))
6359                 goto out_unlock;
6360
6361         /* Drivers must not modify the NAPI state if they
6362          * consume the entire weight.  In such cases this code
6363          * still "owns" the NAPI instance and therefore can
6364          * move the instance around on the list at-will.
6365          */
6366         if (unlikely(napi_disable_pending(n))) {
6367                 napi_complete(n);
6368                 goto out_unlock;
6369         }
6370
6371         if (n->gro_bitmask) {
6372                 /* flush too old packets
6373                  * If HZ < 1000, flush all packets.
6374                  */
6375                 napi_gro_flush(n, HZ >= 1000);
6376         }
6377
6378         /* Some drivers may have called napi_schedule
6379          * prior to exhausting their budget.
6380          */
6381         if (unlikely(!list_empty(&n->poll_list))) {
6382                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6383                              n->dev ? n->dev->name : "backlog");
6384                 goto out_unlock;
6385         }
6386
6387         list_add_tail(&n->poll_list, repoll);
6388
6389 out_unlock:
6390         netpoll_poll_unlock(have);
6391
6392         return work;
6393 }
6394
6395 static __latent_entropy void net_rx_action(struct softirq_action *h)
6396 {
6397         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6398         unsigned long time_limit = jiffies +
6399                 usecs_to_jiffies(netdev_budget_usecs);
6400         int budget = netdev_budget;
6401         LIST_HEAD(list);
6402         LIST_HEAD(repoll);
6403
6404         local_irq_disable();
6405         list_splice_init(&sd->poll_list, &list);
6406         local_irq_enable();
6407
6408         for (;;) {
6409                 struct napi_struct *n;
6410
6411                 if (list_empty(&list)) {
6412                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6413                                 goto out;
6414                         break;
6415                 }
6416
6417                 n = list_first_entry(&list, struct napi_struct, poll_list);
6418                 budget -= napi_poll(n, &repoll);
6419
6420                 /* If softirq window is exhausted then punt.
6421                  * Allow this to run for 2 jiffies since which will allow
6422                  * an average latency of 1.5/HZ.
6423                  */
6424                 if (unlikely(budget <= 0 ||
6425                              time_after_eq(jiffies, time_limit))) {
6426                         sd->time_squeeze++;
6427                         break;
6428                 }
6429         }
6430
6431         local_irq_disable();
6432
6433         list_splice_tail_init(&sd->poll_list, &list);
6434         list_splice_tail(&repoll, &list);
6435         list_splice(&list, &sd->poll_list);
6436         if (!list_empty(&sd->poll_list))
6437                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6438
6439         net_rps_action_and_irq_enable(sd);
6440 out:
6441         __kfree_skb_flush();
6442 }
6443
6444 struct netdev_adjacent {
6445         struct net_device *dev;
6446
6447         /* upper master flag, there can only be one master device per list */
6448         bool master;
6449
6450         /* counter for the number of times this device was added to us */
6451         u16 ref_nr;
6452
6453         /* private field for the users */
6454         void *private;
6455
6456         struct list_head list;
6457         struct rcu_head rcu;
6458 };
6459
6460 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6461                                                  struct list_head *adj_list)
6462 {
6463         struct netdev_adjacent *adj;
6464
6465         list_for_each_entry(adj, adj_list, list) {
6466                 if (adj->dev == adj_dev)
6467                         return adj;
6468         }
6469         return NULL;
6470 }
6471
6472 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6473 {
6474         struct net_device *dev = data;
6475
6476         return upper_dev == dev;
6477 }
6478
6479 /**
6480  * netdev_has_upper_dev - Check if device is linked to an upper device
6481  * @dev: device
6482  * @upper_dev: upper device to check
6483  *
6484  * Find out if a device is linked to specified upper device and return true
6485  * in case it is. Note that this checks only immediate upper device,
6486  * not through a complete stack of devices. The caller must hold the RTNL lock.
6487  */
6488 bool netdev_has_upper_dev(struct net_device *dev,
6489                           struct net_device *upper_dev)
6490 {
6491         ASSERT_RTNL();
6492
6493         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6494                                              upper_dev);
6495 }
6496 EXPORT_SYMBOL(netdev_has_upper_dev);
6497
6498 /**
6499  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6500  * @dev: device
6501  * @upper_dev: upper device to check
6502  *
6503  * Find out if a device is linked to specified upper device and return true
6504  * in case it is. Note that this checks the entire upper device chain.
6505  * The caller must hold rcu lock.
6506  */
6507
6508 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6509                                   struct net_device *upper_dev)
6510 {
6511         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6512                                                upper_dev);
6513 }
6514 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6515
6516 /**
6517  * netdev_has_any_upper_dev - Check if device is linked to some device
6518  * @dev: device
6519  *
6520  * Find out if a device is linked to an upper device and return true in case
6521  * it is. The caller must hold the RTNL lock.
6522  */
6523 bool netdev_has_any_upper_dev(struct net_device *dev)
6524 {
6525         ASSERT_RTNL();
6526
6527         return !list_empty(&dev->adj_list.upper);
6528 }
6529 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6530
6531 /**
6532  * netdev_master_upper_dev_get - Get master upper device
6533  * @dev: device
6534  *
6535  * Find a master upper device and return pointer to it or NULL in case
6536  * it's not there. The caller must hold the RTNL lock.
6537  */
6538 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6539 {
6540         struct netdev_adjacent *upper;
6541
6542         ASSERT_RTNL();
6543
6544         if (list_empty(&dev->adj_list.upper))
6545                 return NULL;
6546
6547         upper = list_first_entry(&dev->adj_list.upper,
6548                                  struct netdev_adjacent, list);
6549         if (likely(upper->master))
6550                 return upper->dev;
6551         return NULL;
6552 }
6553 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6554
6555 /**
6556  * netdev_has_any_lower_dev - Check if device is linked to some device
6557  * @dev: device
6558  *
6559  * Find out if a device is linked to a lower device and return true in case
6560  * it is. The caller must hold the RTNL lock.
6561  */
6562 static bool netdev_has_any_lower_dev(struct net_device *dev)
6563 {
6564         ASSERT_RTNL();
6565
6566         return !list_empty(&dev->adj_list.lower);
6567 }
6568
6569 void *netdev_adjacent_get_private(struct list_head *adj_list)
6570 {
6571         struct netdev_adjacent *adj;
6572
6573         adj = list_entry(adj_list, struct netdev_adjacent, list);
6574
6575         return adj->private;
6576 }
6577 EXPORT_SYMBOL(netdev_adjacent_get_private);
6578
6579 /**
6580  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6581  * @dev: device
6582  * @iter: list_head ** of the current position
6583  *
6584  * Gets the next device from the dev's upper list, starting from iter
6585  * position. The caller must hold RCU read lock.
6586  */
6587 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6588                                                  struct list_head **iter)
6589 {
6590         struct netdev_adjacent *upper;
6591
6592         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6593
6594         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6595
6596         if (&upper->list == &dev->adj_list.upper)
6597                 return NULL;
6598
6599         *iter = &upper->list;
6600
6601         return upper->dev;
6602 }
6603 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6604
6605 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6606                                                     struct list_head **iter)
6607 {
6608         struct netdev_adjacent *upper;
6609
6610         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6611
6612         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6613
6614         if (&upper->list == &dev->adj_list.upper)
6615                 return NULL;
6616
6617         *iter = &upper->list;
6618
6619         return upper->dev;
6620 }
6621
6622 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6623                                   int (*fn)(struct net_device *dev,
6624                                             void *data),
6625                                   void *data)
6626 {
6627         struct net_device *udev;
6628         struct list_head *iter;
6629         int ret;
6630
6631         for (iter = &dev->adj_list.upper,
6632              udev = netdev_next_upper_dev_rcu(dev, &iter);
6633              udev;
6634              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6635                 /* first is the upper device itself */
6636                 ret = fn(udev, data);
6637                 if (ret)
6638                         return ret;
6639
6640                 /* then look at all of its upper devices */
6641                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6642                 if (ret)
6643                         return ret;
6644         }
6645
6646         return 0;
6647 }
6648 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6649
6650 /**
6651  * netdev_lower_get_next_private - Get the next ->private from the
6652  *                                 lower neighbour list
6653  * @dev: device
6654  * @iter: list_head ** of the current position
6655  *
6656  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6657  * list, starting from iter position. The caller must hold either hold the
6658  * RTNL lock or its own locking that guarantees that the neighbour lower
6659  * list will remain unchanged.
6660  */
6661 void *netdev_lower_get_next_private(struct net_device *dev,
6662                                     struct list_head **iter)
6663 {
6664         struct netdev_adjacent *lower;
6665
6666         lower = list_entry(*iter, struct netdev_adjacent, list);
6667
6668         if (&lower->list == &dev->adj_list.lower)
6669                 return NULL;
6670
6671         *iter = lower->list.next;
6672
6673         return lower->private;
6674 }
6675 EXPORT_SYMBOL(netdev_lower_get_next_private);
6676
6677 /**
6678  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6679  *                                     lower neighbour list, RCU
6680  *                                     variant
6681  * @dev: device
6682  * @iter: list_head ** of the current position
6683  *
6684  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6685  * list, starting from iter position. The caller must hold RCU read lock.
6686  */
6687 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6688                                         struct list_head **iter)
6689 {
6690         struct netdev_adjacent *lower;
6691
6692         WARN_ON_ONCE(!rcu_read_lock_held());
6693
6694         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6695
6696         if (&lower->list == &dev->adj_list.lower)
6697                 return NULL;
6698
6699         *iter = &lower->list;
6700
6701         return lower->private;
6702 }
6703 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6704
6705 /**
6706  * netdev_lower_get_next - Get the next device from the lower neighbour
6707  *                         list
6708  * @dev: device
6709  * @iter: list_head ** of the current position
6710  *
6711  * Gets the next netdev_adjacent from the dev's lower neighbour
6712  * list, starting from iter position. The caller must hold RTNL lock or
6713  * its own locking that guarantees that the neighbour lower
6714  * list will remain unchanged.
6715  */
6716 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6717 {
6718         struct netdev_adjacent *lower;
6719
6720         lower = list_entry(*iter, struct netdev_adjacent, list);
6721
6722         if (&lower->list == &dev->adj_list.lower)
6723                 return NULL;
6724
6725         *iter = lower->list.next;
6726
6727         return lower->dev;
6728 }
6729 EXPORT_SYMBOL(netdev_lower_get_next);
6730
6731 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6732                                                 struct list_head **iter)
6733 {
6734         struct netdev_adjacent *lower;
6735
6736         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6737
6738         if (&lower->list == &dev->adj_list.lower)
6739                 return NULL;
6740
6741         *iter = &lower->list;
6742
6743         return lower->dev;
6744 }
6745
6746 int netdev_walk_all_lower_dev(struct net_device *dev,
6747                               int (*fn)(struct net_device *dev,
6748                                         void *data),
6749                               void *data)
6750 {
6751         struct net_device *ldev;
6752         struct list_head *iter;
6753         int ret;
6754
6755         for (iter = &dev->adj_list.lower,
6756              ldev = netdev_next_lower_dev(dev, &iter);
6757              ldev;
6758              ldev = netdev_next_lower_dev(dev, &iter)) {
6759                 /* first is the lower device itself */
6760                 ret = fn(ldev, data);
6761                 if (ret)
6762                         return ret;
6763
6764                 /* then look at all of its lower devices */
6765                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6766                 if (ret)
6767                         return ret;
6768         }
6769
6770         return 0;
6771 }
6772 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6773
6774 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6775                                                     struct list_head **iter)
6776 {
6777         struct netdev_adjacent *lower;
6778
6779         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6780         if (&lower->list == &dev->adj_list.lower)
6781                 return NULL;
6782
6783         *iter = &lower->list;
6784
6785         return lower->dev;
6786 }
6787
6788 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6789                                   int (*fn)(struct net_device *dev,
6790                                             void *data),
6791                                   void *data)
6792 {
6793         struct net_device *ldev;
6794         struct list_head *iter;
6795         int ret;
6796
6797         for (iter = &dev->adj_list.lower,
6798              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6799              ldev;
6800              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6801                 /* first is the lower device itself */
6802                 ret = fn(ldev, data);
6803                 if (ret)
6804                         return ret;
6805
6806                 /* then look at all of its lower devices */
6807                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6808                 if (ret)
6809                         return ret;
6810         }
6811
6812         return 0;
6813 }
6814 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6815
6816 /**
6817  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6818  *                                     lower neighbour list, RCU
6819  *                                     variant
6820  * @dev: device
6821  *
6822  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6823  * list. The caller must hold RCU read lock.
6824  */
6825 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6826 {
6827         struct netdev_adjacent *lower;
6828
6829         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6830                         struct netdev_adjacent, list);
6831         if (lower)
6832                 return lower->private;
6833         return NULL;
6834 }
6835 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6836
6837 /**
6838  * netdev_master_upper_dev_get_rcu - Get master upper device
6839  * @dev: device
6840  *
6841  * Find a master upper device and return pointer to it or NULL in case
6842  * it's not there. The caller must hold the RCU read lock.
6843  */
6844 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6845 {
6846         struct netdev_adjacent *upper;
6847
6848         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6849                                        struct netdev_adjacent, list);
6850         if (upper && likely(upper->master))
6851                 return upper->dev;
6852         return NULL;
6853 }
6854 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6855
6856 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6857                               struct net_device *adj_dev,
6858                               struct list_head *dev_list)
6859 {
6860         char linkname[IFNAMSIZ+7];
6861
6862         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6863                 "upper_%s" : "lower_%s", adj_dev->name);
6864         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6865                                  linkname);
6866 }
6867 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6868                                char *name,
6869                                struct list_head *dev_list)
6870 {
6871         char linkname[IFNAMSIZ+7];
6872
6873         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6874                 "upper_%s" : "lower_%s", name);
6875         sysfs_remove_link(&(dev->dev.kobj), linkname);
6876 }
6877
6878 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6879                                                  struct net_device *adj_dev,
6880                                                  struct list_head *dev_list)
6881 {
6882         return (dev_list == &dev->adj_list.upper ||
6883                 dev_list == &dev->adj_list.lower) &&
6884                 net_eq(dev_net(dev), dev_net(adj_dev));
6885 }
6886
6887 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6888                                         struct net_device *adj_dev,
6889                                         struct list_head *dev_list,
6890                                         void *private, bool master)
6891 {
6892         struct netdev_adjacent *adj;
6893         int ret;
6894
6895         adj = __netdev_find_adj(adj_dev, dev_list);
6896
6897         if (adj) {
6898                 adj->ref_nr += 1;
6899                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6900                          dev->name, adj_dev->name, adj->ref_nr);
6901
6902                 return 0;
6903         }
6904
6905         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6906         if (!adj)
6907                 return -ENOMEM;
6908
6909         adj->dev = adj_dev;
6910         adj->master = master;
6911         adj->ref_nr = 1;
6912         adj->private = private;
6913         dev_hold(adj_dev);
6914
6915         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6916                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6917
6918         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6919                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6920                 if (ret)
6921                         goto free_adj;
6922         }
6923
6924         /* Ensure that master link is always the first item in list. */
6925         if (master) {
6926                 ret = sysfs_create_link(&(dev->dev.kobj),
6927                                         &(adj_dev->dev.kobj), "master");
6928                 if (ret)
6929                         goto remove_symlinks;
6930
6931                 list_add_rcu(&adj->list, dev_list);
6932         } else {
6933                 list_add_tail_rcu(&adj->list, dev_list);
6934         }
6935
6936         return 0;
6937
6938 remove_symlinks:
6939         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6940                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6941 free_adj:
6942         kfree(adj);
6943         dev_put(adj_dev);
6944
6945         return ret;
6946 }
6947
6948 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6949                                          struct net_device *adj_dev,
6950                                          u16 ref_nr,
6951                                          struct list_head *dev_list)
6952 {
6953         struct netdev_adjacent *adj;
6954
6955         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6956                  dev->name, adj_dev->name, ref_nr);
6957
6958         adj = __netdev_find_adj(adj_dev, dev_list);
6959
6960         if (!adj) {
6961                 pr_err("Adjacency does not exist for device %s from %s\n",
6962                        dev->name, adj_dev->name);
6963                 WARN_ON(1);
6964                 return;
6965         }
6966
6967         if (adj->ref_nr > ref_nr) {
6968                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6969                          dev->name, adj_dev->name, ref_nr,
6970                          adj->ref_nr - ref_nr);
6971                 adj->ref_nr -= ref_nr;
6972                 return;
6973         }
6974
6975         if (adj->master)
6976                 sysfs_remove_link(&(dev->dev.kobj), "master");
6977
6978         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6979                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6980
6981         list_del_rcu(&adj->list);
6982         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6983                  adj_dev->name, dev->name, adj_dev->name);
6984         dev_put(adj_dev);
6985         kfree_rcu(adj, rcu);
6986 }
6987
6988 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6989                                             struct net_device *upper_dev,
6990                                             struct list_head *up_list,
6991                                             struct list_head *down_list,
6992                                             void *private, bool master)
6993 {
6994         int ret;
6995
6996         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6997                                            private, master);
6998         if (ret)
6999                 return ret;
7000
7001         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7002                                            private, false);
7003         if (ret) {
7004                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7005                 return ret;
7006         }
7007
7008         return 0;
7009 }
7010
7011 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7012                                                struct net_device *upper_dev,
7013                                                u16 ref_nr,
7014                                                struct list_head *up_list,
7015                                                struct list_head *down_list)
7016 {
7017         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7018         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7019 }
7020
7021 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7022                                                 struct net_device *upper_dev,
7023                                                 void *private, bool master)
7024 {
7025         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7026                                                 &dev->adj_list.upper,
7027                                                 &upper_dev->adj_list.lower,
7028                                                 private, master);
7029 }
7030
7031 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7032                                                    struct net_device *upper_dev)
7033 {
7034         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7035                                            &dev->adj_list.upper,
7036                                            &upper_dev->adj_list.lower);
7037 }
7038
7039 static int __netdev_upper_dev_link(struct net_device *dev,
7040                                    struct net_device *upper_dev, bool master,
7041                                    void *upper_priv, void *upper_info,
7042                                    struct netlink_ext_ack *extack)
7043 {
7044         struct netdev_notifier_changeupper_info changeupper_info = {
7045                 .info = {
7046                         .dev = dev,
7047                         .extack = extack,
7048                 },
7049                 .upper_dev = upper_dev,
7050                 .master = master,
7051                 .linking = true,
7052                 .upper_info = upper_info,
7053         };
7054         struct net_device *master_dev;
7055         int ret = 0;
7056
7057         ASSERT_RTNL();
7058
7059         if (dev == upper_dev)
7060                 return -EBUSY;
7061
7062         /* To prevent loops, check if dev is not upper device to upper_dev. */
7063         if (netdev_has_upper_dev(upper_dev, dev))
7064                 return -EBUSY;
7065
7066         if (!master) {
7067                 if (netdev_has_upper_dev(dev, upper_dev))
7068                         return -EEXIST;
7069         } else {
7070                 master_dev = netdev_master_upper_dev_get(dev);
7071                 if (master_dev)
7072                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7073         }
7074
7075         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7076                                             &changeupper_info.info);
7077         ret = notifier_to_errno(ret);
7078         if (ret)
7079                 return ret;
7080
7081         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7082                                                    master);
7083         if (ret)
7084                 return ret;
7085
7086         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7087                                             &changeupper_info.info);
7088         ret = notifier_to_errno(ret);
7089         if (ret)
7090                 goto rollback;
7091
7092         return 0;
7093
7094 rollback:
7095         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7096
7097         return ret;
7098 }
7099
7100 /**
7101  * netdev_upper_dev_link - Add a link to the upper device
7102  * @dev: device
7103  * @upper_dev: new upper device
7104  * @extack: netlink extended ack
7105  *
7106  * Adds a link to device which is upper to this one. The caller must hold
7107  * the RTNL lock. On a failure a negative errno code is returned.
7108  * On success the reference counts are adjusted and the function
7109  * returns zero.
7110  */
7111 int netdev_upper_dev_link(struct net_device *dev,
7112                           struct net_device *upper_dev,
7113                           struct netlink_ext_ack *extack)
7114 {
7115         return __netdev_upper_dev_link(dev, upper_dev, false,
7116                                        NULL, NULL, extack);
7117 }
7118 EXPORT_SYMBOL(netdev_upper_dev_link);
7119
7120 /**
7121  * netdev_master_upper_dev_link - Add a master link to the upper device
7122  * @dev: device
7123  * @upper_dev: new upper device
7124  * @upper_priv: upper device private
7125  * @upper_info: upper info to be passed down via notifier
7126  * @extack: netlink extended ack
7127  *
7128  * Adds a link to device which is upper to this one. In this case, only
7129  * one master upper device can be linked, although other non-master devices
7130  * might be linked as well. The caller must hold the RTNL lock.
7131  * On a failure a negative errno code is returned. On success the reference
7132  * counts are adjusted and the function returns zero.
7133  */
7134 int netdev_master_upper_dev_link(struct net_device *dev,
7135                                  struct net_device *upper_dev,
7136                                  void *upper_priv, void *upper_info,
7137                                  struct netlink_ext_ack *extack)
7138 {
7139         return __netdev_upper_dev_link(dev, upper_dev, true,
7140                                        upper_priv, upper_info, extack);
7141 }
7142 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7143
7144 /**
7145  * netdev_upper_dev_unlink - Removes a link to upper device
7146  * @dev: device
7147  * @upper_dev: new upper device
7148  *
7149  * Removes a link to device which is upper to this one. The caller must hold
7150  * the RTNL lock.
7151  */
7152 void netdev_upper_dev_unlink(struct net_device *dev,
7153                              struct net_device *upper_dev)
7154 {
7155         struct netdev_notifier_changeupper_info changeupper_info = {
7156                 .info = {
7157                         .dev = dev,
7158                 },
7159                 .upper_dev = upper_dev,
7160                 .linking = false,
7161         };
7162
7163         ASSERT_RTNL();
7164
7165         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7166
7167         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7168                                       &changeupper_info.info);
7169
7170         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7171
7172         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7173                                       &changeupper_info.info);
7174 }
7175 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7176
7177 /**
7178  * netdev_bonding_info_change - Dispatch event about slave change
7179  * @dev: device
7180  * @bonding_info: info to dispatch
7181  *
7182  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7183  * The caller must hold the RTNL lock.
7184  */
7185 void netdev_bonding_info_change(struct net_device *dev,
7186                                 struct netdev_bonding_info *bonding_info)
7187 {
7188         struct netdev_notifier_bonding_info info = {
7189                 .info.dev = dev,
7190         };
7191
7192         memcpy(&info.bonding_info, bonding_info,
7193                sizeof(struct netdev_bonding_info));
7194         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7195                                       &info.info);
7196 }
7197 EXPORT_SYMBOL(netdev_bonding_info_change);
7198
7199 static void netdev_adjacent_add_links(struct net_device *dev)
7200 {
7201         struct netdev_adjacent *iter;
7202
7203         struct net *net = dev_net(dev);
7204
7205         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7206                 if (!net_eq(net, dev_net(iter->dev)))
7207                         continue;
7208                 netdev_adjacent_sysfs_add(iter->dev, dev,
7209                                           &iter->dev->adj_list.lower);
7210                 netdev_adjacent_sysfs_add(dev, iter->dev,
7211                                           &dev->adj_list.upper);
7212         }
7213
7214         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7215                 if (!net_eq(net, dev_net(iter->dev)))
7216                         continue;
7217                 netdev_adjacent_sysfs_add(iter->dev, dev,
7218                                           &iter->dev->adj_list.upper);
7219                 netdev_adjacent_sysfs_add(dev, iter->dev,
7220                                           &dev->adj_list.lower);
7221         }
7222 }
7223
7224 static void netdev_adjacent_del_links(struct net_device *dev)
7225 {
7226         struct netdev_adjacent *iter;
7227
7228         struct net *net = dev_net(dev);
7229
7230         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7231                 if (!net_eq(net, dev_net(iter->dev)))
7232                         continue;
7233                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7234                                           &iter->dev->adj_list.lower);
7235                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7236                                           &dev->adj_list.upper);
7237         }
7238
7239         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7240                 if (!net_eq(net, dev_net(iter->dev)))
7241                         continue;
7242                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7243                                           &iter->dev->adj_list.upper);
7244                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7245                                           &dev->adj_list.lower);
7246         }
7247 }
7248
7249 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7250 {
7251         struct netdev_adjacent *iter;
7252
7253         struct net *net = dev_net(dev);
7254
7255         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7256                 if (!net_eq(net, dev_net(iter->dev)))
7257                         continue;
7258                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7259                                           &iter->dev->adj_list.lower);
7260                 netdev_adjacent_sysfs_add(iter->dev, dev,
7261                                           &iter->dev->adj_list.lower);
7262         }
7263
7264         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7265                 if (!net_eq(net, dev_net(iter->dev)))
7266                         continue;
7267                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7268                                           &iter->dev->adj_list.upper);
7269                 netdev_adjacent_sysfs_add(iter->dev, dev,
7270                                           &iter->dev->adj_list.upper);
7271         }
7272 }
7273
7274 void *netdev_lower_dev_get_private(struct net_device *dev,
7275                                    struct net_device *lower_dev)
7276 {
7277         struct netdev_adjacent *lower;
7278
7279         if (!lower_dev)
7280                 return NULL;
7281         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7282         if (!lower)
7283                 return NULL;
7284
7285         return lower->private;
7286 }
7287 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7288
7289
7290 int dev_get_nest_level(struct net_device *dev)
7291 {
7292         struct net_device *lower = NULL;
7293         struct list_head *iter;
7294         int max_nest = -1;
7295         int nest;
7296
7297         ASSERT_RTNL();
7298
7299         netdev_for_each_lower_dev(dev, lower, iter) {
7300                 nest = dev_get_nest_level(lower);
7301                 if (max_nest < nest)
7302                         max_nest = nest;
7303         }
7304
7305         return max_nest + 1;
7306 }
7307 EXPORT_SYMBOL(dev_get_nest_level);
7308
7309 /**
7310  * netdev_lower_change - Dispatch event about lower device state change
7311  * @lower_dev: device
7312  * @lower_state_info: state to dispatch
7313  *
7314  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7315  * The caller must hold the RTNL lock.
7316  */
7317 void netdev_lower_state_changed(struct net_device *lower_dev,
7318                                 void *lower_state_info)
7319 {
7320         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7321                 .info.dev = lower_dev,
7322         };
7323
7324         ASSERT_RTNL();
7325         changelowerstate_info.lower_state_info = lower_state_info;
7326         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7327                                       &changelowerstate_info.info);
7328 }
7329 EXPORT_SYMBOL(netdev_lower_state_changed);
7330
7331 static void dev_change_rx_flags(struct net_device *dev, int flags)
7332 {
7333         const struct net_device_ops *ops = dev->netdev_ops;
7334
7335         if (ops->ndo_change_rx_flags)
7336                 ops->ndo_change_rx_flags(dev, flags);
7337 }
7338
7339 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7340 {
7341         unsigned int old_flags = dev->flags;
7342         kuid_t uid;
7343         kgid_t gid;
7344
7345         ASSERT_RTNL();
7346
7347         dev->flags |= IFF_PROMISC;
7348         dev->promiscuity += inc;
7349         if (dev->promiscuity == 0) {
7350                 /*
7351                  * Avoid overflow.
7352                  * If inc causes overflow, untouch promisc and return error.
7353                  */
7354                 if (inc < 0)
7355                         dev->flags &= ~IFF_PROMISC;
7356                 else {
7357                         dev->promiscuity -= inc;
7358                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7359                                 dev->name);
7360                         return -EOVERFLOW;
7361                 }
7362         }
7363         if (dev->flags != old_flags) {
7364                 pr_info("device %s %s promiscuous mode\n",
7365                         dev->name,
7366                         dev->flags & IFF_PROMISC ? "entered" : "left");
7367                 if (audit_enabled) {
7368                         current_uid_gid(&uid, &gid);
7369                         audit_log(audit_context(), GFP_ATOMIC,
7370                                   AUDIT_ANOM_PROMISCUOUS,
7371                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7372                                   dev->name, (dev->flags & IFF_PROMISC),
7373                                   (old_flags & IFF_PROMISC),
7374                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7375                                   from_kuid(&init_user_ns, uid),
7376                                   from_kgid(&init_user_ns, gid),
7377                                   audit_get_sessionid(current));
7378                 }
7379
7380                 dev_change_rx_flags(dev, IFF_PROMISC);
7381         }
7382         if (notify)
7383                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7384         return 0;
7385 }
7386
7387 /**
7388  *      dev_set_promiscuity     - update promiscuity count on a device
7389  *      @dev: device
7390  *      @inc: modifier
7391  *
7392  *      Add or remove promiscuity from a device. While the count in the device
7393  *      remains above zero the interface remains promiscuous. Once it hits zero
7394  *      the device reverts back to normal filtering operation. A negative inc
7395  *      value is used to drop promiscuity on the device.
7396  *      Return 0 if successful or a negative errno code on error.
7397  */
7398 int dev_set_promiscuity(struct net_device *dev, int inc)
7399 {
7400         unsigned int old_flags = dev->flags;
7401         int err;
7402
7403         err = __dev_set_promiscuity(dev, inc, true);
7404         if (err < 0)
7405                 return err;
7406         if (dev->flags != old_flags)
7407                 dev_set_rx_mode(dev);
7408         return err;
7409 }
7410 EXPORT_SYMBOL(dev_set_promiscuity);
7411
7412 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7413 {
7414         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7415
7416         ASSERT_RTNL();
7417
7418         dev->flags |= IFF_ALLMULTI;
7419         dev->allmulti += inc;
7420         if (dev->allmulti == 0) {
7421                 /*
7422                  * Avoid overflow.
7423                  * If inc causes overflow, untouch allmulti and return error.
7424                  */
7425                 if (inc < 0)
7426                         dev->flags &= ~IFF_ALLMULTI;
7427                 else {
7428                         dev->allmulti -= inc;
7429                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7430                                 dev->name);
7431                         return -EOVERFLOW;
7432                 }
7433         }
7434         if (dev->flags ^ old_flags) {
7435                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7436                 dev_set_rx_mode(dev);
7437                 if (notify)
7438                         __dev_notify_flags(dev, old_flags,
7439                                            dev->gflags ^ old_gflags);
7440         }
7441         return 0;
7442 }
7443
7444 /**
7445  *      dev_set_allmulti        - update allmulti count on a device
7446  *      @dev: device
7447  *      @inc: modifier
7448  *
7449  *      Add or remove reception of all multicast frames to a device. While the
7450  *      count in the device remains above zero the interface remains listening
7451  *      to all interfaces. Once it hits zero the device reverts back to normal
7452  *      filtering operation. A negative @inc value is used to drop the counter
7453  *      when releasing a resource needing all multicasts.
7454  *      Return 0 if successful or a negative errno code on error.
7455  */
7456
7457 int dev_set_allmulti(struct net_device *dev, int inc)
7458 {
7459         return __dev_set_allmulti(dev, inc, true);
7460 }
7461 EXPORT_SYMBOL(dev_set_allmulti);
7462
7463 /*
7464  *      Upload unicast and multicast address lists to device and
7465  *      configure RX filtering. When the device doesn't support unicast
7466  *      filtering it is put in promiscuous mode while unicast addresses
7467  *      are present.
7468  */
7469 void __dev_set_rx_mode(struct net_device *dev)
7470 {
7471         const struct net_device_ops *ops = dev->netdev_ops;
7472
7473         /* dev_open will call this function so the list will stay sane. */
7474         if (!(dev->flags&IFF_UP))
7475                 return;
7476
7477         if (!netif_device_present(dev))
7478                 return;
7479
7480         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7481                 /* Unicast addresses changes may only happen under the rtnl,
7482                  * therefore calling __dev_set_promiscuity here is safe.
7483                  */
7484                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7485                         __dev_set_promiscuity(dev, 1, false);
7486                         dev->uc_promisc = true;
7487                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7488                         __dev_set_promiscuity(dev, -1, false);
7489                         dev->uc_promisc = false;
7490                 }
7491         }
7492
7493         if (ops->ndo_set_rx_mode)
7494                 ops->ndo_set_rx_mode(dev);
7495 }
7496
7497 void dev_set_rx_mode(struct net_device *dev)
7498 {
7499         netif_addr_lock_bh(dev);
7500         __dev_set_rx_mode(dev);
7501         netif_addr_unlock_bh(dev);
7502 }
7503
7504 /**
7505  *      dev_get_flags - get flags reported to userspace
7506  *      @dev: device
7507  *
7508  *      Get the combination of flag bits exported through APIs to userspace.
7509  */
7510 unsigned int dev_get_flags(const struct net_device *dev)
7511 {
7512         unsigned int flags;
7513
7514         flags = (dev->flags & ~(IFF_PROMISC |
7515                                 IFF_ALLMULTI |
7516                                 IFF_RUNNING |
7517                                 IFF_LOWER_UP |
7518                                 IFF_DORMANT)) |
7519                 (dev->gflags & (IFF_PROMISC |
7520                                 IFF_ALLMULTI));
7521
7522         if (netif_running(dev)) {
7523                 if (netif_oper_up(dev))
7524                         flags |= IFF_RUNNING;
7525                 if (netif_carrier_ok(dev))
7526                         flags |= IFF_LOWER_UP;
7527                 if (netif_dormant(dev))
7528                         flags |= IFF_DORMANT;
7529         }
7530
7531         return flags;
7532 }
7533 EXPORT_SYMBOL(dev_get_flags);
7534
7535 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7536                        struct netlink_ext_ack *extack)
7537 {
7538         unsigned int old_flags = dev->flags;
7539         int ret;
7540
7541         ASSERT_RTNL();
7542
7543         /*
7544          *      Set the flags on our device.
7545          */
7546
7547         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7548                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7549                                IFF_AUTOMEDIA)) |
7550                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7551                                     IFF_ALLMULTI));
7552
7553         /*
7554          *      Load in the correct multicast list now the flags have changed.
7555          */
7556
7557         if ((old_flags ^ flags) & IFF_MULTICAST)
7558                 dev_change_rx_flags(dev, IFF_MULTICAST);
7559
7560         dev_set_rx_mode(dev);
7561
7562         /*
7563          *      Have we downed the interface. We handle IFF_UP ourselves
7564          *      according to user attempts to set it, rather than blindly
7565          *      setting it.
7566          */
7567
7568         ret = 0;
7569         if ((old_flags ^ flags) & IFF_UP) {
7570                 if (old_flags & IFF_UP)
7571                         __dev_close(dev);
7572                 else
7573                         ret = __dev_open(dev, extack);
7574         }
7575
7576         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7577                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7578                 unsigned int old_flags = dev->flags;
7579
7580                 dev->gflags ^= IFF_PROMISC;
7581
7582                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7583                         if (dev->flags != old_flags)
7584                                 dev_set_rx_mode(dev);
7585         }
7586
7587         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7588          * is important. Some (broken) drivers set IFF_PROMISC, when
7589          * IFF_ALLMULTI is requested not asking us and not reporting.
7590          */
7591         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7592                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7593
7594                 dev->gflags ^= IFF_ALLMULTI;
7595                 __dev_set_allmulti(dev, inc, false);
7596         }
7597
7598         return ret;
7599 }
7600
7601 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7602                         unsigned int gchanges)
7603 {
7604         unsigned int changes = dev->flags ^ old_flags;
7605
7606         if (gchanges)
7607                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7608
7609         if (changes & IFF_UP) {
7610                 if (dev->flags & IFF_UP)
7611                         call_netdevice_notifiers(NETDEV_UP, dev);
7612                 else
7613                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7614         }
7615
7616         if (dev->flags & IFF_UP &&
7617             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7618                 struct netdev_notifier_change_info change_info = {
7619                         .info = {
7620                                 .dev = dev,
7621                         },
7622                         .flags_changed = changes,
7623                 };
7624
7625                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7626         }
7627 }
7628
7629 /**
7630  *      dev_change_flags - change device settings
7631  *      @dev: device
7632  *      @flags: device state flags
7633  *      @extack: netlink extended ack
7634  *
7635  *      Change settings on device based state flags. The flags are
7636  *      in the userspace exported format.
7637  */
7638 int dev_change_flags(struct net_device *dev, unsigned int flags,
7639                      struct netlink_ext_ack *extack)
7640 {
7641         int ret;
7642         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7643
7644         ret = __dev_change_flags(dev, flags, extack);
7645         if (ret < 0)
7646                 return ret;
7647
7648         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7649         __dev_notify_flags(dev, old_flags, changes);
7650         return ret;
7651 }
7652 EXPORT_SYMBOL(dev_change_flags);
7653
7654 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7655 {
7656         const struct net_device_ops *ops = dev->netdev_ops;
7657
7658         if (ops->ndo_change_mtu)
7659                 return ops->ndo_change_mtu(dev, new_mtu);
7660
7661         dev->mtu = new_mtu;
7662         return 0;
7663 }
7664 EXPORT_SYMBOL(__dev_set_mtu);
7665
7666 /**
7667  *      dev_set_mtu_ext - Change maximum transfer unit
7668  *      @dev: device
7669  *      @new_mtu: new transfer unit
7670  *      @extack: netlink extended ack
7671  *
7672  *      Change the maximum transfer size of the network device.
7673  */
7674 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7675                     struct netlink_ext_ack *extack)
7676 {
7677         int err, orig_mtu;
7678
7679         if (new_mtu == dev->mtu)
7680                 return 0;
7681
7682         /* MTU must be positive, and in range */
7683         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7684                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7685                 return -EINVAL;
7686         }
7687
7688         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7689                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7690                 return -EINVAL;
7691         }
7692
7693         if (!netif_device_present(dev))
7694                 return -ENODEV;
7695
7696         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7697         err = notifier_to_errno(err);
7698         if (err)
7699                 return err;
7700
7701         orig_mtu = dev->mtu;
7702         err = __dev_set_mtu(dev, new_mtu);
7703
7704         if (!err) {
7705                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7706                                                    orig_mtu);
7707                 err = notifier_to_errno(err);
7708                 if (err) {
7709                         /* setting mtu back and notifying everyone again,
7710                          * so that they have a chance to revert changes.
7711                          */
7712                         __dev_set_mtu(dev, orig_mtu);
7713                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7714                                                      new_mtu);
7715                 }
7716         }
7717         return err;
7718 }
7719
7720 int dev_set_mtu(struct net_device *dev, int new_mtu)
7721 {
7722         struct netlink_ext_ack extack;
7723         int err;
7724
7725         memset(&extack, 0, sizeof(extack));
7726         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7727         if (err && extack._msg)
7728                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7729         return err;
7730 }
7731 EXPORT_SYMBOL(dev_set_mtu);
7732
7733 /**
7734  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7735  *      @dev: device
7736  *      @new_len: new tx queue length
7737  */
7738 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7739 {
7740         unsigned int orig_len = dev->tx_queue_len;
7741         int res;
7742
7743         if (new_len != (unsigned int)new_len)
7744                 return -ERANGE;
7745
7746         if (new_len != orig_len) {
7747                 dev->tx_queue_len = new_len;
7748                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7749                 res = notifier_to_errno(res);
7750                 if (res)
7751                         goto err_rollback;
7752                 res = dev_qdisc_change_tx_queue_len(dev);
7753                 if (res)
7754                         goto err_rollback;
7755         }
7756
7757         return 0;
7758
7759 err_rollback:
7760         netdev_err(dev, "refused to change device tx_queue_len\n");
7761         dev->tx_queue_len = orig_len;
7762         return res;
7763 }
7764
7765 /**
7766  *      dev_set_group - Change group this device belongs to
7767  *      @dev: device
7768  *      @new_group: group this device should belong to
7769  */
7770 void dev_set_group(struct net_device *dev, int new_group)
7771 {
7772         dev->group = new_group;
7773 }
7774 EXPORT_SYMBOL(dev_set_group);
7775
7776 /**
7777  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7778  *      @dev: device
7779  *      @addr: new address
7780  *      @extack: netlink extended ack
7781  */
7782 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7783                               struct netlink_ext_ack *extack)
7784 {
7785         struct netdev_notifier_pre_changeaddr_info info = {
7786                 .info.dev = dev,
7787                 .info.extack = extack,
7788                 .dev_addr = addr,
7789         };
7790         int rc;
7791
7792         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7793         return notifier_to_errno(rc);
7794 }
7795 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7796
7797 /**
7798  *      dev_set_mac_address - Change Media Access Control Address
7799  *      @dev: device
7800  *      @sa: new address
7801  *      @extack: netlink extended ack
7802  *
7803  *      Change the hardware (MAC) address of the device
7804  */
7805 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7806                         struct netlink_ext_ack *extack)
7807 {
7808         const struct net_device_ops *ops = dev->netdev_ops;
7809         int err;
7810
7811         if (!ops->ndo_set_mac_address)
7812                 return -EOPNOTSUPP;
7813         if (sa->sa_family != dev->type)
7814                 return -EINVAL;
7815         if (!netif_device_present(dev))
7816                 return -ENODEV;
7817         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7818         if (err)
7819                 return err;
7820         err = ops->ndo_set_mac_address(dev, sa);
7821         if (err)
7822                 return err;
7823         dev->addr_assign_type = NET_ADDR_SET;
7824         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7825         add_device_randomness(dev->dev_addr, dev->addr_len);
7826         return 0;
7827 }
7828 EXPORT_SYMBOL(dev_set_mac_address);
7829
7830 /**
7831  *      dev_change_carrier - Change device carrier
7832  *      @dev: device
7833  *      @new_carrier: new value
7834  *
7835  *      Change device carrier
7836  */
7837 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7838 {
7839         const struct net_device_ops *ops = dev->netdev_ops;
7840
7841         if (!ops->ndo_change_carrier)
7842                 return -EOPNOTSUPP;
7843         if (!netif_device_present(dev))
7844                 return -ENODEV;
7845         return ops->ndo_change_carrier(dev, new_carrier);
7846 }
7847 EXPORT_SYMBOL(dev_change_carrier);
7848
7849 /**
7850  *      dev_get_phys_port_id - Get device physical port ID
7851  *      @dev: device
7852  *      @ppid: port ID
7853  *
7854  *      Get device physical port ID
7855  */
7856 int dev_get_phys_port_id(struct net_device *dev,
7857                          struct netdev_phys_item_id *ppid)
7858 {
7859         const struct net_device_ops *ops = dev->netdev_ops;
7860
7861         if (!ops->ndo_get_phys_port_id)
7862                 return -EOPNOTSUPP;
7863         return ops->ndo_get_phys_port_id(dev, ppid);
7864 }
7865 EXPORT_SYMBOL(dev_get_phys_port_id);
7866
7867 /**
7868  *      dev_get_phys_port_name - Get device physical port name
7869  *      @dev: device
7870  *      @name: port name
7871  *      @len: limit of bytes to copy to name
7872  *
7873  *      Get device physical port name
7874  */
7875 int dev_get_phys_port_name(struct net_device *dev,
7876                            char *name, size_t len)
7877 {
7878         const struct net_device_ops *ops = dev->netdev_ops;
7879         int err;
7880
7881         if (ops->ndo_get_phys_port_name) {
7882                 err = ops->ndo_get_phys_port_name(dev, name, len);
7883                 if (err != -EOPNOTSUPP)
7884                         return err;
7885         }
7886         return devlink_compat_phys_port_name_get(dev, name, len);
7887 }
7888 EXPORT_SYMBOL(dev_get_phys_port_name);
7889
7890 /**
7891  *      dev_get_port_parent_id - Get the device's port parent identifier
7892  *      @dev: network device
7893  *      @ppid: pointer to a storage for the port's parent identifier
7894  *      @recurse: allow/disallow recursion to lower devices
7895  *
7896  *      Get the devices's port parent identifier
7897  */
7898 int dev_get_port_parent_id(struct net_device *dev,
7899                            struct netdev_phys_item_id *ppid,
7900                            bool recurse)
7901 {
7902         const struct net_device_ops *ops = dev->netdev_ops;
7903         struct netdev_phys_item_id first = { };
7904         struct net_device *lower_dev;
7905         struct list_head *iter;
7906         int err;
7907
7908         if (ops->ndo_get_port_parent_id) {
7909                 err = ops->ndo_get_port_parent_id(dev, ppid);
7910                 if (err != -EOPNOTSUPP)
7911                         return err;
7912         }
7913
7914         err = devlink_compat_switch_id_get(dev, ppid);
7915         if (!err || err != -EOPNOTSUPP)
7916                 return err;
7917
7918         if (!recurse)
7919                 return -EOPNOTSUPP;
7920
7921         netdev_for_each_lower_dev(dev, lower_dev, iter) {
7922                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7923                 if (err)
7924                         break;
7925                 if (!first.id_len)
7926                         first = *ppid;
7927                 else if (memcmp(&first, ppid, sizeof(*ppid)))
7928                         return -ENODATA;
7929         }
7930
7931         return err;
7932 }
7933 EXPORT_SYMBOL(dev_get_port_parent_id);
7934
7935 /**
7936  *      netdev_port_same_parent_id - Indicate if two network devices have
7937  *      the same port parent identifier
7938  *      @a: first network device
7939  *      @b: second network device
7940  */
7941 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7942 {
7943         struct netdev_phys_item_id a_id = { };
7944         struct netdev_phys_item_id b_id = { };
7945
7946         if (dev_get_port_parent_id(a, &a_id, true) ||
7947             dev_get_port_parent_id(b, &b_id, true))
7948                 return false;
7949
7950         return netdev_phys_item_id_same(&a_id, &b_id);
7951 }
7952 EXPORT_SYMBOL(netdev_port_same_parent_id);
7953
7954 /**
7955  *      dev_change_proto_down - update protocol port state information
7956  *      @dev: device
7957  *      @proto_down: new value
7958  *
7959  *      This info can be used by switch drivers to set the phys state of the
7960  *      port.
7961  */
7962 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7963 {
7964         const struct net_device_ops *ops = dev->netdev_ops;
7965
7966         if (!ops->ndo_change_proto_down)
7967                 return -EOPNOTSUPP;
7968         if (!netif_device_present(dev))
7969                 return -ENODEV;
7970         return ops->ndo_change_proto_down(dev, proto_down);
7971 }
7972 EXPORT_SYMBOL(dev_change_proto_down);
7973
7974 /**
7975  *      dev_change_proto_down_generic - generic implementation for
7976  *      ndo_change_proto_down that sets carrier according to
7977  *      proto_down.
7978  *
7979  *      @dev: device
7980  *      @proto_down: new value
7981  */
7982 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7983 {
7984         if (proto_down)
7985                 netif_carrier_off(dev);
7986         else
7987                 netif_carrier_on(dev);
7988         dev->proto_down = proto_down;
7989         return 0;
7990 }
7991 EXPORT_SYMBOL(dev_change_proto_down_generic);
7992
7993 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7994                     enum bpf_netdev_command cmd)
7995 {
7996         struct netdev_bpf xdp;
7997
7998         if (!bpf_op)
7999                 return 0;
8000
8001         memset(&xdp, 0, sizeof(xdp));
8002         xdp.command = cmd;
8003
8004         /* Query must always succeed. */
8005         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8006
8007         return xdp.prog_id;
8008 }
8009
8010 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8011                            struct netlink_ext_ack *extack, u32 flags,
8012                            struct bpf_prog *prog)
8013 {
8014         struct netdev_bpf xdp;
8015
8016         memset(&xdp, 0, sizeof(xdp));
8017         if (flags & XDP_FLAGS_HW_MODE)
8018                 xdp.command = XDP_SETUP_PROG_HW;
8019         else
8020                 xdp.command = XDP_SETUP_PROG;
8021         xdp.extack = extack;
8022         xdp.flags = flags;
8023         xdp.prog = prog;
8024
8025         return bpf_op(dev, &xdp);
8026 }
8027
8028 static void dev_xdp_uninstall(struct net_device *dev)
8029 {
8030         struct netdev_bpf xdp;
8031         bpf_op_t ndo_bpf;
8032
8033         /* Remove generic XDP */
8034         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8035
8036         /* Remove from the driver */
8037         ndo_bpf = dev->netdev_ops->ndo_bpf;
8038         if (!ndo_bpf)
8039                 return;
8040
8041         memset(&xdp, 0, sizeof(xdp));
8042         xdp.command = XDP_QUERY_PROG;
8043         WARN_ON(ndo_bpf(dev, &xdp));
8044         if (xdp.prog_id)
8045                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8046                                         NULL));
8047
8048         /* Remove HW offload */
8049         memset(&xdp, 0, sizeof(xdp));
8050         xdp.command = XDP_QUERY_PROG_HW;
8051         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8052                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8053                                         NULL));
8054 }
8055
8056 /**
8057  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8058  *      @dev: device
8059  *      @extack: netlink extended ack
8060  *      @fd: new program fd or negative value to clear
8061  *      @flags: xdp-related flags
8062  *
8063  *      Set or clear a bpf program for a device
8064  */
8065 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8066                       int fd, u32 flags)
8067 {
8068         const struct net_device_ops *ops = dev->netdev_ops;
8069         enum bpf_netdev_command query;
8070         struct bpf_prog *prog = NULL;
8071         bpf_op_t bpf_op, bpf_chk;
8072         bool offload;
8073         int err;
8074
8075         ASSERT_RTNL();
8076
8077         offload = flags & XDP_FLAGS_HW_MODE;
8078         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8079
8080         bpf_op = bpf_chk = ops->ndo_bpf;
8081         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8082                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8083                 return -EOPNOTSUPP;
8084         }
8085         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8086                 bpf_op = generic_xdp_install;
8087         if (bpf_op == bpf_chk)
8088                 bpf_chk = generic_xdp_install;
8089
8090         if (fd >= 0) {
8091                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8092                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8093                         return -EEXIST;
8094                 }
8095                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8096                     __dev_xdp_query(dev, bpf_op, query)) {
8097                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8098                         return -EBUSY;
8099                 }
8100
8101                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8102                                              bpf_op == ops->ndo_bpf);
8103                 if (IS_ERR(prog))
8104                         return PTR_ERR(prog);
8105
8106                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8107                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8108                         bpf_prog_put(prog);
8109                         return -EINVAL;
8110                 }
8111         }
8112
8113         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8114         if (err < 0 && prog)
8115                 bpf_prog_put(prog);
8116
8117         return err;
8118 }
8119
8120 /**
8121  *      dev_new_index   -       allocate an ifindex
8122  *      @net: the applicable net namespace
8123  *
8124  *      Returns a suitable unique value for a new device interface
8125  *      number.  The caller must hold the rtnl semaphore or the
8126  *      dev_base_lock to be sure it remains unique.
8127  */
8128 static int dev_new_index(struct net *net)
8129 {
8130         int ifindex = net->ifindex;
8131
8132         for (;;) {
8133                 if (++ifindex <= 0)
8134                         ifindex = 1;
8135                 if (!__dev_get_by_index(net, ifindex))
8136                         return net->ifindex = ifindex;
8137         }
8138 }
8139
8140 /* Delayed registration/unregisteration */
8141 static LIST_HEAD(net_todo_list);
8142 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8143
8144 static void net_set_todo(struct net_device *dev)
8145 {
8146         list_add_tail(&dev->todo_list, &net_todo_list);
8147         dev_net(dev)->dev_unreg_count++;
8148 }
8149
8150 static void rollback_registered_many(struct list_head *head)
8151 {
8152         struct net_device *dev, *tmp;
8153         LIST_HEAD(close_head);
8154
8155         BUG_ON(dev_boot_phase);
8156         ASSERT_RTNL();
8157
8158         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8159                 /* Some devices call without registering
8160                  * for initialization unwind. Remove those
8161                  * devices and proceed with the remaining.
8162                  */
8163                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8164                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8165                                  dev->name, dev);
8166
8167                         WARN_ON(1);
8168                         list_del(&dev->unreg_list);
8169                         continue;
8170                 }
8171                 dev->dismantle = true;
8172                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8173         }
8174
8175         /* If device is running, close it first. */
8176         list_for_each_entry(dev, head, unreg_list)
8177                 list_add_tail(&dev->close_list, &close_head);
8178         dev_close_many(&close_head, true);
8179
8180         list_for_each_entry(dev, head, unreg_list) {
8181                 /* And unlink it from device chain. */
8182                 unlist_netdevice(dev);
8183
8184                 dev->reg_state = NETREG_UNREGISTERING;
8185         }
8186         flush_all_backlogs();
8187
8188         synchronize_net();
8189
8190         list_for_each_entry(dev, head, unreg_list) {
8191                 struct sk_buff *skb = NULL;
8192
8193                 /* Shutdown queueing discipline. */
8194                 dev_shutdown(dev);
8195
8196                 dev_xdp_uninstall(dev);
8197
8198                 /* Notify protocols, that we are about to destroy
8199                  * this device. They should clean all the things.
8200                  */
8201                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8202
8203                 if (!dev->rtnl_link_ops ||
8204                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8205                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8206                                                      GFP_KERNEL, NULL, 0);
8207
8208                 /*
8209                  *      Flush the unicast and multicast chains
8210                  */
8211                 dev_uc_flush(dev);
8212                 dev_mc_flush(dev);
8213
8214                 if (dev->netdev_ops->ndo_uninit)
8215                         dev->netdev_ops->ndo_uninit(dev);
8216
8217                 if (skb)
8218                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8219
8220                 /* Notifier chain MUST detach us all upper devices. */
8221                 WARN_ON(netdev_has_any_upper_dev(dev));
8222                 WARN_ON(netdev_has_any_lower_dev(dev));
8223
8224                 /* Remove entries from kobject tree */
8225                 netdev_unregister_kobject(dev);
8226 #ifdef CONFIG_XPS
8227                 /* Remove XPS queueing entries */
8228                 netif_reset_xps_queues_gt(dev, 0);
8229 #endif
8230         }
8231
8232         synchronize_net();
8233
8234         list_for_each_entry(dev, head, unreg_list)
8235                 dev_put(dev);
8236 }
8237
8238 static void rollback_registered(struct net_device *dev)
8239 {
8240         LIST_HEAD(single);
8241
8242         list_add(&dev->unreg_list, &single);
8243         rollback_registered_many(&single);
8244         list_del(&single);
8245 }
8246
8247 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8248         struct net_device *upper, netdev_features_t features)
8249 {
8250         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8251         netdev_features_t feature;
8252         int feature_bit;
8253
8254         for_each_netdev_feature(upper_disables, feature_bit) {
8255                 feature = __NETIF_F_BIT(feature_bit);
8256                 if (!(upper->wanted_features & feature)
8257                     && (features & feature)) {
8258                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8259                                    &feature, upper->name);
8260                         features &= ~feature;
8261                 }
8262         }
8263
8264         return features;
8265 }
8266
8267 static void netdev_sync_lower_features(struct net_device *upper,
8268         struct net_device *lower, netdev_features_t features)
8269 {
8270         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8271         netdev_features_t feature;
8272         int feature_bit;
8273
8274         for_each_netdev_feature(upper_disables, feature_bit) {
8275                 feature = __NETIF_F_BIT(feature_bit);
8276                 if (!(features & feature) && (lower->features & feature)) {
8277                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8278                                    &feature, lower->name);
8279                         lower->wanted_features &= ~feature;
8280                         netdev_update_features(lower);
8281
8282                         if (unlikely(lower->features & feature))
8283                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8284                                             &feature, lower->name);
8285                 }
8286         }
8287 }
8288
8289 static netdev_features_t netdev_fix_features(struct net_device *dev,
8290         netdev_features_t features)
8291 {
8292         /* Fix illegal checksum combinations */
8293         if ((features & NETIF_F_HW_CSUM) &&
8294             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8295                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8296                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8297         }
8298
8299         /* TSO requires that SG is present as well. */
8300         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8301                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8302                 features &= ~NETIF_F_ALL_TSO;
8303         }
8304
8305         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8306                                         !(features & NETIF_F_IP_CSUM)) {
8307                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8308                 features &= ~NETIF_F_TSO;
8309                 features &= ~NETIF_F_TSO_ECN;
8310         }
8311
8312         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8313                                          !(features & NETIF_F_IPV6_CSUM)) {
8314                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8315                 features &= ~NETIF_F_TSO6;
8316         }
8317
8318         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8319         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8320                 features &= ~NETIF_F_TSO_MANGLEID;
8321
8322         /* TSO ECN requires that TSO is present as well. */
8323         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8324                 features &= ~NETIF_F_TSO_ECN;
8325
8326         /* Software GSO depends on SG. */
8327         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8328                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8329                 features &= ~NETIF_F_GSO;
8330         }
8331
8332         /* GSO partial features require GSO partial be set */
8333         if ((features & dev->gso_partial_features) &&
8334             !(features & NETIF_F_GSO_PARTIAL)) {
8335                 netdev_dbg(dev,
8336                            "Dropping partially supported GSO features since no GSO partial.\n");
8337                 features &= ~dev->gso_partial_features;
8338         }
8339
8340         if (!(features & NETIF_F_RXCSUM)) {
8341                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8342                  * successfully merged by hardware must also have the
8343                  * checksum verified by hardware.  If the user does not
8344                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8345                  */
8346                 if (features & NETIF_F_GRO_HW) {
8347                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8348                         features &= ~NETIF_F_GRO_HW;
8349                 }
8350         }
8351
8352         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8353         if (features & NETIF_F_RXFCS) {
8354                 if (features & NETIF_F_LRO) {
8355                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8356                         features &= ~NETIF_F_LRO;
8357                 }
8358
8359                 if (features & NETIF_F_GRO_HW) {
8360                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8361                         features &= ~NETIF_F_GRO_HW;
8362                 }
8363         }
8364
8365         return features;
8366 }
8367
8368 int __netdev_update_features(struct net_device *dev)
8369 {
8370         struct net_device *upper, *lower;
8371         netdev_features_t features;
8372         struct list_head *iter;
8373         int err = -1;
8374
8375         ASSERT_RTNL();
8376
8377         features = netdev_get_wanted_features(dev);
8378
8379         if (dev->netdev_ops->ndo_fix_features)
8380                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8381
8382         /* driver might be less strict about feature dependencies */
8383         features = netdev_fix_features(dev, features);
8384
8385         /* some features can't be enabled if they're off an an upper device */
8386         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8387                 features = netdev_sync_upper_features(dev, upper, features);
8388
8389         if (dev->features == features)
8390                 goto sync_lower;
8391
8392         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8393                 &dev->features, &features);
8394
8395         if (dev->netdev_ops->ndo_set_features)
8396                 err = dev->netdev_ops->ndo_set_features(dev, features);
8397         else
8398                 err = 0;
8399
8400         if (unlikely(err < 0)) {
8401                 netdev_err(dev,
8402                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8403                         err, &features, &dev->features);
8404                 /* return non-0 since some features might have changed and
8405                  * it's better to fire a spurious notification than miss it
8406                  */
8407                 return -1;
8408         }
8409
8410 sync_lower:
8411         /* some features must be disabled on lower devices when disabled
8412          * on an upper device (think: bonding master or bridge)
8413          */
8414         netdev_for_each_lower_dev(dev, lower, iter)
8415                 netdev_sync_lower_features(dev, lower, features);
8416
8417         if (!err) {
8418                 netdev_features_t diff = features ^ dev->features;
8419
8420                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8421                         /* udp_tunnel_{get,drop}_rx_info both need
8422                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8423                          * device, or they won't do anything.
8424                          * Thus we need to update dev->features
8425                          * *before* calling udp_tunnel_get_rx_info,
8426                          * but *after* calling udp_tunnel_drop_rx_info.
8427                          */
8428                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8429                                 dev->features = features;
8430                                 udp_tunnel_get_rx_info(dev);
8431                         } else {
8432                                 udp_tunnel_drop_rx_info(dev);
8433                         }
8434                 }
8435
8436                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8437                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8438                                 dev->features = features;
8439                                 err |= vlan_get_rx_ctag_filter_info(dev);
8440                         } else {
8441                                 vlan_drop_rx_ctag_filter_info(dev);
8442                         }
8443                 }
8444
8445                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8446                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8447                                 dev->features = features;
8448                                 err |= vlan_get_rx_stag_filter_info(dev);
8449                         } else {
8450                                 vlan_drop_rx_stag_filter_info(dev);
8451                         }
8452                 }
8453
8454                 dev->features = features;
8455         }
8456
8457         return err < 0 ? 0 : 1;
8458 }
8459
8460 /**
8461  *      netdev_update_features - recalculate device features
8462  *      @dev: the device to check
8463  *
8464  *      Recalculate dev->features set and send notifications if it
8465  *      has changed. Should be called after driver or hardware dependent
8466  *      conditions might have changed that influence the features.
8467  */
8468 void netdev_update_features(struct net_device *dev)
8469 {
8470         if (__netdev_update_features(dev))
8471                 netdev_features_change(dev);
8472 }
8473 EXPORT_SYMBOL(netdev_update_features);
8474
8475 /**
8476  *      netdev_change_features - recalculate device features
8477  *      @dev: the device to check
8478  *
8479  *      Recalculate dev->features set and send notifications even
8480  *      if they have not changed. Should be called instead of
8481  *      netdev_update_features() if also dev->vlan_features might
8482  *      have changed to allow the changes to be propagated to stacked
8483  *      VLAN devices.
8484  */
8485 void netdev_change_features(struct net_device *dev)
8486 {
8487         __netdev_update_features(dev);
8488         netdev_features_change(dev);
8489 }
8490 EXPORT_SYMBOL(netdev_change_features);
8491
8492 /**
8493  *      netif_stacked_transfer_operstate -      transfer operstate
8494  *      @rootdev: the root or lower level device to transfer state from
8495  *      @dev: the device to transfer operstate to
8496  *
8497  *      Transfer operational state from root to device. This is normally
8498  *      called when a stacking relationship exists between the root
8499  *      device and the device(a leaf device).
8500  */
8501 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8502                                         struct net_device *dev)
8503 {
8504         if (rootdev->operstate == IF_OPER_DORMANT)
8505                 netif_dormant_on(dev);
8506         else
8507                 netif_dormant_off(dev);
8508
8509         if (netif_carrier_ok(rootdev))
8510                 netif_carrier_on(dev);
8511         else
8512                 netif_carrier_off(dev);
8513 }
8514 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8515
8516 static int netif_alloc_rx_queues(struct net_device *dev)
8517 {
8518         unsigned int i, count = dev->num_rx_queues;
8519         struct netdev_rx_queue *rx;
8520         size_t sz = count * sizeof(*rx);
8521         int err = 0;
8522
8523         BUG_ON(count < 1);
8524
8525         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8526         if (!rx)
8527                 return -ENOMEM;
8528
8529         dev->_rx = rx;
8530
8531         for (i = 0; i < count; i++) {
8532                 rx[i].dev = dev;
8533
8534                 /* XDP RX-queue setup */
8535                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8536                 if (err < 0)
8537                         goto err_rxq_info;
8538         }
8539         return 0;
8540
8541 err_rxq_info:
8542         /* Rollback successful reg's and free other resources */
8543         while (i--)
8544                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8545         kvfree(dev->_rx);
8546         dev->_rx = NULL;
8547         return err;
8548 }
8549
8550 static void netif_free_rx_queues(struct net_device *dev)
8551 {
8552         unsigned int i, count = dev->num_rx_queues;
8553
8554         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8555         if (!dev->_rx)
8556                 return;
8557
8558         for (i = 0; i < count; i++)
8559                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8560
8561         kvfree(dev->_rx);
8562 }
8563
8564 static void netdev_init_one_queue(struct net_device *dev,
8565                                   struct netdev_queue *queue, void *_unused)
8566 {
8567         /* Initialize queue lock */
8568         spin_lock_init(&queue->_xmit_lock);
8569         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8570         queue->xmit_lock_owner = -1;
8571         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8572         queue->dev = dev;
8573 #ifdef CONFIG_BQL
8574         dql_init(&queue->dql, HZ);
8575 #endif
8576 }
8577
8578 static void netif_free_tx_queues(struct net_device *dev)
8579 {
8580         kvfree(dev->_tx);
8581 }
8582
8583 static int netif_alloc_netdev_queues(struct net_device *dev)
8584 {
8585         unsigned int count = dev->num_tx_queues;
8586         struct netdev_queue *tx;
8587         size_t sz = count * sizeof(*tx);
8588
8589         if (count < 1 || count > 0xffff)
8590                 return -EINVAL;
8591
8592         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8593         if (!tx)
8594                 return -ENOMEM;
8595
8596         dev->_tx = tx;
8597
8598         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8599         spin_lock_init(&dev->tx_global_lock);
8600
8601         return 0;
8602 }
8603
8604 void netif_tx_stop_all_queues(struct net_device *dev)
8605 {
8606         unsigned int i;
8607
8608         for (i = 0; i < dev->num_tx_queues; i++) {
8609                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8610
8611                 netif_tx_stop_queue(txq);
8612         }
8613 }
8614 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8615
8616 /**
8617  *      register_netdevice      - register a network device
8618  *      @dev: device to register
8619  *
8620  *      Take a completed network device structure and add it to the kernel
8621  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8622  *      chain. 0 is returned on success. A negative errno code is returned
8623  *      on a failure to set up the device, or if the name is a duplicate.
8624  *
8625  *      Callers must hold the rtnl semaphore. You may want
8626  *      register_netdev() instead of this.
8627  *
8628  *      BUGS:
8629  *      The locking appears insufficient to guarantee two parallel registers
8630  *      will not get the same name.
8631  */
8632
8633 int register_netdevice(struct net_device *dev)
8634 {
8635         int ret;
8636         struct net *net = dev_net(dev);
8637
8638         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8639                      NETDEV_FEATURE_COUNT);
8640         BUG_ON(dev_boot_phase);
8641         ASSERT_RTNL();
8642
8643         might_sleep();
8644
8645         /* When net_device's are persistent, this will be fatal. */
8646         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8647         BUG_ON(!net);
8648
8649         spin_lock_init(&dev->addr_list_lock);
8650         netdev_set_addr_lockdep_class(dev);
8651
8652         ret = dev_get_valid_name(net, dev, dev->name);
8653         if (ret < 0)
8654                 goto out;
8655
8656         /* Init, if this function is available */
8657         if (dev->netdev_ops->ndo_init) {
8658                 ret = dev->netdev_ops->ndo_init(dev);
8659                 if (ret) {
8660                         if (ret > 0)
8661                                 ret = -EIO;
8662                         goto out;
8663                 }
8664         }
8665
8666         if (((dev->hw_features | dev->features) &
8667              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8668             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8669              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8670                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8671                 ret = -EINVAL;
8672                 goto err_uninit;
8673         }
8674
8675         ret = -EBUSY;
8676         if (!dev->ifindex)
8677                 dev->ifindex = dev_new_index(net);
8678         else if (__dev_get_by_index(net, dev->ifindex))
8679                 goto err_uninit;
8680
8681         /* Transfer changeable features to wanted_features and enable
8682          * software offloads (GSO and GRO).
8683          */
8684         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8685         dev->features |= NETIF_F_SOFT_FEATURES;
8686
8687         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8688                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8689                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8690         }
8691
8692         dev->wanted_features = dev->features & dev->hw_features;
8693
8694         if (!(dev->flags & IFF_LOOPBACK))
8695                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8696
8697         /* If IPv4 TCP segmentation offload is supported we should also
8698          * allow the device to enable segmenting the frame with the option
8699          * of ignoring a static IP ID value.  This doesn't enable the
8700          * feature itself but allows the user to enable it later.
8701          */
8702         if (dev->hw_features & NETIF_F_TSO)
8703                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8704         if (dev->vlan_features & NETIF_F_TSO)
8705                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8706         if (dev->mpls_features & NETIF_F_TSO)
8707                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8708         if (dev->hw_enc_features & NETIF_F_TSO)
8709                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8710
8711         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8712          */
8713         dev->vlan_features |= NETIF_F_HIGHDMA;
8714
8715         /* Make NETIF_F_SG inheritable to tunnel devices.
8716          */
8717         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8718
8719         /* Make NETIF_F_SG inheritable to MPLS.
8720          */
8721         dev->mpls_features |= NETIF_F_SG;
8722
8723         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8724         ret = notifier_to_errno(ret);
8725         if (ret)
8726                 goto err_uninit;
8727
8728         ret = netdev_register_kobject(dev);
8729         if (ret)
8730                 goto err_uninit;
8731         dev->reg_state = NETREG_REGISTERED;
8732
8733         __netdev_update_features(dev);
8734
8735         /*
8736          *      Default initial state at registry is that the
8737          *      device is present.
8738          */
8739
8740         set_bit(__LINK_STATE_PRESENT, &dev->state);
8741
8742         linkwatch_init_dev(dev);
8743
8744         dev_init_scheduler(dev);
8745         dev_hold(dev);
8746         list_netdevice(dev);
8747         add_device_randomness(dev->dev_addr, dev->addr_len);
8748
8749         /* If the device has permanent device address, driver should
8750          * set dev_addr and also addr_assign_type should be set to
8751          * NET_ADDR_PERM (default value).
8752          */
8753         if (dev->addr_assign_type == NET_ADDR_PERM)
8754                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8755
8756         /* Notify protocols, that a new device appeared. */
8757         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8758         ret = notifier_to_errno(ret);
8759         if (ret) {
8760                 rollback_registered(dev);
8761                 rcu_barrier();
8762
8763                 dev->reg_state = NETREG_UNREGISTERED;
8764         }
8765         /*
8766          *      Prevent userspace races by waiting until the network
8767          *      device is fully setup before sending notifications.
8768          */
8769         if (!dev->rtnl_link_ops ||
8770             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8771                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8772
8773 out:
8774         return ret;
8775
8776 err_uninit:
8777         if (dev->netdev_ops->ndo_uninit)
8778                 dev->netdev_ops->ndo_uninit(dev);
8779         if (dev->priv_destructor)
8780                 dev->priv_destructor(dev);
8781         goto out;
8782 }
8783 EXPORT_SYMBOL(register_netdevice);
8784
8785 /**
8786  *      init_dummy_netdev       - init a dummy network device for NAPI
8787  *      @dev: device to init
8788  *
8789  *      This takes a network device structure and initialize the minimum
8790  *      amount of fields so it can be used to schedule NAPI polls without
8791  *      registering a full blown interface. This is to be used by drivers
8792  *      that need to tie several hardware interfaces to a single NAPI
8793  *      poll scheduler due to HW limitations.
8794  */
8795 int init_dummy_netdev(struct net_device *dev)
8796 {
8797         /* Clear everything. Note we don't initialize spinlocks
8798          * are they aren't supposed to be taken by any of the
8799          * NAPI code and this dummy netdev is supposed to be
8800          * only ever used for NAPI polls
8801          */
8802         memset(dev, 0, sizeof(struct net_device));
8803
8804         /* make sure we BUG if trying to hit standard
8805          * register/unregister code path
8806          */
8807         dev->reg_state = NETREG_DUMMY;
8808
8809         /* NAPI wants this */
8810         INIT_LIST_HEAD(&dev->napi_list);
8811
8812         /* a dummy interface is started by default */
8813         set_bit(__LINK_STATE_PRESENT, &dev->state);
8814         set_bit(__LINK_STATE_START, &dev->state);
8815
8816         /* napi_busy_loop stats accounting wants this */
8817         dev_net_set(dev, &init_net);
8818
8819         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8820          * because users of this 'device' dont need to change
8821          * its refcount.
8822          */
8823
8824         return 0;
8825 }
8826 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8827
8828
8829 /**
8830  *      register_netdev - register a network device
8831  *      @dev: device to register
8832  *
8833  *      Take a completed network device structure and add it to the kernel
8834  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8835  *      chain. 0 is returned on success. A negative errno code is returned
8836  *      on a failure to set up the device, or if the name is a duplicate.
8837  *
8838  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8839  *      and expands the device name if you passed a format string to
8840  *      alloc_netdev.
8841  */
8842 int register_netdev(struct net_device *dev)
8843 {
8844         int err;
8845
8846         if (rtnl_lock_killable())
8847                 return -EINTR;
8848         err = register_netdevice(dev);
8849         rtnl_unlock();
8850         return err;
8851 }
8852 EXPORT_SYMBOL(register_netdev);
8853
8854 int netdev_refcnt_read(const struct net_device *dev)
8855 {
8856         int i, refcnt = 0;
8857
8858         for_each_possible_cpu(i)
8859                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8860         return refcnt;
8861 }
8862 EXPORT_SYMBOL(netdev_refcnt_read);
8863
8864 /**
8865  * netdev_wait_allrefs - wait until all references are gone.
8866  * @dev: target net_device
8867  *
8868  * This is called when unregistering network devices.
8869  *
8870  * Any protocol or device that holds a reference should register
8871  * for netdevice notification, and cleanup and put back the
8872  * reference if they receive an UNREGISTER event.
8873  * We can get stuck here if buggy protocols don't correctly
8874  * call dev_put.
8875  */
8876 static void netdev_wait_allrefs(struct net_device *dev)
8877 {
8878         unsigned long rebroadcast_time, warning_time;
8879         int refcnt;
8880
8881         linkwatch_forget_dev(dev);
8882
8883         rebroadcast_time = warning_time = jiffies;
8884         refcnt = netdev_refcnt_read(dev);
8885
8886         while (refcnt != 0) {
8887                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8888                         rtnl_lock();
8889
8890                         /* Rebroadcast unregister notification */
8891                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8892
8893                         __rtnl_unlock();
8894                         rcu_barrier();
8895                         rtnl_lock();
8896
8897                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8898                                      &dev->state)) {
8899                                 /* We must not have linkwatch events
8900                                  * pending on unregister. If this
8901                                  * happens, we simply run the queue
8902                                  * unscheduled, resulting in a noop
8903                                  * for this device.
8904                                  */
8905                                 linkwatch_run_queue();
8906                         }
8907
8908                         __rtnl_unlock();
8909
8910                         rebroadcast_time = jiffies;
8911                 }
8912
8913                 msleep(250);
8914
8915                 refcnt = netdev_refcnt_read(dev);
8916
8917                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8918                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8919                                  dev->name, refcnt);
8920                         warning_time = jiffies;
8921                 }
8922         }
8923 }
8924
8925 /* The sequence is:
8926  *
8927  *      rtnl_lock();
8928  *      ...
8929  *      register_netdevice(x1);
8930  *      register_netdevice(x2);
8931  *      ...
8932  *      unregister_netdevice(y1);
8933  *      unregister_netdevice(y2);
8934  *      ...
8935  *      rtnl_unlock();
8936  *      free_netdev(y1);
8937  *      free_netdev(y2);
8938  *
8939  * We are invoked by rtnl_unlock().
8940  * This allows us to deal with problems:
8941  * 1) We can delete sysfs objects which invoke hotplug
8942  *    without deadlocking with linkwatch via keventd.
8943  * 2) Since we run with the RTNL semaphore not held, we can sleep
8944  *    safely in order to wait for the netdev refcnt to drop to zero.
8945  *
8946  * We must not return until all unregister events added during
8947  * the interval the lock was held have been completed.
8948  */
8949 void netdev_run_todo(void)
8950 {
8951         struct list_head list;
8952
8953         /* Snapshot list, allow later requests */
8954         list_replace_init(&net_todo_list, &list);
8955
8956         __rtnl_unlock();
8957
8958
8959         /* Wait for rcu callbacks to finish before next phase */
8960         if (!list_empty(&list))
8961                 rcu_barrier();
8962
8963         while (!list_empty(&list)) {
8964                 struct net_device *dev
8965                         = list_first_entry(&list, struct net_device, todo_list);
8966                 list_del(&dev->todo_list);
8967
8968                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8969                         pr_err("network todo '%s' but state %d\n",
8970                                dev->name, dev->reg_state);
8971                         dump_stack();
8972                         continue;
8973                 }
8974
8975                 dev->reg_state = NETREG_UNREGISTERED;
8976
8977                 netdev_wait_allrefs(dev);
8978
8979                 /* paranoia */
8980                 BUG_ON(netdev_refcnt_read(dev));
8981                 BUG_ON(!list_empty(&dev->ptype_all));
8982                 BUG_ON(!list_empty(&dev->ptype_specific));
8983                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8984                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8985 #if IS_ENABLED(CONFIG_DECNET)
8986                 WARN_ON(dev->dn_ptr);
8987 #endif
8988                 if (dev->priv_destructor)
8989                         dev->priv_destructor(dev);
8990                 if (dev->needs_free_netdev)
8991                         free_netdev(dev);
8992
8993                 /* Report a network device has been unregistered */
8994                 rtnl_lock();
8995                 dev_net(dev)->dev_unreg_count--;
8996                 __rtnl_unlock();
8997                 wake_up(&netdev_unregistering_wq);
8998
8999                 /* Free network device */
9000                 kobject_put(&dev->dev.kobj);
9001         }
9002 }
9003
9004 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9005  * all the same fields in the same order as net_device_stats, with only
9006  * the type differing, but rtnl_link_stats64 may have additional fields
9007  * at the end for newer counters.
9008  */
9009 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9010                              const struct net_device_stats *netdev_stats)
9011 {
9012 #if BITS_PER_LONG == 64
9013         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9014         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9015         /* zero out counters that only exist in rtnl_link_stats64 */
9016         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9017                sizeof(*stats64) - sizeof(*netdev_stats));
9018 #else
9019         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9020         const unsigned long *src = (const unsigned long *)netdev_stats;
9021         u64 *dst = (u64 *)stats64;
9022
9023         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9024         for (i = 0; i < n; i++)
9025                 dst[i] = src[i];
9026         /* zero out counters that only exist in rtnl_link_stats64 */
9027         memset((char *)stats64 + n * sizeof(u64), 0,
9028                sizeof(*stats64) - n * sizeof(u64));
9029 #endif
9030 }
9031 EXPORT_SYMBOL(netdev_stats_to_stats64);
9032
9033 /**
9034  *      dev_get_stats   - get network device statistics
9035  *      @dev: device to get statistics from
9036  *      @storage: place to store stats
9037  *
9038  *      Get network statistics from device. Return @storage.
9039  *      The device driver may provide its own method by setting
9040  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9041  *      otherwise the internal statistics structure is used.
9042  */
9043 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9044                                         struct rtnl_link_stats64 *storage)
9045 {
9046         const struct net_device_ops *ops = dev->netdev_ops;
9047
9048         if (ops->ndo_get_stats64) {
9049                 memset(storage, 0, sizeof(*storage));
9050                 ops->ndo_get_stats64(dev, storage);
9051         } else if (ops->ndo_get_stats) {
9052                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9053         } else {
9054                 netdev_stats_to_stats64(storage, &dev->stats);
9055         }
9056         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9057         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9058         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9059         return storage;
9060 }
9061 EXPORT_SYMBOL(dev_get_stats);
9062
9063 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9064 {
9065         struct netdev_queue *queue = dev_ingress_queue(dev);
9066
9067 #ifdef CONFIG_NET_CLS_ACT
9068         if (queue)
9069                 return queue;
9070         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9071         if (!queue)
9072                 return NULL;
9073         netdev_init_one_queue(dev, queue, NULL);
9074         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9075         queue->qdisc_sleeping = &noop_qdisc;
9076         rcu_assign_pointer(dev->ingress_queue, queue);
9077 #endif
9078         return queue;
9079 }
9080
9081 static const struct ethtool_ops default_ethtool_ops;
9082
9083 void netdev_set_default_ethtool_ops(struct net_device *dev,
9084                                     const struct ethtool_ops *ops)
9085 {
9086         if (dev->ethtool_ops == &default_ethtool_ops)
9087                 dev->ethtool_ops = ops;
9088 }
9089 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9090
9091 void netdev_freemem(struct net_device *dev)
9092 {
9093         char *addr = (char *)dev - dev->padded;
9094
9095         kvfree(addr);
9096 }
9097
9098 /**
9099  * alloc_netdev_mqs - allocate network device
9100  * @sizeof_priv: size of private data to allocate space for
9101  * @name: device name format string
9102  * @name_assign_type: origin of device name
9103  * @setup: callback to initialize device
9104  * @txqs: the number of TX subqueues to allocate
9105  * @rxqs: the number of RX subqueues to allocate
9106  *
9107  * Allocates a struct net_device with private data area for driver use
9108  * and performs basic initialization.  Also allocates subqueue structs
9109  * for each queue on the device.
9110  */
9111 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9112                 unsigned char name_assign_type,
9113                 void (*setup)(struct net_device *),
9114                 unsigned int txqs, unsigned int rxqs)
9115 {
9116         struct net_device *dev;
9117         unsigned int alloc_size;
9118         struct net_device *p;
9119
9120         BUG_ON(strlen(name) >= sizeof(dev->name));
9121
9122         if (txqs < 1) {
9123                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9124                 return NULL;
9125         }
9126
9127         if (rxqs < 1) {
9128                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9129                 return NULL;
9130         }
9131
9132         alloc_size = sizeof(struct net_device);
9133         if (sizeof_priv) {
9134                 /* ensure 32-byte alignment of private area */
9135                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9136                 alloc_size += sizeof_priv;
9137         }
9138         /* ensure 32-byte alignment of whole construct */
9139         alloc_size += NETDEV_ALIGN - 1;
9140
9141         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9142         if (!p)
9143                 return NULL;
9144
9145         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9146         dev->padded = (char *)dev - (char *)p;
9147
9148         dev->pcpu_refcnt = alloc_percpu(int);
9149         if (!dev->pcpu_refcnt)
9150                 goto free_dev;
9151
9152         if (dev_addr_init(dev))
9153                 goto free_pcpu;
9154
9155         dev_mc_init(dev);
9156         dev_uc_init(dev);
9157
9158         dev_net_set(dev, &init_net);
9159
9160         dev->gso_max_size = GSO_MAX_SIZE;
9161         dev->gso_max_segs = GSO_MAX_SEGS;
9162
9163         INIT_LIST_HEAD(&dev->napi_list);
9164         INIT_LIST_HEAD(&dev->unreg_list);
9165         INIT_LIST_HEAD(&dev->close_list);
9166         INIT_LIST_HEAD(&dev->link_watch_list);
9167         INIT_LIST_HEAD(&dev->adj_list.upper);
9168         INIT_LIST_HEAD(&dev->adj_list.lower);
9169         INIT_LIST_HEAD(&dev->ptype_all);
9170         INIT_LIST_HEAD(&dev->ptype_specific);
9171 #ifdef CONFIG_NET_SCHED
9172         hash_init(dev->qdisc_hash);
9173 #endif
9174         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9175         setup(dev);
9176
9177         if (!dev->tx_queue_len) {
9178                 dev->priv_flags |= IFF_NO_QUEUE;
9179                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9180         }
9181
9182         dev->num_tx_queues = txqs;
9183         dev->real_num_tx_queues = txqs;
9184         if (netif_alloc_netdev_queues(dev))
9185                 goto free_all;
9186
9187         dev->num_rx_queues = rxqs;
9188         dev->real_num_rx_queues = rxqs;
9189         if (netif_alloc_rx_queues(dev))
9190                 goto free_all;
9191
9192         strcpy(dev->name, name);
9193         dev->name_assign_type = name_assign_type;
9194         dev->group = INIT_NETDEV_GROUP;
9195         if (!dev->ethtool_ops)
9196                 dev->ethtool_ops = &default_ethtool_ops;
9197
9198         nf_hook_ingress_init(dev);
9199
9200         return dev;
9201
9202 free_all:
9203         free_netdev(dev);
9204         return NULL;
9205
9206 free_pcpu:
9207         free_percpu(dev->pcpu_refcnt);
9208 free_dev:
9209         netdev_freemem(dev);
9210         return NULL;
9211 }
9212 EXPORT_SYMBOL(alloc_netdev_mqs);
9213
9214 /**
9215  * free_netdev - free network device
9216  * @dev: device
9217  *
9218  * This function does the last stage of destroying an allocated device
9219  * interface. The reference to the device object is released. If this
9220  * is the last reference then it will be freed.Must be called in process
9221  * context.
9222  */
9223 void free_netdev(struct net_device *dev)
9224 {
9225         struct napi_struct *p, *n;
9226
9227         might_sleep();
9228         netif_free_tx_queues(dev);
9229         netif_free_rx_queues(dev);
9230
9231         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9232
9233         /* Flush device addresses */
9234         dev_addr_flush(dev);
9235
9236         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9237                 netif_napi_del(p);
9238
9239         free_percpu(dev->pcpu_refcnt);
9240         dev->pcpu_refcnt = NULL;
9241
9242         /*  Compatibility with error handling in drivers */
9243         if (dev->reg_state == NETREG_UNINITIALIZED) {
9244                 netdev_freemem(dev);
9245                 return;
9246         }
9247
9248         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9249         dev->reg_state = NETREG_RELEASED;
9250
9251         /* will free via device release */
9252         put_device(&dev->dev);
9253 }
9254 EXPORT_SYMBOL(free_netdev);
9255
9256 /**
9257  *      synchronize_net -  Synchronize with packet receive processing
9258  *
9259  *      Wait for packets currently being received to be done.
9260  *      Does not block later packets from starting.
9261  */
9262 void synchronize_net(void)
9263 {
9264         might_sleep();
9265         if (rtnl_is_locked())
9266                 synchronize_rcu_expedited();
9267         else
9268                 synchronize_rcu();
9269 }
9270 EXPORT_SYMBOL(synchronize_net);
9271
9272 /**
9273  *      unregister_netdevice_queue - remove device from the kernel
9274  *      @dev: device
9275  *      @head: list
9276  *
9277  *      This function shuts down a device interface and removes it
9278  *      from the kernel tables.
9279  *      If head not NULL, device is queued to be unregistered later.
9280  *
9281  *      Callers must hold the rtnl semaphore.  You may want
9282  *      unregister_netdev() instead of this.
9283  */
9284
9285 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9286 {
9287         ASSERT_RTNL();
9288
9289         if (head) {
9290                 list_move_tail(&dev->unreg_list, head);
9291         } else {
9292                 rollback_registered(dev);
9293                 /* Finish processing unregister after unlock */
9294                 net_set_todo(dev);
9295         }
9296 }
9297 EXPORT_SYMBOL(unregister_netdevice_queue);
9298
9299 /**
9300  *      unregister_netdevice_many - unregister many devices
9301  *      @head: list of devices
9302  *
9303  *  Note: As most callers use a stack allocated list_head,
9304  *  we force a list_del() to make sure stack wont be corrupted later.
9305  */
9306 void unregister_netdevice_many(struct list_head *head)
9307 {
9308         struct net_device *dev;
9309
9310         if (!list_empty(head)) {
9311                 rollback_registered_many(head);
9312                 list_for_each_entry(dev, head, unreg_list)
9313                         net_set_todo(dev);
9314                 list_del(head);
9315         }
9316 }
9317 EXPORT_SYMBOL(unregister_netdevice_many);
9318
9319 /**
9320  *      unregister_netdev - remove device from the kernel
9321  *      @dev: device
9322  *
9323  *      This function shuts down a device interface and removes it
9324  *      from the kernel tables.
9325  *
9326  *      This is just a wrapper for unregister_netdevice that takes
9327  *      the rtnl semaphore.  In general you want to use this and not
9328  *      unregister_netdevice.
9329  */
9330 void unregister_netdev(struct net_device *dev)
9331 {
9332         rtnl_lock();
9333         unregister_netdevice(dev);
9334         rtnl_unlock();
9335 }
9336 EXPORT_SYMBOL(unregister_netdev);
9337
9338 /**
9339  *      dev_change_net_namespace - move device to different nethost namespace
9340  *      @dev: device
9341  *      @net: network namespace
9342  *      @pat: If not NULL name pattern to try if the current device name
9343  *            is already taken in the destination network namespace.
9344  *
9345  *      This function shuts down a device interface and moves it
9346  *      to a new network namespace. On success 0 is returned, on
9347  *      a failure a netagive errno code is returned.
9348  *
9349  *      Callers must hold the rtnl semaphore.
9350  */
9351
9352 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9353 {
9354         int err, new_nsid, new_ifindex;
9355
9356         ASSERT_RTNL();
9357
9358         /* Don't allow namespace local devices to be moved. */
9359         err = -EINVAL;
9360         if (dev->features & NETIF_F_NETNS_LOCAL)
9361                 goto out;
9362
9363         /* Ensure the device has been registrered */
9364         if (dev->reg_state != NETREG_REGISTERED)
9365                 goto out;
9366
9367         /* Get out if there is nothing todo */
9368         err = 0;
9369         if (net_eq(dev_net(dev), net))
9370                 goto out;
9371
9372         /* Pick the destination device name, and ensure
9373          * we can use it in the destination network namespace.
9374          */
9375         err = -EEXIST;
9376         if (__dev_get_by_name(net, dev->name)) {
9377                 /* We get here if we can't use the current device name */
9378                 if (!pat)
9379                         goto out;
9380                 err = dev_get_valid_name(net, dev, pat);
9381                 if (err < 0)
9382                         goto out;
9383         }
9384
9385         /*
9386          * And now a mini version of register_netdevice unregister_netdevice.
9387          */
9388
9389         /* If device is running close it first. */
9390         dev_close(dev);
9391
9392         /* And unlink it from device chain */
9393         unlist_netdevice(dev);
9394
9395         synchronize_net();
9396
9397         /* Shutdown queueing discipline. */
9398         dev_shutdown(dev);
9399
9400         /* Notify protocols, that we are about to destroy
9401          * this device. They should clean all the things.
9402          *
9403          * Note that dev->reg_state stays at NETREG_REGISTERED.
9404          * This is wanted because this way 8021q and macvlan know
9405          * the device is just moving and can keep their slaves up.
9406          */
9407         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9408         rcu_barrier();
9409
9410         new_nsid = peernet2id_alloc(dev_net(dev), net);
9411         /* If there is an ifindex conflict assign a new one */
9412         if (__dev_get_by_index(net, dev->ifindex))
9413                 new_ifindex = dev_new_index(net);
9414         else
9415                 new_ifindex = dev->ifindex;
9416
9417         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9418                             new_ifindex);
9419
9420         /*
9421          *      Flush the unicast and multicast chains
9422          */
9423         dev_uc_flush(dev);
9424         dev_mc_flush(dev);
9425
9426         /* Send a netdev-removed uevent to the old namespace */
9427         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9428         netdev_adjacent_del_links(dev);
9429
9430         /* Actually switch the network namespace */
9431         dev_net_set(dev, net);
9432         dev->ifindex = new_ifindex;
9433
9434         /* Send a netdev-add uevent to the new namespace */
9435         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9436         netdev_adjacent_add_links(dev);
9437
9438         /* Fixup kobjects */
9439         err = device_rename(&dev->dev, dev->name);
9440         WARN_ON(err);
9441
9442         /* Add the device back in the hashes */
9443         list_netdevice(dev);
9444
9445         /* Notify protocols, that a new device appeared. */
9446         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9447
9448         /*
9449          *      Prevent userspace races by waiting until the network
9450          *      device is fully setup before sending notifications.
9451          */
9452         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9453
9454         synchronize_net();
9455         err = 0;
9456 out:
9457         return err;
9458 }
9459 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9460
9461 static int dev_cpu_dead(unsigned int oldcpu)
9462 {
9463         struct sk_buff **list_skb;
9464         struct sk_buff *skb;
9465         unsigned int cpu;
9466         struct softnet_data *sd, *oldsd, *remsd = NULL;
9467
9468         local_irq_disable();
9469         cpu = smp_processor_id();
9470         sd = &per_cpu(softnet_data, cpu);
9471         oldsd = &per_cpu(softnet_data, oldcpu);
9472
9473         /* Find end of our completion_queue. */
9474         list_skb = &sd->completion_queue;
9475         while (*list_skb)
9476                 list_skb = &(*list_skb)->next;
9477         /* Append completion queue from offline CPU. */
9478         *list_skb = oldsd->completion_queue;
9479         oldsd->completion_queue = NULL;
9480
9481         /* Append output queue from offline CPU. */
9482         if (oldsd->output_queue) {
9483                 *sd->output_queue_tailp = oldsd->output_queue;
9484                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9485                 oldsd->output_queue = NULL;
9486                 oldsd->output_queue_tailp = &oldsd->output_queue;
9487         }
9488         /* Append NAPI poll list from offline CPU, with one exception :
9489          * process_backlog() must be called by cpu owning percpu backlog.
9490          * We properly handle process_queue & input_pkt_queue later.
9491          */
9492         while (!list_empty(&oldsd->poll_list)) {
9493                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9494                                                             struct napi_struct,
9495                                                             poll_list);
9496
9497                 list_del_init(&napi->poll_list);
9498                 if (napi->poll == process_backlog)
9499                         napi->state = 0;
9500                 else
9501                         ____napi_schedule(sd, napi);
9502         }
9503
9504         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9505         local_irq_enable();
9506
9507 #ifdef CONFIG_RPS
9508         remsd = oldsd->rps_ipi_list;
9509         oldsd->rps_ipi_list = NULL;
9510 #endif
9511         /* send out pending IPI's on offline CPU */
9512         net_rps_send_ipi(remsd);
9513
9514         /* Process offline CPU's input_pkt_queue */
9515         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9516                 netif_rx_ni(skb);
9517                 input_queue_head_incr(oldsd);
9518         }
9519         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9520                 netif_rx_ni(skb);
9521                 input_queue_head_incr(oldsd);
9522         }
9523
9524         return 0;
9525 }
9526
9527 /**
9528  *      netdev_increment_features - increment feature set by one
9529  *      @all: current feature set
9530  *      @one: new feature set
9531  *      @mask: mask feature set
9532  *
9533  *      Computes a new feature set after adding a device with feature set
9534  *      @one to the master device with current feature set @all.  Will not
9535  *      enable anything that is off in @mask. Returns the new feature set.
9536  */
9537 netdev_features_t netdev_increment_features(netdev_features_t all,
9538         netdev_features_t one, netdev_features_t mask)
9539 {
9540         if (mask & NETIF_F_HW_CSUM)
9541                 mask |= NETIF_F_CSUM_MASK;
9542         mask |= NETIF_F_VLAN_CHALLENGED;
9543
9544         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9545         all &= one | ~NETIF_F_ALL_FOR_ALL;
9546
9547         /* If one device supports hw checksumming, set for all. */
9548         if (all & NETIF_F_HW_CSUM)
9549                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9550
9551         return all;
9552 }
9553 EXPORT_SYMBOL(netdev_increment_features);
9554
9555 static struct hlist_head * __net_init netdev_create_hash(void)
9556 {
9557         int i;
9558         struct hlist_head *hash;
9559
9560         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9561         if (hash != NULL)
9562                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9563                         INIT_HLIST_HEAD(&hash[i]);
9564
9565         return hash;
9566 }
9567
9568 /* Initialize per network namespace state */
9569 static int __net_init netdev_init(struct net *net)
9570 {
9571         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9572                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9573
9574         if (net != &init_net)
9575                 INIT_LIST_HEAD(&net->dev_base_head);
9576
9577         net->dev_name_head = netdev_create_hash();
9578         if (net->dev_name_head == NULL)
9579                 goto err_name;
9580
9581         net->dev_index_head = netdev_create_hash();
9582         if (net->dev_index_head == NULL)
9583                 goto err_idx;
9584
9585         return 0;
9586
9587 err_idx:
9588         kfree(net->dev_name_head);
9589 err_name:
9590         return -ENOMEM;
9591 }
9592
9593 /**
9594  *      netdev_drivername - network driver for the device
9595  *      @dev: network device
9596  *
9597  *      Determine network driver for device.
9598  */
9599 const char *netdev_drivername(const struct net_device *dev)
9600 {
9601         const struct device_driver *driver;
9602         const struct device *parent;
9603         const char *empty = "";
9604
9605         parent = dev->dev.parent;
9606         if (!parent)
9607                 return empty;
9608
9609         driver = parent->driver;
9610         if (driver && driver->name)
9611                 return driver->name;
9612         return empty;
9613 }
9614
9615 static void __netdev_printk(const char *level, const struct net_device *dev,
9616                             struct va_format *vaf)
9617 {
9618         if (dev && dev->dev.parent) {
9619                 dev_printk_emit(level[1] - '0',
9620                                 dev->dev.parent,
9621                                 "%s %s %s%s: %pV",
9622                                 dev_driver_string(dev->dev.parent),
9623                                 dev_name(dev->dev.parent),
9624                                 netdev_name(dev), netdev_reg_state(dev),
9625                                 vaf);
9626         } else if (dev) {
9627                 printk("%s%s%s: %pV",
9628                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9629         } else {
9630                 printk("%s(NULL net_device): %pV", level, vaf);
9631         }
9632 }
9633
9634 void netdev_printk(const char *level, const struct net_device *dev,
9635                    const char *format, ...)
9636 {
9637         struct va_format vaf;
9638         va_list args;
9639
9640         va_start(args, format);
9641
9642         vaf.fmt = format;
9643         vaf.va = &args;
9644
9645         __netdev_printk(level, dev, &vaf);
9646
9647         va_end(args);
9648 }
9649 EXPORT_SYMBOL(netdev_printk);
9650
9651 #define define_netdev_printk_level(func, level)                 \
9652 void func(const struct net_device *dev, const char *fmt, ...)   \
9653 {                                                               \
9654         struct va_format vaf;                                   \
9655         va_list args;                                           \
9656                                                                 \
9657         va_start(args, fmt);                                    \
9658                                                                 \
9659         vaf.fmt = fmt;                                          \
9660         vaf.va = &args;                                         \
9661                                                                 \
9662         __netdev_printk(level, dev, &vaf);                      \
9663                                                                 \
9664         va_end(args);                                           \
9665 }                                                               \
9666 EXPORT_SYMBOL(func);
9667
9668 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9669 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9670 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9671 define_netdev_printk_level(netdev_err, KERN_ERR);
9672 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9673 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9674 define_netdev_printk_level(netdev_info, KERN_INFO);
9675
9676 static void __net_exit netdev_exit(struct net *net)
9677 {
9678         kfree(net->dev_name_head);
9679         kfree(net->dev_index_head);
9680         if (net != &init_net)
9681                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9682 }
9683
9684 static struct pernet_operations __net_initdata netdev_net_ops = {
9685         .init = netdev_init,
9686         .exit = netdev_exit,
9687 };
9688
9689 static void __net_exit default_device_exit(struct net *net)
9690 {
9691         struct net_device *dev, *aux;
9692         /*
9693          * Push all migratable network devices back to the
9694          * initial network namespace
9695          */
9696         rtnl_lock();
9697         for_each_netdev_safe(net, dev, aux) {
9698                 int err;
9699                 char fb_name[IFNAMSIZ];
9700
9701                 /* Ignore unmoveable devices (i.e. loopback) */
9702                 if (dev->features & NETIF_F_NETNS_LOCAL)
9703                         continue;
9704
9705                 /* Leave virtual devices for the generic cleanup */
9706                 if (dev->rtnl_link_ops)
9707                         continue;
9708
9709                 /* Push remaining network devices to init_net */
9710                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9711                 if (__dev_get_by_name(&init_net, fb_name))
9712                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
9713                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9714                 if (err) {
9715                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9716                                  __func__, dev->name, err);
9717                         BUG();
9718                 }
9719         }
9720         rtnl_unlock();
9721 }
9722
9723 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9724 {
9725         /* Return with the rtnl_lock held when there are no network
9726          * devices unregistering in any network namespace in net_list.
9727          */
9728         struct net *net;
9729         bool unregistering;
9730         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9731
9732         add_wait_queue(&netdev_unregistering_wq, &wait);
9733         for (;;) {
9734                 unregistering = false;
9735                 rtnl_lock();
9736                 list_for_each_entry(net, net_list, exit_list) {
9737                         if (net->dev_unreg_count > 0) {
9738                                 unregistering = true;
9739                                 break;
9740                         }
9741                 }
9742                 if (!unregistering)
9743                         break;
9744                 __rtnl_unlock();
9745
9746                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9747         }
9748         remove_wait_queue(&netdev_unregistering_wq, &wait);
9749 }
9750
9751 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9752 {
9753         /* At exit all network devices most be removed from a network
9754          * namespace.  Do this in the reverse order of registration.
9755          * Do this across as many network namespaces as possible to
9756          * improve batching efficiency.
9757          */
9758         struct net_device *dev;
9759         struct net *net;
9760         LIST_HEAD(dev_kill_list);
9761
9762         /* To prevent network device cleanup code from dereferencing
9763          * loopback devices or network devices that have been freed
9764          * wait here for all pending unregistrations to complete,
9765          * before unregistring the loopback device and allowing the
9766          * network namespace be freed.
9767          *
9768          * The netdev todo list containing all network devices
9769          * unregistrations that happen in default_device_exit_batch
9770          * will run in the rtnl_unlock() at the end of
9771          * default_device_exit_batch.
9772          */
9773         rtnl_lock_unregistering(net_list);
9774         list_for_each_entry(net, net_list, exit_list) {
9775                 for_each_netdev_reverse(net, dev) {
9776                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9777                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9778                         else
9779                                 unregister_netdevice_queue(dev, &dev_kill_list);
9780                 }
9781         }
9782         unregister_netdevice_many(&dev_kill_list);
9783         rtnl_unlock();
9784 }
9785
9786 static struct pernet_operations __net_initdata default_device_ops = {
9787         .exit = default_device_exit,
9788         .exit_batch = default_device_exit_batch,
9789 };
9790
9791 /*
9792  *      Initialize the DEV module. At boot time this walks the device list and
9793  *      unhooks any devices that fail to initialise (normally hardware not
9794  *      present) and leaves us with a valid list of present and active devices.
9795  *
9796  */
9797
9798 /*
9799  *       This is called single threaded during boot, so no need
9800  *       to take the rtnl semaphore.
9801  */
9802 static int __init net_dev_init(void)
9803 {
9804         int i, rc = -ENOMEM;
9805
9806         BUG_ON(!dev_boot_phase);
9807
9808         if (dev_proc_init())
9809                 goto out;
9810
9811         if (netdev_kobject_init())
9812                 goto out;
9813
9814         INIT_LIST_HEAD(&ptype_all);
9815         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9816                 INIT_LIST_HEAD(&ptype_base[i]);
9817
9818         INIT_LIST_HEAD(&offload_base);
9819
9820         if (register_pernet_subsys(&netdev_net_ops))
9821                 goto out;
9822
9823         /*
9824          *      Initialise the packet receive queues.
9825          */
9826
9827         for_each_possible_cpu(i) {
9828                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9829                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9830
9831                 INIT_WORK(flush, flush_backlog);
9832
9833                 skb_queue_head_init(&sd->input_pkt_queue);
9834                 skb_queue_head_init(&sd->process_queue);
9835 #ifdef CONFIG_XFRM_OFFLOAD
9836                 skb_queue_head_init(&sd->xfrm_backlog);
9837 #endif
9838                 INIT_LIST_HEAD(&sd->poll_list);
9839                 sd->output_queue_tailp = &sd->output_queue;
9840 #ifdef CONFIG_RPS
9841                 sd->csd.func = rps_trigger_softirq;
9842                 sd->csd.info = sd;
9843                 sd->cpu = i;
9844 #endif
9845
9846                 init_gro_hash(&sd->backlog);
9847                 sd->backlog.poll = process_backlog;
9848                 sd->backlog.weight = weight_p;
9849         }
9850
9851         dev_boot_phase = 0;
9852
9853         /* The loopback device is special if any other network devices
9854          * is present in a network namespace the loopback device must
9855          * be present. Since we now dynamically allocate and free the
9856          * loopback device ensure this invariant is maintained by
9857          * keeping the loopback device as the first device on the
9858          * list of network devices.  Ensuring the loopback devices
9859          * is the first device that appears and the last network device
9860          * that disappears.
9861          */
9862         if (register_pernet_device(&loopback_net_ops))
9863                 goto out;
9864
9865         if (register_pernet_device(&default_device_ops))
9866                 goto out;
9867
9868         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9869         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9870
9871         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9872                                        NULL, dev_cpu_dead);
9873         WARN_ON(rc < 0);
9874         rc = 0;
9875 out:
9876         return rc;
9877 }
9878
9879 subsys_initcall(net_dev_init);