Merge tag 'for-5.4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
[sfrench/cifs-2.6.git] / net / core / dev.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      NET3    Protocol independent device support routines.
4  *
5  *      Derived from the non IP parts of dev.c 1.0.19
6  *              Authors:        Ross Biro
7  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
9  *
10  *      Additional Authors:
11  *              Florian la Roche <rzsfl@rz.uni-sb.de>
12  *              Alan Cox <gw4pts@gw4pts.ampr.org>
13  *              David Hinds <dahinds@users.sourceforge.net>
14  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15  *              Adam Sulmicki <adam@cfar.umd.edu>
16  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
17  *
18  *      Changes:
19  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
20  *                                      to 2 if register_netdev gets called
21  *                                      before net_dev_init & also removed a
22  *                                      few lines of code in the process.
23  *              Alan Cox        :       device private ioctl copies fields back.
24  *              Alan Cox        :       Transmit queue code does relevant
25  *                                      stunts to keep the queue safe.
26  *              Alan Cox        :       Fixed double lock.
27  *              Alan Cox        :       Fixed promisc NULL pointer trap
28  *              ????????        :       Support the full private ioctl range
29  *              Alan Cox        :       Moved ioctl permission check into
30  *                                      drivers
31  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
32  *              Alan Cox        :       100 backlog just doesn't cut it when
33  *                                      you start doing multicast video 8)
34  *              Alan Cox        :       Rewrote net_bh and list manager.
35  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
36  *              Alan Cox        :       Took out transmit every packet pass
37  *                                      Saved a few bytes in the ioctl handler
38  *              Alan Cox        :       Network driver sets packet type before
39  *                                      calling netif_rx. Saves a function
40  *                                      call a packet.
41  *              Alan Cox        :       Hashed net_bh()
42  *              Richard Kooijman:       Timestamp fixes.
43  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
44  *              Alan Cox        :       Device lock protection.
45  *              Alan Cox        :       Fixed nasty side effect of device close
46  *                                      changes.
47  *              Rudi Cilibrasi  :       Pass the right thing to
48  *                                      set_mac_address()
49  *              Dave Miller     :       32bit quantity for the device lock to
50  *                                      make it work out on a Sparc.
51  *              Bjorn Ekwall    :       Added KERNELD hack.
52  *              Alan Cox        :       Cleaned up the backlog initialise.
53  *              Craig Metz      :       SIOCGIFCONF fix if space for under
54  *                                      1 device.
55  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
56  *                                      is no device open function.
57  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
58  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
59  *              Cyrus Durgin    :       Cleaned for KMOD
60  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
61  *                                      A network device unload needs to purge
62  *                                      the backlog queue.
63  *      Paul Rusty Russell      :       SIOCSIFNAME
64  *              Pekka Riikonen  :       Netdev boot-time settings code
65  *              Andrew Morton   :       Make unregister_netdevice wait
66  *                                      indefinitely on dev->refcnt
67  *              J Hadi Salim    :       - Backlog queue sampling
68  *                                      - netif_rx() feedback
69  */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitops.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/string.h>
83 #include <linux/mm.h>
84 #include <linux/socket.h>
85 #include <linux/sockios.h>
86 #include <linux/errno.h>
87 #include <linux/interrupt.h>
88 #include <linux/if_ether.h>
89 #include <linux/netdevice.h>
90 #include <linux/etherdevice.h>
91 #include <linux/ethtool.h>
92 #include <linux/skbuff.h>
93 #include <linux/bpf.h>
94 #include <linux/bpf_trace.h>
95 #include <net/net_namespace.h>
96 #include <net/sock.h>
97 #include <net/busy_poll.h>
98 #include <linux/rtnetlink.h>
99 #include <linux/stat.h>
100 #include <net/dst.h>
101 #include <net/dst_metadata.h>
102 #include <net/pkt_sched.h>
103 #include <net/pkt_cls.h>
104 #include <net/checksum.h>
105 #include <net/xfrm.h>
106 #include <linux/highmem.h>
107 #include <linux/init.h>
108 #include <linux/module.h>
109 #include <linux/netpoll.h>
110 #include <linux/rcupdate.h>
111 #include <linux/delay.h>
112 #include <net/iw_handler.h>
113 #include <asm/current.h>
114 #include <linux/audit.h>
115 #include <linux/dmaengine.h>
116 #include <linux/err.h>
117 #include <linux/ctype.h>
118 #include <linux/if_arp.h>
119 #include <linux/if_vlan.h>
120 #include <linux/ip.h>
121 #include <net/ip.h>
122 #include <net/mpls.h>
123 #include <linux/ipv6.h>
124 #include <linux/in.h>
125 #include <linux/jhash.h>
126 #include <linux/random.h>
127 #include <trace/events/napi.h>
128 #include <trace/events/net.h>
129 #include <trace/events/skb.h>
130 #include <linux/inetdevice.h>
131 #include <linux/cpu_rmap.h>
132 #include <linux/static_key.h>
133 #include <linux/hashtable.h>
134 #include <linux/vmalloc.h>
135 #include <linux/if_macvlan.h>
136 #include <linux/errqueue.h>
137 #include <linux/hrtimer.h>
138 #include <linux/netfilter_ingress.h>
139 #include <linux/crash_dump.h>
140 #include <linux/sctp.h>
141 #include <net/udp_tunnel.h>
142 #include <linux/net_namespace.h>
143 #include <linux/indirect_call_wrapper.h>
144 #include <net/devlink.h>
145
146 #include "net-sysfs.h"
147
148 #define MAX_GRO_SKBS 8
149
150 /* This should be increased if a protocol with a bigger head is added. */
151 #define GRO_MAX_HEAD (MAX_HEADER + 128)
152
153 static DEFINE_SPINLOCK(ptype_lock);
154 static DEFINE_SPINLOCK(offload_lock);
155 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
156 struct list_head ptype_all __read_mostly;       /* Taps */
157 static struct list_head offload_base __read_mostly;
158
159 static int netif_rx_internal(struct sk_buff *skb);
160 static int call_netdevice_notifiers_info(unsigned long val,
161                                          struct netdev_notifier_info *info);
162 static int call_netdevice_notifiers_extack(unsigned long val,
163                                            struct net_device *dev,
164                                            struct netlink_ext_ack *extack);
165 static struct napi_struct *napi_by_id(unsigned int napi_id);
166
167 /*
168  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
169  * semaphore.
170  *
171  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
172  *
173  * Writers must hold the rtnl semaphore while they loop through the
174  * dev_base_head list, and hold dev_base_lock for writing when they do the
175  * actual updates.  This allows pure readers to access the list even
176  * while a writer is preparing to update it.
177  *
178  * To put it another way, dev_base_lock is held for writing only to
179  * protect against pure readers; the rtnl semaphore provides the
180  * protection against other writers.
181  *
182  * See, for example usages, register_netdevice() and
183  * unregister_netdevice(), which must be called with the rtnl
184  * semaphore held.
185  */
186 DEFINE_RWLOCK(dev_base_lock);
187 EXPORT_SYMBOL(dev_base_lock);
188
189 static DEFINE_MUTEX(ifalias_mutex);
190
191 /* protects napi_hash addition/deletion and napi_gen_id */
192 static DEFINE_SPINLOCK(napi_hash_lock);
193
194 static unsigned int napi_gen_id = NR_CPUS;
195 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
196
197 static seqcount_t devnet_rename_seq;
198
199 static inline void dev_base_seq_inc(struct net *net)
200 {
201         while (++net->dev_base_seq == 0)
202                 ;
203 }
204
205 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
206 {
207         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
208
209         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
210 }
211
212 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
213 {
214         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
215 }
216
217 static inline void rps_lock(struct softnet_data *sd)
218 {
219 #ifdef CONFIG_RPS
220         spin_lock(&sd->input_pkt_queue.lock);
221 #endif
222 }
223
224 static inline void rps_unlock(struct softnet_data *sd)
225 {
226 #ifdef CONFIG_RPS
227         spin_unlock(&sd->input_pkt_queue.lock);
228 #endif
229 }
230
231 /* Device list insertion */
232 static void list_netdevice(struct net_device *dev)
233 {
234         struct net *net = dev_net(dev);
235
236         ASSERT_RTNL();
237
238         write_lock_bh(&dev_base_lock);
239         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
240         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
241         hlist_add_head_rcu(&dev->index_hlist,
242                            dev_index_hash(net, dev->ifindex));
243         write_unlock_bh(&dev_base_lock);
244
245         dev_base_seq_inc(net);
246 }
247
248 /* Device list removal
249  * caller must respect a RCU grace period before freeing/reusing dev
250  */
251 static void unlist_netdevice(struct net_device *dev)
252 {
253         ASSERT_RTNL();
254
255         /* Unlink dev from the device chain */
256         write_lock_bh(&dev_base_lock);
257         list_del_rcu(&dev->dev_list);
258         hlist_del_rcu(&dev->name_hlist);
259         hlist_del_rcu(&dev->index_hlist);
260         write_unlock_bh(&dev_base_lock);
261
262         dev_base_seq_inc(dev_net(dev));
263 }
264
265 /*
266  *      Our notifier list
267  */
268
269 static RAW_NOTIFIER_HEAD(netdev_chain);
270
271 /*
272  *      Device drivers call our routines to queue packets here. We empty the
273  *      queue in the local softnet handler.
274  */
275
276 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
277 EXPORT_PER_CPU_SYMBOL(softnet_data);
278
279 #ifdef CONFIG_LOCKDEP
280 /*
281  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
282  * according to dev->type
283  */
284 static const unsigned short netdev_lock_type[] = {
285          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
286          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
287          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
288          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
289          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
290          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
291          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
292          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
293          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
294          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
295          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
296          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
297          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
298          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
299          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
300
301 static const char *const netdev_lock_name[] = {
302         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
303         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
304         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
305         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
306         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
307         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
308         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
309         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
310         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
311         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
312         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
313         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
314         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
315         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
316         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
317
318 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
319 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
320
321 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
322 {
323         int i;
324
325         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
326                 if (netdev_lock_type[i] == dev_type)
327                         return i;
328         /* the last key is used by default */
329         return ARRAY_SIZE(netdev_lock_type) - 1;
330 }
331
332 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
333                                                  unsigned short dev_type)
334 {
335         int i;
336
337         i = netdev_lock_pos(dev_type);
338         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
339                                    netdev_lock_name[i]);
340 }
341
342 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
343 {
344         int i;
345
346         i = netdev_lock_pos(dev->type);
347         lockdep_set_class_and_name(&dev->addr_list_lock,
348                                    &netdev_addr_lock_key[i],
349                                    netdev_lock_name[i]);
350 }
351 #else
352 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
353                                                  unsigned short dev_type)
354 {
355 }
356 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
357 {
358 }
359 #endif
360
361 /*******************************************************************************
362  *
363  *              Protocol management and registration routines
364  *
365  *******************************************************************************/
366
367
368 /*
369  *      Add a protocol ID to the list. Now that the input handler is
370  *      smarter we can dispense with all the messy stuff that used to be
371  *      here.
372  *
373  *      BEWARE!!! Protocol handlers, mangling input packets,
374  *      MUST BE last in hash buckets and checking protocol handlers
375  *      MUST start from promiscuous ptype_all chain in net_bh.
376  *      It is true now, do not change it.
377  *      Explanation follows: if protocol handler, mangling packet, will
378  *      be the first on list, it is not able to sense, that packet
379  *      is cloned and should be copied-on-write, so that it will
380  *      change it and subsequent readers will get broken packet.
381  *                                                      --ANK (980803)
382  */
383
384 static inline struct list_head *ptype_head(const struct packet_type *pt)
385 {
386         if (pt->type == htons(ETH_P_ALL))
387                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
388         else
389                 return pt->dev ? &pt->dev->ptype_specific :
390                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
391 }
392
393 /**
394  *      dev_add_pack - add packet handler
395  *      @pt: packet type declaration
396  *
397  *      Add a protocol handler to the networking stack. The passed &packet_type
398  *      is linked into kernel lists and may not be freed until it has been
399  *      removed from the kernel lists.
400  *
401  *      This call does not sleep therefore it can not
402  *      guarantee all CPU's that are in middle of receiving packets
403  *      will see the new packet type (until the next received packet).
404  */
405
406 void dev_add_pack(struct packet_type *pt)
407 {
408         struct list_head *head = ptype_head(pt);
409
410         spin_lock(&ptype_lock);
411         list_add_rcu(&pt->list, head);
412         spin_unlock(&ptype_lock);
413 }
414 EXPORT_SYMBOL(dev_add_pack);
415
416 /**
417  *      __dev_remove_pack        - remove packet handler
418  *      @pt: packet type declaration
419  *
420  *      Remove a protocol handler that was previously added to the kernel
421  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
422  *      from the kernel lists and can be freed or reused once this function
423  *      returns.
424  *
425  *      The packet type might still be in use by receivers
426  *      and must not be freed until after all the CPU's have gone
427  *      through a quiescent state.
428  */
429 void __dev_remove_pack(struct packet_type *pt)
430 {
431         struct list_head *head = ptype_head(pt);
432         struct packet_type *pt1;
433
434         spin_lock(&ptype_lock);
435
436         list_for_each_entry(pt1, head, list) {
437                 if (pt == pt1) {
438                         list_del_rcu(&pt->list);
439                         goto out;
440                 }
441         }
442
443         pr_warn("dev_remove_pack: %p not found\n", pt);
444 out:
445         spin_unlock(&ptype_lock);
446 }
447 EXPORT_SYMBOL(__dev_remove_pack);
448
449 /**
450  *      dev_remove_pack  - remove packet handler
451  *      @pt: packet type declaration
452  *
453  *      Remove a protocol handler that was previously added to the kernel
454  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
455  *      from the kernel lists and can be freed or reused once this function
456  *      returns.
457  *
458  *      This call sleeps to guarantee that no CPU is looking at the packet
459  *      type after return.
460  */
461 void dev_remove_pack(struct packet_type *pt)
462 {
463         __dev_remove_pack(pt);
464
465         synchronize_net();
466 }
467 EXPORT_SYMBOL(dev_remove_pack);
468
469
470 /**
471  *      dev_add_offload - register offload handlers
472  *      @po: protocol offload declaration
473  *
474  *      Add protocol offload handlers to the networking stack. The passed
475  *      &proto_offload is linked into kernel lists and may not be freed until
476  *      it has been removed from the kernel lists.
477  *
478  *      This call does not sleep therefore it can not
479  *      guarantee all CPU's that are in middle of receiving packets
480  *      will see the new offload handlers (until the next received packet).
481  */
482 void dev_add_offload(struct packet_offload *po)
483 {
484         struct packet_offload *elem;
485
486         spin_lock(&offload_lock);
487         list_for_each_entry(elem, &offload_base, list) {
488                 if (po->priority < elem->priority)
489                         break;
490         }
491         list_add_rcu(&po->list, elem->list.prev);
492         spin_unlock(&offload_lock);
493 }
494 EXPORT_SYMBOL(dev_add_offload);
495
496 /**
497  *      __dev_remove_offload     - remove offload handler
498  *      @po: packet offload declaration
499  *
500  *      Remove a protocol offload handler that was previously added to the
501  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
502  *      is removed from the kernel lists and can be freed or reused once this
503  *      function returns.
504  *
505  *      The packet type might still be in use by receivers
506  *      and must not be freed until after all the CPU's have gone
507  *      through a quiescent state.
508  */
509 static void __dev_remove_offload(struct packet_offload *po)
510 {
511         struct list_head *head = &offload_base;
512         struct packet_offload *po1;
513
514         spin_lock(&offload_lock);
515
516         list_for_each_entry(po1, head, list) {
517                 if (po == po1) {
518                         list_del_rcu(&po->list);
519                         goto out;
520                 }
521         }
522
523         pr_warn("dev_remove_offload: %p not found\n", po);
524 out:
525         spin_unlock(&offload_lock);
526 }
527
528 /**
529  *      dev_remove_offload       - remove packet offload handler
530  *      @po: packet offload declaration
531  *
532  *      Remove a packet offload handler that was previously added to the kernel
533  *      offload handlers by dev_add_offload(). The passed &offload_type is
534  *      removed from the kernel lists and can be freed or reused once this
535  *      function returns.
536  *
537  *      This call sleeps to guarantee that no CPU is looking at the packet
538  *      type after return.
539  */
540 void dev_remove_offload(struct packet_offload *po)
541 {
542         __dev_remove_offload(po);
543
544         synchronize_net();
545 }
546 EXPORT_SYMBOL(dev_remove_offload);
547
548 /******************************************************************************
549  *
550  *                    Device Boot-time Settings Routines
551  *
552  ******************************************************************************/
553
554 /* Boot time configuration table */
555 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
556
557 /**
558  *      netdev_boot_setup_add   - add new setup entry
559  *      @name: name of the device
560  *      @map: configured settings for the device
561  *
562  *      Adds new setup entry to the dev_boot_setup list.  The function
563  *      returns 0 on error and 1 on success.  This is a generic routine to
564  *      all netdevices.
565  */
566 static int netdev_boot_setup_add(char *name, struct ifmap *map)
567 {
568         struct netdev_boot_setup *s;
569         int i;
570
571         s = dev_boot_setup;
572         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
573                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
574                         memset(s[i].name, 0, sizeof(s[i].name));
575                         strlcpy(s[i].name, name, IFNAMSIZ);
576                         memcpy(&s[i].map, map, sizeof(s[i].map));
577                         break;
578                 }
579         }
580
581         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
582 }
583
584 /**
585  * netdev_boot_setup_check      - check boot time settings
586  * @dev: the netdevice
587  *
588  * Check boot time settings for the device.
589  * The found settings are set for the device to be used
590  * later in the device probing.
591  * Returns 0 if no settings found, 1 if they are.
592  */
593 int netdev_boot_setup_check(struct net_device *dev)
594 {
595         struct netdev_boot_setup *s = dev_boot_setup;
596         int i;
597
598         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
599                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
600                     !strcmp(dev->name, s[i].name)) {
601                         dev->irq = s[i].map.irq;
602                         dev->base_addr = s[i].map.base_addr;
603                         dev->mem_start = s[i].map.mem_start;
604                         dev->mem_end = s[i].map.mem_end;
605                         return 1;
606                 }
607         }
608         return 0;
609 }
610 EXPORT_SYMBOL(netdev_boot_setup_check);
611
612
613 /**
614  * netdev_boot_base     - get address from boot time settings
615  * @prefix: prefix for network device
616  * @unit: id for network device
617  *
618  * Check boot time settings for the base address of device.
619  * The found settings are set for the device to be used
620  * later in the device probing.
621  * Returns 0 if no settings found.
622  */
623 unsigned long netdev_boot_base(const char *prefix, int unit)
624 {
625         const struct netdev_boot_setup *s = dev_boot_setup;
626         char name[IFNAMSIZ];
627         int i;
628
629         sprintf(name, "%s%d", prefix, unit);
630
631         /*
632          * If device already registered then return base of 1
633          * to indicate not to probe for this interface
634          */
635         if (__dev_get_by_name(&init_net, name))
636                 return 1;
637
638         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
639                 if (!strcmp(name, s[i].name))
640                         return s[i].map.base_addr;
641         return 0;
642 }
643
644 /*
645  * Saves at boot time configured settings for any netdevice.
646  */
647 int __init netdev_boot_setup(char *str)
648 {
649         int ints[5];
650         struct ifmap map;
651
652         str = get_options(str, ARRAY_SIZE(ints), ints);
653         if (!str || !*str)
654                 return 0;
655
656         /* Save settings */
657         memset(&map, 0, sizeof(map));
658         if (ints[0] > 0)
659                 map.irq = ints[1];
660         if (ints[0] > 1)
661                 map.base_addr = ints[2];
662         if (ints[0] > 2)
663                 map.mem_start = ints[3];
664         if (ints[0] > 3)
665                 map.mem_end = ints[4];
666
667         /* Add new entry to the list */
668         return netdev_boot_setup_add(str, &map);
669 }
670
671 __setup("netdev=", netdev_boot_setup);
672
673 /*******************************************************************************
674  *
675  *                          Device Interface Subroutines
676  *
677  *******************************************************************************/
678
679 /**
680  *      dev_get_iflink  - get 'iflink' value of a interface
681  *      @dev: targeted interface
682  *
683  *      Indicates the ifindex the interface is linked to.
684  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
685  */
686
687 int dev_get_iflink(const struct net_device *dev)
688 {
689         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
690                 return dev->netdev_ops->ndo_get_iflink(dev);
691
692         return dev->ifindex;
693 }
694 EXPORT_SYMBOL(dev_get_iflink);
695
696 /**
697  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
698  *      @dev: targeted interface
699  *      @skb: The packet.
700  *
701  *      For better visibility of tunnel traffic OVS needs to retrieve
702  *      egress tunnel information for a packet. Following API allows
703  *      user to get this info.
704  */
705 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
706 {
707         struct ip_tunnel_info *info;
708
709         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
710                 return -EINVAL;
711
712         info = skb_tunnel_info_unclone(skb);
713         if (!info)
714                 return -ENOMEM;
715         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
716                 return -EINVAL;
717
718         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
719 }
720 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
721
722 /**
723  *      __dev_get_by_name       - find a device by its name
724  *      @net: the applicable net namespace
725  *      @name: name to find
726  *
727  *      Find an interface by name. Must be called under RTNL semaphore
728  *      or @dev_base_lock. If the name is found a pointer to the device
729  *      is returned. If the name is not found then %NULL is returned. The
730  *      reference counters are not incremented so the caller must be
731  *      careful with locks.
732  */
733
734 struct net_device *__dev_get_by_name(struct net *net, const char *name)
735 {
736         struct net_device *dev;
737         struct hlist_head *head = dev_name_hash(net, name);
738
739         hlist_for_each_entry(dev, head, name_hlist)
740                 if (!strncmp(dev->name, name, IFNAMSIZ))
741                         return dev;
742
743         return NULL;
744 }
745 EXPORT_SYMBOL(__dev_get_by_name);
746
747 /**
748  * dev_get_by_name_rcu  - find a device by its name
749  * @net: the applicable net namespace
750  * @name: name to find
751  *
752  * Find an interface by name.
753  * If the name is found a pointer to the device is returned.
754  * If the name is not found then %NULL is returned.
755  * The reference counters are not incremented so the caller must be
756  * careful with locks. The caller must hold RCU lock.
757  */
758
759 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
760 {
761         struct net_device *dev;
762         struct hlist_head *head = dev_name_hash(net, name);
763
764         hlist_for_each_entry_rcu(dev, head, name_hlist)
765                 if (!strncmp(dev->name, name, IFNAMSIZ))
766                         return dev;
767
768         return NULL;
769 }
770 EXPORT_SYMBOL(dev_get_by_name_rcu);
771
772 /**
773  *      dev_get_by_name         - find a device by its name
774  *      @net: the applicable net namespace
775  *      @name: name to find
776  *
777  *      Find an interface by name. This can be called from any
778  *      context and does its own locking. The returned handle has
779  *      the usage count incremented and the caller must use dev_put() to
780  *      release it when it is no longer needed. %NULL is returned if no
781  *      matching device is found.
782  */
783
784 struct net_device *dev_get_by_name(struct net *net, const char *name)
785 {
786         struct net_device *dev;
787
788         rcu_read_lock();
789         dev = dev_get_by_name_rcu(net, name);
790         if (dev)
791                 dev_hold(dev);
792         rcu_read_unlock();
793         return dev;
794 }
795 EXPORT_SYMBOL(dev_get_by_name);
796
797 /**
798  *      __dev_get_by_index - find a device by its ifindex
799  *      @net: the applicable net namespace
800  *      @ifindex: index of device
801  *
802  *      Search for an interface by index. Returns %NULL if the device
803  *      is not found or a pointer to the device. The device has not
804  *      had its reference counter increased so the caller must be careful
805  *      about locking. The caller must hold either the RTNL semaphore
806  *      or @dev_base_lock.
807  */
808
809 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
810 {
811         struct net_device *dev;
812         struct hlist_head *head = dev_index_hash(net, ifindex);
813
814         hlist_for_each_entry(dev, head, index_hlist)
815                 if (dev->ifindex == ifindex)
816                         return dev;
817
818         return NULL;
819 }
820 EXPORT_SYMBOL(__dev_get_by_index);
821
822 /**
823  *      dev_get_by_index_rcu - find a device by its ifindex
824  *      @net: the applicable net namespace
825  *      @ifindex: index of device
826  *
827  *      Search for an interface by index. Returns %NULL if the device
828  *      is not found or a pointer to the device. The device has not
829  *      had its reference counter increased so the caller must be careful
830  *      about locking. The caller must hold RCU lock.
831  */
832
833 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
834 {
835         struct net_device *dev;
836         struct hlist_head *head = dev_index_hash(net, ifindex);
837
838         hlist_for_each_entry_rcu(dev, head, index_hlist)
839                 if (dev->ifindex == ifindex)
840                         return dev;
841
842         return NULL;
843 }
844 EXPORT_SYMBOL(dev_get_by_index_rcu);
845
846
847 /**
848  *      dev_get_by_index - find a device by its ifindex
849  *      @net: the applicable net namespace
850  *      @ifindex: index of device
851  *
852  *      Search for an interface by index. Returns NULL if the device
853  *      is not found or a pointer to the device. The device returned has
854  *      had a reference added and the pointer is safe until the user calls
855  *      dev_put to indicate they have finished with it.
856  */
857
858 struct net_device *dev_get_by_index(struct net *net, int ifindex)
859 {
860         struct net_device *dev;
861
862         rcu_read_lock();
863         dev = dev_get_by_index_rcu(net, ifindex);
864         if (dev)
865                 dev_hold(dev);
866         rcu_read_unlock();
867         return dev;
868 }
869 EXPORT_SYMBOL(dev_get_by_index);
870
871 /**
872  *      dev_get_by_napi_id - find a device by napi_id
873  *      @napi_id: ID of the NAPI struct
874  *
875  *      Search for an interface by NAPI ID. Returns %NULL if the device
876  *      is not found or a pointer to the device. The device has not had
877  *      its reference counter increased so the caller must be careful
878  *      about locking. The caller must hold RCU lock.
879  */
880
881 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
882 {
883         struct napi_struct *napi;
884
885         WARN_ON_ONCE(!rcu_read_lock_held());
886
887         if (napi_id < MIN_NAPI_ID)
888                 return NULL;
889
890         napi = napi_by_id(napi_id);
891
892         return napi ? napi->dev : NULL;
893 }
894 EXPORT_SYMBOL(dev_get_by_napi_id);
895
896 /**
897  *      netdev_get_name - get a netdevice name, knowing its ifindex.
898  *      @net: network namespace
899  *      @name: a pointer to the buffer where the name will be stored.
900  *      @ifindex: the ifindex of the interface to get the name from.
901  *
902  *      The use of raw_seqcount_begin() and cond_resched() before
903  *      retrying is required as we want to give the writers a chance
904  *      to complete when CONFIG_PREEMPT is not set.
905  */
906 int netdev_get_name(struct net *net, char *name, int ifindex)
907 {
908         struct net_device *dev;
909         unsigned int seq;
910
911 retry:
912         seq = raw_seqcount_begin(&devnet_rename_seq);
913         rcu_read_lock();
914         dev = dev_get_by_index_rcu(net, ifindex);
915         if (!dev) {
916                 rcu_read_unlock();
917                 return -ENODEV;
918         }
919
920         strcpy(name, dev->name);
921         rcu_read_unlock();
922         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
923                 cond_resched();
924                 goto retry;
925         }
926
927         return 0;
928 }
929
930 /**
931  *      dev_getbyhwaddr_rcu - find a device by its hardware address
932  *      @net: the applicable net namespace
933  *      @type: media type of device
934  *      @ha: hardware address
935  *
936  *      Search for an interface by MAC address. Returns NULL if the device
937  *      is not found or a pointer to the device.
938  *      The caller must hold RCU or RTNL.
939  *      The returned device has not had its ref count increased
940  *      and the caller must therefore be careful about locking
941  *
942  */
943
944 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
945                                        const char *ha)
946 {
947         struct net_device *dev;
948
949         for_each_netdev_rcu(net, dev)
950                 if (dev->type == type &&
951                     !memcmp(dev->dev_addr, ha, dev->addr_len))
952                         return dev;
953
954         return NULL;
955 }
956 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
957
958 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
959 {
960         struct net_device *dev;
961
962         ASSERT_RTNL();
963         for_each_netdev(net, dev)
964                 if (dev->type == type)
965                         return dev;
966
967         return NULL;
968 }
969 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
970
971 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
972 {
973         struct net_device *dev, *ret = NULL;
974
975         rcu_read_lock();
976         for_each_netdev_rcu(net, dev)
977                 if (dev->type == type) {
978                         dev_hold(dev);
979                         ret = dev;
980                         break;
981                 }
982         rcu_read_unlock();
983         return ret;
984 }
985 EXPORT_SYMBOL(dev_getfirstbyhwtype);
986
987 /**
988  *      __dev_get_by_flags - find any device with given flags
989  *      @net: the applicable net namespace
990  *      @if_flags: IFF_* values
991  *      @mask: bitmask of bits in if_flags to check
992  *
993  *      Search for any interface with the given flags. Returns NULL if a device
994  *      is not found or a pointer to the device. Must be called inside
995  *      rtnl_lock(), and result refcount is unchanged.
996  */
997
998 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
999                                       unsigned short mask)
1000 {
1001         struct net_device *dev, *ret;
1002
1003         ASSERT_RTNL();
1004
1005         ret = NULL;
1006         for_each_netdev(net, dev) {
1007                 if (((dev->flags ^ if_flags) & mask) == 0) {
1008                         ret = dev;
1009                         break;
1010                 }
1011         }
1012         return ret;
1013 }
1014 EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016 /**
1017  *      dev_valid_name - check if name is okay for network device
1018  *      @name: name string
1019  *
1020  *      Network device names need to be valid file names to
1021  *      to allow sysfs to work.  We also disallow any kind of
1022  *      whitespace.
1023  */
1024 bool dev_valid_name(const char *name)
1025 {
1026         if (*name == '\0')
1027                 return false;
1028         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                 return false;
1030         if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                 return false;
1032
1033         while (*name) {
1034                 if (*name == '/' || *name == ':' || isspace(*name))
1035                         return false;
1036                 name++;
1037         }
1038         return true;
1039 }
1040 EXPORT_SYMBOL(dev_valid_name);
1041
1042 /**
1043  *      __dev_alloc_name - allocate a name for a device
1044  *      @net: network namespace to allocate the device name in
1045  *      @name: name format string
1046  *      @buf:  scratch buffer and result name string
1047  *
1048  *      Passed a format string - eg "lt%d" it will try and find a suitable
1049  *      id. It scans list of devices to build up a free map, then chooses
1050  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051  *      while allocating the name and adding the device in order to avoid
1052  *      duplicates.
1053  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054  *      Returns the number of the unit assigned or a negative errno code.
1055  */
1056
1057 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058 {
1059         int i = 0;
1060         const char *p;
1061         const int max_netdevices = 8*PAGE_SIZE;
1062         unsigned long *inuse;
1063         struct net_device *d;
1064
1065         if (!dev_valid_name(name))
1066                 return -EINVAL;
1067
1068         p = strchr(name, '%');
1069         if (p) {
1070                 /*
1071                  * Verify the string as this thing may have come from
1072                  * the user.  There must be either one "%d" and no other "%"
1073                  * characters.
1074                  */
1075                 if (p[1] != 'd' || strchr(p + 2, '%'))
1076                         return -EINVAL;
1077
1078                 /* Use one page as a bit array of possible slots */
1079                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                 if (!inuse)
1081                         return -ENOMEM;
1082
1083                 for_each_netdev(net, d) {
1084                         if (!sscanf(d->name, name, &i))
1085                                 continue;
1086                         if (i < 0 || i >= max_netdevices)
1087                                 continue;
1088
1089                         /*  avoid cases where sscanf is not exact inverse of printf */
1090                         snprintf(buf, IFNAMSIZ, name, i);
1091                         if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                 set_bit(i, inuse);
1093                 }
1094
1095                 i = find_first_zero_bit(inuse, max_netdevices);
1096                 free_page((unsigned long) inuse);
1097         }
1098
1099         snprintf(buf, IFNAMSIZ, name, i);
1100         if (!__dev_get_by_name(net, buf))
1101                 return i;
1102
1103         /* It is possible to run out of possible slots
1104          * when the name is long and there isn't enough space left
1105          * for the digits, or if all bits are used.
1106          */
1107         return -ENFILE;
1108 }
1109
1110 static int dev_alloc_name_ns(struct net *net,
1111                              struct net_device *dev,
1112                              const char *name)
1113 {
1114         char buf[IFNAMSIZ];
1115         int ret;
1116
1117         BUG_ON(!net);
1118         ret = __dev_alloc_name(net, name, buf);
1119         if (ret >= 0)
1120                 strlcpy(dev->name, buf, IFNAMSIZ);
1121         return ret;
1122 }
1123
1124 /**
1125  *      dev_alloc_name - allocate a name for a device
1126  *      @dev: device
1127  *      @name: name format string
1128  *
1129  *      Passed a format string - eg "lt%d" it will try and find a suitable
1130  *      id. It scans list of devices to build up a free map, then chooses
1131  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132  *      while allocating the name and adding the device in order to avoid
1133  *      duplicates.
1134  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135  *      Returns the number of the unit assigned or a negative errno code.
1136  */
1137
1138 int dev_alloc_name(struct net_device *dev, const char *name)
1139 {
1140         return dev_alloc_name_ns(dev_net(dev), dev, name);
1141 }
1142 EXPORT_SYMBOL(dev_alloc_name);
1143
1144 int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                        const char *name)
1146 {
1147         BUG_ON(!net);
1148
1149         if (!dev_valid_name(name))
1150                 return -EINVAL;
1151
1152         if (strchr(name, '%'))
1153                 return dev_alloc_name_ns(net, dev, name);
1154         else if (__dev_get_by_name(net, name))
1155                 return -EEXIST;
1156         else if (dev->name != name)
1157                 strlcpy(dev->name, name, IFNAMSIZ);
1158
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(dev_get_valid_name);
1162
1163 /**
1164  *      dev_change_name - change name of a device
1165  *      @dev: device
1166  *      @newname: name (or format string) must be at least IFNAMSIZ
1167  *
1168  *      Change name of a device, can pass format strings "eth%d".
1169  *      for wildcarding.
1170  */
1171 int dev_change_name(struct net_device *dev, const char *newname)
1172 {
1173         unsigned char old_assign_type;
1174         char oldname[IFNAMSIZ];
1175         int err = 0;
1176         int ret;
1177         struct net *net;
1178
1179         ASSERT_RTNL();
1180         BUG_ON(!dev_net(dev));
1181
1182         net = dev_net(dev);
1183
1184         /* Some auto-enslaved devices e.g. failover slaves are
1185          * special, as userspace might rename the device after
1186          * the interface had been brought up and running since
1187          * the point kernel initiated auto-enslavement. Allow
1188          * live name change even when these slave devices are
1189          * up and running.
1190          *
1191          * Typically, users of these auto-enslaving devices
1192          * don't actually care about slave name change, as
1193          * they are supposed to operate on master interface
1194          * directly.
1195          */
1196         if (dev->flags & IFF_UP &&
1197             likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198                 return -EBUSY;
1199
1200         write_seqcount_begin(&devnet_rename_seq);
1201
1202         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203                 write_seqcount_end(&devnet_rename_seq);
1204                 return 0;
1205         }
1206
1207         memcpy(oldname, dev->name, IFNAMSIZ);
1208
1209         err = dev_get_valid_name(net, dev, newname);
1210         if (err < 0) {
1211                 write_seqcount_end(&devnet_rename_seq);
1212                 return err;
1213         }
1214
1215         if (oldname[0] && !strchr(oldname, '%'))
1216                 netdev_info(dev, "renamed from %s\n", oldname);
1217
1218         old_assign_type = dev->name_assign_type;
1219         dev->name_assign_type = NET_NAME_RENAMED;
1220
1221 rollback:
1222         ret = device_rename(&dev->dev, dev->name);
1223         if (ret) {
1224                 memcpy(dev->name, oldname, IFNAMSIZ);
1225                 dev->name_assign_type = old_assign_type;
1226                 write_seqcount_end(&devnet_rename_seq);
1227                 return ret;
1228         }
1229
1230         write_seqcount_end(&devnet_rename_seq);
1231
1232         netdev_adjacent_rename_links(dev, oldname);
1233
1234         write_lock_bh(&dev_base_lock);
1235         hlist_del_rcu(&dev->name_hlist);
1236         write_unlock_bh(&dev_base_lock);
1237
1238         synchronize_rcu();
1239
1240         write_lock_bh(&dev_base_lock);
1241         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242         write_unlock_bh(&dev_base_lock);
1243
1244         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245         ret = notifier_to_errno(ret);
1246
1247         if (ret) {
1248                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1249                 if (err >= 0) {
1250                         err = ret;
1251                         write_seqcount_begin(&devnet_rename_seq);
1252                         memcpy(dev->name, oldname, IFNAMSIZ);
1253                         memcpy(oldname, newname, IFNAMSIZ);
1254                         dev->name_assign_type = old_assign_type;
1255                         old_assign_type = NET_NAME_RENAMED;
1256                         goto rollback;
1257                 } else {
1258                         pr_err("%s: name change rollback failed: %d\n",
1259                                dev->name, ret);
1260                 }
1261         }
1262
1263         return err;
1264 }
1265
1266 /**
1267  *      dev_set_alias - change ifalias of a device
1268  *      @dev: device
1269  *      @alias: name up to IFALIASZ
1270  *      @len: limit of bytes to copy from info
1271  *
1272  *      Set ifalias for a device,
1273  */
1274 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275 {
1276         struct dev_ifalias *new_alias = NULL;
1277
1278         if (len >= IFALIASZ)
1279                 return -EINVAL;
1280
1281         if (len) {
1282                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283                 if (!new_alias)
1284                         return -ENOMEM;
1285
1286                 memcpy(new_alias->ifalias, alias, len);
1287                 new_alias->ifalias[len] = 0;
1288         }
1289
1290         mutex_lock(&ifalias_mutex);
1291         rcu_swap_protected(dev->ifalias, new_alias,
1292                            mutex_is_locked(&ifalias_mutex));
1293         mutex_unlock(&ifalias_mutex);
1294
1295         if (new_alias)
1296                 kfree_rcu(new_alias, rcuhead);
1297
1298         return len;
1299 }
1300 EXPORT_SYMBOL(dev_set_alias);
1301
1302 /**
1303  *      dev_get_alias - get ifalias of a device
1304  *      @dev: device
1305  *      @name: buffer to store name of ifalias
1306  *      @len: size of buffer
1307  *
1308  *      get ifalias for a device.  Caller must make sure dev cannot go
1309  *      away,  e.g. rcu read lock or own a reference count to device.
1310  */
1311 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312 {
1313         const struct dev_ifalias *alias;
1314         int ret = 0;
1315
1316         rcu_read_lock();
1317         alias = rcu_dereference(dev->ifalias);
1318         if (alias)
1319                 ret = snprintf(name, len, "%s", alias->ifalias);
1320         rcu_read_unlock();
1321
1322         return ret;
1323 }
1324
1325 /**
1326  *      netdev_features_change - device changes features
1327  *      @dev: device to cause notification
1328  *
1329  *      Called to indicate a device has changed features.
1330  */
1331 void netdev_features_change(struct net_device *dev)
1332 {
1333         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334 }
1335 EXPORT_SYMBOL(netdev_features_change);
1336
1337 /**
1338  *      netdev_state_change - device changes state
1339  *      @dev: device to cause notification
1340  *
1341  *      Called to indicate a device has changed state. This function calls
1342  *      the notifier chains for netdev_chain and sends a NEWLINK message
1343  *      to the routing socket.
1344  */
1345 void netdev_state_change(struct net_device *dev)
1346 {
1347         if (dev->flags & IFF_UP) {
1348                 struct netdev_notifier_change_info change_info = {
1349                         .info.dev = dev,
1350                 };
1351
1352                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1353                                               &change_info.info);
1354                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1355         }
1356 }
1357 EXPORT_SYMBOL(netdev_state_change);
1358
1359 /**
1360  * netdev_notify_peers - notify network peers about existence of @dev
1361  * @dev: network device
1362  *
1363  * Generate traffic such that interested network peers are aware of
1364  * @dev, such as by generating a gratuitous ARP. This may be used when
1365  * a device wants to inform the rest of the network about some sort of
1366  * reconfiguration such as a failover event or virtual machine
1367  * migration.
1368  */
1369 void netdev_notify_peers(struct net_device *dev)
1370 {
1371         rtnl_lock();
1372         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374         rtnl_unlock();
1375 }
1376 EXPORT_SYMBOL(netdev_notify_peers);
1377
1378 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379 {
1380         const struct net_device_ops *ops = dev->netdev_ops;
1381         int ret;
1382
1383         ASSERT_RTNL();
1384
1385         if (!netif_device_present(dev))
1386                 return -ENODEV;
1387
1388         /* Block netpoll from trying to do any rx path servicing.
1389          * If we don't do this there is a chance ndo_poll_controller
1390          * or ndo_poll may be running while we open the device
1391          */
1392         netpoll_poll_disable(dev);
1393
1394         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395         ret = notifier_to_errno(ret);
1396         if (ret)
1397                 return ret;
1398
1399         set_bit(__LINK_STATE_START, &dev->state);
1400
1401         if (ops->ndo_validate_addr)
1402                 ret = ops->ndo_validate_addr(dev);
1403
1404         if (!ret && ops->ndo_open)
1405                 ret = ops->ndo_open(dev);
1406
1407         netpoll_poll_enable(dev);
1408
1409         if (ret)
1410                 clear_bit(__LINK_STATE_START, &dev->state);
1411         else {
1412                 dev->flags |= IFF_UP;
1413                 dev_set_rx_mode(dev);
1414                 dev_activate(dev);
1415                 add_device_randomness(dev->dev_addr, dev->addr_len);
1416         }
1417
1418         return ret;
1419 }
1420
1421 /**
1422  *      dev_open        - prepare an interface for use.
1423  *      @dev: device to open
1424  *      @extack: netlink extended ack
1425  *
1426  *      Takes a device from down to up state. The device's private open
1427  *      function is invoked and then the multicast lists are loaded. Finally
1428  *      the device is moved into the up state and a %NETDEV_UP message is
1429  *      sent to the netdev notifier chain.
1430  *
1431  *      Calling this function on an active interface is a nop. On a failure
1432  *      a negative errno code is returned.
1433  */
1434 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1435 {
1436         int ret;
1437
1438         if (dev->flags & IFF_UP)
1439                 return 0;
1440
1441         ret = __dev_open(dev, extack);
1442         if (ret < 0)
1443                 return ret;
1444
1445         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446         call_netdevice_notifiers(NETDEV_UP, dev);
1447
1448         return ret;
1449 }
1450 EXPORT_SYMBOL(dev_open);
1451
1452 static void __dev_close_many(struct list_head *head)
1453 {
1454         struct net_device *dev;
1455
1456         ASSERT_RTNL();
1457         might_sleep();
1458
1459         list_for_each_entry(dev, head, close_list) {
1460                 /* Temporarily disable netpoll until the interface is down */
1461                 netpoll_poll_disable(dev);
1462
1463                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1464
1465                 clear_bit(__LINK_STATE_START, &dev->state);
1466
1467                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1468                  * can be even on different cpu. So just clear netif_running().
1469                  *
1470                  * dev->stop() will invoke napi_disable() on all of it's
1471                  * napi_struct instances on this device.
1472                  */
1473                 smp_mb__after_atomic(); /* Commit netif_running(). */
1474         }
1475
1476         dev_deactivate_many(head);
1477
1478         list_for_each_entry(dev, head, close_list) {
1479                 const struct net_device_ops *ops = dev->netdev_ops;
1480
1481                 /*
1482                  *      Call the device specific close. This cannot fail.
1483                  *      Only if device is UP
1484                  *
1485                  *      We allow it to be called even after a DETACH hot-plug
1486                  *      event.
1487                  */
1488                 if (ops->ndo_stop)
1489                         ops->ndo_stop(dev);
1490
1491                 dev->flags &= ~IFF_UP;
1492                 netpoll_poll_enable(dev);
1493         }
1494 }
1495
1496 static void __dev_close(struct net_device *dev)
1497 {
1498         LIST_HEAD(single);
1499
1500         list_add(&dev->close_list, &single);
1501         __dev_close_many(&single);
1502         list_del(&single);
1503 }
1504
1505 void dev_close_many(struct list_head *head, bool unlink)
1506 {
1507         struct net_device *dev, *tmp;
1508
1509         /* Remove the devices that don't need to be closed */
1510         list_for_each_entry_safe(dev, tmp, head, close_list)
1511                 if (!(dev->flags & IFF_UP))
1512                         list_del_init(&dev->close_list);
1513
1514         __dev_close_many(head);
1515
1516         list_for_each_entry_safe(dev, tmp, head, close_list) {
1517                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1519                 if (unlink)
1520                         list_del_init(&dev->close_list);
1521         }
1522 }
1523 EXPORT_SYMBOL(dev_close_many);
1524
1525 /**
1526  *      dev_close - shutdown an interface.
1527  *      @dev: device to shutdown
1528  *
1529  *      This function moves an active device into down state. A
1530  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532  *      chain.
1533  */
1534 void dev_close(struct net_device *dev)
1535 {
1536         if (dev->flags & IFF_UP) {
1537                 LIST_HEAD(single);
1538
1539                 list_add(&dev->close_list, &single);
1540                 dev_close_many(&single, true);
1541                 list_del(&single);
1542         }
1543 }
1544 EXPORT_SYMBOL(dev_close);
1545
1546
1547 /**
1548  *      dev_disable_lro - disable Large Receive Offload on a device
1549  *      @dev: device
1550  *
1551  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1552  *      called under RTNL.  This is needed if received packets may be
1553  *      forwarded to another interface.
1554  */
1555 void dev_disable_lro(struct net_device *dev)
1556 {
1557         struct net_device *lower_dev;
1558         struct list_head *iter;
1559
1560         dev->wanted_features &= ~NETIF_F_LRO;
1561         netdev_update_features(dev);
1562
1563         if (unlikely(dev->features & NETIF_F_LRO))
1564                 netdev_WARN(dev, "failed to disable LRO!\n");
1565
1566         netdev_for_each_lower_dev(dev, lower_dev, iter)
1567                 dev_disable_lro(lower_dev);
1568 }
1569 EXPORT_SYMBOL(dev_disable_lro);
1570
1571 /**
1572  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573  *      @dev: device
1574  *
1575  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1576  *      called under RTNL.  This is needed if Generic XDP is installed on
1577  *      the device.
1578  */
1579 static void dev_disable_gro_hw(struct net_device *dev)
1580 {
1581         dev->wanted_features &= ~NETIF_F_GRO_HW;
1582         netdev_update_features(dev);
1583
1584         if (unlikely(dev->features & NETIF_F_GRO_HW))
1585                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586 }
1587
1588 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589 {
1590 #define N(val)                                          \
1591         case NETDEV_##val:                              \
1592                 return "NETDEV_" __stringify(val);
1593         switch (cmd) {
1594         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603         N(PRE_CHANGEADDR)
1604         }
1605 #undef N
1606         return "UNKNOWN_NETDEV_EVENT";
1607 }
1608 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609
1610 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611                                    struct net_device *dev)
1612 {
1613         struct netdev_notifier_info info = {
1614                 .dev = dev,
1615         };
1616
1617         return nb->notifier_call(nb, val, &info);
1618 }
1619
1620 static int dev_boot_phase = 1;
1621
1622 /**
1623  * register_netdevice_notifier - register a network notifier block
1624  * @nb: notifier
1625  *
1626  * Register a notifier to be called when network device events occur.
1627  * The notifier passed is linked into the kernel structures and must
1628  * not be reused until it has been unregistered. A negative errno code
1629  * is returned on a failure.
1630  *
1631  * When registered all registration and up events are replayed
1632  * to the new notifier to allow device to have a race free
1633  * view of the network device list.
1634  */
1635
1636 int register_netdevice_notifier(struct notifier_block *nb)
1637 {
1638         struct net_device *dev;
1639         struct net_device *last;
1640         struct net *net;
1641         int err;
1642
1643         /* Close race with setup_net() and cleanup_net() */
1644         down_write(&pernet_ops_rwsem);
1645         rtnl_lock();
1646         err = raw_notifier_chain_register(&netdev_chain, nb);
1647         if (err)
1648                 goto unlock;
1649         if (dev_boot_phase)
1650                 goto unlock;
1651         for_each_net(net) {
1652                 for_each_netdev(net, dev) {
1653                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654                         err = notifier_to_errno(err);
1655                         if (err)
1656                                 goto rollback;
1657
1658                         if (!(dev->flags & IFF_UP))
1659                                 continue;
1660
1661                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1662                 }
1663         }
1664
1665 unlock:
1666         rtnl_unlock();
1667         up_write(&pernet_ops_rwsem);
1668         return err;
1669
1670 rollback:
1671         last = dev;
1672         for_each_net(net) {
1673                 for_each_netdev(net, dev) {
1674                         if (dev == last)
1675                                 goto outroll;
1676
1677                         if (dev->flags & IFF_UP) {
1678                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679                                                         dev);
1680                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1681                         }
1682                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1683                 }
1684         }
1685
1686 outroll:
1687         raw_notifier_chain_unregister(&netdev_chain, nb);
1688         goto unlock;
1689 }
1690 EXPORT_SYMBOL(register_netdevice_notifier);
1691
1692 /**
1693  * unregister_netdevice_notifier - unregister a network notifier block
1694  * @nb: notifier
1695  *
1696  * Unregister a notifier previously registered by
1697  * register_netdevice_notifier(). The notifier is unlinked into the
1698  * kernel structures and may then be reused. A negative errno code
1699  * is returned on a failure.
1700  *
1701  * After unregistering unregister and down device events are synthesized
1702  * for all devices on the device list to the removed notifier to remove
1703  * the need for special case cleanup code.
1704  */
1705
1706 int unregister_netdevice_notifier(struct notifier_block *nb)
1707 {
1708         struct net_device *dev;
1709         struct net *net;
1710         int err;
1711
1712         /* Close race with setup_net() and cleanup_net() */
1713         down_write(&pernet_ops_rwsem);
1714         rtnl_lock();
1715         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716         if (err)
1717                 goto unlock;
1718
1719         for_each_net(net) {
1720                 for_each_netdev(net, dev) {
1721                         if (dev->flags & IFF_UP) {
1722                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723                                                         dev);
1724                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725                         }
1726                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727                 }
1728         }
1729 unlock:
1730         rtnl_unlock();
1731         up_write(&pernet_ops_rwsem);
1732         return err;
1733 }
1734 EXPORT_SYMBOL(unregister_netdevice_notifier);
1735
1736 /**
1737  *      call_netdevice_notifiers_info - call all network notifier blocks
1738  *      @val: value passed unmodified to notifier function
1739  *      @info: notifier information data
1740  *
1741  *      Call all network notifier blocks.  Parameters and return value
1742  *      are as for raw_notifier_call_chain().
1743  */
1744
1745 static int call_netdevice_notifiers_info(unsigned long val,
1746                                          struct netdev_notifier_info *info)
1747 {
1748         ASSERT_RTNL();
1749         return raw_notifier_call_chain(&netdev_chain, val, info);
1750 }
1751
1752 static int call_netdevice_notifiers_extack(unsigned long val,
1753                                            struct net_device *dev,
1754                                            struct netlink_ext_ack *extack)
1755 {
1756         struct netdev_notifier_info info = {
1757                 .dev = dev,
1758                 .extack = extack,
1759         };
1760
1761         return call_netdevice_notifiers_info(val, &info);
1762 }
1763
1764 /**
1765  *      call_netdevice_notifiers - call all network notifier blocks
1766  *      @val: value passed unmodified to notifier function
1767  *      @dev: net_device pointer passed unmodified to notifier function
1768  *
1769  *      Call all network notifier blocks.  Parameters and return value
1770  *      are as for raw_notifier_call_chain().
1771  */
1772
1773 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1774 {
1775         return call_netdevice_notifiers_extack(val, dev, NULL);
1776 }
1777 EXPORT_SYMBOL(call_netdevice_notifiers);
1778
1779 /**
1780  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1781  *      @val: value passed unmodified to notifier function
1782  *      @dev: net_device pointer passed unmodified to notifier function
1783  *      @arg: additional u32 argument passed to the notifier function
1784  *
1785  *      Call all network notifier blocks.  Parameters and return value
1786  *      are as for raw_notifier_call_chain().
1787  */
1788 static int call_netdevice_notifiers_mtu(unsigned long val,
1789                                         struct net_device *dev, u32 arg)
1790 {
1791         struct netdev_notifier_info_ext info = {
1792                 .info.dev = dev,
1793                 .ext.mtu = arg,
1794         };
1795
1796         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797
1798         return call_netdevice_notifiers_info(val, &info.info);
1799 }
1800
1801 #ifdef CONFIG_NET_INGRESS
1802 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1803
1804 void net_inc_ingress_queue(void)
1805 {
1806         static_branch_inc(&ingress_needed_key);
1807 }
1808 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809
1810 void net_dec_ingress_queue(void)
1811 {
1812         static_branch_dec(&ingress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815 #endif
1816
1817 #ifdef CONFIG_NET_EGRESS
1818 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1819
1820 void net_inc_egress_queue(void)
1821 {
1822         static_branch_inc(&egress_needed_key);
1823 }
1824 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825
1826 void net_dec_egress_queue(void)
1827 {
1828         static_branch_dec(&egress_needed_key);
1829 }
1830 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831 #endif
1832
1833 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834 #ifdef CONFIG_JUMP_LABEL
1835 static atomic_t netstamp_needed_deferred;
1836 static atomic_t netstamp_wanted;
1837 static void netstamp_clear(struct work_struct *work)
1838 {
1839         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840         int wanted;
1841
1842         wanted = atomic_add_return(deferred, &netstamp_wanted);
1843         if (wanted > 0)
1844                 static_branch_enable(&netstamp_needed_key);
1845         else
1846                 static_branch_disable(&netstamp_needed_key);
1847 }
1848 static DECLARE_WORK(netstamp_work, netstamp_clear);
1849 #endif
1850
1851 void net_enable_timestamp(void)
1852 {
1853 #ifdef CONFIG_JUMP_LABEL
1854         int wanted;
1855
1856         while (1) {
1857                 wanted = atomic_read(&netstamp_wanted);
1858                 if (wanted <= 0)
1859                         break;
1860                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861                         return;
1862         }
1863         atomic_inc(&netstamp_needed_deferred);
1864         schedule_work(&netstamp_work);
1865 #else
1866         static_branch_inc(&netstamp_needed_key);
1867 #endif
1868 }
1869 EXPORT_SYMBOL(net_enable_timestamp);
1870
1871 void net_disable_timestamp(void)
1872 {
1873 #ifdef CONFIG_JUMP_LABEL
1874         int wanted;
1875
1876         while (1) {
1877                 wanted = atomic_read(&netstamp_wanted);
1878                 if (wanted <= 1)
1879                         break;
1880                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881                         return;
1882         }
1883         atomic_dec(&netstamp_needed_deferred);
1884         schedule_work(&netstamp_work);
1885 #else
1886         static_branch_dec(&netstamp_needed_key);
1887 #endif
1888 }
1889 EXPORT_SYMBOL(net_disable_timestamp);
1890
1891 static inline void net_timestamp_set(struct sk_buff *skb)
1892 {
1893         skb->tstamp = 0;
1894         if (static_branch_unlikely(&netstamp_needed_key))
1895                 __net_timestamp(skb);
1896 }
1897
1898 #define net_timestamp_check(COND, SKB)                          \
1899         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1900                 if ((COND) && !(SKB)->tstamp)                   \
1901                         __net_timestamp(SKB);                   \
1902         }                                                       \
1903
1904 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1905 {
1906         unsigned int len;
1907
1908         if (!(dev->flags & IFF_UP))
1909                 return false;
1910
1911         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912         if (skb->len <= len)
1913                 return true;
1914
1915         /* if TSO is enabled, we don't care about the length as the packet
1916          * could be forwarded without being segmented before
1917          */
1918         if (skb_is_gso(skb))
1919                 return true;
1920
1921         return false;
1922 }
1923 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1924
1925 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926 {
1927         int ret = ____dev_forward_skb(dev, skb);
1928
1929         if (likely(!ret)) {
1930                 skb->protocol = eth_type_trans(skb, dev);
1931                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932         }
1933
1934         return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937
1938 /**
1939  * dev_forward_skb - loopback an skb to another netif
1940  *
1941  * @dev: destination network device
1942  * @skb: buffer to forward
1943  *
1944  * return values:
1945  *      NET_RX_SUCCESS  (no congestion)
1946  *      NET_RX_DROP     (packet was dropped, but freed)
1947  *
1948  * dev_forward_skb can be used for injecting an skb from the
1949  * start_xmit function of one device into the receive queue
1950  * of another device.
1951  *
1952  * The receiving device may be in another namespace, so
1953  * we have to clear all information in the skb that could
1954  * impact namespace isolation.
1955  */
1956 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957 {
1958         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1959 }
1960 EXPORT_SYMBOL_GPL(dev_forward_skb);
1961
1962 static inline int deliver_skb(struct sk_buff *skb,
1963                               struct packet_type *pt_prev,
1964                               struct net_device *orig_dev)
1965 {
1966         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967                 return -ENOMEM;
1968         refcount_inc(&skb->users);
1969         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970 }
1971
1972 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973                                           struct packet_type **pt,
1974                                           struct net_device *orig_dev,
1975                                           __be16 type,
1976                                           struct list_head *ptype_list)
1977 {
1978         struct packet_type *ptype, *pt_prev = *pt;
1979
1980         list_for_each_entry_rcu(ptype, ptype_list, list) {
1981                 if (ptype->type != type)
1982                         continue;
1983                 if (pt_prev)
1984                         deliver_skb(skb, pt_prev, orig_dev);
1985                 pt_prev = ptype;
1986         }
1987         *pt = pt_prev;
1988 }
1989
1990 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991 {
1992         if (!ptype->af_packet_priv || !skb->sk)
1993                 return false;
1994
1995         if (ptype->id_match)
1996                 return ptype->id_match(ptype, skb->sk);
1997         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998                 return true;
1999
2000         return false;
2001 }
2002
2003 /**
2004  * dev_nit_active - return true if any network interface taps are in use
2005  *
2006  * @dev: network device to check for the presence of taps
2007  */
2008 bool dev_nit_active(struct net_device *dev)
2009 {
2010         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011 }
2012 EXPORT_SYMBOL_GPL(dev_nit_active);
2013
2014 /*
2015  *      Support routine. Sends outgoing frames to any network
2016  *      taps currently in use.
2017  */
2018
2019 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2020 {
2021         struct packet_type *ptype;
2022         struct sk_buff *skb2 = NULL;
2023         struct packet_type *pt_prev = NULL;
2024         struct list_head *ptype_list = &ptype_all;
2025
2026         rcu_read_lock();
2027 again:
2028         list_for_each_entry_rcu(ptype, ptype_list, list) {
2029                 if (ptype->ignore_outgoing)
2030                         continue;
2031
2032                 /* Never send packets back to the socket
2033                  * they originated from - MvS (miquels@drinkel.ow.org)
2034                  */
2035                 if (skb_loop_sk(ptype, skb))
2036                         continue;
2037
2038                 if (pt_prev) {
2039                         deliver_skb(skb2, pt_prev, skb->dev);
2040                         pt_prev = ptype;
2041                         continue;
2042                 }
2043
2044                 /* need to clone skb, done only once */
2045                 skb2 = skb_clone(skb, GFP_ATOMIC);
2046                 if (!skb2)
2047                         goto out_unlock;
2048
2049                 net_timestamp_set(skb2);
2050
2051                 /* skb->nh should be correctly
2052                  * set by sender, so that the second statement is
2053                  * just protection against buggy protocols.
2054                  */
2055                 skb_reset_mac_header(skb2);
2056
2057                 if (skb_network_header(skb2) < skb2->data ||
2058                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060                                              ntohs(skb2->protocol),
2061                                              dev->name);
2062                         skb_reset_network_header(skb2);
2063                 }
2064
2065                 skb2->transport_header = skb2->network_header;
2066                 skb2->pkt_type = PACKET_OUTGOING;
2067                 pt_prev = ptype;
2068         }
2069
2070         if (ptype_list == &ptype_all) {
2071                 ptype_list = &dev->ptype_all;
2072                 goto again;
2073         }
2074 out_unlock:
2075         if (pt_prev) {
2076                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078                 else
2079                         kfree_skb(skb2);
2080         }
2081         rcu_read_unlock();
2082 }
2083 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2084
2085 /**
2086  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087  * @dev: Network device
2088  * @txq: number of queues available
2089  *
2090  * If real_num_tx_queues is changed the tc mappings may no longer be
2091  * valid. To resolve this verify the tc mapping remains valid and if
2092  * not NULL the mapping. With no priorities mapping to this
2093  * offset/count pair it will no longer be used. In the worst case TC0
2094  * is invalid nothing can be done so disable priority mappings. If is
2095  * expected that drivers will fix this mapping if they can before
2096  * calling netif_set_real_num_tx_queues.
2097  */
2098 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2099 {
2100         int i;
2101         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102
2103         /* If TC0 is invalidated disable TC mapping */
2104         if (tc->offset + tc->count > txq) {
2105                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106                 dev->num_tc = 0;
2107                 return;
2108         }
2109
2110         /* Invalidated prio to tc mappings set to TC0 */
2111         for (i = 1; i < TC_BITMASK + 1; i++) {
2112                 int q = netdev_get_prio_tc_map(dev, i);
2113
2114                 tc = &dev->tc_to_txq[q];
2115                 if (tc->offset + tc->count > txq) {
2116                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117                                 i, q);
2118                         netdev_set_prio_tc_map(dev, i, 0);
2119                 }
2120         }
2121 }
2122
2123 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124 {
2125         if (dev->num_tc) {
2126                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127                 int i;
2128
2129                 /* walk through the TCs and see if it falls into any of them */
2130                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131                         if ((txq - tc->offset) < tc->count)
2132                                 return i;
2133                 }
2134
2135                 /* didn't find it, just return -1 to indicate no match */
2136                 return -1;
2137         }
2138
2139         return 0;
2140 }
2141 EXPORT_SYMBOL(netdev_txq_to_tc);
2142
2143 #ifdef CONFIG_XPS
2144 struct static_key xps_needed __read_mostly;
2145 EXPORT_SYMBOL(xps_needed);
2146 struct static_key xps_rxqs_needed __read_mostly;
2147 EXPORT_SYMBOL(xps_rxqs_needed);
2148 static DEFINE_MUTEX(xps_map_mutex);
2149 #define xmap_dereference(P)             \
2150         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151
2152 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153                              int tci, u16 index)
2154 {
2155         struct xps_map *map = NULL;
2156         int pos;
2157
2158         if (dev_maps)
2159                 map = xmap_dereference(dev_maps->attr_map[tci]);
2160         if (!map)
2161                 return false;
2162
2163         for (pos = map->len; pos--;) {
2164                 if (map->queues[pos] != index)
2165                         continue;
2166
2167                 if (map->len > 1) {
2168                         map->queues[pos] = map->queues[--map->len];
2169                         break;
2170                 }
2171
2172                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173                 kfree_rcu(map, rcu);
2174                 return false;
2175         }
2176
2177         return true;
2178 }
2179
2180 static bool remove_xps_queue_cpu(struct net_device *dev,
2181                                  struct xps_dev_maps *dev_maps,
2182                                  int cpu, u16 offset, u16 count)
2183 {
2184         int num_tc = dev->num_tc ? : 1;
2185         bool active = false;
2186         int tci;
2187
2188         for (tci = cpu * num_tc; num_tc--; tci++) {
2189                 int i, j;
2190
2191                 for (i = count, j = offset; i--; j++) {
2192                         if (!remove_xps_queue(dev_maps, tci, j))
2193                                 break;
2194                 }
2195
2196                 active |= i < 0;
2197         }
2198
2199         return active;
2200 }
2201
2202 static void reset_xps_maps(struct net_device *dev,
2203                            struct xps_dev_maps *dev_maps,
2204                            bool is_rxqs_map)
2205 {
2206         if (is_rxqs_map) {
2207                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209         } else {
2210                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211         }
2212         static_key_slow_dec_cpuslocked(&xps_needed);
2213         kfree_rcu(dev_maps, rcu);
2214 }
2215
2216 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218                            u16 offset, u16 count, bool is_rxqs_map)
2219 {
2220         bool active = false;
2221         int i, j;
2222
2223         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224              j < nr_ids;)
2225                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226                                                count);
2227         if (!active)
2228                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2229
2230         if (!is_rxqs_map) {
2231                 for (i = offset + (count - 1); count--; i--) {
2232                         netdev_queue_numa_node_write(
2233                                 netdev_get_tx_queue(dev, i),
2234                                 NUMA_NO_NODE);
2235                 }
2236         }
2237 }
2238
2239 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240                                    u16 count)
2241 {
2242         const unsigned long *possible_mask = NULL;
2243         struct xps_dev_maps *dev_maps;
2244         unsigned int nr_ids;
2245
2246         if (!static_key_false(&xps_needed))
2247                 return;
2248
2249         cpus_read_lock();
2250         mutex_lock(&xps_map_mutex);
2251
2252         if (static_key_false(&xps_rxqs_needed)) {
2253                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254                 if (dev_maps) {
2255                         nr_ids = dev->num_rx_queues;
2256                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257                                        offset, count, true);
2258                 }
2259         }
2260
2261         dev_maps = xmap_dereference(dev->xps_cpus_map);
2262         if (!dev_maps)
2263                 goto out_no_maps;
2264
2265         if (num_possible_cpus() > 1)
2266                 possible_mask = cpumask_bits(cpu_possible_mask);
2267         nr_ids = nr_cpu_ids;
2268         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269                        false);
2270
2271 out_no_maps:
2272         mutex_unlock(&xps_map_mutex);
2273         cpus_read_unlock();
2274 }
2275
2276 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277 {
2278         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279 }
2280
2281 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282                                       u16 index, bool is_rxqs_map)
2283 {
2284         struct xps_map *new_map;
2285         int alloc_len = XPS_MIN_MAP_ALLOC;
2286         int i, pos;
2287
2288         for (pos = 0; map && pos < map->len; pos++) {
2289                 if (map->queues[pos] != index)
2290                         continue;
2291                 return map;
2292         }
2293
2294         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295         if (map) {
2296                 if (pos < map->alloc_len)
2297                         return map;
2298
2299                 alloc_len = map->alloc_len * 2;
2300         }
2301
2302         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303          *  map
2304          */
2305         if (is_rxqs_map)
2306                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307         else
2308                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309                                        cpu_to_node(attr_index));
2310         if (!new_map)
2311                 return NULL;
2312
2313         for (i = 0; i < pos; i++)
2314                 new_map->queues[i] = map->queues[i];
2315         new_map->alloc_len = alloc_len;
2316         new_map->len = pos;
2317
2318         return new_map;
2319 }
2320
2321 /* Must be called under cpus_read_lock */
2322 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323                           u16 index, bool is_rxqs_map)
2324 {
2325         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327         int i, j, tci, numa_node_id = -2;
2328         int maps_sz, num_tc = 1, tc = 0;
2329         struct xps_map *map, *new_map;
2330         bool active = false;
2331         unsigned int nr_ids;
2332
2333         if (dev->num_tc) {
2334                 /* Do not allow XPS on subordinate device directly */
2335                 num_tc = dev->num_tc;
2336                 if (num_tc < 0)
2337                         return -EINVAL;
2338
2339                 /* If queue belongs to subordinate dev use its map */
2340                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341
2342                 tc = netdev_txq_to_tc(dev, index);
2343                 if (tc < 0)
2344                         return -EINVAL;
2345         }
2346
2347         mutex_lock(&xps_map_mutex);
2348         if (is_rxqs_map) {
2349                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351                 nr_ids = dev->num_rx_queues;
2352         } else {
2353                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354                 if (num_possible_cpus() > 1) {
2355                         online_mask = cpumask_bits(cpu_online_mask);
2356                         possible_mask = cpumask_bits(cpu_possible_mask);
2357                 }
2358                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2359                 nr_ids = nr_cpu_ids;
2360         }
2361
2362         if (maps_sz < L1_CACHE_BYTES)
2363                 maps_sz = L1_CACHE_BYTES;
2364
2365         /* allocate memory for queue storage */
2366         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367              j < nr_ids;) {
2368                 if (!new_dev_maps)
2369                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370                 if (!new_dev_maps) {
2371                         mutex_unlock(&xps_map_mutex);
2372                         return -ENOMEM;
2373                 }
2374
2375                 tci = j * num_tc + tc;
2376                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377                                  NULL;
2378
2379                 map = expand_xps_map(map, j, index, is_rxqs_map);
2380                 if (!map)
2381                         goto error;
2382
2383                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2384         }
2385
2386         if (!new_dev_maps)
2387                 goto out_no_new_maps;
2388
2389         if (!dev_maps) {
2390                 /* Increment static keys at most once per type */
2391                 static_key_slow_inc_cpuslocked(&xps_needed);
2392                 if (is_rxqs_map)
2393                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394         }
2395
2396         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397              j < nr_ids;) {
2398                 /* copy maps belonging to foreign traffic classes */
2399                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400                         /* fill in the new device map from the old device map */
2401                         map = xmap_dereference(dev_maps->attr_map[tci]);
2402                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2403                 }
2404
2405                 /* We need to explicitly update tci as prevous loop
2406                  * could break out early if dev_maps is NULL.
2407                  */
2408                 tci = j * num_tc + tc;
2409
2410                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2411                     netif_attr_test_online(j, online_mask, nr_ids)) {
2412                         /* add tx-queue to CPU/rx-queue maps */
2413                         int pos = 0;
2414
2415                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416                         while ((pos < map->len) && (map->queues[pos] != index))
2417                                 pos++;
2418
2419                         if (pos == map->len)
2420                                 map->queues[map->len++] = index;
2421 #ifdef CONFIG_NUMA
2422                         if (!is_rxqs_map) {
2423                                 if (numa_node_id == -2)
2424                                         numa_node_id = cpu_to_node(j);
2425                                 else if (numa_node_id != cpu_to_node(j))
2426                                         numa_node_id = -1;
2427                         }
2428 #endif
2429                 } else if (dev_maps) {
2430                         /* fill in the new device map from the old device map */
2431                         map = xmap_dereference(dev_maps->attr_map[tci]);
2432                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2433                 }
2434
2435                 /* copy maps belonging to foreign traffic classes */
2436                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437                         /* fill in the new device map from the old device map */
2438                         map = xmap_dereference(dev_maps->attr_map[tci]);
2439                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2440                 }
2441         }
2442
2443         if (is_rxqs_map)
2444                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445         else
2446                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2447
2448         /* Cleanup old maps */
2449         if (!dev_maps)
2450                 goto out_no_old_maps;
2451
2452         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453              j < nr_ids;) {
2454                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456                         map = xmap_dereference(dev_maps->attr_map[tci]);
2457                         if (map && map != new_map)
2458                                 kfree_rcu(map, rcu);
2459                 }
2460         }
2461
2462         kfree_rcu(dev_maps, rcu);
2463
2464 out_no_old_maps:
2465         dev_maps = new_dev_maps;
2466         active = true;
2467
2468 out_no_new_maps:
2469         if (!is_rxqs_map) {
2470                 /* update Tx queue numa node */
2471                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472                                              (numa_node_id >= 0) ?
2473                                              numa_node_id : NUMA_NO_NODE);
2474         }
2475
2476         if (!dev_maps)
2477                 goto out_no_maps;
2478
2479         /* removes tx-queue from unused CPUs/rx-queues */
2480         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481              j < nr_ids;) {
2482                 for (i = tc, tci = j * num_tc; i--; tci++)
2483                         active |= remove_xps_queue(dev_maps, tci, index);
2484                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485                     !netif_attr_test_online(j, online_mask, nr_ids))
2486                         active |= remove_xps_queue(dev_maps, tci, index);
2487                 for (i = num_tc - tc, tci++; --i; tci++)
2488                         active |= remove_xps_queue(dev_maps, tci, index);
2489         }
2490
2491         /* free map if not active */
2492         if (!active)
2493                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2494
2495 out_no_maps:
2496         mutex_unlock(&xps_map_mutex);
2497
2498         return 0;
2499 error:
2500         /* remove any maps that we added */
2501         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502              j < nr_ids;) {
2503                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505                         map = dev_maps ?
2506                               xmap_dereference(dev_maps->attr_map[tci]) :
2507                               NULL;
2508                         if (new_map && new_map != map)
2509                                 kfree(new_map);
2510                 }
2511         }
2512
2513         mutex_unlock(&xps_map_mutex);
2514
2515         kfree(new_dev_maps);
2516         return -ENOMEM;
2517 }
2518 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2519
2520 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521                         u16 index)
2522 {
2523         int ret;
2524
2525         cpus_read_lock();
2526         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527         cpus_read_unlock();
2528
2529         return ret;
2530 }
2531 EXPORT_SYMBOL(netif_set_xps_queue);
2532
2533 #endif
2534 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535 {
2536         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537
2538         /* Unbind any subordinate channels */
2539         while (txq-- != &dev->_tx[0]) {
2540                 if (txq->sb_dev)
2541                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2542         }
2543 }
2544
2545 void netdev_reset_tc(struct net_device *dev)
2546 {
2547 #ifdef CONFIG_XPS
2548         netif_reset_xps_queues_gt(dev, 0);
2549 #endif
2550         netdev_unbind_all_sb_channels(dev);
2551
2552         /* Reset TC configuration of device */
2553         dev->num_tc = 0;
2554         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556 }
2557 EXPORT_SYMBOL(netdev_reset_tc);
2558
2559 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560 {
2561         if (tc >= dev->num_tc)
2562                 return -EINVAL;
2563
2564 #ifdef CONFIG_XPS
2565         netif_reset_xps_queues(dev, offset, count);
2566 #endif
2567         dev->tc_to_txq[tc].count = count;
2568         dev->tc_to_txq[tc].offset = offset;
2569         return 0;
2570 }
2571 EXPORT_SYMBOL(netdev_set_tc_queue);
2572
2573 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574 {
2575         if (num_tc > TC_MAX_QUEUE)
2576                 return -EINVAL;
2577
2578 #ifdef CONFIG_XPS
2579         netif_reset_xps_queues_gt(dev, 0);
2580 #endif
2581         netdev_unbind_all_sb_channels(dev);
2582
2583         dev->num_tc = num_tc;
2584         return 0;
2585 }
2586 EXPORT_SYMBOL(netdev_set_num_tc);
2587
2588 void netdev_unbind_sb_channel(struct net_device *dev,
2589                               struct net_device *sb_dev)
2590 {
2591         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592
2593 #ifdef CONFIG_XPS
2594         netif_reset_xps_queues_gt(sb_dev, 0);
2595 #endif
2596         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598
2599         while (txq-- != &dev->_tx[0]) {
2600                 if (txq->sb_dev == sb_dev)
2601                         txq->sb_dev = NULL;
2602         }
2603 }
2604 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605
2606 int netdev_bind_sb_channel_queue(struct net_device *dev,
2607                                  struct net_device *sb_dev,
2608                                  u8 tc, u16 count, u16 offset)
2609 {
2610         /* Make certain the sb_dev and dev are already configured */
2611         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612                 return -EINVAL;
2613
2614         /* We cannot hand out queues we don't have */
2615         if ((offset + count) > dev->real_num_tx_queues)
2616                 return -EINVAL;
2617
2618         /* Record the mapping */
2619         sb_dev->tc_to_txq[tc].count = count;
2620         sb_dev->tc_to_txq[tc].offset = offset;
2621
2622         /* Provide a way for Tx queue to find the tc_to_txq map or
2623          * XPS map for itself.
2624          */
2625         while (count--)
2626                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627
2628         return 0;
2629 }
2630 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631
2632 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633 {
2634         /* Do not use a multiqueue device to represent a subordinate channel */
2635         if (netif_is_multiqueue(dev))
2636                 return -ENODEV;
2637
2638         /* We allow channels 1 - 32767 to be used for subordinate channels.
2639          * Channel 0 is meant to be "native" mode and used only to represent
2640          * the main root device. We allow writing 0 to reset the device back
2641          * to normal mode after being used as a subordinate channel.
2642          */
2643         if (channel > S16_MAX)
2644                 return -EINVAL;
2645
2646         dev->num_tc = -channel;
2647
2648         return 0;
2649 }
2650 EXPORT_SYMBOL(netdev_set_sb_channel);
2651
2652 /*
2653  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2655  */
2656 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2657 {
2658         bool disabling;
2659         int rc;
2660
2661         disabling = txq < dev->real_num_tx_queues;
2662
2663         if (txq < 1 || txq > dev->num_tx_queues)
2664                 return -EINVAL;
2665
2666         if (dev->reg_state == NETREG_REGISTERED ||
2667             dev->reg_state == NETREG_UNREGISTERING) {
2668                 ASSERT_RTNL();
2669
2670                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671                                                   txq);
2672                 if (rc)
2673                         return rc;
2674
2675                 if (dev->num_tc)
2676                         netif_setup_tc(dev, txq);
2677
2678                 dev->real_num_tx_queues = txq;
2679
2680                 if (disabling) {
2681                         synchronize_net();
2682                         qdisc_reset_all_tx_gt(dev, txq);
2683 #ifdef CONFIG_XPS
2684                         netif_reset_xps_queues_gt(dev, txq);
2685 #endif
2686                 }
2687         } else {
2688                 dev->real_num_tx_queues = txq;
2689         }
2690
2691         return 0;
2692 }
2693 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2694
2695 #ifdef CONFIG_SYSFS
2696 /**
2697  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2698  *      @dev: Network device
2699  *      @rxq: Actual number of RX queues
2700  *
2701  *      This must be called either with the rtnl_lock held or before
2702  *      registration of the net device.  Returns 0 on success, or a
2703  *      negative error code.  If called before registration, it always
2704  *      succeeds.
2705  */
2706 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707 {
2708         int rc;
2709
2710         if (rxq < 1 || rxq > dev->num_rx_queues)
2711                 return -EINVAL;
2712
2713         if (dev->reg_state == NETREG_REGISTERED) {
2714                 ASSERT_RTNL();
2715
2716                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717                                                   rxq);
2718                 if (rc)
2719                         return rc;
2720         }
2721
2722         dev->real_num_rx_queues = rxq;
2723         return 0;
2724 }
2725 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726 #endif
2727
2728 /**
2729  * netif_get_num_default_rss_queues - default number of RSS queues
2730  *
2731  * This routine should set an upper limit on the number of RSS queues
2732  * used by default by multiqueue devices.
2733  */
2734 int netif_get_num_default_rss_queues(void)
2735 {
2736         return is_kdump_kernel() ?
2737                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2738 }
2739 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740
2741 static void __netif_reschedule(struct Qdisc *q)
2742 {
2743         struct softnet_data *sd;
2744         unsigned long flags;
2745
2746         local_irq_save(flags);
2747         sd = this_cpu_ptr(&softnet_data);
2748         q->next_sched = NULL;
2749         *sd->output_queue_tailp = q;
2750         sd->output_queue_tailp = &q->next_sched;
2751         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752         local_irq_restore(flags);
2753 }
2754
2755 void __netif_schedule(struct Qdisc *q)
2756 {
2757         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758                 __netif_reschedule(q);
2759 }
2760 EXPORT_SYMBOL(__netif_schedule);
2761
2762 struct dev_kfree_skb_cb {
2763         enum skb_free_reason reason;
2764 };
2765
2766 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2767 {
2768         return (struct dev_kfree_skb_cb *)skb->cb;
2769 }
2770
2771 void netif_schedule_queue(struct netdev_queue *txq)
2772 {
2773         rcu_read_lock();
2774         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2776
2777                 __netif_schedule(q);
2778         }
2779         rcu_read_unlock();
2780 }
2781 EXPORT_SYMBOL(netif_schedule_queue);
2782
2783 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784 {
2785         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786                 struct Qdisc *q;
2787
2788                 rcu_read_lock();
2789                 q = rcu_dereference(dev_queue->qdisc);
2790                 __netif_schedule(q);
2791                 rcu_read_unlock();
2792         }
2793 }
2794 EXPORT_SYMBOL(netif_tx_wake_queue);
2795
2796 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2797 {
2798         unsigned long flags;
2799
2800         if (unlikely(!skb))
2801                 return;
2802
2803         if (likely(refcount_read(&skb->users) == 1)) {
2804                 smp_rmb();
2805                 refcount_set(&skb->users, 0);
2806         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2807                 return;
2808         }
2809         get_kfree_skb_cb(skb)->reason = reason;
2810         local_irq_save(flags);
2811         skb->next = __this_cpu_read(softnet_data.completion_queue);
2812         __this_cpu_write(softnet_data.completion_queue, skb);
2813         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814         local_irq_restore(flags);
2815 }
2816 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2817
2818 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2819 {
2820         if (in_irq() || irqs_disabled())
2821                 __dev_kfree_skb_irq(skb, reason);
2822         else
2823                 dev_kfree_skb(skb);
2824 }
2825 EXPORT_SYMBOL(__dev_kfree_skb_any);
2826
2827
2828 /**
2829  * netif_device_detach - mark device as removed
2830  * @dev: network device
2831  *
2832  * Mark device as removed from system and therefore no longer available.
2833  */
2834 void netif_device_detach(struct net_device *dev)
2835 {
2836         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837             netif_running(dev)) {
2838                 netif_tx_stop_all_queues(dev);
2839         }
2840 }
2841 EXPORT_SYMBOL(netif_device_detach);
2842
2843 /**
2844  * netif_device_attach - mark device as attached
2845  * @dev: network device
2846  *
2847  * Mark device as attached from system and restart if needed.
2848  */
2849 void netif_device_attach(struct net_device *dev)
2850 {
2851         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852             netif_running(dev)) {
2853                 netif_tx_wake_all_queues(dev);
2854                 __netdev_watchdog_up(dev);
2855         }
2856 }
2857 EXPORT_SYMBOL(netif_device_attach);
2858
2859 /*
2860  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861  * to be used as a distribution range.
2862  */
2863 static u16 skb_tx_hash(const struct net_device *dev,
2864                        const struct net_device *sb_dev,
2865                        struct sk_buff *skb)
2866 {
2867         u32 hash;
2868         u16 qoffset = 0;
2869         u16 qcount = dev->real_num_tx_queues;
2870
2871         if (dev->num_tc) {
2872                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873
2874                 qoffset = sb_dev->tc_to_txq[tc].offset;
2875                 qcount = sb_dev->tc_to_txq[tc].count;
2876         }
2877
2878         if (skb_rx_queue_recorded(skb)) {
2879                 hash = skb_get_rx_queue(skb);
2880                 while (unlikely(hash >= qcount))
2881                         hash -= qcount;
2882                 return hash + qoffset;
2883         }
2884
2885         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886 }
2887
2888 static void skb_warn_bad_offload(const struct sk_buff *skb)
2889 {
2890         static const netdev_features_t null_features;
2891         struct net_device *dev = skb->dev;
2892         const char *name = "";
2893
2894         if (!net_ratelimit())
2895                 return;
2896
2897         if (dev) {
2898                 if (dev->dev.parent)
2899                         name = dev_driver_string(dev->dev.parent);
2900                 else
2901                         name = netdev_name(dev);
2902         }
2903         skb_dump(KERN_WARNING, skb, false);
2904         WARN(1, "%s: caps=(%pNF, %pNF)\n",
2905              name, dev ? &dev->features : &null_features,
2906              skb->sk ? &skb->sk->sk_route_caps : &null_features);
2907 }
2908
2909 /*
2910  * Invalidate hardware checksum when packet is to be mangled, and
2911  * complete checksum manually on outgoing path.
2912  */
2913 int skb_checksum_help(struct sk_buff *skb)
2914 {
2915         __wsum csum;
2916         int ret = 0, offset;
2917
2918         if (skb->ip_summed == CHECKSUM_COMPLETE)
2919                 goto out_set_summed;
2920
2921         if (unlikely(skb_shinfo(skb)->gso_size)) {
2922                 skb_warn_bad_offload(skb);
2923                 return -EINVAL;
2924         }
2925
2926         /* Before computing a checksum, we should make sure no frag could
2927          * be modified by an external entity : checksum could be wrong.
2928          */
2929         if (skb_has_shared_frag(skb)) {
2930                 ret = __skb_linearize(skb);
2931                 if (ret)
2932                         goto out;
2933         }
2934
2935         offset = skb_checksum_start_offset(skb);
2936         BUG_ON(offset >= skb_headlen(skb));
2937         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2938
2939         offset += skb->csum_offset;
2940         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2941
2942         if (skb_cloned(skb) &&
2943             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2944                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2945                 if (ret)
2946                         goto out;
2947         }
2948
2949         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2950 out_set_summed:
2951         skb->ip_summed = CHECKSUM_NONE;
2952 out:
2953         return ret;
2954 }
2955 EXPORT_SYMBOL(skb_checksum_help);
2956
2957 int skb_crc32c_csum_help(struct sk_buff *skb)
2958 {
2959         __le32 crc32c_csum;
2960         int ret = 0, offset, start;
2961
2962         if (skb->ip_summed != CHECKSUM_PARTIAL)
2963                 goto out;
2964
2965         if (unlikely(skb_is_gso(skb)))
2966                 goto out;
2967
2968         /* Before computing a checksum, we should make sure no frag could
2969          * be modified by an external entity : checksum could be wrong.
2970          */
2971         if (unlikely(skb_has_shared_frag(skb))) {
2972                 ret = __skb_linearize(skb);
2973                 if (ret)
2974                         goto out;
2975         }
2976         start = skb_checksum_start_offset(skb);
2977         offset = start + offsetof(struct sctphdr, checksum);
2978         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2979                 ret = -EINVAL;
2980                 goto out;
2981         }
2982         if (skb_cloned(skb) &&
2983             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2984                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2985                 if (ret)
2986                         goto out;
2987         }
2988         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2989                                                   skb->len - start, ~(__u32)0,
2990                                                   crc32c_csum_stub));
2991         *(__le32 *)(skb->data + offset) = crc32c_csum;
2992         skb->ip_summed = CHECKSUM_NONE;
2993         skb->csum_not_inet = 0;
2994 out:
2995         return ret;
2996 }
2997
2998 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2999 {
3000         __be16 type = skb->protocol;
3001
3002         /* Tunnel gso handlers can set protocol to ethernet. */
3003         if (type == htons(ETH_P_TEB)) {
3004                 struct ethhdr *eth;
3005
3006                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3007                         return 0;
3008
3009                 eth = (struct ethhdr *)skb->data;
3010                 type = eth->h_proto;
3011         }
3012
3013         return __vlan_get_protocol(skb, type, depth);
3014 }
3015
3016 /**
3017  *      skb_mac_gso_segment - mac layer segmentation handler.
3018  *      @skb: buffer to segment
3019  *      @features: features for the output path (see dev->features)
3020  */
3021 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3022                                     netdev_features_t features)
3023 {
3024         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3025         struct packet_offload *ptype;
3026         int vlan_depth = skb->mac_len;
3027         __be16 type = skb_network_protocol(skb, &vlan_depth);
3028
3029         if (unlikely(!type))
3030                 return ERR_PTR(-EINVAL);
3031
3032         __skb_pull(skb, vlan_depth);
3033
3034         rcu_read_lock();
3035         list_for_each_entry_rcu(ptype, &offload_base, list) {
3036                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3037                         segs = ptype->callbacks.gso_segment(skb, features);
3038                         break;
3039                 }
3040         }
3041         rcu_read_unlock();
3042
3043         __skb_push(skb, skb->data - skb_mac_header(skb));
3044
3045         return segs;
3046 }
3047 EXPORT_SYMBOL(skb_mac_gso_segment);
3048
3049
3050 /* openvswitch calls this on rx path, so we need a different check.
3051  */
3052 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3053 {
3054         if (tx_path)
3055                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3056                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3057
3058         return skb->ip_summed == CHECKSUM_NONE;
3059 }
3060
3061 /**
3062  *      __skb_gso_segment - Perform segmentation on skb.
3063  *      @skb: buffer to segment
3064  *      @features: features for the output path (see dev->features)
3065  *      @tx_path: whether it is called in TX path
3066  *
3067  *      This function segments the given skb and returns a list of segments.
3068  *
3069  *      It may return NULL if the skb requires no segmentation.  This is
3070  *      only possible when GSO is used for verifying header integrity.
3071  *
3072  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3073  */
3074 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3075                                   netdev_features_t features, bool tx_path)
3076 {
3077         struct sk_buff *segs;
3078
3079         if (unlikely(skb_needs_check(skb, tx_path))) {
3080                 int err;
3081
3082                 /* We're going to init ->check field in TCP or UDP header */
3083                 err = skb_cow_head(skb, 0);
3084                 if (err < 0)
3085                         return ERR_PTR(err);
3086         }
3087
3088         /* Only report GSO partial support if it will enable us to
3089          * support segmentation on this frame without needing additional
3090          * work.
3091          */
3092         if (features & NETIF_F_GSO_PARTIAL) {
3093                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3094                 struct net_device *dev = skb->dev;
3095
3096                 partial_features |= dev->features & dev->gso_partial_features;
3097                 if (!skb_gso_ok(skb, features | partial_features))
3098                         features &= ~NETIF_F_GSO_PARTIAL;
3099         }
3100
3101         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3102                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3103
3104         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3105         SKB_GSO_CB(skb)->encap_level = 0;
3106
3107         skb_reset_mac_header(skb);
3108         skb_reset_mac_len(skb);
3109
3110         segs = skb_mac_gso_segment(skb, features);
3111
3112         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3113                 skb_warn_bad_offload(skb);
3114
3115         return segs;
3116 }
3117 EXPORT_SYMBOL(__skb_gso_segment);
3118
3119 /* Take action when hardware reception checksum errors are detected. */
3120 #ifdef CONFIG_BUG
3121 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3122 {
3123         if (net_ratelimit()) {
3124                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3125                 skb_dump(KERN_ERR, skb, true);
3126                 dump_stack();
3127         }
3128 }
3129 EXPORT_SYMBOL(netdev_rx_csum_fault);
3130 #endif
3131
3132 /* XXX: check that highmem exists at all on the given machine. */
3133 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3134 {
3135 #ifdef CONFIG_HIGHMEM
3136         int i;
3137
3138         if (!(dev->features & NETIF_F_HIGHDMA)) {
3139                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3140                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3141
3142                         if (PageHighMem(skb_frag_page(frag)))
3143                                 return 1;
3144                 }
3145         }
3146 #endif
3147         return 0;
3148 }
3149
3150 /* If MPLS offload request, verify we are testing hardware MPLS features
3151  * instead of standard features for the netdev.
3152  */
3153 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3154 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3155                                            netdev_features_t features,
3156                                            __be16 type)
3157 {
3158         if (eth_p_mpls(type))
3159                 features &= skb->dev->mpls_features;
3160
3161         return features;
3162 }
3163 #else
3164 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3165                                            netdev_features_t features,
3166                                            __be16 type)
3167 {
3168         return features;
3169 }
3170 #endif
3171
3172 static netdev_features_t harmonize_features(struct sk_buff *skb,
3173         netdev_features_t features)
3174 {
3175         int tmp;
3176         __be16 type;
3177
3178         type = skb_network_protocol(skb, &tmp);
3179         features = net_mpls_features(skb, features, type);
3180
3181         if (skb->ip_summed != CHECKSUM_NONE &&
3182             !can_checksum_protocol(features, type)) {
3183                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3184         }
3185         if (illegal_highdma(skb->dev, skb))
3186                 features &= ~NETIF_F_SG;
3187
3188         return features;
3189 }
3190
3191 netdev_features_t passthru_features_check(struct sk_buff *skb,
3192                                           struct net_device *dev,
3193                                           netdev_features_t features)
3194 {
3195         return features;
3196 }
3197 EXPORT_SYMBOL(passthru_features_check);
3198
3199 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3200                                              struct net_device *dev,
3201                                              netdev_features_t features)
3202 {
3203         return vlan_features_check(skb, features);
3204 }
3205
3206 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3207                                             struct net_device *dev,
3208                                             netdev_features_t features)
3209 {
3210         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3211
3212         if (gso_segs > dev->gso_max_segs)
3213                 return features & ~NETIF_F_GSO_MASK;
3214
3215         /* Support for GSO partial features requires software
3216          * intervention before we can actually process the packets
3217          * so we need to strip support for any partial features now
3218          * and we can pull them back in after we have partially
3219          * segmented the frame.
3220          */
3221         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3222                 features &= ~dev->gso_partial_features;
3223
3224         /* Make sure to clear the IPv4 ID mangling feature if the
3225          * IPv4 header has the potential to be fragmented.
3226          */
3227         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3228                 struct iphdr *iph = skb->encapsulation ?
3229                                     inner_ip_hdr(skb) : ip_hdr(skb);
3230
3231                 if (!(iph->frag_off & htons(IP_DF)))
3232                         features &= ~NETIF_F_TSO_MANGLEID;
3233         }
3234
3235         return features;
3236 }
3237
3238 netdev_features_t netif_skb_features(struct sk_buff *skb)
3239 {
3240         struct net_device *dev = skb->dev;
3241         netdev_features_t features = dev->features;
3242
3243         if (skb_is_gso(skb))
3244                 features = gso_features_check(skb, dev, features);
3245
3246         /* If encapsulation offload request, verify we are testing
3247          * hardware encapsulation features instead of standard
3248          * features for the netdev
3249          */
3250         if (skb->encapsulation)
3251                 features &= dev->hw_enc_features;
3252
3253         if (skb_vlan_tagged(skb))
3254                 features = netdev_intersect_features(features,
3255                                                      dev->vlan_features |
3256                                                      NETIF_F_HW_VLAN_CTAG_TX |
3257                                                      NETIF_F_HW_VLAN_STAG_TX);
3258
3259         if (dev->netdev_ops->ndo_features_check)
3260                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3261                                                                 features);
3262         else
3263                 features &= dflt_features_check(skb, dev, features);
3264
3265         return harmonize_features(skb, features);
3266 }
3267 EXPORT_SYMBOL(netif_skb_features);
3268
3269 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3270                     struct netdev_queue *txq, bool more)
3271 {
3272         unsigned int len;
3273         int rc;
3274
3275         if (dev_nit_active(dev))
3276                 dev_queue_xmit_nit(skb, dev);
3277
3278         len = skb->len;
3279         trace_net_dev_start_xmit(skb, dev);
3280         rc = netdev_start_xmit(skb, dev, txq, more);
3281         trace_net_dev_xmit(skb, rc, dev, len);
3282
3283         return rc;
3284 }
3285
3286 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3287                                     struct netdev_queue *txq, int *ret)
3288 {
3289         struct sk_buff *skb = first;
3290         int rc = NETDEV_TX_OK;
3291
3292         while (skb) {
3293                 struct sk_buff *next = skb->next;
3294
3295                 skb_mark_not_on_list(skb);
3296                 rc = xmit_one(skb, dev, txq, next != NULL);
3297                 if (unlikely(!dev_xmit_complete(rc))) {
3298                         skb->next = next;
3299                         goto out;
3300                 }
3301
3302                 skb = next;
3303                 if (netif_tx_queue_stopped(txq) && skb) {
3304                         rc = NETDEV_TX_BUSY;
3305                         break;
3306                 }
3307         }
3308
3309 out:
3310         *ret = rc;
3311         return skb;
3312 }
3313
3314 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3315                                           netdev_features_t features)
3316 {
3317         if (skb_vlan_tag_present(skb) &&
3318             !vlan_hw_offload_capable(features, skb->vlan_proto))
3319                 skb = __vlan_hwaccel_push_inside(skb);
3320         return skb;
3321 }
3322
3323 int skb_csum_hwoffload_help(struct sk_buff *skb,
3324                             const netdev_features_t features)
3325 {
3326         if (unlikely(skb->csum_not_inet))
3327                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3328                         skb_crc32c_csum_help(skb);
3329
3330         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3331 }
3332 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3333
3334 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3335 {
3336         netdev_features_t features;
3337
3338         features = netif_skb_features(skb);
3339         skb = validate_xmit_vlan(skb, features);
3340         if (unlikely(!skb))
3341                 goto out_null;
3342
3343         skb = sk_validate_xmit_skb(skb, dev);
3344         if (unlikely(!skb))
3345                 goto out_null;
3346
3347         if (netif_needs_gso(skb, features)) {
3348                 struct sk_buff *segs;
3349
3350                 segs = skb_gso_segment(skb, features);
3351                 if (IS_ERR(segs)) {
3352                         goto out_kfree_skb;
3353                 } else if (segs) {
3354                         consume_skb(skb);
3355                         skb = segs;
3356                 }
3357         } else {
3358                 if (skb_needs_linearize(skb, features) &&
3359                     __skb_linearize(skb))
3360                         goto out_kfree_skb;
3361
3362                 /* If packet is not checksummed and device does not
3363                  * support checksumming for this protocol, complete
3364                  * checksumming here.
3365                  */
3366                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3367                         if (skb->encapsulation)
3368                                 skb_set_inner_transport_header(skb,
3369                                                                skb_checksum_start_offset(skb));
3370                         else
3371                                 skb_set_transport_header(skb,
3372                                                          skb_checksum_start_offset(skb));
3373                         if (skb_csum_hwoffload_help(skb, features))
3374                                 goto out_kfree_skb;
3375                 }
3376         }
3377
3378         skb = validate_xmit_xfrm(skb, features, again);
3379
3380         return skb;
3381
3382 out_kfree_skb:
3383         kfree_skb(skb);
3384 out_null:
3385         atomic_long_inc(&dev->tx_dropped);
3386         return NULL;
3387 }
3388
3389 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3390 {
3391         struct sk_buff *next, *head = NULL, *tail;
3392
3393         for (; skb != NULL; skb = next) {
3394                 next = skb->next;
3395                 skb_mark_not_on_list(skb);
3396
3397                 /* in case skb wont be segmented, point to itself */
3398                 skb->prev = skb;
3399
3400                 skb = validate_xmit_skb(skb, dev, again);
3401                 if (!skb)
3402                         continue;
3403
3404                 if (!head)
3405                         head = skb;
3406                 else
3407                         tail->next = skb;
3408                 /* If skb was segmented, skb->prev points to
3409                  * the last segment. If not, it still contains skb.
3410                  */
3411                 tail = skb->prev;
3412         }
3413         return head;
3414 }
3415 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3416
3417 static void qdisc_pkt_len_init(struct sk_buff *skb)
3418 {
3419         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3420
3421         qdisc_skb_cb(skb)->pkt_len = skb->len;
3422
3423         /* To get more precise estimation of bytes sent on wire,
3424          * we add to pkt_len the headers size of all segments
3425          */
3426         if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3427                 unsigned int hdr_len;
3428                 u16 gso_segs = shinfo->gso_segs;
3429
3430                 /* mac layer + network layer */
3431                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3432
3433                 /* + transport layer */
3434                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3435                         const struct tcphdr *th;
3436                         struct tcphdr _tcphdr;
3437
3438                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3439                                                 sizeof(_tcphdr), &_tcphdr);
3440                         if (likely(th))
3441                                 hdr_len += __tcp_hdrlen(th);
3442                 } else {
3443                         struct udphdr _udphdr;
3444
3445                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3446                                                sizeof(_udphdr), &_udphdr))
3447                                 hdr_len += sizeof(struct udphdr);
3448                 }
3449
3450                 if (shinfo->gso_type & SKB_GSO_DODGY)
3451                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3452                                                 shinfo->gso_size);
3453
3454                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3455         }
3456 }
3457
3458 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3459                                  struct net_device *dev,
3460                                  struct netdev_queue *txq)
3461 {
3462         spinlock_t *root_lock = qdisc_lock(q);
3463         struct sk_buff *to_free = NULL;
3464         bool contended;
3465         int rc;
3466
3467         qdisc_calculate_pkt_len(skb, q);
3468
3469         if (q->flags & TCQ_F_NOLOCK) {
3470                 if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3471                     qdisc_run_begin(q)) {
3472                         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
3473                                               &q->state))) {
3474                                 __qdisc_drop(skb, &to_free);
3475                                 rc = NET_XMIT_DROP;
3476                                 goto end_run;
3477                         }
3478                         qdisc_bstats_cpu_update(q, skb);
3479
3480                         rc = NET_XMIT_SUCCESS;
3481                         if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3482                                 __qdisc_run(q);
3483
3484 end_run:
3485                         qdisc_run_end(q);
3486                 } else {
3487                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3488                         qdisc_run(q);
3489                 }
3490
3491                 if (unlikely(to_free))
3492                         kfree_skb_list(to_free);
3493                 return rc;
3494         }
3495
3496         /*
3497          * Heuristic to force contended enqueues to serialize on a
3498          * separate lock before trying to get qdisc main lock.
3499          * This permits qdisc->running owner to get the lock more
3500          * often and dequeue packets faster.
3501          */
3502         contended = qdisc_is_running(q);
3503         if (unlikely(contended))
3504                 spin_lock(&q->busylock);
3505
3506         spin_lock(root_lock);
3507         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3508                 __qdisc_drop(skb, &to_free);
3509                 rc = NET_XMIT_DROP;
3510         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3511                    qdisc_run_begin(q)) {
3512                 /*
3513                  * This is a work-conserving queue; there are no old skbs
3514                  * waiting to be sent out; and the qdisc is not running -
3515                  * xmit the skb directly.
3516                  */
3517
3518                 qdisc_bstats_update(q, skb);
3519
3520                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3521                         if (unlikely(contended)) {
3522                                 spin_unlock(&q->busylock);
3523                                 contended = false;
3524                         }
3525                         __qdisc_run(q);
3526                 }
3527
3528                 qdisc_run_end(q);
3529                 rc = NET_XMIT_SUCCESS;
3530         } else {
3531                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3532                 if (qdisc_run_begin(q)) {
3533                         if (unlikely(contended)) {
3534                                 spin_unlock(&q->busylock);
3535                                 contended = false;
3536                         }
3537                         __qdisc_run(q);
3538                         qdisc_run_end(q);
3539                 }
3540         }
3541         spin_unlock(root_lock);
3542         if (unlikely(to_free))
3543                 kfree_skb_list(to_free);
3544         if (unlikely(contended))
3545                 spin_unlock(&q->busylock);
3546         return rc;
3547 }
3548
3549 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3550 static void skb_update_prio(struct sk_buff *skb)
3551 {
3552         const struct netprio_map *map;
3553         const struct sock *sk;
3554         unsigned int prioidx;
3555
3556         if (skb->priority)
3557                 return;
3558         map = rcu_dereference_bh(skb->dev->priomap);
3559         if (!map)
3560                 return;
3561         sk = skb_to_full_sk(skb);
3562         if (!sk)
3563                 return;
3564
3565         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3566
3567         if (prioidx < map->priomap_len)
3568                 skb->priority = map->priomap[prioidx];
3569 }
3570 #else
3571 #define skb_update_prio(skb)
3572 #endif
3573
3574 /**
3575  *      dev_loopback_xmit - loop back @skb
3576  *      @net: network namespace this loopback is happening in
3577  *      @sk:  sk needed to be a netfilter okfn
3578  *      @skb: buffer to transmit
3579  */
3580 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3581 {
3582         skb_reset_mac_header(skb);
3583         __skb_pull(skb, skb_network_offset(skb));
3584         skb->pkt_type = PACKET_LOOPBACK;
3585         skb->ip_summed = CHECKSUM_UNNECESSARY;
3586         WARN_ON(!skb_dst(skb));
3587         skb_dst_force(skb);
3588         netif_rx_ni(skb);
3589         return 0;
3590 }
3591 EXPORT_SYMBOL(dev_loopback_xmit);
3592
3593 #ifdef CONFIG_NET_EGRESS
3594 static struct sk_buff *
3595 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3596 {
3597         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3598         struct tcf_result cl_res;
3599
3600         if (!miniq)
3601                 return skb;
3602
3603         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3604         mini_qdisc_bstats_cpu_update(miniq, skb);
3605
3606         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3607         case TC_ACT_OK:
3608         case TC_ACT_RECLASSIFY:
3609                 skb->tc_index = TC_H_MIN(cl_res.classid);
3610                 break;
3611         case TC_ACT_SHOT:
3612                 mini_qdisc_qstats_cpu_drop(miniq);
3613                 *ret = NET_XMIT_DROP;
3614                 kfree_skb(skb);
3615                 return NULL;
3616         case TC_ACT_STOLEN:
3617         case TC_ACT_QUEUED:
3618         case TC_ACT_TRAP:
3619                 *ret = NET_XMIT_SUCCESS;
3620                 consume_skb(skb);
3621                 return NULL;
3622         case TC_ACT_REDIRECT:
3623                 /* No need to push/pop skb's mac_header here on egress! */
3624                 skb_do_redirect(skb);
3625                 *ret = NET_XMIT_SUCCESS;
3626                 return NULL;
3627         default:
3628                 break;
3629         }
3630
3631         return skb;
3632 }
3633 #endif /* CONFIG_NET_EGRESS */
3634
3635 #ifdef CONFIG_XPS
3636 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3637                                struct xps_dev_maps *dev_maps, unsigned int tci)
3638 {
3639         struct xps_map *map;
3640         int queue_index = -1;
3641
3642         if (dev->num_tc) {
3643                 tci *= dev->num_tc;
3644                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3645         }
3646
3647         map = rcu_dereference(dev_maps->attr_map[tci]);
3648         if (map) {
3649                 if (map->len == 1)
3650                         queue_index = map->queues[0];
3651                 else
3652                         queue_index = map->queues[reciprocal_scale(
3653                                                 skb_get_hash(skb), map->len)];
3654                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3655                         queue_index = -1;
3656         }
3657         return queue_index;
3658 }
3659 #endif
3660
3661 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3662                          struct sk_buff *skb)
3663 {
3664 #ifdef CONFIG_XPS
3665         struct xps_dev_maps *dev_maps;
3666         struct sock *sk = skb->sk;
3667         int queue_index = -1;
3668
3669         if (!static_key_false(&xps_needed))
3670                 return -1;
3671
3672         rcu_read_lock();
3673         if (!static_key_false(&xps_rxqs_needed))
3674                 goto get_cpus_map;
3675
3676         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3677         if (dev_maps) {
3678                 int tci = sk_rx_queue_get(sk);
3679
3680                 if (tci >= 0 && tci < dev->num_rx_queues)
3681                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3682                                                           tci);
3683         }
3684
3685 get_cpus_map:
3686         if (queue_index < 0) {
3687                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3688                 if (dev_maps) {
3689                         unsigned int tci = skb->sender_cpu - 1;
3690
3691                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3692                                                           tci);
3693                 }
3694         }
3695         rcu_read_unlock();
3696
3697         return queue_index;
3698 #else
3699         return -1;
3700 #endif
3701 }
3702
3703 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3704                      struct net_device *sb_dev)
3705 {
3706         return 0;
3707 }
3708 EXPORT_SYMBOL(dev_pick_tx_zero);
3709
3710 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3711                        struct net_device *sb_dev)
3712 {
3713         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3714 }
3715 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3716
3717 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3718                      struct net_device *sb_dev)
3719 {
3720         struct sock *sk = skb->sk;
3721         int queue_index = sk_tx_queue_get(sk);
3722
3723         sb_dev = sb_dev ? : dev;
3724
3725         if (queue_index < 0 || skb->ooo_okay ||
3726             queue_index >= dev->real_num_tx_queues) {
3727                 int new_index = get_xps_queue(dev, sb_dev, skb);
3728
3729                 if (new_index < 0)
3730                         new_index = skb_tx_hash(dev, sb_dev, skb);
3731
3732                 if (queue_index != new_index && sk &&
3733                     sk_fullsock(sk) &&
3734                     rcu_access_pointer(sk->sk_dst_cache))
3735                         sk_tx_queue_set(sk, new_index);
3736
3737                 queue_index = new_index;
3738         }
3739
3740         return queue_index;
3741 }
3742 EXPORT_SYMBOL(netdev_pick_tx);
3743
3744 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3745                                          struct sk_buff *skb,
3746                                          struct net_device *sb_dev)
3747 {
3748         int queue_index = 0;
3749
3750 #ifdef CONFIG_XPS
3751         u32 sender_cpu = skb->sender_cpu - 1;
3752
3753         if (sender_cpu >= (u32)NR_CPUS)
3754                 skb->sender_cpu = raw_smp_processor_id() + 1;
3755 #endif
3756
3757         if (dev->real_num_tx_queues != 1) {
3758                 const struct net_device_ops *ops = dev->netdev_ops;
3759
3760                 if (ops->ndo_select_queue)
3761                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3762                 else
3763                         queue_index = netdev_pick_tx(dev, skb, sb_dev);
3764
3765                 queue_index = netdev_cap_txqueue(dev, queue_index);
3766         }
3767
3768         skb_set_queue_mapping(skb, queue_index);
3769         return netdev_get_tx_queue(dev, queue_index);
3770 }
3771
3772 /**
3773  *      __dev_queue_xmit - transmit a buffer
3774  *      @skb: buffer to transmit
3775  *      @sb_dev: suboordinate device used for L2 forwarding offload
3776  *
3777  *      Queue a buffer for transmission to a network device. The caller must
3778  *      have set the device and priority and built the buffer before calling
3779  *      this function. The function can be called from an interrupt.
3780  *
3781  *      A negative errno code is returned on a failure. A success does not
3782  *      guarantee the frame will be transmitted as it may be dropped due
3783  *      to congestion or traffic shaping.
3784  *
3785  * -----------------------------------------------------------------------------------
3786  *      I notice this method can also return errors from the queue disciplines,
3787  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3788  *      be positive.
3789  *
3790  *      Regardless of the return value, the skb is consumed, so it is currently
3791  *      difficult to retry a send to this method.  (You can bump the ref count
3792  *      before sending to hold a reference for retry if you are careful.)
3793  *
3794  *      When calling this method, interrupts MUST be enabled.  This is because
3795  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3796  *          --BLG
3797  */
3798 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3799 {
3800         struct net_device *dev = skb->dev;
3801         struct netdev_queue *txq;
3802         struct Qdisc *q;
3803         int rc = -ENOMEM;
3804         bool again = false;
3805
3806         skb_reset_mac_header(skb);
3807
3808         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3809                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3810
3811         /* Disable soft irqs for various locks below. Also
3812          * stops preemption for RCU.
3813          */
3814         rcu_read_lock_bh();
3815
3816         skb_update_prio(skb);
3817
3818         qdisc_pkt_len_init(skb);
3819 #ifdef CONFIG_NET_CLS_ACT
3820         skb->tc_at_ingress = 0;
3821 # ifdef CONFIG_NET_EGRESS
3822         if (static_branch_unlikely(&egress_needed_key)) {
3823                 skb = sch_handle_egress(skb, &rc, dev);
3824                 if (!skb)
3825                         goto out;
3826         }
3827 # endif
3828 #endif
3829         /* If device/qdisc don't need skb->dst, release it right now while
3830          * its hot in this cpu cache.
3831          */
3832         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3833                 skb_dst_drop(skb);
3834         else
3835                 skb_dst_force(skb);
3836
3837         txq = netdev_core_pick_tx(dev, skb, sb_dev);
3838         q = rcu_dereference_bh(txq->qdisc);
3839
3840         trace_net_dev_queue(skb);
3841         if (q->enqueue) {
3842                 rc = __dev_xmit_skb(skb, q, dev, txq);
3843                 goto out;
3844         }
3845
3846         /* The device has no queue. Common case for software devices:
3847          * loopback, all the sorts of tunnels...
3848
3849          * Really, it is unlikely that netif_tx_lock protection is necessary
3850          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3851          * counters.)
3852          * However, it is possible, that they rely on protection
3853          * made by us here.
3854
3855          * Check this and shot the lock. It is not prone from deadlocks.
3856          *Either shot noqueue qdisc, it is even simpler 8)
3857          */
3858         if (dev->flags & IFF_UP) {
3859                 int cpu = smp_processor_id(); /* ok because BHs are off */
3860
3861                 if (txq->xmit_lock_owner != cpu) {
3862                         if (dev_xmit_recursion())
3863                                 goto recursion_alert;
3864
3865                         skb = validate_xmit_skb(skb, dev, &again);
3866                         if (!skb)
3867                                 goto out;
3868
3869                         HARD_TX_LOCK(dev, txq, cpu);
3870
3871                         if (!netif_xmit_stopped(txq)) {
3872                                 dev_xmit_recursion_inc();
3873                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3874                                 dev_xmit_recursion_dec();
3875                                 if (dev_xmit_complete(rc)) {
3876                                         HARD_TX_UNLOCK(dev, txq);
3877                                         goto out;
3878                                 }
3879                         }
3880                         HARD_TX_UNLOCK(dev, txq);
3881                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3882                                              dev->name);
3883                 } else {
3884                         /* Recursion is detected! It is possible,
3885                          * unfortunately
3886                          */
3887 recursion_alert:
3888                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3889                                              dev->name);
3890                 }
3891         }
3892
3893         rc = -ENETDOWN;
3894         rcu_read_unlock_bh();
3895
3896         atomic_long_inc(&dev->tx_dropped);
3897         kfree_skb_list(skb);
3898         return rc;
3899 out:
3900         rcu_read_unlock_bh();
3901         return rc;
3902 }
3903
3904 int dev_queue_xmit(struct sk_buff *skb)
3905 {
3906         return __dev_queue_xmit(skb, NULL);
3907 }
3908 EXPORT_SYMBOL(dev_queue_xmit);
3909
3910 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3911 {
3912         return __dev_queue_xmit(skb, sb_dev);
3913 }
3914 EXPORT_SYMBOL(dev_queue_xmit_accel);
3915
3916 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3917 {
3918         struct net_device *dev = skb->dev;
3919         struct sk_buff *orig_skb = skb;
3920         struct netdev_queue *txq;
3921         int ret = NETDEV_TX_BUSY;
3922         bool again = false;
3923
3924         if (unlikely(!netif_running(dev) ||
3925                      !netif_carrier_ok(dev)))
3926                 goto drop;
3927
3928         skb = validate_xmit_skb_list(skb, dev, &again);
3929         if (skb != orig_skb)
3930                 goto drop;
3931
3932         skb_set_queue_mapping(skb, queue_id);
3933         txq = skb_get_tx_queue(dev, skb);
3934
3935         local_bh_disable();
3936
3937         HARD_TX_LOCK(dev, txq, smp_processor_id());
3938         if (!netif_xmit_frozen_or_drv_stopped(txq))
3939                 ret = netdev_start_xmit(skb, dev, txq, false);
3940         HARD_TX_UNLOCK(dev, txq);
3941
3942         local_bh_enable();
3943
3944         if (!dev_xmit_complete(ret))
3945                 kfree_skb(skb);
3946
3947         return ret;
3948 drop:
3949         atomic_long_inc(&dev->tx_dropped);
3950         kfree_skb_list(skb);
3951         return NET_XMIT_DROP;
3952 }
3953 EXPORT_SYMBOL(dev_direct_xmit);
3954
3955 /*************************************************************************
3956  *                      Receiver routines
3957  *************************************************************************/
3958
3959 int netdev_max_backlog __read_mostly = 1000;
3960 EXPORT_SYMBOL(netdev_max_backlog);
3961
3962 int netdev_tstamp_prequeue __read_mostly = 1;
3963 int netdev_budget __read_mostly = 300;
3964 unsigned int __read_mostly netdev_budget_usecs = 2000;
3965 int weight_p __read_mostly = 64;           /* old backlog weight */
3966 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3967 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3968 int dev_rx_weight __read_mostly = 64;
3969 int dev_tx_weight __read_mostly = 64;
3970 /* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
3971 int gro_normal_batch __read_mostly = 8;
3972
3973 /* Called with irq disabled */
3974 static inline void ____napi_schedule(struct softnet_data *sd,
3975                                      struct napi_struct *napi)
3976 {
3977         list_add_tail(&napi->poll_list, &sd->poll_list);
3978         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3979 }
3980
3981 #ifdef CONFIG_RPS
3982
3983 /* One global table that all flow-based protocols share. */
3984 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3985 EXPORT_SYMBOL(rps_sock_flow_table);
3986 u32 rps_cpu_mask __read_mostly;
3987 EXPORT_SYMBOL(rps_cpu_mask);
3988
3989 struct static_key_false rps_needed __read_mostly;
3990 EXPORT_SYMBOL(rps_needed);
3991 struct static_key_false rfs_needed __read_mostly;
3992 EXPORT_SYMBOL(rfs_needed);
3993
3994 static struct rps_dev_flow *
3995 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3996             struct rps_dev_flow *rflow, u16 next_cpu)
3997 {
3998         if (next_cpu < nr_cpu_ids) {
3999 #ifdef CONFIG_RFS_ACCEL
4000                 struct netdev_rx_queue *rxqueue;
4001                 struct rps_dev_flow_table *flow_table;
4002                 struct rps_dev_flow *old_rflow;
4003                 u32 flow_id;
4004                 u16 rxq_index;
4005                 int rc;
4006
4007                 /* Should we steer this flow to a different hardware queue? */
4008                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4009                     !(dev->features & NETIF_F_NTUPLE))
4010                         goto out;
4011                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4012                 if (rxq_index == skb_get_rx_queue(skb))
4013                         goto out;
4014
4015                 rxqueue = dev->_rx + rxq_index;
4016                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4017                 if (!flow_table)
4018                         goto out;
4019                 flow_id = skb_get_hash(skb) & flow_table->mask;
4020                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4021                                                         rxq_index, flow_id);
4022                 if (rc < 0)
4023                         goto out;
4024                 old_rflow = rflow;
4025                 rflow = &flow_table->flows[flow_id];
4026                 rflow->filter = rc;
4027                 if (old_rflow->filter == rflow->filter)
4028                         old_rflow->filter = RPS_NO_FILTER;
4029         out:
4030 #endif
4031                 rflow->last_qtail =
4032                         per_cpu(softnet_data, next_cpu).input_queue_head;
4033         }
4034
4035         rflow->cpu = next_cpu;
4036         return rflow;
4037 }
4038
4039 /*
4040  * get_rps_cpu is called from netif_receive_skb and returns the target
4041  * CPU from the RPS map of the receiving queue for a given skb.
4042  * rcu_read_lock must be held on entry.
4043  */
4044 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4045                        struct rps_dev_flow **rflowp)
4046 {
4047         const struct rps_sock_flow_table *sock_flow_table;
4048         struct netdev_rx_queue *rxqueue = dev->_rx;
4049         struct rps_dev_flow_table *flow_table;
4050         struct rps_map *map;
4051         int cpu = -1;
4052         u32 tcpu;
4053         u32 hash;
4054
4055         if (skb_rx_queue_recorded(skb)) {
4056                 u16 index = skb_get_rx_queue(skb);
4057
4058                 if (unlikely(index >= dev->real_num_rx_queues)) {
4059                         WARN_ONCE(dev->real_num_rx_queues > 1,
4060                                   "%s received packet on queue %u, but number "
4061                                   "of RX queues is %u\n",
4062                                   dev->name, index, dev->real_num_rx_queues);
4063                         goto done;
4064                 }
4065                 rxqueue += index;
4066         }
4067
4068         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4069
4070         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4071         map = rcu_dereference(rxqueue->rps_map);
4072         if (!flow_table && !map)
4073                 goto done;
4074
4075         skb_reset_network_header(skb);
4076         hash = skb_get_hash(skb);
4077         if (!hash)
4078                 goto done;
4079
4080         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4081         if (flow_table && sock_flow_table) {
4082                 struct rps_dev_flow *rflow;
4083                 u32 next_cpu;
4084                 u32 ident;
4085
4086                 /* First check into global flow table if there is a match */
4087                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4088                 if ((ident ^ hash) & ~rps_cpu_mask)
4089                         goto try_rps;
4090
4091                 next_cpu = ident & rps_cpu_mask;
4092
4093                 /* OK, now we know there is a match,
4094                  * we can look at the local (per receive queue) flow table
4095                  */
4096                 rflow = &flow_table->flows[hash & flow_table->mask];
4097                 tcpu = rflow->cpu;
4098
4099                 /*
4100                  * If the desired CPU (where last recvmsg was done) is
4101                  * different from current CPU (one in the rx-queue flow
4102                  * table entry), switch if one of the following holds:
4103                  *   - Current CPU is unset (>= nr_cpu_ids).
4104                  *   - Current CPU is offline.
4105                  *   - The current CPU's queue tail has advanced beyond the
4106                  *     last packet that was enqueued using this table entry.
4107                  *     This guarantees that all previous packets for the flow
4108                  *     have been dequeued, thus preserving in order delivery.
4109                  */
4110                 if (unlikely(tcpu != next_cpu) &&
4111                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4112                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4113                       rflow->last_qtail)) >= 0)) {
4114                         tcpu = next_cpu;
4115                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4116                 }
4117
4118                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4119                         *rflowp = rflow;
4120                         cpu = tcpu;
4121                         goto done;
4122                 }
4123         }
4124
4125 try_rps:
4126
4127         if (map) {
4128                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4129                 if (cpu_online(tcpu)) {
4130                         cpu = tcpu;
4131                         goto done;
4132                 }
4133         }
4134
4135 done:
4136         return cpu;
4137 }
4138
4139 #ifdef CONFIG_RFS_ACCEL
4140
4141 /**
4142  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4143  * @dev: Device on which the filter was set
4144  * @rxq_index: RX queue index
4145  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4146  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4147  *
4148  * Drivers that implement ndo_rx_flow_steer() should periodically call
4149  * this function for each installed filter and remove the filters for
4150  * which it returns %true.
4151  */
4152 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4153                          u32 flow_id, u16 filter_id)
4154 {
4155         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4156         struct rps_dev_flow_table *flow_table;
4157         struct rps_dev_flow *rflow;
4158         bool expire = true;
4159         unsigned int cpu;
4160
4161         rcu_read_lock();
4162         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4163         if (flow_table && flow_id <= flow_table->mask) {
4164                 rflow = &flow_table->flows[flow_id];
4165                 cpu = READ_ONCE(rflow->cpu);
4166                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4167                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4168                            rflow->last_qtail) <
4169                      (int)(10 * flow_table->mask)))
4170                         expire = false;
4171         }
4172         rcu_read_unlock();
4173         return expire;
4174 }
4175 EXPORT_SYMBOL(rps_may_expire_flow);
4176
4177 #endif /* CONFIG_RFS_ACCEL */
4178
4179 /* Called from hardirq (IPI) context */
4180 static void rps_trigger_softirq(void *data)
4181 {
4182         struct softnet_data *sd = data;
4183
4184         ____napi_schedule(sd, &sd->backlog);
4185         sd->received_rps++;
4186 }
4187
4188 #endif /* CONFIG_RPS */
4189
4190 /*
4191  * Check if this softnet_data structure is another cpu one
4192  * If yes, queue it to our IPI list and return 1
4193  * If no, return 0
4194  */
4195 static int rps_ipi_queued(struct softnet_data *sd)
4196 {
4197 #ifdef CONFIG_RPS
4198         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4199
4200         if (sd != mysd) {
4201                 sd->rps_ipi_next = mysd->rps_ipi_list;
4202                 mysd->rps_ipi_list = sd;
4203
4204                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4205                 return 1;
4206         }
4207 #endif /* CONFIG_RPS */
4208         return 0;
4209 }
4210
4211 #ifdef CONFIG_NET_FLOW_LIMIT
4212 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4213 #endif
4214
4215 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4216 {
4217 #ifdef CONFIG_NET_FLOW_LIMIT
4218         struct sd_flow_limit *fl;
4219         struct softnet_data *sd;
4220         unsigned int old_flow, new_flow;
4221
4222         if (qlen < (netdev_max_backlog >> 1))
4223                 return false;
4224
4225         sd = this_cpu_ptr(&softnet_data);
4226
4227         rcu_read_lock();
4228         fl = rcu_dereference(sd->flow_limit);
4229         if (fl) {
4230                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4231                 old_flow = fl->history[fl->history_head];
4232                 fl->history[fl->history_head] = new_flow;
4233
4234                 fl->history_head++;
4235                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4236
4237                 if (likely(fl->buckets[old_flow]))
4238                         fl->buckets[old_flow]--;
4239
4240                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4241                         fl->count++;
4242                         rcu_read_unlock();
4243                         return true;
4244                 }
4245         }
4246         rcu_read_unlock();
4247 #endif
4248         return false;
4249 }
4250
4251 /*
4252  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4253  * queue (may be a remote CPU queue).
4254  */
4255 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4256                               unsigned int *qtail)
4257 {
4258         struct softnet_data *sd;
4259         unsigned long flags;
4260         unsigned int qlen;
4261
4262         sd = &per_cpu(softnet_data, cpu);
4263
4264         local_irq_save(flags);
4265
4266         rps_lock(sd);
4267         if (!netif_running(skb->dev))
4268                 goto drop;
4269         qlen = skb_queue_len(&sd->input_pkt_queue);
4270         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4271                 if (qlen) {
4272 enqueue:
4273                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4274                         input_queue_tail_incr_save(sd, qtail);
4275                         rps_unlock(sd);
4276                         local_irq_restore(flags);
4277                         return NET_RX_SUCCESS;
4278                 }
4279
4280                 /* Schedule NAPI for backlog device
4281                  * We can use non atomic operation since we own the queue lock
4282                  */
4283                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4284                         if (!rps_ipi_queued(sd))
4285                                 ____napi_schedule(sd, &sd->backlog);
4286                 }
4287                 goto enqueue;
4288         }
4289
4290 drop:
4291         sd->dropped++;
4292         rps_unlock(sd);
4293
4294         local_irq_restore(flags);
4295
4296         atomic_long_inc(&skb->dev->rx_dropped);
4297         kfree_skb(skb);
4298         return NET_RX_DROP;
4299 }
4300
4301 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4302 {
4303         struct net_device *dev = skb->dev;
4304         struct netdev_rx_queue *rxqueue;
4305
4306         rxqueue = dev->_rx;
4307
4308         if (skb_rx_queue_recorded(skb)) {
4309                 u16 index = skb_get_rx_queue(skb);
4310
4311                 if (unlikely(index >= dev->real_num_rx_queues)) {
4312                         WARN_ONCE(dev->real_num_rx_queues > 1,
4313                                   "%s received packet on queue %u, but number "
4314                                   "of RX queues is %u\n",
4315                                   dev->name, index, dev->real_num_rx_queues);
4316
4317                         return rxqueue; /* Return first rxqueue */
4318                 }
4319                 rxqueue += index;
4320         }
4321         return rxqueue;
4322 }
4323
4324 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4325                                      struct xdp_buff *xdp,
4326                                      struct bpf_prog *xdp_prog)
4327 {
4328         struct netdev_rx_queue *rxqueue;
4329         void *orig_data, *orig_data_end;
4330         u32 metalen, act = XDP_DROP;
4331         __be16 orig_eth_type;
4332         struct ethhdr *eth;
4333         bool orig_bcast;
4334         int hlen, off;
4335         u32 mac_len;
4336
4337         /* Reinjected packets coming from act_mirred or similar should
4338          * not get XDP generic processing.
4339          */
4340         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4341                 return XDP_PASS;
4342
4343         /* XDP packets must be linear and must have sufficient headroom
4344          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4345          * native XDP provides, thus we need to do it here as well.
4346          */
4347         if (skb_is_nonlinear(skb) ||
4348             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4349                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4350                 int troom = skb->tail + skb->data_len - skb->end;
4351
4352                 /* In case we have to go down the path and also linearize,
4353                  * then lets do the pskb_expand_head() work just once here.
4354                  */
4355                 if (pskb_expand_head(skb,
4356                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4357                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4358                         goto do_drop;
4359                 if (skb_linearize(skb))
4360                         goto do_drop;
4361         }
4362
4363         /* The XDP program wants to see the packet starting at the MAC
4364          * header.
4365          */
4366         mac_len = skb->data - skb_mac_header(skb);
4367         hlen = skb_headlen(skb) + mac_len;
4368         xdp->data = skb->data - mac_len;
4369         xdp->data_meta = xdp->data;
4370         xdp->data_end = xdp->data + hlen;
4371         xdp->data_hard_start = skb->data - skb_headroom(skb);
4372         orig_data_end = xdp->data_end;
4373         orig_data = xdp->data;
4374         eth = (struct ethhdr *)xdp->data;
4375         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4376         orig_eth_type = eth->h_proto;
4377
4378         rxqueue = netif_get_rxqueue(skb);
4379         xdp->rxq = &rxqueue->xdp_rxq;
4380
4381         act = bpf_prog_run_xdp(xdp_prog, xdp);
4382
4383         /* check if bpf_xdp_adjust_head was used */
4384         off = xdp->data - orig_data;
4385         if (off) {
4386                 if (off > 0)
4387                         __skb_pull(skb, off);
4388                 else if (off < 0)
4389                         __skb_push(skb, -off);
4390
4391                 skb->mac_header += off;
4392                 skb_reset_network_header(skb);
4393         }
4394
4395         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4396          * pckt.
4397          */
4398         off = orig_data_end - xdp->data_end;
4399         if (off != 0) {
4400                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4401                 skb->len -= off;
4402
4403         }
4404
4405         /* check if XDP changed eth hdr such SKB needs update */
4406         eth = (struct ethhdr *)xdp->data;
4407         if ((orig_eth_type != eth->h_proto) ||
4408             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4409                 __skb_push(skb, ETH_HLEN);
4410                 skb->protocol = eth_type_trans(skb, skb->dev);
4411         }
4412
4413         switch (act) {
4414         case XDP_REDIRECT:
4415         case XDP_TX:
4416                 __skb_push(skb, mac_len);
4417                 break;
4418         case XDP_PASS:
4419                 metalen = xdp->data - xdp->data_meta;
4420                 if (metalen)
4421                         skb_metadata_set(skb, metalen);
4422                 break;
4423         default:
4424                 bpf_warn_invalid_xdp_action(act);
4425                 /* fall through */
4426         case XDP_ABORTED:
4427                 trace_xdp_exception(skb->dev, xdp_prog, act);
4428                 /* fall through */
4429         case XDP_DROP:
4430         do_drop:
4431                 kfree_skb(skb);
4432                 break;
4433         }
4434
4435         return act;
4436 }
4437
4438 /* When doing generic XDP we have to bypass the qdisc layer and the
4439  * network taps in order to match in-driver-XDP behavior.
4440  */
4441 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4442 {
4443         struct net_device *dev = skb->dev;
4444         struct netdev_queue *txq;
4445         bool free_skb = true;
4446         int cpu, rc;
4447
4448         txq = netdev_core_pick_tx(dev, skb, NULL);
4449         cpu = smp_processor_id();
4450         HARD_TX_LOCK(dev, txq, cpu);
4451         if (!netif_xmit_stopped(txq)) {
4452                 rc = netdev_start_xmit(skb, dev, txq, 0);
4453                 if (dev_xmit_complete(rc))
4454                         free_skb = false;
4455         }
4456         HARD_TX_UNLOCK(dev, txq);
4457         if (free_skb) {
4458                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4459                 kfree_skb(skb);
4460         }
4461 }
4462 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4463
4464 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4465
4466 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4467 {
4468         if (xdp_prog) {
4469                 struct xdp_buff xdp;
4470                 u32 act;
4471                 int err;
4472
4473                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4474                 if (act != XDP_PASS) {
4475                         switch (act) {
4476                         case XDP_REDIRECT:
4477                                 err = xdp_do_generic_redirect(skb->dev, skb,
4478                                                               &xdp, xdp_prog);
4479                                 if (err)
4480                                         goto out_redir;
4481                                 break;
4482                         case XDP_TX:
4483                                 generic_xdp_tx(skb, xdp_prog);
4484                                 break;
4485                         }
4486                         return XDP_DROP;
4487                 }
4488         }
4489         return XDP_PASS;
4490 out_redir:
4491         kfree_skb(skb);
4492         return XDP_DROP;
4493 }
4494 EXPORT_SYMBOL_GPL(do_xdp_generic);
4495
4496 static int netif_rx_internal(struct sk_buff *skb)
4497 {
4498         int ret;
4499
4500         net_timestamp_check(netdev_tstamp_prequeue, skb);
4501
4502         trace_netif_rx(skb);
4503
4504 #ifdef CONFIG_RPS
4505         if (static_branch_unlikely(&rps_needed)) {
4506                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4507                 int cpu;
4508
4509                 preempt_disable();
4510                 rcu_read_lock();
4511
4512                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4513                 if (cpu < 0)
4514                         cpu = smp_processor_id();
4515
4516                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4517
4518                 rcu_read_unlock();
4519                 preempt_enable();
4520         } else
4521 #endif
4522         {
4523                 unsigned int qtail;
4524
4525                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4526                 put_cpu();
4527         }
4528         return ret;
4529 }
4530
4531 /**
4532  *      netif_rx        -       post buffer to the network code
4533  *      @skb: buffer to post
4534  *
4535  *      This function receives a packet from a device driver and queues it for
4536  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4537  *      may be dropped during processing for congestion control or by the
4538  *      protocol layers.
4539  *
4540  *      return values:
4541  *      NET_RX_SUCCESS  (no congestion)
4542  *      NET_RX_DROP     (packet was dropped)
4543  *
4544  */
4545
4546 int netif_rx(struct sk_buff *skb)
4547 {
4548         int ret;
4549
4550         trace_netif_rx_entry(skb);
4551
4552         ret = netif_rx_internal(skb);
4553         trace_netif_rx_exit(ret);
4554
4555         return ret;
4556 }
4557 EXPORT_SYMBOL(netif_rx);
4558
4559 int netif_rx_ni(struct sk_buff *skb)
4560 {
4561         int err;
4562
4563         trace_netif_rx_ni_entry(skb);
4564
4565         preempt_disable();
4566         err = netif_rx_internal(skb);
4567         if (local_softirq_pending())
4568                 do_softirq();
4569         preempt_enable();
4570         trace_netif_rx_ni_exit(err);
4571
4572         return err;
4573 }
4574 EXPORT_SYMBOL(netif_rx_ni);
4575
4576 static __latent_entropy void net_tx_action(struct softirq_action *h)
4577 {
4578         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4579
4580         if (sd->completion_queue) {
4581                 struct sk_buff *clist;
4582
4583                 local_irq_disable();
4584                 clist = sd->completion_queue;
4585                 sd->completion_queue = NULL;
4586                 local_irq_enable();
4587
4588                 while (clist) {
4589                         struct sk_buff *skb = clist;
4590
4591                         clist = clist->next;
4592
4593                         WARN_ON(refcount_read(&skb->users));
4594                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4595                                 trace_consume_skb(skb);
4596                         else
4597                                 trace_kfree_skb(skb, net_tx_action);
4598
4599                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4600                                 __kfree_skb(skb);
4601                         else
4602                                 __kfree_skb_defer(skb);
4603                 }
4604
4605                 __kfree_skb_flush();
4606         }
4607
4608         if (sd->output_queue) {
4609                 struct Qdisc *head;
4610
4611                 local_irq_disable();
4612                 head = sd->output_queue;
4613                 sd->output_queue = NULL;
4614                 sd->output_queue_tailp = &sd->output_queue;
4615                 local_irq_enable();
4616
4617                 while (head) {
4618                         struct Qdisc *q = head;
4619                         spinlock_t *root_lock = NULL;
4620
4621                         head = head->next_sched;
4622
4623                         if (!(q->flags & TCQ_F_NOLOCK)) {
4624                                 root_lock = qdisc_lock(q);
4625                                 spin_lock(root_lock);
4626                         }
4627                         /* We need to make sure head->next_sched is read
4628                          * before clearing __QDISC_STATE_SCHED
4629                          */
4630                         smp_mb__before_atomic();
4631                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4632                         qdisc_run(q);
4633                         if (root_lock)
4634                                 spin_unlock(root_lock);
4635                 }
4636         }
4637
4638         xfrm_dev_backlog(sd);
4639 }
4640
4641 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4642 /* This hook is defined here for ATM LANE */
4643 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4644                              unsigned char *addr) __read_mostly;
4645 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4646 #endif
4647
4648 static inline struct sk_buff *
4649 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4650                    struct net_device *orig_dev)
4651 {
4652 #ifdef CONFIG_NET_CLS_ACT
4653         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4654         struct tcf_result cl_res;
4655
4656         /* If there's at least one ingress present somewhere (so
4657          * we get here via enabled static key), remaining devices
4658          * that are not configured with an ingress qdisc will bail
4659          * out here.
4660          */
4661         if (!miniq)
4662                 return skb;
4663
4664         if (*pt_prev) {
4665                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4666                 *pt_prev = NULL;
4667         }
4668
4669         qdisc_skb_cb(skb)->pkt_len = skb->len;
4670         skb->tc_at_ingress = 1;
4671         mini_qdisc_bstats_cpu_update(miniq, skb);
4672
4673         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4674         case TC_ACT_OK:
4675         case TC_ACT_RECLASSIFY:
4676                 skb->tc_index = TC_H_MIN(cl_res.classid);
4677                 break;
4678         case TC_ACT_SHOT:
4679                 mini_qdisc_qstats_cpu_drop(miniq);
4680                 kfree_skb(skb);
4681                 return NULL;
4682         case TC_ACT_STOLEN:
4683         case TC_ACT_QUEUED:
4684         case TC_ACT_TRAP:
4685                 consume_skb(skb);
4686                 return NULL;
4687         case TC_ACT_REDIRECT:
4688                 /* skb_mac_header check was done by cls/act_bpf, so
4689                  * we can safely push the L2 header back before
4690                  * redirecting to another netdev
4691                  */
4692                 __skb_push(skb, skb->mac_len);
4693                 skb_do_redirect(skb);
4694                 return NULL;
4695         case TC_ACT_CONSUMED:
4696                 return NULL;
4697         default:
4698                 break;
4699         }
4700 #endif /* CONFIG_NET_CLS_ACT */
4701         return skb;
4702 }
4703
4704 /**
4705  *      netdev_is_rx_handler_busy - check if receive handler is registered
4706  *      @dev: device to check
4707  *
4708  *      Check if a receive handler is already registered for a given device.
4709  *      Return true if there one.
4710  *
4711  *      The caller must hold the rtnl_mutex.
4712  */
4713 bool netdev_is_rx_handler_busy(struct net_device *dev)
4714 {
4715         ASSERT_RTNL();
4716         return dev && rtnl_dereference(dev->rx_handler);
4717 }
4718 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4719
4720 /**
4721  *      netdev_rx_handler_register - register receive handler
4722  *      @dev: device to register a handler for
4723  *      @rx_handler: receive handler to register
4724  *      @rx_handler_data: data pointer that is used by rx handler
4725  *
4726  *      Register a receive handler for a device. This handler will then be
4727  *      called from __netif_receive_skb. A negative errno code is returned
4728  *      on a failure.
4729  *
4730  *      The caller must hold the rtnl_mutex.
4731  *
4732  *      For a general description of rx_handler, see enum rx_handler_result.
4733  */
4734 int netdev_rx_handler_register(struct net_device *dev,
4735                                rx_handler_func_t *rx_handler,
4736                                void *rx_handler_data)
4737 {
4738         if (netdev_is_rx_handler_busy(dev))
4739                 return -EBUSY;
4740
4741         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4742                 return -EINVAL;
4743
4744         /* Note: rx_handler_data must be set before rx_handler */
4745         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4746         rcu_assign_pointer(dev->rx_handler, rx_handler);
4747
4748         return 0;
4749 }
4750 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4751
4752 /**
4753  *      netdev_rx_handler_unregister - unregister receive handler
4754  *      @dev: device to unregister a handler from
4755  *
4756  *      Unregister a receive handler from a device.
4757  *
4758  *      The caller must hold the rtnl_mutex.
4759  */
4760 void netdev_rx_handler_unregister(struct net_device *dev)
4761 {
4762
4763         ASSERT_RTNL();
4764         RCU_INIT_POINTER(dev->rx_handler, NULL);
4765         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4766          * section has a guarantee to see a non NULL rx_handler_data
4767          * as well.
4768          */
4769         synchronize_net();
4770         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4771 }
4772 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4773
4774 /*
4775  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4776  * the special handling of PFMEMALLOC skbs.
4777  */
4778 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4779 {
4780         switch (skb->protocol) {
4781         case htons(ETH_P_ARP):
4782         case htons(ETH_P_IP):
4783         case htons(ETH_P_IPV6):
4784         case htons(ETH_P_8021Q):
4785         case htons(ETH_P_8021AD):
4786                 return true;
4787         default:
4788                 return false;
4789         }
4790 }
4791
4792 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4793                              int *ret, struct net_device *orig_dev)
4794 {
4795 #ifdef CONFIG_NETFILTER_INGRESS
4796         if (nf_hook_ingress_active(skb)) {
4797                 int ingress_retval;
4798
4799                 if (*pt_prev) {
4800                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4801                         *pt_prev = NULL;
4802                 }
4803
4804                 rcu_read_lock();
4805                 ingress_retval = nf_hook_ingress(skb);
4806                 rcu_read_unlock();
4807                 return ingress_retval;
4808         }
4809 #endif /* CONFIG_NETFILTER_INGRESS */
4810         return 0;
4811 }
4812
4813 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4814                                     struct packet_type **ppt_prev)
4815 {
4816         struct packet_type *ptype, *pt_prev;
4817         rx_handler_func_t *rx_handler;
4818         struct net_device *orig_dev;
4819         bool deliver_exact = false;
4820         int ret = NET_RX_DROP;
4821         __be16 type;
4822
4823         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4824
4825         trace_netif_receive_skb(skb);
4826
4827         orig_dev = skb->dev;
4828
4829         skb_reset_network_header(skb);
4830         if (!skb_transport_header_was_set(skb))
4831                 skb_reset_transport_header(skb);
4832         skb_reset_mac_len(skb);
4833
4834         pt_prev = NULL;
4835
4836 another_round:
4837         skb->skb_iif = skb->dev->ifindex;
4838
4839         __this_cpu_inc(softnet_data.processed);
4840
4841         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4842                 int ret2;
4843
4844                 preempt_disable();
4845                 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4846                 preempt_enable();
4847
4848                 if (ret2 != XDP_PASS)
4849                         return NET_RX_DROP;
4850                 skb_reset_mac_len(skb);
4851         }
4852
4853         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4854             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4855                 skb = skb_vlan_untag(skb);
4856                 if (unlikely(!skb))
4857                         goto out;
4858         }
4859
4860         if (skb_skip_tc_classify(skb))
4861                 goto skip_classify;
4862
4863         if (pfmemalloc)
4864                 goto skip_taps;
4865
4866         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4867                 if (pt_prev)
4868                         ret = deliver_skb(skb, pt_prev, orig_dev);
4869                 pt_prev = ptype;
4870         }
4871
4872         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4873                 if (pt_prev)
4874                         ret = deliver_skb(skb, pt_prev, orig_dev);
4875                 pt_prev = ptype;
4876         }
4877
4878 skip_taps:
4879 #ifdef CONFIG_NET_INGRESS
4880         if (static_branch_unlikely(&ingress_needed_key)) {
4881                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4882                 if (!skb)
4883                         goto out;
4884
4885                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4886                         goto out;
4887         }
4888 #endif
4889         skb_reset_tc(skb);
4890 skip_classify:
4891         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4892                 goto drop;
4893
4894         if (skb_vlan_tag_present(skb)) {
4895                 if (pt_prev) {
4896                         ret = deliver_skb(skb, pt_prev, orig_dev);
4897                         pt_prev = NULL;
4898                 }
4899                 if (vlan_do_receive(&skb))
4900                         goto another_round;
4901                 else if (unlikely(!skb))
4902                         goto out;
4903         }
4904
4905         rx_handler = rcu_dereference(skb->dev->rx_handler);
4906         if (rx_handler) {
4907                 if (pt_prev) {
4908                         ret = deliver_skb(skb, pt_prev, orig_dev);
4909                         pt_prev = NULL;
4910                 }
4911                 switch (rx_handler(&skb)) {
4912                 case RX_HANDLER_CONSUMED:
4913                         ret = NET_RX_SUCCESS;
4914                         goto out;
4915                 case RX_HANDLER_ANOTHER:
4916                         goto another_round;
4917                 case RX_HANDLER_EXACT:
4918                         deliver_exact = true;
4919                 case RX_HANDLER_PASS:
4920                         break;
4921                 default:
4922                         BUG();
4923                 }
4924         }
4925
4926         if (unlikely(skb_vlan_tag_present(skb))) {
4927 check_vlan_id:
4928                 if (skb_vlan_tag_get_id(skb)) {
4929                         /* Vlan id is non 0 and vlan_do_receive() above couldn't
4930                          * find vlan device.
4931                          */
4932                         skb->pkt_type = PACKET_OTHERHOST;
4933                 } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4934                            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4935                         /* Outer header is 802.1P with vlan 0, inner header is
4936                          * 802.1Q or 802.1AD and vlan_do_receive() above could
4937                          * not find vlan dev for vlan id 0.
4938                          */
4939                         __vlan_hwaccel_clear_tag(skb);
4940                         skb = skb_vlan_untag(skb);
4941                         if (unlikely(!skb))
4942                                 goto out;
4943                         if (vlan_do_receive(&skb))
4944                                 /* After stripping off 802.1P header with vlan 0
4945                                  * vlan dev is found for inner header.
4946                                  */
4947                                 goto another_round;
4948                         else if (unlikely(!skb))
4949                                 goto out;
4950                         else
4951                                 /* We have stripped outer 802.1P vlan 0 header.
4952                                  * But could not find vlan dev.
4953                                  * check again for vlan id to set OTHERHOST.
4954                                  */
4955                                 goto check_vlan_id;
4956                 }
4957                 /* Note: we might in the future use prio bits
4958                  * and set skb->priority like in vlan_do_receive()
4959                  * For the time being, just ignore Priority Code Point
4960                  */
4961                 __vlan_hwaccel_clear_tag(skb);
4962         }
4963
4964         type = skb->protocol;
4965
4966         /* deliver only exact match when indicated */
4967         if (likely(!deliver_exact)) {
4968                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4969                                        &ptype_base[ntohs(type) &
4970                                                    PTYPE_HASH_MASK]);
4971         }
4972
4973         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4974                                &orig_dev->ptype_specific);
4975
4976         if (unlikely(skb->dev != orig_dev)) {
4977                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4978                                        &skb->dev->ptype_specific);
4979         }
4980
4981         if (pt_prev) {
4982                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4983                         goto drop;
4984                 *ppt_prev = pt_prev;
4985         } else {
4986 drop:
4987                 if (!deliver_exact)
4988                         atomic_long_inc(&skb->dev->rx_dropped);
4989                 else
4990                         atomic_long_inc(&skb->dev->rx_nohandler);
4991                 kfree_skb(skb);
4992                 /* Jamal, now you will not able to escape explaining
4993                  * me how you were going to use this. :-)
4994                  */
4995                 ret = NET_RX_DROP;
4996         }
4997
4998 out:
4999         return ret;
5000 }
5001
5002 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5003 {
5004         struct net_device *orig_dev = skb->dev;
5005         struct packet_type *pt_prev = NULL;
5006         int ret;
5007
5008         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5009         if (pt_prev)
5010                 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5011                                          skb->dev, pt_prev, orig_dev);
5012         return ret;
5013 }
5014
5015 /**
5016  *      netif_receive_skb_core - special purpose version of netif_receive_skb
5017  *      @skb: buffer to process
5018  *
5019  *      More direct receive version of netif_receive_skb().  It should
5020  *      only be used by callers that have a need to skip RPS and Generic XDP.
5021  *      Caller must also take care of handling if (page_is_)pfmemalloc.
5022  *
5023  *      This function may only be called from softirq context and interrupts
5024  *      should be enabled.
5025  *
5026  *      Return values (usually ignored):
5027  *      NET_RX_SUCCESS: no congestion
5028  *      NET_RX_DROP: packet was dropped
5029  */
5030 int netif_receive_skb_core(struct sk_buff *skb)
5031 {
5032         int ret;
5033
5034         rcu_read_lock();
5035         ret = __netif_receive_skb_one_core(skb, false);
5036         rcu_read_unlock();
5037
5038         return ret;
5039 }
5040 EXPORT_SYMBOL(netif_receive_skb_core);
5041
5042 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5043                                                   struct packet_type *pt_prev,
5044                                                   struct net_device *orig_dev)
5045 {
5046         struct sk_buff *skb, *next;
5047
5048         if (!pt_prev)
5049                 return;
5050         if (list_empty(head))
5051                 return;
5052         if (pt_prev->list_func != NULL)
5053                 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5054                                    ip_list_rcv, head, pt_prev, orig_dev);
5055         else
5056                 list_for_each_entry_safe(skb, next, head, list) {
5057                         skb_list_del_init(skb);
5058                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5059                 }
5060 }
5061
5062 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5063 {
5064         /* Fast-path assumptions:
5065          * - There is no RX handler.
5066          * - Only one packet_type matches.
5067          * If either of these fails, we will end up doing some per-packet
5068          * processing in-line, then handling the 'last ptype' for the whole
5069          * sublist.  This can't cause out-of-order delivery to any single ptype,
5070          * because the 'last ptype' must be constant across the sublist, and all
5071          * other ptypes are handled per-packet.
5072          */
5073         /* Current (common) ptype of sublist */
5074         struct packet_type *pt_curr = NULL;
5075         /* Current (common) orig_dev of sublist */
5076         struct net_device *od_curr = NULL;
5077         struct list_head sublist;
5078         struct sk_buff *skb, *next;
5079
5080         INIT_LIST_HEAD(&sublist);
5081         list_for_each_entry_safe(skb, next, head, list) {
5082                 struct net_device *orig_dev = skb->dev;
5083                 struct packet_type *pt_prev = NULL;
5084
5085                 skb_list_del_init(skb);
5086                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5087                 if (!pt_prev)
5088                         continue;
5089                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5090                         /* dispatch old sublist */
5091                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5092                         /* start new sublist */
5093                         INIT_LIST_HEAD(&sublist);
5094                         pt_curr = pt_prev;
5095                         od_curr = orig_dev;
5096                 }
5097                 list_add_tail(&skb->list, &sublist);
5098         }
5099
5100         /* dispatch final sublist */
5101         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5102 }
5103
5104 static int __netif_receive_skb(struct sk_buff *skb)
5105 {
5106         int ret;
5107
5108         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5109                 unsigned int noreclaim_flag;
5110
5111                 /*
5112                  * PFMEMALLOC skbs are special, they should
5113                  * - be delivered to SOCK_MEMALLOC sockets only
5114                  * - stay away from userspace
5115                  * - have bounded memory usage
5116                  *
5117                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5118                  * context down to all allocation sites.
5119                  */
5120                 noreclaim_flag = memalloc_noreclaim_save();
5121                 ret = __netif_receive_skb_one_core(skb, true);
5122                 memalloc_noreclaim_restore(noreclaim_flag);
5123         } else
5124                 ret = __netif_receive_skb_one_core(skb, false);
5125
5126         return ret;
5127 }
5128
5129 static void __netif_receive_skb_list(struct list_head *head)
5130 {
5131         unsigned long noreclaim_flag = 0;
5132         struct sk_buff *skb, *next;
5133         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5134
5135         list_for_each_entry_safe(skb, next, head, list) {
5136                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5137                         struct list_head sublist;
5138
5139                         /* Handle the previous sublist */
5140                         list_cut_before(&sublist, head, &skb->list);
5141                         if (!list_empty(&sublist))
5142                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5143                         pfmemalloc = !pfmemalloc;
5144                         /* See comments in __netif_receive_skb */
5145                         if (pfmemalloc)
5146                                 noreclaim_flag = memalloc_noreclaim_save();
5147                         else
5148                                 memalloc_noreclaim_restore(noreclaim_flag);
5149                 }
5150         }
5151         /* Handle the remaining sublist */
5152         if (!list_empty(head))
5153                 __netif_receive_skb_list_core(head, pfmemalloc);
5154         /* Restore pflags */
5155         if (pfmemalloc)
5156                 memalloc_noreclaim_restore(noreclaim_flag);
5157 }
5158
5159 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5160 {
5161         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5162         struct bpf_prog *new = xdp->prog;
5163         int ret = 0;
5164
5165         switch (xdp->command) {
5166         case XDP_SETUP_PROG:
5167                 rcu_assign_pointer(dev->xdp_prog, new);
5168                 if (old)
5169                         bpf_prog_put(old);
5170
5171                 if (old && !new) {
5172                         static_branch_dec(&generic_xdp_needed_key);
5173                 } else if (new && !old) {
5174                         static_branch_inc(&generic_xdp_needed_key);
5175                         dev_disable_lro(dev);
5176                         dev_disable_gro_hw(dev);
5177                 }
5178                 break;
5179
5180         case XDP_QUERY_PROG:
5181                 xdp->prog_id = old ? old->aux->id : 0;
5182                 break;
5183
5184         default:
5185                 ret = -EINVAL;
5186                 break;
5187         }
5188
5189         return ret;
5190 }
5191
5192 static int netif_receive_skb_internal(struct sk_buff *skb)
5193 {
5194         int ret;
5195
5196         net_timestamp_check(netdev_tstamp_prequeue, skb);
5197
5198         if (skb_defer_rx_timestamp(skb))
5199                 return NET_RX_SUCCESS;
5200
5201         rcu_read_lock();
5202 #ifdef CONFIG_RPS
5203         if (static_branch_unlikely(&rps_needed)) {
5204                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5205                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5206
5207                 if (cpu >= 0) {
5208                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5209                         rcu_read_unlock();
5210                         return ret;
5211                 }
5212         }
5213 #endif
5214         ret = __netif_receive_skb(skb);
5215         rcu_read_unlock();
5216         return ret;
5217 }
5218
5219 static void netif_receive_skb_list_internal(struct list_head *head)
5220 {
5221         struct sk_buff *skb, *next;
5222         struct list_head sublist;
5223
5224         INIT_LIST_HEAD(&sublist);
5225         list_for_each_entry_safe(skb, next, head, list) {
5226                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5227                 skb_list_del_init(skb);
5228                 if (!skb_defer_rx_timestamp(skb))
5229                         list_add_tail(&skb->list, &sublist);
5230         }
5231         list_splice_init(&sublist, head);
5232
5233         rcu_read_lock();
5234 #ifdef CONFIG_RPS
5235         if (static_branch_unlikely(&rps_needed)) {
5236                 list_for_each_entry_safe(skb, next, head, list) {
5237                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5238                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5239
5240                         if (cpu >= 0) {
5241                                 /* Will be handled, remove from list */
5242                                 skb_list_del_init(skb);
5243                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5244                         }
5245                 }
5246         }
5247 #endif
5248         __netif_receive_skb_list(head);
5249         rcu_read_unlock();
5250 }
5251
5252 /**
5253  *      netif_receive_skb - process receive buffer from network
5254  *      @skb: buffer to process
5255  *
5256  *      netif_receive_skb() is the main receive data processing function.
5257  *      It always succeeds. The buffer may be dropped during processing
5258  *      for congestion control or by the protocol layers.
5259  *
5260  *      This function may only be called from softirq context and interrupts
5261  *      should be enabled.
5262  *
5263  *      Return values (usually ignored):
5264  *      NET_RX_SUCCESS: no congestion
5265  *      NET_RX_DROP: packet was dropped
5266  */
5267 int netif_receive_skb(struct sk_buff *skb)
5268 {
5269         int ret;
5270
5271         trace_netif_receive_skb_entry(skb);
5272
5273         ret = netif_receive_skb_internal(skb);
5274         trace_netif_receive_skb_exit(ret);
5275
5276         return ret;
5277 }
5278 EXPORT_SYMBOL(netif_receive_skb);
5279
5280 /**
5281  *      netif_receive_skb_list - process many receive buffers from network
5282  *      @head: list of skbs to process.
5283  *
5284  *      Since return value of netif_receive_skb() is normally ignored, and
5285  *      wouldn't be meaningful for a list, this function returns void.
5286  *
5287  *      This function may only be called from softirq context and interrupts
5288  *      should be enabled.
5289  */
5290 void netif_receive_skb_list(struct list_head *head)
5291 {
5292         struct sk_buff *skb;
5293
5294         if (list_empty(head))
5295                 return;
5296         if (trace_netif_receive_skb_list_entry_enabled()) {
5297                 list_for_each_entry(skb, head, list)
5298                         trace_netif_receive_skb_list_entry(skb);
5299         }
5300         netif_receive_skb_list_internal(head);
5301         trace_netif_receive_skb_list_exit(0);
5302 }
5303 EXPORT_SYMBOL(netif_receive_skb_list);
5304
5305 DEFINE_PER_CPU(struct work_struct, flush_works);
5306
5307 /* Network device is going away, flush any packets still pending */
5308 static void flush_backlog(struct work_struct *work)
5309 {
5310         struct sk_buff *skb, *tmp;
5311         struct softnet_data *sd;
5312
5313         local_bh_disable();
5314         sd = this_cpu_ptr(&softnet_data);
5315
5316         local_irq_disable();
5317         rps_lock(sd);
5318         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5319                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5320                         __skb_unlink(skb, &sd->input_pkt_queue);
5321                         kfree_skb(skb);
5322                         input_queue_head_incr(sd);
5323                 }
5324         }
5325         rps_unlock(sd);
5326         local_irq_enable();
5327
5328         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5329                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5330                         __skb_unlink(skb, &sd->process_queue);
5331                         kfree_skb(skb);
5332                         input_queue_head_incr(sd);
5333                 }
5334         }
5335         local_bh_enable();
5336 }
5337
5338 static void flush_all_backlogs(void)
5339 {
5340         unsigned int cpu;
5341
5342         get_online_cpus();
5343
5344         for_each_online_cpu(cpu)
5345                 queue_work_on(cpu, system_highpri_wq,
5346                               per_cpu_ptr(&flush_works, cpu));
5347
5348         for_each_online_cpu(cpu)
5349                 flush_work(per_cpu_ptr(&flush_works, cpu));
5350
5351         put_online_cpus();
5352 }
5353
5354 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5355 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5356 static int napi_gro_complete(struct sk_buff *skb)
5357 {
5358         struct packet_offload *ptype;
5359         __be16 type = skb->protocol;
5360         struct list_head *head = &offload_base;
5361         int err = -ENOENT;
5362
5363         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5364
5365         if (NAPI_GRO_CB(skb)->count == 1) {
5366                 skb_shinfo(skb)->gso_size = 0;
5367                 goto out;
5368         }
5369
5370         rcu_read_lock();
5371         list_for_each_entry_rcu(ptype, head, list) {
5372                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5373                         continue;
5374
5375                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5376                                          ipv6_gro_complete, inet_gro_complete,
5377                                          skb, 0);
5378                 break;
5379         }
5380         rcu_read_unlock();
5381
5382         if (err) {
5383                 WARN_ON(&ptype->list == head);
5384                 kfree_skb(skb);
5385                 return NET_RX_SUCCESS;
5386         }
5387
5388 out:
5389         return netif_receive_skb_internal(skb);
5390 }
5391
5392 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5393                                    bool flush_old)
5394 {
5395         struct list_head *head = &napi->gro_hash[index].list;
5396         struct sk_buff *skb, *p;
5397
5398         list_for_each_entry_safe_reverse(skb, p, head, list) {
5399                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5400                         return;
5401                 skb_list_del_init(skb);
5402                 napi_gro_complete(skb);
5403                 napi->gro_hash[index].count--;
5404         }
5405
5406         if (!napi->gro_hash[index].count)
5407                 __clear_bit(index, &napi->gro_bitmask);
5408 }
5409
5410 /* napi->gro_hash[].list contains packets ordered by age.
5411  * youngest packets at the head of it.
5412  * Complete skbs in reverse order to reduce latencies.
5413  */
5414 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5415 {
5416         unsigned long bitmask = napi->gro_bitmask;
5417         unsigned int i, base = ~0U;
5418
5419         while ((i = ffs(bitmask)) != 0) {
5420                 bitmask >>= i;
5421                 base += i;
5422                 __napi_gro_flush_chain(napi, base, flush_old);
5423         }
5424 }
5425 EXPORT_SYMBOL(napi_gro_flush);
5426
5427 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5428                                           struct sk_buff *skb)
5429 {
5430         unsigned int maclen = skb->dev->hard_header_len;
5431         u32 hash = skb_get_hash_raw(skb);
5432         struct list_head *head;
5433         struct sk_buff *p;
5434
5435         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5436         list_for_each_entry(p, head, list) {
5437                 unsigned long diffs;
5438
5439                 NAPI_GRO_CB(p)->flush = 0;
5440
5441                 if (hash != skb_get_hash_raw(p)) {
5442                         NAPI_GRO_CB(p)->same_flow = 0;
5443                         continue;
5444                 }
5445
5446                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5447                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5448                 if (skb_vlan_tag_present(p))
5449                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5450                 diffs |= skb_metadata_dst_cmp(p, skb);
5451                 diffs |= skb_metadata_differs(p, skb);
5452                 if (maclen == ETH_HLEN)
5453                         diffs |= compare_ether_header(skb_mac_header(p),
5454                                                       skb_mac_header(skb));
5455                 else if (!diffs)
5456                         diffs = memcmp(skb_mac_header(p),
5457                                        skb_mac_header(skb),
5458                                        maclen);
5459                 NAPI_GRO_CB(p)->same_flow = !diffs;
5460         }
5461
5462         return head;
5463 }
5464
5465 static void skb_gro_reset_offset(struct sk_buff *skb)
5466 {
5467         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5468         const skb_frag_t *frag0 = &pinfo->frags[0];
5469
5470         NAPI_GRO_CB(skb)->data_offset = 0;
5471         NAPI_GRO_CB(skb)->frag0 = NULL;
5472         NAPI_GRO_CB(skb)->frag0_len = 0;
5473
5474         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5475             pinfo->nr_frags &&
5476             !PageHighMem(skb_frag_page(frag0))) {
5477                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5478                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5479                                                     skb_frag_size(frag0),
5480                                                     skb->end - skb->tail);
5481         }
5482 }
5483
5484 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5485 {
5486         struct skb_shared_info *pinfo = skb_shinfo(skb);
5487
5488         BUG_ON(skb->end - skb->tail < grow);
5489
5490         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5491
5492         skb->data_len -= grow;
5493         skb->tail += grow;
5494
5495         skb_frag_off_add(&pinfo->frags[0], grow);
5496         skb_frag_size_sub(&pinfo->frags[0], grow);
5497
5498         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5499                 skb_frag_unref(skb, 0);
5500                 memmove(pinfo->frags, pinfo->frags + 1,
5501                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5502         }
5503 }
5504
5505 static void gro_flush_oldest(struct list_head *head)
5506 {
5507         struct sk_buff *oldest;
5508
5509         oldest = list_last_entry(head, struct sk_buff, list);
5510
5511         /* We are called with head length >= MAX_GRO_SKBS, so this is
5512          * impossible.
5513          */
5514         if (WARN_ON_ONCE(!oldest))
5515                 return;
5516
5517         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5518          * SKB to the chain.
5519          */
5520         skb_list_del_init(oldest);
5521         napi_gro_complete(oldest);
5522 }
5523
5524 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5525                                                            struct sk_buff *));
5526 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5527                                                            struct sk_buff *));
5528 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5529 {
5530         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5531         struct list_head *head = &offload_base;
5532         struct packet_offload *ptype;
5533         __be16 type = skb->protocol;
5534         struct list_head *gro_head;
5535         struct sk_buff *pp = NULL;
5536         enum gro_result ret;
5537         int same_flow;
5538         int grow;
5539
5540         if (netif_elide_gro(skb->dev))
5541                 goto normal;
5542
5543         gro_head = gro_list_prepare(napi, skb);
5544
5545         rcu_read_lock();
5546         list_for_each_entry_rcu(ptype, head, list) {
5547                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5548                         continue;
5549
5550                 skb_set_network_header(skb, skb_gro_offset(skb));
5551                 skb_reset_mac_len(skb);
5552                 NAPI_GRO_CB(skb)->same_flow = 0;
5553                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5554                 NAPI_GRO_CB(skb)->free = 0;
5555                 NAPI_GRO_CB(skb)->encap_mark = 0;
5556                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5557                 NAPI_GRO_CB(skb)->is_fou = 0;
5558                 NAPI_GRO_CB(skb)->is_atomic = 1;
5559                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5560
5561                 /* Setup for GRO checksum validation */
5562                 switch (skb->ip_summed) {
5563                 case CHECKSUM_COMPLETE:
5564                         NAPI_GRO_CB(skb)->csum = skb->csum;
5565                         NAPI_GRO_CB(skb)->csum_valid = 1;
5566                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5567                         break;
5568                 case CHECKSUM_UNNECESSARY:
5569                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5570                         NAPI_GRO_CB(skb)->csum_valid = 0;
5571                         break;
5572                 default:
5573                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5574                         NAPI_GRO_CB(skb)->csum_valid = 0;
5575                 }
5576
5577                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5578                                         ipv6_gro_receive, inet_gro_receive,
5579                                         gro_head, skb);
5580                 break;
5581         }
5582         rcu_read_unlock();
5583
5584         if (&ptype->list == head)
5585                 goto normal;
5586
5587         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5588                 ret = GRO_CONSUMED;
5589                 goto ok;
5590         }
5591
5592         same_flow = NAPI_GRO_CB(skb)->same_flow;
5593         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5594
5595         if (pp) {
5596                 skb_list_del_init(pp);
5597                 napi_gro_complete(pp);
5598                 napi->gro_hash[hash].count--;
5599         }
5600
5601         if (same_flow)
5602                 goto ok;
5603
5604         if (NAPI_GRO_CB(skb)->flush)
5605                 goto normal;
5606
5607         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5608                 gro_flush_oldest(gro_head);
5609         } else {
5610                 napi->gro_hash[hash].count++;
5611         }
5612         NAPI_GRO_CB(skb)->count = 1;
5613         NAPI_GRO_CB(skb)->age = jiffies;
5614         NAPI_GRO_CB(skb)->last = skb;
5615         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5616         list_add(&skb->list, gro_head);
5617         ret = GRO_HELD;
5618
5619 pull:
5620         grow = skb_gro_offset(skb) - skb_headlen(skb);
5621         if (grow > 0)
5622                 gro_pull_from_frag0(skb, grow);
5623 ok:
5624         if (napi->gro_hash[hash].count) {
5625                 if (!test_bit(hash, &napi->gro_bitmask))
5626                         __set_bit(hash, &napi->gro_bitmask);
5627         } else if (test_bit(hash, &napi->gro_bitmask)) {
5628                 __clear_bit(hash, &napi->gro_bitmask);
5629         }
5630
5631         return ret;
5632
5633 normal:
5634         ret = GRO_NORMAL;
5635         goto pull;
5636 }
5637
5638 struct packet_offload *gro_find_receive_by_type(__be16 type)
5639 {
5640         struct list_head *offload_head = &offload_base;
5641         struct packet_offload *ptype;
5642
5643         list_for_each_entry_rcu(ptype, offload_head, list) {
5644                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5645                         continue;
5646                 return ptype;
5647         }
5648         return NULL;
5649 }
5650 EXPORT_SYMBOL(gro_find_receive_by_type);
5651
5652 struct packet_offload *gro_find_complete_by_type(__be16 type)
5653 {
5654         struct list_head *offload_head = &offload_base;
5655         struct packet_offload *ptype;
5656
5657         list_for_each_entry_rcu(ptype, offload_head, list) {
5658                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5659                         continue;
5660                 return ptype;
5661         }
5662         return NULL;
5663 }
5664 EXPORT_SYMBOL(gro_find_complete_by_type);
5665
5666 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5667 {
5668         skb_dst_drop(skb);
5669         secpath_reset(skb);
5670         kmem_cache_free(skbuff_head_cache, skb);
5671 }
5672
5673 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5674 {
5675         switch (ret) {
5676         case GRO_NORMAL:
5677                 if (netif_receive_skb_internal(skb))
5678                         ret = GRO_DROP;
5679                 break;
5680
5681         case GRO_DROP:
5682                 kfree_skb(skb);
5683                 break;
5684
5685         case GRO_MERGED_FREE:
5686                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5687                         napi_skb_free_stolen_head(skb);
5688                 else
5689                         __kfree_skb(skb);
5690                 break;
5691
5692         case GRO_HELD:
5693         case GRO_MERGED:
5694         case GRO_CONSUMED:
5695                 break;
5696         }
5697
5698         return ret;
5699 }
5700
5701 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5702 {
5703         gro_result_t ret;
5704
5705         skb_mark_napi_id(skb, napi);
5706         trace_napi_gro_receive_entry(skb);
5707
5708         skb_gro_reset_offset(skb);
5709
5710         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5711         trace_napi_gro_receive_exit(ret);
5712
5713         return ret;
5714 }
5715 EXPORT_SYMBOL(napi_gro_receive);
5716
5717 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5718 {
5719         if (unlikely(skb->pfmemalloc)) {
5720                 consume_skb(skb);
5721                 return;
5722         }
5723         __skb_pull(skb, skb_headlen(skb));
5724         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5725         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5726         __vlan_hwaccel_clear_tag(skb);
5727         skb->dev = napi->dev;
5728         skb->skb_iif = 0;
5729
5730         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5731         skb->pkt_type = PACKET_HOST;
5732
5733         skb->encapsulation = 0;
5734         skb_shinfo(skb)->gso_type = 0;
5735         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5736         secpath_reset(skb);
5737
5738         napi->skb = skb;
5739 }
5740
5741 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5742 {
5743         struct sk_buff *skb = napi->skb;
5744
5745         if (!skb) {
5746                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5747                 if (skb) {
5748                         napi->skb = skb;
5749                         skb_mark_napi_id(skb, napi);
5750                 }
5751         }
5752         return skb;
5753 }
5754 EXPORT_SYMBOL(napi_get_frags);
5755
5756 /* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5757 static void gro_normal_list(struct napi_struct *napi)
5758 {
5759         if (!napi->rx_count)
5760                 return;
5761         netif_receive_skb_list_internal(&napi->rx_list);
5762         INIT_LIST_HEAD(&napi->rx_list);
5763         napi->rx_count = 0;
5764 }
5765
5766 /* Queue one GRO_NORMAL SKB up for list processing.  If batch size exceeded,
5767  * pass the whole batch up to the stack.
5768  */
5769 static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb)
5770 {
5771         list_add_tail(&skb->list, &napi->rx_list);
5772         if (++napi->rx_count >= gro_normal_batch)
5773                 gro_normal_list(napi);
5774 }
5775
5776 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5777                                       struct sk_buff *skb,
5778                                       gro_result_t ret)
5779 {
5780         switch (ret) {
5781         case GRO_NORMAL:
5782         case GRO_HELD:
5783                 __skb_push(skb, ETH_HLEN);
5784                 skb->protocol = eth_type_trans(skb, skb->dev);
5785                 if (ret == GRO_NORMAL)
5786                         gro_normal_one(napi, skb);
5787                 break;
5788
5789         case GRO_DROP:
5790                 napi_reuse_skb(napi, skb);
5791                 break;
5792
5793         case GRO_MERGED_FREE:
5794                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5795                         napi_skb_free_stolen_head(skb);
5796                 else
5797                         napi_reuse_skb(napi, skb);
5798                 break;
5799
5800         case GRO_MERGED:
5801         case GRO_CONSUMED:
5802                 break;
5803         }
5804
5805         return ret;
5806 }
5807
5808 /* Upper GRO stack assumes network header starts at gro_offset=0
5809  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5810  * We copy ethernet header into skb->data to have a common layout.
5811  */
5812 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5813 {
5814         struct sk_buff *skb = napi->skb;
5815         const struct ethhdr *eth;
5816         unsigned int hlen = sizeof(*eth);
5817
5818         napi->skb = NULL;
5819
5820         skb_reset_mac_header(skb);
5821         skb_gro_reset_offset(skb);
5822
5823         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5824                 eth = skb_gro_header_slow(skb, hlen, 0);
5825                 if (unlikely(!eth)) {
5826                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5827                                              __func__, napi->dev->name);
5828                         napi_reuse_skb(napi, skb);
5829                         return NULL;
5830                 }
5831         } else {
5832                 eth = (const struct ethhdr *)skb->data;
5833                 gro_pull_from_frag0(skb, hlen);
5834                 NAPI_GRO_CB(skb)->frag0 += hlen;
5835                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5836         }
5837         __skb_pull(skb, hlen);
5838
5839         /*
5840          * This works because the only protocols we care about don't require
5841          * special handling.
5842          * We'll fix it up properly in napi_frags_finish()
5843          */
5844         skb->protocol = eth->h_proto;
5845
5846         return skb;
5847 }
5848
5849 gro_result_t napi_gro_frags(struct napi_struct *napi)
5850 {
5851         gro_result_t ret;
5852         struct sk_buff *skb = napi_frags_skb(napi);
5853
5854         if (!skb)
5855                 return GRO_DROP;
5856
5857         trace_napi_gro_frags_entry(skb);
5858
5859         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5860         trace_napi_gro_frags_exit(ret);
5861
5862         return ret;
5863 }
5864 EXPORT_SYMBOL(napi_gro_frags);
5865
5866 /* Compute the checksum from gro_offset and return the folded value
5867  * after adding in any pseudo checksum.
5868  */
5869 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5870 {
5871         __wsum wsum;
5872         __sum16 sum;
5873
5874         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5875
5876         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5877         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5878         /* See comments in __skb_checksum_complete(). */
5879         if (likely(!sum)) {
5880                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5881                     !skb->csum_complete_sw)
5882                         netdev_rx_csum_fault(skb->dev, skb);
5883         }
5884
5885         NAPI_GRO_CB(skb)->csum = wsum;
5886         NAPI_GRO_CB(skb)->csum_valid = 1;
5887
5888         return sum;
5889 }
5890 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5891
5892 static void net_rps_send_ipi(struct softnet_data *remsd)
5893 {
5894 #ifdef CONFIG_RPS
5895         while (remsd) {
5896                 struct softnet_data *next = remsd->rps_ipi_next;
5897
5898                 if (cpu_online(remsd->cpu))
5899                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5900                 remsd = next;
5901         }
5902 #endif
5903 }
5904
5905 /*
5906  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5907  * Note: called with local irq disabled, but exits with local irq enabled.
5908  */
5909 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5910 {
5911 #ifdef CONFIG_RPS
5912         struct softnet_data *remsd = sd->rps_ipi_list;
5913
5914         if (remsd) {
5915                 sd->rps_ipi_list = NULL;
5916
5917                 local_irq_enable();
5918
5919                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5920                 net_rps_send_ipi(remsd);
5921         } else
5922 #endif
5923                 local_irq_enable();
5924 }
5925
5926 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5927 {
5928 #ifdef CONFIG_RPS
5929         return sd->rps_ipi_list != NULL;
5930 #else
5931         return false;
5932 #endif
5933 }
5934
5935 static int process_backlog(struct napi_struct *napi, int quota)
5936 {
5937         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5938         bool again = true;
5939         int work = 0;
5940
5941         /* Check if we have pending ipi, its better to send them now,
5942          * not waiting net_rx_action() end.
5943          */
5944         if (sd_has_rps_ipi_waiting(sd)) {
5945                 local_irq_disable();
5946                 net_rps_action_and_irq_enable(sd);
5947         }
5948
5949         napi->weight = dev_rx_weight;
5950         while (again) {
5951                 struct sk_buff *skb;
5952
5953                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5954                         rcu_read_lock();
5955                         __netif_receive_skb(skb);
5956                         rcu_read_unlock();
5957                         input_queue_head_incr(sd);
5958                         if (++work >= quota)
5959                                 return work;
5960
5961                 }
5962
5963                 local_irq_disable();
5964                 rps_lock(sd);
5965                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5966                         /*
5967                          * Inline a custom version of __napi_complete().
5968                          * only current cpu owns and manipulates this napi,
5969                          * and NAPI_STATE_SCHED is the only possible flag set
5970                          * on backlog.
5971                          * We can use a plain write instead of clear_bit(),
5972                          * and we dont need an smp_mb() memory barrier.
5973                          */
5974                         napi->state = 0;
5975                         again = false;
5976                 } else {
5977                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5978                                                    &sd->process_queue);
5979                 }
5980                 rps_unlock(sd);
5981                 local_irq_enable();
5982         }
5983
5984         return work;
5985 }
5986
5987 /**
5988  * __napi_schedule - schedule for receive
5989  * @n: entry to schedule
5990  *
5991  * The entry's receive function will be scheduled to run.
5992  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5993  */
5994 void __napi_schedule(struct napi_struct *n)
5995 {
5996         unsigned long flags;
5997
5998         local_irq_save(flags);
5999         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6000         local_irq_restore(flags);
6001 }
6002 EXPORT_SYMBOL(__napi_schedule);
6003
6004 /**
6005  *      napi_schedule_prep - check if napi can be scheduled
6006  *      @n: napi context
6007  *
6008  * Test if NAPI routine is already running, and if not mark
6009  * it as running.  This is used as a condition variable
6010  * insure only one NAPI poll instance runs.  We also make
6011  * sure there is no pending NAPI disable.
6012  */
6013 bool napi_schedule_prep(struct napi_struct *n)
6014 {
6015         unsigned long val, new;
6016
6017         do {
6018                 val = READ_ONCE(n->state);
6019                 if (unlikely(val & NAPIF_STATE_DISABLE))
6020                         return false;
6021                 new = val | NAPIF_STATE_SCHED;
6022
6023                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6024                  * This was suggested by Alexander Duyck, as compiler
6025                  * emits better code than :
6026                  * if (val & NAPIF_STATE_SCHED)
6027                  *     new |= NAPIF_STATE_MISSED;
6028                  */
6029                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6030                                                    NAPIF_STATE_MISSED;
6031         } while (cmpxchg(&n->state, val, new) != val);
6032
6033         return !(val & NAPIF_STATE_SCHED);
6034 }
6035 EXPORT_SYMBOL(napi_schedule_prep);
6036
6037 /**
6038  * __napi_schedule_irqoff - schedule for receive
6039  * @n: entry to schedule
6040  *
6041  * Variant of __napi_schedule() assuming hard irqs are masked
6042  */
6043 void __napi_schedule_irqoff(struct napi_struct *n)
6044 {
6045         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6046 }
6047 EXPORT_SYMBOL(__napi_schedule_irqoff);
6048
6049 bool napi_complete_done(struct napi_struct *n, int work_done)
6050 {
6051         unsigned long flags, val, new;
6052
6053         /*
6054          * 1) Don't let napi dequeue from the cpu poll list
6055          *    just in case its running on a different cpu.
6056          * 2) If we are busy polling, do nothing here, we have
6057          *    the guarantee we will be called later.
6058          */
6059         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6060                                  NAPIF_STATE_IN_BUSY_POLL)))
6061                 return false;
6062
6063         gro_normal_list(n);
6064
6065         if (n->gro_bitmask) {
6066                 unsigned long timeout = 0;
6067
6068                 if (work_done)
6069                         timeout = n->dev->gro_flush_timeout;
6070
6071                 /* When the NAPI instance uses a timeout and keeps postponing
6072                  * it, we need to bound somehow the time packets are kept in
6073                  * the GRO layer
6074                  */
6075                 napi_gro_flush(n, !!timeout);
6076                 if (timeout)
6077                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6078                                       HRTIMER_MODE_REL_PINNED);
6079         }
6080         if (unlikely(!list_empty(&n->poll_list))) {
6081                 /* If n->poll_list is not empty, we need to mask irqs */
6082                 local_irq_save(flags);
6083                 list_del_init(&n->poll_list);
6084                 local_irq_restore(flags);
6085         }
6086
6087         do {
6088                 val = READ_ONCE(n->state);
6089
6090                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6091
6092                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6093
6094                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6095                  * because we will call napi->poll() one more time.
6096                  * This C code was suggested by Alexander Duyck to help gcc.
6097                  */
6098                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6099                                                     NAPIF_STATE_SCHED;
6100         } while (cmpxchg(&n->state, val, new) != val);
6101
6102         if (unlikely(val & NAPIF_STATE_MISSED)) {
6103                 __napi_schedule(n);
6104                 return false;
6105         }
6106
6107         return true;
6108 }
6109 EXPORT_SYMBOL(napi_complete_done);
6110
6111 /* must be called under rcu_read_lock(), as we dont take a reference */
6112 static struct napi_struct *napi_by_id(unsigned int napi_id)
6113 {
6114         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6115         struct napi_struct *napi;
6116
6117         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6118                 if (napi->napi_id == napi_id)
6119                         return napi;
6120
6121         return NULL;
6122 }
6123
6124 #if defined(CONFIG_NET_RX_BUSY_POLL)
6125
6126 #define BUSY_POLL_BUDGET 8
6127
6128 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6129 {
6130         int rc;
6131
6132         /* Busy polling means there is a high chance device driver hard irq
6133          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6134          * set in napi_schedule_prep().
6135          * Since we are about to call napi->poll() once more, we can safely
6136          * clear NAPI_STATE_MISSED.
6137          *
6138          * Note: x86 could use a single "lock and ..." instruction
6139          * to perform these two clear_bit()
6140          */
6141         clear_bit(NAPI_STATE_MISSED, &napi->state);
6142         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6143
6144         local_bh_disable();
6145
6146         /* All we really want here is to re-enable device interrupts.
6147          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6148          */
6149         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6150         /* We can't gro_normal_list() here, because napi->poll() might have
6151          * rearmed the napi (napi_complete_done()) in which case it could
6152          * already be running on another CPU.
6153          */
6154         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6155         netpoll_poll_unlock(have_poll_lock);
6156         if (rc == BUSY_POLL_BUDGET) {
6157                 /* As the whole budget was spent, we still own the napi so can
6158                  * safely handle the rx_list.
6159                  */
6160                 gro_normal_list(napi);
6161                 __napi_schedule(napi);
6162         }
6163         local_bh_enable();
6164 }
6165
6166 void napi_busy_loop(unsigned int napi_id,
6167                     bool (*loop_end)(void *, unsigned long),
6168                     void *loop_end_arg)
6169 {
6170         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6171         int (*napi_poll)(struct napi_struct *napi, int budget);
6172         void *have_poll_lock = NULL;
6173         struct napi_struct *napi;
6174
6175 restart:
6176         napi_poll = NULL;
6177
6178         rcu_read_lock();
6179
6180         napi = napi_by_id(napi_id);
6181         if (!napi)
6182                 goto out;
6183
6184         preempt_disable();
6185         for (;;) {
6186                 int work = 0;
6187
6188                 local_bh_disable();
6189                 if (!napi_poll) {
6190                         unsigned long val = READ_ONCE(napi->state);
6191
6192                         /* If multiple threads are competing for this napi,
6193                          * we avoid dirtying napi->state as much as we can.
6194                          */
6195                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6196                                    NAPIF_STATE_IN_BUSY_POLL))
6197                                 goto count;
6198                         if (cmpxchg(&napi->state, val,
6199                                     val | NAPIF_STATE_IN_BUSY_POLL |
6200                                           NAPIF_STATE_SCHED) != val)
6201                                 goto count;
6202                         have_poll_lock = netpoll_poll_lock(napi);
6203                         napi_poll = napi->poll;
6204                 }
6205                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6206                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6207                 gro_normal_list(napi);
6208 count:
6209                 if (work > 0)
6210                         __NET_ADD_STATS(dev_net(napi->dev),
6211                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6212                 local_bh_enable();
6213
6214                 if (!loop_end || loop_end(loop_end_arg, start_time))
6215                         break;
6216
6217                 if (unlikely(need_resched())) {
6218                         if (napi_poll)
6219                                 busy_poll_stop(napi, have_poll_lock);
6220                         preempt_enable();
6221                         rcu_read_unlock();
6222                         cond_resched();
6223                         if (loop_end(loop_end_arg, start_time))
6224                                 return;
6225                         goto restart;
6226                 }
6227                 cpu_relax();
6228         }
6229         if (napi_poll)
6230                 busy_poll_stop(napi, have_poll_lock);
6231         preempt_enable();
6232 out:
6233         rcu_read_unlock();
6234 }
6235 EXPORT_SYMBOL(napi_busy_loop);
6236
6237 #endif /* CONFIG_NET_RX_BUSY_POLL */
6238
6239 static void napi_hash_add(struct napi_struct *napi)
6240 {
6241         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6242             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6243                 return;
6244
6245         spin_lock(&napi_hash_lock);
6246
6247         /* 0..NR_CPUS range is reserved for sender_cpu use */
6248         do {
6249                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6250                         napi_gen_id = MIN_NAPI_ID;
6251         } while (napi_by_id(napi_gen_id));
6252         napi->napi_id = napi_gen_id;
6253
6254         hlist_add_head_rcu(&napi->napi_hash_node,
6255                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6256
6257         spin_unlock(&napi_hash_lock);
6258 }
6259
6260 /* Warning : caller is responsible to make sure rcu grace period
6261  * is respected before freeing memory containing @napi
6262  */
6263 bool napi_hash_del(struct napi_struct *napi)
6264 {
6265         bool rcu_sync_needed = false;
6266
6267         spin_lock(&napi_hash_lock);
6268
6269         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6270                 rcu_sync_needed = true;
6271                 hlist_del_rcu(&napi->napi_hash_node);
6272         }
6273         spin_unlock(&napi_hash_lock);
6274         return rcu_sync_needed;
6275 }
6276 EXPORT_SYMBOL_GPL(napi_hash_del);
6277
6278 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6279 {
6280         struct napi_struct *napi;
6281
6282         napi = container_of(timer, struct napi_struct, timer);
6283
6284         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6285          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6286          */
6287         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6288             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6289                 __napi_schedule_irqoff(napi);
6290
6291         return HRTIMER_NORESTART;
6292 }
6293
6294 static void init_gro_hash(struct napi_struct *napi)
6295 {
6296         int i;
6297
6298         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6299                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6300                 napi->gro_hash[i].count = 0;
6301         }
6302         napi->gro_bitmask = 0;
6303 }
6304
6305 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6306                     int (*poll)(struct napi_struct *, int), int weight)
6307 {
6308         INIT_LIST_HEAD(&napi->poll_list);
6309         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6310         napi->timer.function = napi_watchdog;
6311         init_gro_hash(napi);
6312         napi->skb = NULL;
6313         INIT_LIST_HEAD(&napi->rx_list);
6314         napi->rx_count = 0;
6315         napi->poll = poll;
6316         if (weight > NAPI_POLL_WEIGHT)
6317                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6318                                 weight);
6319         napi->weight = weight;
6320         list_add(&napi->dev_list, &dev->napi_list);
6321         napi->dev = dev;
6322 #ifdef CONFIG_NETPOLL
6323         napi->poll_owner = -1;
6324 #endif
6325         set_bit(NAPI_STATE_SCHED, &napi->state);
6326         napi_hash_add(napi);
6327 }
6328 EXPORT_SYMBOL(netif_napi_add);
6329
6330 void napi_disable(struct napi_struct *n)
6331 {
6332         might_sleep();
6333         set_bit(NAPI_STATE_DISABLE, &n->state);
6334
6335         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6336                 msleep(1);
6337         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6338                 msleep(1);
6339
6340         hrtimer_cancel(&n->timer);
6341
6342         clear_bit(NAPI_STATE_DISABLE, &n->state);
6343 }
6344 EXPORT_SYMBOL(napi_disable);
6345
6346 static void flush_gro_hash(struct napi_struct *napi)
6347 {
6348         int i;
6349
6350         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6351                 struct sk_buff *skb, *n;
6352
6353                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6354                         kfree_skb(skb);
6355                 napi->gro_hash[i].count = 0;
6356         }
6357 }
6358
6359 /* Must be called in process context */
6360 void netif_napi_del(struct napi_struct *napi)
6361 {
6362         might_sleep();
6363         if (napi_hash_del(napi))
6364                 synchronize_net();
6365         list_del_init(&napi->dev_list);
6366         napi_free_frags(napi);
6367
6368         flush_gro_hash(napi);
6369         napi->gro_bitmask = 0;
6370 }
6371 EXPORT_SYMBOL(netif_napi_del);
6372
6373 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6374 {
6375         void *have;
6376         int work, weight;
6377
6378         list_del_init(&n->poll_list);
6379
6380         have = netpoll_poll_lock(n);
6381
6382         weight = n->weight;
6383
6384         /* This NAPI_STATE_SCHED test is for avoiding a race
6385          * with netpoll's poll_napi().  Only the entity which
6386          * obtains the lock and sees NAPI_STATE_SCHED set will
6387          * actually make the ->poll() call.  Therefore we avoid
6388          * accidentally calling ->poll() when NAPI is not scheduled.
6389          */
6390         work = 0;
6391         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6392                 work = n->poll(n, weight);
6393                 trace_napi_poll(n, work, weight);
6394         }
6395
6396         WARN_ON_ONCE(work > weight);
6397
6398         if (likely(work < weight))
6399                 goto out_unlock;
6400
6401         /* Drivers must not modify the NAPI state if they
6402          * consume the entire weight.  In such cases this code
6403          * still "owns" the NAPI instance and therefore can
6404          * move the instance around on the list at-will.
6405          */
6406         if (unlikely(napi_disable_pending(n))) {
6407                 napi_complete(n);
6408                 goto out_unlock;
6409         }
6410
6411         gro_normal_list(n);
6412
6413         if (n->gro_bitmask) {
6414                 /* flush too old packets
6415                  * If HZ < 1000, flush all packets.
6416                  */
6417                 napi_gro_flush(n, HZ >= 1000);
6418         }
6419
6420         /* Some drivers may have called napi_schedule
6421          * prior to exhausting their budget.
6422          */
6423         if (unlikely(!list_empty(&n->poll_list))) {
6424                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6425                              n->dev ? n->dev->name : "backlog");
6426                 goto out_unlock;
6427         }
6428
6429         list_add_tail(&n->poll_list, repoll);
6430
6431 out_unlock:
6432         netpoll_poll_unlock(have);
6433
6434         return work;
6435 }
6436
6437 static __latent_entropy void net_rx_action(struct softirq_action *h)
6438 {
6439         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6440         unsigned long time_limit = jiffies +
6441                 usecs_to_jiffies(netdev_budget_usecs);
6442         int budget = netdev_budget;
6443         LIST_HEAD(list);
6444         LIST_HEAD(repoll);
6445
6446         local_irq_disable();
6447         list_splice_init(&sd->poll_list, &list);
6448         local_irq_enable();
6449
6450         for (;;) {
6451                 struct napi_struct *n;
6452
6453                 if (list_empty(&list)) {
6454                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6455                                 goto out;
6456                         break;
6457                 }
6458
6459                 n = list_first_entry(&list, struct napi_struct, poll_list);
6460                 budget -= napi_poll(n, &repoll);
6461
6462                 /* If softirq window is exhausted then punt.
6463                  * Allow this to run for 2 jiffies since which will allow
6464                  * an average latency of 1.5/HZ.
6465                  */
6466                 if (unlikely(budget <= 0 ||
6467                              time_after_eq(jiffies, time_limit))) {
6468                         sd->time_squeeze++;
6469                         break;
6470                 }
6471         }
6472
6473         local_irq_disable();
6474
6475         list_splice_tail_init(&sd->poll_list, &list);
6476         list_splice_tail(&repoll, &list);
6477         list_splice(&list, &sd->poll_list);
6478         if (!list_empty(&sd->poll_list))
6479                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6480
6481         net_rps_action_and_irq_enable(sd);
6482 out:
6483         __kfree_skb_flush();
6484 }
6485
6486 struct netdev_adjacent {
6487         struct net_device *dev;
6488
6489         /* upper master flag, there can only be one master device per list */
6490         bool master;
6491
6492         /* counter for the number of times this device was added to us */
6493         u16 ref_nr;
6494
6495         /* private field for the users */
6496         void *private;
6497
6498         struct list_head list;
6499         struct rcu_head rcu;
6500 };
6501
6502 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6503                                                  struct list_head *adj_list)
6504 {
6505         struct netdev_adjacent *adj;
6506
6507         list_for_each_entry(adj, adj_list, list) {
6508                 if (adj->dev == adj_dev)
6509                         return adj;
6510         }
6511         return NULL;
6512 }
6513
6514 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6515 {
6516         struct net_device *dev = data;
6517
6518         return upper_dev == dev;
6519 }
6520
6521 /**
6522  * netdev_has_upper_dev - Check if device is linked to an upper device
6523  * @dev: device
6524  * @upper_dev: upper device to check
6525  *
6526  * Find out if a device is linked to specified upper device and return true
6527  * in case it is. Note that this checks only immediate upper device,
6528  * not through a complete stack of devices. The caller must hold the RTNL lock.
6529  */
6530 bool netdev_has_upper_dev(struct net_device *dev,
6531                           struct net_device *upper_dev)
6532 {
6533         ASSERT_RTNL();
6534
6535         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6536                                              upper_dev);
6537 }
6538 EXPORT_SYMBOL(netdev_has_upper_dev);
6539
6540 /**
6541  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6542  * @dev: device
6543  * @upper_dev: upper device to check
6544  *
6545  * Find out if a device is linked to specified upper device and return true
6546  * in case it is. Note that this checks the entire upper device chain.
6547  * The caller must hold rcu lock.
6548  */
6549
6550 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6551                                   struct net_device *upper_dev)
6552 {
6553         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6554                                                upper_dev);
6555 }
6556 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6557
6558 /**
6559  * netdev_has_any_upper_dev - Check if device is linked to some device
6560  * @dev: device
6561  *
6562  * Find out if a device is linked to an upper device and return true in case
6563  * it is. The caller must hold the RTNL lock.
6564  */
6565 bool netdev_has_any_upper_dev(struct net_device *dev)
6566 {
6567         ASSERT_RTNL();
6568
6569         return !list_empty(&dev->adj_list.upper);
6570 }
6571 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6572
6573 /**
6574  * netdev_master_upper_dev_get - Get master upper device
6575  * @dev: device
6576  *
6577  * Find a master upper device and return pointer to it or NULL in case
6578  * it's not there. The caller must hold the RTNL lock.
6579  */
6580 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6581 {
6582         struct netdev_adjacent *upper;
6583
6584         ASSERT_RTNL();
6585
6586         if (list_empty(&dev->adj_list.upper))
6587                 return NULL;
6588
6589         upper = list_first_entry(&dev->adj_list.upper,
6590                                  struct netdev_adjacent, list);
6591         if (likely(upper->master))
6592                 return upper->dev;
6593         return NULL;
6594 }
6595 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6596
6597 /**
6598  * netdev_has_any_lower_dev - Check if device is linked to some device
6599  * @dev: device
6600  *
6601  * Find out if a device is linked to a lower device and return true in case
6602  * it is. The caller must hold the RTNL lock.
6603  */
6604 static bool netdev_has_any_lower_dev(struct net_device *dev)
6605 {
6606         ASSERT_RTNL();
6607
6608         return !list_empty(&dev->adj_list.lower);
6609 }
6610
6611 void *netdev_adjacent_get_private(struct list_head *adj_list)
6612 {
6613         struct netdev_adjacent *adj;
6614
6615         adj = list_entry(adj_list, struct netdev_adjacent, list);
6616
6617         return adj->private;
6618 }
6619 EXPORT_SYMBOL(netdev_adjacent_get_private);
6620
6621 /**
6622  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6623  * @dev: device
6624  * @iter: list_head ** of the current position
6625  *
6626  * Gets the next device from the dev's upper list, starting from iter
6627  * position. The caller must hold RCU read lock.
6628  */
6629 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6630                                                  struct list_head **iter)
6631 {
6632         struct netdev_adjacent *upper;
6633
6634         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6635
6636         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6637
6638         if (&upper->list == &dev->adj_list.upper)
6639                 return NULL;
6640
6641         *iter = &upper->list;
6642
6643         return upper->dev;
6644 }
6645 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6646
6647 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6648                                                     struct list_head **iter)
6649 {
6650         struct netdev_adjacent *upper;
6651
6652         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6653
6654         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6655
6656         if (&upper->list == &dev->adj_list.upper)
6657                 return NULL;
6658
6659         *iter = &upper->list;
6660
6661         return upper->dev;
6662 }
6663
6664 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6665                                   int (*fn)(struct net_device *dev,
6666                                             void *data),
6667                                   void *data)
6668 {
6669         struct net_device *udev;
6670         struct list_head *iter;
6671         int ret;
6672
6673         for (iter = &dev->adj_list.upper,
6674              udev = netdev_next_upper_dev_rcu(dev, &iter);
6675              udev;
6676              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6677                 /* first is the upper device itself */
6678                 ret = fn(udev, data);
6679                 if (ret)
6680                         return ret;
6681
6682                 /* then look at all of its upper devices */
6683                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6684                 if (ret)
6685                         return ret;
6686         }
6687
6688         return 0;
6689 }
6690 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6691
6692 /**
6693  * netdev_lower_get_next_private - Get the next ->private from the
6694  *                                 lower neighbour list
6695  * @dev: device
6696  * @iter: list_head ** of the current position
6697  *
6698  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6699  * list, starting from iter position. The caller must hold either hold the
6700  * RTNL lock or its own locking that guarantees that the neighbour lower
6701  * list will remain unchanged.
6702  */
6703 void *netdev_lower_get_next_private(struct net_device *dev,
6704                                     struct list_head **iter)
6705 {
6706         struct netdev_adjacent *lower;
6707
6708         lower = list_entry(*iter, struct netdev_adjacent, list);
6709
6710         if (&lower->list == &dev->adj_list.lower)
6711                 return NULL;
6712
6713         *iter = lower->list.next;
6714
6715         return lower->private;
6716 }
6717 EXPORT_SYMBOL(netdev_lower_get_next_private);
6718
6719 /**
6720  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6721  *                                     lower neighbour list, RCU
6722  *                                     variant
6723  * @dev: device
6724  * @iter: list_head ** of the current position
6725  *
6726  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6727  * list, starting from iter position. The caller must hold RCU read lock.
6728  */
6729 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6730                                         struct list_head **iter)
6731 {
6732         struct netdev_adjacent *lower;
6733
6734         WARN_ON_ONCE(!rcu_read_lock_held());
6735
6736         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6737
6738         if (&lower->list == &dev->adj_list.lower)
6739                 return NULL;
6740
6741         *iter = &lower->list;
6742
6743         return lower->private;
6744 }
6745 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6746
6747 /**
6748  * netdev_lower_get_next - Get the next device from the lower neighbour
6749  *                         list
6750  * @dev: device
6751  * @iter: list_head ** of the current position
6752  *
6753  * Gets the next netdev_adjacent from the dev's lower neighbour
6754  * list, starting from iter position. The caller must hold RTNL lock or
6755  * its own locking that guarantees that the neighbour lower
6756  * list will remain unchanged.
6757  */
6758 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6759 {
6760         struct netdev_adjacent *lower;
6761
6762         lower = list_entry(*iter, struct netdev_adjacent, list);
6763
6764         if (&lower->list == &dev->adj_list.lower)
6765                 return NULL;
6766
6767         *iter = lower->list.next;
6768
6769         return lower->dev;
6770 }
6771 EXPORT_SYMBOL(netdev_lower_get_next);
6772
6773 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6774                                                 struct list_head **iter)
6775 {
6776         struct netdev_adjacent *lower;
6777
6778         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6779
6780         if (&lower->list == &dev->adj_list.lower)
6781                 return NULL;
6782
6783         *iter = &lower->list;
6784
6785         return lower->dev;
6786 }
6787
6788 int netdev_walk_all_lower_dev(struct net_device *dev,
6789                               int (*fn)(struct net_device *dev,
6790                                         void *data),
6791                               void *data)
6792 {
6793         struct net_device *ldev;
6794         struct list_head *iter;
6795         int ret;
6796
6797         for (iter = &dev->adj_list.lower,
6798              ldev = netdev_next_lower_dev(dev, &iter);
6799              ldev;
6800              ldev = netdev_next_lower_dev(dev, &iter)) {
6801                 /* first is the lower device itself */
6802                 ret = fn(ldev, data);
6803                 if (ret)
6804                         return ret;
6805
6806                 /* then look at all of its lower devices */
6807                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6808                 if (ret)
6809                         return ret;
6810         }
6811
6812         return 0;
6813 }
6814 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6815
6816 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6817                                                     struct list_head **iter)
6818 {
6819         struct netdev_adjacent *lower;
6820
6821         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6822         if (&lower->list == &dev->adj_list.lower)
6823                 return NULL;
6824
6825         *iter = &lower->list;
6826
6827         return lower->dev;
6828 }
6829
6830 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6831                                   int (*fn)(struct net_device *dev,
6832                                             void *data),
6833                                   void *data)
6834 {
6835         struct net_device *ldev;
6836         struct list_head *iter;
6837         int ret;
6838
6839         for (iter = &dev->adj_list.lower,
6840              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6841              ldev;
6842              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6843                 /* first is the lower device itself */
6844                 ret = fn(ldev, data);
6845                 if (ret)
6846                         return ret;
6847
6848                 /* then look at all of its lower devices */
6849                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6850                 if (ret)
6851                         return ret;
6852         }
6853
6854         return 0;
6855 }
6856 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6857
6858 /**
6859  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6860  *                                     lower neighbour list, RCU
6861  *                                     variant
6862  * @dev: device
6863  *
6864  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6865  * list. The caller must hold RCU read lock.
6866  */
6867 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6868 {
6869         struct netdev_adjacent *lower;
6870
6871         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6872                         struct netdev_adjacent, list);
6873         if (lower)
6874                 return lower->private;
6875         return NULL;
6876 }
6877 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6878
6879 /**
6880  * netdev_master_upper_dev_get_rcu - Get master upper device
6881  * @dev: device
6882  *
6883  * Find a master upper device and return pointer to it or NULL in case
6884  * it's not there. The caller must hold the RCU read lock.
6885  */
6886 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6887 {
6888         struct netdev_adjacent *upper;
6889
6890         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6891                                        struct netdev_adjacent, list);
6892         if (upper && likely(upper->master))
6893                 return upper->dev;
6894         return NULL;
6895 }
6896 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6897
6898 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6899                               struct net_device *adj_dev,
6900                               struct list_head *dev_list)
6901 {
6902         char linkname[IFNAMSIZ+7];
6903
6904         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6905                 "upper_%s" : "lower_%s", adj_dev->name);
6906         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6907                                  linkname);
6908 }
6909 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6910                                char *name,
6911                                struct list_head *dev_list)
6912 {
6913         char linkname[IFNAMSIZ+7];
6914
6915         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6916                 "upper_%s" : "lower_%s", name);
6917         sysfs_remove_link(&(dev->dev.kobj), linkname);
6918 }
6919
6920 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6921                                                  struct net_device *adj_dev,
6922                                                  struct list_head *dev_list)
6923 {
6924         return (dev_list == &dev->adj_list.upper ||
6925                 dev_list == &dev->adj_list.lower) &&
6926                 net_eq(dev_net(dev), dev_net(adj_dev));
6927 }
6928
6929 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6930                                         struct net_device *adj_dev,
6931                                         struct list_head *dev_list,
6932                                         void *private, bool master)
6933 {
6934         struct netdev_adjacent *adj;
6935         int ret;
6936
6937         adj = __netdev_find_adj(adj_dev, dev_list);
6938
6939         if (adj) {
6940                 adj->ref_nr += 1;
6941                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6942                          dev->name, adj_dev->name, adj->ref_nr);
6943
6944                 return 0;
6945         }
6946
6947         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6948         if (!adj)
6949                 return -ENOMEM;
6950
6951         adj->dev = adj_dev;
6952         adj->master = master;
6953         adj->ref_nr = 1;
6954         adj->private = private;
6955         dev_hold(adj_dev);
6956
6957         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6958                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6959
6960         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6961                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6962                 if (ret)
6963                         goto free_adj;
6964         }
6965
6966         /* Ensure that master link is always the first item in list. */
6967         if (master) {
6968                 ret = sysfs_create_link(&(dev->dev.kobj),
6969                                         &(adj_dev->dev.kobj), "master");
6970                 if (ret)
6971                         goto remove_symlinks;
6972
6973                 list_add_rcu(&adj->list, dev_list);
6974         } else {
6975                 list_add_tail_rcu(&adj->list, dev_list);
6976         }
6977
6978         return 0;
6979
6980 remove_symlinks:
6981         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6982                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6983 free_adj:
6984         kfree(adj);
6985         dev_put(adj_dev);
6986
6987         return ret;
6988 }
6989
6990 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6991                                          struct net_device *adj_dev,
6992                                          u16 ref_nr,
6993                                          struct list_head *dev_list)
6994 {
6995         struct netdev_adjacent *adj;
6996
6997         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6998                  dev->name, adj_dev->name, ref_nr);
6999
7000         adj = __netdev_find_adj(adj_dev, dev_list);
7001
7002         if (!adj) {
7003                 pr_err("Adjacency does not exist for device %s from %s\n",
7004                        dev->name, adj_dev->name);
7005                 WARN_ON(1);
7006                 return;
7007         }
7008
7009         if (adj->ref_nr > ref_nr) {
7010                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7011                          dev->name, adj_dev->name, ref_nr,
7012                          adj->ref_nr - ref_nr);
7013                 adj->ref_nr -= ref_nr;
7014                 return;
7015         }
7016
7017         if (adj->master)
7018                 sysfs_remove_link(&(dev->dev.kobj), "master");
7019
7020         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7021                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7022
7023         list_del_rcu(&adj->list);
7024         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7025                  adj_dev->name, dev->name, adj_dev->name);
7026         dev_put(adj_dev);
7027         kfree_rcu(adj, rcu);
7028 }
7029
7030 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7031                                             struct net_device *upper_dev,
7032                                             struct list_head *up_list,
7033                                             struct list_head *down_list,
7034                                             void *private, bool master)
7035 {
7036         int ret;
7037
7038         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7039                                            private, master);
7040         if (ret)
7041                 return ret;
7042
7043         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7044                                            private, false);
7045         if (ret) {
7046                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7047                 return ret;
7048         }
7049
7050         return 0;
7051 }
7052
7053 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7054                                                struct net_device *upper_dev,
7055                                                u16 ref_nr,
7056                                                struct list_head *up_list,
7057                                                struct list_head *down_list)
7058 {
7059         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7060         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7061 }
7062
7063 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7064                                                 struct net_device *upper_dev,
7065                                                 void *private, bool master)
7066 {
7067         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7068                                                 &dev->adj_list.upper,
7069                                                 &upper_dev->adj_list.lower,
7070                                                 private, master);
7071 }
7072
7073 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7074                                                    struct net_device *upper_dev)
7075 {
7076         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7077                                            &dev->adj_list.upper,
7078                                            &upper_dev->adj_list.lower);
7079 }
7080
7081 static int __netdev_upper_dev_link(struct net_device *dev,
7082                                    struct net_device *upper_dev, bool master,
7083                                    void *upper_priv, void *upper_info,
7084                                    struct netlink_ext_ack *extack)
7085 {
7086         struct netdev_notifier_changeupper_info changeupper_info = {
7087                 .info = {
7088                         .dev = dev,
7089                         .extack = extack,
7090                 },
7091                 .upper_dev = upper_dev,
7092                 .master = master,
7093                 .linking = true,
7094                 .upper_info = upper_info,
7095         };
7096         struct net_device *master_dev;
7097         int ret = 0;
7098
7099         ASSERT_RTNL();
7100
7101         if (dev == upper_dev)
7102                 return -EBUSY;
7103
7104         /* To prevent loops, check if dev is not upper device to upper_dev. */
7105         if (netdev_has_upper_dev(upper_dev, dev))
7106                 return -EBUSY;
7107
7108         if (!master) {
7109                 if (netdev_has_upper_dev(dev, upper_dev))
7110                         return -EEXIST;
7111         } else {
7112                 master_dev = netdev_master_upper_dev_get(dev);
7113                 if (master_dev)
7114                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7115         }
7116
7117         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7118                                             &changeupper_info.info);
7119         ret = notifier_to_errno(ret);
7120         if (ret)
7121                 return ret;
7122
7123         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7124                                                    master);
7125         if (ret)
7126                 return ret;
7127
7128         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7129                                             &changeupper_info.info);
7130         ret = notifier_to_errno(ret);
7131         if (ret)
7132                 goto rollback;
7133
7134         return 0;
7135
7136 rollback:
7137         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7138
7139         return ret;
7140 }
7141
7142 /**
7143  * netdev_upper_dev_link - Add a link to the upper device
7144  * @dev: device
7145  * @upper_dev: new upper device
7146  * @extack: netlink extended ack
7147  *
7148  * Adds a link to device which is upper to this one. The caller must hold
7149  * the RTNL lock. On a failure a negative errno code is returned.
7150  * On success the reference counts are adjusted and the function
7151  * returns zero.
7152  */
7153 int netdev_upper_dev_link(struct net_device *dev,
7154                           struct net_device *upper_dev,
7155                           struct netlink_ext_ack *extack)
7156 {
7157         return __netdev_upper_dev_link(dev, upper_dev, false,
7158                                        NULL, NULL, extack);
7159 }
7160 EXPORT_SYMBOL(netdev_upper_dev_link);
7161
7162 /**
7163  * netdev_master_upper_dev_link - Add a master link to the upper device
7164  * @dev: device
7165  * @upper_dev: new upper device
7166  * @upper_priv: upper device private
7167  * @upper_info: upper info to be passed down via notifier
7168  * @extack: netlink extended ack
7169  *
7170  * Adds a link to device which is upper to this one. In this case, only
7171  * one master upper device can be linked, although other non-master devices
7172  * might be linked as well. The caller must hold the RTNL lock.
7173  * On a failure a negative errno code is returned. On success the reference
7174  * counts are adjusted and the function returns zero.
7175  */
7176 int netdev_master_upper_dev_link(struct net_device *dev,
7177                                  struct net_device *upper_dev,
7178                                  void *upper_priv, void *upper_info,
7179                                  struct netlink_ext_ack *extack)
7180 {
7181         return __netdev_upper_dev_link(dev, upper_dev, true,
7182                                        upper_priv, upper_info, extack);
7183 }
7184 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7185
7186 /**
7187  * netdev_upper_dev_unlink - Removes a link to upper device
7188  * @dev: device
7189  * @upper_dev: new upper device
7190  *
7191  * Removes a link to device which is upper to this one. The caller must hold
7192  * the RTNL lock.
7193  */
7194 void netdev_upper_dev_unlink(struct net_device *dev,
7195                              struct net_device *upper_dev)
7196 {
7197         struct netdev_notifier_changeupper_info changeupper_info = {
7198                 .info = {
7199                         .dev = dev,
7200                 },
7201                 .upper_dev = upper_dev,
7202                 .linking = false,
7203         };
7204
7205         ASSERT_RTNL();
7206
7207         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7208
7209         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7210                                       &changeupper_info.info);
7211
7212         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7213
7214         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7215                                       &changeupper_info.info);
7216 }
7217 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7218
7219 /**
7220  * netdev_bonding_info_change - Dispatch event about slave change
7221  * @dev: device
7222  * @bonding_info: info to dispatch
7223  *
7224  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7225  * The caller must hold the RTNL lock.
7226  */
7227 void netdev_bonding_info_change(struct net_device *dev,
7228                                 struct netdev_bonding_info *bonding_info)
7229 {
7230         struct netdev_notifier_bonding_info info = {
7231                 .info.dev = dev,
7232         };
7233
7234         memcpy(&info.bonding_info, bonding_info,
7235                sizeof(struct netdev_bonding_info));
7236         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7237                                       &info.info);
7238 }
7239 EXPORT_SYMBOL(netdev_bonding_info_change);
7240
7241 static void netdev_adjacent_add_links(struct net_device *dev)
7242 {
7243         struct netdev_adjacent *iter;
7244
7245         struct net *net = dev_net(dev);
7246
7247         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7248                 if (!net_eq(net, dev_net(iter->dev)))
7249                         continue;
7250                 netdev_adjacent_sysfs_add(iter->dev, dev,
7251                                           &iter->dev->adj_list.lower);
7252                 netdev_adjacent_sysfs_add(dev, iter->dev,
7253                                           &dev->adj_list.upper);
7254         }
7255
7256         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7257                 if (!net_eq(net, dev_net(iter->dev)))
7258                         continue;
7259                 netdev_adjacent_sysfs_add(iter->dev, dev,
7260                                           &iter->dev->adj_list.upper);
7261                 netdev_adjacent_sysfs_add(dev, iter->dev,
7262                                           &dev->adj_list.lower);
7263         }
7264 }
7265
7266 static void netdev_adjacent_del_links(struct net_device *dev)
7267 {
7268         struct netdev_adjacent *iter;
7269
7270         struct net *net = dev_net(dev);
7271
7272         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7273                 if (!net_eq(net, dev_net(iter->dev)))
7274                         continue;
7275                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7276                                           &iter->dev->adj_list.lower);
7277                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7278                                           &dev->adj_list.upper);
7279         }
7280
7281         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7282                 if (!net_eq(net, dev_net(iter->dev)))
7283                         continue;
7284                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7285                                           &iter->dev->adj_list.upper);
7286                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7287                                           &dev->adj_list.lower);
7288         }
7289 }
7290
7291 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7292 {
7293         struct netdev_adjacent *iter;
7294
7295         struct net *net = dev_net(dev);
7296
7297         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7298                 if (!net_eq(net, dev_net(iter->dev)))
7299                         continue;
7300                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7301                                           &iter->dev->adj_list.lower);
7302                 netdev_adjacent_sysfs_add(iter->dev, dev,
7303                                           &iter->dev->adj_list.lower);
7304         }
7305
7306         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7307                 if (!net_eq(net, dev_net(iter->dev)))
7308                         continue;
7309                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7310                                           &iter->dev->adj_list.upper);
7311                 netdev_adjacent_sysfs_add(iter->dev, dev,
7312                                           &iter->dev->adj_list.upper);
7313         }
7314 }
7315
7316 void *netdev_lower_dev_get_private(struct net_device *dev,
7317                                    struct net_device *lower_dev)
7318 {
7319         struct netdev_adjacent *lower;
7320
7321         if (!lower_dev)
7322                 return NULL;
7323         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7324         if (!lower)
7325                 return NULL;
7326
7327         return lower->private;
7328 }
7329 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7330
7331
7332 int dev_get_nest_level(struct net_device *dev)
7333 {
7334         struct net_device *lower = NULL;
7335         struct list_head *iter;
7336         int max_nest = -1;
7337         int nest;
7338
7339         ASSERT_RTNL();
7340
7341         netdev_for_each_lower_dev(dev, lower, iter) {
7342                 nest = dev_get_nest_level(lower);
7343                 if (max_nest < nest)
7344                         max_nest = nest;
7345         }
7346
7347         return max_nest + 1;
7348 }
7349 EXPORT_SYMBOL(dev_get_nest_level);
7350
7351 /**
7352  * netdev_lower_change - Dispatch event about lower device state change
7353  * @lower_dev: device
7354  * @lower_state_info: state to dispatch
7355  *
7356  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7357  * The caller must hold the RTNL lock.
7358  */
7359 void netdev_lower_state_changed(struct net_device *lower_dev,
7360                                 void *lower_state_info)
7361 {
7362         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7363                 .info.dev = lower_dev,
7364         };
7365
7366         ASSERT_RTNL();
7367         changelowerstate_info.lower_state_info = lower_state_info;
7368         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7369                                       &changelowerstate_info.info);
7370 }
7371 EXPORT_SYMBOL(netdev_lower_state_changed);
7372
7373 static void dev_change_rx_flags(struct net_device *dev, int flags)
7374 {
7375         const struct net_device_ops *ops = dev->netdev_ops;
7376
7377         if (ops->ndo_change_rx_flags)
7378                 ops->ndo_change_rx_flags(dev, flags);
7379 }
7380
7381 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7382 {
7383         unsigned int old_flags = dev->flags;
7384         kuid_t uid;
7385         kgid_t gid;
7386
7387         ASSERT_RTNL();
7388
7389         dev->flags |= IFF_PROMISC;
7390         dev->promiscuity += inc;
7391         if (dev->promiscuity == 0) {
7392                 /*
7393                  * Avoid overflow.
7394                  * If inc causes overflow, untouch promisc and return error.
7395                  */
7396                 if (inc < 0)
7397                         dev->flags &= ~IFF_PROMISC;
7398                 else {
7399                         dev->promiscuity -= inc;
7400                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7401                                 dev->name);
7402                         return -EOVERFLOW;
7403                 }
7404         }
7405         if (dev->flags != old_flags) {
7406                 pr_info("device %s %s promiscuous mode\n",
7407                         dev->name,
7408                         dev->flags & IFF_PROMISC ? "entered" : "left");
7409                 if (audit_enabled) {
7410                         current_uid_gid(&uid, &gid);
7411                         audit_log(audit_context(), GFP_ATOMIC,
7412                                   AUDIT_ANOM_PROMISCUOUS,
7413                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7414                                   dev->name, (dev->flags & IFF_PROMISC),
7415                                   (old_flags & IFF_PROMISC),
7416                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7417                                   from_kuid(&init_user_ns, uid),
7418                                   from_kgid(&init_user_ns, gid),
7419                                   audit_get_sessionid(current));
7420                 }
7421
7422                 dev_change_rx_flags(dev, IFF_PROMISC);
7423         }
7424         if (notify)
7425                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7426         return 0;
7427 }
7428
7429 /**
7430  *      dev_set_promiscuity     - update promiscuity count on a device
7431  *      @dev: device
7432  *      @inc: modifier
7433  *
7434  *      Add or remove promiscuity from a device. While the count in the device
7435  *      remains above zero the interface remains promiscuous. Once it hits zero
7436  *      the device reverts back to normal filtering operation. A negative inc
7437  *      value is used to drop promiscuity on the device.
7438  *      Return 0 if successful or a negative errno code on error.
7439  */
7440 int dev_set_promiscuity(struct net_device *dev, int inc)
7441 {
7442         unsigned int old_flags = dev->flags;
7443         int err;
7444
7445         err = __dev_set_promiscuity(dev, inc, true);
7446         if (err < 0)
7447                 return err;
7448         if (dev->flags != old_flags)
7449                 dev_set_rx_mode(dev);
7450         return err;
7451 }
7452 EXPORT_SYMBOL(dev_set_promiscuity);
7453
7454 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7455 {
7456         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7457
7458         ASSERT_RTNL();
7459
7460         dev->flags |= IFF_ALLMULTI;
7461         dev->allmulti += inc;
7462         if (dev->allmulti == 0) {
7463                 /*
7464                  * Avoid overflow.
7465                  * If inc causes overflow, untouch allmulti and return error.
7466                  */
7467                 if (inc < 0)
7468                         dev->flags &= ~IFF_ALLMULTI;
7469                 else {
7470                         dev->allmulti -= inc;
7471                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7472                                 dev->name);
7473                         return -EOVERFLOW;
7474                 }
7475         }
7476         if (dev->flags ^ old_flags) {
7477                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7478                 dev_set_rx_mode(dev);
7479                 if (notify)
7480                         __dev_notify_flags(dev, old_flags,
7481                                            dev->gflags ^ old_gflags);
7482         }
7483         return 0;
7484 }
7485
7486 /**
7487  *      dev_set_allmulti        - update allmulti count on a device
7488  *      @dev: device
7489  *      @inc: modifier
7490  *
7491  *      Add or remove reception of all multicast frames to a device. While the
7492  *      count in the device remains above zero the interface remains listening
7493  *      to all interfaces. Once it hits zero the device reverts back to normal
7494  *      filtering operation. A negative @inc value is used to drop the counter
7495  *      when releasing a resource needing all multicasts.
7496  *      Return 0 if successful or a negative errno code on error.
7497  */
7498
7499 int dev_set_allmulti(struct net_device *dev, int inc)
7500 {
7501         return __dev_set_allmulti(dev, inc, true);
7502 }
7503 EXPORT_SYMBOL(dev_set_allmulti);
7504
7505 /*
7506  *      Upload unicast and multicast address lists to device and
7507  *      configure RX filtering. When the device doesn't support unicast
7508  *      filtering it is put in promiscuous mode while unicast addresses
7509  *      are present.
7510  */
7511 void __dev_set_rx_mode(struct net_device *dev)
7512 {
7513         const struct net_device_ops *ops = dev->netdev_ops;
7514
7515         /* dev_open will call this function so the list will stay sane. */
7516         if (!(dev->flags&IFF_UP))
7517                 return;
7518
7519         if (!netif_device_present(dev))
7520                 return;
7521
7522         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7523                 /* Unicast addresses changes may only happen under the rtnl,
7524                  * therefore calling __dev_set_promiscuity here is safe.
7525                  */
7526                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7527                         __dev_set_promiscuity(dev, 1, false);
7528                         dev->uc_promisc = true;
7529                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7530                         __dev_set_promiscuity(dev, -1, false);
7531                         dev->uc_promisc = false;
7532                 }
7533         }
7534
7535         if (ops->ndo_set_rx_mode)
7536                 ops->ndo_set_rx_mode(dev);
7537 }
7538
7539 void dev_set_rx_mode(struct net_device *dev)
7540 {
7541         netif_addr_lock_bh(dev);
7542         __dev_set_rx_mode(dev);
7543         netif_addr_unlock_bh(dev);
7544 }
7545
7546 /**
7547  *      dev_get_flags - get flags reported to userspace
7548  *      @dev: device
7549  *
7550  *      Get the combination of flag bits exported through APIs to userspace.
7551  */
7552 unsigned int dev_get_flags(const struct net_device *dev)
7553 {
7554         unsigned int flags;
7555
7556         flags = (dev->flags & ~(IFF_PROMISC |
7557                                 IFF_ALLMULTI |
7558                                 IFF_RUNNING |
7559                                 IFF_LOWER_UP |
7560                                 IFF_DORMANT)) |
7561                 (dev->gflags & (IFF_PROMISC |
7562                                 IFF_ALLMULTI));
7563
7564         if (netif_running(dev)) {
7565                 if (netif_oper_up(dev))
7566                         flags |= IFF_RUNNING;
7567                 if (netif_carrier_ok(dev))
7568                         flags |= IFF_LOWER_UP;
7569                 if (netif_dormant(dev))
7570                         flags |= IFF_DORMANT;
7571         }
7572
7573         return flags;
7574 }
7575 EXPORT_SYMBOL(dev_get_flags);
7576
7577 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7578                        struct netlink_ext_ack *extack)
7579 {
7580         unsigned int old_flags = dev->flags;
7581         int ret;
7582
7583         ASSERT_RTNL();
7584
7585         /*
7586          *      Set the flags on our device.
7587          */
7588
7589         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7590                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7591                                IFF_AUTOMEDIA)) |
7592                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7593                                     IFF_ALLMULTI));
7594
7595         /*
7596          *      Load in the correct multicast list now the flags have changed.
7597          */
7598
7599         if ((old_flags ^ flags) & IFF_MULTICAST)
7600                 dev_change_rx_flags(dev, IFF_MULTICAST);
7601
7602         dev_set_rx_mode(dev);
7603
7604         /*
7605          *      Have we downed the interface. We handle IFF_UP ourselves
7606          *      according to user attempts to set it, rather than blindly
7607          *      setting it.
7608          */
7609
7610         ret = 0;
7611         if ((old_flags ^ flags) & IFF_UP) {
7612                 if (old_flags & IFF_UP)
7613                         __dev_close(dev);
7614                 else
7615                         ret = __dev_open(dev, extack);
7616         }
7617
7618         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7619                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7620                 unsigned int old_flags = dev->flags;
7621
7622                 dev->gflags ^= IFF_PROMISC;
7623
7624                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7625                         if (dev->flags != old_flags)
7626                                 dev_set_rx_mode(dev);
7627         }
7628
7629         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7630          * is important. Some (broken) drivers set IFF_PROMISC, when
7631          * IFF_ALLMULTI is requested not asking us and not reporting.
7632          */
7633         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7634                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7635
7636                 dev->gflags ^= IFF_ALLMULTI;
7637                 __dev_set_allmulti(dev, inc, false);
7638         }
7639
7640         return ret;
7641 }
7642
7643 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7644                         unsigned int gchanges)
7645 {
7646         unsigned int changes = dev->flags ^ old_flags;
7647
7648         if (gchanges)
7649                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7650
7651         if (changes & IFF_UP) {
7652                 if (dev->flags & IFF_UP)
7653                         call_netdevice_notifiers(NETDEV_UP, dev);
7654                 else
7655                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7656         }
7657
7658         if (dev->flags & IFF_UP &&
7659             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7660                 struct netdev_notifier_change_info change_info = {
7661                         .info = {
7662                                 .dev = dev,
7663                         },
7664                         .flags_changed = changes,
7665                 };
7666
7667                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7668         }
7669 }
7670
7671 /**
7672  *      dev_change_flags - change device settings
7673  *      @dev: device
7674  *      @flags: device state flags
7675  *      @extack: netlink extended ack
7676  *
7677  *      Change settings on device based state flags. The flags are
7678  *      in the userspace exported format.
7679  */
7680 int dev_change_flags(struct net_device *dev, unsigned int flags,
7681                      struct netlink_ext_ack *extack)
7682 {
7683         int ret;
7684         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7685
7686         ret = __dev_change_flags(dev, flags, extack);
7687         if (ret < 0)
7688                 return ret;
7689
7690         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7691         __dev_notify_flags(dev, old_flags, changes);
7692         return ret;
7693 }
7694 EXPORT_SYMBOL(dev_change_flags);
7695
7696 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7697 {
7698         const struct net_device_ops *ops = dev->netdev_ops;
7699
7700         if (ops->ndo_change_mtu)
7701                 return ops->ndo_change_mtu(dev, new_mtu);
7702
7703         dev->mtu = new_mtu;
7704         return 0;
7705 }
7706 EXPORT_SYMBOL(__dev_set_mtu);
7707
7708 /**
7709  *      dev_set_mtu_ext - Change maximum transfer unit
7710  *      @dev: device
7711  *      @new_mtu: new transfer unit
7712  *      @extack: netlink extended ack
7713  *
7714  *      Change the maximum transfer size of the network device.
7715  */
7716 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7717                     struct netlink_ext_ack *extack)
7718 {
7719         int err, orig_mtu;
7720
7721         if (new_mtu == dev->mtu)
7722                 return 0;
7723
7724         /* MTU must be positive, and in range */
7725         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7726                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7727                 return -EINVAL;
7728         }
7729
7730         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7731                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7732                 return -EINVAL;
7733         }
7734
7735         if (!netif_device_present(dev))
7736                 return -ENODEV;
7737
7738         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7739         err = notifier_to_errno(err);
7740         if (err)
7741                 return err;
7742
7743         orig_mtu = dev->mtu;
7744         err = __dev_set_mtu(dev, new_mtu);
7745
7746         if (!err) {
7747                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7748                                                    orig_mtu);
7749                 err = notifier_to_errno(err);
7750                 if (err) {
7751                         /* setting mtu back and notifying everyone again,
7752                          * so that they have a chance to revert changes.
7753                          */
7754                         __dev_set_mtu(dev, orig_mtu);
7755                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7756                                                      new_mtu);
7757                 }
7758         }
7759         return err;
7760 }
7761
7762 int dev_set_mtu(struct net_device *dev, int new_mtu)
7763 {
7764         struct netlink_ext_ack extack;
7765         int err;
7766
7767         memset(&extack, 0, sizeof(extack));
7768         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7769         if (err && extack._msg)
7770                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7771         return err;
7772 }
7773 EXPORT_SYMBOL(dev_set_mtu);
7774
7775 /**
7776  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7777  *      @dev: device
7778  *      @new_len: new tx queue length
7779  */
7780 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7781 {
7782         unsigned int orig_len = dev->tx_queue_len;
7783         int res;
7784
7785         if (new_len != (unsigned int)new_len)
7786                 return -ERANGE;
7787
7788         if (new_len != orig_len) {
7789                 dev->tx_queue_len = new_len;
7790                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7791                 res = notifier_to_errno(res);
7792                 if (res)
7793                         goto err_rollback;
7794                 res = dev_qdisc_change_tx_queue_len(dev);
7795                 if (res)
7796                         goto err_rollback;
7797         }
7798
7799         return 0;
7800
7801 err_rollback:
7802         netdev_err(dev, "refused to change device tx_queue_len\n");
7803         dev->tx_queue_len = orig_len;
7804         return res;
7805 }
7806
7807 /**
7808  *      dev_set_group - Change group this device belongs to
7809  *      @dev: device
7810  *      @new_group: group this device should belong to
7811  */
7812 void dev_set_group(struct net_device *dev, int new_group)
7813 {
7814         dev->group = new_group;
7815 }
7816 EXPORT_SYMBOL(dev_set_group);
7817
7818 /**
7819  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7820  *      @dev: device
7821  *      @addr: new address
7822  *      @extack: netlink extended ack
7823  */
7824 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7825                               struct netlink_ext_ack *extack)
7826 {
7827         struct netdev_notifier_pre_changeaddr_info info = {
7828                 .info.dev = dev,
7829                 .info.extack = extack,
7830                 .dev_addr = addr,
7831         };
7832         int rc;
7833
7834         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7835         return notifier_to_errno(rc);
7836 }
7837 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7838
7839 /**
7840  *      dev_set_mac_address - Change Media Access Control Address
7841  *      @dev: device
7842  *      @sa: new address
7843  *      @extack: netlink extended ack
7844  *
7845  *      Change the hardware (MAC) address of the device
7846  */
7847 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7848                         struct netlink_ext_ack *extack)
7849 {
7850         const struct net_device_ops *ops = dev->netdev_ops;
7851         int err;
7852
7853         if (!ops->ndo_set_mac_address)
7854                 return -EOPNOTSUPP;
7855         if (sa->sa_family != dev->type)
7856                 return -EINVAL;
7857         if (!netif_device_present(dev))
7858                 return -ENODEV;
7859         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7860         if (err)
7861                 return err;
7862         err = ops->ndo_set_mac_address(dev, sa);
7863         if (err)
7864                 return err;
7865         dev->addr_assign_type = NET_ADDR_SET;
7866         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7867         add_device_randomness(dev->dev_addr, dev->addr_len);
7868         return 0;
7869 }
7870 EXPORT_SYMBOL(dev_set_mac_address);
7871
7872 /**
7873  *      dev_change_carrier - Change device carrier
7874  *      @dev: device
7875  *      @new_carrier: new value
7876  *
7877  *      Change device carrier
7878  */
7879 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7880 {
7881         const struct net_device_ops *ops = dev->netdev_ops;
7882
7883         if (!ops->ndo_change_carrier)
7884                 return -EOPNOTSUPP;
7885         if (!netif_device_present(dev))
7886                 return -ENODEV;
7887         return ops->ndo_change_carrier(dev, new_carrier);
7888 }
7889 EXPORT_SYMBOL(dev_change_carrier);
7890
7891 /**
7892  *      dev_get_phys_port_id - Get device physical port ID
7893  *      @dev: device
7894  *      @ppid: port ID
7895  *
7896  *      Get device physical port ID
7897  */
7898 int dev_get_phys_port_id(struct net_device *dev,
7899                          struct netdev_phys_item_id *ppid)
7900 {
7901         const struct net_device_ops *ops = dev->netdev_ops;
7902
7903         if (!ops->ndo_get_phys_port_id)
7904                 return -EOPNOTSUPP;
7905         return ops->ndo_get_phys_port_id(dev, ppid);
7906 }
7907 EXPORT_SYMBOL(dev_get_phys_port_id);
7908
7909 /**
7910  *      dev_get_phys_port_name - Get device physical port name
7911  *      @dev: device
7912  *      @name: port name
7913  *      @len: limit of bytes to copy to name
7914  *
7915  *      Get device physical port name
7916  */
7917 int dev_get_phys_port_name(struct net_device *dev,
7918                            char *name, size_t len)
7919 {
7920         const struct net_device_ops *ops = dev->netdev_ops;
7921         int err;
7922
7923         if (ops->ndo_get_phys_port_name) {
7924                 err = ops->ndo_get_phys_port_name(dev, name, len);
7925                 if (err != -EOPNOTSUPP)
7926                         return err;
7927         }
7928         return devlink_compat_phys_port_name_get(dev, name, len);
7929 }
7930 EXPORT_SYMBOL(dev_get_phys_port_name);
7931
7932 /**
7933  *      dev_get_port_parent_id - Get the device's port parent identifier
7934  *      @dev: network device
7935  *      @ppid: pointer to a storage for the port's parent identifier
7936  *      @recurse: allow/disallow recursion to lower devices
7937  *
7938  *      Get the devices's port parent identifier
7939  */
7940 int dev_get_port_parent_id(struct net_device *dev,
7941                            struct netdev_phys_item_id *ppid,
7942                            bool recurse)
7943 {
7944         const struct net_device_ops *ops = dev->netdev_ops;
7945         struct netdev_phys_item_id first = { };
7946         struct net_device *lower_dev;
7947         struct list_head *iter;
7948         int err;
7949
7950         if (ops->ndo_get_port_parent_id) {
7951                 err = ops->ndo_get_port_parent_id(dev, ppid);
7952                 if (err != -EOPNOTSUPP)
7953                         return err;
7954         }
7955
7956         err = devlink_compat_switch_id_get(dev, ppid);
7957         if (!err || err != -EOPNOTSUPP)
7958                 return err;
7959
7960         if (!recurse)
7961                 return -EOPNOTSUPP;
7962
7963         netdev_for_each_lower_dev(dev, lower_dev, iter) {
7964                 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7965                 if (err)
7966                         break;
7967                 if (!first.id_len)
7968                         first = *ppid;
7969                 else if (memcmp(&first, ppid, sizeof(*ppid)))
7970                         return -ENODATA;
7971         }
7972
7973         return err;
7974 }
7975 EXPORT_SYMBOL(dev_get_port_parent_id);
7976
7977 /**
7978  *      netdev_port_same_parent_id - Indicate if two network devices have
7979  *      the same port parent identifier
7980  *      @a: first network device
7981  *      @b: second network device
7982  */
7983 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7984 {
7985         struct netdev_phys_item_id a_id = { };
7986         struct netdev_phys_item_id b_id = { };
7987
7988         if (dev_get_port_parent_id(a, &a_id, true) ||
7989             dev_get_port_parent_id(b, &b_id, true))
7990                 return false;
7991
7992         return netdev_phys_item_id_same(&a_id, &b_id);
7993 }
7994 EXPORT_SYMBOL(netdev_port_same_parent_id);
7995
7996 /**
7997  *      dev_change_proto_down - update protocol port state information
7998  *      @dev: device
7999  *      @proto_down: new value
8000  *
8001  *      This info can be used by switch drivers to set the phys state of the
8002  *      port.
8003  */
8004 int dev_change_proto_down(struct net_device *dev, bool proto_down)
8005 {
8006         const struct net_device_ops *ops = dev->netdev_ops;
8007
8008         if (!ops->ndo_change_proto_down)
8009                 return -EOPNOTSUPP;
8010         if (!netif_device_present(dev))
8011                 return -ENODEV;
8012         return ops->ndo_change_proto_down(dev, proto_down);
8013 }
8014 EXPORT_SYMBOL(dev_change_proto_down);
8015
8016 /**
8017  *      dev_change_proto_down_generic - generic implementation for
8018  *      ndo_change_proto_down that sets carrier according to
8019  *      proto_down.
8020  *
8021  *      @dev: device
8022  *      @proto_down: new value
8023  */
8024 int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
8025 {
8026         if (proto_down)
8027                 netif_carrier_off(dev);
8028         else
8029                 netif_carrier_on(dev);
8030         dev->proto_down = proto_down;
8031         return 0;
8032 }
8033 EXPORT_SYMBOL(dev_change_proto_down_generic);
8034
8035 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
8036                     enum bpf_netdev_command cmd)
8037 {
8038         struct netdev_bpf xdp;
8039
8040         if (!bpf_op)
8041                 return 0;
8042
8043         memset(&xdp, 0, sizeof(xdp));
8044         xdp.command = cmd;
8045
8046         /* Query must always succeed. */
8047         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8048
8049         return xdp.prog_id;
8050 }
8051
8052 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8053                            struct netlink_ext_ack *extack, u32 flags,
8054                            struct bpf_prog *prog)
8055 {
8056         struct netdev_bpf xdp;
8057
8058         memset(&xdp, 0, sizeof(xdp));
8059         if (flags & XDP_FLAGS_HW_MODE)
8060                 xdp.command = XDP_SETUP_PROG_HW;
8061         else
8062                 xdp.command = XDP_SETUP_PROG;
8063         xdp.extack = extack;
8064         xdp.flags = flags;
8065         xdp.prog = prog;
8066
8067         return bpf_op(dev, &xdp);
8068 }
8069
8070 static void dev_xdp_uninstall(struct net_device *dev)
8071 {
8072         struct netdev_bpf xdp;
8073         bpf_op_t ndo_bpf;
8074
8075         /* Remove generic XDP */
8076         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8077
8078         /* Remove from the driver */
8079         ndo_bpf = dev->netdev_ops->ndo_bpf;
8080         if (!ndo_bpf)
8081                 return;
8082
8083         memset(&xdp, 0, sizeof(xdp));
8084         xdp.command = XDP_QUERY_PROG;
8085         WARN_ON(ndo_bpf(dev, &xdp));
8086         if (xdp.prog_id)
8087                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8088                                         NULL));
8089
8090         /* Remove HW offload */
8091         memset(&xdp, 0, sizeof(xdp));
8092         xdp.command = XDP_QUERY_PROG_HW;
8093         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8094                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8095                                         NULL));
8096 }
8097
8098 /**
8099  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8100  *      @dev: device
8101  *      @extack: netlink extended ack
8102  *      @fd: new program fd or negative value to clear
8103  *      @flags: xdp-related flags
8104  *
8105  *      Set or clear a bpf program for a device
8106  */
8107 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8108                       int fd, u32 flags)
8109 {
8110         const struct net_device_ops *ops = dev->netdev_ops;
8111         enum bpf_netdev_command query;
8112         struct bpf_prog *prog = NULL;
8113         bpf_op_t bpf_op, bpf_chk;
8114         bool offload;
8115         int err;
8116
8117         ASSERT_RTNL();
8118
8119         offload = flags & XDP_FLAGS_HW_MODE;
8120         query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8121
8122         bpf_op = bpf_chk = ops->ndo_bpf;
8123         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8124                 NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8125                 return -EOPNOTSUPP;
8126         }
8127         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8128                 bpf_op = generic_xdp_install;
8129         if (bpf_op == bpf_chk)
8130                 bpf_chk = generic_xdp_install;
8131
8132         if (fd >= 0) {
8133                 u32 prog_id;
8134
8135                 if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8136                         NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8137                         return -EEXIST;
8138                 }
8139
8140                 prog_id = __dev_xdp_query(dev, bpf_op, query);
8141                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && prog_id) {
8142                         NL_SET_ERR_MSG(extack, "XDP program already attached");
8143                         return -EBUSY;
8144                 }
8145
8146                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8147                                              bpf_op == ops->ndo_bpf);
8148                 if (IS_ERR(prog))
8149                         return PTR_ERR(prog);
8150
8151                 if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8152                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8153                         bpf_prog_put(prog);
8154                         return -EINVAL;
8155                 }
8156
8157                 if (prog->aux->id == prog_id) {
8158                         bpf_prog_put(prog);
8159                         return 0;
8160                 }
8161         } else {
8162                 if (!__dev_xdp_query(dev, bpf_op, query))
8163                         return 0;
8164         }
8165
8166         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8167         if (err < 0 && prog)
8168                 bpf_prog_put(prog);
8169
8170         return err;
8171 }
8172
8173 /**
8174  *      dev_new_index   -       allocate an ifindex
8175  *      @net: the applicable net namespace
8176  *
8177  *      Returns a suitable unique value for a new device interface
8178  *      number.  The caller must hold the rtnl semaphore or the
8179  *      dev_base_lock to be sure it remains unique.
8180  */
8181 static int dev_new_index(struct net *net)
8182 {
8183         int ifindex = net->ifindex;
8184
8185         for (;;) {
8186                 if (++ifindex <= 0)
8187                         ifindex = 1;
8188                 if (!__dev_get_by_index(net, ifindex))
8189                         return net->ifindex = ifindex;
8190         }
8191 }
8192
8193 /* Delayed registration/unregisteration */
8194 static LIST_HEAD(net_todo_list);
8195 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8196
8197 static void net_set_todo(struct net_device *dev)
8198 {
8199         list_add_tail(&dev->todo_list, &net_todo_list);
8200         dev_net(dev)->dev_unreg_count++;
8201 }
8202
8203 static void rollback_registered_many(struct list_head *head)
8204 {
8205         struct net_device *dev, *tmp;
8206         LIST_HEAD(close_head);
8207
8208         BUG_ON(dev_boot_phase);
8209         ASSERT_RTNL();
8210
8211         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8212                 /* Some devices call without registering
8213                  * for initialization unwind. Remove those
8214                  * devices and proceed with the remaining.
8215                  */
8216                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8217                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8218                                  dev->name, dev);
8219
8220                         WARN_ON(1);
8221                         list_del(&dev->unreg_list);
8222                         continue;
8223                 }
8224                 dev->dismantle = true;
8225                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8226         }
8227
8228         /* If device is running, close it first. */
8229         list_for_each_entry(dev, head, unreg_list)
8230                 list_add_tail(&dev->close_list, &close_head);
8231         dev_close_many(&close_head, true);
8232
8233         list_for_each_entry(dev, head, unreg_list) {
8234                 /* And unlink it from device chain. */
8235                 unlist_netdevice(dev);
8236
8237                 dev->reg_state = NETREG_UNREGISTERING;
8238         }
8239         flush_all_backlogs();
8240
8241         synchronize_net();
8242
8243         list_for_each_entry(dev, head, unreg_list) {
8244                 struct sk_buff *skb = NULL;
8245
8246                 /* Shutdown queueing discipline. */
8247                 dev_shutdown(dev);
8248
8249                 dev_xdp_uninstall(dev);
8250
8251                 /* Notify protocols, that we are about to destroy
8252                  * this device. They should clean all the things.
8253                  */
8254                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8255
8256                 if (!dev->rtnl_link_ops ||
8257                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8258                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8259                                                      GFP_KERNEL, NULL, 0);
8260
8261                 /*
8262                  *      Flush the unicast and multicast chains
8263                  */
8264                 dev_uc_flush(dev);
8265                 dev_mc_flush(dev);
8266
8267                 if (dev->netdev_ops->ndo_uninit)
8268                         dev->netdev_ops->ndo_uninit(dev);
8269
8270                 if (skb)
8271                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8272
8273                 /* Notifier chain MUST detach us all upper devices. */
8274                 WARN_ON(netdev_has_any_upper_dev(dev));
8275                 WARN_ON(netdev_has_any_lower_dev(dev));
8276
8277                 /* Remove entries from kobject tree */
8278                 netdev_unregister_kobject(dev);
8279 #ifdef CONFIG_XPS
8280                 /* Remove XPS queueing entries */
8281                 netif_reset_xps_queues_gt(dev, 0);
8282 #endif
8283         }
8284
8285         synchronize_net();
8286
8287         list_for_each_entry(dev, head, unreg_list)
8288                 dev_put(dev);
8289 }
8290
8291 static void rollback_registered(struct net_device *dev)
8292 {
8293         LIST_HEAD(single);
8294
8295         list_add(&dev->unreg_list, &single);
8296         rollback_registered_many(&single);
8297         list_del(&single);
8298 }
8299
8300 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8301         struct net_device *upper, netdev_features_t features)
8302 {
8303         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8304         netdev_features_t feature;
8305         int feature_bit;
8306
8307         for_each_netdev_feature(upper_disables, feature_bit) {
8308                 feature = __NETIF_F_BIT(feature_bit);
8309                 if (!(upper->wanted_features & feature)
8310                     && (features & feature)) {
8311                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8312                                    &feature, upper->name);
8313                         features &= ~feature;
8314                 }
8315         }
8316
8317         return features;
8318 }
8319
8320 static void netdev_sync_lower_features(struct net_device *upper,
8321         struct net_device *lower, netdev_features_t features)
8322 {
8323         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8324         netdev_features_t feature;
8325         int feature_bit;
8326
8327         for_each_netdev_feature(upper_disables, feature_bit) {
8328                 feature = __NETIF_F_BIT(feature_bit);
8329                 if (!(features & feature) && (lower->features & feature)) {
8330                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8331                                    &feature, lower->name);
8332                         lower->wanted_features &= ~feature;
8333                         netdev_update_features(lower);
8334
8335                         if (unlikely(lower->features & feature))
8336                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8337                                             &feature, lower->name);
8338                 }
8339         }
8340 }
8341
8342 static netdev_features_t netdev_fix_features(struct net_device *dev,
8343         netdev_features_t features)
8344 {
8345         /* Fix illegal checksum combinations */
8346         if ((features & NETIF_F_HW_CSUM) &&
8347             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8348                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8349                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8350         }
8351
8352         /* TSO requires that SG is present as well. */
8353         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8354                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8355                 features &= ~NETIF_F_ALL_TSO;
8356         }
8357
8358         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8359                                         !(features & NETIF_F_IP_CSUM)) {
8360                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8361                 features &= ~NETIF_F_TSO;
8362                 features &= ~NETIF_F_TSO_ECN;
8363         }
8364
8365         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8366                                          !(features & NETIF_F_IPV6_CSUM)) {
8367                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8368                 features &= ~NETIF_F_TSO6;
8369         }
8370
8371         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8372         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8373                 features &= ~NETIF_F_TSO_MANGLEID;
8374
8375         /* TSO ECN requires that TSO is present as well. */
8376         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8377                 features &= ~NETIF_F_TSO_ECN;
8378
8379         /* Software GSO depends on SG. */
8380         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8381                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8382                 features &= ~NETIF_F_GSO;
8383         }
8384
8385         /* GSO partial features require GSO partial be set */
8386         if ((features & dev->gso_partial_features) &&
8387             !(features & NETIF_F_GSO_PARTIAL)) {
8388                 netdev_dbg(dev,
8389                            "Dropping partially supported GSO features since no GSO partial.\n");
8390                 features &= ~dev->gso_partial_features;
8391         }
8392
8393         if (!(features & NETIF_F_RXCSUM)) {
8394                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8395                  * successfully merged by hardware must also have the
8396                  * checksum verified by hardware.  If the user does not
8397                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8398                  */
8399                 if (features & NETIF_F_GRO_HW) {
8400                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8401                         features &= ~NETIF_F_GRO_HW;
8402                 }
8403         }
8404
8405         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8406         if (features & NETIF_F_RXFCS) {
8407                 if (features & NETIF_F_LRO) {
8408                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8409                         features &= ~NETIF_F_LRO;
8410                 }
8411
8412                 if (features & NETIF_F_GRO_HW) {
8413                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8414                         features &= ~NETIF_F_GRO_HW;
8415                 }
8416         }
8417
8418         return features;
8419 }
8420
8421 int __netdev_update_features(struct net_device *dev)
8422 {
8423         struct net_device *upper, *lower;
8424         netdev_features_t features;
8425         struct list_head *iter;
8426         int err = -1;
8427
8428         ASSERT_RTNL();
8429
8430         features = netdev_get_wanted_features(dev);
8431
8432         if (dev->netdev_ops->ndo_fix_features)
8433                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8434
8435         /* driver might be less strict about feature dependencies */
8436         features = netdev_fix_features(dev, features);
8437
8438         /* some features can't be enabled if they're off an an upper device */
8439         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8440                 features = netdev_sync_upper_features(dev, upper, features);
8441
8442         if (dev->features == features)
8443                 goto sync_lower;
8444
8445         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8446                 &dev->features, &features);
8447
8448         if (dev->netdev_ops->ndo_set_features)
8449                 err = dev->netdev_ops->ndo_set_features(dev, features);
8450         else
8451                 err = 0;
8452
8453         if (unlikely(err < 0)) {
8454                 netdev_err(dev,
8455                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8456                         err, &features, &dev->features);
8457                 /* return non-0 since some features might have changed and
8458                  * it's better to fire a spurious notification than miss it
8459                  */
8460                 return -1;
8461         }
8462
8463 sync_lower:
8464         /* some features must be disabled on lower devices when disabled
8465          * on an upper device (think: bonding master or bridge)
8466          */
8467         netdev_for_each_lower_dev(dev, lower, iter)
8468                 netdev_sync_lower_features(dev, lower, features);
8469
8470         if (!err) {
8471                 netdev_features_t diff = features ^ dev->features;
8472
8473                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8474                         /* udp_tunnel_{get,drop}_rx_info both need
8475                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8476                          * device, or they won't do anything.
8477                          * Thus we need to update dev->features
8478                          * *before* calling udp_tunnel_get_rx_info,
8479                          * but *after* calling udp_tunnel_drop_rx_info.
8480                          */
8481                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8482                                 dev->features = features;
8483                                 udp_tunnel_get_rx_info(dev);
8484                         } else {
8485                                 udp_tunnel_drop_rx_info(dev);
8486                         }
8487                 }
8488
8489                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8490                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8491                                 dev->features = features;
8492                                 err |= vlan_get_rx_ctag_filter_info(dev);
8493                         } else {
8494                                 vlan_drop_rx_ctag_filter_info(dev);
8495                         }
8496                 }
8497
8498                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8499                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8500                                 dev->features = features;
8501                                 err |= vlan_get_rx_stag_filter_info(dev);
8502                         } else {
8503                                 vlan_drop_rx_stag_filter_info(dev);
8504                         }
8505                 }
8506
8507                 dev->features = features;
8508         }
8509
8510         return err < 0 ? 0 : 1;
8511 }
8512
8513 /**
8514  *      netdev_update_features - recalculate device features
8515  *      @dev: the device to check
8516  *
8517  *      Recalculate dev->features set and send notifications if it
8518  *      has changed. Should be called after driver or hardware dependent
8519  *      conditions might have changed that influence the features.
8520  */
8521 void netdev_update_features(struct net_device *dev)
8522 {
8523         if (__netdev_update_features(dev))
8524                 netdev_features_change(dev);
8525 }
8526 EXPORT_SYMBOL(netdev_update_features);
8527
8528 /**
8529  *      netdev_change_features - recalculate device features
8530  *      @dev: the device to check
8531  *
8532  *      Recalculate dev->features set and send notifications even
8533  *      if they have not changed. Should be called instead of
8534  *      netdev_update_features() if also dev->vlan_features might
8535  *      have changed to allow the changes to be propagated to stacked
8536  *      VLAN devices.
8537  */
8538 void netdev_change_features(struct net_device *dev)
8539 {
8540         __netdev_update_features(dev);
8541         netdev_features_change(dev);
8542 }
8543 EXPORT_SYMBOL(netdev_change_features);
8544
8545 /**
8546  *      netif_stacked_transfer_operstate -      transfer operstate
8547  *      @rootdev: the root or lower level device to transfer state from
8548  *      @dev: the device to transfer operstate to
8549  *
8550  *      Transfer operational state from root to device. This is normally
8551  *      called when a stacking relationship exists between the root
8552  *      device and the device(a leaf device).
8553  */
8554 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8555                                         struct net_device *dev)
8556 {
8557         if (rootdev->operstate == IF_OPER_DORMANT)
8558                 netif_dormant_on(dev);
8559         else
8560                 netif_dormant_off(dev);
8561
8562         if (netif_carrier_ok(rootdev))
8563                 netif_carrier_on(dev);
8564         else
8565                 netif_carrier_off(dev);
8566 }
8567 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8568
8569 static int netif_alloc_rx_queues(struct net_device *dev)
8570 {
8571         unsigned int i, count = dev->num_rx_queues;
8572         struct netdev_rx_queue *rx;
8573         size_t sz = count * sizeof(*rx);
8574         int err = 0;
8575
8576         BUG_ON(count < 1);
8577
8578         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8579         if (!rx)
8580                 return -ENOMEM;
8581
8582         dev->_rx = rx;
8583
8584         for (i = 0; i < count; i++) {
8585                 rx[i].dev = dev;
8586
8587                 /* XDP RX-queue setup */
8588                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8589                 if (err < 0)
8590                         goto err_rxq_info;
8591         }
8592         return 0;
8593
8594 err_rxq_info:
8595         /* Rollback successful reg's and free other resources */
8596         while (i--)
8597                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8598         kvfree(dev->_rx);
8599         dev->_rx = NULL;
8600         return err;
8601 }
8602
8603 static void netif_free_rx_queues(struct net_device *dev)
8604 {
8605         unsigned int i, count = dev->num_rx_queues;
8606
8607         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8608         if (!dev->_rx)
8609                 return;
8610
8611         for (i = 0; i < count; i++)
8612                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8613
8614         kvfree(dev->_rx);
8615 }
8616
8617 static void netdev_init_one_queue(struct net_device *dev,
8618                                   struct netdev_queue *queue, void *_unused)
8619 {
8620         /* Initialize queue lock */
8621         spin_lock_init(&queue->_xmit_lock);
8622         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8623         queue->xmit_lock_owner = -1;
8624         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8625         queue->dev = dev;
8626 #ifdef CONFIG_BQL
8627         dql_init(&queue->dql, HZ);
8628 #endif
8629 }
8630
8631 static void netif_free_tx_queues(struct net_device *dev)
8632 {
8633         kvfree(dev->_tx);
8634 }
8635
8636 static int netif_alloc_netdev_queues(struct net_device *dev)
8637 {
8638         unsigned int count = dev->num_tx_queues;
8639         struct netdev_queue *tx;
8640         size_t sz = count * sizeof(*tx);
8641
8642         if (count < 1 || count > 0xffff)
8643                 return -EINVAL;
8644
8645         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8646         if (!tx)
8647                 return -ENOMEM;
8648
8649         dev->_tx = tx;
8650
8651         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8652         spin_lock_init(&dev->tx_global_lock);
8653
8654         return 0;
8655 }
8656
8657 void netif_tx_stop_all_queues(struct net_device *dev)
8658 {
8659         unsigned int i;
8660
8661         for (i = 0; i < dev->num_tx_queues; i++) {
8662                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8663
8664                 netif_tx_stop_queue(txq);
8665         }
8666 }
8667 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8668
8669 /**
8670  *      register_netdevice      - register a network device
8671  *      @dev: device to register
8672  *
8673  *      Take a completed network device structure and add it to the kernel
8674  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8675  *      chain. 0 is returned on success. A negative errno code is returned
8676  *      on a failure to set up the device, or if the name is a duplicate.
8677  *
8678  *      Callers must hold the rtnl semaphore. You may want
8679  *      register_netdev() instead of this.
8680  *
8681  *      BUGS:
8682  *      The locking appears insufficient to guarantee two parallel registers
8683  *      will not get the same name.
8684  */
8685
8686 int register_netdevice(struct net_device *dev)
8687 {
8688         int ret;
8689         struct net *net = dev_net(dev);
8690
8691         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8692                      NETDEV_FEATURE_COUNT);
8693         BUG_ON(dev_boot_phase);
8694         ASSERT_RTNL();
8695
8696         might_sleep();
8697
8698         /* When net_device's are persistent, this will be fatal. */
8699         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8700         BUG_ON(!net);
8701
8702         spin_lock_init(&dev->addr_list_lock);
8703         netdev_set_addr_lockdep_class(dev);
8704
8705         ret = dev_get_valid_name(net, dev, dev->name);
8706         if (ret < 0)
8707                 goto out;
8708
8709         /* Init, if this function is available */
8710         if (dev->netdev_ops->ndo_init) {
8711                 ret = dev->netdev_ops->ndo_init(dev);
8712                 if (ret) {
8713                         if (ret > 0)
8714                                 ret = -EIO;
8715                         goto out;
8716                 }
8717         }
8718
8719         if (((dev->hw_features | dev->features) &
8720              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8721             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8722              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8723                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8724                 ret = -EINVAL;
8725                 goto err_uninit;
8726         }
8727
8728         ret = -EBUSY;
8729         if (!dev->ifindex)
8730                 dev->ifindex = dev_new_index(net);
8731         else if (__dev_get_by_index(net, dev->ifindex))
8732                 goto err_uninit;
8733
8734         /* Transfer changeable features to wanted_features and enable
8735          * software offloads (GSO and GRO).
8736          */
8737         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8738         dev->features |= NETIF_F_SOFT_FEATURES;
8739
8740         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8741                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8742                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8743         }
8744
8745         dev->wanted_features = dev->features & dev->hw_features;
8746
8747         if (!(dev->flags & IFF_LOOPBACK))
8748                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8749
8750         /* If IPv4 TCP segmentation offload is supported we should also
8751          * allow the device to enable segmenting the frame with the option
8752          * of ignoring a static IP ID value.  This doesn't enable the
8753          * feature itself but allows the user to enable it later.
8754          */
8755         if (dev->hw_features & NETIF_F_TSO)
8756                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8757         if (dev->vlan_features & NETIF_F_TSO)
8758                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8759         if (dev->mpls_features & NETIF_F_TSO)
8760                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8761         if (dev->hw_enc_features & NETIF_F_TSO)
8762                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8763
8764         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8765          */
8766         dev->vlan_features |= NETIF_F_HIGHDMA;
8767
8768         /* Make NETIF_F_SG inheritable to tunnel devices.
8769          */
8770         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8771
8772         /* Make NETIF_F_SG inheritable to MPLS.
8773          */
8774         dev->mpls_features |= NETIF_F_SG;
8775
8776         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8777         ret = notifier_to_errno(ret);
8778         if (ret)
8779                 goto err_uninit;
8780
8781         ret = netdev_register_kobject(dev);
8782         if (ret)
8783                 goto err_uninit;
8784         dev->reg_state = NETREG_REGISTERED;
8785
8786         __netdev_update_features(dev);
8787
8788         /*
8789          *      Default initial state at registry is that the
8790          *      device is present.
8791          */
8792
8793         set_bit(__LINK_STATE_PRESENT, &dev->state);
8794
8795         linkwatch_init_dev(dev);
8796
8797         dev_init_scheduler(dev);
8798         dev_hold(dev);
8799         list_netdevice(dev);
8800         add_device_randomness(dev->dev_addr, dev->addr_len);
8801
8802         /* If the device has permanent device address, driver should
8803          * set dev_addr and also addr_assign_type should be set to
8804          * NET_ADDR_PERM (default value).
8805          */
8806         if (dev->addr_assign_type == NET_ADDR_PERM)
8807                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8808
8809         /* Notify protocols, that a new device appeared. */
8810         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8811         ret = notifier_to_errno(ret);
8812         if (ret) {
8813                 rollback_registered(dev);
8814                 rcu_barrier();
8815
8816                 dev->reg_state = NETREG_UNREGISTERED;
8817         }
8818         /*
8819          *      Prevent userspace races by waiting until the network
8820          *      device is fully setup before sending notifications.
8821          */
8822         if (!dev->rtnl_link_ops ||
8823             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8824                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8825
8826 out:
8827         return ret;
8828
8829 err_uninit:
8830         if (dev->netdev_ops->ndo_uninit)
8831                 dev->netdev_ops->ndo_uninit(dev);
8832         if (dev->priv_destructor)
8833                 dev->priv_destructor(dev);
8834         goto out;
8835 }
8836 EXPORT_SYMBOL(register_netdevice);
8837
8838 /**
8839  *      init_dummy_netdev       - init a dummy network device for NAPI
8840  *      @dev: device to init
8841  *
8842  *      This takes a network device structure and initialize the minimum
8843  *      amount of fields so it can be used to schedule NAPI polls without
8844  *      registering a full blown interface. This is to be used by drivers
8845  *      that need to tie several hardware interfaces to a single NAPI
8846  *      poll scheduler due to HW limitations.
8847  */
8848 int init_dummy_netdev(struct net_device *dev)
8849 {
8850         /* Clear everything. Note we don't initialize spinlocks
8851          * are they aren't supposed to be taken by any of the
8852          * NAPI code and this dummy netdev is supposed to be
8853          * only ever used for NAPI polls
8854          */
8855         memset(dev, 0, sizeof(struct net_device));
8856
8857         /* make sure we BUG if trying to hit standard
8858          * register/unregister code path
8859          */
8860         dev->reg_state = NETREG_DUMMY;
8861
8862         /* NAPI wants this */
8863         INIT_LIST_HEAD(&dev->napi_list);
8864
8865         /* a dummy interface is started by default */
8866         set_bit(__LINK_STATE_PRESENT, &dev->state);
8867         set_bit(__LINK_STATE_START, &dev->state);
8868
8869         /* napi_busy_loop stats accounting wants this */
8870         dev_net_set(dev, &init_net);
8871
8872         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8873          * because users of this 'device' dont need to change
8874          * its refcount.
8875          */
8876
8877         return 0;
8878 }
8879 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8880
8881
8882 /**
8883  *      register_netdev - register a network device
8884  *      @dev: device to register
8885  *
8886  *      Take a completed network device structure and add it to the kernel
8887  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8888  *      chain. 0 is returned on success. A negative errno code is returned
8889  *      on a failure to set up the device, or if the name is a duplicate.
8890  *
8891  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8892  *      and expands the device name if you passed a format string to
8893  *      alloc_netdev.
8894  */
8895 int register_netdev(struct net_device *dev)
8896 {
8897         int err;
8898
8899         if (rtnl_lock_killable())
8900                 return -EINTR;
8901         err = register_netdevice(dev);
8902         rtnl_unlock();
8903         return err;
8904 }
8905 EXPORT_SYMBOL(register_netdev);
8906
8907 int netdev_refcnt_read(const struct net_device *dev)
8908 {
8909         int i, refcnt = 0;
8910
8911         for_each_possible_cpu(i)
8912                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8913         return refcnt;
8914 }
8915 EXPORT_SYMBOL(netdev_refcnt_read);
8916
8917 /**
8918  * netdev_wait_allrefs - wait until all references are gone.
8919  * @dev: target net_device
8920  *
8921  * This is called when unregistering network devices.
8922  *
8923  * Any protocol or device that holds a reference should register
8924  * for netdevice notification, and cleanup and put back the
8925  * reference if they receive an UNREGISTER event.
8926  * We can get stuck here if buggy protocols don't correctly
8927  * call dev_put.
8928  */
8929 static void netdev_wait_allrefs(struct net_device *dev)
8930 {
8931         unsigned long rebroadcast_time, warning_time;
8932         int refcnt;
8933
8934         linkwatch_forget_dev(dev);
8935
8936         rebroadcast_time = warning_time = jiffies;
8937         refcnt = netdev_refcnt_read(dev);
8938
8939         while (refcnt != 0) {
8940                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8941                         rtnl_lock();
8942
8943                         /* Rebroadcast unregister notification */
8944                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8945
8946                         __rtnl_unlock();
8947                         rcu_barrier();
8948                         rtnl_lock();
8949
8950                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8951                                      &dev->state)) {
8952                                 /* We must not have linkwatch events
8953                                  * pending on unregister. If this
8954                                  * happens, we simply run the queue
8955                                  * unscheduled, resulting in a noop
8956                                  * for this device.
8957                                  */
8958                                 linkwatch_run_queue();
8959                         }
8960
8961                         __rtnl_unlock();
8962
8963                         rebroadcast_time = jiffies;
8964                 }
8965
8966                 msleep(250);
8967
8968                 refcnt = netdev_refcnt_read(dev);
8969
8970                 if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8971                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8972                                  dev->name, refcnt);
8973                         warning_time = jiffies;
8974                 }
8975         }
8976 }
8977
8978 /* The sequence is:
8979  *
8980  *      rtnl_lock();
8981  *      ...
8982  *      register_netdevice(x1);
8983  *      register_netdevice(x2);
8984  *      ...
8985  *      unregister_netdevice(y1);
8986  *      unregister_netdevice(y2);
8987  *      ...
8988  *      rtnl_unlock();
8989  *      free_netdev(y1);
8990  *      free_netdev(y2);
8991  *
8992  * We are invoked by rtnl_unlock().
8993  * This allows us to deal with problems:
8994  * 1) We can delete sysfs objects which invoke hotplug
8995  *    without deadlocking with linkwatch via keventd.
8996  * 2) Since we run with the RTNL semaphore not held, we can sleep
8997  *    safely in order to wait for the netdev refcnt to drop to zero.
8998  *
8999  * We must not return until all unregister events added during
9000  * the interval the lock was held have been completed.
9001  */
9002 void netdev_run_todo(void)
9003 {
9004         struct list_head list;
9005
9006         /* Snapshot list, allow later requests */
9007         list_replace_init(&net_todo_list, &list);
9008
9009         __rtnl_unlock();
9010
9011
9012         /* Wait for rcu callbacks to finish before next phase */
9013         if (!list_empty(&list))
9014                 rcu_barrier();
9015
9016         while (!list_empty(&list)) {
9017                 struct net_device *dev
9018                         = list_first_entry(&list, struct net_device, todo_list);
9019                 list_del(&dev->todo_list);
9020
9021                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
9022                         pr_err("network todo '%s' but state %d\n",
9023                                dev->name, dev->reg_state);
9024                         dump_stack();
9025                         continue;
9026                 }
9027
9028                 dev->reg_state = NETREG_UNREGISTERED;
9029
9030                 netdev_wait_allrefs(dev);
9031
9032                 /* paranoia */
9033                 BUG_ON(netdev_refcnt_read(dev));
9034                 BUG_ON(!list_empty(&dev->ptype_all));
9035                 BUG_ON(!list_empty(&dev->ptype_specific));
9036                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
9037                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
9038 #if IS_ENABLED(CONFIG_DECNET)
9039                 WARN_ON(dev->dn_ptr);
9040 #endif
9041                 if (dev->priv_destructor)
9042                         dev->priv_destructor(dev);
9043                 if (dev->needs_free_netdev)
9044                         free_netdev(dev);
9045
9046                 /* Report a network device has been unregistered */
9047                 rtnl_lock();
9048                 dev_net(dev)->dev_unreg_count--;
9049                 __rtnl_unlock();
9050                 wake_up(&netdev_unregistering_wq);
9051
9052                 /* Free network device */
9053                 kobject_put(&dev->dev.kobj);
9054         }
9055 }
9056
9057 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9058  * all the same fields in the same order as net_device_stats, with only
9059  * the type differing, but rtnl_link_stats64 may have additional fields
9060  * at the end for newer counters.
9061  */
9062 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9063                              const struct net_device_stats *netdev_stats)
9064 {
9065 #if BITS_PER_LONG == 64
9066         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9067         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9068         /* zero out counters that only exist in rtnl_link_stats64 */
9069         memset((char *)stats64 + sizeof(*netdev_stats), 0,
9070                sizeof(*stats64) - sizeof(*netdev_stats));
9071 #else
9072         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9073         const unsigned long *src = (const unsigned long *)netdev_stats;
9074         u64 *dst = (u64 *)stats64;
9075
9076         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9077         for (i = 0; i < n; i++)
9078                 dst[i] = src[i];
9079         /* zero out counters that only exist in rtnl_link_stats64 */
9080         memset((char *)stats64 + n * sizeof(u64), 0,
9081                sizeof(*stats64) - n * sizeof(u64));
9082 #endif
9083 }
9084 EXPORT_SYMBOL(netdev_stats_to_stats64);
9085
9086 /**
9087  *      dev_get_stats   - get network device statistics
9088  *      @dev: device to get statistics from
9089  *      @storage: place to store stats
9090  *
9091  *      Get network statistics from device. Return @storage.
9092  *      The device driver may provide its own method by setting
9093  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9094  *      otherwise the internal statistics structure is used.
9095  */
9096 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9097                                         struct rtnl_link_stats64 *storage)
9098 {
9099         const struct net_device_ops *ops = dev->netdev_ops;
9100
9101         if (ops->ndo_get_stats64) {
9102                 memset(storage, 0, sizeof(*storage));
9103                 ops->ndo_get_stats64(dev, storage);
9104         } else if (ops->ndo_get_stats) {
9105                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9106         } else {
9107                 netdev_stats_to_stats64(storage, &dev->stats);
9108         }
9109         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9110         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9111         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9112         return storage;
9113 }
9114 EXPORT_SYMBOL(dev_get_stats);
9115
9116 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9117 {
9118         struct netdev_queue *queue = dev_ingress_queue(dev);
9119
9120 #ifdef CONFIG_NET_CLS_ACT
9121         if (queue)
9122                 return queue;
9123         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9124         if (!queue)
9125                 return NULL;
9126         netdev_init_one_queue(dev, queue, NULL);
9127         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9128         queue->qdisc_sleeping = &noop_qdisc;
9129         rcu_assign_pointer(dev->ingress_queue, queue);
9130 #endif
9131         return queue;
9132 }
9133
9134 static const struct ethtool_ops default_ethtool_ops;
9135
9136 void netdev_set_default_ethtool_ops(struct net_device *dev,
9137                                     const struct ethtool_ops *ops)
9138 {
9139         if (dev->ethtool_ops == &default_ethtool_ops)
9140                 dev->ethtool_ops = ops;
9141 }
9142 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9143
9144 void netdev_freemem(struct net_device *dev)
9145 {
9146         char *addr = (char *)dev - dev->padded;
9147
9148         kvfree(addr);
9149 }
9150
9151 /**
9152  * alloc_netdev_mqs - allocate network device
9153  * @sizeof_priv: size of private data to allocate space for
9154  * @name: device name format string
9155  * @name_assign_type: origin of device name
9156  * @setup: callback to initialize device
9157  * @txqs: the number of TX subqueues to allocate
9158  * @rxqs: the number of RX subqueues to allocate
9159  *
9160  * Allocates a struct net_device with private data area for driver use
9161  * and performs basic initialization.  Also allocates subqueue structs
9162  * for each queue on the device.
9163  */
9164 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9165                 unsigned char name_assign_type,
9166                 void (*setup)(struct net_device *),
9167                 unsigned int txqs, unsigned int rxqs)
9168 {
9169         struct net_device *dev;
9170         unsigned int alloc_size;
9171         struct net_device *p;
9172
9173         BUG_ON(strlen(name) >= sizeof(dev->name));
9174
9175         if (txqs < 1) {
9176                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9177                 return NULL;
9178         }
9179
9180         if (rxqs < 1) {
9181                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9182                 return NULL;
9183         }
9184
9185         alloc_size = sizeof(struct net_device);
9186         if (sizeof_priv) {
9187                 /* ensure 32-byte alignment of private area */
9188                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9189                 alloc_size += sizeof_priv;
9190         }
9191         /* ensure 32-byte alignment of whole construct */
9192         alloc_size += NETDEV_ALIGN - 1;
9193
9194         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9195         if (!p)
9196                 return NULL;
9197
9198         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9199         dev->padded = (char *)dev - (char *)p;
9200
9201         dev->pcpu_refcnt = alloc_percpu(int);
9202         if (!dev->pcpu_refcnt)
9203                 goto free_dev;
9204
9205         if (dev_addr_init(dev))
9206                 goto free_pcpu;
9207
9208         dev_mc_init(dev);
9209         dev_uc_init(dev);
9210
9211         dev_net_set(dev, &init_net);
9212
9213         dev->gso_max_size = GSO_MAX_SIZE;
9214         dev->gso_max_segs = GSO_MAX_SEGS;
9215
9216         INIT_LIST_HEAD(&dev->napi_list);
9217         INIT_LIST_HEAD(&dev->unreg_list);
9218         INIT_LIST_HEAD(&dev->close_list);
9219         INIT_LIST_HEAD(&dev->link_watch_list);
9220         INIT_LIST_HEAD(&dev->adj_list.upper);
9221         INIT_LIST_HEAD(&dev->adj_list.lower);
9222         INIT_LIST_HEAD(&dev->ptype_all);
9223         INIT_LIST_HEAD(&dev->ptype_specific);
9224 #ifdef CONFIG_NET_SCHED
9225         hash_init(dev->qdisc_hash);
9226 #endif
9227         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9228         setup(dev);
9229
9230         if (!dev->tx_queue_len) {
9231                 dev->priv_flags |= IFF_NO_QUEUE;
9232                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9233         }
9234
9235         dev->num_tx_queues = txqs;
9236         dev->real_num_tx_queues = txqs;
9237         if (netif_alloc_netdev_queues(dev))
9238                 goto free_all;
9239
9240         dev->num_rx_queues = rxqs;
9241         dev->real_num_rx_queues = rxqs;
9242         if (netif_alloc_rx_queues(dev))
9243                 goto free_all;
9244
9245         strcpy(dev->name, name);
9246         dev->name_assign_type = name_assign_type;
9247         dev->group = INIT_NETDEV_GROUP;
9248         if (!dev->ethtool_ops)
9249                 dev->ethtool_ops = &default_ethtool_ops;
9250
9251         nf_hook_ingress_init(dev);
9252
9253         return dev;
9254
9255 free_all:
9256         free_netdev(dev);
9257         return NULL;
9258
9259 free_pcpu:
9260         free_percpu(dev->pcpu_refcnt);
9261 free_dev:
9262         netdev_freemem(dev);
9263         return NULL;
9264 }
9265 EXPORT_SYMBOL(alloc_netdev_mqs);
9266
9267 /**
9268  * free_netdev - free network device
9269  * @dev: device
9270  *
9271  * This function does the last stage of destroying an allocated device
9272  * interface. The reference to the device object is released. If this
9273  * is the last reference then it will be freed.Must be called in process
9274  * context.
9275  */
9276 void free_netdev(struct net_device *dev)
9277 {
9278         struct napi_struct *p, *n;
9279
9280         might_sleep();
9281         netif_free_tx_queues(dev);
9282         netif_free_rx_queues(dev);
9283
9284         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9285
9286         /* Flush device addresses */
9287         dev_addr_flush(dev);
9288
9289         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9290                 netif_napi_del(p);
9291
9292         free_percpu(dev->pcpu_refcnt);
9293         dev->pcpu_refcnt = NULL;
9294
9295         /*  Compatibility with error handling in drivers */
9296         if (dev->reg_state == NETREG_UNINITIALIZED) {
9297                 netdev_freemem(dev);
9298                 return;
9299         }
9300
9301         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9302         dev->reg_state = NETREG_RELEASED;
9303
9304         /* will free via device release */
9305         put_device(&dev->dev);
9306 }
9307 EXPORT_SYMBOL(free_netdev);
9308
9309 /**
9310  *      synchronize_net -  Synchronize with packet receive processing
9311  *
9312  *      Wait for packets currently being received to be done.
9313  *      Does not block later packets from starting.
9314  */
9315 void synchronize_net(void)
9316 {
9317         might_sleep();
9318         if (rtnl_is_locked())
9319                 synchronize_rcu_expedited();
9320         else
9321                 synchronize_rcu();
9322 }
9323 EXPORT_SYMBOL(synchronize_net);
9324
9325 /**
9326  *      unregister_netdevice_queue - remove device from the kernel
9327  *      @dev: device
9328  *      @head: list
9329  *
9330  *      This function shuts down a device interface and removes it
9331  *      from the kernel tables.
9332  *      If head not NULL, device is queued to be unregistered later.
9333  *
9334  *      Callers must hold the rtnl semaphore.  You may want
9335  *      unregister_netdev() instead of this.
9336  */
9337
9338 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9339 {
9340         ASSERT_RTNL();
9341
9342         if (head) {
9343                 list_move_tail(&dev->unreg_list, head);
9344         } else {
9345                 rollback_registered(dev);
9346                 /* Finish processing unregister after unlock */
9347                 net_set_todo(dev);
9348         }
9349 }
9350 EXPORT_SYMBOL(unregister_netdevice_queue);
9351
9352 /**
9353  *      unregister_netdevice_many - unregister many devices
9354  *      @head: list of devices
9355  *
9356  *  Note: As most callers use a stack allocated list_head,
9357  *  we force a list_del() to make sure stack wont be corrupted later.
9358  */
9359 void unregister_netdevice_many(struct list_head *head)
9360 {
9361         struct net_device *dev;
9362
9363         if (!list_empty(head)) {
9364                 rollback_registered_many(head);
9365                 list_for_each_entry(dev, head, unreg_list)
9366                         net_set_todo(dev);
9367                 list_del(head);
9368         }
9369 }
9370 EXPORT_SYMBOL(unregister_netdevice_many);
9371
9372 /**
9373  *      unregister_netdev - remove device from the kernel
9374  *      @dev: device
9375  *
9376  *      This function shuts down a device interface and removes it
9377  *      from the kernel tables.
9378  *
9379  *      This is just a wrapper for unregister_netdevice that takes
9380  *      the rtnl semaphore.  In general you want to use this and not
9381  *      unregister_netdevice.
9382  */
9383 void unregister_netdev(struct net_device *dev)
9384 {
9385         rtnl_lock();
9386         unregister_netdevice(dev);
9387         rtnl_unlock();
9388 }
9389 EXPORT_SYMBOL(unregister_netdev);
9390
9391 /**
9392  *      dev_change_net_namespace - move device to different nethost namespace
9393  *      @dev: device
9394  *      @net: network namespace
9395  *      @pat: If not NULL name pattern to try if the current device name
9396  *            is already taken in the destination network namespace.
9397  *
9398  *      This function shuts down a device interface and moves it
9399  *      to a new network namespace. On success 0 is returned, on
9400  *      a failure a netagive errno code is returned.
9401  *
9402  *      Callers must hold the rtnl semaphore.
9403  */
9404
9405 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9406 {
9407         int err, new_nsid, new_ifindex;
9408
9409         ASSERT_RTNL();
9410
9411         /* Don't allow namespace local devices to be moved. */
9412         err = -EINVAL;
9413         if (dev->features & NETIF_F_NETNS_LOCAL)
9414                 goto out;
9415
9416         /* Ensure the device has been registrered */
9417         if (dev->reg_state != NETREG_REGISTERED)
9418                 goto out;
9419
9420         /* Get out if there is nothing todo */
9421         err = 0;
9422         if (net_eq(dev_net(dev), net))
9423                 goto out;
9424
9425         /* Pick the destination device name, and ensure
9426          * we can use it in the destination network namespace.
9427          */
9428         err = -EEXIST;
9429         if (__dev_get_by_name(net, dev->name)) {
9430                 /* We get here if we can't use the current device name */
9431                 if (!pat)
9432                         goto out;
9433                 err = dev_get_valid_name(net, dev, pat);
9434                 if (err < 0)
9435                         goto out;
9436         }
9437
9438         /*
9439          * And now a mini version of register_netdevice unregister_netdevice.
9440          */
9441
9442         /* If device is running close it first. */
9443         dev_close(dev);
9444
9445         /* And unlink it from device chain */
9446         unlist_netdevice(dev);
9447
9448         synchronize_net();
9449
9450         /* Shutdown queueing discipline. */
9451         dev_shutdown(dev);
9452
9453         /* Notify protocols, that we are about to destroy
9454          * this device. They should clean all the things.
9455          *
9456          * Note that dev->reg_state stays at NETREG_REGISTERED.
9457          * This is wanted because this way 8021q and macvlan know
9458          * the device is just moving and can keep their slaves up.
9459          */
9460         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9461         rcu_barrier();
9462
9463         new_nsid = peernet2id_alloc(dev_net(dev), net);
9464         /* If there is an ifindex conflict assign a new one */
9465         if (__dev_get_by_index(net, dev->ifindex))
9466                 new_ifindex = dev_new_index(net);
9467         else
9468                 new_ifindex = dev->ifindex;
9469
9470         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9471                             new_ifindex);
9472
9473         /*
9474          *      Flush the unicast and multicast chains
9475          */
9476         dev_uc_flush(dev);
9477         dev_mc_flush(dev);
9478
9479         /* Send a netdev-removed uevent to the old namespace */
9480         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9481         netdev_adjacent_del_links(dev);
9482
9483         /* Actually switch the network namespace */
9484         dev_net_set(dev, net);
9485         dev->ifindex = new_ifindex;
9486
9487         /* Send a netdev-add uevent to the new namespace */
9488         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9489         netdev_adjacent_add_links(dev);
9490
9491         /* Fixup kobjects */
9492         err = device_rename(&dev->dev, dev->name);
9493         WARN_ON(err);
9494
9495         /* Add the device back in the hashes */
9496         list_netdevice(dev);
9497
9498         /* Notify protocols, that a new device appeared. */
9499         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9500
9501         /*
9502          *      Prevent userspace races by waiting until the network
9503          *      device is fully setup before sending notifications.
9504          */
9505         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9506
9507         synchronize_net();
9508         err = 0;
9509 out:
9510         return err;
9511 }
9512 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9513
9514 static int dev_cpu_dead(unsigned int oldcpu)
9515 {
9516         struct sk_buff **list_skb;
9517         struct sk_buff *skb;
9518         unsigned int cpu;
9519         struct softnet_data *sd, *oldsd, *remsd = NULL;
9520
9521         local_irq_disable();
9522         cpu = smp_processor_id();
9523         sd = &per_cpu(softnet_data, cpu);
9524         oldsd = &per_cpu(softnet_data, oldcpu);
9525
9526         /* Find end of our completion_queue. */
9527         list_skb = &sd->completion_queue;
9528         while (*list_skb)
9529                 list_skb = &(*list_skb)->next;
9530         /* Append completion queue from offline CPU. */
9531         *list_skb = oldsd->completion_queue;
9532         oldsd->completion_queue = NULL;
9533
9534         /* Append output queue from offline CPU. */
9535         if (oldsd->output_queue) {
9536                 *sd->output_queue_tailp = oldsd->output_queue;
9537                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9538                 oldsd->output_queue = NULL;
9539                 oldsd->output_queue_tailp = &oldsd->output_queue;
9540         }
9541         /* Append NAPI poll list from offline CPU, with one exception :
9542          * process_backlog() must be called by cpu owning percpu backlog.
9543          * We properly handle process_queue & input_pkt_queue later.
9544          */
9545         while (!list_empty(&oldsd->poll_list)) {
9546                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9547                                                             struct napi_struct,
9548                                                             poll_list);
9549
9550                 list_del_init(&napi->poll_list);
9551                 if (napi->poll == process_backlog)
9552                         napi->state = 0;
9553                 else
9554                         ____napi_schedule(sd, napi);
9555         }
9556
9557         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9558         local_irq_enable();
9559
9560 #ifdef CONFIG_RPS
9561         remsd = oldsd->rps_ipi_list;
9562         oldsd->rps_ipi_list = NULL;
9563 #endif
9564         /* send out pending IPI's on offline CPU */
9565         net_rps_send_ipi(remsd);
9566
9567         /* Process offline CPU's input_pkt_queue */
9568         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9569                 netif_rx_ni(skb);
9570                 input_queue_head_incr(oldsd);
9571         }
9572         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9573                 netif_rx_ni(skb);
9574                 input_queue_head_incr(oldsd);
9575         }
9576
9577         return 0;
9578 }
9579
9580 /**
9581  *      netdev_increment_features - increment feature set by one
9582  *      @all: current feature set
9583  *      @one: new feature set
9584  *      @mask: mask feature set
9585  *
9586  *      Computes a new feature set after adding a device with feature set
9587  *      @one to the master device with current feature set @all.  Will not
9588  *      enable anything that is off in @mask. Returns the new feature set.
9589  */
9590 netdev_features_t netdev_increment_features(netdev_features_t all,
9591         netdev_features_t one, netdev_features_t mask)
9592 {
9593         if (mask & NETIF_F_HW_CSUM)
9594                 mask |= NETIF_F_CSUM_MASK;
9595         mask |= NETIF_F_VLAN_CHALLENGED;
9596
9597         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9598         all &= one | ~NETIF_F_ALL_FOR_ALL;
9599
9600         /* If one device supports hw checksumming, set for all. */
9601         if (all & NETIF_F_HW_CSUM)
9602                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9603
9604         return all;
9605 }
9606 EXPORT_SYMBOL(netdev_increment_features);
9607
9608 static struct hlist_head * __net_init netdev_create_hash(void)
9609 {
9610         int i;
9611         struct hlist_head *hash;
9612
9613         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9614         if (hash != NULL)
9615                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9616                         INIT_HLIST_HEAD(&hash[i]);
9617
9618         return hash;
9619 }
9620
9621 /* Initialize per network namespace state */
9622 static int __net_init netdev_init(struct net *net)
9623 {
9624         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9625                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9626
9627         if (net != &init_net)
9628                 INIT_LIST_HEAD(&net->dev_base_head);
9629
9630         net->dev_name_head = netdev_create_hash();
9631         if (net->dev_name_head == NULL)
9632                 goto err_name;
9633
9634         net->dev_index_head = netdev_create_hash();
9635         if (net->dev_index_head == NULL)
9636                 goto err_idx;
9637
9638         return 0;
9639
9640 err_idx:
9641         kfree(net->dev_name_head);
9642 err_name:
9643         return -ENOMEM;
9644 }
9645
9646 /**
9647  *      netdev_drivername - network driver for the device
9648  *      @dev: network device
9649  *
9650  *      Determine network driver for device.
9651  */
9652 const char *netdev_drivername(const struct net_device *dev)
9653 {
9654         const struct device_driver *driver;
9655         const struct device *parent;
9656         const char *empty = "";
9657
9658         parent = dev->dev.parent;
9659         if (!parent)
9660                 return empty;
9661
9662         driver = parent->driver;
9663         if (driver && driver->name)
9664                 return driver->name;
9665         return empty;
9666 }
9667
9668 static void __netdev_printk(const char *level, const struct net_device *dev,
9669                             struct va_format *vaf)
9670 {
9671         if (dev && dev->dev.parent) {
9672                 dev_printk_emit(level[1] - '0',
9673                                 dev->dev.parent,
9674                                 "%s %s %s%s: %pV",
9675                                 dev_driver_string(dev->dev.parent),
9676                                 dev_name(dev->dev.parent),
9677                                 netdev_name(dev), netdev_reg_state(dev),
9678                                 vaf);
9679         } else if (dev) {
9680                 printk("%s%s%s: %pV",
9681                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9682         } else {
9683                 printk("%s(NULL net_device): %pV", level, vaf);
9684         }
9685 }
9686
9687 void netdev_printk(const char *level, const struct net_device *dev,
9688                    const char *format, ...)
9689 {
9690         struct va_format vaf;
9691         va_list args;
9692
9693         va_start(args, format);
9694
9695         vaf.fmt = format;
9696         vaf.va = &args;
9697
9698         __netdev_printk(level, dev, &vaf);
9699
9700         va_end(args);
9701 }
9702 EXPORT_SYMBOL(netdev_printk);
9703
9704 #define define_netdev_printk_level(func, level)                 \
9705 void func(const struct net_device *dev, const char *fmt, ...)   \
9706 {                                                               \
9707         struct va_format vaf;                                   \
9708         va_list args;                                           \
9709                                                                 \
9710         va_start(args, fmt);                                    \
9711                                                                 \
9712         vaf.fmt = fmt;                                          \
9713         vaf.va = &args;                                         \
9714                                                                 \
9715         __netdev_printk(level, dev, &vaf);                      \
9716                                                                 \
9717         va_end(args);                                           \
9718 }                                                               \
9719 EXPORT_SYMBOL(func);
9720
9721 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9722 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9723 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9724 define_netdev_printk_level(netdev_err, KERN_ERR);
9725 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9726 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9727 define_netdev_printk_level(netdev_info, KERN_INFO);
9728
9729 static void __net_exit netdev_exit(struct net *net)
9730 {
9731         kfree(net->dev_name_head);
9732         kfree(net->dev_index_head);
9733         if (net != &init_net)
9734                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9735 }
9736
9737 static struct pernet_operations __net_initdata netdev_net_ops = {
9738         .init = netdev_init,
9739         .exit = netdev_exit,
9740 };
9741
9742 static void __net_exit default_device_exit(struct net *net)
9743 {
9744         struct net_device *dev, *aux;
9745         /*
9746          * Push all migratable network devices back to the
9747          * initial network namespace
9748          */
9749         rtnl_lock();
9750         for_each_netdev_safe(net, dev, aux) {
9751                 int err;
9752                 char fb_name[IFNAMSIZ];
9753
9754                 /* Ignore unmoveable devices (i.e. loopback) */
9755                 if (dev->features & NETIF_F_NETNS_LOCAL)
9756                         continue;
9757
9758                 /* Leave virtual devices for the generic cleanup */
9759                 if (dev->rtnl_link_ops)
9760                         continue;
9761
9762                 /* Push remaining network devices to init_net */
9763                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9764                 if (__dev_get_by_name(&init_net, fb_name))
9765                         snprintf(fb_name, IFNAMSIZ, "dev%%d");
9766                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9767                 if (err) {
9768                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9769                                  __func__, dev->name, err);
9770                         BUG();
9771                 }
9772         }
9773         rtnl_unlock();
9774 }
9775
9776 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9777 {
9778         /* Return with the rtnl_lock held when there are no network
9779          * devices unregistering in any network namespace in net_list.
9780          */
9781         struct net *net;
9782         bool unregistering;
9783         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9784
9785         add_wait_queue(&netdev_unregistering_wq, &wait);
9786         for (;;) {
9787                 unregistering = false;
9788                 rtnl_lock();
9789                 list_for_each_entry(net, net_list, exit_list) {
9790                         if (net->dev_unreg_count > 0) {
9791                                 unregistering = true;
9792                                 break;
9793                         }
9794                 }
9795                 if (!unregistering)
9796                         break;
9797                 __rtnl_unlock();
9798
9799                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9800         }
9801         remove_wait_queue(&netdev_unregistering_wq, &wait);
9802 }
9803
9804 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9805 {
9806         /* At exit all network devices most be removed from a network
9807          * namespace.  Do this in the reverse order of registration.
9808          * Do this across as many network namespaces as possible to
9809          * improve batching efficiency.
9810          */
9811         struct net_device *dev;
9812         struct net *net;
9813         LIST_HEAD(dev_kill_list);
9814
9815         /* To prevent network device cleanup code from dereferencing
9816          * loopback devices or network devices that have been freed
9817          * wait here for all pending unregistrations to complete,
9818          * before unregistring the loopback device and allowing the
9819          * network namespace be freed.
9820          *
9821          * The netdev todo list containing all network devices
9822          * unregistrations that happen in default_device_exit_batch
9823          * will run in the rtnl_unlock() at the end of
9824          * default_device_exit_batch.
9825          */
9826         rtnl_lock_unregistering(net_list);
9827         list_for_each_entry(net, net_list, exit_list) {
9828                 for_each_netdev_reverse(net, dev) {
9829                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9830                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9831                         else
9832                                 unregister_netdevice_queue(dev, &dev_kill_list);
9833                 }
9834         }
9835         unregister_netdevice_many(&dev_kill_list);
9836         rtnl_unlock();
9837 }
9838
9839 static struct pernet_operations __net_initdata default_device_ops = {
9840         .exit = default_device_exit,
9841         .exit_batch = default_device_exit_batch,
9842 };
9843
9844 /*
9845  *      Initialize the DEV module. At boot time this walks the device list and
9846  *      unhooks any devices that fail to initialise (normally hardware not
9847  *      present) and leaves us with a valid list of present and active devices.
9848  *
9849  */
9850
9851 /*
9852  *       This is called single threaded during boot, so no need
9853  *       to take the rtnl semaphore.
9854  */
9855 static int __init net_dev_init(void)
9856 {
9857         int i, rc = -ENOMEM;
9858
9859         BUG_ON(!dev_boot_phase);
9860
9861         if (dev_proc_init())
9862                 goto out;
9863
9864         if (netdev_kobject_init())
9865                 goto out;
9866
9867         INIT_LIST_HEAD(&ptype_all);
9868         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9869                 INIT_LIST_HEAD(&ptype_base[i]);
9870
9871         INIT_LIST_HEAD(&offload_base);
9872
9873         if (register_pernet_subsys(&netdev_net_ops))
9874                 goto out;
9875
9876         /*
9877          *      Initialise the packet receive queues.
9878          */
9879
9880         for_each_possible_cpu(i) {
9881                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9882                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9883
9884                 INIT_WORK(flush, flush_backlog);
9885
9886                 skb_queue_head_init(&sd->input_pkt_queue);
9887                 skb_queue_head_init(&sd->process_queue);
9888 #ifdef CONFIG_XFRM_OFFLOAD
9889                 skb_queue_head_init(&sd->xfrm_backlog);
9890 #endif
9891                 INIT_LIST_HEAD(&sd->poll_list);
9892                 sd->output_queue_tailp = &sd->output_queue;
9893 #ifdef CONFIG_RPS
9894                 sd->csd.func = rps_trigger_softirq;
9895                 sd->csd.info = sd;
9896                 sd->cpu = i;
9897 #endif
9898
9899                 init_gro_hash(&sd->backlog);
9900                 sd->backlog.poll = process_backlog;
9901                 sd->backlog.weight = weight_p;
9902         }
9903
9904         dev_boot_phase = 0;
9905
9906         /* The loopback device is special if any other network devices
9907          * is present in a network namespace the loopback device must
9908          * be present. Since we now dynamically allocate and free the
9909          * loopback device ensure this invariant is maintained by
9910          * keeping the loopback device as the first device on the
9911          * list of network devices.  Ensuring the loopback devices
9912          * is the first device that appears and the last network device
9913          * that disappears.
9914          */
9915         if (register_pernet_device(&loopback_net_ops))
9916                 goto out;
9917
9918         if (register_pernet_device(&default_device_ops))
9919                 goto out;
9920
9921         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9922         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9923
9924         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9925                                        NULL, dev_cpu_dead);
9926         WARN_ON(rc < 0);
9927         rc = 0;
9928 out:
9929         return rc;
9930 }
9931
9932 subsys_initcall(net_dev_init);