Merge tag 'tty-4.20-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty
[sfrench/cifs-2.6.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148
149 #include "net-sysfs.h"
150
151 #define MAX_GRO_SKBS 8
152
153 /* This should be increased if a protocol with a bigger head is added. */
154 #define GRO_MAX_HEAD (MAX_HEADER + 128)
155
156 static DEFINE_SPINLOCK(ptype_lock);
157 static DEFINE_SPINLOCK(offload_lock);
158 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
159 struct list_head ptype_all __read_mostly;       /* Taps */
160 static struct list_head offload_base __read_mostly;
161
162 static int netif_rx_internal(struct sk_buff *skb);
163 static int call_netdevice_notifiers_info(unsigned long val,
164                                          struct netdev_notifier_info *info);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         if (!dev_valid_name(name))
1066                 return -EINVAL;
1067
1068         p = strchr(name, '%');
1069         if (p) {
1070                 /*
1071                  * Verify the string as this thing may have come from
1072                  * the user.  There must be either one "%d" and no other "%"
1073                  * characters.
1074                  */
1075                 if (p[1] != 'd' || strchr(p + 2, '%'))
1076                         return -EINVAL;
1077
1078                 /* Use one page as a bit array of possible slots */
1079                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                 if (!inuse)
1081                         return -ENOMEM;
1082
1083                 for_each_netdev(net, d) {
1084                         if (!sscanf(d->name, name, &i))
1085                                 continue;
1086                         if (i < 0 || i >= max_netdevices)
1087                                 continue;
1088
1089                         /*  avoid cases where sscanf is not exact inverse of printf */
1090                         snprintf(buf, IFNAMSIZ, name, i);
1091                         if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                 set_bit(i, inuse);
1093                 }
1094
1095                 i = find_first_zero_bit(inuse, max_netdevices);
1096                 free_page((unsigned long) inuse);
1097         }
1098
1099         snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 static int dev_alloc_name_ns(struct net *net,
1111                              struct net_device *dev,
1112                              const char *name)
1113 {
1114         char buf[IFNAMSIZ];
1115         int ret;
1116
1117         BUG_ON(!net);
1118         ret = __dev_alloc_name(net, name, buf);
1119         if (ret >= 0)
1120                 strlcpy(dev->name, buf, IFNAMSIZ);
1121         return ret;
1122 }
1123
1124 /**
1125  *      dev_alloc_name - allocate a name for a device
1126  *      @dev: device
1127  *      @name: name format string
1128  *
1129  *      Passed a format string - eg "lt%d" it will try and find a suitable
1130  *      id. It scans list of devices to build up a free map, then chooses
1131  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *      while allocating the name and adding the device in order to avoid
1133  *      duplicates.
1134  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *      Returns the number of the unit assigned or a negative errno code.
1136  */
1137
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140         return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                        const char *name)
1146 {
1147         BUG_ON(!net);
1148
1149         if (!dev_valid_name(name))
1150                 return -EINVAL;
1151
1152         if (strchr(name, '%'))
1153                 return dev_alloc_name_ns(net, dev, name);
1154         else if (__dev_get_by_name(net, name))
1155                 return -EEXIST;
1156         else if (dev->name != name)
1157                 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162
1163 /**
1164  *      dev_change_name - change name of a device
1165  *      @dev: device
1166  *      @newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *      Change name of a device, can pass format strings "eth%d".
1169  *      for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173         unsigned char old_assign_type;
1174         char oldname[IFNAMSIZ];
1175         int err = 0;
1176         int ret;
1177         struct net *net;
1178
1179         ASSERT_RTNL();
1180         BUG_ON(!dev_net(dev));
1181
1182         net = dev_net(dev);
1183         if (dev->flags & IFF_UP)
1184                 return -EBUSY;
1185
1186         write_seqcount_begin(&devnet_rename_seq);
1187
1188         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1189                 write_seqcount_end(&devnet_rename_seq);
1190                 return 0;
1191         }
1192
1193         memcpy(oldname, dev->name, IFNAMSIZ);
1194
1195         err = dev_get_valid_name(net, dev, newname);
1196         if (err < 0) {
1197                 write_seqcount_end(&devnet_rename_seq);
1198                 return err;
1199         }
1200
1201         if (oldname[0] && !strchr(oldname, '%'))
1202                 netdev_info(dev, "renamed from %s\n", oldname);
1203
1204         old_assign_type = dev->name_assign_type;
1205         dev->name_assign_type = NET_NAME_RENAMED;
1206
1207 rollback:
1208         ret = device_rename(&dev->dev, dev->name);
1209         if (ret) {
1210                 memcpy(dev->name, oldname, IFNAMSIZ);
1211                 dev->name_assign_type = old_assign_type;
1212                 write_seqcount_end(&devnet_rename_seq);
1213                 return ret;
1214         }
1215
1216         write_seqcount_end(&devnet_rename_seq);
1217
1218         netdev_adjacent_rename_links(dev, oldname);
1219
1220         write_lock_bh(&dev_base_lock);
1221         hlist_del_rcu(&dev->name_hlist);
1222         write_unlock_bh(&dev_base_lock);
1223
1224         synchronize_rcu();
1225
1226         write_lock_bh(&dev_base_lock);
1227         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1228         write_unlock_bh(&dev_base_lock);
1229
1230         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1231         ret = notifier_to_errno(ret);
1232
1233         if (ret) {
1234                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1235                 if (err >= 0) {
1236                         err = ret;
1237                         write_seqcount_begin(&devnet_rename_seq);
1238                         memcpy(dev->name, oldname, IFNAMSIZ);
1239                         memcpy(oldname, newname, IFNAMSIZ);
1240                         dev->name_assign_type = old_assign_type;
1241                         old_assign_type = NET_NAME_RENAMED;
1242                         goto rollback;
1243                 } else {
1244                         pr_err("%s: name change rollback failed: %d\n",
1245                                dev->name, ret);
1246                 }
1247         }
1248
1249         return err;
1250 }
1251
1252 /**
1253  *      dev_set_alias - change ifalias of a device
1254  *      @dev: device
1255  *      @alias: name up to IFALIASZ
1256  *      @len: limit of bytes to copy from info
1257  *
1258  *      Set ifalias for a device,
1259  */
1260 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1261 {
1262         struct dev_ifalias *new_alias = NULL;
1263
1264         if (len >= IFALIASZ)
1265                 return -EINVAL;
1266
1267         if (len) {
1268                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1269                 if (!new_alias)
1270                         return -ENOMEM;
1271
1272                 memcpy(new_alias->ifalias, alias, len);
1273                 new_alias->ifalias[len] = 0;
1274         }
1275
1276         mutex_lock(&ifalias_mutex);
1277         rcu_swap_protected(dev->ifalias, new_alias,
1278                            mutex_is_locked(&ifalias_mutex));
1279         mutex_unlock(&ifalias_mutex);
1280
1281         if (new_alias)
1282                 kfree_rcu(new_alias, rcuhead);
1283
1284         return len;
1285 }
1286 EXPORT_SYMBOL(dev_set_alias);
1287
1288 /**
1289  *      dev_get_alias - get ifalias of a device
1290  *      @dev: device
1291  *      @name: buffer to store name of ifalias
1292  *      @len: size of buffer
1293  *
1294  *      get ifalias for a device.  Caller must make sure dev cannot go
1295  *      away,  e.g. rcu read lock or own a reference count to device.
1296  */
1297 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1298 {
1299         const struct dev_ifalias *alias;
1300         int ret = 0;
1301
1302         rcu_read_lock();
1303         alias = rcu_dereference(dev->ifalias);
1304         if (alias)
1305                 ret = snprintf(name, len, "%s", alias->ifalias);
1306         rcu_read_unlock();
1307
1308         return ret;
1309 }
1310
1311 /**
1312  *      netdev_features_change - device changes features
1313  *      @dev: device to cause notification
1314  *
1315  *      Called to indicate a device has changed features.
1316  */
1317 void netdev_features_change(struct net_device *dev)
1318 {
1319         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1320 }
1321 EXPORT_SYMBOL(netdev_features_change);
1322
1323 /**
1324  *      netdev_state_change - device changes state
1325  *      @dev: device to cause notification
1326  *
1327  *      Called to indicate a device has changed state. This function calls
1328  *      the notifier chains for netdev_chain and sends a NEWLINK message
1329  *      to the routing socket.
1330  */
1331 void netdev_state_change(struct net_device *dev)
1332 {
1333         if (dev->flags & IFF_UP) {
1334                 struct netdev_notifier_change_info change_info = {
1335                         .info.dev = dev,
1336                 };
1337
1338                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1339                                               &change_info.info);
1340                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1341         }
1342 }
1343 EXPORT_SYMBOL(netdev_state_change);
1344
1345 /**
1346  * netdev_notify_peers - notify network peers about existence of @dev
1347  * @dev: network device
1348  *
1349  * Generate traffic such that interested network peers are aware of
1350  * @dev, such as by generating a gratuitous ARP. This may be used when
1351  * a device wants to inform the rest of the network about some sort of
1352  * reconfiguration such as a failover event or virtual machine
1353  * migration.
1354  */
1355 void netdev_notify_peers(struct net_device *dev)
1356 {
1357         rtnl_lock();
1358         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1359         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1360         rtnl_unlock();
1361 }
1362 EXPORT_SYMBOL(netdev_notify_peers);
1363
1364 static int __dev_open(struct net_device *dev)
1365 {
1366         const struct net_device_ops *ops = dev->netdev_ops;
1367         int ret;
1368
1369         ASSERT_RTNL();
1370
1371         if (!netif_device_present(dev))
1372                 return -ENODEV;
1373
1374         /* Block netpoll from trying to do any rx path servicing.
1375          * If we don't do this there is a chance ndo_poll_controller
1376          * or ndo_poll may be running while we open the device
1377          */
1378         netpoll_poll_disable(dev);
1379
1380         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1381         ret = notifier_to_errno(ret);
1382         if (ret)
1383                 return ret;
1384
1385         set_bit(__LINK_STATE_START, &dev->state);
1386
1387         if (ops->ndo_validate_addr)
1388                 ret = ops->ndo_validate_addr(dev);
1389
1390         if (!ret && ops->ndo_open)
1391                 ret = ops->ndo_open(dev);
1392
1393         netpoll_poll_enable(dev);
1394
1395         if (ret)
1396                 clear_bit(__LINK_STATE_START, &dev->state);
1397         else {
1398                 dev->flags |= IFF_UP;
1399                 dev_set_rx_mode(dev);
1400                 dev_activate(dev);
1401                 add_device_randomness(dev->dev_addr, dev->addr_len);
1402         }
1403
1404         return ret;
1405 }
1406
1407 /**
1408  *      dev_open        - prepare an interface for use.
1409  *      @dev:   device to open
1410  *
1411  *      Takes a device from down to up state. The device's private open
1412  *      function is invoked and then the multicast lists are loaded. Finally
1413  *      the device is moved into the up state and a %NETDEV_UP message is
1414  *      sent to the netdev notifier chain.
1415  *
1416  *      Calling this function on an active interface is a nop. On a failure
1417  *      a negative errno code is returned.
1418  */
1419 int dev_open(struct net_device *dev)
1420 {
1421         int ret;
1422
1423         if (dev->flags & IFF_UP)
1424                 return 0;
1425
1426         ret = __dev_open(dev);
1427         if (ret < 0)
1428                 return ret;
1429
1430         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1431         call_netdevice_notifiers(NETDEV_UP, dev);
1432
1433         return ret;
1434 }
1435 EXPORT_SYMBOL(dev_open);
1436
1437 static void __dev_close_many(struct list_head *head)
1438 {
1439         struct net_device *dev;
1440
1441         ASSERT_RTNL();
1442         might_sleep();
1443
1444         list_for_each_entry(dev, head, close_list) {
1445                 /* Temporarily disable netpoll until the interface is down */
1446                 netpoll_poll_disable(dev);
1447
1448                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1449
1450                 clear_bit(__LINK_STATE_START, &dev->state);
1451
1452                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1453                  * can be even on different cpu. So just clear netif_running().
1454                  *
1455                  * dev->stop() will invoke napi_disable() on all of it's
1456                  * napi_struct instances on this device.
1457                  */
1458                 smp_mb__after_atomic(); /* Commit netif_running(). */
1459         }
1460
1461         dev_deactivate_many(head);
1462
1463         list_for_each_entry(dev, head, close_list) {
1464                 const struct net_device_ops *ops = dev->netdev_ops;
1465
1466                 /*
1467                  *      Call the device specific close. This cannot fail.
1468                  *      Only if device is UP
1469                  *
1470                  *      We allow it to be called even after a DETACH hot-plug
1471                  *      event.
1472                  */
1473                 if (ops->ndo_stop)
1474                         ops->ndo_stop(dev);
1475
1476                 dev->flags &= ~IFF_UP;
1477                 netpoll_poll_enable(dev);
1478         }
1479 }
1480
1481 static void __dev_close(struct net_device *dev)
1482 {
1483         LIST_HEAD(single);
1484
1485         list_add(&dev->close_list, &single);
1486         __dev_close_many(&single);
1487         list_del(&single);
1488 }
1489
1490 void dev_close_many(struct list_head *head, bool unlink)
1491 {
1492         struct net_device *dev, *tmp;
1493
1494         /* Remove the devices that don't need to be closed */
1495         list_for_each_entry_safe(dev, tmp, head, close_list)
1496                 if (!(dev->flags & IFF_UP))
1497                         list_del_init(&dev->close_list);
1498
1499         __dev_close_many(head);
1500
1501         list_for_each_entry_safe(dev, tmp, head, close_list) {
1502                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1503                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1504                 if (unlink)
1505                         list_del_init(&dev->close_list);
1506         }
1507 }
1508 EXPORT_SYMBOL(dev_close_many);
1509
1510 /**
1511  *      dev_close - shutdown an interface.
1512  *      @dev: device to shutdown
1513  *
1514  *      This function moves an active device into down state. A
1515  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1516  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1517  *      chain.
1518  */
1519 void dev_close(struct net_device *dev)
1520 {
1521         if (dev->flags & IFF_UP) {
1522                 LIST_HEAD(single);
1523
1524                 list_add(&dev->close_list, &single);
1525                 dev_close_many(&single, true);
1526                 list_del(&single);
1527         }
1528 }
1529 EXPORT_SYMBOL(dev_close);
1530
1531
1532 /**
1533  *      dev_disable_lro - disable Large Receive Offload on a device
1534  *      @dev: device
1535  *
1536  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1537  *      called under RTNL.  This is needed if received packets may be
1538  *      forwarded to another interface.
1539  */
1540 void dev_disable_lro(struct net_device *dev)
1541 {
1542         struct net_device *lower_dev;
1543         struct list_head *iter;
1544
1545         dev->wanted_features &= ~NETIF_F_LRO;
1546         netdev_update_features(dev);
1547
1548         if (unlikely(dev->features & NETIF_F_LRO))
1549                 netdev_WARN(dev, "failed to disable LRO!\n");
1550
1551         netdev_for_each_lower_dev(dev, lower_dev, iter)
1552                 dev_disable_lro(lower_dev);
1553 }
1554 EXPORT_SYMBOL(dev_disable_lro);
1555
1556 /**
1557  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1558  *      @dev: device
1559  *
1560  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1561  *      called under RTNL.  This is needed if Generic XDP is installed on
1562  *      the device.
1563  */
1564 static void dev_disable_gro_hw(struct net_device *dev)
1565 {
1566         dev->wanted_features &= ~NETIF_F_GRO_HW;
1567         netdev_update_features(dev);
1568
1569         if (unlikely(dev->features & NETIF_F_GRO_HW))
1570                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1571 }
1572
1573 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1574 {
1575 #define N(val)                                          \
1576         case NETDEV_##val:                              \
1577                 return "NETDEV_" __stringify(val);
1578         switch (cmd) {
1579         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1580         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1581         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1582         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1583         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1584         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1585         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1586         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1587         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1588         }
1589 #undef N
1590         return "UNKNOWN_NETDEV_EVENT";
1591 }
1592 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1593
1594 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1595                                    struct net_device *dev)
1596 {
1597         struct netdev_notifier_info info = {
1598                 .dev = dev,
1599         };
1600
1601         return nb->notifier_call(nb, val, &info);
1602 }
1603
1604 static int dev_boot_phase = 1;
1605
1606 /**
1607  * register_netdevice_notifier - register a network notifier block
1608  * @nb: notifier
1609  *
1610  * Register a notifier to be called when network device events occur.
1611  * The notifier passed is linked into the kernel structures and must
1612  * not be reused until it has been unregistered. A negative errno code
1613  * is returned on a failure.
1614  *
1615  * When registered all registration and up events are replayed
1616  * to the new notifier to allow device to have a race free
1617  * view of the network device list.
1618  */
1619
1620 int register_netdevice_notifier(struct notifier_block *nb)
1621 {
1622         struct net_device *dev;
1623         struct net_device *last;
1624         struct net *net;
1625         int err;
1626
1627         /* Close race with setup_net() and cleanup_net() */
1628         down_write(&pernet_ops_rwsem);
1629         rtnl_lock();
1630         err = raw_notifier_chain_register(&netdev_chain, nb);
1631         if (err)
1632                 goto unlock;
1633         if (dev_boot_phase)
1634                 goto unlock;
1635         for_each_net(net) {
1636                 for_each_netdev(net, dev) {
1637                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638                         err = notifier_to_errno(err);
1639                         if (err)
1640                                 goto rollback;
1641
1642                         if (!(dev->flags & IFF_UP))
1643                                 continue;
1644
1645                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1646                 }
1647         }
1648
1649 unlock:
1650         rtnl_unlock();
1651         up_write(&pernet_ops_rwsem);
1652         return err;
1653
1654 rollback:
1655         last = dev;
1656         for_each_net(net) {
1657                 for_each_netdev(net, dev) {
1658                         if (dev == last)
1659                                 goto outroll;
1660
1661                         if (dev->flags & IFF_UP) {
1662                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1663                                                         dev);
1664                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1665                         }
1666                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1667                 }
1668         }
1669
1670 outroll:
1671         raw_notifier_chain_unregister(&netdev_chain, nb);
1672         goto unlock;
1673 }
1674 EXPORT_SYMBOL(register_netdevice_notifier);
1675
1676 /**
1677  * unregister_netdevice_notifier - unregister a network notifier block
1678  * @nb: notifier
1679  *
1680  * Unregister a notifier previously registered by
1681  * register_netdevice_notifier(). The notifier is unlinked into the
1682  * kernel structures and may then be reused. A negative errno code
1683  * is returned on a failure.
1684  *
1685  * After unregistering unregister and down device events are synthesized
1686  * for all devices on the device list to the removed notifier to remove
1687  * the need for special case cleanup code.
1688  */
1689
1690 int unregister_netdevice_notifier(struct notifier_block *nb)
1691 {
1692         struct net_device *dev;
1693         struct net *net;
1694         int err;
1695
1696         /* Close race with setup_net() and cleanup_net() */
1697         down_write(&pernet_ops_rwsem);
1698         rtnl_lock();
1699         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1700         if (err)
1701                 goto unlock;
1702
1703         for_each_net(net) {
1704                 for_each_netdev(net, dev) {
1705                         if (dev->flags & IFF_UP) {
1706                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1707                                                         dev);
1708                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1709                         }
1710                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1711                 }
1712         }
1713 unlock:
1714         rtnl_unlock();
1715         up_write(&pernet_ops_rwsem);
1716         return err;
1717 }
1718 EXPORT_SYMBOL(unregister_netdevice_notifier);
1719
1720 /**
1721  *      call_netdevice_notifiers_info - call all network notifier blocks
1722  *      @val: value passed unmodified to notifier function
1723  *      @info: notifier information data
1724  *
1725  *      Call all network notifier blocks.  Parameters and return value
1726  *      are as for raw_notifier_call_chain().
1727  */
1728
1729 static int call_netdevice_notifiers_info(unsigned long val,
1730                                          struct netdev_notifier_info *info)
1731 {
1732         ASSERT_RTNL();
1733         return raw_notifier_call_chain(&netdev_chain, val, info);
1734 }
1735
1736 /**
1737  *      call_netdevice_notifiers - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @dev: net_device pointer passed unmodified to notifier function
1740  *
1741  *      Call all network notifier blocks.  Parameters and return value
1742  *      are as for raw_notifier_call_chain().
1743  */
1744
1745 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1746 {
1747         struct netdev_notifier_info info = {
1748                 .dev = dev,
1749         };
1750
1751         return call_netdevice_notifiers_info(val, &info);
1752 }
1753 EXPORT_SYMBOL(call_netdevice_notifiers);
1754
1755 /**
1756  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1757  *      @val: value passed unmodified to notifier function
1758  *      @dev: net_device pointer passed unmodified to notifier function
1759  *      @arg: additional u32 argument passed to the notifier function
1760  *
1761  *      Call all network notifier blocks.  Parameters and return value
1762  *      are as for raw_notifier_call_chain().
1763  */
1764 static int call_netdevice_notifiers_mtu(unsigned long val,
1765                                         struct net_device *dev, u32 arg)
1766 {
1767         struct netdev_notifier_info_ext info = {
1768                 .info.dev = dev,
1769                 .ext.mtu = arg,
1770         };
1771
1772         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1773
1774         return call_netdevice_notifiers_info(val, &info.info);
1775 }
1776
1777 #ifdef CONFIG_NET_INGRESS
1778 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1779
1780 void net_inc_ingress_queue(void)
1781 {
1782         static_branch_inc(&ingress_needed_key);
1783 }
1784 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1785
1786 void net_dec_ingress_queue(void)
1787 {
1788         static_branch_dec(&ingress_needed_key);
1789 }
1790 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1791 #endif
1792
1793 #ifdef CONFIG_NET_EGRESS
1794 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1795
1796 void net_inc_egress_queue(void)
1797 {
1798         static_branch_inc(&egress_needed_key);
1799 }
1800 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1801
1802 void net_dec_egress_queue(void)
1803 {
1804         static_branch_dec(&egress_needed_key);
1805 }
1806 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1807 #endif
1808
1809 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1810 #ifdef HAVE_JUMP_LABEL
1811 static atomic_t netstamp_needed_deferred;
1812 static atomic_t netstamp_wanted;
1813 static void netstamp_clear(struct work_struct *work)
1814 {
1815         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1816         int wanted;
1817
1818         wanted = atomic_add_return(deferred, &netstamp_wanted);
1819         if (wanted > 0)
1820                 static_branch_enable(&netstamp_needed_key);
1821         else
1822                 static_branch_disable(&netstamp_needed_key);
1823 }
1824 static DECLARE_WORK(netstamp_work, netstamp_clear);
1825 #endif
1826
1827 void net_enable_timestamp(void)
1828 {
1829 #ifdef HAVE_JUMP_LABEL
1830         int wanted;
1831
1832         while (1) {
1833                 wanted = atomic_read(&netstamp_wanted);
1834                 if (wanted <= 0)
1835                         break;
1836                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1837                         return;
1838         }
1839         atomic_inc(&netstamp_needed_deferred);
1840         schedule_work(&netstamp_work);
1841 #else
1842         static_branch_inc(&netstamp_needed_key);
1843 #endif
1844 }
1845 EXPORT_SYMBOL(net_enable_timestamp);
1846
1847 void net_disable_timestamp(void)
1848 {
1849 #ifdef HAVE_JUMP_LABEL
1850         int wanted;
1851
1852         while (1) {
1853                 wanted = atomic_read(&netstamp_wanted);
1854                 if (wanted <= 1)
1855                         break;
1856                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1857                         return;
1858         }
1859         atomic_dec(&netstamp_needed_deferred);
1860         schedule_work(&netstamp_work);
1861 #else
1862         static_branch_dec(&netstamp_needed_key);
1863 #endif
1864 }
1865 EXPORT_SYMBOL(net_disable_timestamp);
1866
1867 static inline void net_timestamp_set(struct sk_buff *skb)
1868 {
1869         skb->tstamp = 0;
1870         if (static_branch_unlikely(&netstamp_needed_key))
1871                 __net_timestamp(skb);
1872 }
1873
1874 #define net_timestamp_check(COND, SKB)                          \
1875         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1876                 if ((COND) && !(SKB)->tstamp)                   \
1877                         __net_timestamp(SKB);                   \
1878         }                                                       \
1879
1880 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1881 {
1882         unsigned int len;
1883
1884         if (!(dev->flags & IFF_UP))
1885                 return false;
1886
1887         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1888         if (skb->len <= len)
1889                 return true;
1890
1891         /* if TSO is enabled, we don't care about the length as the packet
1892          * could be forwarded without being segmented before
1893          */
1894         if (skb_is_gso(skb))
1895                 return true;
1896
1897         return false;
1898 }
1899 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1900
1901 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1902 {
1903         int ret = ____dev_forward_skb(dev, skb);
1904
1905         if (likely(!ret)) {
1906                 skb->protocol = eth_type_trans(skb, dev);
1907                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1908         }
1909
1910         return ret;
1911 }
1912 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1913
1914 /**
1915  * dev_forward_skb - loopback an skb to another netif
1916  *
1917  * @dev: destination network device
1918  * @skb: buffer to forward
1919  *
1920  * return values:
1921  *      NET_RX_SUCCESS  (no congestion)
1922  *      NET_RX_DROP     (packet was dropped, but freed)
1923  *
1924  * dev_forward_skb can be used for injecting an skb from the
1925  * start_xmit function of one device into the receive queue
1926  * of another device.
1927  *
1928  * The receiving device may be in another namespace, so
1929  * we have to clear all information in the skb that could
1930  * impact namespace isolation.
1931  */
1932 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1933 {
1934         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1935 }
1936 EXPORT_SYMBOL_GPL(dev_forward_skb);
1937
1938 static inline int deliver_skb(struct sk_buff *skb,
1939                               struct packet_type *pt_prev,
1940                               struct net_device *orig_dev)
1941 {
1942         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1943                 return -ENOMEM;
1944         refcount_inc(&skb->users);
1945         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1946 }
1947
1948 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1949                                           struct packet_type **pt,
1950                                           struct net_device *orig_dev,
1951                                           __be16 type,
1952                                           struct list_head *ptype_list)
1953 {
1954         struct packet_type *ptype, *pt_prev = *pt;
1955
1956         list_for_each_entry_rcu(ptype, ptype_list, list) {
1957                 if (ptype->type != type)
1958                         continue;
1959                 if (pt_prev)
1960                         deliver_skb(skb, pt_prev, orig_dev);
1961                 pt_prev = ptype;
1962         }
1963         *pt = pt_prev;
1964 }
1965
1966 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1967 {
1968         if (!ptype->af_packet_priv || !skb->sk)
1969                 return false;
1970
1971         if (ptype->id_match)
1972                 return ptype->id_match(ptype, skb->sk);
1973         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1974                 return true;
1975
1976         return false;
1977 }
1978
1979 /**
1980  * dev_nit_active - return true if any network interface taps are in use
1981  *
1982  * @dev: network device to check for the presence of taps
1983  */
1984 bool dev_nit_active(struct net_device *dev)
1985 {
1986         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
1987 }
1988 EXPORT_SYMBOL_GPL(dev_nit_active);
1989
1990 /*
1991  *      Support routine. Sends outgoing frames to any network
1992  *      taps currently in use.
1993  */
1994
1995 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1996 {
1997         struct packet_type *ptype;
1998         struct sk_buff *skb2 = NULL;
1999         struct packet_type *pt_prev = NULL;
2000         struct list_head *ptype_list = &ptype_all;
2001
2002         rcu_read_lock();
2003 again:
2004         list_for_each_entry_rcu(ptype, ptype_list, list) {
2005                 if (ptype->ignore_outgoing)
2006                         continue;
2007
2008                 /* Never send packets back to the socket
2009                  * they originated from - MvS (miquels@drinkel.ow.org)
2010                  */
2011                 if (skb_loop_sk(ptype, skb))
2012                         continue;
2013
2014                 if (pt_prev) {
2015                         deliver_skb(skb2, pt_prev, skb->dev);
2016                         pt_prev = ptype;
2017                         continue;
2018                 }
2019
2020                 /* need to clone skb, done only once */
2021                 skb2 = skb_clone(skb, GFP_ATOMIC);
2022                 if (!skb2)
2023                         goto out_unlock;
2024
2025                 net_timestamp_set(skb2);
2026
2027                 /* skb->nh should be correctly
2028                  * set by sender, so that the second statement is
2029                  * just protection against buggy protocols.
2030                  */
2031                 skb_reset_mac_header(skb2);
2032
2033                 if (skb_network_header(skb2) < skb2->data ||
2034                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2035                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2036                                              ntohs(skb2->protocol),
2037                                              dev->name);
2038                         skb_reset_network_header(skb2);
2039                 }
2040
2041                 skb2->transport_header = skb2->network_header;
2042                 skb2->pkt_type = PACKET_OUTGOING;
2043                 pt_prev = ptype;
2044         }
2045
2046         if (ptype_list == &ptype_all) {
2047                 ptype_list = &dev->ptype_all;
2048                 goto again;
2049         }
2050 out_unlock:
2051         if (pt_prev) {
2052                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2053                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2054                 else
2055                         kfree_skb(skb2);
2056         }
2057         rcu_read_unlock();
2058 }
2059 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2060
2061 /**
2062  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2063  * @dev: Network device
2064  * @txq: number of queues available
2065  *
2066  * If real_num_tx_queues is changed the tc mappings may no longer be
2067  * valid. To resolve this verify the tc mapping remains valid and if
2068  * not NULL the mapping. With no priorities mapping to this
2069  * offset/count pair it will no longer be used. In the worst case TC0
2070  * is invalid nothing can be done so disable priority mappings. If is
2071  * expected that drivers will fix this mapping if they can before
2072  * calling netif_set_real_num_tx_queues.
2073  */
2074 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2075 {
2076         int i;
2077         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2078
2079         /* If TC0 is invalidated disable TC mapping */
2080         if (tc->offset + tc->count > txq) {
2081                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2082                 dev->num_tc = 0;
2083                 return;
2084         }
2085
2086         /* Invalidated prio to tc mappings set to TC0 */
2087         for (i = 1; i < TC_BITMASK + 1; i++) {
2088                 int q = netdev_get_prio_tc_map(dev, i);
2089
2090                 tc = &dev->tc_to_txq[q];
2091                 if (tc->offset + tc->count > txq) {
2092                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2093                                 i, q);
2094                         netdev_set_prio_tc_map(dev, i, 0);
2095                 }
2096         }
2097 }
2098
2099 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2100 {
2101         if (dev->num_tc) {
2102                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2103                 int i;
2104
2105                 /* walk through the TCs and see if it falls into any of them */
2106                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2107                         if ((txq - tc->offset) < tc->count)
2108                                 return i;
2109                 }
2110
2111                 /* didn't find it, just return -1 to indicate no match */
2112                 return -1;
2113         }
2114
2115         return 0;
2116 }
2117 EXPORT_SYMBOL(netdev_txq_to_tc);
2118
2119 #ifdef CONFIG_XPS
2120 struct static_key xps_needed __read_mostly;
2121 EXPORT_SYMBOL(xps_needed);
2122 struct static_key xps_rxqs_needed __read_mostly;
2123 EXPORT_SYMBOL(xps_rxqs_needed);
2124 static DEFINE_MUTEX(xps_map_mutex);
2125 #define xmap_dereference(P)             \
2126         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2127
2128 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2129                              int tci, u16 index)
2130 {
2131         struct xps_map *map = NULL;
2132         int pos;
2133
2134         if (dev_maps)
2135                 map = xmap_dereference(dev_maps->attr_map[tci]);
2136         if (!map)
2137                 return false;
2138
2139         for (pos = map->len; pos--;) {
2140                 if (map->queues[pos] != index)
2141                         continue;
2142
2143                 if (map->len > 1) {
2144                         map->queues[pos] = map->queues[--map->len];
2145                         break;
2146                 }
2147
2148                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2149                 kfree_rcu(map, rcu);
2150                 return false;
2151         }
2152
2153         return true;
2154 }
2155
2156 static bool remove_xps_queue_cpu(struct net_device *dev,
2157                                  struct xps_dev_maps *dev_maps,
2158                                  int cpu, u16 offset, u16 count)
2159 {
2160         int num_tc = dev->num_tc ? : 1;
2161         bool active = false;
2162         int tci;
2163
2164         for (tci = cpu * num_tc; num_tc--; tci++) {
2165                 int i, j;
2166
2167                 for (i = count, j = offset; i--; j++) {
2168                         if (!remove_xps_queue(dev_maps, tci, j))
2169                                 break;
2170                 }
2171
2172                 active |= i < 0;
2173         }
2174
2175         return active;
2176 }
2177
2178 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2179                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2180                            u16 offset, u16 count, bool is_rxqs_map)
2181 {
2182         bool active = false;
2183         int i, j;
2184
2185         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2186              j < nr_ids;)
2187                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2188                                                count);
2189         if (!active) {
2190                 if (is_rxqs_map) {
2191                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2192                 } else {
2193                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2194
2195                         for (i = offset + (count - 1); count--; i--)
2196                                 netdev_queue_numa_node_write(
2197                                         netdev_get_tx_queue(dev, i),
2198                                                         NUMA_NO_NODE);
2199                 }
2200                 kfree_rcu(dev_maps, rcu);
2201         }
2202 }
2203
2204 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2205                                    u16 count)
2206 {
2207         const unsigned long *possible_mask = NULL;
2208         struct xps_dev_maps *dev_maps;
2209         unsigned int nr_ids;
2210
2211         if (!static_key_false(&xps_needed))
2212                 return;
2213
2214         cpus_read_lock();
2215         mutex_lock(&xps_map_mutex);
2216
2217         if (static_key_false(&xps_rxqs_needed)) {
2218                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2219                 if (dev_maps) {
2220                         nr_ids = dev->num_rx_queues;
2221                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2222                                        offset, count, true);
2223                 }
2224         }
2225
2226         dev_maps = xmap_dereference(dev->xps_cpus_map);
2227         if (!dev_maps)
2228                 goto out_no_maps;
2229
2230         if (num_possible_cpus() > 1)
2231                 possible_mask = cpumask_bits(cpu_possible_mask);
2232         nr_ids = nr_cpu_ids;
2233         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2234                        false);
2235
2236 out_no_maps:
2237         if (static_key_enabled(&xps_rxqs_needed))
2238                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2239
2240         static_key_slow_dec_cpuslocked(&xps_needed);
2241         mutex_unlock(&xps_map_mutex);
2242         cpus_read_unlock();
2243 }
2244
2245 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2246 {
2247         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2248 }
2249
2250 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2251                                       u16 index, bool is_rxqs_map)
2252 {
2253         struct xps_map *new_map;
2254         int alloc_len = XPS_MIN_MAP_ALLOC;
2255         int i, pos;
2256
2257         for (pos = 0; map && pos < map->len; pos++) {
2258                 if (map->queues[pos] != index)
2259                         continue;
2260                 return map;
2261         }
2262
2263         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2264         if (map) {
2265                 if (pos < map->alloc_len)
2266                         return map;
2267
2268                 alloc_len = map->alloc_len * 2;
2269         }
2270
2271         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2272          *  map
2273          */
2274         if (is_rxqs_map)
2275                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2276         else
2277                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2278                                        cpu_to_node(attr_index));
2279         if (!new_map)
2280                 return NULL;
2281
2282         for (i = 0; i < pos; i++)
2283                 new_map->queues[i] = map->queues[i];
2284         new_map->alloc_len = alloc_len;
2285         new_map->len = pos;
2286
2287         return new_map;
2288 }
2289
2290 /* Must be called under cpus_read_lock */
2291 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2292                           u16 index, bool is_rxqs_map)
2293 {
2294         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2295         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2296         int i, j, tci, numa_node_id = -2;
2297         int maps_sz, num_tc = 1, tc = 0;
2298         struct xps_map *map, *new_map;
2299         bool active = false;
2300         unsigned int nr_ids;
2301
2302         if (dev->num_tc) {
2303                 /* Do not allow XPS on subordinate device directly */
2304                 num_tc = dev->num_tc;
2305                 if (num_tc < 0)
2306                         return -EINVAL;
2307
2308                 /* If queue belongs to subordinate dev use its map */
2309                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2310
2311                 tc = netdev_txq_to_tc(dev, index);
2312                 if (tc < 0)
2313                         return -EINVAL;
2314         }
2315
2316         mutex_lock(&xps_map_mutex);
2317         if (is_rxqs_map) {
2318                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2319                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2320                 nr_ids = dev->num_rx_queues;
2321         } else {
2322                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2323                 if (num_possible_cpus() > 1) {
2324                         online_mask = cpumask_bits(cpu_online_mask);
2325                         possible_mask = cpumask_bits(cpu_possible_mask);
2326                 }
2327                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2328                 nr_ids = nr_cpu_ids;
2329         }
2330
2331         if (maps_sz < L1_CACHE_BYTES)
2332                 maps_sz = L1_CACHE_BYTES;
2333
2334         /* allocate memory for queue storage */
2335         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2336              j < nr_ids;) {
2337                 if (!new_dev_maps)
2338                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2339                 if (!new_dev_maps) {
2340                         mutex_unlock(&xps_map_mutex);
2341                         return -ENOMEM;
2342                 }
2343
2344                 tci = j * num_tc + tc;
2345                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2346                                  NULL;
2347
2348                 map = expand_xps_map(map, j, index, is_rxqs_map);
2349                 if (!map)
2350                         goto error;
2351
2352                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2353         }
2354
2355         if (!new_dev_maps)
2356                 goto out_no_new_maps;
2357
2358         static_key_slow_inc_cpuslocked(&xps_needed);
2359         if (is_rxqs_map)
2360                 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2361
2362         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2363              j < nr_ids;) {
2364                 /* copy maps belonging to foreign traffic classes */
2365                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2366                         /* fill in the new device map from the old device map */
2367                         map = xmap_dereference(dev_maps->attr_map[tci]);
2368                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2369                 }
2370
2371                 /* We need to explicitly update tci as prevous loop
2372                  * could break out early if dev_maps is NULL.
2373                  */
2374                 tci = j * num_tc + tc;
2375
2376                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2377                     netif_attr_test_online(j, online_mask, nr_ids)) {
2378                         /* add tx-queue to CPU/rx-queue maps */
2379                         int pos = 0;
2380
2381                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2382                         while ((pos < map->len) && (map->queues[pos] != index))
2383                                 pos++;
2384
2385                         if (pos == map->len)
2386                                 map->queues[map->len++] = index;
2387 #ifdef CONFIG_NUMA
2388                         if (!is_rxqs_map) {
2389                                 if (numa_node_id == -2)
2390                                         numa_node_id = cpu_to_node(j);
2391                                 else if (numa_node_id != cpu_to_node(j))
2392                                         numa_node_id = -1;
2393                         }
2394 #endif
2395                 } else if (dev_maps) {
2396                         /* fill in the new device map from the old device map */
2397                         map = xmap_dereference(dev_maps->attr_map[tci]);
2398                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2399                 }
2400
2401                 /* copy maps belonging to foreign traffic classes */
2402                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2403                         /* fill in the new device map from the old device map */
2404                         map = xmap_dereference(dev_maps->attr_map[tci]);
2405                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2406                 }
2407         }
2408
2409         if (is_rxqs_map)
2410                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2411         else
2412                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2413
2414         /* Cleanup old maps */
2415         if (!dev_maps)
2416                 goto out_no_old_maps;
2417
2418         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2419              j < nr_ids;) {
2420                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2421                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2422                         map = xmap_dereference(dev_maps->attr_map[tci]);
2423                         if (map && map != new_map)
2424                                 kfree_rcu(map, rcu);
2425                 }
2426         }
2427
2428         kfree_rcu(dev_maps, rcu);
2429
2430 out_no_old_maps:
2431         dev_maps = new_dev_maps;
2432         active = true;
2433
2434 out_no_new_maps:
2435         if (!is_rxqs_map) {
2436                 /* update Tx queue numa node */
2437                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2438                                              (numa_node_id >= 0) ?
2439                                              numa_node_id : NUMA_NO_NODE);
2440         }
2441
2442         if (!dev_maps)
2443                 goto out_no_maps;
2444
2445         /* removes tx-queue from unused CPUs/rx-queues */
2446         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2447              j < nr_ids;) {
2448                 for (i = tc, tci = j * num_tc; i--; tci++)
2449                         active |= remove_xps_queue(dev_maps, tci, index);
2450                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2451                     !netif_attr_test_online(j, online_mask, nr_ids))
2452                         active |= remove_xps_queue(dev_maps, tci, index);
2453                 for (i = num_tc - tc, tci++; --i; tci++)
2454                         active |= remove_xps_queue(dev_maps, tci, index);
2455         }
2456
2457         /* free map if not active */
2458         if (!active) {
2459                 if (is_rxqs_map)
2460                         RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2461                 else
2462                         RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2463                 kfree_rcu(dev_maps, rcu);
2464         }
2465
2466 out_no_maps:
2467         mutex_unlock(&xps_map_mutex);
2468
2469         return 0;
2470 error:
2471         /* remove any maps that we added */
2472         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2473              j < nr_ids;) {
2474                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2475                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2476                         map = dev_maps ?
2477                               xmap_dereference(dev_maps->attr_map[tci]) :
2478                               NULL;
2479                         if (new_map && new_map != map)
2480                                 kfree(new_map);
2481                 }
2482         }
2483
2484         mutex_unlock(&xps_map_mutex);
2485
2486         kfree(new_dev_maps);
2487         return -ENOMEM;
2488 }
2489 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2490
2491 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2492                         u16 index)
2493 {
2494         int ret;
2495
2496         cpus_read_lock();
2497         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2498         cpus_read_unlock();
2499
2500         return ret;
2501 }
2502 EXPORT_SYMBOL(netif_set_xps_queue);
2503
2504 #endif
2505 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2506 {
2507         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2508
2509         /* Unbind any subordinate channels */
2510         while (txq-- != &dev->_tx[0]) {
2511                 if (txq->sb_dev)
2512                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2513         }
2514 }
2515
2516 void netdev_reset_tc(struct net_device *dev)
2517 {
2518 #ifdef CONFIG_XPS
2519         netif_reset_xps_queues_gt(dev, 0);
2520 #endif
2521         netdev_unbind_all_sb_channels(dev);
2522
2523         /* Reset TC configuration of device */
2524         dev->num_tc = 0;
2525         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2526         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2527 }
2528 EXPORT_SYMBOL(netdev_reset_tc);
2529
2530 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2531 {
2532         if (tc >= dev->num_tc)
2533                 return -EINVAL;
2534
2535 #ifdef CONFIG_XPS
2536         netif_reset_xps_queues(dev, offset, count);
2537 #endif
2538         dev->tc_to_txq[tc].count = count;
2539         dev->tc_to_txq[tc].offset = offset;
2540         return 0;
2541 }
2542 EXPORT_SYMBOL(netdev_set_tc_queue);
2543
2544 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2545 {
2546         if (num_tc > TC_MAX_QUEUE)
2547                 return -EINVAL;
2548
2549 #ifdef CONFIG_XPS
2550         netif_reset_xps_queues_gt(dev, 0);
2551 #endif
2552         netdev_unbind_all_sb_channels(dev);
2553
2554         dev->num_tc = num_tc;
2555         return 0;
2556 }
2557 EXPORT_SYMBOL(netdev_set_num_tc);
2558
2559 void netdev_unbind_sb_channel(struct net_device *dev,
2560                               struct net_device *sb_dev)
2561 {
2562         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2563
2564 #ifdef CONFIG_XPS
2565         netif_reset_xps_queues_gt(sb_dev, 0);
2566 #endif
2567         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2568         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2569
2570         while (txq-- != &dev->_tx[0]) {
2571                 if (txq->sb_dev == sb_dev)
2572                         txq->sb_dev = NULL;
2573         }
2574 }
2575 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2576
2577 int netdev_bind_sb_channel_queue(struct net_device *dev,
2578                                  struct net_device *sb_dev,
2579                                  u8 tc, u16 count, u16 offset)
2580 {
2581         /* Make certain the sb_dev and dev are already configured */
2582         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2583                 return -EINVAL;
2584
2585         /* We cannot hand out queues we don't have */
2586         if ((offset + count) > dev->real_num_tx_queues)
2587                 return -EINVAL;
2588
2589         /* Record the mapping */
2590         sb_dev->tc_to_txq[tc].count = count;
2591         sb_dev->tc_to_txq[tc].offset = offset;
2592
2593         /* Provide a way for Tx queue to find the tc_to_txq map or
2594          * XPS map for itself.
2595          */
2596         while (count--)
2597                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2598
2599         return 0;
2600 }
2601 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2602
2603 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2604 {
2605         /* Do not use a multiqueue device to represent a subordinate channel */
2606         if (netif_is_multiqueue(dev))
2607                 return -ENODEV;
2608
2609         /* We allow channels 1 - 32767 to be used for subordinate channels.
2610          * Channel 0 is meant to be "native" mode and used only to represent
2611          * the main root device. We allow writing 0 to reset the device back
2612          * to normal mode after being used as a subordinate channel.
2613          */
2614         if (channel > S16_MAX)
2615                 return -EINVAL;
2616
2617         dev->num_tc = -channel;
2618
2619         return 0;
2620 }
2621 EXPORT_SYMBOL(netdev_set_sb_channel);
2622
2623 /*
2624  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2625  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2626  */
2627 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2628 {
2629         bool disabling;
2630         int rc;
2631
2632         disabling = txq < dev->real_num_tx_queues;
2633
2634         if (txq < 1 || txq > dev->num_tx_queues)
2635                 return -EINVAL;
2636
2637         if (dev->reg_state == NETREG_REGISTERED ||
2638             dev->reg_state == NETREG_UNREGISTERING) {
2639                 ASSERT_RTNL();
2640
2641                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2642                                                   txq);
2643                 if (rc)
2644                         return rc;
2645
2646                 if (dev->num_tc)
2647                         netif_setup_tc(dev, txq);
2648
2649                 dev->real_num_tx_queues = txq;
2650
2651                 if (disabling) {
2652                         synchronize_net();
2653                         qdisc_reset_all_tx_gt(dev, txq);
2654 #ifdef CONFIG_XPS
2655                         netif_reset_xps_queues_gt(dev, txq);
2656 #endif
2657                 }
2658         } else {
2659                 dev->real_num_tx_queues = txq;
2660         }
2661
2662         return 0;
2663 }
2664 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2665
2666 #ifdef CONFIG_SYSFS
2667 /**
2668  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2669  *      @dev: Network device
2670  *      @rxq: Actual number of RX queues
2671  *
2672  *      This must be called either with the rtnl_lock held or before
2673  *      registration of the net device.  Returns 0 on success, or a
2674  *      negative error code.  If called before registration, it always
2675  *      succeeds.
2676  */
2677 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2678 {
2679         int rc;
2680
2681         if (rxq < 1 || rxq > dev->num_rx_queues)
2682                 return -EINVAL;
2683
2684         if (dev->reg_state == NETREG_REGISTERED) {
2685                 ASSERT_RTNL();
2686
2687                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2688                                                   rxq);
2689                 if (rc)
2690                         return rc;
2691         }
2692
2693         dev->real_num_rx_queues = rxq;
2694         return 0;
2695 }
2696 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2697 #endif
2698
2699 /**
2700  * netif_get_num_default_rss_queues - default number of RSS queues
2701  *
2702  * This routine should set an upper limit on the number of RSS queues
2703  * used by default by multiqueue devices.
2704  */
2705 int netif_get_num_default_rss_queues(void)
2706 {
2707         return is_kdump_kernel() ?
2708                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2709 }
2710 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2711
2712 static void __netif_reschedule(struct Qdisc *q)
2713 {
2714         struct softnet_data *sd;
2715         unsigned long flags;
2716
2717         local_irq_save(flags);
2718         sd = this_cpu_ptr(&softnet_data);
2719         q->next_sched = NULL;
2720         *sd->output_queue_tailp = q;
2721         sd->output_queue_tailp = &q->next_sched;
2722         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2723         local_irq_restore(flags);
2724 }
2725
2726 void __netif_schedule(struct Qdisc *q)
2727 {
2728         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2729                 __netif_reschedule(q);
2730 }
2731 EXPORT_SYMBOL(__netif_schedule);
2732
2733 struct dev_kfree_skb_cb {
2734         enum skb_free_reason reason;
2735 };
2736
2737 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2738 {
2739         return (struct dev_kfree_skb_cb *)skb->cb;
2740 }
2741
2742 void netif_schedule_queue(struct netdev_queue *txq)
2743 {
2744         rcu_read_lock();
2745         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2746                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2747
2748                 __netif_schedule(q);
2749         }
2750         rcu_read_unlock();
2751 }
2752 EXPORT_SYMBOL(netif_schedule_queue);
2753
2754 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2755 {
2756         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2757                 struct Qdisc *q;
2758
2759                 rcu_read_lock();
2760                 q = rcu_dereference(dev_queue->qdisc);
2761                 __netif_schedule(q);
2762                 rcu_read_unlock();
2763         }
2764 }
2765 EXPORT_SYMBOL(netif_tx_wake_queue);
2766
2767 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2768 {
2769         unsigned long flags;
2770
2771         if (unlikely(!skb))
2772                 return;
2773
2774         if (likely(refcount_read(&skb->users) == 1)) {
2775                 smp_rmb();
2776                 refcount_set(&skb->users, 0);
2777         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2778                 return;
2779         }
2780         get_kfree_skb_cb(skb)->reason = reason;
2781         local_irq_save(flags);
2782         skb->next = __this_cpu_read(softnet_data.completion_queue);
2783         __this_cpu_write(softnet_data.completion_queue, skb);
2784         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2785         local_irq_restore(flags);
2786 }
2787 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2788
2789 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2790 {
2791         if (in_irq() || irqs_disabled())
2792                 __dev_kfree_skb_irq(skb, reason);
2793         else
2794                 dev_kfree_skb(skb);
2795 }
2796 EXPORT_SYMBOL(__dev_kfree_skb_any);
2797
2798
2799 /**
2800  * netif_device_detach - mark device as removed
2801  * @dev: network device
2802  *
2803  * Mark device as removed from system and therefore no longer available.
2804  */
2805 void netif_device_detach(struct net_device *dev)
2806 {
2807         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2808             netif_running(dev)) {
2809                 netif_tx_stop_all_queues(dev);
2810         }
2811 }
2812 EXPORT_SYMBOL(netif_device_detach);
2813
2814 /**
2815  * netif_device_attach - mark device as attached
2816  * @dev: network device
2817  *
2818  * Mark device as attached from system and restart if needed.
2819  */
2820 void netif_device_attach(struct net_device *dev)
2821 {
2822         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2823             netif_running(dev)) {
2824                 netif_tx_wake_all_queues(dev);
2825                 __netdev_watchdog_up(dev);
2826         }
2827 }
2828 EXPORT_SYMBOL(netif_device_attach);
2829
2830 /*
2831  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2832  * to be used as a distribution range.
2833  */
2834 static u16 skb_tx_hash(const struct net_device *dev,
2835                        const struct net_device *sb_dev,
2836                        struct sk_buff *skb)
2837 {
2838         u32 hash;
2839         u16 qoffset = 0;
2840         u16 qcount = dev->real_num_tx_queues;
2841
2842         if (dev->num_tc) {
2843                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2844
2845                 qoffset = sb_dev->tc_to_txq[tc].offset;
2846                 qcount = sb_dev->tc_to_txq[tc].count;
2847         }
2848
2849         if (skb_rx_queue_recorded(skb)) {
2850                 hash = skb_get_rx_queue(skb);
2851                 while (unlikely(hash >= qcount))
2852                         hash -= qcount;
2853                 return hash + qoffset;
2854         }
2855
2856         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2857 }
2858
2859 static void skb_warn_bad_offload(const struct sk_buff *skb)
2860 {
2861         static const netdev_features_t null_features;
2862         struct net_device *dev = skb->dev;
2863         const char *name = "";
2864
2865         if (!net_ratelimit())
2866                 return;
2867
2868         if (dev) {
2869                 if (dev->dev.parent)
2870                         name = dev_driver_string(dev->dev.parent);
2871                 else
2872                         name = netdev_name(dev);
2873         }
2874         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2875              "gso_type=%d ip_summed=%d\n",
2876              name, dev ? &dev->features : &null_features,
2877              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2878              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2879              skb_shinfo(skb)->gso_type, skb->ip_summed);
2880 }
2881
2882 /*
2883  * Invalidate hardware checksum when packet is to be mangled, and
2884  * complete checksum manually on outgoing path.
2885  */
2886 int skb_checksum_help(struct sk_buff *skb)
2887 {
2888         __wsum csum;
2889         int ret = 0, offset;
2890
2891         if (skb->ip_summed == CHECKSUM_COMPLETE)
2892                 goto out_set_summed;
2893
2894         if (unlikely(skb_shinfo(skb)->gso_size)) {
2895                 skb_warn_bad_offload(skb);
2896                 return -EINVAL;
2897         }
2898
2899         /* Before computing a checksum, we should make sure no frag could
2900          * be modified by an external entity : checksum could be wrong.
2901          */
2902         if (skb_has_shared_frag(skb)) {
2903                 ret = __skb_linearize(skb);
2904                 if (ret)
2905                         goto out;
2906         }
2907
2908         offset = skb_checksum_start_offset(skb);
2909         BUG_ON(offset >= skb_headlen(skb));
2910         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2911
2912         offset += skb->csum_offset;
2913         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2914
2915         if (skb_cloned(skb) &&
2916             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2917                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2918                 if (ret)
2919                         goto out;
2920         }
2921
2922         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2923 out_set_summed:
2924         skb->ip_summed = CHECKSUM_NONE;
2925 out:
2926         return ret;
2927 }
2928 EXPORT_SYMBOL(skb_checksum_help);
2929
2930 int skb_crc32c_csum_help(struct sk_buff *skb)
2931 {
2932         __le32 crc32c_csum;
2933         int ret = 0, offset, start;
2934
2935         if (skb->ip_summed != CHECKSUM_PARTIAL)
2936                 goto out;
2937
2938         if (unlikely(skb_is_gso(skb)))
2939                 goto out;
2940
2941         /* Before computing a checksum, we should make sure no frag could
2942          * be modified by an external entity : checksum could be wrong.
2943          */
2944         if (unlikely(skb_has_shared_frag(skb))) {
2945                 ret = __skb_linearize(skb);
2946                 if (ret)
2947                         goto out;
2948         }
2949         start = skb_checksum_start_offset(skb);
2950         offset = start + offsetof(struct sctphdr, checksum);
2951         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2952                 ret = -EINVAL;
2953                 goto out;
2954         }
2955         if (skb_cloned(skb) &&
2956             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2957                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2958                 if (ret)
2959                         goto out;
2960         }
2961         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2962                                                   skb->len - start, ~(__u32)0,
2963                                                   crc32c_csum_stub));
2964         *(__le32 *)(skb->data + offset) = crc32c_csum;
2965         skb->ip_summed = CHECKSUM_NONE;
2966         skb->csum_not_inet = 0;
2967 out:
2968         return ret;
2969 }
2970
2971 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2972 {
2973         __be16 type = skb->protocol;
2974
2975         /* Tunnel gso handlers can set protocol to ethernet. */
2976         if (type == htons(ETH_P_TEB)) {
2977                 struct ethhdr *eth;
2978
2979                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2980                         return 0;
2981
2982                 eth = (struct ethhdr *)skb->data;
2983                 type = eth->h_proto;
2984         }
2985
2986         return __vlan_get_protocol(skb, type, depth);
2987 }
2988
2989 /**
2990  *      skb_mac_gso_segment - mac layer segmentation handler.
2991  *      @skb: buffer to segment
2992  *      @features: features for the output path (see dev->features)
2993  */
2994 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2995                                     netdev_features_t features)
2996 {
2997         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2998         struct packet_offload *ptype;
2999         int vlan_depth = skb->mac_len;
3000         __be16 type = skb_network_protocol(skb, &vlan_depth);
3001
3002         if (unlikely(!type))
3003                 return ERR_PTR(-EINVAL);
3004
3005         __skb_pull(skb, vlan_depth);
3006
3007         rcu_read_lock();
3008         list_for_each_entry_rcu(ptype, &offload_base, list) {
3009                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3010                         segs = ptype->callbacks.gso_segment(skb, features);
3011                         break;
3012                 }
3013         }
3014         rcu_read_unlock();
3015
3016         __skb_push(skb, skb->data - skb_mac_header(skb));
3017
3018         return segs;
3019 }
3020 EXPORT_SYMBOL(skb_mac_gso_segment);
3021
3022
3023 /* openvswitch calls this on rx path, so we need a different check.
3024  */
3025 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3026 {
3027         if (tx_path)
3028                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3029                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3030
3031         return skb->ip_summed == CHECKSUM_NONE;
3032 }
3033
3034 /**
3035  *      __skb_gso_segment - Perform segmentation on skb.
3036  *      @skb: buffer to segment
3037  *      @features: features for the output path (see dev->features)
3038  *      @tx_path: whether it is called in TX path
3039  *
3040  *      This function segments the given skb and returns a list of segments.
3041  *
3042  *      It may return NULL if the skb requires no segmentation.  This is
3043  *      only possible when GSO is used for verifying header integrity.
3044  *
3045  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3046  */
3047 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3048                                   netdev_features_t features, bool tx_path)
3049 {
3050         struct sk_buff *segs;
3051
3052         if (unlikely(skb_needs_check(skb, tx_path))) {
3053                 int err;
3054
3055                 /* We're going to init ->check field in TCP or UDP header */
3056                 err = skb_cow_head(skb, 0);
3057                 if (err < 0)
3058                         return ERR_PTR(err);
3059         }
3060
3061         /* Only report GSO partial support if it will enable us to
3062          * support segmentation on this frame without needing additional
3063          * work.
3064          */
3065         if (features & NETIF_F_GSO_PARTIAL) {
3066                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3067                 struct net_device *dev = skb->dev;
3068
3069                 partial_features |= dev->features & dev->gso_partial_features;
3070                 if (!skb_gso_ok(skb, features | partial_features))
3071                         features &= ~NETIF_F_GSO_PARTIAL;
3072         }
3073
3074         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3075                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3076
3077         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3078         SKB_GSO_CB(skb)->encap_level = 0;
3079
3080         skb_reset_mac_header(skb);
3081         skb_reset_mac_len(skb);
3082
3083         segs = skb_mac_gso_segment(skb, features);
3084
3085         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3086                 skb_warn_bad_offload(skb);
3087
3088         return segs;
3089 }
3090 EXPORT_SYMBOL(__skb_gso_segment);
3091
3092 /* Take action when hardware reception checksum errors are detected. */
3093 #ifdef CONFIG_BUG
3094 void netdev_rx_csum_fault(struct net_device *dev)
3095 {
3096         if (net_ratelimit()) {
3097                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3098                 dump_stack();
3099         }
3100 }
3101 EXPORT_SYMBOL(netdev_rx_csum_fault);
3102 #endif
3103
3104 /* XXX: check that highmem exists at all on the given machine. */
3105 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3106 {
3107 #ifdef CONFIG_HIGHMEM
3108         int i;
3109
3110         if (!(dev->features & NETIF_F_HIGHDMA)) {
3111                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3112                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3113
3114                         if (PageHighMem(skb_frag_page(frag)))
3115                                 return 1;
3116                 }
3117         }
3118 #endif
3119         return 0;
3120 }
3121
3122 /* If MPLS offload request, verify we are testing hardware MPLS features
3123  * instead of standard features for the netdev.
3124  */
3125 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3126 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3127                                            netdev_features_t features,
3128                                            __be16 type)
3129 {
3130         if (eth_p_mpls(type))
3131                 features &= skb->dev->mpls_features;
3132
3133         return features;
3134 }
3135 #else
3136 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3137                                            netdev_features_t features,
3138                                            __be16 type)
3139 {
3140         return features;
3141 }
3142 #endif
3143
3144 static netdev_features_t harmonize_features(struct sk_buff *skb,
3145         netdev_features_t features)
3146 {
3147         int tmp;
3148         __be16 type;
3149
3150         type = skb_network_protocol(skb, &tmp);
3151         features = net_mpls_features(skb, features, type);
3152
3153         if (skb->ip_summed != CHECKSUM_NONE &&
3154             !can_checksum_protocol(features, type)) {
3155                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3156         }
3157         if (illegal_highdma(skb->dev, skb))
3158                 features &= ~NETIF_F_SG;
3159
3160         return features;
3161 }
3162
3163 netdev_features_t passthru_features_check(struct sk_buff *skb,
3164                                           struct net_device *dev,
3165                                           netdev_features_t features)
3166 {
3167         return features;
3168 }
3169 EXPORT_SYMBOL(passthru_features_check);
3170
3171 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3172                                              struct net_device *dev,
3173                                              netdev_features_t features)
3174 {
3175         return vlan_features_check(skb, features);
3176 }
3177
3178 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3179                                             struct net_device *dev,
3180                                             netdev_features_t features)
3181 {
3182         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3183
3184         if (gso_segs > dev->gso_max_segs)
3185                 return features & ~NETIF_F_GSO_MASK;
3186
3187         /* Support for GSO partial features requires software
3188          * intervention before we can actually process the packets
3189          * so we need to strip support for any partial features now
3190          * and we can pull them back in after we have partially
3191          * segmented the frame.
3192          */
3193         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3194                 features &= ~dev->gso_partial_features;
3195
3196         /* Make sure to clear the IPv4 ID mangling feature if the
3197          * IPv4 header has the potential to be fragmented.
3198          */
3199         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3200                 struct iphdr *iph = skb->encapsulation ?
3201                                     inner_ip_hdr(skb) : ip_hdr(skb);
3202
3203                 if (!(iph->frag_off & htons(IP_DF)))
3204                         features &= ~NETIF_F_TSO_MANGLEID;
3205         }
3206
3207         return features;
3208 }
3209
3210 netdev_features_t netif_skb_features(struct sk_buff *skb)
3211 {
3212         struct net_device *dev = skb->dev;
3213         netdev_features_t features = dev->features;
3214
3215         if (skb_is_gso(skb))
3216                 features = gso_features_check(skb, dev, features);
3217
3218         /* If encapsulation offload request, verify we are testing
3219          * hardware encapsulation features instead of standard
3220          * features for the netdev
3221          */
3222         if (skb->encapsulation)
3223                 features &= dev->hw_enc_features;
3224
3225         if (skb_vlan_tagged(skb))
3226                 features = netdev_intersect_features(features,
3227                                                      dev->vlan_features |
3228                                                      NETIF_F_HW_VLAN_CTAG_TX |
3229                                                      NETIF_F_HW_VLAN_STAG_TX);
3230
3231         if (dev->netdev_ops->ndo_features_check)
3232                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3233                                                                 features);
3234         else
3235                 features &= dflt_features_check(skb, dev, features);
3236
3237         return harmonize_features(skb, features);
3238 }
3239 EXPORT_SYMBOL(netif_skb_features);
3240
3241 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3242                     struct netdev_queue *txq, bool more)
3243 {
3244         unsigned int len;
3245         int rc;
3246
3247         if (dev_nit_active(dev))
3248                 dev_queue_xmit_nit(skb, dev);
3249
3250         len = skb->len;
3251         trace_net_dev_start_xmit(skb, dev);
3252         rc = netdev_start_xmit(skb, dev, txq, more);
3253         trace_net_dev_xmit(skb, rc, dev, len);
3254
3255         return rc;
3256 }
3257
3258 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3259                                     struct netdev_queue *txq, int *ret)
3260 {
3261         struct sk_buff *skb = first;
3262         int rc = NETDEV_TX_OK;
3263
3264         while (skb) {
3265                 struct sk_buff *next = skb->next;
3266
3267                 skb_mark_not_on_list(skb);
3268                 rc = xmit_one(skb, dev, txq, next != NULL);
3269                 if (unlikely(!dev_xmit_complete(rc))) {
3270                         skb->next = next;
3271                         goto out;
3272                 }
3273
3274                 skb = next;
3275                 if (netif_tx_queue_stopped(txq) && skb) {
3276                         rc = NETDEV_TX_BUSY;
3277                         break;
3278                 }
3279         }
3280
3281 out:
3282         *ret = rc;
3283         return skb;
3284 }
3285
3286 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3287                                           netdev_features_t features)
3288 {
3289         if (skb_vlan_tag_present(skb) &&
3290             !vlan_hw_offload_capable(features, skb->vlan_proto))
3291                 skb = __vlan_hwaccel_push_inside(skb);
3292         return skb;
3293 }
3294
3295 int skb_csum_hwoffload_help(struct sk_buff *skb,
3296                             const netdev_features_t features)
3297 {
3298         if (unlikely(skb->csum_not_inet))
3299                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3300                         skb_crc32c_csum_help(skb);
3301
3302         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3303 }
3304 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3305
3306 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3307 {
3308         netdev_features_t features;
3309
3310         features = netif_skb_features(skb);
3311         skb = validate_xmit_vlan(skb, features);
3312         if (unlikely(!skb))
3313                 goto out_null;
3314
3315         skb = sk_validate_xmit_skb(skb, dev);
3316         if (unlikely(!skb))
3317                 goto out_null;
3318
3319         if (netif_needs_gso(skb, features)) {
3320                 struct sk_buff *segs;
3321
3322                 segs = skb_gso_segment(skb, features);
3323                 if (IS_ERR(segs)) {
3324                         goto out_kfree_skb;
3325                 } else if (segs) {
3326                         consume_skb(skb);
3327                         skb = segs;
3328                 }
3329         } else {
3330                 if (skb_needs_linearize(skb, features) &&
3331                     __skb_linearize(skb))
3332                         goto out_kfree_skb;
3333
3334                 /* If packet is not checksummed and device does not
3335                  * support checksumming for this protocol, complete
3336                  * checksumming here.
3337                  */
3338                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3339                         if (skb->encapsulation)
3340                                 skb_set_inner_transport_header(skb,
3341                                                                skb_checksum_start_offset(skb));
3342                         else
3343                                 skb_set_transport_header(skb,
3344                                                          skb_checksum_start_offset(skb));
3345                         if (skb_csum_hwoffload_help(skb, features))
3346                                 goto out_kfree_skb;
3347                 }
3348         }
3349
3350         skb = validate_xmit_xfrm(skb, features, again);
3351
3352         return skb;
3353
3354 out_kfree_skb:
3355         kfree_skb(skb);
3356 out_null:
3357         atomic_long_inc(&dev->tx_dropped);
3358         return NULL;
3359 }
3360
3361 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3362 {
3363         struct sk_buff *next, *head = NULL, *tail;
3364
3365         for (; skb != NULL; skb = next) {
3366                 next = skb->next;
3367                 skb_mark_not_on_list(skb);
3368
3369                 /* in case skb wont be segmented, point to itself */
3370                 skb->prev = skb;
3371
3372                 skb = validate_xmit_skb(skb, dev, again);
3373                 if (!skb)
3374                         continue;
3375
3376                 if (!head)
3377                         head = skb;
3378                 else
3379                         tail->next = skb;
3380                 /* If skb was segmented, skb->prev points to
3381                  * the last segment. If not, it still contains skb.
3382                  */
3383                 tail = skb->prev;
3384         }
3385         return head;
3386 }
3387 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3388
3389 static void qdisc_pkt_len_init(struct sk_buff *skb)
3390 {
3391         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3392
3393         qdisc_skb_cb(skb)->pkt_len = skb->len;
3394
3395         /* To get more precise estimation of bytes sent on wire,
3396          * we add to pkt_len the headers size of all segments
3397          */
3398         if (shinfo->gso_size)  {
3399                 unsigned int hdr_len;
3400                 u16 gso_segs = shinfo->gso_segs;
3401
3402                 /* mac layer + network layer */
3403                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3404
3405                 /* + transport layer */
3406                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3407                         const struct tcphdr *th;
3408                         struct tcphdr _tcphdr;
3409
3410                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3411                                                 sizeof(_tcphdr), &_tcphdr);
3412                         if (likely(th))
3413                                 hdr_len += __tcp_hdrlen(th);
3414                 } else {
3415                         struct udphdr _udphdr;
3416
3417                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3418                                                sizeof(_udphdr), &_udphdr))
3419                                 hdr_len += sizeof(struct udphdr);
3420                 }
3421
3422                 if (shinfo->gso_type & SKB_GSO_DODGY)
3423                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3424                                                 shinfo->gso_size);
3425
3426                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3427         }
3428 }
3429
3430 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3431                                  struct net_device *dev,
3432                                  struct netdev_queue *txq)
3433 {
3434         spinlock_t *root_lock = qdisc_lock(q);
3435         struct sk_buff *to_free = NULL;
3436         bool contended;
3437         int rc;
3438
3439         qdisc_calculate_pkt_len(skb, q);
3440
3441         if (q->flags & TCQ_F_NOLOCK) {
3442                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3443                         __qdisc_drop(skb, &to_free);
3444                         rc = NET_XMIT_DROP;
3445                 } else {
3446                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3447                         qdisc_run(q);
3448                 }
3449
3450                 if (unlikely(to_free))
3451                         kfree_skb_list(to_free);
3452                 return rc;
3453         }
3454
3455         /*
3456          * Heuristic to force contended enqueues to serialize on a
3457          * separate lock before trying to get qdisc main lock.
3458          * This permits qdisc->running owner to get the lock more
3459          * often and dequeue packets faster.
3460          */
3461         contended = qdisc_is_running(q);
3462         if (unlikely(contended))
3463                 spin_lock(&q->busylock);
3464
3465         spin_lock(root_lock);
3466         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3467                 __qdisc_drop(skb, &to_free);
3468                 rc = NET_XMIT_DROP;
3469         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3470                    qdisc_run_begin(q)) {
3471                 /*
3472                  * This is a work-conserving queue; there are no old skbs
3473                  * waiting to be sent out; and the qdisc is not running -
3474                  * xmit the skb directly.
3475                  */
3476
3477                 qdisc_bstats_update(q, skb);
3478
3479                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3480                         if (unlikely(contended)) {
3481                                 spin_unlock(&q->busylock);
3482                                 contended = false;
3483                         }
3484                         __qdisc_run(q);
3485                 }
3486
3487                 qdisc_run_end(q);
3488                 rc = NET_XMIT_SUCCESS;
3489         } else {
3490                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3491                 if (qdisc_run_begin(q)) {
3492                         if (unlikely(contended)) {
3493                                 spin_unlock(&q->busylock);
3494                                 contended = false;
3495                         }
3496                         __qdisc_run(q);
3497                         qdisc_run_end(q);
3498                 }
3499         }
3500         spin_unlock(root_lock);
3501         if (unlikely(to_free))
3502                 kfree_skb_list(to_free);
3503         if (unlikely(contended))
3504                 spin_unlock(&q->busylock);
3505         return rc;
3506 }
3507
3508 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3509 static void skb_update_prio(struct sk_buff *skb)
3510 {
3511         const struct netprio_map *map;
3512         const struct sock *sk;
3513         unsigned int prioidx;
3514
3515         if (skb->priority)
3516                 return;
3517         map = rcu_dereference_bh(skb->dev->priomap);
3518         if (!map)
3519                 return;
3520         sk = skb_to_full_sk(skb);
3521         if (!sk)
3522                 return;
3523
3524         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3525
3526         if (prioidx < map->priomap_len)
3527                 skb->priority = map->priomap[prioidx];
3528 }
3529 #else
3530 #define skb_update_prio(skb)
3531 #endif
3532
3533 DEFINE_PER_CPU(int, xmit_recursion);
3534 EXPORT_SYMBOL(xmit_recursion);
3535
3536 /**
3537  *      dev_loopback_xmit - loop back @skb
3538  *      @net: network namespace this loopback is happening in
3539  *      @sk:  sk needed to be a netfilter okfn
3540  *      @skb: buffer to transmit
3541  */
3542 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3543 {
3544         skb_reset_mac_header(skb);
3545         __skb_pull(skb, skb_network_offset(skb));
3546         skb->pkt_type = PACKET_LOOPBACK;
3547         skb->ip_summed = CHECKSUM_UNNECESSARY;
3548         WARN_ON(!skb_dst(skb));
3549         skb_dst_force(skb);
3550         netif_rx_ni(skb);
3551         return 0;
3552 }
3553 EXPORT_SYMBOL(dev_loopback_xmit);
3554
3555 #ifdef CONFIG_NET_EGRESS
3556 static struct sk_buff *
3557 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3558 {
3559         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3560         struct tcf_result cl_res;
3561
3562         if (!miniq)
3563                 return skb;
3564
3565         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3566         mini_qdisc_bstats_cpu_update(miniq, skb);
3567
3568         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3569         case TC_ACT_OK:
3570         case TC_ACT_RECLASSIFY:
3571                 skb->tc_index = TC_H_MIN(cl_res.classid);
3572                 break;
3573         case TC_ACT_SHOT:
3574                 mini_qdisc_qstats_cpu_drop(miniq);
3575                 *ret = NET_XMIT_DROP;
3576                 kfree_skb(skb);
3577                 return NULL;
3578         case TC_ACT_STOLEN:
3579         case TC_ACT_QUEUED:
3580         case TC_ACT_TRAP:
3581                 *ret = NET_XMIT_SUCCESS;
3582                 consume_skb(skb);
3583                 return NULL;
3584         case TC_ACT_REDIRECT:
3585                 /* No need to push/pop skb's mac_header here on egress! */
3586                 skb_do_redirect(skb);
3587                 *ret = NET_XMIT_SUCCESS;
3588                 return NULL;
3589         default:
3590                 break;
3591         }
3592
3593         return skb;
3594 }
3595 #endif /* CONFIG_NET_EGRESS */
3596
3597 #ifdef CONFIG_XPS
3598 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3599                                struct xps_dev_maps *dev_maps, unsigned int tci)
3600 {
3601         struct xps_map *map;
3602         int queue_index = -1;
3603
3604         if (dev->num_tc) {
3605                 tci *= dev->num_tc;
3606                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3607         }
3608
3609         map = rcu_dereference(dev_maps->attr_map[tci]);
3610         if (map) {
3611                 if (map->len == 1)
3612                         queue_index = map->queues[0];
3613                 else
3614                         queue_index = map->queues[reciprocal_scale(
3615                                                 skb_get_hash(skb), map->len)];
3616                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3617                         queue_index = -1;
3618         }
3619         return queue_index;
3620 }
3621 #endif
3622
3623 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3624                          struct sk_buff *skb)
3625 {
3626 #ifdef CONFIG_XPS
3627         struct xps_dev_maps *dev_maps;
3628         struct sock *sk = skb->sk;
3629         int queue_index = -1;
3630
3631         if (!static_key_false(&xps_needed))
3632                 return -1;
3633
3634         rcu_read_lock();
3635         if (!static_key_false(&xps_rxqs_needed))
3636                 goto get_cpus_map;
3637
3638         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3639         if (dev_maps) {
3640                 int tci = sk_rx_queue_get(sk);
3641
3642                 if (tci >= 0 && tci < dev->num_rx_queues)
3643                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3644                                                           tci);
3645         }
3646
3647 get_cpus_map:
3648         if (queue_index < 0) {
3649                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3650                 if (dev_maps) {
3651                         unsigned int tci = skb->sender_cpu - 1;
3652
3653                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3654                                                           tci);
3655                 }
3656         }
3657         rcu_read_unlock();
3658
3659         return queue_index;
3660 #else
3661         return -1;
3662 #endif
3663 }
3664
3665 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3666                      struct net_device *sb_dev,
3667                      select_queue_fallback_t fallback)
3668 {
3669         return 0;
3670 }
3671 EXPORT_SYMBOL(dev_pick_tx_zero);
3672
3673 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3674                        struct net_device *sb_dev,
3675                        select_queue_fallback_t fallback)
3676 {
3677         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3678 }
3679 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3680
3681 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3682                             struct net_device *sb_dev)
3683 {
3684         struct sock *sk = skb->sk;
3685         int queue_index = sk_tx_queue_get(sk);
3686
3687         sb_dev = sb_dev ? : dev;
3688
3689         if (queue_index < 0 || skb->ooo_okay ||
3690             queue_index >= dev->real_num_tx_queues) {
3691                 int new_index = get_xps_queue(dev, sb_dev, skb);
3692
3693                 if (new_index < 0)
3694                         new_index = skb_tx_hash(dev, sb_dev, skb);
3695
3696                 if (queue_index != new_index && sk &&
3697                     sk_fullsock(sk) &&
3698                     rcu_access_pointer(sk->sk_dst_cache))
3699                         sk_tx_queue_set(sk, new_index);
3700
3701                 queue_index = new_index;
3702         }
3703
3704         return queue_index;
3705 }
3706
3707 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3708                                     struct sk_buff *skb,
3709                                     struct net_device *sb_dev)
3710 {
3711         int queue_index = 0;
3712
3713 #ifdef CONFIG_XPS
3714         u32 sender_cpu = skb->sender_cpu - 1;
3715
3716         if (sender_cpu >= (u32)NR_CPUS)
3717                 skb->sender_cpu = raw_smp_processor_id() + 1;
3718 #endif
3719
3720         if (dev->real_num_tx_queues != 1) {
3721                 const struct net_device_ops *ops = dev->netdev_ops;
3722
3723                 if (ops->ndo_select_queue)
3724                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3725                                                             __netdev_pick_tx);
3726                 else
3727                         queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3728
3729                 queue_index = netdev_cap_txqueue(dev, queue_index);
3730         }
3731
3732         skb_set_queue_mapping(skb, queue_index);
3733         return netdev_get_tx_queue(dev, queue_index);
3734 }
3735
3736 /**
3737  *      __dev_queue_xmit - transmit a buffer
3738  *      @skb: buffer to transmit
3739  *      @sb_dev: suboordinate device used for L2 forwarding offload
3740  *
3741  *      Queue a buffer for transmission to a network device. The caller must
3742  *      have set the device and priority and built the buffer before calling
3743  *      this function. The function can be called from an interrupt.
3744  *
3745  *      A negative errno code is returned on a failure. A success does not
3746  *      guarantee the frame will be transmitted as it may be dropped due
3747  *      to congestion or traffic shaping.
3748  *
3749  * -----------------------------------------------------------------------------------
3750  *      I notice this method can also return errors from the queue disciplines,
3751  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3752  *      be positive.
3753  *
3754  *      Regardless of the return value, the skb is consumed, so it is currently
3755  *      difficult to retry a send to this method.  (You can bump the ref count
3756  *      before sending to hold a reference for retry if you are careful.)
3757  *
3758  *      When calling this method, interrupts MUST be enabled.  This is because
3759  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3760  *          --BLG
3761  */
3762 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3763 {
3764         struct net_device *dev = skb->dev;
3765         struct netdev_queue *txq;
3766         struct Qdisc *q;
3767         int rc = -ENOMEM;
3768         bool again = false;
3769
3770         skb_reset_mac_header(skb);
3771
3772         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3773                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3774
3775         /* Disable soft irqs for various locks below. Also
3776          * stops preemption for RCU.
3777          */
3778         rcu_read_lock_bh();
3779
3780         skb_update_prio(skb);
3781
3782         qdisc_pkt_len_init(skb);
3783 #ifdef CONFIG_NET_CLS_ACT
3784         skb->tc_at_ingress = 0;
3785 # ifdef CONFIG_NET_EGRESS
3786         if (static_branch_unlikely(&egress_needed_key)) {
3787                 skb = sch_handle_egress(skb, &rc, dev);
3788                 if (!skb)
3789                         goto out;
3790         }
3791 # endif
3792 #endif
3793         /* If device/qdisc don't need skb->dst, release it right now while
3794          * its hot in this cpu cache.
3795          */
3796         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3797                 skb_dst_drop(skb);
3798         else
3799                 skb_dst_force(skb);
3800
3801         txq = netdev_pick_tx(dev, skb, sb_dev);
3802         q = rcu_dereference_bh(txq->qdisc);
3803
3804         trace_net_dev_queue(skb);
3805         if (q->enqueue) {
3806                 rc = __dev_xmit_skb(skb, q, dev, txq);
3807                 goto out;
3808         }
3809
3810         /* The device has no queue. Common case for software devices:
3811          * loopback, all the sorts of tunnels...
3812
3813          * Really, it is unlikely that netif_tx_lock protection is necessary
3814          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3815          * counters.)
3816          * However, it is possible, that they rely on protection
3817          * made by us here.
3818
3819          * Check this and shot the lock. It is not prone from deadlocks.
3820          *Either shot noqueue qdisc, it is even simpler 8)
3821          */
3822         if (dev->flags & IFF_UP) {
3823                 int cpu = smp_processor_id(); /* ok because BHs are off */
3824
3825                 if (txq->xmit_lock_owner != cpu) {
3826                         if (unlikely(__this_cpu_read(xmit_recursion) >
3827                                      XMIT_RECURSION_LIMIT))
3828                                 goto recursion_alert;
3829
3830                         skb = validate_xmit_skb(skb, dev, &again);
3831                         if (!skb)
3832                                 goto out;
3833
3834                         HARD_TX_LOCK(dev, txq, cpu);
3835
3836                         if (!netif_xmit_stopped(txq)) {
3837                                 __this_cpu_inc(xmit_recursion);
3838                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3839                                 __this_cpu_dec(xmit_recursion);
3840                                 if (dev_xmit_complete(rc)) {
3841                                         HARD_TX_UNLOCK(dev, txq);
3842                                         goto out;
3843                                 }
3844                         }
3845                         HARD_TX_UNLOCK(dev, txq);
3846                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3847                                              dev->name);
3848                 } else {
3849                         /* Recursion is detected! It is possible,
3850                          * unfortunately
3851                          */
3852 recursion_alert:
3853                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3854                                              dev->name);
3855                 }
3856         }
3857
3858         rc = -ENETDOWN;
3859         rcu_read_unlock_bh();
3860
3861         atomic_long_inc(&dev->tx_dropped);
3862         kfree_skb_list(skb);
3863         return rc;
3864 out:
3865         rcu_read_unlock_bh();
3866         return rc;
3867 }
3868
3869 int dev_queue_xmit(struct sk_buff *skb)
3870 {
3871         return __dev_queue_xmit(skb, NULL);
3872 }
3873 EXPORT_SYMBOL(dev_queue_xmit);
3874
3875 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3876 {
3877         return __dev_queue_xmit(skb, sb_dev);
3878 }
3879 EXPORT_SYMBOL(dev_queue_xmit_accel);
3880
3881 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3882 {
3883         struct net_device *dev = skb->dev;
3884         struct sk_buff *orig_skb = skb;
3885         struct netdev_queue *txq;
3886         int ret = NETDEV_TX_BUSY;
3887         bool again = false;
3888
3889         if (unlikely(!netif_running(dev) ||
3890                      !netif_carrier_ok(dev)))
3891                 goto drop;
3892
3893         skb = validate_xmit_skb_list(skb, dev, &again);
3894         if (skb != orig_skb)
3895                 goto drop;
3896
3897         skb_set_queue_mapping(skb, queue_id);
3898         txq = skb_get_tx_queue(dev, skb);
3899
3900         local_bh_disable();
3901
3902         HARD_TX_LOCK(dev, txq, smp_processor_id());
3903         if (!netif_xmit_frozen_or_drv_stopped(txq))
3904                 ret = netdev_start_xmit(skb, dev, txq, false);
3905         HARD_TX_UNLOCK(dev, txq);
3906
3907         local_bh_enable();
3908
3909         if (!dev_xmit_complete(ret))
3910                 kfree_skb(skb);
3911
3912         return ret;
3913 drop:
3914         atomic_long_inc(&dev->tx_dropped);
3915         kfree_skb_list(skb);
3916         return NET_XMIT_DROP;
3917 }
3918 EXPORT_SYMBOL(dev_direct_xmit);
3919
3920 /*************************************************************************
3921  *                      Receiver routines
3922  *************************************************************************/
3923
3924 int netdev_max_backlog __read_mostly = 1000;
3925 EXPORT_SYMBOL(netdev_max_backlog);
3926
3927 int netdev_tstamp_prequeue __read_mostly = 1;
3928 int netdev_budget __read_mostly = 300;
3929 unsigned int __read_mostly netdev_budget_usecs = 2000;
3930 int weight_p __read_mostly = 64;           /* old backlog weight */
3931 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3932 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3933 int dev_rx_weight __read_mostly = 64;
3934 int dev_tx_weight __read_mostly = 64;
3935
3936 /* Called with irq disabled */
3937 static inline void ____napi_schedule(struct softnet_data *sd,
3938                                      struct napi_struct *napi)
3939 {
3940         list_add_tail(&napi->poll_list, &sd->poll_list);
3941         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3942 }
3943
3944 #ifdef CONFIG_RPS
3945
3946 /* One global table that all flow-based protocols share. */
3947 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3948 EXPORT_SYMBOL(rps_sock_flow_table);
3949 u32 rps_cpu_mask __read_mostly;
3950 EXPORT_SYMBOL(rps_cpu_mask);
3951
3952 struct static_key rps_needed __read_mostly;
3953 EXPORT_SYMBOL(rps_needed);
3954 struct static_key rfs_needed __read_mostly;
3955 EXPORT_SYMBOL(rfs_needed);
3956
3957 static struct rps_dev_flow *
3958 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3959             struct rps_dev_flow *rflow, u16 next_cpu)
3960 {
3961         if (next_cpu < nr_cpu_ids) {
3962 #ifdef CONFIG_RFS_ACCEL
3963                 struct netdev_rx_queue *rxqueue;
3964                 struct rps_dev_flow_table *flow_table;
3965                 struct rps_dev_flow *old_rflow;
3966                 u32 flow_id;
3967                 u16 rxq_index;
3968                 int rc;
3969
3970                 /* Should we steer this flow to a different hardware queue? */
3971                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3972                     !(dev->features & NETIF_F_NTUPLE))
3973                         goto out;
3974                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3975                 if (rxq_index == skb_get_rx_queue(skb))
3976                         goto out;
3977
3978                 rxqueue = dev->_rx + rxq_index;
3979                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3980                 if (!flow_table)
3981                         goto out;
3982                 flow_id = skb_get_hash(skb) & flow_table->mask;
3983                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3984                                                         rxq_index, flow_id);
3985                 if (rc < 0)
3986                         goto out;
3987                 old_rflow = rflow;
3988                 rflow = &flow_table->flows[flow_id];
3989                 rflow->filter = rc;
3990                 if (old_rflow->filter == rflow->filter)
3991                         old_rflow->filter = RPS_NO_FILTER;
3992         out:
3993 #endif
3994                 rflow->last_qtail =
3995                         per_cpu(softnet_data, next_cpu).input_queue_head;
3996         }
3997
3998         rflow->cpu = next_cpu;
3999         return rflow;
4000 }
4001
4002 /*
4003  * get_rps_cpu is called from netif_receive_skb and returns the target
4004  * CPU from the RPS map of the receiving queue for a given skb.
4005  * rcu_read_lock must be held on entry.
4006  */
4007 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4008                        struct rps_dev_flow **rflowp)
4009 {
4010         const struct rps_sock_flow_table *sock_flow_table;
4011         struct netdev_rx_queue *rxqueue = dev->_rx;
4012         struct rps_dev_flow_table *flow_table;
4013         struct rps_map *map;
4014         int cpu = -1;
4015         u32 tcpu;
4016         u32 hash;
4017
4018         if (skb_rx_queue_recorded(skb)) {
4019                 u16 index = skb_get_rx_queue(skb);
4020
4021                 if (unlikely(index >= dev->real_num_rx_queues)) {
4022                         WARN_ONCE(dev->real_num_rx_queues > 1,
4023                                   "%s received packet on queue %u, but number "
4024                                   "of RX queues is %u\n",
4025                                   dev->name, index, dev->real_num_rx_queues);
4026                         goto done;
4027                 }
4028                 rxqueue += index;
4029         }
4030
4031         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4032
4033         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4034         map = rcu_dereference(rxqueue->rps_map);
4035         if (!flow_table && !map)
4036                 goto done;
4037
4038         skb_reset_network_header(skb);
4039         hash = skb_get_hash(skb);
4040         if (!hash)
4041                 goto done;
4042
4043         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4044         if (flow_table && sock_flow_table) {
4045                 struct rps_dev_flow *rflow;
4046                 u32 next_cpu;
4047                 u32 ident;
4048
4049                 /* First check into global flow table if there is a match */
4050                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4051                 if ((ident ^ hash) & ~rps_cpu_mask)
4052                         goto try_rps;
4053
4054                 next_cpu = ident & rps_cpu_mask;
4055
4056                 /* OK, now we know there is a match,
4057                  * we can look at the local (per receive queue) flow table
4058                  */
4059                 rflow = &flow_table->flows[hash & flow_table->mask];
4060                 tcpu = rflow->cpu;
4061
4062                 /*
4063                  * If the desired CPU (where last recvmsg was done) is
4064                  * different from current CPU (one in the rx-queue flow
4065                  * table entry), switch if one of the following holds:
4066                  *   - Current CPU is unset (>= nr_cpu_ids).
4067                  *   - Current CPU is offline.
4068                  *   - The current CPU's queue tail has advanced beyond the
4069                  *     last packet that was enqueued using this table entry.
4070                  *     This guarantees that all previous packets for the flow
4071                  *     have been dequeued, thus preserving in order delivery.
4072                  */
4073                 if (unlikely(tcpu != next_cpu) &&
4074                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4075                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4076                       rflow->last_qtail)) >= 0)) {
4077                         tcpu = next_cpu;
4078                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4079                 }
4080
4081                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4082                         *rflowp = rflow;
4083                         cpu = tcpu;
4084                         goto done;
4085                 }
4086         }
4087
4088 try_rps:
4089
4090         if (map) {
4091                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4092                 if (cpu_online(tcpu)) {
4093                         cpu = tcpu;
4094                         goto done;
4095                 }
4096         }
4097
4098 done:
4099         return cpu;
4100 }
4101
4102 #ifdef CONFIG_RFS_ACCEL
4103
4104 /**
4105  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4106  * @dev: Device on which the filter was set
4107  * @rxq_index: RX queue index
4108  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4109  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4110  *
4111  * Drivers that implement ndo_rx_flow_steer() should periodically call
4112  * this function for each installed filter and remove the filters for
4113  * which it returns %true.
4114  */
4115 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4116                          u32 flow_id, u16 filter_id)
4117 {
4118         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4119         struct rps_dev_flow_table *flow_table;
4120         struct rps_dev_flow *rflow;
4121         bool expire = true;
4122         unsigned int cpu;
4123
4124         rcu_read_lock();
4125         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4126         if (flow_table && flow_id <= flow_table->mask) {
4127                 rflow = &flow_table->flows[flow_id];
4128                 cpu = READ_ONCE(rflow->cpu);
4129                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4130                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4131                            rflow->last_qtail) <
4132                      (int)(10 * flow_table->mask)))
4133                         expire = false;
4134         }
4135         rcu_read_unlock();
4136         return expire;
4137 }
4138 EXPORT_SYMBOL(rps_may_expire_flow);
4139
4140 #endif /* CONFIG_RFS_ACCEL */
4141
4142 /* Called from hardirq (IPI) context */
4143 static void rps_trigger_softirq(void *data)
4144 {
4145         struct softnet_data *sd = data;
4146
4147         ____napi_schedule(sd, &sd->backlog);
4148         sd->received_rps++;
4149 }
4150
4151 #endif /* CONFIG_RPS */
4152
4153 /*
4154  * Check if this softnet_data structure is another cpu one
4155  * If yes, queue it to our IPI list and return 1
4156  * If no, return 0
4157  */
4158 static int rps_ipi_queued(struct softnet_data *sd)
4159 {
4160 #ifdef CONFIG_RPS
4161         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4162
4163         if (sd != mysd) {
4164                 sd->rps_ipi_next = mysd->rps_ipi_list;
4165                 mysd->rps_ipi_list = sd;
4166
4167                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4168                 return 1;
4169         }
4170 #endif /* CONFIG_RPS */
4171         return 0;
4172 }
4173
4174 #ifdef CONFIG_NET_FLOW_LIMIT
4175 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4176 #endif
4177
4178 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4179 {
4180 #ifdef CONFIG_NET_FLOW_LIMIT
4181         struct sd_flow_limit *fl;
4182         struct softnet_data *sd;
4183         unsigned int old_flow, new_flow;
4184
4185         if (qlen < (netdev_max_backlog >> 1))
4186                 return false;
4187
4188         sd = this_cpu_ptr(&softnet_data);
4189
4190         rcu_read_lock();
4191         fl = rcu_dereference(sd->flow_limit);
4192         if (fl) {
4193                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4194                 old_flow = fl->history[fl->history_head];
4195                 fl->history[fl->history_head] = new_flow;
4196
4197                 fl->history_head++;
4198                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4199
4200                 if (likely(fl->buckets[old_flow]))
4201                         fl->buckets[old_flow]--;
4202
4203                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4204                         fl->count++;
4205                         rcu_read_unlock();
4206                         return true;
4207                 }
4208         }
4209         rcu_read_unlock();
4210 #endif
4211         return false;
4212 }
4213
4214 /*
4215  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4216  * queue (may be a remote CPU queue).
4217  */
4218 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4219                               unsigned int *qtail)
4220 {
4221         struct softnet_data *sd;
4222         unsigned long flags;
4223         unsigned int qlen;
4224
4225         sd = &per_cpu(softnet_data, cpu);
4226
4227         local_irq_save(flags);
4228
4229         rps_lock(sd);
4230         if (!netif_running(skb->dev))
4231                 goto drop;
4232         qlen = skb_queue_len(&sd->input_pkt_queue);
4233         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4234                 if (qlen) {
4235 enqueue:
4236                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4237                         input_queue_tail_incr_save(sd, qtail);
4238                         rps_unlock(sd);
4239                         local_irq_restore(flags);
4240                         return NET_RX_SUCCESS;
4241                 }
4242
4243                 /* Schedule NAPI for backlog device
4244                  * We can use non atomic operation since we own the queue lock
4245                  */
4246                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4247                         if (!rps_ipi_queued(sd))
4248                                 ____napi_schedule(sd, &sd->backlog);
4249                 }
4250                 goto enqueue;
4251         }
4252
4253 drop:
4254         sd->dropped++;
4255         rps_unlock(sd);
4256
4257         local_irq_restore(flags);
4258
4259         atomic_long_inc(&skb->dev->rx_dropped);
4260         kfree_skb(skb);
4261         return NET_RX_DROP;
4262 }
4263
4264 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4265 {
4266         struct net_device *dev = skb->dev;
4267         struct netdev_rx_queue *rxqueue;
4268
4269         rxqueue = dev->_rx;
4270
4271         if (skb_rx_queue_recorded(skb)) {
4272                 u16 index = skb_get_rx_queue(skb);
4273
4274                 if (unlikely(index >= dev->real_num_rx_queues)) {
4275                         WARN_ONCE(dev->real_num_rx_queues > 1,
4276                                   "%s received packet on queue %u, but number "
4277                                   "of RX queues is %u\n",
4278                                   dev->name, index, dev->real_num_rx_queues);
4279
4280                         return rxqueue; /* Return first rxqueue */
4281                 }
4282                 rxqueue += index;
4283         }
4284         return rxqueue;
4285 }
4286
4287 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4288                                      struct xdp_buff *xdp,
4289                                      struct bpf_prog *xdp_prog)
4290 {
4291         struct netdev_rx_queue *rxqueue;
4292         void *orig_data, *orig_data_end;
4293         u32 metalen, act = XDP_DROP;
4294         __be16 orig_eth_type;
4295         struct ethhdr *eth;
4296         bool orig_bcast;
4297         int hlen, off;
4298         u32 mac_len;
4299
4300         /* Reinjected packets coming from act_mirred or similar should
4301          * not get XDP generic processing.
4302          */
4303         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4304                 return XDP_PASS;
4305
4306         /* XDP packets must be linear and must have sufficient headroom
4307          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4308          * native XDP provides, thus we need to do it here as well.
4309          */
4310         if (skb_is_nonlinear(skb) ||
4311             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4312                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4313                 int troom = skb->tail + skb->data_len - skb->end;
4314
4315                 /* In case we have to go down the path and also linearize,
4316                  * then lets do the pskb_expand_head() work just once here.
4317                  */
4318                 if (pskb_expand_head(skb,
4319                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4320                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4321                         goto do_drop;
4322                 if (skb_linearize(skb))
4323                         goto do_drop;
4324         }
4325
4326         /* The XDP program wants to see the packet starting at the MAC
4327          * header.
4328          */
4329         mac_len = skb->data - skb_mac_header(skb);
4330         hlen = skb_headlen(skb) + mac_len;
4331         xdp->data = skb->data - mac_len;
4332         xdp->data_meta = xdp->data;
4333         xdp->data_end = xdp->data + hlen;
4334         xdp->data_hard_start = skb->data - skb_headroom(skb);
4335         orig_data_end = xdp->data_end;
4336         orig_data = xdp->data;
4337         eth = (struct ethhdr *)xdp->data;
4338         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4339         orig_eth_type = eth->h_proto;
4340
4341         rxqueue = netif_get_rxqueue(skb);
4342         xdp->rxq = &rxqueue->xdp_rxq;
4343
4344         act = bpf_prog_run_xdp(xdp_prog, xdp);
4345
4346         off = xdp->data - orig_data;
4347         if (off > 0)
4348                 __skb_pull(skb, off);
4349         else if (off < 0)
4350                 __skb_push(skb, -off);
4351         skb->mac_header += off;
4352
4353         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4354          * pckt.
4355          */
4356         off = orig_data_end - xdp->data_end;
4357         if (off != 0) {
4358                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4359                 skb->len -= off;
4360
4361         }
4362
4363         /* check if XDP changed eth hdr such SKB needs update */
4364         eth = (struct ethhdr *)xdp->data;
4365         if ((orig_eth_type != eth->h_proto) ||
4366             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4367                 __skb_push(skb, ETH_HLEN);
4368                 skb->protocol = eth_type_trans(skb, skb->dev);
4369         }
4370
4371         switch (act) {
4372         case XDP_REDIRECT:
4373         case XDP_TX:
4374                 __skb_push(skb, mac_len);
4375                 break;
4376         case XDP_PASS:
4377                 metalen = xdp->data - xdp->data_meta;
4378                 if (metalen)
4379                         skb_metadata_set(skb, metalen);
4380                 break;
4381         default:
4382                 bpf_warn_invalid_xdp_action(act);
4383                 /* fall through */
4384         case XDP_ABORTED:
4385                 trace_xdp_exception(skb->dev, xdp_prog, act);
4386                 /* fall through */
4387         case XDP_DROP:
4388         do_drop:
4389                 kfree_skb(skb);
4390                 break;
4391         }
4392
4393         return act;
4394 }
4395
4396 /* When doing generic XDP we have to bypass the qdisc layer and the
4397  * network taps in order to match in-driver-XDP behavior.
4398  */
4399 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4400 {
4401         struct net_device *dev = skb->dev;
4402         struct netdev_queue *txq;
4403         bool free_skb = true;
4404         int cpu, rc;
4405
4406         txq = netdev_pick_tx(dev, skb, NULL);
4407         cpu = smp_processor_id();
4408         HARD_TX_LOCK(dev, txq, cpu);
4409         if (!netif_xmit_stopped(txq)) {
4410                 rc = netdev_start_xmit(skb, dev, txq, 0);
4411                 if (dev_xmit_complete(rc))
4412                         free_skb = false;
4413         }
4414         HARD_TX_UNLOCK(dev, txq);
4415         if (free_skb) {
4416                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4417                 kfree_skb(skb);
4418         }
4419 }
4420 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4421
4422 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4423
4424 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4425 {
4426         if (xdp_prog) {
4427                 struct xdp_buff xdp;
4428                 u32 act;
4429                 int err;
4430
4431                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4432                 if (act != XDP_PASS) {
4433                         switch (act) {
4434                         case XDP_REDIRECT:
4435                                 err = xdp_do_generic_redirect(skb->dev, skb,
4436                                                               &xdp, xdp_prog);
4437                                 if (err)
4438                                         goto out_redir;
4439                                 break;
4440                         case XDP_TX:
4441                                 generic_xdp_tx(skb, xdp_prog);
4442                                 break;
4443                         }
4444                         return XDP_DROP;
4445                 }
4446         }
4447         return XDP_PASS;
4448 out_redir:
4449         kfree_skb(skb);
4450         return XDP_DROP;
4451 }
4452 EXPORT_SYMBOL_GPL(do_xdp_generic);
4453
4454 static int netif_rx_internal(struct sk_buff *skb)
4455 {
4456         int ret;
4457
4458         net_timestamp_check(netdev_tstamp_prequeue, skb);
4459
4460         trace_netif_rx(skb);
4461
4462         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4463                 int ret;
4464
4465                 preempt_disable();
4466                 rcu_read_lock();
4467                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4468                 rcu_read_unlock();
4469                 preempt_enable();
4470
4471                 /* Consider XDP consuming the packet a success from
4472                  * the netdev point of view we do not want to count
4473                  * this as an error.
4474                  */
4475                 if (ret != XDP_PASS)
4476                         return NET_RX_SUCCESS;
4477         }
4478
4479 #ifdef CONFIG_RPS
4480         if (static_key_false(&rps_needed)) {
4481                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4482                 int cpu;
4483
4484                 preempt_disable();
4485                 rcu_read_lock();
4486
4487                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4488                 if (cpu < 0)
4489                         cpu = smp_processor_id();
4490
4491                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4492
4493                 rcu_read_unlock();
4494                 preempt_enable();
4495         } else
4496 #endif
4497         {
4498                 unsigned int qtail;
4499
4500                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4501                 put_cpu();
4502         }
4503         return ret;
4504 }
4505
4506 /**
4507  *      netif_rx        -       post buffer to the network code
4508  *      @skb: buffer to post
4509  *
4510  *      This function receives a packet from a device driver and queues it for
4511  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4512  *      may be dropped during processing for congestion control or by the
4513  *      protocol layers.
4514  *
4515  *      return values:
4516  *      NET_RX_SUCCESS  (no congestion)
4517  *      NET_RX_DROP     (packet was dropped)
4518  *
4519  */
4520
4521 int netif_rx(struct sk_buff *skb)
4522 {
4523         trace_netif_rx_entry(skb);
4524
4525         return netif_rx_internal(skb);
4526 }
4527 EXPORT_SYMBOL(netif_rx);
4528
4529 int netif_rx_ni(struct sk_buff *skb)
4530 {
4531         int err;
4532
4533         trace_netif_rx_ni_entry(skb);
4534
4535         preempt_disable();
4536         err = netif_rx_internal(skb);
4537         if (local_softirq_pending())
4538                 do_softirq();
4539         preempt_enable();
4540
4541         return err;
4542 }
4543 EXPORT_SYMBOL(netif_rx_ni);
4544
4545 static __latent_entropy void net_tx_action(struct softirq_action *h)
4546 {
4547         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4548
4549         if (sd->completion_queue) {
4550                 struct sk_buff *clist;
4551
4552                 local_irq_disable();
4553                 clist = sd->completion_queue;
4554                 sd->completion_queue = NULL;
4555                 local_irq_enable();
4556
4557                 while (clist) {
4558                         struct sk_buff *skb = clist;
4559
4560                         clist = clist->next;
4561
4562                         WARN_ON(refcount_read(&skb->users));
4563                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4564                                 trace_consume_skb(skb);
4565                         else
4566                                 trace_kfree_skb(skb, net_tx_action);
4567
4568                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4569                                 __kfree_skb(skb);
4570                         else
4571                                 __kfree_skb_defer(skb);
4572                 }
4573
4574                 __kfree_skb_flush();
4575         }
4576
4577         if (sd->output_queue) {
4578                 struct Qdisc *head;
4579
4580                 local_irq_disable();
4581                 head = sd->output_queue;
4582                 sd->output_queue = NULL;
4583                 sd->output_queue_tailp = &sd->output_queue;
4584                 local_irq_enable();
4585
4586                 while (head) {
4587                         struct Qdisc *q = head;
4588                         spinlock_t *root_lock = NULL;
4589
4590                         head = head->next_sched;
4591
4592                         if (!(q->flags & TCQ_F_NOLOCK)) {
4593                                 root_lock = qdisc_lock(q);
4594                                 spin_lock(root_lock);
4595                         }
4596                         /* We need to make sure head->next_sched is read
4597                          * before clearing __QDISC_STATE_SCHED
4598                          */
4599                         smp_mb__before_atomic();
4600                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4601                         qdisc_run(q);
4602                         if (root_lock)
4603                                 spin_unlock(root_lock);
4604                 }
4605         }
4606
4607         xfrm_dev_backlog(sd);
4608 }
4609
4610 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4611 /* This hook is defined here for ATM LANE */
4612 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4613                              unsigned char *addr) __read_mostly;
4614 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4615 #endif
4616
4617 static inline struct sk_buff *
4618 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4619                    struct net_device *orig_dev)
4620 {
4621 #ifdef CONFIG_NET_CLS_ACT
4622         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4623         struct tcf_result cl_res;
4624
4625         /* If there's at least one ingress present somewhere (so
4626          * we get here via enabled static key), remaining devices
4627          * that are not configured with an ingress qdisc will bail
4628          * out here.
4629          */
4630         if (!miniq)
4631                 return skb;
4632
4633         if (*pt_prev) {
4634                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4635                 *pt_prev = NULL;
4636         }
4637
4638         qdisc_skb_cb(skb)->pkt_len = skb->len;
4639         skb->tc_at_ingress = 1;
4640         mini_qdisc_bstats_cpu_update(miniq, skb);
4641
4642         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4643         case TC_ACT_OK:
4644         case TC_ACT_RECLASSIFY:
4645                 skb->tc_index = TC_H_MIN(cl_res.classid);
4646                 break;
4647         case TC_ACT_SHOT:
4648                 mini_qdisc_qstats_cpu_drop(miniq);
4649                 kfree_skb(skb);
4650                 return NULL;
4651         case TC_ACT_STOLEN:
4652         case TC_ACT_QUEUED:
4653         case TC_ACT_TRAP:
4654                 consume_skb(skb);
4655                 return NULL;
4656         case TC_ACT_REDIRECT:
4657                 /* skb_mac_header check was done by cls/act_bpf, so
4658                  * we can safely push the L2 header back before
4659                  * redirecting to another netdev
4660                  */
4661                 __skb_push(skb, skb->mac_len);
4662                 skb_do_redirect(skb);
4663                 return NULL;
4664         case TC_ACT_REINSERT:
4665                 /* this does not scrub the packet, and updates stats on error */
4666                 skb_tc_reinsert(skb, &cl_res);
4667                 return NULL;
4668         default:
4669                 break;
4670         }
4671 #endif /* CONFIG_NET_CLS_ACT */
4672         return skb;
4673 }
4674
4675 /**
4676  *      netdev_is_rx_handler_busy - check if receive handler is registered
4677  *      @dev: device to check
4678  *
4679  *      Check if a receive handler is already registered for a given device.
4680  *      Return true if there one.
4681  *
4682  *      The caller must hold the rtnl_mutex.
4683  */
4684 bool netdev_is_rx_handler_busy(struct net_device *dev)
4685 {
4686         ASSERT_RTNL();
4687         return dev && rtnl_dereference(dev->rx_handler);
4688 }
4689 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4690
4691 /**
4692  *      netdev_rx_handler_register - register receive handler
4693  *      @dev: device to register a handler for
4694  *      @rx_handler: receive handler to register
4695  *      @rx_handler_data: data pointer that is used by rx handler
4696  *
4697  *      Register a receive handler for a device. This handler will then be
4698  *      called from __netif_receive_skb. A negative errno code is returned
4699  *      on a failure.
4700  *
4701  *      The caller must hold the rtnl_mutex.
4702  *
4703  *      For a general description of rx_handler, see enum rx_handler_result.
4704  */
4705 int netdev_rx_handler_register(struct net_device *dev,
4706                                rx_handler_func_t *rx_handler,
4707                                void *rx_handler_data)
4708 {
4709         if (netdev_is_rx_handler_busy(dev))
4710                 return -EBUSY;
4711
4712         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4713                 return -EINVAL;
4714
4715         /* Note: rx_handler_data must be set before rx_handler */
4716         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4717         rcu_assign_pointer(dev->rx_handler, rx_handler);
4718
4719         return 0;
4720 }
4721 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4722
4723 /**
4724  *      netdev_rx_handler_unregister - unregister receive handler
4725  *      @dev: device to unregister a handler from
4726  *
4727  *      Unregister a receive handler from a device.
4728  *
4729  *      The caller must hold the rtnl_mutex.
4730  */
4731 void netdev_rx_handler_unregister(struct net_device *dev)
4732 {
4733
4734         ASSERT_RTNL();
4735         RCU_INIT_POINTER(dev->rx_handler, NULL);
4736         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4737          * section has a guarantee to see a non NULL rx_handler_data
4738          * as well.
4739          */
4740         synchronize_net();
4741         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4742 }
4743 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4744
4745 /*
4746  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4747  * the special handling of PFMEMALLOC skbs.
4748  */
4749 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4750 {
4751         switch (skb->protocol) {
4752         case htons(ETH_P_ARP):
4753         case htons(ETH_P_IP):
4754         case htons(ETH_P_IPV6):
4755         case htons(ETH_P_8021Q):
4756         case htons(ETH_P_8021AD):
4757                 return true;
4758         default:
4759                 return false;
4760         }
4761 }
4762
4763 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4764                              int *ret, struct net_device *orig_dev)
4765 {
4766 #ifdef CONFIG_NETFILTER_INGRESS
4767         if (nf_hook_ingress_active(skb)) {
4768                 int ingress_retval;
4769
4770                 if (*pt_prev) {
4771                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4772                         *pt_prev = NULL;
4773                 }
4774
4775                 rcu_read_lock();
4776                 ingress_retval = nf_hook_ingress(skb);
4777                 rcu_read_unlock();
4778                 return ingress_retval;
4779         }
4780 #endif /* CONFIG_NETFILTER_INGRESS */
4781         return 0;
4782 }
4783
4784 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4785                                     struct packet_type **ppt_prev)
4786 {
4787         struct packet_type *ptype, *pt_prev;
4788         rx_handler_func_t *rx_handler;
4789         struct net_device *orig_dev;
4790         bool deliver_exact = false;
4791         int ret = NET_RX_DROP;
4792         __be16 type;
4793
4794         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4795
4796         trace_netif_receive_skb(skb);
4797
4798         orig_dev = skb->dev;
4799
4800         skb_reset_network_header(skb);
4801         if (!skb_transport_header_was_set(skb))
4802                 skb_reset_transport_header(skb);
4803         skb_reset_mac_len(skb);
4804
4805         pt_prev = NULL;
4806
4807 another_round:
4808         skb->skb_iif = skb->dev->ifindex;
4809
4810         __this_cpu_inc(softnet_data.processed);
4811
4812         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4813             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4814                 skb = skb_vlan_untag(skb);
4815                 if (unlikely(!skb))
4816                         goto out;
4817         }
4818
4819         if (skb_skip_tc_classify(skb))
4820                 goto skip_classify;
4821
4822         if (pfmemalloc)
4823                 goto skip_taps;
4824
4825         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4826                 if (pt_prev)
4827                         ret = deliver_skb(skb, pt_prev, orig_dev);
4828                 pt_prev = ptype;
4829         }
4830
4831         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4832                 if (pt_prev)
4833                         ret = deliver_skb(skb, pt_prev, orig_dev);
4834                 pt_prev = ptype;
4835         }
4836
4837 skip_taps:
4838 #ifdef CONFIG_NET_INGRESS
4839         if (static_branch_unlikely(&ingress_needed_key)) {
4840                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4841                 if (!skb)
4842                         goto out;
4843
4844                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4845                         goto out;
4846         }
4847 #endif
4848         skb_reset_tc(skb);
4849 skip_classify:
4850         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4851                 goto drop;
4852
4853         if (skb_vlan_tag_present(skb)) {
4854                 if (pt_prev) {
4855                         ret = deliver_skb(skb, pt_prev, orig_dev);
4856                         pt_prev = NULL;
4857                 }
4858                 if (vlan_do_receive(&skb))
4859                         goto another_round;
4860                 else if (unlikely(!skb))
4861                         goto out;
4862         }
4863
4864         rx_handler = rcu_dereference(skb->dev->rx_handler);
4865         if (rx_handler) {
4866                 if (pt_prev) {
4867                         ret = deliver_skb(skb, pt_prev, orig_dev);
4868                         pt_prev = NULL;
4869                 }
4870                 switch (rx_handler(&skb)) {
4871                 case RX_HANDLER_CONSUMED:
4872                         ret = NET_RX_SUCCESS;
4873                         goto out;
4874                 case RX_HANDLER_ANOTHER:
4875                         goto another_round;
4876                 case RX_HANDLER_EXACT:
4877                         deliver_exact = true;
4878                 case RX_HANDLER_PASS:
4879                         break;
4880                 default:
4881                         BUG();
4882                 }
4883         }
4884
4885         if (unlikely(skb_vlan_tag_present(skb))) {
4886                 if (skb_vlan_tag_get_id(skb))
4887                         skb->pkt_type = PACKET_OTHERHOST;
4888                 /* Note: we might in the future use prio bits
4889                  * and set skb->priority like in vlan_do_receive()
4890                  * For the time being, just ignore Priority Code Point
4891                  */
4892                 skb->vlan_tci = 0;
4893         }
4894
4895         type = skb->protocol;
4896
4897         /* deliver only exact match when indicated */
4898         if (likely(!deliver_exact)) {
4899                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4900                                        &ptype_base[ntohs(type) &
4901                                                    PTYPE_HASH_MASK]);
4902         }
4903
4904         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4905                                &orig_dev->ptype_specific);
4906
4907         if (unlikely(skb->dev != orig_dev)) {
4908                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4909                                        &skb->dev->ptype_specific);
4910         }
4911
4912         if (pt_prev) {
4913                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4914                         goto drop;
4915                 *ppt_prev = pt_prev;
4916         } else {
4917 drop:
4918                 if (!deliver_exact)
4919                         atomic_long_inc(&skb->dev->rx_dropped);
4920                 else
4921                         atomic_long_inc(&skb->dev->rx_nohandler);
4922                 kfree_skb(skb);
4923                 /* Jamal, now you will not able to escape explaining
4924                  * me how you were going to use this. :-)
4925                  */
4926                 ret = NET_RX_DROP;
4927         }
4928
4929 out:
4930         return ret;
4931 }
4932
4933 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4934 {
4935         struct net_device *orig_dev = skb->dev;
4936         struct packet_type *pt_prev = NULL;
4937         int ret;
4938
4939         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4940         if (pt_prev)
4941                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4942         return ret;
4943 }
4944
4945 /**
4946  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4947  *      @skb: buffer to process
4948  *
4949  *      More direct receive version of netif_receive_skb().  It should
4950  *      only be used by callers that have a need to skip RPS and Generic XDP.
4951  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4952  *
4953  *      This function may only be called from softirq context and interrupts
4954  *      should be enabled.
4955  *
4956  *      Return values (usually ignored):
4957  *      NET_RX_SUCCESS: no congestion
4958  *      NET_RX_DROP: packet was dropped
4959  */
4960 int netif_receive_skb_core(struct sk_buff *skb)
4961 {
4962         int ret;
4963
4964         rcu_read_lock();
4965         ret = __netif_receive_skb_one_core(skb, false);
4966         rcu_read_unlock();
4967
4968         return ret;
4969 }
4970 EXPORT_SYMBOL(netif_receive_skb_core);
4971
4972 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
4973                                                   struct packet_type *pt_prev,
4974                                                   struct net_device *orig_dev)
4975 {
4976         struct sk_buff *skb, *next;
4977
4978         if (!pt_prev)
4979                 return;
4980         if (list_empty(head))
4981                 return;
4982         if (pt_prev->list_func != NULL)
4983                 pt_prev->list_func(head, pt_prev, orig_dev);
4984         else
4985                 list_for_each_entry_safe(skb, next, head, list)
4986                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4987 }
4988
4989 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
4990 {
4991         /* Fast-path assumptions:
4992          * - There is no RX handler.
4993          * - Only one packet_type matches.
4994          * If either of these fails, we will end up doing some per-packet
4995          * processing in-line, then handling the 'last ptype' for the whole
4996          * sublist.  This can't cause out-of-order delivery to any single ptype,
4997          * because the 'last ptype' must be constant across the sublist, and all
4998          * other ptypes are handled per-packet.
4999          */
5000         /* Current (common) ptype of sublist */
5001         struct packet_type *pt_curr = NULL;
5002         /* Current (common) orig_dev of sublist */
5003         struct net_device *od_curr = NULL;
5004         struct list_head sublist;
5005         struct sk_buff *skb, *next;
5006
5007         INIT_LIST_HEAD(&sublist);
5008         list_for_each_entry_safe(skb, next, head, list) {
5009                 struct net_device *orig_dev = skb->dev;
5010                 struct packet_type *pt_prev = NULL;
5011
5012                 list_del(&skb->list);
5013                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5014                 if (!pt_prev)
5015                         continue;
5016                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5017                         /* dispatch old sublist */
5018                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5019                         /* start new sublist */
5020                         INIT_LIST_HEAD(&sublist);
5021                         pt_curr = pt_prev;
5022                         od_curr = orig_dev;
5023                 }
5024                 list_add_tail(&skb->list, &sublist);
5025         }
5026
5027         /* dispatch final sublist */
5028         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5029 }
5030
5031 static int __netif_receive_skb(struct sk_buff *skb)
5032 {
5033         int ret;
5034
5035         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5036                 unsigned int noreclaim_flag;
5037
5038                 /*
5039                  * PFMEMALLOC skbs are special, they should
5040                  * - be delivered to SOCK_MEMALLOC sockets only
5041                  * - stay away from userspace
5042                  * - have bounded memory usage
5043                  *
5044                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5045                  * context down to all allocation sites.
5046                  */
5047                 noreclaim_flag = memalloc_noreclaim_save();
5048                 ret = __netif_receive_skb_one_core(skb, true);
5049                 memalloc_noreclaim_restore(noreclaim_flag);
5050         } else
5051                 ret = __netif_receive_skb_one_core(skb, false);
5052
5053         return ret;
5054 }
5055
5056 static void __netif_receive_skb_list(struct list_head *head)
5057 {
5058         unsigned long noreclaim_flag = 0;
5059         struct sk_buff *skb, *next;
5060         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5061
5062         list_for_each_entry_safe(skb, next, head, list) {
5063                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5064                         struct list_head sublist;
5065
5066                         /* Handle the previous sublist */
5067                         list_cut_before(&sublist, head, &skb->list);
5068                         if (!list_empty(&sublist))
5069                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5070                         pfmemalloc = !pfmemalloc;
5071                         /* See comments in __netif_receive_skb */
5072                         if (pfmemalloc)
5073                                 noreclaim_flag = memalloc_noreclaim_save();
5074                         else
5075                                 memalloc_noreclaim_restore(noreclaim_flag);
5076                 }
5077         }
5078         /* Handle the remaining sublist */
5079         if (!list_empty(head))
5080                 __netif_receive_skb_list_core(head, pfmemalloc);
5081         /* Restore pflags */
5082         if (pfmemalloc)
5083                 memalloc_noreclaim_restore(noreclaim_flag);
5084 }
5085
5086 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5087 {
5088         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5089         struct bpf_prog *new = xdp->prog;
5090         int ret = 0;
5091
5092         switch (xdp->command) {
5093         case XDP_SETUP_PROG:
5094                 rcu_assign_pointer(dev->xdp_prog, new);
5095                 if (old)
5096                         bpf_prog_put(old);
5097
5098                 if (old && !new) {
5099                         static_branch_dec(&generic_xdp_needed_key);
5100                 } else if (new && !old) {
5101                         static_branch_inc(&generic_xdp_needed_key);
5102                         dev_disable_lro(dev);
5103                         dev_disable_gro_hw(dev);
5104                 }
5105                 break;
5106
5107         case XDP_QUERY_PROG:
5108                 xdp->prog_id = old ? old->aux->id : 0;
5109                 break;
5110
5111         default:
5112                 ret = -EINVAL;
5113                 break;
5114         }
5115
5116         return ret;
5117 }
5118
5119 static int netif_receive_skb_internal(struct sk_buff *skb)
5120 {
5121         int ret;
5122
5123         net_timestamp_check(netdev_tstamp_prequeue, skb);
5124
5125         if (skb_defer_rx_timestamp(skb))
5126                 return NET_RX_SUCCESS;
5127
5128         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5129                 int ret;
5130
5131                 preempt_disable();
5132                 rcu_read_lock();
5133                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5134                 rcu_read_unlock();
5135                 preempt_enable();
5136
5137                 if (ret != XDP_PASS)
5138                         return NET_RX_DROP;
5139         }
5140
5141         rcu_read_lock();
5142 #ifdef CONFIG_RPS
5143         if (static_key_false(&rps_needed)) {
5144                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5145                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5146
5147                 if (cpu >= 0) {
5148                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5149                         rcu_read_unlock();
5150                         return ret;
5151                 }
5152         }
5153 #endif
5154         ret = __netif_receive_skb(skb);
5155         rcu_read_unlock();
5156         return ret;
5157 }
5158
5159 static void netif_receive_skb_list_internal(struct list_head *head)
5160 {
5161         struct bpf_prog *xdp_prog = NULL;
5162         struct sk_buff *skb, *next;
5163         struct list_head sublist;
5164
5165         INIT_LIST_HEAD(&sublist);
5166         list_for_each_entry_safe(skb, next, head, list) {
5167                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5168                 list_del(&skb->list);
5169                 if (!skb_defer_rx_timestamp(skb))
5170                         list_add_tail(&skb->list, &sublist);
5171         }
5172         list_splice_init(&sublist, head);
5173
5174         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5175                 preempt_disable();
5176                 rcu_read_lock();
5177                 list_for_each_entry_safe(skb, next, head, list) {
5178                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5179                         list_del(&skb->list);
5180                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5181                                 list_add_tail(&skb->list, &sublist);
5182                 }
5183                 rcu_read_unlock();
5184                 preempt_enable();
5185                 /* Put passed packets back on main list */
5186                 list_splice_init(&sublist, head);
5187         }
5188
5189         rcu_read_lock();
5190 #ifdef CONFIG_RPS
5191         if (static_key_false(&rps_needed)) {
5192                 list_for_each_entry_safe(skb, next, head, list) {
5193                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5194                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5195
5196                         if (cpu >= 0) {
5197                                 /* Will be handled, remove from list */
5198                                 list_del(&skb->list);
5199                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5200                         }
5201                 }
5202         }
5203 #endif
5204         __netif_receive_skb_list(head);
5205         rcu_read_unlock();
5206 }
5207
5208 /**
5209  *      netif_receive_skb - process receive buffer from network
5210  *      @skb: buffer to process
5211  *
5212  *      netif_receive_skb() is the main receive data processing function.
5213  *      It always succeeds. The buffer may be dropped during processing
5214  *      for congestion control or by the protocol layers.
5215  *
5216  *      This function may only be called from softirq context and interrupts
5217  *      should be enabled.
5218  *
5219  *      Return values (usually ignored):
5220  *      NET_RX_SUCCESS: no congestion
5221  *      NET_RX_DROP: packet was dropped
5222  */
5223 int netif_receive_skb(struct sk_buff *skb)
5224 {
5225         trace_netif_receive_skb_entry(skb);
5226
5227         return netif_receive_skb_internal(skb);
5228 }
5229 EXPORT_SYMBOL(netif_receive_skb);
5230
5231 /**
5232  *      netif_receive_skb_list - process many receive buffers from network
5233  *      @head: list of skbs to process.
5234  *
5235  *      Since return value of netif_receive_skb() is normally ignored, and
5236  *      wouldn't be meaningful for a list, this function returns void.
5237  *
5238  *      This function may only be called from softirq context and interrupts
5239  *      should be enabled.
5240  */
5241 void netif_receive_skb_list(struct list_head *head)
5242 {
5243         struct sk_buff *skb;
5244
5245         if (list_empty(head))
5246                 return;
5247         list_for_each_entry(skb, head, list)
5248                 trace_netif_receive_skb_list_entry(skb);
5249         netif_receive_skb_list_internal(head);
5250 }
5251 EXPORT_SYMBOL(netif_receive_skb_list);
5252
5253 DEFINE_PER_CPU(struct work_struct, flush_works);
5254
5255 /* Network device is going away, flush any packets still pending */
5256 static void flush_backlog(struct work_struct *work)
5257 {
5258         struct sk_buff *skb, *tmp;
5259         struct softnet_data *sd;
5260
5261         local_bh_disable();
5262         sd = this_cpu_ptr(&softnet_data);
5263
5264         local_irq_disable();
5265         rps_lock(sd);
5266         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5267                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5268                         __skb_unlink(skb, &sd->input_pkt_queue);
5269                         kfree_skb(skb);
5270                         input_queue_head_incr(sd);
5271                 }
5272         }
5273         rps_unlock(sd);
5274         local_irq_enable();
5275
5276         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5277                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5278                         __skb_unlink(skb, &sd->process_queue);
5279                         kfree_skb(skb);
5280                         input_queue_head_incr(sd);
5281                 }
5282         }
5283         local_bh_enable();
5284 }
5285
5286 static void flush_all_backlogs(void)
5287 {
5288         unsigned int cpu;
5289
5290         get_online_cpus();
5291
5292         for_each_online_cpu(cpu)
5293                 queue_work_on(cpu, system_highpri_wq,
5294                               per_cpu_ptr(&flush_works, cpu));
5295
5296         for_each_online_cpu(cpu)
5297                 flush_work(per_cpu_ptr(&flush_works, cpu));
5298
5299         put_online_cpus();
5300 }
5301
5302 static int napi_gro_complete(struct sk_buff *skb)
5303 {
5304         struct packet_offload *ptype;
5305         __be16 type = skb->protocol;
5306         struct list_head *head = &offload_base;
5307         int err = -ENOENT;
5308
5309         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5310
5311         if (NAPI_GRO_CB(skb)->count == 1) {
5312                 skb_shinfo(skb)->gso_size = 0;
5313                 goto out;
5314         }
5315
5316         rcu_read_lock();
5317         list_for_each_entry_rcu(ptype, head, list) {
5318                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5319                         continue;
5320
5321                 err = ptype->callbacks.gro_complete(skb, 0);
5322                 break;
5323         }
5324         rcu_read_unlock();
5325
5326         if (err) {
5327                 WARN_ON(&ptype->list == head);
5328                 kfree_skb(skb);
5329                 return NET_RX_SUCCESS;
5330         }
5331
5332 out:
5333         return netif_receive_skb_internal(skb);
5334 }
5335
5336 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5337                                    bool flush_old)
5338 {
5339         struct list_head *head = &napi->gro_hash[index].list;
5340         struct sk_buff *skb, *p;
5341
5342         list_for_each_entry_safe_reverse(skb, p, head, list) {
5343                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5344                         return;
5345                 skb_list_del_init(skb);
5346                 napi_gro_complete(skb);
5347                 napi->gro_hash[index].count--;
5348         }
5349
5350         if (!napi->gro_hash[index].count)
5351                 __clear_bit(index, &napi->gro_bitmask);
5352 }
5353
5354 /* napi->gro_hash[].list contains packets ordered by age.
5355  * youngest packets at the head of it.
5356  * Complete skbs in reverse order to reduce latencies.
5357  */
5358 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5359 {
5360         u32 i;
5361
5362         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
5363                 if (test_bit(i, &napi->gro_bitmask))
5364                         __napi_gro_flush_chain(napi, i, flush_old);
5365         }
5366 }
5367 EXPORT_SYMBOL(napi_gro_flush);
5368
5369 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5370                                           struct sk_buff *skb)
5371 {
5372         unsigned int maclen = skb->dev->hard_header_len;
5373         u32 hash = skb_get_hash_raw(skb);
5374         struct list_head *head;
5375         struct sk_buff *p;
5376
5377         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5378         list_for_each_entry(p, head, list) {
5379                 unsigned long diffs;
5380
5381                 NAPI_GRO_CB(p)->flush = 0;
5382
5383                 if (hash != skb_get_hash_raw(p)) {
5384                         NAPI_GRO_CB(p)->same_flow = 0;
5385                         continue;
5386                 }
5387
5388                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5389                 diffs |= p->vlan_tci ^ skb->vlan_tci;
5390                 diffs |= skb_metadata_dst_cmp(p, skb);
5391                 diffs |= skb_metadata_differs(p, skb);
5392                 if (maclen == ETH_HLEN)
5393                         diffs |= compare_ether_header(skb_mac_header(p),
5394                                                       skb_mac_header(skb));
5395                 else if (!diffs)
5396                         diffs = memcmp(skb_mac_header(p),
5397                                        skb_mac_header(skb),
5398                                        maclen);
5399                 NAPI_GRO_CB(p)->same_flow = !diffs;
5400         }
5401
5402         return head;
5403 }
5404
5405 static void skb_gro_reset_offset(struct sk_buff *skb)
5406 {
5407         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5408         const skb_frag_t *frag0 = &pinfo->frags[0];
5409
5410         NAPI_GRO_CB(skb)->data_offset = 0;
5411         NAPI_GRO_CB(skb)->frag0 = NULL;
5412         NAPI_GRO_CB(skb)->frag0_len = 0;
5413
5414         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5415             pinfo->nr_frags &&
5416             !PageHighMem(skb_frag_page(frag0))) {
5417                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5418                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5419                                                     skb_frag_size(frag0),
5420                                                     skb->end - skb->tail);
5421         }
5422 }
5423
5424 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5425 {
5426         struct skb_shared_info *pinfo = skb_shinfo(skb);
5427
5428         BUG_ON(skb->end - skb->tail < grow);
5429
5430         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5431
5432         skb->data_len -= grow;
5433         skb->tail += grow;
5434
5435         pinfo->frags[0].page_offset += grow;
5436         skb_frag_size_sub(&pinfo->frags[0], grow);
5437
5438         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5439                 skb_frag_unref(skb, 0);
5440                 memmove(pinfo->frags, pinfo->frags + 1,
5441                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5442         }
5443 }
5444
5445 static void gro_flush_oldest(struct list_head *head)
5446 {
5447         struct sk_buff *oldest;
5448
5449         oldest = list_last_entry(head, struct sk_buff, list);
5450
5451         /* We are called with head length >= MAX_GRO_SKBS, so this is
5452          * impossible.
5453          */
5454         if (WARN_ON_ONCE(!oldest))
5455                 return;
5456
5457         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5458          * SKB to the chain.
5459          */
5460         skb_list_del_init(oldest);
5461         napi_gro_complete(oldest);
5462 }
5463
5464 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5465 {
5466         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5467         struct list_head *head = &offload_base;
5468         struct packet_offload *ptype;
5469         __be16 type = skb->protocol;
5470         struct list_head *gro_head;
5471         struct sk_buff *pp = NULL;
5472         enum gro_result ret;
5473         int same_flow;
5474         int grow;
5475
5476         if (netif_elide_gro(skb->dev))
5477                 goto normal;
5478
5479         gro_head = gro_list_prepare(napi, skb);
5480
5481         rcu_read_lock();
5482         list_for_each_entry_rcu(ptype, head, list) {
5483                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5484                         continue;
5485
5486                 skb_set_network_header(skb, skb_gro_offset(skb));
5487                 skb_reset_mac_len(skb);
5488                 NAPI_GRO_CB(skb)->same_flow = 0;
5489                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5490                 NAPI_GRO_CB(skb)->free = 0;
5491                 NAPI_GRO_CB(skb)->encap_mark = 0;
5492                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5493                 NAPI_GRO_CB(skb)->is_fou = 0;
5494                 NAPI_GRO_CB(skb)->is_atomic = 1;
5495                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5496
5497                 /* Setup for GRO checksum validation */
5498                 switch (skb->ip_summed) {
5499                 case CHECKSUM_COMPLETE:
5500                         NAPI_GRO_CB(skb)->csum = skb->csum;
5501                         NAPI_GRO_CB(skb)->csum_valid = 1;
5502                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5503                         break;
5504                 case CHECKSUM_UNNECESSARY:
5505                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5506                         NAPI_GRO_CB(skb)->csum_valid = 0;
5507                         break;
5508                 default:
5509                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5510                         NAPI_GRO_CB(skb)->csum_valid = 0;
5511                 }
5512
5513                 pp = ptype->callbacks.gro_receive(gro_head, skb);
5514                 break;
5515         }
5516         rcu_read_unlock();
5517
5518         if (&ptype->list == head)
5519                 goto normal;
5520
5521         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5522                 ret = GRO_CONSUMED;
5523                 goto ok;
5524         }
5525
5526         same_flow = NAPI_GRO_CB(skb)->same_flow;
5527         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5528
5529         if (pp) {
5530                 skb_list_del_init(pp);
5531                 napi_gro_complete(pp);
5532                 napi->gro_hash[hash].count--;
5533         }
5534
5535         if (same_flow)
5536                 goto ok;
5537
5538         if (NAPI_GRO_CB(skb)->flush)
5539                 goto normal;
5540
5541         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5542                 gro_flush_oldest(gro_head);
5543         } else {
5544                 napi->gro_hash[hash].count++;
5545         }
5546         NAPI_GRO_CB(skb)->count = 1;
5547         NAPI_GRO_CB(skb)->age = jiffies;
5548         NAPI_GRO_CB(skb)->last = skb;
5549         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5550         list_add(&skb->list, gro_head);
5551         ret = GRO_HELD;
5552
5553 pull:
5554         grow = skb_gro_offset(skb) - skb_headlen(skb);
5555         if (grow > 0)
5556                 gro_pull_from_frag0(skb, grow);
5557 ok:
5558         if (napi->gro_hash[hash].count) {
5559                 if (!test_bit(hash, &napi->gro_bitmask))
5560                         __set_bit(hash, &napi->gro_bitmask);
5561         } else if (test_bit(hash, &napi->gro_bitmask)) {
5562                 __clear_bit(hash, &napi->gro_bitmask);
5563         }
5564
5565         return ret;
5566
5567 normal:
5568         ret = GRO_NORMAL;
5569         goto pull;
5570 }
5571
5572 struct packet_offload *gro_find_receive_by_type(__be16 type)
5573 {
5574         struct list_head *offload_head = &offload_base;
5575         struct packet_offload *ptype;
5576
5577         list_for_each_entry_rcu(ptype, offload_head, list) {
5578                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5579                         continue;
5580                 return ptype;
5581         }
5582         return NULL;
5583 }
5584 EXPORT_SYMBOL(gro_find_receive_by_type);
5585
5586 struct packet_offload *gro_find_complete_by_type(__be16 type)
5587 {
5588         struct list_head *offload_head = &offload_base;
5589         struct packet_offload *ptype;
5590
5591         list_for_each_entry_rcu(ptype, offload_head, list) {
5592                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5593                         continue;
5594                 return ptype;
5595         }
5596         return NULL;
5597 }
5598 EXPORT_SYMBOL(gro_find_complete_by_type);
5599
5600 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5601 {
5602         skb_dst_drop(skb);
5603         secpath_reset(skb);
5604         kmem_cache_free(skbuff_head_cache, skb);
5605 }
5606
5607 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5608 {
5609         switch (ret) {
5610         case GRO_NORMAL:
5611                 if (netif_receive_skb_internal(skb))
5612                         ret = GRO_DROP;
5613                 break;
5614
5615         case GRO_DROP:
5616                 kfree_skb(skb);
5617                 break;
5618
5619         case GRO_MERGED_FREE:
5620                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5621                         napi_skb_free_stolen_head(skb);
5622                 else
5623                         __kfree_skb(skb);
5624                 break;
5625
5626         case GRO_HELD:
5627         case GRO_MERGED:
5628         case GRO_CONSUMED:
5629                 break;
5630         }
5631
5632         return ret;
5633 }
5634
5635 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5636 {
5637         skb_mark_napi_id(skb, napi);
5638         trace_napi_gro_receive_entry(skb);
5639
5640         skb_gro_reset_offset(skb);
5641
5642         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5643 }
5644 EXPORT_SYMBOL(napi_gro_receive);
5645
5646 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5647 {
5648         if (unlikely(skb->pfmemalloc)) {
5649                 consume_skb(skb);
5650                 return;
5651         }
5652         __skb_pull(skb, skb_headlen(skb));
5653         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5654         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5655         skb->vlan_tci = 0;
5656         skb->dev = napi->dev;
5657         skb->skb_iif = 0;
5658         skb->encapsulation = 0;
5659         skb_shinfo(skb)->gso_type = 0;
5660         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5661         secpath_reset(skb);
5662
5663         napi->skb = skb;
5664 }
5665
5666 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5667 {
5668         struct sk_buff *skb = napi->skb;
5669
5670         if (!skb) {
5671                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5672                 if (skb) {
5673                         napi->skb = skb;
5674                         skb_mark_napi_id(skb, napi);
5675                 }
5676         }
5677         return skb;
5678 }
5679 EXPORT_SYMBOL(napi_get_frags);
5680
5681 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5682                                       struct sk_buff *skb,
5683                                       gro_result_t ret)
5684 {
5685         switch (ret) {
5686         case GRO_NORMAL:
5687         case GRO_HELD:
5688                 __skb_push(skb, ETH_HLEN);
5689                 skb->protocol = eth_type_trans(skb, skb->dev);
5690                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5691                         ret = GRO_DROP;
5692                 break;
5693
5694         case GRO_DROP:
5695                 napi_reuse_skb(napi, skb);
5696                 break;
5697
5698         case GRO_MERGED_FREE:
5699                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5700                         napi_skb_free_stolen_head(skb);
5701                 else
5702                         napi_reuse_skb(napi, skb);
5703                 break;
5704
5705         case GRO_MERGED:
5706         case GRO_CONSUMED:
5707                 break;
5708         }
5709
5710         return ret;
5711 }
5712
5713 /* Upper GRO stack assumes network header starts at gro_offset=0
5714  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5715  * We copy ethernet header into skb->data to have a common layout.
5716  */
5717 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5718 {
5719         struct sk_buff *skb = napi->skb;
5720         const struct ethhdr *eth;
5721         unsigned int hlen = sizeof(*eth);
5722
5723         napi->skb = NULL;
5724
5725         skb_reset_mac_header(skb);
5726         skb_gro_reset_offset(skb);
5727
5728         eth = skb_gro_header_fast(skb, 0);
5729         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5730                 eth = skb_gro_header_slow(skb, hlen, 0);
5731                 if (unlikely(!eth)) {
5732                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5733                                              __func__, napi->dev->name);
5734                         napi_reuse_skb(napi, skb);
5735                         return NULL;
5736                 }
5737         } else {
5738                 gro_pull_from_frag0(skb, hlen);
5739                 NAPI_GRO_CB(skb)->frag0 += hlen;
5740                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5741         }
5742         __skb_pull(skb, hlen);
5743
5744         /*
5745          * This works because the only protocols we care about don't require
5746          * special handling.
5747          * We'll fix it up properly in napi_frags_finish()
5748          */
5749         skb->protocol = eth->h_proto;
5750
5751         return skb;
5752 }
5753
5754 gro_result_t napi_gro_frags(struct napi_struct *napi)
5755 {
5756         struct sk_buff *skb = napi_frags_skb(napi);
5757
5758         if (!skb)
5759                 return GRO_DROP;
5760
5761         trace_napi_gro_frags_entry(skb);
5762
5763         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5764 }
5765 EXPORT_SYMBOL(napi_gro_frags);
5766
5767 /* Compute the checksum from gro_offset and return the folded value
5768  * after adding in any pseudo checksum.
5769  */
5770 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5771 {
5772         __wsum wsum;
5773         __sum16 sum;
5774
5775         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5776
5777         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5778         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5779         if (likely(!sum)) {
5780                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5781                     !skb->csum_complete_sw)
5782                         netdev_rx_csum_fault(skb->dev);
5783         }
5784
5785         NAPI_GRO_CB(skb)->csum = wsum;
5786         NAPI_GRO_CB(skb)->csum_valid = 1;
5787
5788         return sum;
5789 }
5790 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5791
5792 static void net_rps_send_ipi(struct softnet_data *remsd)
5793 {
5794 #ifdef CONFIG_RPS
5795         while (remsd) {
5796                 struct softnet_data *next = remsd->rps_ipi_next;
5797
5798                 if (cpu_online(remsd->cpu))
5799                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5800                 remsd = next;
5801         }
5802 #endif
5803 }
5804
5805 /*
5806  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5807  * Note: called with local irq disabled, but exits with local irq enabled.
5808  */
5809 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5810 {
5811 #ifdef CONFIG_RPS
5812         struct softnet_data *remsd = sd->rps_ipi_list;
5813
5814         if (remsd) {
5815                 sd->rps_ipi_list = NULL;
5816
5817                 local_irq_enable();
5818
5819                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5820                 net_rps_send_ipi(remsd);
5821         } else
5822 #endif
5823                 local_irq_enable();
5824 }
5825
5826 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5827 {
5828 #ifdef CONFIG_RPS
5829         return sd->rps_ipi_list != NULL;
5830 #else
5831         return false;
5832 #endif
5833 }
5834
5835 static int process_backlog(struct napi_struct *napi, int quota)
5836 {
5837         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5838         bool again = true;
5839         int work = 0;
5840
5841         /* Check if we have pending ipi, its better to send them now,
5842          * not waiting net_rx_action() end.
5843          */
5844         if (sd_has_rps_ipi_waiting(sd)) {
5845                 local_irq_disable();
5846                 net_rps_action_and_irq_enable(sd);
5847         }
5848
5849         napi->weight = dev_rx_weight;
5850         while (again) {
5851                 struct sk_buff *skb;
5852
5853                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5854                         rcu_read_lock();
5855                         __netif_receive_skb(skb);
5856                         rcu_read_unlock();
5857                         input_queue_head_incr(sd);
5858                         if (++work >= quota)
5859                                 return work;
5860
5861                 }
5862
5863                 local_irq_disable();
5864                 rps_lock(sd);
5865                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5866                         /*
5867                          * Inline a custom version of __napi_complete().
5868                          * only current cpu owns and manipulates this napi,
5869                          * and NAPI_STATE_SCHED is the only possible flag set
5870                          * on backlog.
5871                          * We can use a plain write instead of clear_bit(),
5872                          * and we dont need an smp_mb() memory barrier.
5873                          */
5874                         napi->state = 0;
5875                         again = false;
5876                 } else {
5877                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5878                                                    &sd->process_queue);
5879                 }
5880                 rps_unlock(sd);
5881                 local_irq_enable();
5882         }
5883
5884         return work;
5885 }
5886
5887 /**
5888  * __napi_schedule - schedule for receive
5889  * @n: entry to schedule
5890  *
5891  * The entry's receive function will be scheduled to run.
5892  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5893  */
5894 void __napi_schedule(struct napi_struct *n)
5895 {
5896         unsigned long flags;
5897
5898         local_irq_save(flags);
5899         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5900         local_irq_restore(flags);
5901 }
5902 EXPORT_SYMBOL(__napi_schedule);
5903
5904 /**
5905  *      napi_schedule_prep - check if napi can be scheduled
5906  *      @n: napi context
5907  *
5908  * Test if NAPI routine is already running, and if not mark
5909  * it as running.  This is used as a condition variable
5910  * insure only one NAPI poll instance runs.  We also make
5911  * sure there is no pending NAPI disable.
5912  */
5913 bool napi_schedule_prep(struct napi_struct *n)
5914 {
5915         unsigned long val, new;
5916
5917         do {
5918                 val = READ_ONCE(n->state);
5919                 if (unlikely(val & NAPIF_STATE_DISABLE))
5920                         return false;
5921                 new = val | NAPIF_STATE_SCHED;
5922
5923                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5924                  * This was suggested by Alexander Duyck, as compiler
5925                  * emits better code than :
5926                  * if (val & NAPIF_STATE_SCHED)
5927                  *     new |= NAPIF_STATE_MISSED;
5928                  */
5929                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5930                                                    NAPIF_STATE_MISSED;
5931         } while (cmpxchg(&n->state, val, new) != val);
5932
5933         return !(val & NAPIF_STATE_SCHED);
5934 }
5935 EXPORT_SYMBOL(napi_schedule_prep);
5936
5937 /**
5938  * __napi_schedule_irqoff - schedule for receive
5939  * @n: entry to schedule
5940  *
5941  * Variant of __napi_schedule() assuming hard irqs are masked
5942  */
5943 void __napi_schedule_irqoff(struct napi_struct *n)
5944 {
5945         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5946 }
5947 EXPORT_SYMBOL(__napi_schedule_irqoff);
5948
5949 bool napi_complete_done(struct napi_struct *n, int work_done)
5950 {
5951         unsigned long flags, val, new;
5952
5953         /*
5954          * 1) Don't let napi dequeue from the cpu poll list
5955          *    just in case its running on a different cpu.
5956          * 2) If we are busy polling, do nothing here, we have
5957          *    the guarantee we will be called later.
5958          */
5959         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5960                                  NAPIF_STATE_IN_BUSY_POLL)))
5961                 return false;
5962
5963         if (n->gro_bitmask) {
5964                 unsigned long timeout = 0;
5965
5966                 if (work_done)
5967                         timeout = n->dev->gro_flush_timeout;
5968
5969                 if (timeout)
5970                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5971                                       HRTIMER_MODE_REL_PINNED);
5972                 else
5973                         napi_gro_flush(n, false);
5974         }
5975         if (unlikely(!list_empty(&n->poll_list))) {
5976                 /* If n->poll_list is not empty, we need to mask irqs */
5977                 local_irq_save(flags);
5978                 list_del_init(&n->poll_list);
5979                 local_irq_restore(flags);
5980         }
5981
5982         do {
5983                 val = READ_ONCE(n->state);
5984
5985                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5986
5987                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5988
5989                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5990                  * because we will call napi->poll() one more time.
5991                  * This C code was suggested by Alexander Duyck to help gcc.
5992                  */
5993                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5994                                                     NAPIF_STATE_SCHED;
5995         } while (cmpxchg(&n->state, val, new) != val);
5996
5997         if (unlikely(val & NAPIF_STATE_MISSED)) {
5998                 __napi_schedule(n);
5999                 return false;
6000         }
6001
6002         return true;
6003 }
6004 EXPORT_SYMBOL(napi_complete_done);
6005
6006 /* must be called under rcu_read_lock(), as we dont take a reference */
6007 static struct napi_struct *napi_by_id(unsigned int napi_id)
6008 {
6009         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6010         struct napi_struct *napi;
6011
6012         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6013                 if (napi->napi_id == napi_id)
6014                         return napi;
6015
6016         return NULL;
6017 }
6018
6019 #if defined(CONFIG_NET_RX_BUSY_POLL)
6020
6021 #define BUSY_POLL_BUDGET 8
6022
6023 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6024 {
6025         int rc;
6026
6027         /* Busy polling means there is a high chance device driver hard irq
6028          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6029          * set in napi_schedule_prep().
6030          * Since we are about to call napi->poll() once more, we can safely
6031          * clear NAPI_STATE_MISSED.
6032          *
6033          * Note: x86 could use a single "lock and ..." instruction
6034          * to perform these two clear_bit()
6035          */
6036         clear_bit(NAPI_STATE_MISSED, &napi->state);
6037         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6038
6039         local_bh_disable();
6040
6041         /* All we really want here is to re-enable device interrupts.
6042          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6043          */
6044         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6045         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6046         netpoll_poll_unlock(have_poll_lock);
6047         if (rc == BUSY_POLL_BUDGET)
6048                 __napi_schedule(napi);
6049         local_bh_enable();
6050 }
6051
6052 void napi_busy_loop(unsigned int napi_id,
6053                     bool (*loop_end)(void *, unsigned long),
6054                     void *loop_end_arg)
6055 {
6056         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6057         int (*napi_poll)(struct napi_struct *napi, int budget);
6058         void *have_poll_lock = NULL;
6059         struct napi_struct *napi;
6060
6061 restart:
6062         napi_poll = NULL;
6063
6064         rcu_read_lock();
6065
6066         napi = napi_by_id(napi_id);
6067         if (!napi)
6068                 goto out;
6069
6070         preempt_disable();
6071         for (;;) {
6072                 int work = 0;
6073
6074                 local_bh_disable();
6075                 if (!napi_poll) {
6076                         unsigned long val = READ_ONCE(napi->state);
6077
6078                         /* If multiple threads are competing for this napi,
6079                          * we avoid dirtying napi->state as much as we can.
6080                          */
6081                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6082                                    NAPIF_STATE_IN_BUSY_POLL))
6083                                 goto count;
6084                         if (cmpxchg(&napi->state, val,
6085                                     val | NAPIF_STATE_IN_BUSY_POLL |
6086                                           NAPIF_STATE_SCHED) != val)
6087                                 goto count;
6088                         have_poll_lock = netpoll_poll_lock(napi);
6089                         napi_poll = napi->poll;
6090                 }
6091                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6092                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6093 count:
6094                 if (work > 0)
6095                         __NET_ADD_STATS(dev_net(napi->dev),
6096                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6097                 local_bh_enable();
6098
6099                 if (!loop_end || loop_end(loop_end_arg, start_time))
6100                         break;
6101
6102                 if (unlikely(need_resched())) {
6103                         if (napi_poll)
6104                                 busy_poll_stop(napi, have_poll_lock);
6105                         preempt_enable();
6106                         rcu_read_unlock();
6107                         cond_resched();
6108                         if (loop_end(loop_end_arg, start_time))
6109                                 return;
6110                         goto restart;
6111                 }
6112                 cpu_relax();
6113         }
6114         if (napi_poll)
6115                 busy_poll_stop(napi, have_poll_lock);
6116         preempt_enable();
6117 out:
6118         rcu_read_unlock();
6119 }
6120 EXPORT_SYMBOL(napi_busy_loop);
6121
6122 #endif /* CONFIG_NET_RX_BUSY_POLL */
6123
6124 static void napi_hash_add(struct napi_struct *napi)
6125 {
6126         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6127             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6128                 return;
6129
6130         spin_lock(&napi_hash_lock);
6131
6132         /* 0..NR_CPUS range is reserved for sender_cpu use */
6133         do {
6134                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6135                         napi_gen_id = MIN_NAPI_ID;
6136         } while (napi_by_id(napi_gen_id));
6137         napi->napi_id = napi_gen_id;
6138
6139         hlist_add_head_rcu(&napi->napi_hash_node,
6140                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6141
6142         spin_unlock(&napi_hash_lock);
6143 }
6144
6145 /* Warning : caller is responsible to make sure rcu grace period
6146  * is respected before freeing memory containing @napi
6147  */
6148 bool napi_hash_del(struct napi_struct *napi)
6149 {
6150         bool rcu_sync_needed = false;
6151
6152         spin_lock(&napi_hash_lock);
6153
6154         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6155                 rcu_sync_needed = true;
6156                 hlist_del_rcu(&napi->napi_hash_node);
6157         }
6158         spin_unlock(&napi_hash_lock);
6159         return rcu_sync_needed;
6160 }
6161 EXPORT_SYMBOL_GPL(napi_hash_del);
6162
6163 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6164 {
6165         struct napi_struct *napi;
6166
6167         napi = container_of(timer, struct napi_struct, timer);
6168
6169         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6170          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6171          */
6172         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6173             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6174                 __napi_schedule_irqoff(napi);
6175
6176         return HRTIMER_NORESTART;
6177 }
6178
6179 static void init_gro_hash(struct napi_struct *napi)
6180 {
6181         int i;
6182
6183         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6184                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6185                 napi->gro_hash[i].count = 0;
6186         }
6187         napi->gro_bitmask = 0;
6188 }
6189
6190 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6191                     int (*poll)(struct napi_struct *, int), int weight)
6192 {
6193         INIT_LIST_HEAD(&napi->poll_list);
6194         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6195         napi->timer.function = napi_watchdog;
6196         init_gro_hash(napi);
6197         napi->skb = NULL;
6198         napi->poll = poll;
6199         if (weight > NAPI_POLL_WEIGHT)
6200                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
6201                             weight, dev->name);
6202         napi->weight = weight;
6203         list_add(&napi->dev_list, &dev->napi_list);
6204         napi->dev = dev;
6205 #ifdef CONFIG_NETPOLL
6206         napi->poll_owner = -1;
6207 #endif
6208         set_bit(NAPI_STATE_SCHED, &napi->state);
6209         napi_hash_add(napi);
6210 }
6211 EXPORT_SYMBOL(netif_napi_add);
6212
6213 void napi_disable(struct napi_struct *n)
6214 {
6215         might_sleep();
6216         set_bit(NAPI_STATE_DISABLE, &n->state);
6217
6218         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6219                 msleep(1);
6220         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6221                 msleep(1);
6222
6223         hrtimer_cancel(&n->timer);
6224
6225         clear_bit(NAPI_STATE_DISABLE, &n->state);
6226 }
6227 EXPORT_SYMBOL(napi_disable);
6228
6229 static void flush_gro_hash(struct napi_struct *napi)
6230 {
6231         int i;
6232
6233         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6234                 struct sk_buff *skb, *n;
6235
6236                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6237                         kfree_skb(skb);
6238                 napi->gro_hash[i].count = 0;
6239         }
6240 }
6241
6242 /* Must be called in process context */
6243 void netif_napi_del(struct napi_struct *napi)
6244 {
6245         might_sleep();
6246         if (napi_hash_del(napi))
6247                 synchronize_net();
6248         list_del_init(&napi->dev_list);
6249         napi_free_frags(napi);
6250
6251         flush_gro_hash(napi);
6252         napi->gro_bitmask = 0;
6253 }
6254 EXPORT_SYMBOL(netif_napi_del);
6255
6256 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6257 {
6258         void *have;
6259         int work, weight;
6260
6261         list_del_init(&n->poll_list);
6262
6263         have = netpoll_poll_lock(n);
6264
6265         weight = n->weight;
6266
6267         /* This NAPI_STATE_SCHED test is for avoiding a race
6268          * with netpoll's poll_napi().  Only the entity which
6269          * obtains the lock and sees NAPI_STATE_SCHED set will
6270          * actually make the ->poll() call.  Therefore we avoid
6271          * accidentally calling ->poll() when NAPI is not scheduled.
6272          */
6273         work = 0;
6274         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6275                 work = n->poll(n, weight);
6276                 trace_napi_poll(n, work, weight);
6277         }
6278
6279         WARN_ON_ONCE(work > weight);
6280
6281         if (likely(work < weight))
6282                 goto out_unlock;
6283
6284         /* Drivers must not modify the NAPI state if they
6285          * consume the entire weight.  In such cases this code
6286          * still "owns" the NAPI instance and therefore can
6287          * move the instance around on the list at-will.
6288          */
6289         if (unlikely(napi_disable_pending(n))) {
6290                 napi_complete(n);
6291                 goto out_unlock;
6292         }
6293
6294         if (n->gro_bitmask) {
6295                 /* flush too old packets
6296                  * If HZ < 1000, flush all packets.
6297                  */
6298                 napi_gro_flush(n, HZ >= 1000);
6299         }
6300
6301         /* Some drivers may have called napi_schedule
6302          * prior to exhausting their budget.
6303          */
6304         if (unlikely(!list_empty(&n->poll_list))) {
6305                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6306                              n->dev ? n->dev->name : "backlog");
6307                 goto out_unlock;
6308         }
6309
6310         list_add_tail(&n->poll_list, repoll);
6311
6312 out_unlock:
6313         netpoll_poll_unlock(have);
6314
6315         return work;
6316 }
6317
6318 static __latent_entropy void net_rx_action(struct softirq_action *h)
6319 {
6320         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6321         unsigned long time_limit = jiffies +
6322                 usecs_to_jiffies(netdev_budget_usecs);
6323         int budget = netdev_budget;
6324         LIST_HEAD(list);
6325         LIST_HEAD(repoll);
6326
6327         local_irq_disable();
6328         list_splice_init(&sd->poll_list, &list);
6329         local_irq_enable();
6330
6331         for (;;) {
6332                 struct napi_struct *n;
6333
6334                 if (list_empty(&list)) {
6335                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6336                                 goto out;
6337                         break;
6338                 }
6339
6340                 n = list_first_entry(&list, struct napi_struct, poll_list);
6341                 budget -= napi_poll(n, &repoll);
6342
6343                 /* If softirq window is exhausted then punt.
6344                  * Allow this to run for 2 jiffies since which will allow
6345                  * an average latency of 1.5/HZ.
6346                  */
6347                 if (unlikely(budget <= 0 ||
6348                              time_after_eq(jiffies, time_limit))) {
6349                         sd->time_squeeze++;
6350                         break;
6351                 }
6352         }
6353
6354         local_irq_disable();
6355
6356         list_splice_tail_init(&sd->poll_list, &list);
6357         list_splice_tail(&repoll, &list);
6358         list_splice(&list, &sd->poll_list);
6359         if (!list_empty(&sd->poll_list))
6360                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6361
6362         net_rps_action_and_irq_enable(sd);
6363 out:
6364         __kfree_skb_flush();
6365 }
6366
6367 struct netdev_adjacent {
6368         struct net_device *dev;
6369
6370         /* upper master flag, there can only be one master device per list */
6371         bool master;
6372
6373         /* counter for the number of times this device was added to us */
6374         u16 ref_nr;
6375
6376         /* private field for the users */
6377         void *private;
6378
6379         struct list_head list;
6380         struct rcu_head rcu;
6381 };
6382
6383 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6384                                                  struct list_head *adj_list)
6385 {
6386         struct netdev_adjacent *adj;
6387
6388         list_for_each_entry(adj, adj_list, list) {
6389                 if (adj->dev == adj_dev)
6390                         return adj;
6391         }
6392         return NULL;
6393 }
6394
6395 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6396 {
6397         struct net_device *dev = data;
6398
6399         return upper_dev == dev;
6400 }
6401
6402 /**
6403  * netdev_has_upper_dev - Check if device is linked to an upper device
6404  * @dev: device
6405  * @upper_dev: upper device to check
6406  *
6407  * Find out if a device is linked to specified upper device and return true
6408  * in case it is. Note that this checks only immediate upper device,
6409  * not through a complete stack of devices. The caller must hold the RTNL lock.
6410  */
6411 bool netdev_has_upper_dev(struct net_device *dev,
6412                           struct net_device *upper_dev)
6413 {
6414         ASSERT_RTNL();
6415
6416         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6417                                              upper_dev);
6418 }
6419 EXPORT_SYMBOL(netdev_has_upper_dev);
6420
6421 /**
6422  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6423  * @dev: device
6424  * @upper_dev: upper device to check
6425  *
6426  * Find out if a device is linked to specified upper device and return true
6427  * in case it is. Note that this checks the entire upper device chain.
6428  * The caller must hold rcu lock.
6429  */
6430
6431 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6432                                   struct net_device *upper_dev)
6433 {
6434         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6435                                                upper_dev);
6436 }
6437 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6438
6439 /**
6440  * netdev_has_any_upper_dev - Check if device is linked to some device
6441  * @dev: device
6442  *
6443  * Find out if a device is linked to an upper device and return true in case
6444  * it is. The caller must hold the RTNL lock.
6445  */
6446 bool netdev_has_any_upper_dev(struct net_device *dev)
6447 {
6448         ASSERT_RTNL();
6449
6450         return !list_empty(&dev->adj_list.upper);
6451 }
6452 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6453
6454 /**
6455  * netdev_master_upper_dev_get - Get master upper device
6456  * @dev: device
6457  *
6458  * Find a master upper device and return pointer to it or NULL in case
6459  * it's not there. The caller must hold the RTNL lock.
6460  */
6461 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6462 {
6463         struct netdev_adjacent *upper;
6464
6465         ASSERT_RTNL();
6466
6467         if (list_empty(&dev->adj_list.upper))
6468                 return NULL;
6469
6470         upper = list_first_entry(&dev->adj_list.upper,
6471                                  struct netdev_adjacent, list);
6472         if (likely(upper->master))
6473                 return upper->dev;
6474         return NULL;
6475 }
6476 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6477
6478 /**
6479  * netdev_has_any_lower_dev - Check if device is linked to some device
6480  * @dev: device
6481  *
6482  * Find out if a device is linked to a lower device and return true in case
6483  * it is. The caller must hold the RTNL lock.
6484  */
6485 static bool netdev_has_any_lower_dev(struct net_device *dev)
6486 {
6487         ASSERT_RTNL();
6488
6489         return !list_empty(&dev->adj_list.lower);
6490 }
6491
6492 void *netdev_adjacent_get_private(struct list_head *adj_list)
6493 {
6494         struct netdev_adjacent *adj;
6495
6496         adj = list_entry(adj_list, struct netdev_adjacent, list);
6497
6498         return adj->private;
6499 }
6500 EXPORT_SYMBOL(netdev_adjacent_get_private);
6501
6502 /**
6503  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6504  * @dev: device
6505  * @iter: list_head ** of the current position
6506  *
6507  * Gets the next device from the dev's upper list, starting from iter
6508  * position. The caller must hold RCU read lock.
6509  */
6510 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6511                                                  struct list_head **iter)
6512 {
6513         struct netdev_adjacent *upper;
6514
6515         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6516
6517         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6518
6519         if (&upper->list == &dev->adj_list.upper)
6520                 return NULL;
6521
6522         *iter = &upper->list;
6523
6524         return upper->dev;
6525 }
6526 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6527
6528 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6529                                                     struct list_head **iter)
6530 {
6531         struct netdev_adjacent *upper;
6532
6533         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6534
6535         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6536
6537         if (&upper->list == &dev->adj_list.upper)
6538                 return NULL;
6539
6540         *iter = &upper->list;
6541
6542         return upper->dev;
6543 }
6544
6545 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6546                                   int (*fn)(struct net_device *dev,
6547                                             void *data),
6548                                   void *data)
6549 {
6550         struct net_device *udev;
6551         struct list_head *iter;
6552         int ret;
6553
6554         for (iter = &dev->adj_list.upper,
6555              udev = netdev_next_upper_dev_rcu(dev, &iter);
6556              udev;
6557              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6558                 /* first is the upper device itself */
6559                 ret = fn(udev, data);
6560                 if (ret)
6561                         return ret;
6562
6563                 /* then look at all of its upper devices */
6564                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6565                 if (ret)
6566                         return ret;
6567         }
6568
6569         return 0;
6570 }
6571 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6572
6573 /**
6574  * netdev_lower_get_next_private - Get the next ->private from the
6575  *                                 lower neighbour list
6576  * @dev: device
6577  * @iter: list_head ** of the current position
6578  *
6579  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6580  * list, starting from iter position. The caller must hold either hold the
6581  * RTNL lock or its own locking that guarantees that the neighbour lower
6582  * list will remain unchanged.
6583  */
6584 void *netdev_lower_get_next_private(struct net_device *dev,
6585                                     struct list_head **iter)
6586 {
6587         struct netdev_adjacent *lower;
6588
6589         lower = list_entry(*iter, struct netdev_adjacent, list);
6590
6591         if (&lower->list == &dev->adj_list.lower)
6592                 return NULL;
6593
6594         *iter = lower->list.next;
6595
6596         return lower->private;
6597 }
6598 EXPORT_SYMBOL(netdev_lower_get_next_private);
6599
6600 /**
6601  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6602  *                                     lower neighbour list, RCU
6603  *                                     variant
6604  * @dev: device
6605  * @iter: list_head ** of the current position
6606  *
6607  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6608  * list, starting from iter position. The caller must hold RCU read lock.
6609  */
6610 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6611                                         struct list_head **iter)
6612 {
6613         struct netdev_adjacent *lower;
6614
6615         WARN_ON_ONCE(!rcu_read_lock_held());
6616
6617         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6618
6619         if (&lower->list == &dev->adj_list.lower)
6620                 return NULL;
6621
6622         *iter = &lower->list;
6623
6624         return lower->private;
6625 }
6626 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6627
6628 /**
6629  * netdev_lower_get_next - Get the next device from the lower neighbour
6630  *                         list
6631  * @dev: device
6632  * @iter: list_head ** of the current position
6633  *
6634  * Gets the next netdev_adjacent from the dev's lower neighbour
6635  * list, starting from iter position. The caller must hold RTNL lock or
6636  * its own locking that guarantees that the neighbour lower
6637  * list will remain unchanged.
6638  */
6639 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6640 {
6641         struct netdev_adjacent *lower;
6642
6643         lower = list_entry(*iter, struct netdev_adjacent, list);
6644
6645         if (&lower->list == &dev->adj_list.lower)
6646                 return NULL;
6647
6648         *iter = lower->list.next;
6649
6650         return lower->dev;
6651 }
6652 EXPORT_SYMBOL(netdev_lower_get_next);
6653
6654 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6655                                                 struct list_head **iter)
6656 {
6657         struct netdev_adjacent *lower;
6658
6659         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6660
6661         if (&lower->list == &dev->adj_list.lower)
6662                 return NULL;
6663
6664         *iter = &lower->list;
6665
6666         return lower->dev;
6667 }
6668
6669 int netdev_walk_all_lower_dev(struct net_device *dev,
6670                               int (*fn)(struct net_device *dev,
6671                                         void *data),
6672                               void *data)
6673 {
6674         struct net_device *ldev;
6675         struct list_head *iter;
6676         int ret;
6677
6678         for (iter = &dev->adj_list.lower,
6679              ldev = netdev_next_lower_dev(dev, &iter);
6680              ldev;
6681              ldev = netdev_next_lower_dev(dev, &iter)) {
6682                 /* first is the lower device itself */
6683                 ret = fn(ldev, data);
6684                 if (ret)
6685                         return ret;
6686
6687                 /* then look at all of its lower devices */
6688                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6689                 if (ret)
6690                         return ret;
6691         }
6692
6693         return 0;
6694 }
6695 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6696
6697 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6698                                                     struct list_head **iter)
6699 {
6700         struct netdev_adjacent *lower;
6701
6702         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6703         if (&lower->list == &dev->adj_list.lower)
6704                 return NULL;
6705
6706         *iter = &lower->list;
6707
6708         return lower->dev;
6709 }
6710
6711 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6712                                   int (*fn)(struct net_device *dev,
6713                                             void *data),
6714                                   void *data)
6715 {
6716         struct net_device *ldev;
6717         struct list_head *iter;
6718         int ret;
6719
6720         for (iter = &dev->adj_list.lower,
6721              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6722              ldev;
6723              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6724                 /* first is the lower device itself */
6725                 ret = fn(ldev, data);
6726                 if (ret)
6727                         return ret;
6728
6729                 /* then look at all of its lower devices */
6730                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6731                 if (ret)
6732                         return ret;
6733         }
6734
6735         return 0;
6736 }
6737 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6738
6739 /**
6740  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6741  *                                     lower neighbour list, RCU
6742  *                                     variant
6743  * @dev: device
6744  *
6745  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6746  * list. The caller must hold RCU read lock.
6747  */
6748 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6749 {
6750         struct netdev_adjacent *lower;
6751
6752         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6753                         struct netdev_adjacent, list);
6754         if (lower)
6755                 return lower->private;
6756         return NULL;
6757 }
6758 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6759
6760 /**
6761  * netdev_master_upper_dev_get_rcu - Get master upper device
6762  * @dev: device
6763  *
6764  * Find a master upper device and return pointer to it or NULL in case
6765  * it's not there. The caller must hold the RCU read lock.
6766  */
6767 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6768 {
6769         struct netdev_adjacent *upper;
6770
6771         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6772                                        struct netdev_adjacent, list);
6773         if (upper && likely(upper->master))
6774                 return upper->dev;
6775         return NULL;
6776 }
6777 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6778
6779 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6780                               struct net_device *adj_dev,
6781                               struct list_head *dev_list)
6782 {
6783         char linkname[IFNAMSIZ+7];
6784
6785         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6786                 "upper_%s" : "lower_%s", adj_dev->name);
6787         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6788                                  linkname);
6789 }
6790 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6791                                char *name,
6792                                struct list_head *dev_list)
6793 {
6794         char linkname[IFNAMSIZ+7];
6795
6796         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6797                 "upper_%s" : "lower_%s", name);
6798         sysfs_remove_link(&(dev->dev.kobj), linkname);
6799 }
6800
6801 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6802                                                  struct net_device *adj_dev,
6803                                                  struct list_head *dev_list)
6804 {
6805         return (dev_list == &dev->adj_list.upper ||
6806                 dev_list == &dev->adj_list.lower) &&
6807                 net_eq(dev_net(dev), dev_net(adj_dev));
6808 }
6809
6810 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6811                                         struct net_device *adj_dev,
6812                                         struct list_head *dev_list,
6813                                         void *private, bool master)
6814 {
6815         struct netdev_adjacent *adj;
6816         int ret;
6817
6818         adj = __netdev_find_adj(adj_dev, dev_list);
6819
6820         if (adj) {
6821                 adj->ref_nr += 1;
6822                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6823                          dev->name, adj_dev->name, adj->ref_nr);
6824
6825                 return 0;
6826         }
6827
6828         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6829         if (!adj)
6830                 return -ENOMEM;
6831
6832         adj->dev = adj_dev;
6833         adj->master = master;
6834         adj->ref_nr = 1;
6835         adj->private = private;
6836         dev_hold(adj_dev);
6837
6838         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6839                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6840
6841         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6842                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6843                 if (ret)
6844                         goto free_adj;
6845         }
6846
6847         /* Ensure that master link is always the first item in list. */
6848         if (master) {
6849                 ret = sysfs_create_link(&(dev->dev.kobj),
6850                                         &(adj_dev->dev.kobj), "master");
6851                 if (ret)
6852                         goto remove_symlinks;
6853
6854                 list_add_rcu(&adj->list, dev_list);
6855         } else {
6856                 list_add_tail_rcu(&adj->list, dev_list);
6857         }
6858
6859         return 0;
6860
6861 remove_symlinks:
6862         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6863                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6864 free_adj:
6865         kfree(adj);
6866         dev_put(adj_dev);
6867
6868         return ret;
6869 }
6870
6871 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6872                                          struct net_device *adj_dev,
6873                                          u16 ref_nr,
6874                                          struct list_head *dev_list)
6875 {
6876         struct netdev_adjacent *adj;
6877
6878         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6879                  dev->name, adj_dev->name, ref_nr);
6880
6881         adj = __netdev_find_adj(adj_dev, dev_list);
6882
6883         if (!adj) {
6884                 pr_err("Adjacency does not exist for device %s from %s\n",
6885                        dev->name, adj_dev->name);
6886                 WARN_ON(1);
6887                 return;
6888         }
6889
6890         if (adj->ref_nr > ref_nr) {
6891                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6892                          dev->name, adj_dev->name, ref_nr,
6893                          adj->ref_nr - ref_nr);
6894                 adj->ref_nr -= ref_nr;
6895                 return;
6896         }
6897
6898         if (adj->master)
6899                 sysfs_remove_link(&(dev->dev.kobj), "master");
6900
6901         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6902                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6903
6904         list_del_rcu(&adj->list);
6905         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6906                  adj_dev->name, dev->name, adj_dev->name);
6907         dev_put(adj_dev);
6908         kfree_rcu(adj, rcu);
6909 }
6910
6911 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6912                                             struct net_device *upper_dev,
6913                                             struct list_head *up_list,
6914                                             struct list_head *down_list,
6915                                             void *private, bool master)
6916 {
6917         int ret;
6918
6919         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6920                                            private, master);
6921         if (ret)
6922                 return ret;
6923
6924         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6925                                            private, false);
6926         if (ret) {
6927                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6928                 return ret;
6929         }
6930
6931         return 0;
6932 }
6933
6934 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6935                                                struct net_device *upper_dev,
6936                                                u16 ref_nr,
6937                                                struct list_head *up_list,
6938                                                struct list_head *down_list)
6939 {
6940         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6941         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6942 }
6943
6944 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6945                                                 struct net_device *upper_dev,
6946                                                 void *private, bool master)
6947 {
6948         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6949                                                 &dev->adj_list.upper,
6950                                                 &upper_dev->adj_list.lower,
6951                                                 private, master);
6952 }
6953
6954 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6955                                                    struct net_device *upper_dev)
6956 {
6957         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6958                                            &dev->adj_list.upper,
6959                                            &upper_dev->adj_list.lower);
6960 }
6961
6962 static int __netdev_upper_dev_link(struct net_device *dev,
6963                                    struct net_device *upper_dev, bool master,
6964                                    void *upper_priv, void *upper_info,
6965                                    struct netlink_ext_ack *extack)
6966 {
6967         struct netdev_notifier_changeupper_info changeupper_info = {
6968                 .info = {
6969                         .dev = dev,
6970                         .extack = extack,
6971                 },
6972                 .upper_dev = upper_dev,
6973                 .master = master,
6974                 .linking = true,
6975                 .upper_info = upper_info,
6976         };
6977         struct net_device *master_dev;
6978         int ret = 0;
6979
6980         ASSERT_RTNL();
6981
6982         if (dev == upper_dev)
6983                 return -EBUSY;
6984
6985         /* To prevent loops, check if dev is not upper device to upper_dev. */
6986         if (netdev_has_upper_dev(upper_dev, dev))
6987                 return -EBUSY;
6988
6989         if (!master) {
6990                 if (netdev_has_upper_dev(dev, upper_dev))
6991                         return -EEXIST;
6992         } else {
6993                 master_dev = netdev_master_upper_dev_get(dev);
6994                 if (master_dev)
6995                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6996         }
6997
6998         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6999                                             &changeupper_info.info);
7000         ret = notifier_to_errno(ret);
7001         if (ret)
7002                 return ret;
7003
7004         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7005                                                    master);
7006         if (ret)
7007                 return ret;
7008
7009         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7010                                             &changeupper_info.info);
7011         ret = notifier_to_errno(ret);
7012         if (ret)
7013                 goto rollback;
7014
7015         return 0;
7016
7017 rollback:
7018         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7019
7020         return ret;
7021 }
7022
7023 /**
7024  * netdev_upper_dev_link - Add a link to the upper device
7025  * @dev: device
7026  * @upper_dev: new upper device
7027  * @extack: netlink extended ack
7028  *
7029  * Adds a link to device which is upper to this one. The caller must hold
7030  * the RTNL lock. On a failure a negative errno code is returned.
7031  * On success the reference counts are adjusted and the function
7032  * returns zero.
7033  */
7034 int netdev_upper_dev_link(struct net_device *dev,
7035                           struct net_device *upper_dev,
7036                           struct netlink_ext_ack *extack)
7037 {
7038         return __netdev_upper_dev_link(dev, upper_dev, false,
7039                                        NULL, NULL, extack);
7040 }
7041 EXPORT_SYMBOL(netdev_upper_dev_link);
7042
7043 /**
7044  * netdev_master_upper_dev_link - Add a master link to the upper device
7045  * @dev: device
7046  * @upper_dev: new upper device
7047  * @upper_priv: upper device private
7048  * @upper_info: upper info to be passed down via notifier
7049  * @extack: netlink extended ack
7050  *
7051  * Adds a link to device which is upper to this one. In this case, only
7052  * one master upper device can be linked, although other non-master devices
7053  * might be linked as well. The caller must hold the RTNL lock.
7054  * On a failure a negative errno code is returned. On success the reference
7055  * counts are adjusted and the function returns zero.
7056  */
7057 int netdev_master_upper_dev_link(struct net_device *dev,
7058                                  struct net_device *upper_dev,
7059                                  void *upper_priv, void *upper_info,
7060                                  struct netlink_ext_ack *extack)
7061 {
7062         return __netdev_upper_dev_link(dev, upper_dev, true,
7063                                        upper_priv, upper_info, extack);
7064 }
7065 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7066
7067 /**
7068  * netdev_upper_dev_unlink - Removes a link to upper device
7069  * @dev: device
7070  * @upper_dev: new upper device
7071  *
7072  * Removes a link to device which is upper to this one. The caller must hold
7073  * the RTNL lock.
7074  */
7075 void netdev_upper_dev_unlink(struct net_device *dev,
7076                              struct net_device *upper_dev)
7077 {
7078         struct netdev_notifier_changeupper_info changeupper_info = {
7079                 .info = {
7080                         .dev = dev,
7081                 },
7082                 .upper_dev = upper_dev,
7083                 .linking = false,
7084         };
7085
7086         ASSERT_RTNL();
7087
7088         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7089
7090         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7091                                       &changeupper_info.info);
7092
7093         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7094
7095         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7096                                       &changeupper_info.info);
7097 }
7098 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7099
7100 /**
7101  * netdev_bonding_info_change - Dispatch event about slave change
7102  * @dev: device
7103  * @bonding_info: info to dispatch
7104  *
7105  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7106  * The caller must hold the RTNL lock.
7107  */
7108 void netdev_bonding_info_change(struct net_device *dev,
7109                                 struct netdev_bonding_info *bonding_info)
7110 {
7111         struct netdev_notifier_bonding_info info = {
7112                 .info.dev = dev,
7113         };
7114
7115         memcpy(&info.bonding_info, bonding_info,
7116                sizeof(struct netdev_bonding_info));
7117         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7118                                       &info.info);
7119 }
7120 EXPORT_SYMBOL(netdev_bonding_info_change);
7121
7122 static void netdev_adjacent_add_links(struct net_device *dev)
7123 {
7124         struct netdev_adjacent *iter;
7125
7126         struct net *net = dev_net(dev);
7127
7128         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7129                 if (!net_eq(net, dev_net(iter->dev)))
7130                         continue;
7131                 netdev_adjacent_sysfs_add(iter->dev, dev,
7132                                           &iter->dev->adj_list.lower);
7133                 netdev_adjacent_sysfs_add(dev, iter->dev,
7134                                           &dev->adj_list.upper);
7135         }
7136
7137         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7138                 if (!net_eq(net, dev_net(iter->dev)))
7139                         continue;
7140                 netdev_adjacent_sysfs_add(iter->dev, dev,
7141                                           &iter->dev->adj_list.upper);
7142                 netdev_adjacent_sysfs_add(dev, iter->dev,
7143                                           &dev->adj_list.lower);
7144         }
7145 }
7146
7147 static void netdev_adjacent_del_links(struct net_device *dev)
7148 {
7149         struct netdev_adjacent *iter;
7150
7151         struct net *net = dev_net(dev);
7152
7153         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7154                 if (!net_eq(net, dev_net(iter->dev)))
7155                         continue;
7156                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7157                                           &iter->dev->adj_list.lower);
7158                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7159                                           &dev->adj_list.upper);
7160         }
7161
7162         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7163                 if (!net_eq(net, dev_net(iter->dev)))
7164                         continue;
7165                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7166                                           &iter->dev->adj_list.upper);
7167                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7168                                           &dev->adj_list.lower);
7169         }
7170 }
7171
7172 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7173 {
7174         struct netdev_adjacent *iter;
7175
7176         struct net *net = dev_net(dev);
7177
7178         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7179                 if (!net_eq(net, dev_net(iter->dev)))
7180                         continue;
7181                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7182                                           &iter->dev->adj_list.lower);
7183                 netdev_adjacent_sysfs_add(iter->dev, dev,
7184                                           &iter->dev->adj_list.lower);
7185         }
7186
7187         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7188                 if (!net_eq(net, dev_net(iter->dev)))
7189                         continue;
7190                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7191                                           &iter->dev->adj_list.upper);
7192                 netdev_adjacent_sysfs_add(iter->dev, dev,
7193                                           &iter->dev->adj_list.upper);
7194         }
7195 }
7196
7197 void *netdev_lower_dev_get_private(struct net_device *dev,
7198                                    struct net_device *lower_dev)
7199 {
7200         struct netdev_adjacent *lower;
7201
7202         if (!lower_dev)
7203                 return NULL;
7204         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7205         if (!lower)
7206                 return NULL;
7207
7208         return lower->private;
7209 }
7210 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7211
7212
7213 int dev_get_nest_level(struct net_device *dev)
7214 {
7215         struct net_device *lower = NULL;
7216         struct list_head *iter;
7217         int max_nest = -1;
7218         int nest;
7219
7220         ASSERT_RTNL();
7221
7222         netdev_for_each_lower_dev(dev, lower, iter) {
7223                 nest = dev_get_nest_level(lower);
7224                 if (max_nest < nest)
7225                         max_nest = nest;
7226         }
7227
7228         return max_nest + 1;
7229 }
7230 EXPORT_SYMBOL(dev_get_nest_level);
7231
7232 /**
7233  * netdev_lower_change - Dispatch event about lower device state change
7234  * @lower_dev: device
7235  * @lower_state_info: state to dispatch
7236  *
7237  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7238  * The caller must hold the RTNL lock.
7239  */
7240 void netdev_lower_state_changed(struct net_device *lower_dev,
7241                                 void *lower_state_info)
7242 {
7243         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7244                 .info.dev = lower_dev,
7245         };
7246
7247         ASSERT_RTNL();
7248         changelowerstate_info.lower_state_info = lower_state_info;
7249         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7250                                       &changelowerstate_info.info);
7251 }
7252 EXPORT_SYMBOL(netdev_lower_state_changed);
7253
7254 static void dev_change_rx_flags(struct net_device *dev, int flags)
7255 {
7256         const struct net_device_ops *ops = dev->netdev_ops;
7257
7258         if (ops->ndo_change_rx_flags)
7259                 ops->ndo_change_rx_flags(dev, flags);
7260 }
7261
7262 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7263 {
7264         unsigned int old_flags = dev->flags;
7265         kuid_t uid;
7266         kgid_t gid;
7267
7268         ASSERT_RTNL();
7269
7270         dev->flags |= IFF_PROMISC;
7271         dev->promiscuity += inc;
7272         if (dev->promiscuity == 0) {
7273                 /*
7274                  * Avoid overflow.
7275                  * If inc causes overflow, untouch promisc and return error.
7276                  */
7277                 if (inc < 0)
7278                         dev->flags &= ~IFF_PROMISC;
7279                 else {
7280                         dev->promiscuity -= inc;
7281                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7282                                 dev->name);
7283                         return -EOVERFLOW;
7284                 }
7285         }
7286         if (dev->flags != old_flags) {
7287                 pr_info("device %s %s promiscuous mode\n",
7288                         dev->name,
7289                         dev->flags & IFF_PROMISC ? "entered" : "left");
7290                 if (audit_enabled) {
7291                         current_uid_gid(&uid, &gid);
7292                         audit_log(audit_context(), GFP_ATOMIC,
7293                                   AUDIT_ANOM_PROMISCUOUS,
7294                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7295                                   dev->name, (dev->flags & IFF_PROMISC),
7296                                   (old_flags & IFF_PROMISC),
7297                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7298                                   from_kuid(&init_user_ns, uid),
7299                                   from_kgid(&init_user_ns, gid),
7300                                   audit_get_sessionid(current));
7301                 }
7302
7303                 dev_change_rx_flags(dev, IFF_PROMISC);
7304         }
7305         if (notify)
7306                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7307         return 0;
7308 }
7309
7310 /**
7311  *      dev_set_promiscuity     - update promiscuity count on a device
7312  *      @dev: device
7313  *      @inc: modifier
7314  *
7315  *      Add or remove promiscuity from a device. While the count in the device
7316  *      remains above zero the interface remains promiscuous. Once it hits zero
7317  *      the device reverts back to normal filtering operation. A negative inc
7318  *      value is used to drop promiscuity on the device.
7319  *      Return 0 if successful or a negative errno code on error.
7320  */
7321 int dev_set_promiscuity(struct net_device *dev, int inc)
7322 {
7323         unsigned int old_flags = dev->flags;
7324         int err;
7325
7326         err = __dev_set_promiscuity(dev, inc, true);
7327         if (err < 0)
7328                 return err;
7329         if (dev->flags != old_flags)
7330                 dev_set_rx_mode(dev);
7331         return err;
7332 }
7333 EXPORT_SYMBOL(dev_set_promiscuity);
7334
7335 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7336 {
7337         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7338
7339         ASSERT_RTNL();
7340
7341         dev->flags |= IFF_ALLMULTI;
7342         dev->allmulti += inc;
7343         if (dev->allmulti == 0) {
7344                 /*
7345                  * Avoid overflow.
7346                  * If inc causes overflow, untouch allmulti and return error.
7347                  */
7348                 if (inc < 0)
7349                         dev->flags &= ~IFF_ALLMULTI;
7350                 else {
7351                         dev->allmulti -= inc;
7352                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7353                                 dev->name);
7354                         return -EOVERFLOW;
7355                 }
7356         }
7357         if (dev->flags ^ old_flags) {
7358                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7359                 dev_set_rx_mode(dev);
7360                 if (notify)
7361                         __dev_notify_flags(dev, old_flags,
7362                                            dev->gflags ^ old_gflags);
7363         }
7364         return 0;
7365 }
7366
7367 /**
7368  *      dev_set_allmulti        - update allmulti count on a device
7369  *      @dev: device
7370  *      @inc: modifier
7371  *
7372  *      Add or remove reception of all multicast frames to a device. While the
7373  *      count in the device remains above zero the interface remains listening
7374  *      to all interfaces. Once it hits zero the device reverts back to normal
7375  *      filtering operation. A negative @inc value is used to drop the counter
7376  *      when releasing a resource needing all multicasts.
7377  *      Return 0 if successful or a negative errno code on error.
7378  */
7379
7380 int dev_set_allmulti(struct net_device *dev, int inc)
7381 {
7382         return __dev_set_allmulti(dev, inc, true);
7383 }
7384 EXPORT_SYMBOL(dev_set_allmulti);
7385
7386 /*
7387  *      Upload unicast and multicast address lists to device and
7388  *      configure RX filtering. When the device doesn't support unicast
7389  *      filtering it is put in promiscuous mode while unicast addresses
7390  *      are present.
7391  */
7392 void __dev_set_rx_mode(struct net_device *dev)
7393 {
7394         const struct net_device_ops *ops = dev->netdev_ops;
7395
7396         /* dev_open will call this function so the list will stay sane. */
7397         if (!(dev->flags&IFF_UP))
7398                 return;
7399
7400         if (!netif_device_present(dev))
7401                 return;
7402
7403         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7404                 /* Unicast addresses changes may only happen under the rtnl,
7405                  * therefore calling __dev_set_promiscuity here is safe.
7406                  */
7407                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7408                         __dev_set_promiscuity(dev, 1, false);
7409                         dev->uc_promisc = true;
7410                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7411                         __dev_set_promiscuity(dev, -1, false);
7412                         dev->uc_promisc = false;
7413                 }
7414         }
7415
7416         if (ops->ndo_set_rx_mode)
7417                 ops->ndo_set_rx_mode(dev);
7418 }
7419
7420 void dev_set_rx_mode(struct net_device *dev)
7421 {
7422         netif_addr_lock_bh(dev);
7423         __dev_set_rx_mode(dev);
7424         netif_addr_unlock_bh(dev);
7425 }
7426
7427 /**
7428  *      dev_get_flags - get flags reported to userspace
7429  *      @dev: device
7430  *
7431  *      Get the combination of flag bits exported through APIs to userspace.
7432  */
7433 unsigned int dev_get_flags(const struct net_device *dev)
7434 {
7435         unsigned int flags;
7436
7437         flags = (dev->flags & ~(IFF_PROMISC |
7438                                 IFF_ALLMULTI |
7439                                 IFF_RUNNING |
7440                                 IFF_LOWER_UP |
7441                                 IFF_DORMANT)) |
7442                 (dev->gflags & (IFF_PROMISC |
7443                                 IFF_ALLMULTI));
7444
7445         if (netif_running(dev)) {
7446                 if (netif_oper_up(dev))
7447                         flags |= IFF_RUNNING;
7448                 if (netif_carrier_ok(dev))
7449                         flags |= IFF_LOWER_UP;
7450                 if (netif_dormant(dev))
7451                         flags |= IFF_DORMANT;
7452         }
7453
7454         return flags;
7455 }
7456 EXPORT_SYMBOL(dev_get_flags);
7457
7458 int __dev_change_flags(struct net_device *dev, unsigned int flags)
7459 {
7460         unsigned int old_flags = dev->flags;
7461         int ret;
7462
7463         ASSERT_RTNL();
7464
7465         /*
7466          *      Set the flags on our device.
7467          */
7468
7469         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7470                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7471                                IFF_AUTOMEDIA)) |
7472                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7473                                     IFF_ALLMULTI));
7474
7475         /*
7476          *      Load in the correct multicast list now the flags have changed.
7477          */
7478
7479         if ((old_flags ^ flags) & IFF_MULTICAST)
7480                 dev_change_rx_flags(dev, IFF_MULTICAST);
7481
7482         dev_set_rx_mode(dev);
7483
7484         /*
7485          *      Have we downed the interface. We handle IFF_UP ourselves
7486          *      according to user attempts to set it, rather than blindly
7487          *      setting it.
7488          */
7489
7490         ret = 0;
7491         if ((old_flags ^ flags) & IFF_UP) {
7492                 if (old_flags & IFF_UP)
7493                         __dev_close(dev);
7494                 else
7495                         ret = __dev_open(dev);
7496         }
7497
7498         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7499                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7500                 unsigned int old_flags = dev->flags;
7501
7502                 dev->gflags ^= IFF_PROMISC;
7503
7504                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7505                         if (dev->flags != old_flags)
7506                                 dev_set_rx_mode(dev);
7507         }
7508
7509         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7510          * is important. Some (broken) drivers set IFF_PROMISC, when
7511          * IFF_ALLMULTI is requested not asking us and not reporting.
7512          */
7513         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7514                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7515
7516                 dev->gflags ^= IFF_ALLMULTI;
7517                 __dev_set_allmulti(dev, inc, false);
7518         }
7519
7520         return ret;
7521 }
7522
7523 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7524                         unsigned int gchanges)
7525 {
7526         unsigned int changes = dev->flags ^ old_flags;
7527
7528         if (gchanges)
7529                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7530
7531         if (changes & IFF_UP) {
7532                 if (dev->flags & IFF_UP)
7533                         call_netdevice_notifiers(NETDEV_UP, dev);
7534                 else
7535                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7536         }
7537
7538         if (dev->flags & IFF_UP &&
7539             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7540                 struct netdev_notifier_change_info change_info = {
7541                         .info = {
7542                                 .dev = dev,
7543                         },
7544                         .flags_changed = changes,
7545                 };
7546
7547                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7548         }
7549 }
7550
7551 /**
7552  *      dev_change_flags - change device settings
7553  *      @dev: device
7554  *      @flags: device state flags
7555  *
7556  *      Change settings on device based state flags. The flags are
7557  *      in the userspace exported format.
7558  */
7559 int dev_change_flags(struct net_device *dev, unsigned int flags)
7560 {
7561         int ret;
7562         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7563
7564         ret = __dev_change_flags(dev, flags);
7565         if (ret < 0)
7566                 return ret;
7567
7568         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7569         __dev_notify_flags(dev, old_flags, changes);
7570         return ret;
7571 }
7572 EXPORT_SYMBOL(dev_change_flags);
7573
7574 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7575 {
7576         const struct net_device_ops *ops = dev->netdev_ops;
7577
7578         if (ops->ndo_change_mtu)
7579                 return ops->ndo_change_mtu(dev, new_mtu);
7580
7581         dev->mtu = new_mtu;
7582         return 0;
7583 }
7584 EXPORT_SYMBOL(__dev_set_mtu);
7585
7586 /**
7587  *      dev_set_mtu_ext - Change maximum transfer unit
7588  *      @dev: device
7589  *      @new_mtu: new transfer unit
7590  *      @extack: netlink extended ack
7591  *
7592  *      Change the maximum transfer size of the network device.
7593  */
7594 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7595                     struct netlink_ext_ack *extack)
7596 {
7597         int err, orig_mtu;
7598
7599         if (new_mtu == dev->mtu)
7600                 return 0;
7601
7602         /* MTU must be positive, and in range */
7603         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7604                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7605                 return -EINVAL;
7606         }
7607
7608         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7609                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7610                 return -EINVAL;
7611         }
7612
7613         if (!netif_device_present(dev))
7614                 return -ENODEV;
7615
7616         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7617         err = notifier_to_errno(err);
7618         if (err)
7619                 return err;
7620
7621         orig_mtu = dev->mtu;
7622         err = __dev_set_mtu(dev, new_mtu);
7623
7624         if (!err) {
7625                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7626                                                    orig_mtu);
7627                 err = notifier_to_errno(err);
7628                 if (err) {
7629                         /* setting mtu back and notifying everyone again,
7630                          * so that they have a chance to revert changes.
7631                          */
7632                         __dev_set_mtu(dev, orig_mtu);
7633                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7634                                                      new_mtu);
7635                 }
7636         }
7637         return err;
7638 }
7639
7640 int dev_set_mtu(struct net_device *dev, int new_mtu)
7641 {
7642         struct netlink_ext_ack extack;
7643         int err;
7644
7645         memset(&extack, 0, sizeof(extack));
7646         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7647         if (err && extack._msg)
7648                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7649         return err;
7650 }
7651 EXPORT_SYMBOL(dev_set_mtu);
7652
7653 /**
7654  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7655  *      @dev: device
7656  *      @new_len: new tx queue length
7657  */
7658 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7659 {
7660         unsigned int orig_len = dev->tx_queue_len;
7661         int res;
7662
7663         if (new_len != (unsigned int)new_len)
7664                 return -ERANGE;
7665
7666         if (new_len != orig_len) {
7667                 dev->tx_queue_len = new_len;
7668                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7669                 res = notifier_to_errno(res);
7670                 if (res)
7671                         goto err_rollback;
7672                 res = dev_qdisc_change_tx_queue_len(dev);
7673                 if (res)
7674                         goto err_rollback;
7675         }
7676
7677         return 0;
7678
7679 err_rollback:
7680         netdev_err(dev, "refused to change device tx_queue_len\n");
7681         dev->tx_queue_len = orig_len;
7682         return res;
7683 }
7684
7685 /**
7686  *      dev_set_group - Change group this device belongs to
7687  *      @dev: device
7688  *      @new_group: group this device should belong to
7689  */
7690 void dev_set_group(struct net_device *dev, int new_group)
7691 {
7692         dev->group = new_group;
7693 }
7694 EXPORT_SYMBOL(dev_set_group);
7695
7696 /**
7697  *      dev_set_mac_address - Change Media Access Control Address
7698  *      @dev: device
7699  *      @sa: new address
7700  *
7701  *      Change the hardware (MAC) address of the device
7702  */
7703 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7704 {
7705         const struct net_device_ops *ops = dev->netdev_ops;
7706         int err;
7707
7708         if (!ops->ndo_set_mac_address)
7709                 return -EOPNOTSUPP;
7710         if (sa->sa_family != dev->type)
7711                 return -EINVAL;
7712         if (!netif_device_present(dev))
7713                 return -ENODEV;
7714         err = ops->ndo_set_mac_address(dev, sa);
7715         if (err)
7716                 return err;
7717         dev->addr_assign_type = NET_ADDR_SET;
7718         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7719         add_device_randomness(dev->dev_addr, dev->addr_len);
7720         return 0;
7721 }
7722 EXPORT_SYMBOL(dev_set_mac_address);
7723
7724 /**
7725  *      dev_change_carrier - Change device carrier
7726  *      @dev: device
7727  *      @new_carrier: new value
7728  *
7729  *      Change device carrier
7730  */
7731 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7732 {
7733         const struct net_device_ops *ops = dev->netdev_ops;
7734
7735         if (!ops->ndo_change_carrier)
7736                 return -EOPNOTSUPP;
7737         if (!netif_device_present(dev))
7738                 return -ENODEV;
7739         return ops->ndo_change_carrier(dev, new_carrier);
7740 }
7741 EXPORT_SYMBOL(dev_change_carrier);
7742
7743 /**
7744  *      dev_get_phys_port_id - Get device physical port ID
7745  *      @dev: device
7746  *      @ppid: port ID
7747  *
7748  *      Get device physical port ID
7749  */
7750 int dev_get_phys_port_id(struct net_device *dev,
7751                          struct netdev_phys_item_id *ppid)
7752 {
7753         const struct net_device_ops *ops = dev->netdev_ops;
7754
7755         if (!ops->ndo_get_phys_port_id)
7756                 return -EOPNOTSUPP;
7757         return ops->ndo_get_phys_port_id(dev, ppid);
7758 }
7759 EXPORT_SYMBOL(dev_get_phys_port_id);
7760
7761 /**
7762  *      dev_get_phys_port_name - Get device physical port name
7763  *      @dev: device
7764  *      @name: port name
7765  *      @len: limit of bytes to copy to name
7766  *
7767  *      Get device physical port name
7768  */
7769 int dev_get_phys_port_name(struct net_device *dev,
7770                            char *name, size_t len)
7771 {
7772         const struct net_device_ops *ops = dev->netdev_ops;
7773
7774         if (!ops->ndo_get_phys_port_name)
7775                 return -EOPNOTSUPP;
7776         return ops->ndo_get_phys_port_name(dev, name, len);
7777 }
7778 EXPORT_SYMBOL(dev_get_phys_port_name);
7779
7780 /**
7781  *      dev_change_proto_down - update protocol port state information
7782  *      @dev: device
7783  *      @proto_down: new value
7784  *
7785  *      This info can be used by switch drivers to set the phys state of the
7786  *      port.
7787  */
7788 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7789 {
7790         const struct net_device_ops *ops = dev->netdev_ops;
7791
7792         if (!ops->ndo_change_proto_down)
7793                 return -EOPNOTSUPP;
7794         if (!netif_device_present(dev))
7795                 return -ENODEV;
7796         return ops->ndo_change_proto_down(dev, proto_down);
7797 }
7798 EXPORT_SYMBOL(dev_change_proto_down);
7799
7800 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7801                     enum bpf_netdev_command cmd)
7802 {
7803         struct netdev_bpf xdp;
7804
7805         if (!bpf_op)
7806                 return 0;
7807
7808         memset(&xdp, 0, sizeof(xdp));
7809         xdp.command = cmd;
7810
7811         /* Query must always succeed. */
7812         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7813
7814         return xdp.prog_id;
7815 }
7816
7817 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7818                            struct netlink_ext_ack *extack, u32 flags,
7819                            struct bpf_prog *prog)
7820 {
7821         struct netdev_bpf xdp;
7822
7823         memset(&xdp, 0, sizeof(xdp));
7824         if (flags & XDP_FLAGS_HW_MODE)
7825                 xdp.command = XDP_SETUP_PROG_HW;
7826         else
7827                 xdp.command = XDP_SETUP_PROG;
7828         xdp.extack = extack;
7829         xdp.flags = flags;
7830         xdp.prog = prog;
7831
7832         return bpf_op(dev, &xdp);
7833 }
7834
7835 static void dev_xdp_uninstall(struct net_device *dev)
7836 {
7837         struct netdev_bpf xdp;
7838         bpf_op_t ndo_bpf;
7839
7840         /* Remove generic XDP */
7841         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7842
7843         /* Remove from the driver */
7844         ndo_bpf = dev->netdev_ops->ndo_bpf;
7845         if (!ndo_bpf)
7846                 return;
7847
7848         memset(&xdp, 0, sizeof(xdp));
7849         xdp.command = XDP_QUERY_PROG;
7850         WARN_ON(ndo_bpf(dev, &xdp));
7851         if (xdp.prog_id)
7852                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7853                                         NULL));
7854
7855         /* Remove HW offload */
7856         memset(&xdp, 0, sizeof(xdp));
7857         xdp.command = XDP_QUERY_PROG_HW;
7858         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7859                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7860                                         NULL));
7861 }
7862
7863 /**
7864  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7865  *      @dev: device
7866  *      @extack: netlink extended ack
7867  *      @fd: new program fd or negative value to clear
7868  *      @flags: xdp-related flags
7869  *
7870  *      Set or clear a bpf program for a device
7871  */
7872 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7873                       int fd, u32 flags)
7874 {
7875         const struct net_device_ops *ops = dev->netdev_ops;
7876         enum bpf_netdev_command query;
7877         struct bpf_prog *prog = NULL;
7878         bpf_op_t bpf_op, bpf_chk;
7879         int err;
7880
7881         ASSERT_RTNL();
7882
7883         query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7884
7885         bpf_op = bpf_chk = ops->ndo_bpf;
7886         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7887                 return -EOPNOTSUPP;
7888         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7889                 bpf_op = generic_xdp_install;
7890         if (bpf_op == bpf_chk)
7891                 bpf_chk = generic_xdp_install;
7892
7893         if (fd >= 0) {
7894                 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7895                     __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7896                         return -EEXIST;
7897                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7898                     __dev_xdp_query(dev, bpf_op, query))
7899                         return -EBUSY;
7900
7901                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7902                                              bpf_op == ops->ndo_bpf);
7903                 if (IS_ERR(prog))
7904                         return PTR_ERR(prog);
7905
7906                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7907                     bpf_prog_is_dev_bound(prog->aux)) {
7908                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7909                         bpf_prog_put(prog);
7910                         return -EINVAL;
7911                 }
7912         }
7913
7914         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7915         if (err < 0 && prog)
7916                 bpf_prog_put(prog);
7917
7918         return err;
7919 }
7920
7921 /**
7922  *      dev_new_index   -       allocate an ifindex
7923  *      @net: the applicable net namespace
7924  *
7925  *      Returns a suitable unique value for a new device interface
7926  *      number.  The caller must hold the rtnl semaphore or the
7927  *      dev_base_lock to be sure it remains unique.
7928  */
7929 static int dev_new_index(struct net *net)
7930 {
7931         int ifindex = net->ifindex;
7932
7933         for (;;) {
7934                 if (++ifindex <= 0)
7935                         ifindex = 1;
7936                 if (!__dev_get_by_index(net, ifindex))
7937                         return net->ifindex = ifindex;
7938         }
7939 }
7940
7941 /* Delayed registration/unregisteration */
7942 static LIST_HEAD(net_todo_list);
7943 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7944
7945 static void net_set_todo(struct net_device *dev)
7946 {
7947         list_add_tail(&dev->todo_list, &net_todo_list);
7948         dev_net(dev)->dev_unreg_count++;
7949 }
7950
7951 static void rollback_registered_many(struct list_head *head)
7952 {
7953         struct net_device *dev, *tmp;
7954         LIST_HEAD(close_head);
7955
7956         BUG_ON(dev_boot_phase);
7957         ASSERT_RTNL();
7958
7959         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7960                 /* Some devices call without registering
7961                  * for initialization unwind. Remove those
7962                  * devices and proceed with the remaining.
7963                  */
7964                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7965                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7966                                  dev->name, dev);
7967
7968                         WARN_ON(1);
7969                         list_del(&dev->unreg_list);
7970                         continue;
7971                 }
7972                 dev->dismantle = true;
7973                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7974         }
7975
7976         /* If device is running, close it first. */
7977         list_for_each_entry(dev, head, unreg_list)
7978                 list_add_tail(&dev->close_list, &close_head);
7979         dev_close_many(&close_head, true);
7980
7981         list_for_each_entry(dev, head, unreg_list) {
7982                 /* And unlink it from device chain. */
7983                 unlist_netdevice(dev);
7984
7985                 dev->reg_state = NETREG_UNREGISTERING;
7986         }
7987         flush_all_backlogs();
7988
7989         synchronize_net();
7990
7991         list_for_each_entry(dev, head, unreg_list) {
7992                 struct sk_buff *skb = NULL;
7993
7994                 /* Shutdown queueing discipline. */
7995                 dev_shutdown(dev);
7996
7997                 dev_xdp_uninstall(dev);
7998
7999                 /* Notify protocols, that we are about to destroy
8000                  * this device. They should clean all the things.
8001                  */
8002                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8003
8004                 if (!dev->rtnl_link_ops ||
8005                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8006                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8007                                                      GFP_KERNEL, NULL, 0);
8008
8009                 /*
8010                  *      Flush the unicast and multicast chains
8011                  */
8012                 dev_uc_flush(dev);
8013                 dev_mc_flush(dev);
8014
8015                 if (dev->netdev_ops->ndo_uninit)
8016                         dev->netdev_ops->ndo_uninit(dev);
8017
8018                 if (skb)
8019                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8020
8021                 /* Notifier chain MUST detach us all upper devices. */
8022                 WARN_ON(netdev_has_any_upper_dev(dev));
8023                 WARN_ON(netdev_has_any_lower_dev(dev));
8024
8025                 /* Remove entries from kobject tree */
8026                 netdev_unregister_kobject(dev);
8027 #ifdef CONFIG_XPS
8028                 /* Remove XPS queueing entries */
8029                 netif_reset_xps_queues_gt(dev, 0);
8030 #endif
8031         }
8032
8033         synchronize_net();
8034
8035         list_for_each_entry(dev, head, unreg_list)
8036                 dev_put(dev);
8037 }
8038
8039 static void rollback_registered(struct net_device *dev)
8040 {
8041         LIST_HEAD(single);
8042
8043         list_add(&dev->unreg_list, &single);
8044         rollback_registered_many(&single);
8045         list_del(&single);
8046 }
8047
8048 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8049         struct net_device *upper, netdev_features_t features)
8050 {
8051         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8052         netdev_features_t feature;
8053         int feature_bit;
8054
8055         for_each_netdev_feature(&upper_disables, feature_bit) {
8056                 feature = __NETIF_F_BIT(feature_bit);
8057                 if (!(upper->wanted_features & feature)
8058                     && (features & feature)) {
8059                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8060                                    &feature, upper->name);
8061                         features &= ~feature;
8062                 }
8063         }
8064
8065         return features;
8066 }
8067
8068 static void netdev_sync_lower_features(struct net_device *upper,
8069         struct net_device *lower, netdev_features_t features)
8070 {
8071         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8072         netdev_features_t feature;
8073         int feature_bit;
8074
8075         for_each_netdev_feature(&upper_disables, feature_bit) {
8076                 feature = __NETIF_F_BIT(feature_bit);
8077                 if (!(features & feature) && (lower->features & feature)) {
8078                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8079                                    &feature, lower->name);
8080                         lower->wanted_features &= ~feature;
8081                         netdev_update_features(lower);
8082
8083                         if (unlikely(lower->features & feature))
8084                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8085                                             &feature, lower->name);
8086                 }
8087         }
8088 }
8089
8090 static netdev_features_t netdev_fix_features(struct net_device *dev,
8091         netdev_features_t features)
8092 {
8093         /* Fix illegal checksum combinations */
8094         if ((features & NETIF_F_HW_CSUM) &&
8095             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8096                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8097                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8098         }
8099
8100         /* TSO requires that SG is present as well. */
8101         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8102                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8103                 features &= ~NETIF_F_ALL_TSO;
8104         }
8105
8106         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8107                                         !(features & NETIF_F_IP_CSUM)) {
8108                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8109                 features &= ~NETIF_F_TSO;
8110                 features &= ~NETIF_F_TSO_ECN;
8111         }
8112
8113         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8114                                          !(features & NETIF_F_IPV6_CSUM)) {
8115                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8116                 features &= ~NETIF_F_TSO6;
8117         }
8118
8119         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8120         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8121                 features &= ~NETIF_F_TSO_MANGLEID;
8122
8123         /* TSO ECN requires that TSO is present as well. */
8124         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8125                 features &= ~NETIF_F_TSO_ECN;
8126
8127         /* Software GSO depends on SG. */
8128         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8129                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8130                 features &= ~NETIF_F_GSO;
8131         }
8132
8133         /* GSO partial features require GSO partial be set */
8134         if ((features & dev->gso_partial_features) &&
8135             !(features & NETIF_F_GSO_PARTIAL)) {
8136                 netdev_dbg(dev,
8137                            "Dropping partially supported GSO features since no GSO partial.\n");
8138                 features &= ~dev->gso_partial_features;
8139         }
8140
8141         if (!(features & NETIF_F_RXCSUM)) {
8142                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8143                  * successfully merged by hardware must also have the
8144                  * checksum verified by hardware.  If the user does not
8145                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8146                  */
8147                 if (features & NETIF_F_GRO_HW) {
8148                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8149                         features &= ~NETIF_F_GRO_HW;
8150                 }
8151         }
8152
8153         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8154         if (features & NETIF_F_RXFCS) {
8155                 if (features & NETIF_F_LRO) {
8156                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8157                         features &= ~NETIF_F_LRO;
8158                 }
8159
8160                 if (features & NETIF_F_GRO_HW) {
8161                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8162                         features &= ~NETIF_F_GRO_HW;
8163                 }
8164         }
8165
8166         return features;
8167 }
8168
8169 int __netdev_update_features(struct net_device *dev)
8170 {
8171         struct net_device *upper, *lower;
8172         netdev_features_t features;
8173         struct list_head *iter;
8174         int err = -1;
8175
8176         ASSERT_RTNL();
8177
8178         features = netdev_get_wanted_features(dev);
8179
8180         if (dev->netdev_ops->ndo_fix_features)
8181                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8182
8183         /* driver might be less strict about feature dependencies */
8184         features = netdev_fix_features(dev, features);
8185
8186         /* some features can't be enabled if they're off an an upper device */
8187         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8188                 features = netdev_sync_upper_features(dev, upper, features);
8189
8190         if (dev->features == features)
8191                 goto sync_lower;
8192
8193         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8194                 &dev->features, &features);
8195
8196         if (dev->netdev_ops->ndo_set_features)
8197                 err = dev->netdev_ops->ndo_set_features(dev, features);
8198         else
8199                 err = 0;
8200
8201         if (unlikely(err < 0)) {
8202                 netdev_err(dev,
8203                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8204                         err, &features, &dev->features);
8205                 /* return non-0 since some features might have changed and
8206                  * it's better to fire a spurious notification than miss it
8207                  */
8208                 return -1;
8209         }
8210
8211 sync_lower:
8212         /* some features must be disabled on lower devices when disabled
8213          * on an upper device (think: bonding master or bridge)
8214          */
8215         netdev_for_each_lower_dev(dev, lower, iter)
8216                 netdev_sync_lower_features(dev, lower, features);
8217
8218         if (!err) {
8219                 netdev_features_t diff = features ^ dev->features;
8220
8221                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8222                         /* udp_tunnel_{get,drop}_rx_info both need
8223                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8224                          * device, or they won't do anything.
8225                          * Thus we need to update dev->features
8226                          * *before* calling udp_tunnel_get_rx_info,
8227                          * but *after* calling udp_tunnel_drop_rx_info.
8228                          */
8229                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8230                                 dev->features = features;
8231                                 udp_tunnel_get_rx_info(dev);
8232                         } else {
8233                                 udp_tunnel_drop_rx_info(dev);
8234                         }
8235                 }
8236
8237                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8238                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8239                                 dev->features = features;
8240                                 err |= vlan_get_rx_ctag_filter_info(dev);
8241                         } else {
8242                                 vlan_drop_rx_ctag_filter_info(dev);
8243                         }
8244                 }
8245
8246                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8247                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8248                                 dev->features = features;
8249                                 err |= vlan_get_rx_stag_filter_info(dev);
8250                         } else {
8251                                 vlan_drop_rx_stag_filter_info(dev);
8252                         }
8253                 }
8254
8255                 dev->features = features;
8256         }
8257
8258         return err < 0 ? 0 : 1;
8259 }
8260
8261 /**
8262  *      netdev_update_features - recalculate device features
8263  *      @dev: the device to check
8264  *
8265  *      Recalculate dev->features set and send notifications if it
8266  *      has changed. Should be called after driver or hardware dependent
8267  *      conditions might have changed that influence the features.
8268  */
8269 void netdev_update_features(struct net_device *dev)
8270 {
8271         if (__netdev_update_features(dev))
8272                 netdev_features_change(dev);
8273 }
8274 EXPORT_SYMBOL(netdev_update_features);
8275
8276 /**
8277  *      netdev_change_features - recalculate device features
8278  *      @dev: the device to check
8279  *
8280  *      Recalculate dev->features set and send notifications even
8281  *      if they have not changed. Should be called instead of
8282  *      netdev_update_features() if also dev->vlan_features might
8283  *      have changed to allow the changes to be propagated to stacked
8284  *      VLAN devices.
8285  */
8286 void netdev_change_features(struct net_device *dev)
8287 {
8288         __netdev_update_features(dev);
8289         netdev_features_change(dev);
8290 }
8291 EXPORT_SYMBOL(netdev_change_features);
8292
8293 /**
8294  *      netif_stacked_transfer_operstate -      transfer operstate
8295  *      @rootdev: the root or lower level device to transfer state from
8296  *      @dev: the device to transfer operstate to
8297  *
8298  *      Transfer operational state from root to device. This is normally
8299  *      called when a stacking relationship exists between the root
8300  *      device and the device(a leaf device).
8301  */
8302 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8303                                         struct net_device *dev)
8304 {
8305         if (rootdev->operstate == IF_OPER_DORMANT)
8306                 netif_dormant_on(dev);
8307         else
8308                 netif_dormant_off(dev);
8309
8310         if (netif_carrier_ok(rootdev))
8311                 netif_carrier_on(dev);
8312         else
8313                 netif_carrier_off(dev);
8314 }
8315 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8316
8317 static int netif_alloc_rx_queues(struct net_device *dev)
8318 {
8319         unsigned int i, count = dev->num_rx_queues;
8320         struct netdev_rx_queue *rx;
8321         size_t sz = count * sizeof(*rx);
8322         int err = 0;
8323
8324         BUG_ON(count < 1);
8325
8326         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8327         if (!rx)
8328                 return -ENOMEM;
8329
8330         dev->_rx = rx;
8331
8332         for (i = 0; i < count; i++) {
8333                 rx[i].dev = dev;
8334
8335                 /* XDP RX-queue setup */
8336                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8337                 if (err < 0)
8338                         goto err_rxq_info;
8339         }
8340         return 0;
8341
8342 err_rxq_info:
8343         /* Rollback successful reg's and free other resources */
8344         while (i--)
8345                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8346         kvfree(dev->_rx);
8347         dev->_rx = NULL;
8348         return err;
8349 }
8350
8351 static void netif_free_rx_queues(struct net_device *dev)
8352 {
8353         unsigned int i, count = dev->num_rx_queues;
8354
8355         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8356         if (!dev->_rx)
8357                 return;
8358
8359         for (i = 0; i < count; i++)
8360                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8361
8362         kvfree(dev->_rx);
8363 }
8364
8365 static void netdev_init_one_queue(struct net_device *dev,
8366                                   struct netdev_queue *queue, void *_unused)
8367 {
8368         /* Initialize queue lock */
8369         spin_lock_init(&queue->_xmit_lock);
8370         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8371         queue->xmit_lock_owner = -1;
8372         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8373         queue->dev = dev;
8374 #ifdef CONFIG_BQL
8375         dql_init(&queue->dql, HZ);
8376 #endif
8377 }
8378
8379 static void netif_free_tx_queues(struct net_device *dev)
8380 {
8381         kvfree(dev->_tx);
8382 }
8383
8384 static int netif_alloc_netdev_queues(struct net_device *dev)
8385 {
8386         unsigned int count = dev->num_tx_queues;
8387         struct netdev_queue *tx;
8388         size_t sz = count * sizeof(*tx);
8389
8390         if (count < 1 || count > 0xffff)
8391                 return -EINVAL;
8392
8393         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8394         if (!tx)
8395                 return -ENOMEM;
8396
8397         dev->_tx = tx;
8398
8399         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8400         spin_lock_init(&dev->tx_global_lock);
8401
8402         return 0;
8403 }
8404
8405 void netif_tx_stop_all_queues(struct net_device *dev)
8406 {
8407         unsigned int i;
8408
8409         for (i = 0; i < dev->num_tx_queues; i++) {
8410                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8411
8412                 netif_tx_stop_queue(txq);
8413         }
8414 }
8415 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8416
8417 /**
8418  *      register_netdevice      - register a network device
8419  *      @dev: device to register
8420  *
8421  *      Take a completed network device structure and add it to the kernel
8422  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8423  *      chain. 0 is returned on success. A negative errno code is returned
8424  *      on a failure to set up the device, or if the name is a duplicate.
8425  *
8426  *      Callers must hold the rtnl semaphore. You may want
8427  *      register_netdev() instead of this.
8428  *
8429  *      BUGS:
8430  *      The locking appears insufficient to guarantee two parallel registers
8431  *      will not get the same name.
8432  */
8433
8434 int register_netdevice(struct net_device *dev)
8435 {
8436         int ret;
8437         struct net *net = dev_net(dev);
8438
8439         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8440                      NETDEV_FEATURE_COUNT);
8441         BUG_ON(dev_boot_phase);
8442         ASSERT_RTNL();
8443
8444         might_sleep();
8445
8446         /* When net_device's are persistent, this will be fatal. */
8447         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8448         BUG_ON(!net);
8449
8450         spin_lock_init(&dev->addr_list_lock);
8451         netdev_set_addr_lockdep_class(dev);
8452
8453         ret = dev_get_valid_name(net, dev, dev->name);
8454         if (ret < 0)
8455                 goto out;
8456
8457         /* Init, if this function is available */
8458         if (dev->netdev_ops->ndo_init) {
8459                 ret = dev->netdev_ops->ndo_init(dev);
8460                 if (ret) {
8461                         if (ret > 0)
8462                                 ret = -EIO;
8463                         goto out;
8464                 }
8465         }
8466
8467         if (((dev->hw_features | dev->features) &
8468              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8469             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8470              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8471                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8472                 ret = -EINVAL;
8473                 goto err_uninit;
8474         }
8475
8476         ret = -EBUSY;
8477         if (!dev->ifindex)
8478                 dev->ifindex = dev_new_index(net);
8479         else if (__dev_get_by_index(net, dev->ifindex))
8480                 goto err_uninit;
8481
8482         /* Transfer changeable features to wanted_features and enable
8483          * software offloads (GSO and GRO).
8484          */
8485         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8486         dev->features |= NETIF_F_SOFT_FEATURES;
8487
8488         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8489                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8490                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8491         }
8492
8493         dev->wanted_features = dev->features & dev->hw_features;
8494
8495         if (!(dev->flags & IFF_LOOPBACK))
8496                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8497
8498         /* If IPv4 TCP segmentation offload is supported we should also
8499          * allow the device to enable segmenting the frame with the option
8500          * of ignoring a static IP ID value.  This doesn't enable the
8501          * feature itself but allows the user to enable it later.
8502          */
8503         if (dev->hw_features & NETIF_F_TSO)
8504                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8505         if (dev->vlan_features & NETIF_F_TSO)
8506                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8507         if (dev->mpls_features & NETIF_F_TSO)
8508                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8509         if (dev->hw_enc_features & NETIF_F_TSO)
8510                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8511
8512         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8513          */
8514         dev->vlan_features |= NETIF_F_HIGHDMA;
8515
8516         /* Make NETIF_F_SG inheritable to tunnel devices.
8517          */
8518         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8519
8520         /* Make NETIF_F_SG inheritable to MPLS.
8521          */
8522         dev->mpls_features |= NETIF_F_SG;
8523
8524         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8525         ret = notifier_to_errno(ret);
8526         if (ret)
8527                 goto err_uninit;
8528
8529         ret = netdev_register_kobject(dev);
8530         if (ret)
8531                 goto err_uninit;
8532         dev->reg_state = NETREG_REGISTERED;
8533
8534         __netdev_update_features(dev);
8535
8536         /*
8537          *      Default initial state at registry is that the
8538          *      device is present.
8539          */
8540
8541         set_bit(__LINK_STATE_PRESENT, &dev->state);
8542
8543         linkwatch_init_dev(dev);
8544
8545         dev_init_scheduler(dev);
8546         dev_hold(dev);
8547         list_netdevice(dev);
8548         add_device_randomness(dev->dev_addr, dev->addr_len);
8549
8550         /* If the device has permanent device address, driver should
8551          * set dev_addr and also addr_assign_type should be set to
8552          * NET_ADDR_PERM (default value).
8553          */
8554         if (dev->addr_assign_type == NET_ADDR_PERM)
8555                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8556
8557         /* Notify protocols, that a new device appeared. */
8558         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8559         ret = notifier_to_errno(ret);
8560         if (ret) {
8561                 rollback_registered(dev);
8562                 dev->reg_state = NETREG_UNREGISTERED;
8563         }
8564         /*
8565          *      Prevent userspace races by waiting until the network
8566          *      device is fully setup before sending notifications.
8567          */
8568         if (!dev->rtnl_link_ops ||
8569             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8570                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8571
8572 out:
8573         return ret;
8574
8575 err_uninit:
8576         if (dev->netdev_ops->ndo_uninit)
8577                 dev->netdev_ops->ndo_uninit(dev);
8578         if (dev->priv_destructor)
8579                 dev->priv_destructor(dev);
8580         goto out;
8581 }
8582 EXPORT_SYMBOL(register_netdevice);
8583
8584 /**
8585  *      init_dummy_netdev       - init a dummy network device for NAPI
8586  *      @dev: device to init
8587  *
8588  *      This takes a network device structure and initialize the minimum
8589  *      amount of fields so it can be used to schedule NAPI polls without
8590  *      registering a full blown interface. This is to be used by drivers
8591  *      that need to tie several hardware interfaces to a single NAPI
8592  *      poll scheduler due to HW limitations.
8593  */
8594 int init_dummy_netdev(struct net_device *dev)
8595 {
8596         /* Clear everything. Note we don't initialize spinlocks
8597          * are they aren't supposed to be taken by any of the
8598          * NAPI code and this dummy netdev is supposed to be
8599          * only ever used for NAPI polls
8600          */
8601         memset(dev, 0, sizeof(struct net_device));
8602
8603         /* make sure we BUG if trying to hit standard
8604          * register/unregister code path
8605          */
8606         dev->reg_state = NETREG_DUMMY;
8607
8608         /* NAPI wants this */
8609         INIT_LIST_HEAD(&dev->napi_list);
8610
8611         /* a dummy interface is started by default */
8612         set_bit(__LINK_STATE_PRESENT, &dev->state);
8613         set_bit(__LINK_STATE_START, &dev->state);
8614
8615         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8616          * because users of this 'device' dont need to change
8617          * its refcount.
8618          */
8619
8620         return 0;
8621 }
8622 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8623
8624
8625 /**
8626  *      register_netdev - register a network device
8627  *      @dev: device to register
8628  *
8629  *      Take a completed network device structure and add it to the kernel
8630  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8631  *      chain. 0 is returned on success. A negative errno code is returned
8632  *      on a failure to set up the device, or if the name is a duplicate.
8633  *
8634  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8635  *      and expands the device name if you passed a format string to
8636  *      alloc_netdev.
8637  */
8638 int register_netdev(struct net_device *dev)
8639 {
8640         int err;
8641
8642         if (rtnl_lock_killable())
8643                 return -EINTR;
8644         err = register_netdevice(dev);
8645         rtnl_unlock();
8646         return err;
8647 }
8648 EXPORT_SYMBOL(register_netdev);
8649
8650 int netdev_refcnt_read(const struct net_device *dev)
8651 {
8652         int i, refcnt = 0;
8653
8654         for_each_possible_cpu(i)
8655                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8656         return refcnt;
8657 }
8658 EXPORT_SYMBOL(netdev_refcnt_read);
8659
8660 /**
8661  * netdev_wait_allrefs - wait until all references are gone.
8662  * @dev: target net_device
8663  *
8664  * This is called when unregistering network devices.
8665  *
8666  * Any protocol or device that holds a reference should register
8667  * for netdevice notification, and cleanup and put back the
8668  * reference if they receive an UNREGISTER event.
8669  * We can get stuck here if buggy protocols don't correctly
8670  * call dev_put.
8671  */
8672 static void netdev_wait_allrefs(struct net_device *dev)
8673 {
8674         unsigned long rebroadcast_time, warning_time;
8675         int refcnt;
8676
8677         linkwatch_forget_dev(dev);
8678
8679         rebroadcast_time = warning_time = jiffies;
8680         refcnt = netdev_refcnt_read(dev);
8681
8682         while (refcnt != 0) {
8683                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8684                         rtnl_lock();
8685
8686                         /* Rebroadcast unregister notification */
8687                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8688
8689                         __rtnl_unlock();
8690                         rcu_barrier();
8691                         rtnl_lock();
8692
8693                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8694                                      &dev->state)) {
8695                                 /* We must not have linkwatch events
8696                                  * pending on unregister. If this
8697                                  * happens, we simply run the queue
8698                                  * unscheduled, resulting in a noop
8699                                  * for this device.
8700                                  */
8701                                 linkwatch_run_queue();
8702                         }
8703
8704                         __rtnl_unlock();
8705
8706                         rebroadcast_time = jiffies;
8707                 }
8708
8709                 msleep(250);
8710
8711                 refcnt = netdev_refcnt_read(dev);
8712
8713                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8714                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8715                                  dev->name, refcnt);
8716                         warning_time = jiffies;
8717                 }
8718         }
8719 }
8720
8721 /* The sequence is:
8722  *
8723  *      rtnl_lock();
8724  *      ...
8725  *      register_netdevice(x1);
8726  *      register_netdevice(x2);
8727  *      ...
8728  *      unregister_netdevice(y1);
8729  *      unregister_netdevice(y2);
8730  *      ...
8731  *      rtnl_unlock();
8732  *      free_netdev(y1);
8733  *      free_netdev(y2);
8734  *
8735  * We are invoked by rtnl_unlock().
8736  * This allows us to deal with problems:
8737  * 1) We can delete sysfs objects which invoke hotplug
8738  *    without deadlocking with linkwatch via keventd.
8739  * 2) Since we run with the RTNL semaphore not held, we can sleep
8740  *    safely in order to wait for the netdev refcnt to drop to zero.
8741  *
8742  * We must not return until all unregister events added during
8743  * the interval the lock was held have been completed.
8744  */
8745 void netdev_run_todo(void)
8746 {
8747         struct list_head list;
8748
8749         /* Snapshot list, allow later requests */
8750         list_replace_init(&net_todo_list, &list);
8751
8752         __rtnl_unlock();
8753
8754
8755         /* Wait for rcu callbacks to finish before next phase */
8756         if (!list_empty(&list))
8757                 rcu_barrier();
8758
8759         while (!list_empty(&list)) {
8760                 struct net_device *dev
8761                         = list_first_entry(&list, struct net_device, todo_list);
8762                 list_del(&dev->todo_list);
8763
8764                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8765                         pr_err("network todo '%s' but state %d\n",
8766                                dev->name, dev->reg_state);
8767                         dump_stack();
8768                         continue;
8769                 }
8770
8771                 dev->reg_state = NETREG_UNREGISTERED;
8772
8773                 netdev_wait_allrefs(dev);
8774
8775                 /* paranoia */
8776                 BUG_ON(netdev_refcnt_read(dev));
8777                 BUG_ON(!list_empty(&dev->ptype_all));
8778                 BUG_ON(!list_empty(&dev->ptype_specific));
8779                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8780                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8781 #if IS_ENABLED(CONFIG_DECNET)
8782                 WARN_ON(dev->dn_ptr);
8783 #endif
8784                 if (dev->priv_destructor)
8785                         dev->priv_destructor(dev);
8786                 if (dev->needs_free_netdev)
8787                         free_netdev(dev);
8788
8789                 /* Report a network device has been unregistered */
8790                 rtnl_lock();
8791                 dev_net(dev)->dev_unreg_count--;
8792                 __rtnl_unlock();
8793                 wake_up(&netdev_unregistering_wq);
8794
8795                 /* Free network device */
8796                 kobject_put(&dev->dev.kobj);
8797         }
8798 }
8799
8800 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8801  * all the same fields in the same order as net_device_stats, with only
8802  * the type differing, but rtnl_link_stats64 may have additional fields
8803  * at the end for newer counters.
8804  */
8805 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8806                              const struct net_device_stats *netdev_stats)
8807 {
8808 #if BITS_PER_LONG == 64
8809         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8810         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8811         /* zero out counters that only exist in rtnl_link_stats64 */
8812         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8813                sizeof(*stats64) - sizeof(*netdev_stats));
8814 #else
8815         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8816         const unsigned long *src = (const unsigned long *)netdev_stats;
8817         u64 *dst = (u64 *)stats64;
8818
8819         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8820         for (i = 0; i < n; i++)
8821                 dst[i] = src[i];
8822         /* zero out counters that only exist in rtnl_link_stats64 */
8823         memset((char *)stats64 + n * sizeof(u64), 0,
8824                sizeof(*stats64) - n * sizeof(u64));
8825 #endif
8826 }
8827 EXPORT_SYMBOL(netdev_stats_to_stats64);
8828
8829 /**
8830  *      dev_get_stats   - get network device statistics
8831  *      @dev: device to get statistics from
8832  *      @storage: place to store stats
8833  *
8834  *      Get network statistics from device. Return @storage.
8835  *      The device driver may provide its own method by setting
8836  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8837  *      otherwise the internal statistics structure is used.
8838  */
8839 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8840                                         struct rtnl_link_stats64 *storage)
8841 {
8842         const struct net_device_ops *ops = dev->netdev_ops;
8843
8844         if (ops->ndo_get_stats64) {
8845                 memset(storage, 0, sizeof(*storage));
8846                 ops->ndo_get_stats64(dev, storage);
8847         } else if (ops->ndo_get_stats) {
8848                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8849         } else {
8850                 netdev_stats_to_stats64(storage, &dev->stats);
8851         }
8852         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8853         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8854         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8855         return storage;
8856 }
8857 EXPORT_SYMBOL(dev_get_stats);
8858
8859 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8860 {
8861         struct netdev_queue *queue = dev_ingress_queue(dev);
8862
8863 #ifdef CONFIG_NET_CLS_ACT
8864         if (queue)
8865                 return queue;
8866         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8867         if (!queue)
8868                 return NULL;
8869         netdev_init_one_queue(dev, queue, NULL);
8870         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8871         queue->qdisc_sleeping = &noop_qdisc;
8872         rcu_assign_pointer(dev->ingress_queue, queue);
8873 #endif
8874         return queue;
8875 }
8876
8877 static const struct ethtool_ops default_ethtool_ops;
8878
8879 void netdev_set_default_ethtool_ops(struct net_device *dev,
8880                                     const struct ethtool_ops *ops)
8881 {
8882         if (dev->ethtool_ops == &default_ethtool_ops)
8883                 dev->ethtool_ops = ops;
8884 }
8885 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8886
8887 void netdev_freemem(struct net_device *dev)
8888 {
8889         char *addr = (char *)dev - dev->padded;
8890
8891         kvfree(addr);
8892 }
8893
8894 /**
8895  * alloc_netdev_mqs - allocate network device
8896  * @sizeof_priv: size of private data to allocate space for
8897  * @name: device name format string
8898  * @name_assign_type: origin of device name
8899  * @setup: callback to initialize device
8900  * @txqs: the number of TX subqueues to allocate
8901  * @rxqs: the number of RX subqueues to allocate
8902  *
8903  * Allocates a struct net_device with private data area for driver use
8904  * and performs basic initialization.  Also allocates subqueue structs
8905  * for each queue on the device.
8906  */
8907 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8908                 unsigned char name_assign_type,
8909                 void (*setup)(struct net_device *),
8910                 unsigned int txqs, unsigned int rxqs)
8911 {
8912         struct net_device *dev;
8913         unsigned int alloc_size;
8914         struct net_device *p;
8915
8916         BUG_ON(strlen(name) >= sizeof(dev->name));
8917
8918         if (txqs < 1) {
8919                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8920                 return NULL;
8921         }
8922
8923         if (rxqs < 1) {
8924                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8925                 return NULL;
8926         }
8927
8928         alloc_size = sizeof(struct net_device);
8929         if (sizeof_priv) {
8930                 /* ensure 32-byte alignment of private area */
8931                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8932                 alloc_size += sizeof_priv;
8933         }
8934         /* ensure 32-byte alignment of whole construct */
8935         alloc_size += NETDEV_ALIGN - 1;
8936
8937         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8938         if (!p)
8939                 return NULL;
8940
8941         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8942         dev->padded = (char *)dev - (char *)p;
8943
8944         dev->pcpu_refcnt = alloc_percpu(int);
8945         if (!dev->pcpu_refcnt)
8946                 goto free_dev;
8947
8948         if (dev_addr_init(dev))
8949                 goto free_pcpu;
8950
8951         dev_mc_init(dev);
8952         dev_uc_init(dev);
8953
8954         dev_net_set(dev, &init_net);
8955
8956         dev->gso_max_size = GSO_MAX_SIZE;
8957         dev->gso_max_segs = GSO_MAX_SEGS;
8958
8959         INIT_LIST_HEAD(&dev->napi_list);
8960         INIT_LIST_HEAD(&dev->unreg_list);
8961         INIT_LIST_HEAD(&dev->close_list);
8962         INIT_LIST_HEAD(&dev->link_watch_list);
8963         INIT_LIST_HEAD(&dev->adj_list.upper);
8964         INIT_LIST_HEAD(&dev->adj_list.lower);
8965         INIT_LIST_HEAD(&dev->ptype_all);
8966         INIT_LIST_HEAD(&dev->ptype_specific);
8967 #ifdef CONFIG_NET_SCHED
8968         hash_init(dev->qdisc_hash);
8969 #endif
8970         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8971         setup(dev);
8972
8973         if (!dev->tx_queue_len) {
8974                 dev->priv_flags |= IFF_NO_QUEUE;
8975                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8976         }
8977
8978         dev->num_tx_queues = txqs;
8979         dev->real_num_tx_queues = txqs;
8980         if (netif_alloc_netdev_queues(dev))
8981                 goto free_all;
8982
8983         dev->num_rx_queues = rxqs;
8984         dev->real_num_rx_queues = rxqs;
8985         if (netif_alloc_rx_queues(dev))
8986                 goto free_all;
8987
8988         strcpy(dev->name, name);
8989         dev->name_assign_type = name_assign_type;
8990         dev->group = INIT_NETDEV_GROUP;
8991         if (!dev->ethtool_ops)
8992                 dev->ethtool_ops = &default_ethtool_ops;
8993
8994         nf_hook_ingress_init(dev);
8995
8996         return dev;
8997
8998 free_all:
8999         free_netdev(dev);
9000         return NULL;
9001
9002 free_pcpu:
9003         free_percpu(dev->pcpu_refcnt);
9004 free_dev:
9005         netdev_freemem(dev);
9006         return NULL;
9007 }
9008 EXPORT_SYMBOL(alloc_netdev_mqs);
9009
9010 /**
9011  * free_netdev - free network device
9012  * @dev: device
9013  *
9014  * This function does the last stage of destroying an allocated device
9015  * interface. The reference to the device object is released. If this
9016  * is the last reference then it will be freed.Must be called in process
9017  * context.
9018  */
9019 void free_netdev(struct net_device *dev)
9020 {
9021         struct napi_struct *p, *n;
9022
9023         might_sleep();
9024         netif_free_tx_queues(dev);
9025         netif_free_rx_queues(dev);
9026
9027         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9028
9029         /* Flush device addresses */
9030         dev_addr_flush(dev);
9031
9032         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9033                 netif_napi_del(p);
9034
9035         free_percpu(dev->pcpu_refcnt);
9036         dev->pcpu_refcnt = NULL;
9037
9038         /*  Compatibility with error handling in drivers */
9039         if (dev->reg_state == NETREG_UNINITIALIZED) {
9040                 netdev_freemem(dev);
9041                 return;
9042         }
9043
9044         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9045         dev->reg_state = NETREG_RELEASED;
9046
9047         /* will free via device release */
9048         put_device(&dev->dev);
9049 }
9050 EXPORT_SYMBOL(free_netdev);
9051
9052 /**
9053  *      synchronize_net -  Synchronize with packet receive processing
9054  *
9055  *      Wait for packets currently being received to be done.
9056  *      Does not block later packets from starting.
9057  */
9058 void synchronize_net(void)
9059 {
9060         might_sleep();
9061         if (rtnl_is_locked())
9062                 synchronize_rcu_expedited();
9063         else
9064                 synchronize_rcu();
9065 }
9066 EXPORT_SYMBOL(synchronize_net);
9067
9068 /**
9069  *      unregister_netdevice_queue - remove device from the kernel
9070  *      @dev: device
9071  *      @head: list
9072  *
9073  *      This function shuts down a device interface and removes it
9074  *      from the kernel tables.
9075  *      If head not NULL, device is queued to be unregistered later.
9076  *
9077  *      Callers must hold the rtnl semaphore.  You may want
9078  *      unregister_netdev() instead of this.
9079  */
9080
9081 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9082 {
9083         ASSERT_RTNL();
9084
9085         if (head) {
9086                 list_move_tail(&dev->unreg_list, head);
9087         } else {
9088                 rollback_registered(dev);
9089                 /* Finish processing unregister after unlock */
9090                 net_set_todo(dev);
9091         }
9092 }
9093 EXPORT_SYMBOL(unregister_netdevice_queue);
9094
9095 /**
9096  *      unregister_netdevice_many - unregister many devices
9097  *      @head: list of devices
9098  *
9099  *  Note: As most callers use a stack allocated list_head,
9100  *  we force a list_del() to make sure stack wont be corrupted later.
9101  */
9102 void unregister_netdevice_many(struct list_head *head)
9103 {
9104         struct net_device *dev;
9105
9106         if (!list_empty(head)) {
9107                 rollback_registered_many(head);
9108                 list_for_each_entry(dev, head, unreg_list)
9109                         net_set_todo(dev);
9110                 list_del(head);
9111         }
9112 }
9113 EXPORT_SYMBOL(unregister_netdevice_many);
9114
9115 /**
9116  *      unregister_netdev - remove device from the kernel
9117  *      @dev: device
9118  *
9119  *      This function shuts down a device interface and removes it
9120  *      from the kernel tables.
9121  *
9122  *      This is just a wrapper for unregister_netdevice that takes
9123  *      the rtnl semaphore.  In general you want to use this and not
9124  *      unregister_netdevice.
9125  */
9126 void unregister_netdev(struct net_device *dev)
9127 {
9128         rtnl_lock();
9129         unregister_netdevice(dev);
9130         rtnl_unlock();
9131 }
9132 EXPORT_SYMBOL(unregister_netdev);
9133
9134 /**
9135  *      dev_change_net_namespace - move device to different nethost namespace
9136  *      @dev: device
9137  *      @net: network namespace
9138  *      @pat: If not NULL name pattern to try if the current device name
9139  *            is already taken in the destination network namespace.
9140  *
9141  *      This function shuts down a device interface and moves it
9142  *      to a new network namespace. On success 0 is returned, on
9143  *      a failure a netagive errno code is returned.
9144  *
9145  *      Callers must hold the rtnl semaphore.
9146  */
9147
9148 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9149 {
9150         int err, new_nsid, new_ifindex;
9151
9152         ASSERT_RTNL();
9153
9154         /* Don't allow namespace local devices to be moved. */
9155         err = -EINVAL;
9156         if (dev->features & NETIF_F_NETNS_LOCAL)
9157                 goto out;
9158
9159         /* Ensure the device has been registrered */
9160         if (dev->reg_state != NETREG_REGISTERED)
9161                 goto out;
9162
9163         /* Get out if there is nothing todo */
9164         err = 0;
9165         if (net_eq(dev_net(dev), net))
9166                 goto out;
9167
9168         /* Pick the destination device name, and ensure
9169          * we can use it in the destination network namespace.
9170          */
9171         err = -EEXIST;
9172         if (__dev_get_by_name(net, dev->name)) {
9173                 /* We get here if we can't use the current device name */
9174                 if (!pat)
9175                         goto out;
9176                 err = dev_get_valid_name(net, dev, pat);
9177                 if (err < 0)
9178                         goto out;
9179         }
9180
9181         /*
9182          * And now a mini version of register_netdevice unregister_netdevice.
9183          */
9184
9185         /* If device is running close it first. */
9186         dev_close(dev);
9187
9188         /* And unlink it from device chain */
9189         unlist_netdevice(dev);
9190
9191         synchronize_net();
9192
9193         /* Shutdown queueing discipline. */
9194         dev_shutdown(dev);
9195
9196         /* Notify protocols, that we are about to destroy
9197          * this device. They should clean all the things.
9198          *
9199          * Note that dev->reg_state stays at NETREG_REGISTERED.
9200          * This is wanted because this way 8021q and macvlan know
9201          * the device is just moving and can keep their slaves up.
9202          */
9203         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9204         rcu_barrier();
9205
9206         new_nsid = peernet2id_alloc(dev_net(dev), net);
9207         /* If there is an ifindex conflict assign a new one */
9208         if (__dev_get_by_index(net, dev->ifindex))
9209                 new_ifindex = dev_new_index(net);
9210         else
9211                 new_ifindex = dev->ifindex;
9212
9213         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9214                             new_ifindex);
9215
9216         /*
9217          *      Flush the unicast and multicast chains
9218          */
9219         dev_uc_flush(dev);
9220         dev_mc_flush(dev);
9221
9222         /* Send a netdev-removed uevent to the old namespace */
9223         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9224         netdev_adjacent_del_links(dev);
9225
9226         /* Actually switch the network namespace */
9227         dev_net_set(dev, net);
9228         dev->ifindex = new_ifindex;
9229
9230         /* Send a netdev-add uevent to the new namespace */
9231         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9232         netdev_adjacent_add_links(dev);
9233
9234         /* Fixup kobjects */
9235         err = device_rename(&dev->dev, dev->name);
9236         WARN_ON(err);
9237
9238         /* Add the device back in the hashes */
9239         list_netdevice(dev);
9240
9241         /* Notify protocols, that a new device appeared. */
9242         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9243
9244         /*
9245          *      Prevent userspace races by waiting until the network
9246          *      device is fully setup before sending notifications.
9247          */
9248         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9249
9250         synchronize_net();
9251         err = 0;
9252 out:
9253         return err;
9254 }
9255 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9256
9257 static int dev_cpu_dead(unsigned int oldcpu)
9258 {
9259         struct sk_buff **list_skb;
9260         struct sk_buff *skb;
9261         unsigned int cpu;
9262         struct softnet_data *sd, *oldsd, *remsd = NULL;
9263
9264         local_irq_disable();
9265         cpu = smp_processor_id();
9266         sd = &per_cpu(softnet_data, cpu);
9267         oldsd = &per_cpu(softnet_data, oldcpu);
9268
9269         /* Find end of our completion_queue. */
9270         list_skb = &sd->completion_queue;
9271         while (*list_skb)
9272                 list_skb = &(*list_skb)->next;
9273         /* Append completion queue from offline CPU. */
9274         *list_skb = oldsd->completion_queue;
9275         oldsd->completion_queue = NULL;
9276
9277         /* Append output queue from offline CPU. */
9278         if (oldsd->output_queue) {
9279                 *sd->output_queue_tailp = oldsd->output_queue;
9280                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9281                 oldsd->output_queue = NULL;
9282                 oldsd->output_queue_tailp = &oldsd->output_queue;
9283         }
9284         /* Append NAPI poll list from offline CPU, with one exception :
9285          * process_backlog() must be called by cpu owning percpu backlog.
9286          * We properly handle process_queue & input_pkt_queue later.
9287          */
9288         while (!list_empty(&oldsd->poll_list)) {
9289                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9290                                                             struct napi_struct,
9291                                                             poll_list);
9292
9293                 list_del_init(&napi->poll_list);
9294                 if (napi->poll == process_backlog)
9295                         napi->state = 0;
9296                 else
9297                         ____napi_schedule(sd, napi);
9298         }
9299
9300         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9301         local_irq_enable();
9302
9303 #ifdef CONFIG_RPS
9304         remsd = oldsd->rps_ipi_list;
9305         oldsd->rps_ipi_list = NULL;
9306 #endif
9307         /* send out pending IPI's on offline CPU */
9308         net_rps_send_ipi(remsd);
9309
9310         /* Process offline CPU's input_pkt_queue */
9311         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9312                 netif_rx_ni(skb);
9313                 input_queue_head_incr(oldsd);
9314         }
9315         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9316                 netif_rx_ni(skb);
9317                 input_queue_head_incr(oldsd);
9318         }
9319
9320         return 0;
9321 }
9322
9323 /**
9324  *      netdev_increment_features - increment feature set by one
9325  *      @all: current feature set
9326  *      @one: new feature set
9327  *      @mask: mask feature set
9328  *
9329  *      Computes a new feature set after adding a device with feature set
9330  *      @one to the master device with current feature set @all.  Will not
9331  *      enable anything that is off in @mask. Returns the new feature set.
9332  */
9333 netdev_features_t netdev_increment_features(netdev_features_t all,
9334         netdev_features_t one, netdev_features_t mask)
9335 {
9336         if (mask & NETIF_F_HW_CSUM)
9337                 mask |= NETIF_F_CSUM_MASK;
9338         mask |= NETIF_F_VLAN_CHALLENGED;
9339
9340         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9341         all &= one | ~NETIF_F_ALL_FOR_ALL;
9342
9343         /* If one device supports hw checksumming, set for all. */
9344         if (all & NETIF_F_HW_CSUM)
9345                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9346
9347         return all;
9348 }
9349 EXPORT_SYMBOL(netdev_increment_features);
9350
9351 static struct hlist_head * __net_init netdev_create_hash(void)
9352 {
9353         int i;
9354         struct hlist_head *hash;
9355
9356         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9357         if (hash != NULL)
9358                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9359                         INIT_HLIST_HEAD(&hash[i]);
9360
9361         return hash;
9362 }
9363
9364 /* Initialize per network namespace state */
9365 static int __net_init netdev_init(struct net *net)
9366 {
9367         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9368                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9369
9370         if (net != &init_net)
9371                 INIT_LIST_HEAD(&net->dev_base_head);
9372
9373         net->dev_name_head = netdev_create_hash();
9374         if (net->dev_name_head == NULL)
9375                 goto err_name;
9376
9377         net->dev_index_head = netdev_create_hash();
9378         if (net->dev_index_head == NULL)
9379                 goto err_idx;
9380
9381         return 0;
9382
9383 err_idx:
9384         kfree(net->dev_name_head);
9385 err_name:
9386         return -ENOMEM;
9387 }
9388
9389 /**
9390  *      netdev_drivername - network driver for the device
9391  *      @dev: network device
9392  *
9393  *      Determine network driver for device.
9394  */
9395 const char *netdev_drivername(const struct net_device *dev)
9396 {
9397         const struct device_driver *driver;
9398         const struct device *parent;
9399         const char *empty = "";
9400
9401         parent = dev->dev.parent;
9402         if (!parent)
9403                 return empty;
9404
9405         driver = parent->driver;
9406         if (driver && driver->name)
9407                 return driver->name;
9408         return empty;
9409 }
9410
9411 static void __netdev_printk(const char *level, const struct net_device *dev,
9412                             struct va_format *vaf)
9413 {
9414         if (dev && dev->dev.parent) {
9415                 dev_printk_emit(level[1] - '0',
9416                                 dev->dev.parent,
9417                                 "%s %s %s%s: %pV",
9418                                 dev_driver_string(dev->dev.parent),
9419                                 dev_name(dev->dev.parent),
9420                                 netdev_name(dev), netdev_reg_state(dev),
9421                                 vaf);
9422         } else if (dev) {
9423                 printk("%s%s%s: %pV",
9424                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9425         } else {
9426                 printk("%s(NULL net_device): %pV", level, vaf);
9427         }
9428 }
9429
9430 void netdev_printk(const char *level, const struct net_device *dev,
9431                    const char *format, ...)
9432 {
9433         struct va_format vaf;
9434         va_list args;
9435
9436         va_start(args, format);
9437
9438         vaf.fmt = format;
9439         vaf.va = &args;
9440
9441         __netdev_printk(level, dev, &vaf);
9442
9443         va_end(args);
9444 }
9445 EXPORT_SYMBOL(netdev_printk);
9446
9447 #define define_netdev_printk_level(func, level)                 \
9448 void func(const struct net_device *dev, const char *fmt, ...)   \
9449 {                                                               \
9450         struct va_format vaf;                                   \
9451         va_list args;                                           \
9452                                                                 \
9453         va_start(args, fmt);                                    \
9454                                                                 \
9455         vaf.fmt = fmt;                                          \
9456         vaf.va = &args;                                         \
9457                                                                 \
9458         __netdev_printk(level, dev, &vaf);                      \
9459                                                                 \
9460         va_end(args);                                           \
9461 }                                                               \
9462 EXPORT_SYMBOL(func);
9463
9464 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9465 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9466 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9467 define_netdev_printk_level(netdev_err, KERN_ERR);
9468 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9469 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9470 define_netdev_printk_level(netdev_info, KERN_INFO);
9471
9472 static void __net_exit netdev_exit(struct net *net)
9473 {
9474         kfree(net->dev_name_head);
9475         kfree(net->dev_index_head);
9476         if (net != &init_net)
9477                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9478 }
9479
9480 static struct pernet_operations __net_initdata netdev_net_ops = {
9481         .init = netdev_init,
9482         .exit = netdev_exit,
9483 };
9484
9485 static void __net_exit default_device_exit(struct net *net)
9486 {
9487         struct net_device *dev, *aux;
9488         /*
9489          * Push all migratable network devices back to the
9490          * initial network namespace
9491          */
9492         rtnl_lock();
9493         for_each_netdev_safe(net, dev, aux) {
9494                 int err;
9495                 char fb_name[IFNAMSIZ];
9496
9497                 /* Ignore unmoveable devices (i.e. loopback) */
9498                 if (dev->features & NETIF_F_NETNS_LOCAL)
9499                         continue;
9500
9501                 /* Leave virtual devices for the generic cleanup */
9502                 if (dev->rtnl_link_ops)
9503                         continue;
9504
9505                 /* Push remaining network devices to init_net */
9506                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9507                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9508                 if (err) {
9509                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9510                                  __func__, dev->name, err);
9511                         BUG();
9512                 }
9513         }
9514         rtnl_unlock();
9515 }
9516
9517 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9518 {
9519         /* Return with the rtnl_lock held when there are no network
9520          * devices unregistering in any network namespace in net_list.
9521          */
9522         struct net *net;
9523         bool unregistering;
9524         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9525
9526         add_wait_queue(&netdev_unregistering_wq, &wait);
9527         for (;;) {
9528                 unregistering = false;
9529                 rtnl_lock();
9530                 list_for_each_entry(net, net_list, exit_list) {
9531                         if (net->dev_unreg_count > 0) {
9532                                 unregistering = true;
9533                                 break;
9534                         }
9535                 }
9536                 if (!unregistering)
9537                         break;
9538                 __rtnl_unlock();
9539
9540                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9541         }
9542         remove_wait_queue(&netdev_unregistering_wq, &wait);
9543 }
9544
9545 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9546 {
9547         /* At exit all network devices most be removed from a network
9548          * namespace.  Do this in the reverse order of registration.
9549          * Do this across as many network namespaces as possible to
9550          * improve batching efficiency.
9551          */
9552         struct net_device *dev;
9553         struct net *net;
9554         LIST_HEAD(dev_kill_list);
9555
9556         /* To prevent network device cleanup code from dereferencing
9557          * loopback devices or network devices that have been freed
9558          * wait here for all pending unregistrations to complete,
9559          * before unregistring the loopback device and allowing the
9560          * network namespace be freed.
9561          *
9562          * The netdev todo list containing all network devices
9563          * unregistrations that happen in default_device_exit_batch
9564          * will run in the rtnl_unlock() at the end of
9565          * default_device_exit_batch.
9566          */
9567         rtnl_lock_unregistering(net_list);
9568         list_for_each_entry(net, net_list, exit_list) {
9569                 for_each_netdev_reverse(net, dev) {
9570                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9571                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9572                         else
9573                                 unregister_netdevice_queue(dev, &dev_kill_list);
9574                 }
9575         }
9576         unregister_netdevice_many(&dev_kill_list);
9577         rtnl_unlock();
9578 }
9579
9580 static struct pernet_operations __net_initdata default_device_ops = {
9581         .exit = default_device_exit,
9582         .exit_batch = default_device_exit_batch,
9583 };
9584
9585 /*
9586  *      Initialize the DEV module. At boot time this walks the device list and
9587  *      unhooks any devices that fail to initialise (normally hardware not
9588  *      present) and leaves us with a valid list of present and active devices.
9589  *
9590  */
9591
9592 /*
9593  *       This is called single threaded during boot, so no need
9594  *       to take the rtnl semaphore.
9595  */
9596 static int __init net_dev_init(void)
9597 {
9598         int i, rc = -ENOMEM;
9599
9600         BUG_ON(!dev_boot_phase);
9601
9602         if (dev_proc_init())
9603                 goto out;
9604
9605         if (netdev_kobject_init())
9606                 goto out;
9607
9608         INIT_LIST_HEAD(&ptype_all);
9609         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9610                 INIT_LIST_HEAD(&ptype_base[i]);
9611
9612         INIT_LIST_HEAD(&offload_base);
9613
9614         if (register_pernet_subsys(&netdev_net_ops))
9615                 goto out;
9616
9617         /*
9618          *      Initialise the packet receive queues.
9619          */
9620
9621         for_each_possible_cpu(i) {
9622                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9623                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9624
9625                 INIT_WORK(flush, flush_backlog);
9626
9627                 skb_queue_head_init(&sd->input_pkt_queue);
9628                 skb_queue_head_init(&sd->process_queue);
9629 #ifdef CONFIG_XFRM_OFFLOAD
9630                 skb_queue_head_init(&sd->xfrm_backlog);
9631 #endif
9632                 INIT_LIST_HEAD(&sd->poll_list);
9633                 sd->output_queue_tailp = &sd->output_queue;
9634 #ifdef CONFIG_RPS
9635                 sd->csd.func = rps_trigger_softirq;
9636                 sd->csd.info = sd;
9637                 sd->cpu = i;
9638 #endif
9639
9640                 init_gro_hash(&sd->backlog);
9641                 sd->backlog.poll = process_backlog;
9642                 sd->backlog.weight = weight_p;
9643         }
9644
9645         dev_boot_phase = 0;
9646
9647         /* The loopback device is special if any other network devices
9648          * is present in a network namespace the loopback device must
9649          * be present. Since we now dynamically allocate and free the
9650          * loopback device ensure this invariant is maintained by
9651          * keeping the loopback device as the first device on the
9652          * list of network devices.  Ensuring the loopback devices
9653          * is the first device that appears and the last network device
9654          * that disappears.
9655          */
9656         if (register_pernet_device(&loopback_net_ops))
9657                 goto out;
9658
9659         if (register_pernet_device(&default_device_ops))
9660                 goto out;
9661
9662         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9663         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9664
9665         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9666                                        NULL, dev_cpu_dead);
9667         WARN_ON(rc < 0);
9668         rc = 0;
9669 out:
9670         return rc;
9671 }
9672
9673 subsys_initcall(net_dev_init);