Merge branch 'libnvdimm-for-next' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145
146 #include "net-sysfs.h"
147
148 /* Instead of increasing this, you should create a hash table. */
149 #define MAX_GRO_SKBS 8
150
151 /* This should be increased if a protocol with a bigger head is added. */
152 #define GRO_MAX_HEAD (MAX_HEADER + 128)
153
154 static DEFINE_SPINLOCK(ptype_lock);
155 static DEFINE_SPINLOCK(offload_lock);
156 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
157 struct list_head ptype_all __read_mostly;       /* Taps */
158 static struct list_head offload_base __read_mostly;
159
160 static int netif_rx_internal(struct sk_buff *skb);
161 static int call_netdevice_notifiers_info(unsigned long val,
162                                          struct net_device *dev,
163                                          struct netdev_notifier_info *info);
164
165 /*
166  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
167  * semaphore.
168  *
169  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
170  *
171  * Writers must hold the rtnl semaphore while they loop through the
172  * dev_base_head list, and hold dev_base_lock for writing when they do the
173  * actual updates.  This allows pure readers to access the list even
174  * while a writer is preparing to update it.
175  *
176  * To put it another way, dev_base_lock is held for writing only to
177  * protect against pure readers; the rtnl semaphore provides the
178  * protection against other writers.
179  *
180  * See, for example usages, register_netdevice() and
181  * unregister_netdevice(), which must be called with the rtnl
182  * semaphore held.
183  */
184 DEFINE_RWLOCK(dev_base_lock);
185 EXPORT_SYMBOL(dev_base_lock);
186
187 /* protects napi_hash addition/deletion and napi_gen_id */
188 static DEFINE_SPINLOCK(napi_hash_lock);
189
190 static unsigned int napi_gen_id = NR_CPUS;
191 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
192
193 static seqcount_t devnet_rename_seq;
194
195 static inline void dev_base_seq_inc(struct net *net)
196 {
197         while (++net->dev_base_seq == 0)
198                 ;
199 }
200
201 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
202 {
203         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
204
205         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
206 }
207
208 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
209 {
210         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
211 }
212
213 static inline void rps_lock(struct softnet_data *sd)
214 {
215 #ifdef CONFIG_RPS
216         spin_lock(&sd->input_pkt_queue.lock);
217 #endif
218 }
219
220 static inline void rps_unlock(struct softnet_data *sd)
221 {
222 #ifdef CONFIG_RPS
223         spin_unlock(&sd->input_pkt_queue.lock);
224 #endif
225 }
226
227 /* Device list insertion */
228 static void list_netdevice(struct net_device *dev)
229 {
230         struct net *net = dev_net(dev);
231
232         ASSERT_RTNL();
233
234         write_lock_bh(&dev_base_lock);
235         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
236         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
237         hlist_add_head_rcu(&dev->index_hlist,
238                            dev_index_hash(net, dev->ifindex));
239         write_unlock_bh(&dev_base_lock);
240
241         dev_base_seq_inc(net);
242 }
243
244 /* Device list removal
245  * caller must respect a RCU grace period before freeing/reusing dev
246  */
247 static void unlist_netdevice(struct net_device *dev)
248 {
249         ASSERT_RTNL();
250
251         /* Unlink dev from the device chain */
252         write_lock_bh(&dev_base_lock);
253         list_del_rcu(&dev->dev_list);
254         hlist_del_rcu(&dev->name_hlist);
255         hlist_del_rcu(&dev->index_hlist);
256         write_unlock_bh(&dev_base_lock);
257
258         dev_base_seq_inc(dev_net(dev));
259 }
260
261 /*
262  *      Our notifier list
263  */
264
265 static RAW_NOTIFIER_HEAD(netdev_chain);
266
267 /*
268  *      Device drivers call our routines to queue packets here. We empty the
269  *      queue in the local softnet handler.
270  */
271
272 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
273 EXPORT_PER_CPU_SYMBOL(softnet_data);
274
275 #ifdef CONFIG_LOCKDEP
276 /*
277  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
278  * according to dev->type
279  */
280 static const unsigned short netdev_lock_type[] = {
281          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
282          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
283          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
284          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
285          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
286          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
287          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
288          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
289          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
290          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
291          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
292          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
293          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
294          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
295          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
296
297 static const char *const netdev_lock_name[] = {
298         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
299         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
300         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
301         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
302         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
303         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
304         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
305         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
306         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
307         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
308         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
309         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
310         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
311         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
312         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
313
314 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
315 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
316
317 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
318 {
319         int i;
320
321         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
322                 if (netdev_lock_type[i] == dev_type)
323                         return i;
324         /* the last key is used by default */
325         return ARRAY_SIZE(netdev_lock_type) - 1;
326 }
327
328 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
329                                                  unsigned short dev_type)
330 {
331         int i;
332
333         i = netdev_lock_pos(dev_type);
334         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
335                                    netdev_lock_name[i]);
336 }
337
338 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
339 {
340         int i;
341
342         i = netdev_lock_pos(dev->type);
343         lockdep_set_class_and_name(&dev->addr_list_lock,
344                                    &netdev_addr_lock_key[i],
345                                    netdev_lock_name[i]);
346 }
347 #else
348 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
349                                                  unsigned short dev_type)
350 {
351 }
352 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
353 {
354 }
355 #endif
356
357 /*******************************************************************************
358  *
359  *              Protocol management and registration routines
360  *
361  *******************************************************************************/
362
363
364 /*
365  *      Add a protocol ID to the list. Now that the input handler is
366  *      smarter we can dispense with all the messy stuff that used to be
367  *      here.
368  *
369  *      BEWARE!!! Protocol handlers, mangling input packets,
370  *      MUST BE last in hash buckets and checking protocol handlers
371  *      MUST start from promiscuous ptype_all chain in net_bh.
372  *      It is true now, do not change it.
373  *      Explanation follows: if protocol handler, mangling packet, will
374  *      be the first on list, it is not able to sense, that packet
375  *      is cloned and should be copied-on-write, so that it will
376  *      change it and subsequent readers will get broken packet.
377  *                                                      --ANK (980803)
378  */
379
380 static inline struct list_head *ptype_head(const struct packet_type *pt)
381 {
382         if (pt->type == htons(ETH_P_ALL))
383                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
384         else
385                 return pt->dev ? &pt->dev->ptype_specific :
386                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
387 }
388
389 /**
390  *      dev_add_pack - add packet handler
391  *      @pt: packet type declaration
392  *
393  *      Add a protocol handler to the networking stack. The passed &packet_type
394  *      is linked into kernel lists and may not be freed until it has been
395  *      removed from the kernel lists.
396  *
397  *      This call does not sleep therefore it can not
398  *      guarantee all CPU's that are in middle of receiving packets
399  *      will see the new packet type (until the next received packet).
400  */
401
402 void dev_add_pack(struct packet_type *pt)
403 {
404         struct list_head *head = ptype_head(pt);
405
406         spin_lock(&ptype_lock);
407         list_add_rcu(&pt->list, head);
408         spin_unlock(&ptype_lock);
409 }
410 EXPORT_SYMBOL(dev_add_pack);
411
412 /**
413  *      __dev_remove_pack        - remove packet handler
414  *      @pt: packet type declaration
415  *
416  *      Remove a protocol handler that was previously added to the kernel
417  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
418  *      from the kernel lists and can be freed or reused once this function
419  *      returns.
420  *
421  *      The packet type might still be in use by receivers
422  *      and must not be freed until after all the CPU's have gone
423  *      through a quiescent state.
424  */
425 void __dev_remove_pack(struct packet_type *pt)
426 {
427         struct list_head *head = ptype_head(pt);
428         struct packet_type *pt1;
429
430         spin_lock(&ptype_lock);
431
432         list_for_each_entry(pt1, head, list) {
433                 if (pt == pt1) {
434                         list_del_rcu(&pt->list);
435                         goto out;
436                 }
437         }
438
439         pr_warn("dev_remove_pack: %p not found\n", pt);
440 out:
441         spin_unlock(&ptype_lock);
442 }
443 EXPORT_SYMBOL(__dev_remove_pack);
444
445 /**
446  *      dev_remove_pack  - remove packet handler
447  *      @pt: packet type declaration
448  *
449  *      Remove a protocol handler that was previously added to the kernel
450  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
451  *      from the kernel lists and can be freed or reused once this function
452  *      returns.
453  *
454  *      This call sleeps to guarantee that no CPU is looking at the packet
455  *      type after return.
456  */
457 void dev_remove_pack(struct packet_type *pt)
458 {
459         __dev_remove_pack(pt);
460
461         synchronize_net();
462 }
463 EXPORT_SYMBOL(dev_remove_pack);
464
465
466 /**
467  *      dev_add_offload - register offload handlers
468  *      @po: protocol offload declaration
469  *
470  *      Add protocol offload handlers to the networking stack. The passed
471  *      &proto_offload is linked into kernel lists and may not be freed until
472  *      it has been removed from the kernel lists.
473  *
474  *      This call does not sleep therefore it can not
475  *      guarantee all CPU's that are in middle of receiving packets
476  *      will see the new offload handlers (until the next received packet).
477  */
478 void dev_add_offload(struct packet_offload *po)
479 {
480         struct packet_offload *elem;
481
482         spin_lock(&offload_lock);
483         list_for_each_entry(elem, &offload_base, list) {
484                 if (po->priority < elem->priority)
485                         break;
486         }
487         list_add_rcu(&po->list, elem->list.prev);
488         spin_unlock(&offload_lock);
489 }
490 EXPORT_SYMBOL(dev_add_offload);
491
492 /**
493  *      __dev_remove_offload     - remove offload handler
494  *      @po: packet offload declaration
495  *
496  *      Remove a protocol offload handler that was previously added to the
497  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
498  *      is removed from the kernel lists and can be freed or reused once this
499  *      function returns.
500  *
501  *      The packet type might still be in use by receivers
502  *      and must not be freed until after all the CPU's have gone
503  *      through a quiescent state.
504  */
505 static void __dev_remove_offload(struct packet_offload *po)
506 {
507         struct list_head *head = &offload_base;
508         struct packet_offload *po1;
509
510         spin_lock(&offload_lock);
511
512         list_for_each_entry(po1, head, list) {
513                 if (po == po1) {
514                         list_del_rcu(&po->list);
515                         goto out;
516                 }
517         }
518
519         pr_warn("dev_remove_offload: %p not found\n", po);
520 out:
521         spin_unlock(&offload_lock);
522 }
523
524 /**
525  *      dev_remove_offload       - remove packet offload handler
526  *      @po: packet offload declaration
527  *
528  *      Remove a packet offload handler that was previously added to the kernel
529  *      offload handlers by dev_add_offload(). The passed &offload_type is
530  *      removed from the kernel lists and can be freed or reused once this
531  *      function returns.
532  *
533  *      This call sleeps to guarantee that no CPU is looking at the packet
534  *      type after return.
535  */
536 void dev_remove_offload(struct packet_offload *po)
537 {
538         __dev_remove_offload(po);
539
540         synchronize_net();
541 }
542 EXPORT_SYMBOL(dev_remove_offload);
543
544 /******************************************************************************
545  *
546  *                    Device Boot-time Settings Routines
547  *
548  ******************************************************************************/
549
550 /* Boot time configuration table */
551 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
552
553 /**
554  *      netdev_boot_setup_add   - add new setup entry
555  *      @name: name of the device
556  *      @map: configured settings for the device
557  *
558  *      Adds new setup entry to the dev_boot_setup list.  The function
559  *      returns 0 on error and 1 on success.  This is a generic routine to
560  *      all netdevices.
561  */
562 static int netdev_boot_setup_add(char *name, struct ifmap *map)
563 {
564         struct netdev_boot_setup *s;
565         int i;
566
567         s = dev_boot_setup;
568         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
569                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
570                         memset(s[i].name, 0, sizeof(s[i].name));
571                         strlcpy(s[i].name, name, IFNAMSIZ);
572                         memcpy(&s[i].map, map, sizeof(s[i].map));
573                         break;
574                 }
575         }
576
577         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
578 }
579
580 /**
581  * netdev_boot_setup_check      - check boot time settings
582  * @dev: the netdevice
583  *
584  * Check boot time settings for the device.
585  * The found settings are set for the device to be used
586  * later in the device probing.
587  * Returns 0 if no settings found, 1 if they are.
588  */
589 int netdev_boot_setup_check(struct net_device *dev)
590 {
591         struct netdev_boot_setup *s = dev_boot_setup;
592         int i;
593
594         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
595                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
596                     !strcmp(dev->name, s[i].name)) {
597                         dev->irq = s[i].map.irq;
598                         dev->base_addr = s[i].map.base_addr;
599                         dev->mem_start = s[i].map.mem_start;
600                         dev->mem_end = s[i].map.mem_end;
601                         return 1;
602                 }
603         }
604         return 0;
605 }
606 EXPORT_SYMBOL(netdev_boot_setup_check);
607
608
609 /**
610  * netdev_boot_base     - get address from boot time settings
611  * @prefix: prefix for network device
612  * @unit: id for network device
613  *
614  * Check boot time settings for the base address of device.
615  * The found settings are set for the device to be used
616  * later in the device probing.
617  * Returns 0 if no settings found.
618  */
619 unsigned long netdev_boot_base(const char *prefix, int unit)
620 {
621         const struct netdev_boot_setup *s = dev_boot_setup;
622         char name[IFNAMSIZ];
623         int i;
624
625         sprintf(name, "%s%d", prefix, unit);
626
627         /*
628          * If device already registered then return base of 1
629          * to indicate not to probe for this interface
630          */
631         if (__dev_get_by_name(&init_net, name))
632                 return 1;
633
634         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
635                 if (!strcmp(name, s[i].name))
636                         return s[i].map.base_addr;
637         return 0;
638 }
639
640 /*
641  * Saves at boot time configured settings for any netdevice.
642  */
643 int __init netdev_boot_setup(char *str)
644 {
645         int ints[5];
646         struct ifmap map;
647
648         str = get_options(str, ARRAY_SIZE(ints), ints);
649         if (!str || !*str)
650                 return 0;
651
652         /* Save settings */
653         memset(&map, 0, sizeof(map));
654         if (ints[0] > 0)
655                 map.irq = ints[1];
656         if (ints[0] > 1)
657                 map.base_addr = ints[2];
658         if (ints[0] > 2)
659                 map.mem_start = ints[3];
660         if (ints[0] > 3)
661                 map.mem_end = ints[4];
662
663         /* Add new entry to the list */
664         return netdev_boot_setup_add(str, &map);
665 }
666
667 __setup("netdev=", netdev_boot_setup);
668
669 /*******************************************************************************
670  *
671  *                          Device Interface Subroutines
672  *
673  *******************************************************************************/
674
675 /**
676  *      dev_get_iflink  - get 'iflink' value of a interface
677  *      @dev: targeted interface
678  *
679  *      Indicates the ifindex the interface is linked to.
680  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
681  */
682
683 int dev_get_iflink(const struct net_device *dev)
684 {
685         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
686                 return dev->netdev_ops->ndo_get_iflink(dev);
687
688         return dev->ifindex;
689 }
690 EXPORT_SYMBOL(dev_get_iflink);
691
692 /**
693  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
694  *      @dev: targeted interface
695  *      @skb: The packet.
696  *
697  *      For better visibility of tunnel traffic OVS needs to retrieve
698  *      egress tunnel information for a packet. Following API allows
699  *      user to get this info.
700  */
701 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
702 {
703         struct ip_tunnel_info *info;
704
705         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
706                 return -EINVAL;
707
708         info = skb_tunnel_info_unclone(skb);
709         if (!info)
710                 return -ENOMEM;
711         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
712                 return -EINVAL;
713
714         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
715 }
716 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
717
718 /**
719  *      __dev_get_by_name       - find a device by its name
720  *      @net: the applicable net namespace
721  *      @name: name to find
722  *
723  *      Find an interface by name. Must be called under RTNL semaphore
724  *      or @dev_base_lock. If the name is found a pointer to the device
725  *      is returned. If the name is not found then %NULL is returned. The
726  *      reference counters are not incremented so the caller must be
727  *      careful with locks.
728  */
729
730 struct net_device *__dev_get_by_name(struct net *net, const char *name)
731 {
732         struct net_device *dev;
733         struct hlist_head *head = dev_name_hash(net, name);
734
735         hlist_for_each_entry(dev, head, name_hlist)
736                 if (!strncmp(dev->name, name, IFNAMSIZ))
737                         return dev;
738
739         return NULL;
740 }
741 EXPORT_SYMBOL(__dev_get_by_name);
742
743 /**
744  * dev_get_by_name_rcu  - find a device by its name
745  * @net: the applicable net namespace
746  * @name: name to find
747  *
748  * Find an interface by name.
749  * If the name is found a pointer to the device is returned.
750  * If the name is not found then %NULL is returned.
751  * The reference counters are not incremented so the caller must be
752  * careful with locks. The caller must hold RCU lock.
753  */
754
755 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
756 {
757         struct net_device *dev;
758         struct hlist_head *head = dev_name_hash(net, name);
759
760         hlist_for_each_entry_rcu(dev, head, name_hlist)
761                 if (!strncmp(dev->name, name, IFNAMSIZ))
762                         return dev;
763
764         return NULL;
765 }
766 EXPORT_SYMBOL(dev_get_by_name_rcu);
767
768 /**
769  *      dev_get_by_name         - find a device by its name
770  *      @net: the applicable net namespace
771  *      @name: name to find
772  *
773  *      Find an interface by name. This can be called from any
774  *      context and does its own locking. The returned handle has
775  *      the usage count incremented and the caller must use dev_put() to
776  *      release it when it is no longer needed. %NULL is returned if no
777  *      matching device is found.
778  */
779
780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782         struct net_device *dev;
783
784         rcu_read_lock();
785         dev = dev_get_by_name_rcu(net, name);
786         if (dev)
787                 dev_hold(dev);
788         rcu_read_unlock();
789         return dev;
790 }
791 EXPORT_SYMBOL(dev_get_by_name);
792
793 /**
794  *      __dev_get_by_index - find a device by its ifindex
795  *      @net: the applicable net namespace
796  *      @ifindex: index of device
797  *
798  *      Search for an interface by index. Returns %NULL if the device
799  *      is not found or a pointer to the device. The device has not
800  *      had its reference counter increased so the caller must be careful
801  *      about locking. The caller must hold either the RTNL semaphore
802  *      or @dev_base_lock.
803  */
804
805 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
806 {
807         struct net_device *dev;
808         struct hlist_head *head = dev_index_hash(net, ifindex);
809
810         hlist_for_each_entry(dev, head, index_hlist)
811                 if (dev->ifindex == ifindex)
812                         return dev;
813
814         return NULL;
815 }
816 EXPORT_SYMBOL(__dev_get_by_index);
817
818 /**
819  *      dev_get_by_index_rcu - find a device by its ifindex
820  *      @net: the applicable net namespace
821  *      @ifindex: index of device
822  *
823  *      Search for an interface by index. Returns %NULL if the device
824  *      is not found or a pointer to the device. The device has not
825  *      had its reference counter increased so the caller must be careful
826  *      about locking. The caller must hold RCU lock.
827  */
828
829 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
830 {
831         struct net_device *dev;
832         struct hlist_head *head = dev_index_hash(net, ifindex);
833
834         hlist_for_each_entry_rcu(dev, head, index_hlist)
835                 if (dev->ifindex == ifindex)
836                         return dev;
837
838         return NULL;
839 }
840 EXPORT_SYMBOL(dev_get_by_index_rcu);
841
842
843 /**
844  *      dev_get_by_index - find a device by its ifindex
845  *      @net: the applicable net namespace
846  *      @ifindex: index of device
847  *
848  *      Search for an interface by index. Returns NULL if the device
849  *      is not found or a pointer to the device. The device returned has
850  *      had a reference added and the pointer is safe until the user calls
851  *      dev_put to indicate they have finished with it.
852  */
853
854 struct net_device *dev_get_by_index(struct net *net, int ifindex)
855 {
856         struct net_device *dev;
857
858         rcu_read_lock();
859         dev = dev_get_by_index_rcu(net, ifindex);
860         if (dev)
861                 dev_hold(dev);
862         rcu_read_unlock();
863         return dev;
864 }
865 EXPORT_SYMBOL(dev_get_by_index);
866
867 /**
868  *      netdev_get_name - get a netdevice name, knowing its ifindex.
869  *      @net: network namespace
870  *      @name: a pointer to the buffer where the name will be stored.
871  *      @ifindex: the ifindex of the interface to get the name from.
872  *
873  *      The use of raw_seqcount_begin() and cond_resched() before
874  *      retrying is required as we want to give the writers a chance
875  *      to complete when CONFIG_PREEMPT is not set.
876  */
877 int netdev_get_name(struct net *net, char *name, int ifindex)
878 {
879         struct net_device *dev;
880         unsigned int seq;
881
882 retry:
883         seq = raw_seqcount_begin(&devnet_rename_seq);
884         rcu_read_lock();
885         dev = dev_get_by_index_rcu(net, ifindex);
886         if (!dev) {
887                 rcu_read_unlock();
888                 return -ENODEV;
889         }
890
891         strcpy(name, dev->name);
892         rcu_read_unlock();
893         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
894                 cond_resched();
895                 goto retry;
896         }
897
898         return 0;
899 }
900
901 /**
902  *      dev_getbyhwaddr_rcu - find a device by its hardware address
903  *      @net: the applicable net namespace
904  *      @type: media type of device
905  *      @ha: hardware address
906  *
907  *      Search for an interface by MAC address. Returns NULL if the device
908  *      is not found or a pointer to the device.
909  *      The caller must hold RCU or RTNL.
910  *      The returned device has not had its ref count increased
911  *      and the caller must therefore be careful about locking
912  *
913  */
914
915 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
916                                        const char *ha)
917 {
918         struct net_device *dev;
919
920         for_each_netdev_rcu(net, dev)
921                 if (dev->type == type &&
922                     !memcmp(dev->dev_addr, ha, dev->addr_len))
923                         return dev;
924
925         return NULL;
926 }
927 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
928
929 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
930 {
931         struct net_device *dev;
932
933         ASSERT_RTNL();
934         for_each_netdev(net, dev)
935                 if (dev->type == type)
936                         return dev;
937
938         return NULL;
939 }
940 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
941
942 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
943 {
944         struct net_device *dev, *ret = NULL;
945
946         rcu_read_lock();
947         for_each_netdev_rcu(net, dev)
948                 if (dev->type == type) {
949                         dev_hold(dev);
950                         ret = dev;
951                         break;
952                 }
953         rcu_read_unlock();
954         return ret;
955 }
956 EXPORT_SYMBOL(dev_getfirstbyhwtype);
957
958 /**
959  *      __dev_get_by_flags - find any device with given flags
960  *      @net: the applicable net namespace
961  *      @if_flags: IFF_* values
962  *      @mask: bitmask of bits in if_flags to check
963  *
964  *      Search for any interface with the given flags. Returns NULL if a device
965  *      is not found or a pointer to the device. Must be called inside
966  *      rtnl_lock(), and result refcount is unchanged.
967  */
968
969 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
970                                       unsigned short mask)
971 {
972         struct net_device *dev, *ret;
973
974         ASSERT_RTNL();
975
976         ret = NULL;
977         for_each_netdev(net, dev) {
978                 if (((dev->flags ^ if_flags) & mask) == 0) {
979                         ret = dev;
980                         break;
981                 }
982         }
983         return ret;
984 }
985 EXPORT_SYMBOL(__dev_get_by_flags);
986
987 /**
988  *      dev_valid_name - check if name is okay for network device
989  *      @name: name string
990  *
991  *      Network device names need to be valid file names to
992  *      to allow sysfs to work.  We also disallow any kind of
993  *      whitespace.
994  */
995 bool dev_valid_name(const char *name)
996 {
997         if (*name == '\0')
998                 return false;
999         if (strlen(name) >= IFNAMSIZ)
1000                 return false;
1001         if (!strcmp(name, ".") || !strcmp(name, ".."))
1002                 return false;
1003
1004         while (*name) {
1005                 if (*name == '/' || *name == ':' || isspace(*name))
1006                         return false;
1007                 name++;
1008         }
1009         return true;
1010 }
1011 EXPORT_SYMBOL(dev_valid_name);
1012
1013 /**
1014  *      __dev_alloc_name - allocate a name for a device
1015  *      @net: network namespace to allocate the device name in
1016  *      @name: name format string
1017  *      @buf:  scratch buffer and result name string
1018  *
1019  *      Passed a format string - eg "lt%d" it will try and find a suitable
1020  *      id. It scans list of devices to build up a free map, then chooses
1021  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1022  *      while allocating the name and adding the device in order to avoid
1023  *      duplicates.
1024  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1025  *      Returns the number of the unit assigned or a negative errno code.
1026  */
1027
1028 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1029 {
1030         int i = 0;
1031         const char *p;
1032         const int max_netdevices = 8*PAGE_SIZE;
1033         unsigned long *inuse;
1034         struct net_device *d;
1035
1036         p = strnchr(name, IFNAMSIZ-1, '%');
1037         if (p) {
1038                 /*
1039                  * Verify the string as this thing may have come from
1040                  * the user.  There must be either one "%d" and no other "%"
1041                  * characters.
1042                  */
1043                 if (p[1] != 'd' || strchr(p + 2, '%'))
1044                         return -EINVAL;
1045
1046                 /* Use one page as a bit array of possible slots */
1047                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1048                 if (!inuse)
1049                         return -ENOMEM;
1050
1051                 for_each_netdev(net, d) {
1052                         if (!sscanf(d->name, name, &i))
1053                                 continue;
1054                         if (i < 0 || i >= max_netdevices)
1055                                 continue;
1056
1057                         /*  avoid cases where sscanf is not exact inverse of printf */
1058                         snprintf(buf, IFNAMSIZ, name, i);
1059                         if (!strncmp(buf, d->name, IFNAMSIZ))
1060                                 set_bit(i, inuse);
1061                 }
1062
1063                 i = find_first_zero_bit(inuse, max_netdevices);
1064                 free_page((unsigned long) inuse);
1065         }
1066
1067         if (buf != name)
1068                 snprintf(buf, IFNAMSIZ, name, i);
1069         if (!__dev_get_by_name(net, buf))
1070                 return i;
1071
1072         /* It is possible to run out of possible slots
1073          * when the name is long and there isn't enough space left
1074          * for the digits, or if all bits are used.
1075          */
1076         return -ENFILE;
1077 }
1078
1079 /**
1080  *      dev_alloc_name - allocate a name for a device
1081  *      @dev: device
1082  *      @name: name format string
1083  *
1084  *      Passed a format string - eg "lt%d" it will try and find a suitable
1085  *      id. It scans list of devices to build up a free map, then chooses
1086  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1087  *      while allocating the name and adding the device in order to avoid
1088  *      duplicates.
1089  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1090  *      Returns the number of the unit assigned or a negative errno code.
1091  */
1092
1093 int dev_alloc_name(struct net_device *dev, const char *name)
1094 {
1095         char buf[IFNAMSIZ];
1096         struct net *net;
1097         int ret;
1098
1099         BUG_ON(!dev_net(dev));
1100         net = dev_net(dev);
1101         ret = __dev_alloc_name(net, name, buf);
1102         if (ret >= 0)
1103                 strlcpy(dev->name, buf, IFNAMSIZ);
1104         return ret;
1105 }
1106 EXPORT_SYMBOL(dev_alloc_name);
1107
1108 static int dev_alloc_name_ns(struct net *net,
1109                              struct net_device *dev,
1110                              const char *name)
1111 {
1112         char buf[IFNAMSIZ];
1113         int ret;
1114
1115         ret = __dev_alloc_name(net, name, buf);
1116         if (ret >= 0)
1117                 strlcpy(dev->name, buf, IFNAMSIZ);
1118         return ret;
1119 }
1120
1121 static int dev_get_valid_name(struct net *net,
1122                               struct net_device *dev,
1123                               const char *name)
1124 {
1125         BUG_ON(!net);
1126
1127         if (!dev_valid_name(name))
1128                 return -EINVAL;
1129
1130         if (strchr(name, '%'))
1131                 return dev_alloc_name_ns(net, dev, name);
1132         else if (__dev_get_by_name(net, name))
1133                 return -EEXIST;
1134         else if (dev->name != name)
1135                 strlcpy(dev->name, name, IFNAMSIZ);
1136
1137         return 0;
1138 }
1139
1140 /**
1141  *      dev_change_name - change name of a device
1142  *      @dev: device
1143  *      @newname: name (or format string) must be at least IFNAMSIZ
1144  *
1145  *      Change name of a device, can pass format strings "eth%d".
1146  *      for wildcarding.
1147  */
1148 int dev_change_name(struct net_device *dev, const char *newname)
1149 {
1150         unsigned char old_assign_type;
1151         char oldname[IFNAMSIZ];
1152         int err = 0;
1153         int ret;
1154         struct net *net;
1155
1156         ASSERT_RTNL();
1157         BUG_ON(!dev_net(dev));
1158
1159         net = dev_net(dev);
1160         if (dev->flags & IFF_UP)
1161                 return -EBUSY;
1162
1163         write_seqcount_begin(&devnet_rename_seq);
1164
1165         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1166                 write_seqcount_end(&devnet_rename_seq);
1167                 return 0;
1168         }
1169
1170         memcpy(oldname, dev->name, IFNAMSIZ);
1171
1172         err = dev_get_valid_name(net, dev, newname);
1173         if (err < 0) {
1174                 write_seqcount_end(&devnet_rename_seq);
1175                 return err;
1176         }
1177
1178         if (oldname[0] && !strchr(oldname, '%'))
1179                 netdev_info(dev, "renamed from %s\n", oldname);
1180
1181         old_assign_type = dev->name_assign_type;
1182         dev->name_assign_type = NET_NAME_RENAMED;
1183
1184 rollback:
1185         ret = device_rename(&dev->dev, dev->name);
1186         if (ret) {
1187                 memcpy(dev->name, oldname, IFNAMSIZ);
1188                 dev->name_assign_type = old_assign_type;
1189                 write_seqcount_end(&devnet_rename_seq);
1190                 return ret;
1191         }
1192
1193         write_seqcount_end(&devnet_rename_seq);
1194
1195         netdev_adjacent_rename_links(dev, oldname);
1196
1197         write_lock_bh(&dev_base_lock);
1198         hlist_del_rcu(&dev->name_hlist);
1199         write_unlock_bh(&dev_base_lock);
1200
1201         synchronize_rcu();
1202
1203         write_lock_bh(&dev_base_lock);
1204         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1205         write_unlock_bh(&dev_base_lock);
1206
1207         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1208         ret = notifier_to_errno(ret);
1209
1210         if (ret) {
1211                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1212                 if (err >= 0) {
1213                         err = ret;
1214                         write_seqcount_begin(&devnet_rename_seq);
1215                         memcpy(dev->name, oldname, IFNAMSIZ);
1216                         memcpy(oldname, newname, IFNAMSIZ);
1217                         dev->name_assign_type = old_assign_type;
1218                         old_assign_type = NET_NAME_RENAMED;
1219                         goto rollback;
1220                 } else {
1221                         pr_err("%s: name change rollback failed: %d\n",
1222                                dev->name, ret);
1223                 }
1224         }
1225
1226         return err;
1227 }
1228
1229 /**
1230  *      dev_set_alias - change ifalias of a device
1231  *      @dev: device
1232  *      @alias: name up to IFALIASZ
1233  *      @len: limit of bytes to copy from info
1234  *
1235  *      Set ifalias for a device,
1236  */
1237 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1238 {
1239         char *new_ifalias;
1240
1241         ASSERT_RTNL();
1242
1243         if (len >= IFALIASZ)
1244                 return -EINVAL;
1245
1246         if (!len) {
1247                 kfree(dev->ifalias);
1248                 dev->ifalias = NULL;
1249                 return 0;
1250         }
1251
1252         new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1253         if (!new_ifalias)
1254                 return -ENOMEM;
1255         dev->ifalias = new_ifalias;
1256
1257         strlcpy(dev->ifalias, alias, len+1);
1258         return len;
1259 }
1260
1261
1262 /**
1263  *      netdev_features_change - device changes features
1264  *      @dev: device to cause notification
1265  *
1266  *      Called to indicate a device has changed features.
1267  */
1268 void netdev_features_change(struct net_device *dev)
1269 {
1270         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1271 }
1272 EXPORT_SYMBOL(netdev_features_change);
1273
1274 /**
1275  *      netdev_state_change - device changes state
1276  *      @dev: device to cause notification
1277  *
1278  *      Called to indicate a device has changed state. This function calls
1279  *      the notifier chains for netdev_chain and sends a NEWLINK message
1280  *      to the routing socket.
1281  */
1282 void netdev_state_change(struct net_device *dev)
1283 {
1284         if (dev->flags & IFF_UP) {
1285                 struct netdev_notifier_change_info change_info;
1286
1287                 change_info.flags_changed = 0;
1288                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1289                                               &change_info.info);
1290                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1291         }
1292 }
1293 EXPORT_SYMBOL(netdev_state_change);
1294
1295 /**
1296  * netdev_notify_peers - notify network peers about existence of @dev
1297  * @dev: network device
1298  *
1299  * Generate traffic such that interested network peers are aware of
1300  * @dev, such as by generating a gratuitous ARP. This may be used when
1301  * a device wants to inform the rest of the network about some sort of
1302  * reconfiguration such as a failover event or virtual machine
1303  * migration.
1304  */
1305 void netdev_notify_peers(struct net_device *dev)
1306 {
1307         rtnl_lock();
1308         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1309         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1310         rtnl_unlock();
1311 }
1312 EXPORT_SYMBOL(netdev_notify_peers);
1313
1314 static int __dev_open(struct net_device *dev)
1315 {
1316         const struct net_device_ops *ops = dev->netdev_ops;
1317         int ret;
1318
1319         ASSERT_RTNL();
1320
1321         if (!netif_device_present(dev))
1322                 return -ENODEV;
1323
1324         /* Block netpoll from trying to do any rx path servicing.
1325          * If we don't do this there is a chance ndo_poll_controller
1326          * or ndo_poll may be running while we open the device
1327          */
1328         netpoll_poll_disable(dev);
1329
1330         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1331         ret = notifier_to_errno(ret);
1332         if (ret)
1333                 return ret;
1334
1335         set_bit(__LINK_STATE_START, &dev->state);
1336
1337         if (ops->ndo_validate_addr)
1338                 ret = ops->ndo_validate_addr(dev);
1339
1340         if (!ret && ops->ndo_open)
1341                 ret = ops->ndo_open(dev);
1342
1343         netpoll_poll_enable(dev);
1344
1345         if (ret)
1346                 clear_bit(__LINK_STATE_START, &dev->state);
1347         else {
1348                 dev->flags |= IFF_UP;
1349                 dev_set_rx_mode(dev);
1350                 dev_activate(dev);
1351                 add_device_randomness(dev->dev_addr, dev->addr_len);
1352         }
1353
1354         return ret;
1355 }
1356
1357 /**
1358  *      dev_open        - prepare an interface for use.
1359  *      @dev:   device to open
1360  *
1361  *      Takes a device from down to up state. The device's private open
1362  *      function is invoked and then the multicast lists are loaded. Finally
1363  *      the device is moved into the up state and a %NETDEV_UP message is
1364  *      sent to the netdev notifier chain.
1365  *
1366  *      Calling this function on an active interface is a nop. On a failure
1367  *      a negative errno code is returned.
1368  */
1369 int dev_open(struct net_device *dev)
1370 {
1371         int ret;
1372
1373         if (dev->flags & IFF_UP)
1374                 return 0;
1375
1376         ret = __dev_open(dev);
1377         if (ret < 0)
1378                 return ret;
1379
1380         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1381         call_netdevice_notifiers(NETDEV_UP, dev);
1382
1383         return ret;
1384 }
1385 EXPORT_SYMBOL(dev_open);
1386
1387 static int __dev_close_many(struct list_head *head)
1388 {
1389         struct net_device *dev;
1390
1391         ASSERT_RTNL();
1392         might_sleep();
1393
1394         list_for_each_entry(dev, head, close_list) {
1395                 /* Temporarily disable netpoll until the interface is down */
1396                 netpoll_poll_disable(dev);
1397
1398                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1399
1400                 clear_bit(__LINK_STATE_START, &dev->state);
1401
1402                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1403                  * can be even on different cpu. So just clear netif_running().
1404                  *
1405                  * dev->stop() will invoke napi_disable() on all of it's
1406                  * napi_struct instances on this device.
1407                  */
1408                 smp_mb__after_atomic(); /* Commit netif_running(). */
1409         }
1410
1411         dev_deactivate_many(head);
1412
1413         list_for_each_entry(dev, head, close_list) {
1414                 const struct net_device_ops *ops = dev->netdev_ops;
1415
1416                 /*
1417                  *      Call the device specific close. This cannot fail.
1418                  *      Only if device is UP
1419                  *
1420                  *      We allow it to be called even after a DETACH hot-plug
1421                  *      event.
1422                  */
1423                 if (ops->ndo_stop)
1424                         ops->ndo_stop(dev);
1425
1426                 dev->flags &= ~IFF_UP;
1427                 netpoll_poll_enable(dev);
1428         }
1429
1430         return 0;
1431 }
1432
1433 static int __dev_close(struct net_device *dev)
1434 {
1435         int retval;
1436         LIST_HEAD(single);
1437
1438         list_add(&dev->close_list, &single);
1439         retval = __dev_close_many(&single);
1440         list_del(&single);
1441
1442         return retval;
1443 }
1444
1445 int dev_close_many(struct list_head *head, bool unlink)
1446 {
1447         struct net_device *dev, *tmp;
1448
1449         /* Remove the devices that don't need to be closed */
1450         list_for_each_entry_safe(dev, tmp, head, close_list)
1451                 if (!(dev->flags & IFF_UP))
1452                         list_del_init(&dev->close_list);
1453
1454         __dev_close_many(head);
1455
1456         list_for_each_entry_safe(dev, tmp, head, close_list) {
1457                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1458                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1459                 if (unlink)
1460                         list_del_init(&dev->close_list);
1461         }
1462
1463         return 0;
1464 }
1465 EXPORT_SYMBOL(dev_close_many);
1466
1467 /**
1468  *      dev_close - shutdown an interface.
1469  *      @dev: device to shutdown
1470  *
1471  *      This function moves an active device into down state. A
1472  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1473  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1474  *      chain.
1475  */
1476 int dev_close(struct net_device *dev)
1477 {
1478         if (dev->flags & IFF_UP) {
1479                 LIST_HEAD(single);
1480
1481                 list_add(&dev->close_list, &single);
1482                 dev_close_many(&single, true);
1483                 list_del(&single);
1484         }
1485         return 0;
1486 }
1487 EXPORT_SYMBOL(dev_close);
1488
1489
1490 /**
1491  *      dev_disable_lro - disable Large Receive Offload on a device
1492  *      @dev: device
1493  *
1494  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1495  *      called under RTNL.  This is needed if received packets may be
1496  *      forwarded to another interface.
1497  */
1498 void dev_disable_lro(struct net_device *dev)
1499 {
1500         struct net_device *lower_dev;
1501         struct list_head *iter;
1502
1503         dev->wanted_features &= ~NETIF_F_LRO;
1504         netdev_update_features(dev);
1505
1506         if (unlikely(dev->features & NETIF_F_LRO))
1507                 netdev_WARN(dev, "failed to disable LRO!\n");
1508
1509         netdev_for_each_lower_dev(dev, lower_dev, iter)
1510                 dev_disable_lro(lower_dev);
1511 }
1512 EXPORT_SYMBOL(dev_disable_lro);
1513
1514 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1515                                    struct net_device *dev)
1516 {
1517         struct netdev_notifier_info info;
1518
1519         netdev_notifier_info_init(&info, dev);
1520         return nb->notifier_call(nb, val, &info);
1521 }
1522
1523 static int dev_boot_phase = 1;
1524
1525 /**
1526  * register_netdevice_notifier - register a network notifier block
1527  * @nb: notifier
1528  *
1529  * Register a notifier to be called when network device events occur.
1530  * The notifier passed is linked into the kernel structures and must
1531  * not be reused until it has been unregistered. A negative errno code
1532  * is returned on a failure.
1533  *
1534  * When registered all registration and up events are replayed
1535  * to the new notifier to allow device to have a race free
1536  * view of the network device list.
1537  */
1538
1539 int register_netdevice_notifier(struct notifier_block *nb)
1540 {
1541         struct net_device *dev;
1542         struct net_device *last;
1543         struct net *net;
1544         int err;
1545
1546         rtnl_lock();
1547         err = raw_notifier_chain_register(&netdev_chain, nb);
1548         if (err)
1549                 goto unlock;
1550         if (dev_boot_phase)
1551                 goto unlock;
1552         for_each_net(net) {
1553                 for_each_netdev(net, dev) {
1554                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1555                         err = notifier_to_errno(err);
1556                         if (err)
1557                                 goto rollback;
1558
1559                         if (!(dev->flags & IFF_UP))
1560                                 continue;
1561
1562                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1563                 }
1564         }
1565
1566 unlock:
1567         rtnl_unlock();
1568         return err;
1569
1570 rollback:
1571         last = dev;
1572         for_each_net(net) {
1573                 for_each_netdev(net, dev) {
1574                         if (dev == last)
1575                                 goto outroll;
1576
1577                         if (dev->flags & IFF_UP) {
1578                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1579                                                         dev);
1580                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1581                         }
1582                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1583                 }
1584         }
1585
1586 outroll:
1587         raw_notifier_chain_unregister(&netdev_chain, nb);
1588         goto unlock;
1589 }
1590 EXPORT_SYMBOL(register_netdevice_notifier);
1591
1592 /**
1593  * unregister_netdevice_notifier - unregister a network notifier block
1594  * @nb: notifier
1595  *
1596  * Unregister a notifier previously registered by
1597  * register_netdevice_notifier(). The notifier is unlinked into the
1598  * kernel structures and may then be reused. A negative errno code
1599  * is returned on a failure.
1600  *
1601  * After unregistering unregister and down device events are synthesized
1602  * for all devices on the device list to the removed notifier to remove
1603  * the need for special case cleanup code.
1604  */
1605
1606 int unregister_netdevice_notifier(struct notifier_block *nb)
1607 {
1608         struct net_device *dev;
1609         struct net *net;
1610         int err;
1611
1612         rtnl_lock();
1613         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1614         if (err)
1615                 goto unlock;
1616
1617         for_each_net(net) {
1618                 for_each_netdev(net, dev) {
1619                         if (dev->flags & IFF_UP) {
1620                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1621                                                         dev);
1622                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1623                         }
1624                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1625                 }
1626         }
1627 unlock:
1628         rtnl_unlock();
1629         return err;
1630 }
1631 EXPORT_SYMBOL(unregister_netdevice_notifier);
1632
1633 /**
1634  *      call_netdevice_notifiers_info - call all network notifier blocks
1635  *      @val: value passed unmodified to notifier function
1636  *      @dev: net_device pointer passed unmodified to notifier function
1637  *      @info: notifier information data
1638  *
1639  *      Call all network notifier blocks.  Parameters and return value
1640  *      are as for raw_notifier_call_chain().
1641  */
1642
1643 static int call_netdevice_notifiers_info(unsigned long val,
1644                                          struct net_device *dev,
1645                                          struct netdev_notifier_info *info)
1646 {
1647         ASSERT_RTNL();
1648         netdev_notifier_info_init(info, dev);
1649         return raw_notifier_call_chain(&netdev_chain, val, info);
1650 }
1651
1652 /**
1653  *      call_netdevice_notifiers - call all network notifier blocks
1654  *      @val: value passed unmodified to notifier function
1655  *      @dev: net_device pointer passed unmodified to notifier function
1656  *
1657  *      Call all network notifier blocks.  Parameters and return value
1658  *      are as for raw_notifier_call_chain().
1659  */
1660
1661 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1662 {
1663         struct netdev_notifier_info info;
1664
1665         return call_netdevice_notifiers_info(val, dev, &info);
1666 }
1667 EXPORT_SYMBOL(call_netdevice_notifiers);
1668
1669 #ifdef CONFIG_NET_INGRESS
1670 static struct static_key ingress_needed __read_mostly;
1671
1672 void net_inc_ingress_queue(void)
1673 {
1674         static_key_slow_inc(&ingress_needed);
1675 }
1676 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1677
1678 void net_dec_ingress_queue(void)
1679 {
1680         static_key_slow_dec(&ingress_needed);
1681 }
1682 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1683 #endif
1684
1685 #ifdef CONFIG_NET_EGRESS
1686 static struct static_key egress_needed __read_mostly;
1687
1688 void net_inc_egress_queue(void)
1689 {
1690         static_key_slow_inc(&egress_needed);
1691 }
1692 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1693
1694 void net_dec_egress_queue(void)
1695 {
1696         static_key_slow_dec(&egress_needed);
1697 }
1698 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1699 #endif
1700
1701 static struct static_key netstamp_needed __read_mostly;
1702 #ifdef HAVE_JUMP_LABEL
1703 static atomic_t netstamp_needed_deferred;
1704 static atomic_t netstamp_wanted;
1705 static void netstamp_clear(struct work_struct *work)
1706 {
1707         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708         int wanted;
1709
1710         wanted = atomic_add_return(deferred, &netstamp_wanted);
1711         if (wanted > 0)
1712                 static_key_enable(&netstamp_needed);
1713         else
1714                 static_key_disable(&netstamp_needed);
1715 }
1716 static DECLARE_WORK(netstamp_work, netstamp_clear);
1717 #endif
1718
1719 void net_enable_timestamp(void)
1720 {
1721 #ifdef HAVE_JUMP_LABEL
1722         int wanted;
1723
1724         while (1) {
1725                 wanted = atomic_read(&netstamp_wanted);
1726                 if (wanted <= 0)
1727                         break;
1728                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1729                         return;
1730         }
1731         atomic_inc(&netstamp_needed_deferred);
1732         schedule_work(&netstamp_work);
1733 #else
1734         static_key_slow_inc(&netstamp_needed);
1735 #endif
1736 }
1737 EXPORT_SYMBOL(net_enable_timestamp);
1738
1739 void net_disable_timestamp(void)
1740 {
1741 #ifdef HAVE_JUMP_LABEL
1742         int wanted;
1743
1744         while (1) {
1745                 wanted = atomic_read(&netstamp_wanted);
1746                 if (wanted <= 1)
1747                         break;
1748                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1749                         return;
1750         }
1751         atomic_dec(&netstamp_needed_deferred);
1752         schedule_work(&netstamp_work);
1753 #else
1754         static_key_slow_dec(&netstamp_needed);
1755 #endif
1756 }
1757 EXPORT_SYMBOL(net_disable_timestamp);
1758
1759 static inline void net_timestamp_set(struct sk_buff *skb)
1760 {
1761         skb->tstamp = 0;
1762         if (static_key_false(&netstamp_needed))
1763                 __net_timestamp(skb);
1764 }
1765
1766 #define net_timestamp_check(COND, SKB)                  \
1767         if (static_key_false(&netstamp_needed)) {               \
1768                 if ((COND) && !(SKB)->tstamp)   \
1769                         __net_timestamp(SKB);           \
1770         }                                               \
1771
1772 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1773 {
1774         unsigned int len;
1775
1776         if (!(dev->flags & IFF_UP))
1777                 return false;
1778
1779         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1780         if (skb->len <= len)
1781                 return true;
1782
1783         /* if TSO is enabled, we don't care about the length as the packet
1784          * could be forwarded without being segmented before
1785          */
1786         if (skb_is_gso(skb))
1787                 return true;
1788
1789         return false;
1790 }
1791 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1792
1793 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1794 {
1795         int ret = ____dev_forward_skb(dev, skb);
1796
1797         if (likely(!ret)) {
1798                 skb->protocol = eth_type_trans(skb, dev);
1799                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1800         }
1801
1802         return ret;
1803 }
1804 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1805
1806 /**
1807  * dev_forward_skb - loopback an skb to another netif
1808  *
1809  * @dev: destination network device
1810  * @skb: buffer to forward
1811  *
1812  * return values:
1813  *      NET_RX_SUCCESS  (no congestion)
1814  *      NET_RX_DROP     (packet was dropped, but freed)
1815  *
1816  * dev_forward_skb can be used for injecting an skb from the
1817  * start_xmit function of one device into the receive queue
1818  * of another device.
1819  *
1820  * The receiving device may be in another namespace, so
1821  * we have to clear all information in the skb that could
1822  * impact namespace isolation.
1823  */
1824 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1825 {
1826         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1827 }
1828 EXPORT_SYMBOL_GPL(dev_forward_skb);
1829
1830 static inline int deliver_skb(struct sk_buff *skb,
1831                               struct packet_type *pt_prev,
1832                               struct net_device *orig_dev)
1833 {
1834         if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1835                 return -ENOMEM;
1836         atomic_inc(&skb->users);
1837         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1838 }
1839
1840 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1841                                           struct packet_type **pt,
1842                                           struct net_device *orig_dev,
1843                                           __be16 type,
1844                                           struct list_head *ptype_list)
1845 {
1846         struct packet_type *ptype, *pt_prev = *pt;
1847
1848         list_for_each_entry_rcu(ptype, ptype_list, list) {
1849                 if (ptype->type != type)
1850                         continue;
1851                 if (pt_prev)
1852                         deliver_skb(skb, pt_prev, orig_dev);
1853                 pt_prev = ptype;
1854         }
1855         *pt = pt_prev;
1856 }
1857
1858 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1859 {
1860         if (!ptype->af_packet_priv || !skb->sk)
1861                 return false;
1862
1863         if (ptype->id_match)
1864                 return ptype->id_match(ptype, skb->sk);
1865         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1866                 return true;
1867
1868         return false;
1869 }
1870
1871 /*
1872  *      Support routine. Sends outgoing frames to any network
1873  *      taps currently in use.
1874  */
1875
1876 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1877 {
1878         struct packet_type *ptype;
1879         struct sk_buff *skb2 = NULL;
1880         struct packet_type *pt_prev = NULL;
1881         struct list_head *ptype_list = &ptype_all;
1882
1883         rcu_read_lock();
1884 again:
1885         list_for_each_entry_rcu(ptype, ptype_list, list) {
1886                 /* Never send packets back to the socket
1887                  * they originated from - MvS (miquels@drinkel.ow.org)
1888                  */
1889                 if (skb_loop_sk(ptype, skb))
1890                         continue;
1891
1892                 if (pt_prev) {
1893                         deliver_skb(skb2, pt_prev, skb->dev);
1894                         pt_prev = ptype;
1895                         continue;
1896                 }
1897
1898                 /* need to clone skb, done only once */
1899                 skb2 = skb_clone(skb, GFP_ATOMIC);
1900                 if (!skb2)
1901                         goto out_unlock;
1902
1903                 net_timestamp_set(skb2);
1904
1905                 /* skb->nh should be correctly
1906                  * set by sender, so that the second statement is
1907                  * just protection against buggy protocols.
1908                  */
1909                 skb_reset_mac_header(skb2);
1910
1911                 if (skb_network_header(skb2) < skb2->data ||
1912                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1913                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1914                                              ntohs(skb2->protocol),
1915                                              dev->name);
1916                         skb_reset_network_header(skb2);
1917                 }
1918
1919                 skb2->transport_header = skb2->network_header;
1920                 skb2->pkt_type = PACKET_OUTGOING;
1921                 pt_prev = ptype;
1922         }
1923
1924         if (ptype_list == &ptype_all) {
1925                 ptype_list = &dev->ptype_all;
1926                 goto again;
1927         }
1928 out_unlock:
1929         if (pt_prev)
1930                 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1931         rcu_read_unlock();
1932 }
1933 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1934
1935 /**
1936  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1937  * @dev: Network device
1938  * @txq: number of queues available
1939  *
1940  * If real_num_tx_queues is changed the tc mappings may no longer be
1941  * valid. To resolve this verify the tc mapping remains valid and if
1942  * not NULL the mapping. With no priorities mapping to this
1943  * offset/count pair it will no longer be used. In the worst case TC0
1944  * is invalid nothing can be done so disable priority mappings. If is
1945  * expected that drivers will fix this mapping if they can before
1946  * calling netif_set_real_num_tx_queues.
1947  */
1948 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1949 {
1950         int i;
1951         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1952
1953         /* If TC0 is invalidated disable TC mapping */
1954         if (tc->offset + tc->count > txq) {
1955                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1956                 dev->num_tc = 0;
1957                 return;
1958         }
1959
1960         /* Invalidated prio to tc mappings set to TC0 */
1961         for (i = 1; i < TC_BITMASK + 1; i++) {
1962                 int q = netdev_get_prio_tc_map(dev, i);
1963
1964                 tc = &dev->tc_to_txq[q];
1965                 if (tc->offset + tc->count > txq) {
1966                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1967                                 i, q);
1968                         netdev_set_prio_tc_map(dev, i, 0);
1969                 }
1970         }
1971 }
1972
1973 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
1974 {
1975         if (dev->num_tc) {
1976                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1977                 int i;
1978
1979                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
1980                         if ((txq - tc->offset) < tc->count)
1981                                 return i;
1982                 }
1983
1984                 return -1;
1985         }
1986
1987         return 0;
1988 }
1989
1990 #ifdef CONFIG_XPS
1991 static DEFINE_MUTEX(xps_map_mutex);
1992 #define xmap_dereference(P)             \
1993         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1994
1995 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
1996                              int tci, u16 index)
1997 {
1998         struct xps_map *map = NULL;
1999         int pos;
2000
2001         if (dev_maps)
2002                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2003         if (!map)
2004                 return false;
2005
2006         for (pos = map->len; pos--;) {
2007                 if (map->queues[pos] != index)
2008                         continue;
2009
2010                 if (map->len > 1) {
2011                         map->queues[pos] = map->queues[--map->len];
2012                         break;
2013                 }
2014
2015                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2016                 kfree_rcu(map, rcu);
2017                 return false;
2018         }
2019
2020         return true;
2021 }
2022
2023 static bool remove_xps_queue_cpu(struct net_device *dev,
2024                                  struct xps_dev_maps *dev_maps,
2025                                  int cpu, u16 offset, u16 count)
2026 {
2027         int num_tc = dev->num_tc ? : 1;
2028         bool active = false;
2029         int tci;
2030
2031         for (tci = cpu * num_tc; num_tc--; tci++) {
2032                 int i, j;
2033
2034                 for (i = count, j = offset; i--; j++) {
2035                         if (!remove_xps_queue(dev_maps, cpu, j))
2036                                 break;
2037                 }
2038
2039                 active |= i < 0;
2040         }
2041
2042         return active;
2043 }
2044
2045 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2046                                    u16 count)
2047 {
2048         struct xps_dev_maps *dev_maps;
2049         int cpu, i;
2050         bool active = false;
2051
2052         mutex_lock(&xps_map_mutex);
2053         dev_maps = xmap_dereference(dev->xps_maps);
2054
2055         if (!dev_maps)
2056                 goto out_no_maps;
2057
2058         for_each_possible_cpu(cpu)
2059                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2060                                                offset, count);
2061
2062         if (!active) {
2063                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2064                 kfree_rcu(dev_maps, rcu);
2065         }
2066
2067         for (i = offset + (count - 1); count--; i--)
2068                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2069                                              NUMA_NO_NODE);
2070
2071 out_no_maps:
2072         mutex_unlock(&xps_map_mutex);
2073 }
2074
2075 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2076 {
2077         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2078 }
2079
2080 static struct xps_map *expand_xps_map(struct xps_map *map,
2081                                       int cpu, u16 index)
2082 {
2083         struct xps_map *new_map;
2084         int alloc_len = XPS_MIN_MAP_ALLOC;
2085         int i, pos;
2086
2087         for (pos = 0; map && pos < map->len; pos++) {
2088                 if (map->queues[pos] != index)
2089                         continue;
2090                 return map;
2091         }
2092
2093         /* Need to add queue to this CPU's existing map */
2094         if (map) {
2095                 if (pos < map->alloc_len)
2096                         return map;
2097
2098                 alloc_len = map->alloc_len * 2;
2099         }
2100
2101         /* Need to allocate new map to store queue on this CPU's map */
2102         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2103                                cpu_to_node(cpu));
2104         if (!new_map)
2105                 return NULL;
2106
2107         for (i = 0; i < pos; i++)
2108                 new_map->queues[i] = map->queues[i];
2109         new_map->alloc_len = alloc_len;
2110         new_map->len = pos;
2111
2112         return new_map;
2113 }
2114
2115 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2116                         u16 index)
2117 {
2118         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2119         int i, cpu, tci, numa_node_id = -2;
2120         int maps_sz, num_tc = 1, tc = 0;
2121         struct xps_map *map, *new_map;
2122         bool active = false;
2123
2124         if (dev->num_tc) {
2125                 num_tc = dev->num_tc;
2126                 tc = netdev_txq_to_tc(dev, index);
2127                 if (tc < 0)
2128                         return -EINVAL;
2129         }
2130
2131         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2132         if (maps_sz < L1_CACHE_BYTES)
2133                 maps_sz = L1_CACHE_BYTES;
2134
2135         mutex_lock(&xps_map_mutex);
2136
2137         dev_maps = xmap_dereference(dev->xps_maps);
2138
2139         /* allocate memory for queue storage */
2140         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2141                 if (!new_dev_maps)
2142                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2143                 if (!new_dev_maps) {
2144                         mutex_unlock(&xps_map_mutex);
2145                         return -ENOMEM;
2146                 }
2147
2148                 tci = cpu * num_tc + tc;
2149                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2150                                  NULL;
2151
2152                 map = expand_xps_map(map, cpu, index);
2153                 if (!map)
2154                         goto error;
2155
2156                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2157         }
2158
2159         if (!new_dev_maps)
2160                 goto out_no_new_maps;
2161
2162         for_each_possible_cpu(cpu) {
2163                 /* copy maps belonging to foreign traffic classes */
2164                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2165                         /* fill in the new device map from the old device map */
2166                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2167                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2168                 }
2169
2170                 /* We need to explicitly update tci as prevous loop
2171                  * could break out early if dev_maps is NULL.
2172                  */
2173                 tci = cpu * num_tc + tc;
2174
2175                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2176                         /* add queue to CPU maps */
2177                         int pos = 0;
2178
2179                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2180                         while ((pos < map->len) && (map->queues[pos] != index))
2181                                 pos++;
2182
2183                         if (pos == map->len)
2184                                 map->queues[map->len++] = index;
2185 #ifdef CONFIG_NUMA
2186                         if (numa_node_id == -2)
2187                                 numa_node_id = cpu_to_node(cpu);
2188                         else if (numa_node_id != cpu_to_node(cpu))
2189                                 numa_node_id = -1;
2190 #endif
2191                 } else if (dev_maps) {
2192                         /* fill in the new device map from the old device map */
2193                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2194                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2195                 }
2196
2197                 /* copy maps belonging to foreign traffic classes */
2198                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2199                         /* fill in the new device map from the old device map */
2200                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2201                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2202                 }
2203         }
2204
2205         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2206
2207         /* Cleanup old maps */
2208         if (!dev_maps)
2209                 goto out_no_old_maps;
2210
2211         for_each_possible_cpu(cpu) {
2212                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2213                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2214                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2215                         if (map && map != new_map)
2216                                 kfree_rcu(map, rcu);
2217                 }
2218         }
2219
2220         kfree_rcu(dev_maps, rcu);
2221
2222 out_no_old_maps:
2223         dev_maps = new_dev_maps;
2224         active = true;
2225
2226 out_no_new_maps:
2227         /* update Tx queue numa node */
2228         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2229                                      (numa_node_id >= 0) ? numa_node_id :
2230                                      NUMA_NO_NODE);
2231
2232         if (!dev_maps)
2233                 goto out_no_maps;
2234
2235         /* removes queue from unused CPUs */
2236         for_each_possible_cpu(cpu) {
2237                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2238                         active |= remove_xps_queue(dev_maps, tci, index);
2239                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2240                         active |= remove_xps_queue(dev_maps, tci, index);
2241                 for (i = num_tc - tc, tci++; --i; tci++)
2242                         active |= remove_xps_queue(dev_maps, tci, index);
2243         }
2244
2245         /* free map if not active */
2246         if (!active) {
2247                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2248                 kfree_rcu(dev_maps, rcu);
2249         }
2250
2251 out_no_maps:
2252         mutex_unlock(&xps_map_mutex);
2253
2254         return 0;
2255 error:
2256         /* remove any maps that we added */
2257         for_each_possible_cpu(cpu) {
2258                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2259                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2260                         map = dev_maps ?
2261                               xmap_dereference(dev_maps->cpu_map[tci]) :
2262                               NULL;
2263                         if (new_map && new_map != map)
2264                                 kfree(new_map);
2265                 }
2266         }
2267
2268         mutex_unlock(&xps_map_mutex);
2269
2270         kfree(new_dev_maps);
2271         return -ENOMEM;
2272 }
2273 EXPORT_SYMBOL(netif_set_xps_queue);
2274
2275 #endif
2276 void netdev_reset_tc(struct net_device *dev)
2277 {
2278 #ifdef CONFIG_XPS
2279         netif_reset_xps_queues_gt(dev, 0);
2280 #endif
2281         dev->num_tc = 0;
2282         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2283         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2284 }
2285 EXPORT_SYMBOL(netdev_reset_tc);
2286
2287 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2288 {
2289         if (tc >= dev->num_tc)
2290                 return -EINVAL;
2291
2292 #ifdef CONFIG_XPS
2293         netif_reset_xps_queues(dev, offset, count);
2294 #endif
2295         dev->tc_to_txq[tc].count = count;
2296         dev->tc_to_txq[tc].offset = offset;
2297         return 0;
2298 }
2299 EXPORT_SYMBOL(netdev_set_tc_queue);
2300
2301 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2302 {
2303         if (num_tc > TC_MAX_QUEUE)
2304                 return -EINVAL;
2305
2306 #ifdef CONFIG_XPS
2307         netif_reset_xps_queues_gt(dev, 0);
2308 #endif
2309         dev->num_tc = num_tc;
2310         return 0;
2311 }
2312 EXPORT_SYMBOL(netdev_set_num_tc);
2313
2314 /*
2315  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2316  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2317  */
2318 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2319 {
2320         int rc;
2321
2322         if (txq < 1 || txq > dev->num_tx_queues)
2323                 return -EINVAL;
2324
2325         if (dev->reg_state == NETREG_REGISTERED ||
2326             dev->reg_state == NETREG_UNREGISTERING) {
2327                 ASSERT_RTNL();
2328
2329                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2330                                                   txq);
2331                 if (rc)
2332                         return rc;
2333
2334                 if (dev->num_tc)
2335                         netif_setup_tc(dev, txq);
2336
2337                 if (txq < dev->real_num_tx_queues) {
2338                         qdisc_reset_all_tx_gt(dev, txq);
2339 #ifdef CONFIG_XPS
2340                         netif_reset_xps_queues_gt(dev, txq);
2341 #endif
2342                 }
2343         }
2344
2345         dev->real_num_tx_queues = txq;
2346         return 0;
2347 }
2348 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2349
2350 #ifdef CONFIG_SYSFS
2351 /**
2352  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2353  *      @dev: Network device
2354  *      @rxq: Actual number of RX queues
2355  *
2356  *      This must be called either with the rtnl_lock held or before
2357  *      registration of the net device.  Returns 0 on success, or a
2358  *      negative error code.  If called before registration, it always
2359  *      succeeds.
2360  */
2361 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2362 {
2363         int rc;
2364
2365         if (rxq < 1 || rxq > dev->num_rx_queues)
2366                 return -EINVAL;
2367
2368         if (dev->reg_state == NETREG_REGISTERED) {
2369                 ASSERT_RTNL();
2370
2371                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2372                                                   rxq);
2373                 if (rc)
2374                         return rc;
2375         }
2376
2377         dev->real_num_rx_queues = rxq;
2378         return 0;
2379 }
2380 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2381 #endif
2382
2383 /**
2384  * netif_get_num_default_rss_queues - default number of RSS queues
2385  *
2386  * This routine should set an upper limit on the number of RSS queues
2387  * used by default by multiqueue devices.
2388  */
2389 int netif_get_num_default_rss_queues(void)
2390 {
2391         return is_kdump_kernel() ?
2392                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2393 }
2394 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2395
2396 static void __netif_reschedule(struct Qdisc *q)
2397 {
2398         struct softnet_data *sd;
2399         unsigned long flags;
2400
2401         local_irq_save(flags);
2402         sd = this_cpu_ptr(&softnet_data);
2403         q->next_sched = NULL;
2404         *sd->output_queue_tailp = q;
2405         sd->output_queue_tailp = &q->next_sched;
2406         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2407         local_irq_restore(flags);
2408 }
2409
2410 void __netif_schedule(struct Qdisc *q)
2411 {
2412         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2413                 __netif_reschedule(q);
2414 }
2415 EXPORT_SYMBOL(__netif_schedule);
2416
2417 struct dev_kfree_skb_cb {
2418         enum skb_free_reason reason;
2419 };
2420
2421 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2422 {
2423         return (struct dev_kfree_skb_cb *)skb->cb;
2424 }
2425
2426 void netif_schedule_queue(struct netdev_queue *txq)
2427 {
2428         rcu_read_lock();
2429         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2430                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2431
2432                 __netif_schedule(q);
2433         }
2434         rcu_read_unlock();
2435 }
2436 EXPORT_SYMBOL(netif_schedule_queue);
2437
2438 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2439 {
2440         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2441                 struct Qdisc *q;
2442
2443                 rcu_read_lock();
2444                 q = rcu_dereference(dev_queue->qdisc);
2445                 __netif_schedule(q);
2446                 rcu_read_unlock();
2447         }
2448 }
2449 EXPORT_SYMBOL(netif_tx_wake_queue);
2450
2451 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2452 {
2453         unsigned long flags;
2454
2455         if (unlikely(!skb))
2456                 return;
2457
2458         if (likely(atomic_read(&skb->users) == 1)) {
2459                 smp_rmb();
2460                 atomic_set(&skb->users, 0);
2461         } else if (likely(!atomic_dec_and_test(&skb->users))) {
2462                 return;
2463         }
2464         get_kfree_skb_cb(skb)->reason = reason;
2465         local_irq_save(flags);
2466         skb->next = __this_cpu_read(softnet_data.completion_queue);
2467         __this_cpu_write(softnet_data.completion_queue, skb);
2468         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2469         local_irq_restore(flags);
2470 }
2471 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2472
2473 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2474 {
2475         if (in_irq() || irqs_disabled())
2476                 __dev_kfree_skb_irq(skb, reason);
2477         else
2478                 dev_kfree_skb(skb);
2479 }
2480 EXPORT_SYMBOL(__dev_kfree_skb_any);
2481
2482
2483 /**
2484  * netif_device_detach - mark device as removed
2485  * @dev: network device
2486  *
2487  * Mark device as removed from system and therefore no longer available.
2488  */
2489 void netif_device_detach(struct net_device *dev)
2490 {
2491         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2492             netif_running(dev)) {
2493                 netif_tx_stop_all_queues(dev);
2494         }
2495 }
2496 EXPORT_SYMBOL(netif_device_detach);
2497
2498 /**
2499  * netif_device_attach - mark device as attached
2500  * @dev: network device
2501  *
2502  * Mark device as attached from system and restart if needed.
2503  */
2504 void netif_device_attach(struct net_device *dev)
2505 {
2506         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2507             netif_running(dev)) {
2508                 netif_tx_wake_all_queues(dev);
2509                 __netdev_watchdog_up(dev);
2510         }
2511 }
2512 EXPORT_SYMBOL(netif_device_attach);
2513
2514 /*
2515  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2516  * to be used as a distribution range.
2517  */
2518 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2519                   unsigned int num_tx_queues)
2520 {
2521         u32 hash;
2522         u16 qoffset = 0;
2523         u16 qcount = num_tx_queues;
2524
2525         if (skb_rx_queue_recorded(skb)) {
2526                 hash = skb_get_rx_queue(skb);
2527                 while (unlikely(hash >= num_tx_queues))
2528                         hash -= num_tx_queues;
2529                 return hash;
2530         }
2531
2532         if (dev->num_tc) {
2533                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2534
2535                 qoffset = dev->tc_to_txq[tc].offset;
2536                 qcount = dev->tc_to_txq[tc].count;
2537         }
2538
2539         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2540 }
2541 EXPORT_SYMBOL(__skb_tx_hash);
2542
2543 static void skb_warn_bad_offload(const struct sk_buff *skb)
2544 {
2545         static const netdev_features_t null_features;
2546         struct net_device *dev = skb->dev;
2547         const char *name = "";
2548
2549         if (!net_ratelimit())
2550                 return;
2551
2552         if (dev) {
2553                 if (dev->dev.parent)
2554                         name = dev_driver_string(dev->dev.parent);
2555                 else
2556                         name = netdev_name(dev);
2557         }
2558         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2559              "gso_type=%d ip_summed=%d\n",
2560              name, dev ? &dev->features : &null_features,
2561              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2562              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2563              skb_shinfo(skb)->gso_type, skb->ip_summed);
2564 }
2565
2566 /*
2567  * Invalidate hardware checksum when packet is to be mangled, and
2568  * complete checksum manually on outgoing path.
2569  */
2570 int skb_checksum_help(struct sk_buff *skb)
2571 {
2572         __wsum csum;
2573         int ret = 0, offset;
2574
2575         if (skb->ip_summed == CHECKSUM_COMPLETE)
2576                 goto out_set_summed;
2577
2578         if (unlikely(skb_shinfo(skb)->gso_size)) {
2579                 skb_warn_bad_offload(skb);
2580                 return -EINVAL;
2581         }
2582
2583         /* Before computing a checksum, we should make sure no frag could
2584          * be modified by an external entity : checksum could be wrong.
2585          */
2586         if (skb_has_shared_frag(skb)) {
2587                 ret = __skb_linearize(skb);
2588                 if (ret)
2589                         goto out;
2590         }
2591
2592         offset = skb_checksum_start_offset(skb);
2593         BUG_ON(offset >= skb_headlen(skb));
2594         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2595
2596         offset += skb->csum_offset;
2597         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2598
2599         if (skb_cloned(skb) &&
2600             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2601                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2602                 if (ret)
2603                         goto out;
2604         }
2605
2606         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2607 out_set_summed:
2608         skb->ip_summed = CHECKSUM_NONE;
2609 out:
2610         return ret;
2611 }
2612 EXPORT_SYMBOL(skb_checksum_help);
2613
2614 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2615 {
2616         __be16 type = skb->protocol;
2617
2618         /* Tunnel gso handlers can set protocol to ethernet. */
2619         if (type == htons(ETH_P_TEB)) {
2620                 struct ethhdr *eth;
2621
2622                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2623                         return 0;
2624
2625                 eth = (struct ethhdr *)skb_mac_header(skb);
2626                 type = eth->h_proto;
2627         }
2628
2629         return __vlan_get_protocol(skb, type, depth);
2630 }
2631
2632 /**
2633  *      skb_mac_gso_segment - mac layer segmentation handler.
2634  *      @skb: buffer to segment
2635  *      @features: features for the output path (see dev->features)
2636  */
2637 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2638                                     netdev_features_t features)
2639 {
2640         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2641         struct packet_offload *ptype;
2642         int vlan_depth = skb->mac_len;
2643         __be16 type = skb_network_protocol(skb, &vlan_depth);
2644
2645         if (unlikely(!type))
2646                 return ERR_PTR(-EINVAL);
2647
2648         __skb_pull(skb, vlan_depth);
2649
2650         rcu_read_lock();
2651         list_for_each_entry_rcu(ptype, &offload_base, list) {
2652                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2653                         segs = ptype->callbacks.gso_segment(skb, features);
2654                         break;
2655                 }
2656         }
2657         rcu_read_unlock();
2658
2659         __skb_push(skb, skb->data - skb_mac_header(skb));
2660
2661         return segs;
2662 }
2663 EXPORT_SYMBOL(skb_mac_gso_segment);
2664
2665
2666 /* openvswitch calls this on rx path, so we need a different check.
2667  */
2668 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2669 {
2670         if (tx_path)
2671                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2672                        skb->ip_summed != CHECKSUM_NONE;
2673
2674         return skb->ip_summed == CHECKSUM_NONE;
2675 }
2676
2677 /**
2678  *      __skb_gso_segment - Perform segmentation on skb.
2679  *      @skb: buffer to segment
2680  *      @features: features for the output path (see dev->features)
2681  *      @tx_path: whether it is called in TX path
2682  *
2683  *      This function segments the given skb and returns a list of segments.
2684  *
2685  *      It may return NULL if the skb requires no segmentation.  This is
2686  *      only possible when GSO is used for verifying header integrity.
2687  *
2688  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2689  */
2690 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2691                                   netdev_features_t features, bool tx_path)
2692 {
2693         struct sk_buff *segs;
2694
2695         if (unlikely(skb_needs_check(skb, tx_path))) {
2696                 int err;
2697
2698                 /* We're going to init ->check field in TCP or UDP header */
2699                 err = skb_cow_head(skb, 0);
2700                 if (err < 0)
2701                         return ERR_PTR(err);
2702         }
2703
2704         /* Only report GSO partial support if it will enable us to
2705          * support segmentation on this frame without needing additional
2706          * work.
2707          */
2708         if (features & NETIF_F_GSO_PARTIAL) {
2709                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2710                 struct net_device *dev = skb->dev;
2711
2712                 partial_features |= dev->features & dev->gso_partial_features;
2713                 if (!skb_gso_ok(skb, features | partial_features))
2714                         features &= ~NETIF_F_GSO_PARTIAL;
2715         }
2716
2717         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2718                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2719
2720         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2721         SKB_GSO_CB(skb)->encap_level = 0;
2722
2723         skb_reset_mac_header(skb);
2724         skb_reset_mac_len(skb);
2725
2726         segs = skb_mac_gso_segment(skb, features);
2727
2728         if (unlikely(skb_needs_check(skb, tx_path)))
2729                 skb_warn_bad_offload(skb);
2730
2731         return segs;
2732 }
2733 EXPORT_SYMBOL(__skb_gso_segment);
2734
2735 /* Take action when hardware reception checksum errors are detected. */
2736 #ifdef CONFIG_BUG
2737 void netdev_rx_csum_fault(struct net_device *dev)
2738 {
2739         if (net_ratelimit()) {
2740                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2741                 dump_stack();
2742         }
2743 }
2744 EXPORT_SYMBOL(netdev_rx_csum_fault);
2745 #endif
2746
2747 /* Actually, we should eliminate this check as soon as we know, that:
2748  * 1. IOMMU is present and allows to map all the memory.
2749  * 2. No high memory really exists on this machine.
2750  */
2751
2752 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2753 {
2754 #ifdef CONFIG_HIGHMEM
2755         int i;
2756
2757         if (!(dev->features & NETIF_F_HIGHDMA)) {
2758                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2759                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2760
2761                         if (PageHighMem(skb_frag_page(frag)))
2762                                 return 1;
2763                 }
2764         }
2765
2766         if (PCI_DMA_BUS_IS_PHYS) {
2767                 struct device *pdev = dev->dev.parent;
2768
2769                 if (!pdev)
2770                         return 0;
2771                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2772                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2773                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2774
2775                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2776                                 return 1;
2777                 }
2778         }
2779 #endif
2780         return 0;
2781 }
2782
2783 /* If MPLS offload request, verify we are testing hardware MPLS features
2784  * instead of standard features for the netdev.
2785  */
2786 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2787 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2788                                            netdev_features_t features,
2789                                            __be16 type)
2790 {
2791         if (eth_p_mpls(type))
2792                 features &= skb->dev->mpls_features;
2793
2794         return features;
2795 }
2796 #else
2797 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2798                                            netdev_features_t features,
2799                                            __be16 type)
2800 {
2801         return features;
2802 }
2803 #endif
2804
2805 static netdev_features_t harmonize_features(struct sk_buff *skb,
2806         netdev_features_t features)
2807 {
2808         int tmp;
2809         __be16 type;
2810
2811         type = skb_network_protocol(skb, &tmp);
2812         features = net_mpls_features(skb, features, type);
2813
2814         if (skb->ip_summed != CHECKSUM_NONE &&
2815             !can_checksum_protocol(features, type)) {
2816                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2817         }
2818         if (illegal_highdma(skb->dev, skb))
2819                 features &= ~NETIF_F_SG;
2820
2821         return features;
2822 }
2823
2824 netdev_features_t passthru_features_check(struct sk_buff *skb,
2825                                           struct net_device *dev,
2826                                           netdev_features_t features)
2827 {
2828         return features;
2829 }
2830 EXPORT_SYMBOL(passthru_features_check);
2831
2832 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2833                                              struct net_device *dev,
2834                                              netdev_features_t features)
2835 {
2836         return vlan_features_check(skb, features);
2837 }
2838
2839 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2840                                             struct net_device *dev,
2841                                             netdev_features_t features)
2842 {
2843         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2844
2845         if (gso_segs > dev->gso_max_segs)
2846                 return features & ~NETIF_F_GSO_MASK;
2847
2848         /* Support for GSO partial features requires software
2849          * intervention before we can actually process the packets
2850          * so we need to strip support for any partial features now
2851          * and we can pull them back in after we have partially
2852          * segmented the frame.
2853          */
2854         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2855                 features &= ~dev->gso_partial_features;
2856
2857         /* Make sure to clear the IPv4 ID mangling feature if the
2858          * IPv4 header has the potential to be fragmented.
2859          */
2860         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2861                 struct iphdr *iph = skb->encapsulation ?
2862                                     inner_ip_hdr(skb) : ip_hdr(skb);
2863
2864                 if (!(iph->frag_off & htons(IP_DF)))
2865                         features &= ~NETIF_F_TSO_MANGLEID;
2866         }
2867
2868         return features;
2869 }
2870
2871 netdev_features_t netif_skb_features(struct sk_buff *skb)
2872 {
2873         struct net_device *dev = skb->dev;
2874         netdev_features_t features = dev->features;
2875
2876         if (skb_is_gso(skb))
2877                 features = gso_features_check(skb, dev, features);
2878
2879         /* If encapsulation offload request, verify we are testing
2880          * hardware encapsulation features instead of standard
2881          * features for the netdev
2882          */
2883         if (skb->encapsulation)
2884                 features &= dev->hw_enc_features;
2885
2886         if (skb_vlan_tagged(skb))
2887                 features = netdev_intersect_features(features,
2888                                                      dev->vlan_features |
2889                                                      NETIF_F_HW_VLAN_CTAG_TX |
2890                                                      NETIF_F_HW_VLAN_STAG_TX);
2891
2892         if (dev->netdev_ops->ndo_features_check)
2893                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
2894                                                                 features);
2895         else
2896                 features &= dflt_features_check(skb, dev, features);
2897
2898         return harmonize_features(skb, features);
2899 }
2900 EXPORT_SYMBOL(netif_skb_features);
2901
2902 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2903                     struct netdev_queue *txq, bool more)
2904 {
2905         unsigned int len;
2906         int rc;
2907
2908         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2909                 dev_queue_xmit_nit(skb, dev);
2910
2911         len = skb->len;
2912         trace_net_dev_start_xmit(skb, dev);
2913         rc = netdev_start_xmit(skb, dev, txq, more);
2914         trace_net_dev_xmit(skb, rc, dev, len);
2915
2916         return rc;
2917 }
2918
2919 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2920                                     struct netdev_queue *txq, int *ret)
2921 {
2922         struct sk_buff *skb = first;
2923         int rc = NETDEV_TX_OK;
2924
2925         while (skb) {
2926                 struct sk_buff *next = skb->next;
2927
2928                 skb->next = NULL;
2929                 rc = xmit_one(skb, dev, txq, next != NULL);
2930                 if (unlikely(!dev_xmit_complete(rc))) {
2931                         skb->next = next;
2932                         goto out;
2933                 }
2934
2935                 skb = next;
2936                 if (netif_xmit_stopped(txq) && skb) {
2937                         rc = NETDEV_TX_BUSY;
2938                         break;
2939                 }
2940         }
2941
2942 out:
2943         *ret = rc;
2944         return skb;
2945 }
2946
2947 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2948                                           netdev_features_t features)
2949 {
2950         if (skb_vlan_tag_present(skb) &&
2951             !vlan_hw_offload_capable(features, skb->vlan_proto))
2952                 skb = __vlan_hwaccel_push_inside(skb);
2953         return skb;
2954 }
2955
2956 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
2957 {
2958         netdev_features_t features;
2959
2960         features = netif_skb_features(skb);
2961         skb = validate_xmit_vlan(skb, features);
2962         if (unlikely(!skb))
2963                 goto out_null;
2964
2965         if (netif_needs_gso(skb, features)) {
2966                 struct sk_buff *segs;
2967
2968                 segs = skb_gso_segment(skb, features);
2969                 if (IS_ERR(segs)) {
2970                         goto out_kfree_skb;
2971                 } else if (segs) {
2972                         consume_skb(skb);
2973                         skb = segs;
2974                 }
2975         } else {
2976                 if (skb_needs_linearize(skb, features) &&
2977                     __skb_linearize(skb))
2978                         goto out_kfree_skb;
2979
2980                 if (validate_xmit_xfrm(skb, features))
2981                         goto out_kfree_skb;
2982
2983                 /* If packet is not checksummed and device does not
2984                  * support checksumming for this protocol, complete
2985                  * checksumming here.
2986                  */
2987                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2988                         if (skb->encapsulation)
2989                                 skb_set_inner_transport_header(skb,
2990                                                                skb_checksum_start_offset(skb));
2991                         else
2992                                 skb_set_transport_header(skb,
2993                                                          skb_checksum_start_offset(skb));
2994                         if (!(features & NETIF_F_CSUM_MASK) &&
2995                             skb_checksum_help(skb))
2996                                 goto out_kfree_skb;
2997                 }
2998         }
2999
3000         return skb;
3001
3002 out_kfree_skb:
3003         kfree_skb(skb);
3004 out_null:
3005         atomic_long_inc(&dev->tx_dropped);
3006         return NULL;
3007 }
3008
3009 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
3010 {
3011         struct sk_buff *next, *head = NULL, *tail;
3012
3013         for (; skb != NULL; skb = next) {
3014                 next = skb->next;
3015                 skb->next = NULL;
3016
3017                 /* in case skb wont be segmented, point to itself */
3018                 skb->prev = skb;
3019
3020                 skb = validate_xmit_skb(skb, dev);
3021                 if (!skb)
3022                         continue;
3023
3024                 if (!head)
3025                         head = skb;
3026                 else
3027                         tail->next = skb;
3028                 /* If skb was segmented, skb->prev points to
3029                  * the last segment. If not, it still contains skb.
3030                  */
3031                 tail = skb->prev;
3032         }
3033         return head;
3034 }
3035 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3036
3037 static void qdisc_pkt_len_init(struct sk_buff *skb)
3038 {
3039         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3040
3041         qdisc_skb_cb(skb)->pkt_len = skb->len;
3042
3043         /* To get more precise estimation of bytes sent on wire,
3044          * we add to pkt_len the headers size of all segments
3045          */
3046         if (shinfo->gso_size)  {
3047                 unsigned int hdr_len;
3048                 u16 gso_segs = shinfo->gso_segs;
3049
3050                 /* mac layer + network layer */
3051                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3052
3053                 /* + transport layer */
3054                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3055                         hdr_len += tcp_hdrlen(skb);
3056                 else
3057                         hdr_len += sizeof(struct udphdr);
3058
3059                 if (shinfo->gso_type & SKB_GSO_DODGY)
3060                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3061                                                 shinfo->gso_size);
3062
3063                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3064         }
3065 }
3066
3067 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3068                                  struct net_device *dev,
3069                                  struct netdev_queue *txq)
3070 {
3071         spinlock_t *root_lock = qdisc_lock(q);
3072         struct sk_buff *to_free = NULL;
3073         bool contended;
3074         int rc;
3075
3076         qdisc_calculate_pkt_len(skb, q);
3077         /*
3078          * Heuristic to force contended enqueues to serialize on a
3079          * separate lock before trying to get qdisc main lock.
3080          * This permits qdisc->running owner to get the lock more
3081          * often and dequeue packets faster.
3082          */
3083         contended = qdisc_is_running(q);
3084         if (unlikely(contended))
3085                 spin_lock(&q->busylock);
3086
3087         spin_lock(root_lock);
3088         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3089                 __qdisc_drop(skb, &to_free);
3090                 rc = NET_XMIT_DROP;
3091         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3092                    qdisc_run_begin(q)) {
3093                 /*
3094                  * This is a work-conserving queue; there are no old skbs
3095                  * waiting to be sent out; and the qdisc is not running -
3096                  * xmit the skb directly.
3097                  */
3098
3099                 qdisc_bstats_update(q, skb);
3100
3101                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3102                         if (unlikely(contended)) {
3103                                 spin_unlock(&q->busylock);
3104                                 contended = false;
3105                         }
3106                         __qdisc_run(q);
3107                 } else
3108                         qdisc_run_end(q);
3109
3110                 rc = NET_XMIT_SUCCESS;
3111         } else {
3112                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3113                 if (qdisc_run_begin(q)) {
3114                         if (unlikely(contended)) {
3115                                 spin_unlock(&q->busylock);
3116                                 contended = false;
3117                         }
3118                         __qdisc_run(q);
3119                 }
3120         }
3121         spin_unlock(root_lock);
3122         if (unlikely(to_free))
3123                 kfree_skb_list(to_free);
3124         if (unlikely(contended))
3125                 spin_unlock(&q->busylock);
3126         return rc;
3127 }
3128
3129 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3130 static void skb_update_prio(struct sk_buff *skb)
3131 {
3132         struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
3133
3134         if (!skb->priority && skb->sk && map) {
3135                 unsigned int prioidx =
3136                         sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
3137
3138                 if (prioidx < map->priomap_len)
3139                         skb->priority = map->priomap[prioidx];
3140         }
3141 }
3142 #else
3143 #define skb_update_prio(skb)
3144 #endif
3145
3146 DEFINE_PER_CPU(int, xmit_recursion);
3147 EXPORT_SYMBOL(xmit_recursion);
3148
3149 /**
3150  *      dev_loopback_xmit - loop back @skb
3151  *      @net: network namespace this loopback is happening in
3152  *      @sk:  sk needed to be a netfilter okfn
3153  *      @skb: buffer to transmit
3154  */
3155 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3156 {
3157         skb_reset_mac_header(skb);
3158         __skb_pull(skb, skb_network_offset(skb));
3159         skb->pkt_type = PACKET_LOOPBACK;
3160         skb->ip_summed = CHECKSUM_UNNECESSARY;
3161         WARN_ON(!skb_dst(skb));
3162         skb_dst_force(skb);
3163         netif_rx_ni(skb);
3164         return 0;
3165 }
3166 EXPORT_SYMBOL(dev_loopback_xmit);
3167
3168 #ifdef CONFIG_NET_EGRESS
3169 static struct sk_buff *
3170 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3171 {
3172         struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3173         struct tcf_result cl_res;
3174
3175         if (!cl)
3176                 return skb;
3177
3178         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3179         qdisc_bstats_cpu_update(cl->q, skb);
3180
3181         switch (tc_classify(skb, cl, &cl_res, false)) {
3182         case TC_ACT_OK:
3183         case TC_ACT_RECLASSIFY:
3184                 skb->tc_index = TC_H_MIN(cl_res.classid);
3185                 break;
3186         case TC_ACT_SHOT:
3187                 qdisc_qstats_cpu_drop(cl->q);
3188                 *ret = NET_XMIT_DROP;
3189                 kfree_skb(skb);
3190                 return NULL;
3191         case TC_ACT_STOLEN:
3192         case TC_ACT_QUEUED:
3193                 *ret = NET_XMIT_SUCCESS;
3194                 consume_skb(skb);
3195                 return NULL;
3196         case TC_ACT_REDIRECT:
3197                 /* No need to push/pop skb's mac_header here on egress! */
3198                 skb_do_redirect(skb);
3199                 *ret = NET_XMIT_SUCCESS;
3200                 return NULL;
3201         default:
3202                 break;
3203         }
3204
3205         return skb;
3206 }
3207 #endif /* CONFIG_NET_EGRESS */
3208
3209 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3210 {
3211 #ifdef CONFIG_XPS
3212         struct xps_dev_maps *dev_maps;
3213         struct xps_map *map;
3214         int queue_index = -1;
3215
3216         rcu_read_lock();
3217         dev_maps = rcu_dereference(dev->xps_maps);
3218         if (dev_maps) {
3219                 unsigned int tci = skb->sender_cpu - 1;
3220
3221                 if (dev->num_tc) {
3222                         tci *= dev->num_tc;
3223                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3224                 }
3225
3226                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3227                 if (map) {
3228                         if (map->len == 1)
3229                                 queue_index = map->queues[0];
3230                         else
3231                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3232                                                                            map->len)];
3233                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3234                                 queue_index = -1;
3235                 }
3236         }
3237         rcu_read_unlock();
3238
3239         return queue_index;
3240 #else
3241         return -1;
3242 #endif
3243 }
3244
3245 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3246 {
3247         struct sock *sk = skb->sk;
3248         int queue_index = sk_tx_queue_get(sk);
3249
3250         if (queue_index < 0 || skb->ooo_okay ||
3251             queue_index >= dev->real_num_tx_queues) {
3252                 int new_index = get_xps_queue(dev, skb);
3253
3254                 if (new_index < 0)
3255                         new_index = skb_tx_hash(dev, skb);
3256
3257                 if (queue_index != new_index && sk &&
3258                     sk_fullsock(sk) &&
3259                     rcu_access_pointer(sk->sk_dst_cache))
3260                         sk_tx_queue_set(sk, new_index);
3261
3262                 queue_index = new_index;
3263         }
3264
3265         return queue_index;
3266 }
3267
3268 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3269                                     struct sk_buff *skb,
3270                                     void *accel_priv)
3271 {
3272         int queue_index = 0;
3273
3274 #ifdef CONFIG_XPS
3275         u32 sender_cpu = skb->sender_cpu - 1;
3276
3277         if (sender_cpu >= (u32)NR_CPUS)
3278                 skb->sender_cpu = raw_smp_processor_id() + 1;
3279 #endif
3280
3281         if (dev->real_num_tx_queues != 1) {
3282                 const struct net_device_ops *ops = dev->netdev_ops;
3283
3284                 if (ops->ndo_select_queue)
3285                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3286                                                             __netdev_pick_tx);
3287                 else
3288                         queue_index = __netdev_pick_tx(dev, skb);
3289
3290                 if (!accel_priv)
3291                         queue_index = netdev_cap_txqueue(dev, queue_index);
3292         }
3293
3294         skb_set_queue_mapping(skb, queue_index);
3295         return netdev_get_tx_queue(dev, queue_index);
3296 }
3297
3298 /**
3299  *      __dev_queue_xmit - transmit a buffer
3300  *      @skb: buffer to transmit
3301  *      @accel_priv: private data used for L2 forwarding offload
3302  *
3303  *      Queue a buffer for transmission to a network device. The caller must
3304  *      have set the device and priority and built the buffer before calling
3305  *      this function. The function can be called from an interrupt.
3306  *
3307  *      A negative errno code is returned on a failure. A success does not
3308  *      guarantee the frame will be transmitted as it may be dropped due
3309  *      to congestion or traffic shaping.
3310  *
3311  * -----------------------------------------------------------------------------------
3312  *      I notice this method can also return errors from the queue disciplines,
3313  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3314  *      be positive.
3315  *
3316  *      Regardless of the return value, the skb is consumed, so it is currently
3317  *      difficult to retry a send to this method.  (You can bump the ref count
3318  *      before sending to hold a reference for retry if you are careful.)
3319  *
3320  *      When calling this method, interrupts MUST be enabled.  This is because
3321  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3322  *          --BLG
3323  */
3324 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3325 {
3326         struct net_device *dev = skb->dev;
3327         struct netdev_queue *txq;
3328         struct Qdisc *q;
3329         int rc = -ENOMEM;
3330
3331         skb_reset_mac_header(skb);
3332
3333         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3334                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3335
3336         /* Disable soft irqs for various locks below. Also
3337          * stops preemption for RCU.
3338          */
3339         rcu_read_lock_bh();
3340
3341         skb_update_prio(skb);
3342
3343         qdisc_pkt_len_init(skb);
3344 #ifdef CONFIG_NET_CLS_ACT
3345         skb->tc_at_ingress = 0;
3346 # ifdef CONFIG_NET_EGRESS
3347         if (static_key_false(&egress_needed)) {
3348                 skb = sch_handle_egress(skb, &rc, dev);
3349                 if (!skb)
3350                         goto out;
3351         }
3352 # endif
3353 #endif
3354         /* If device/qdisc don't need skb->dst, release it right now while
3355          * its hot in this cpu cache.
3356          */
3357         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3358                 skb_dst_drop(skb);
3359         else
3360                 skb_dst_force(skb);
3361
3362         txq = netdev_pick_tx(dev, skb, accel_priv);
3363         q = rcu_dereference_bh(txq->qdisc);
3364
3365         trace_net_dev_queue(skb);
3366         if (q->enqueue) {
3367                 rc = __dev_xmit_skb(skb, q, dev, txq);
3368                 goto out;
3369         }
3370
3371         /* The device has no queue. Common case for software devices:
3372          * loopback, all the sorts of tunnels...
3373
3374          * Really, it is unlikely that netif_tx_lock protection is necessary
3375          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3376          * counters.)
3377          * However, it is possible, that they rely on protection
3378          * made by us here.
3379
3380          * Check this and shot the lock. It is not prone from deadlocks.
3381          *Either shot noqueue qdisc, it is even simpler 8)
3382          */
3383         if (dev->flags & IFF_UP) {
3384                 int cpu = smp_processor_id(); /* ok because BHs are off */
3385
3386                 if (txq->xmit_lock_owner != cpu) {
3387                         if (unlikely(__this_cpu_read(xmit_recursion) >
3388                                      XMIT_RECURSION_LIMIT))
3389                                 goto recursion_alert;
3390
3391                         skb = validate_xmit_skb(skb, dev);
3392                         if (!skb)
3393                                 goto out;
3394
3395                         HARD_TX_LOCK(dev, txq, cpu);
3396
3397                         if (!netif_xmit_stopped(txq)) {
3398                                 __this_cpu_inc(xmit_recursion);
3399                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3400                                 __this_cpu_dec(xmit_recursion);
3401                                 if (dev_xmit_complete(rc)) {
3402                                         HARD_TX_UNLOCK(dev, txq);
3403                                         goto out;
3404                                 }
3405                         }
3406                         HARD_TX_UNLOCK(dev, txq);
3407                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3408                                              dev->name);
3409                 } else {
3410                         /* Recursion is detected! It is possible,
3411                          * unfortunately
3412                          */
3413 recursion_alert:
3414                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3415                                              dev->name);
3416                 }
3417         }
3418
3419         rc = -ENETDOWN;
3420         rcu_read_unlock_bh();
3421
3422         atomic_long_inc(&dev->tx_dropped);
3423         kfree_skb_list(skb);
3424         return rc;
3425 out:
3426         rcu_read_unlock_bh();
3427         return rc;
3428 }
3429
3430 int dev_queue_xmit(struct sk_buff *skb)
3431 {
3432         return __dev_queue_xmit(skb, NULL);
3433 }
3434 EXPORT_SYMBOL(dev_queue_xmit);
3435
3436 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3437 {
3438         return __dev_queue_xmit(skb, accel_priv);
3439 }
3440 EXPORT_SYMBOL(dev_queue_xmit_accel);
3441
3442
3443 /*************************************************************************
3444  *                      Receiver routines
3445  *************************************************************************/
3446
3447 int netdev_max_backlog __read_mostly = 1000;
3448 EXPORT_SYMBOL(netdev_max_backlog);
3449
3450 int netdev_tstamp_prequeue __read_mostly = 1;
3451 int netdev_budget __read_mostly = 300;
3452 unsigned int __read_mostly netdev_budget_usecs = 2000;
3453 int weight_p __read_mostly = 64;           /* old backlog weight */
3454 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3455 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3456 int dev_rx_weight __read_mostly = 64;
3457 int dev_tx_weight __read_mostly = 64;
3458
3459 /* Called with irq disabled */
3460 static inline void ____napi_schedule(struct softnet_data *sd,
3461                                      struct napi_struct *napi)
3462 {
3463         list_add_tail(&napi->poll_list, &sd->poll_list);
3464         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3465 }
3466
3467 #ifdef CONFIG_RPS
3468
3469 /* One global table that all flow-based protocols share. */
3470 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3471 EXPORT_SYMBOL(rps_sock_flow_table);
3472 u32 rps_cpu_mask __read_mostly;
3473 EXPORT_SYMBOL(rps_cpu_mask);
3474
3475 struct static_key rps_needed __read_mostly;
3476 EXPORT_SYMBOL(rps_needed);
3477 struct static_key rfs_needed __read_mostly;
3478 EXPORT_SYMBOL(rfs_needed);
3479
3480 static struct rps_dev_flow *
3481 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3482             struct rps_dev_flow *rflow, u16 next_cpu)
3483 {
3484         if (next_cpu < nr_cpu_ids) {
3485 #ifdef CONFIG_RFS_ACCEL
3486                 struct netdev_rx_queue *rxqueue;
3487                 struct rps_dev_flow_table *flow_table;
3488                 struct rps_dev_flow *old_rflow;
3489                 u32 flow_id;
3490                 u16 rxq_index;
3491                 int rc;
3492
3493                 /* Should we steer this flow to a different hardware queue? */
3494                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3495                     !(dev->features & NETIF_F_NTUPLE))
3496                         goto out;
3497                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3498                 if (rxq_index == skb_get_rx_queue(skb))
3499                         goto out;
3500
3501                 rxqueue = dev->_rx + rxq_index;
3502                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3503                 if (!flow_table)
3504                         goto out;
3505                 flow_id = skb_get_hash(skb) & flow_table->mask;
3506                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3507                                                         rxq_index, flow_id);
3508                 if (rc < 0)
3509                         goto out;
3510                 old_rflow = rflow;
3511                 rflow = &flow_table->flows[flow_id];
3512                 rflow->filter = rc;
3513                 if (old_rflow->filter == rflow->filter)
3514                         old_rflow->filter = RPS_NO_FILTER;
3515         out:
3516 #endif
3517                 rflow->last_qtail =
3518                         per_cpu(softnet_data, next_cpu).input_queue_head;
3519         }
3520
3521         rflow->cpu = next_cpu;
3522         return rflow;
3523 }
3524
3525 /*
3526  * get_rps_cpu is called from netif_receive_skb and returns the target
3527  * CPU from the RPS map of the receiving queue for a given skb.
3528  * rcu_read_lock must be held on entry.
3529  */
3530 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3531                        struct rps_dev_flow **rflowp)
3532 {
3533         const struct rps_sock_flow_table *sock_flow_table;
3534         struct netdev_rx_queue *rxqueue = dev->_rx;
3535         struct rps_dev_flow_table *flow_table;
3536         struct rps_map *map;
3537         int cpu = -1;
3538         u32 tcpu;
3539         u32 hash;
3540
3541         if (skb_rx_queue_recorded(skb)) {
3542                 u16 index = skb_get_rx_queue(skb);
3543
3544                 if (unlikely(index >= dev->real_num_rx_queues)) {
3545                         WARN_ONCE(dev->real_num_rx_queues > 1,
3546                                   "%s received packet on queue %u, but number "
3547                                   "of RX queues is %u\n",
3548                                   dev->name, index, dev->real_num_rx_queues);
3549                         goto done;
3550                 }
3551                 rxqueue += index;
3552         }
3553
3554         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3555
3556         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3557         map = rcu_dereference(rxqueue->rps_map);
3558         if (!flow_table && !map)
3559                 goto done;
3560
3561         skb_reset_network_header(skb);
3562         hash = skb_get_hash(skb);
3563         if (!hash)
3564                 goto done;
3565
3566         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3567         if (flow_table && sock_flow_table) {
3568                 struct rps_dev_flow *rflow;
3569                 u32 next_cpu;
3570                 u32 ident;
3571
3572                 /* First check into global flow table if there is a match */
3573                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3574                 if ((ident ^ hash) & ~rps_cpu_mask)
3575                         goto try_rps;
3576
3577                 next_cpu = ident & rps_cpu_mask;
3578
3579                 /* OK, now we know there is a match,
3580                  * we can look at the local (per receive queue) flow table
3581                  */
3582                 rflow = &flow_table->flows[hash & flow_table->mask];
3583                 tcpu = rflow->cpu;
3584
3585                 /*
3586                  * If the desired CPU (where last recvmsg was done) is
3587                  * different from current CPU (one in the rx-queue flow
3588                  * table entry), switch if one of the following holds:
3589                  *   - Current CPU is unset (>= nr_cpu_ids).
3590                  *   - Current CPU is offline.
3591                  *   - The current CPU's queue tail has advanced beyond the
3592                  *     last packet that was enqueued using this table entry.
3593                  *     This guarantees that all previous packets for the flow
3594                  *     have been dequeued, thus preserving in order delivery.
3595                  */
3596                 if (unlikely(tcpu != next_cpu) &&
3597                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3598                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3599                       rflow->last_qtail)) >= 0)) {
3600                         tcpu = next_cpu;
3601                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3602                 }
3603
3604                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3605                         *rflowp = rflow;
3606                         cpu = tcpu;
3607                         goto done;
3608                 }
3609         }
3610
3611 try_rps:
3612
3613         if (map) {
3614                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3615                 if (cpu_online(tcpu)) {
3616                         cpu = tcpu;
3617                         goto done;
3618                 }
3619         }
3620
3621 done:
3622         return cpu;
3623 }
3624
3625 #ifdef CONFIG_RFS_ACCEL
3626
3627 /**
3628  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3629  * @dev: Device on which the filter was set
3630  * @rxq_index: RX queue index
3631  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3632  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3633  *
3634  * Drivers that implement ndo_rx_flow_steer() should periodically call
3635  * this function for each installed filter and remove the filters for
3636  * which it returns %true.
3637  */
3638 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3639                          u32 flow_id, u16 filter_id)
3640 {
3641         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3642         struct rps_dev_flow_table *flow_table;
3643         struct rps_dev_flow *rflow;
3644         bool expire = true;
3645         unsigned int cpu;
3646
3647         rcu_read_lock();
3648         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3649         if (flow_table && flow_id <= flow_table->mask) {
3650                 rflow = &flow_table->flows[flow_id];
3651                 cpu = ACCESS_ONCE(rflow->cpu);
3652                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3653                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3654                            rflow->last_qtail) <
3655                      (int)(10 * flow_table->mask)))
3656                         expire = false;
3657         }
3658         rcu_read_unlock();
3659         return expire;
3660 }
3661 EXPORT_SYMBOL(rps_may_expire_flow);
3662
3663 #endif /* CONFIG_RFS_ACCEL */
3664
3665 /* Called from hardirq (IPI) context */
3666 static void rps_trigger_softirq(void *data)
3667 {
3668         struct softnet_data *sd = data;
3669
3670         ____napi_schedule(sd, &sd->backlog);
3671         sd->received_rps++;
3672 }
3673
3674 #endif /* CONFIG_RPS */
3675
3676 /*
3677  * Check if this softnet_data structure is another cpu one
3678  * If yes, queue it to our IPI list and return 1
3679  * If no, return 0
3680  */
3681 static int rps_ipi_queued(struct softnet_data *sd)
3682 {
3683 #ifdef CONFIG_RPS
3684         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3685
3686         if (sd != mysd) {
3687                 sd->rps_ipi_next = mysd->rps_ipi_list;
3688                 mysd->rps_ipi_list = sd;
3689
3690                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3691                 return 1;
3692         }
3693 #endif /* CONFIG_RPS */
3694         return 0;
3695 }
3696
3697 #ifdef CONFIG_NET_FLOW_LIMIT
3698 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3699 #endif
3700
3701 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3702 {
3703 #ifdef CONFIG_NET_FLOW_LIMIT
3704         struct sd_flow_limit *fl;
3705         struct softnet_data *sd;
3706         unsigned int old_flow, new_flow;
3707
3708         if (qlen < (netdev_max_backlog >> 1))
3709                 return false;
3710
3711         sd = this_cpu_ptr(&softnet_data);
3712
3713         rcu_read_lock();
3714         fl = rcu_dereference(sd->flow_limit);
3715         if (fl) {
3716                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3717                 old_flow = fl->history[fl->history_head];
3718                 fl->history[fl->history_head] = new_flow;
3719
3720                 fl->history_head++;
3721                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3722
3723                 if (likely(fl->buckets[old_flow]))
3724                         fl->buckets[old_flow]--;
3725
3726                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3727                         fl->count++;
3728                         rcu_read_unlock();
3729                         return true;
3730                 }
3731         }
3732         rcu_read_unlock();
3733 #endif
3734         return false;
3735 }
3736
3737 /*
3738  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3739  * queue (may be a remote CPU queue).
3740  */
3741 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3742                               unsigned int *qtail)
3743 {
3744         struct softnet_data *sd;
3745         unsigned long flags;
3746         unsigned int qlen;
3747
3748         sd = &per_cpu(softnet_data, cpu);
3749
3750         local_irq_save(flags);
3751
3752         rps_lock(sd);
3753         if (!netif_running(skb->dev))
3754                 goto drop;
3755         qlen = skb_queue_len(&sd->input_pkt_queue);
3756         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3757                 if (qlen) {
3758 enqueue:
3759                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3760                         input_queue_tail_incr_save(sd, qtail);
3761                         rps_unlock(sd);
3762                         local_irq_restore(flags);
3763                         return NET_RX_SUCCESS;
3764                 }
3765
3766                 /* Schedule NAPI for backlog device
3767                  * We can use non atomic operation since we own the queue lock
3768                  */
3769                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3770                         if (!rps_ipi_queued(sd))
3771                                 ____napi_schedule(sd, &sd->backlog);
3772                 }
3773                 goto enqueue;
3774         }
3775
3776 drop:
3777         sd->dropped++;
3778         rps_unlock(sd);
3779
3780         local_irq_restore(flags);
3781
3782         atomic_long_inc(&skb->dev->rx_dropped);
3783         kfree_skb(skb);
3784         return NET_RX_DROP;
3785 }
3786
3787 static int netif_rx_internal(struct sk_buff *skb)
3788 {
3789         int ret;
3790
3791         net_timestamp_check(netdev_tstamp_prequeue, skb);
3792
3793         trace_netif_rx(skb);
3794 #ifdef CONFIG_RPS
3795         if (static_key_false(&rps_needed)) {
3796                 struct rps_dev_flow voidflow, *rflow = &voidflow;
3797                 int cpu;
3798
3799                 preempt_disable();
3800                 rcu_read_lock();
3801
3802                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
3803                 if (cpu < 0)
3804                         cpu = smp_processor_id();
3805
3806                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3807
3808                 rcu_read_unlock();
3809                 preempt_enable();
3810         } else
3811 #endif
3812         {
3813                 unsigned int qtail;
3814
3815                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3816                 put_cpu();
3817         }
3818         return ret;
3819 }
3820
3821 /**
3822  *      netif_rx        -       post buffer to the network code
3823  *      @skb: buffer to post
3824  *
3825  *      This function receives a packet from a device driver and queues it for
3826  *      the upper (protocol) levels to process.  It always succeeds. The buffer
3827  *      may be dropped during processing for congestion control or by the
3828  *      protocol layers.
3829  *
3830  *      return values:
3831  *      NET_RX_SUCCESS  (no congestion)
3832  *      NET_RX_DROP     (packet was dropped)
3833  *
3834  */
3835
3836 int netif_rx(struct sk_buff *skb)
3837 {
3838         trace_netif_rx_entry(skb);
3839
3840         return netif_rx_internal(skb);
3841 }
3842 EXPORT_SYMBOL(netif_rx);
3843
3844 int netif_rx_ni(struct sk_buff *skb)
3845 {
3846         int err;
3847
3848         trace_netif_rx_ni_entry(skb);
3849
3850         preempt_disable();
3851         err = netif_rx_internal(skb);
3852         if (local_softirq_pending())
3853                 do_softirq();
3854         preempt_enable();
3855
3856         return err;
3857 }
3858 EXPORT_SYMBOL(netif_rx_ni);
3859
3860 static __latent_entropy void net_tx_action(struct softirq_action *h)
3861 {
3862         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3863
3864         if (sd->completion_queue) {
3865                 struct sk_buff *clist;
3866
3867                 local_irq_disable();
3868                 clist = sd->completion_queue;
3869                 sd->completion_queue = NULL;
3870                 local_irq_enable();
3871
3872                 while (clist) {
3873                         struct sk_buff *skb = clist;
3874
3875                         clist = clist->next;
3876
3877                         WARN_ON(atomic_read(&skb->users));
3878                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3879                                 trace_consume_skb(skb);
3880                         else
3881                                 trace_kfree_skb(skb, net_tx_action);
3882
3883                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3884                                 __kfree_skb(skb);
3885                         else
3886                                 __kfree_skb_defer(skb);
3887                 }
3888
3889                 __kfree_skb_flush();
3890         }
3891
3892         if (sd->output_queue) {
3893                 struct Qdisc *head;
3894
3895                 local_irq_disable();
3896                 head = sd->output_queue;
3897                 sd->output_queue = NULL;
3898                 sd->output_queue_tailp = &sd->output_queue;
3899                 local_irq_enable();
3900
3901                 while (head) {
3902                         struct Qdisc *q = head;
3903                         spinlock_t *root_lock;
3904
3905                         head = head->next_sched;
3906
3907                         root_lock = qdisc_lock(q);
3908                         spin_lock(root_lock);
3909                         /* We need to make sure head->next_sched is read
3910                          * before clearing __QDISC_STATE_SCHED
3911                          */
3912                         smp_mb__before_atomic();
3913                         clear_bit(__QDISC_STATE_SCHED, &q->state);
3914                         qdisc_run(q);
3915                         spin_unlock(root_lock);
3916                 }
3917         }
3918 }
3919
3920 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
3921 /* This hook is defined here for ATM LANE */
3922 int (*br_fdb_test_addr_hook)(struct net_device *dev,
3923                              unsigned char *addr) __read_mostly;
3924 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3925 #endif
3926
3927 static inline struct sk_buff *
3928 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3929                    struct net_device *orig_dev)
3930 {
3931 #ifdef CONFIG_NET_CLS_ACT
3932         struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3933         struct tcf_result cl_res;
3934
3935         /* If there's at least one ingress present somewhere (so
3936          * we get here via enabled static key), remaining devices
3937          * that are not configured with an ingress qdisc will bail
3938          * out here.
3939          */
3940         if (!cl)
3941                 return skb;
3942         if (*pt_prev) {
3943                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
3944                 *pt_prev = NULL;
3945         }
3946
3947         qdisc_skb_cb(skb)->pkt_len = skb->len;
3948         skb->tc_at_ingress = 1;
3949         qdisc_bstats_cpu_update(cl->q, skb);
3950
3951         switch (tc_classify(skb, cl, &cl_res, false)) {
3952         case TC_ACT_OK:
3953         case TC_ACT_RECLASSIFY:
3954                 skb->tc_index = TC_H_MIN(cl_res.classid);
3955                 break;
3956         case TC_ACT_SHOT:
3957                 qdisc_qstats_cpu_drop(cl->q);
3958                 kfree_skb(skb);
3959                 return NULL;
3960         case TC_ACT_STOLEN:
3961         case TC_ACT_QUEUED:
3962                 consume_skb(skb);
3963                 return NULL;
3964         case TC_ACT_REDIRECT:
3965                 /* skb_mac_header check was done by cls/act_bpf, so
3966                  * we can safely push the L2 header back before
3967                  * redirecting to another netdev
3968                  */
3969                 __skb_push(skb, skb->mac_len);
3970                 skb_do_redirect(skb);
3971                 return NULL;
3972         default:
3973                 break;
3974         }
3975 #endif /* CONFIG_NET_CLS_ACT */
3976         return skb;
3977 }
3978
3979 /**
3980  *      netdev_is_rx_handler_busy - check if receive handler is registered
3981  *      @dev: device to check
3982  *
3983  *      Check if a receive handler is already registered for a given device.
3984  *      Return true if there one.
3985  *
3986  *      The caller must hold the rtnl_mutex.
3987  */
3988 bool netdev_is_rx_handler_busy(struct net_device *dev)
3989 {
3990         ASSERT_RTNL();
3991         return dev && rtnl_dereference(dev->rx_handler);
3992 }
3993 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
3994
3995 /**
3996  *      netdev_rx_handler_register - register receive handler
3997  *      @dev: device to register a handler for
3998  *      @rx_handler: receive handler to register
3999  *      @rx_handler_data: data pointer that is used by rx handler
4000  *
4001  *      Register a receive handler for a device. This handler will then be
4002  *      called from __netif_receive_skb. A negative errno code is returned
4003  *      on a failure.
4004  *
4005  *      The caller must hold the rtnl_mutex.
4006  *
4007  *      For a general description of rx_handler, see enum rx_handler_result.
4008  */
4009 int netdev_rx_handler_register(struct net_device *dev,
4010                                rx_handler_func_t *rx_handler,
4011                                void *rx_handler_data)
4012 {
4013         if (netdev_is_rx_handler_busy(dev))
4014                 return -EBUSY;
4015
4016         /* Note: rx_handler_data must be set before rx_handler */
4017         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4018         rcu_assign_pointer(dev->rx_handler, rx_handler);
4019
4020         return 0;
4021 }
4022 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4023
4024 /**
4025  *      netdev_rx_handler_unregister - unregister receive handler
4026  *      @dev: device to unregister a handler from
4027  *
4028  *      Unregister a receive handler from a device.
4029  *
4030  *      The caller must hold the rtnl_mutex.
4031  */
4032 void netdev_rx_handler_unregister(struct net_device *dev)
4033 {
4034
4035         ASSERT_RTNL();
4036         RCU_INIT_POINTER(dev->rx_handler, NULL);
4037         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4038          * section has a guarantee to see a non NULL rx_handler_data
4039          * as well.
4040          */
4041         synchronize_net();
4042         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4043 }
4044 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4045
4046 /*
4047  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4048  * the special handling of PFMEMALLOC skbs.
4049  */
4050 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4051 {
4052         switch (skb->protocol) {
4053         case htons(ETH_P_ARP):
4054         case htons(ETH_P_IP):
4055         case htons(ETH_P_IPV6):
4056         case htons(ETH_P_8021Q):
4057         case htons(ETH_P_8021AD):
4058                 return true;
4059         default:
4060                 return false;
4061         }
4062 }
4063
4064 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4065                              int *ret, struct net_device *orig_dev)
4066 {
4067 #ifdef CONFIG_NETFILTER_INGRESS
4068         if (nf_hook_ingress_active(skb)) {
4069                 int ingress_retval;
4070
4071                 if (*pt_prev) {
4072                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4073                         *pt_prev = NULL;
4074                 }
4075
4076                 rcu_read_lock();
4077                 ingress_retval = nf_hook_ingress(skb);
4078                 rcu_read_unlock();
4079                 return ingress_retval;
4080         }
4081 #endif /* CONFIG_NETFILTER_INGRESS */
4082         return 0;
4083 }
4084
4085 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4086 {
4087         struct packet_type *ptype, *pt_prev;
4088         rx_handler_func_t *rx_handler;
4089         struct net_device *orig_dev;
4090         bool deliver_exact = false;
4091         int ret = NET_RX_DROP;
4092         __be16 type;
4093
4094         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4095
4096         trace_netif_receive_skb(skb);
4097
4098         orig_dev = skb->dev;
4099
4100         skb_reset_network_header(skb);
4101         if (!skb_transport_header_was_set(skb))
4102                 skb_reset_transport_header(skb);
4103         skb_reset_mac_len(skb);
4104
4105         pt_prev = NULL;
4106
4107 another_round:
4108         skb->skb_iif = skb->dev->ifindex;
4109
4110         __this_cpu_inc(softnet_data.processed);
4111
4112         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4113             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4114                 skb = skb_vlan_untag(skb);
4115                 if (unlikely(!skb))
4116                         goto out;
4117         }
4118
4119         if (skb_skip_tc_classify(skb))
4120                 goto skip_classify;
4121
4122         if (pfmemalloc)
4123                 goto skip_taps;
4124
4125         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4126                 if (pt_prev)
4127                         ret = deliver_skb(skb, pt_prev, orig_dev);
4128                 pt_prev = ptype;
4129         }
4130
4131         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4132                 if (pt_prev)
4133                         ret = deliver_skb(skb, pt_prev, orig_dev);
4134                 pt_prev = ptype;
4135         }
4136
4137 skip_taps:
4138 #ifdef CONFIG_NET_INGRESS
4139         if (static_key_false(&ingress_needed)) {
4140                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4141                 if (!skb)
4142                         goto out;
4143
4144                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4145                         goto out;
4146         }
4147 #endif
4148         skb_reset_tc(skb);
4149 skip_classify:
4150         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4151                 goto drop;
4152
4153         if (skb_vlan_tag_present(skb)) {
4154                 if (pt_prev) {
4155                         ret = deliver_skb(skb, pt_prev, orig_dev);
4156                         pt_prev = NULL;
4157                 }
4158                 if (vlan_do_receive(&skb))
4159                         goto another_round;
4160                 else if (unlikely(!skb))
4161                         goto out;
4162         }
4163
4164         rx_handler = rcu_dereference(skb->dev->rx_handler);
4165         if (rx_handler) {
4166                 if (pt_prev) {
4167                         ret = deliver_skb(skb, pt_prev, orig_dev);
4168                         pt_prev = NULL;
4169                 }
4170                 switch (rx_handler(&skb)) {
4171                 case RX_HANDLER_CONSUMED:
4172                         ret = NET_RX_SUCCESS;
4173                         goto out;
4174                 case RX_HANDLER_ANOTHER:
4175                         goto another_round;
4176                 case RX_HANDLER_EXACT:
4177                         deliver_exact = true;
4178                 case RX_HANDLER_PASS:
4179                         break;
4180                 default:
4181                         BUG();
4182                 }
4183         }
4184
4185         if (unlikely(skb_vlan_tag_present(skb))) {
4186                 if (skb_vlan_tag_get_id(skb))
4187                         skb->pkt_type = PACKET_OTHERHOST;
4188                 /* Note: we might in the future use prio bits
4189                  * and set skb->priority like in vlan_do_receive()
4190                  * For the time being, just ignore Priority Code Point
4191                  */
4192                 skb->vlan_tci = 0;
4193         }
4194
4195         type = skb->protocol;
4196
4197         /* deliver only exact match when indicated */
4198         if (likely(!deliver_exact)) {
4199                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4200                                        &ptype_base[ntohs(type) &
4201                                                    PTYPE_HASH_MASK]);
4202         }
4203
4204         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4205                                &orig_dev->ptype_specific);
4206
4207         if (unlikely(skb->dev != orig_dev)) {
4208                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4209                                        &skb->dev->ptype_specific);
4210         }
4211
4212         if (pt_prev) {
4213                 if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4214                         goto drop;
4215                 else
4216                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4217         } else {
4218 drop:
4219                 if (!deliver_exact)
4220                         atomic_long_inc(&skb->dev->rx_dropped);
4221                 else
4222                         atomic_long_inc(&skb->dev->rx_nohandler);
4223                 kfree_skb(skb);
4224                 /* Jamal, now you will not able to escape explaining
4225                  * me how you were going to use this. :-)
4226                  */
4227                 ret = NET_RX_DROP;
4228         }
4229
4230 out:
4231         return ret;
4232 }
4233
4234 static int __netif_receive_skb(struct sk_buff *skb)
4235 {
4236         int ret;
4237
4238         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4239                 unsigned int noreclaim_flag;
4240
4241                 /*
4242                  * PFMEMALLOC skbs are special, they should
4243                  * - be delivered to SOCK_MEMALLOC sockets only
4244                  * - stay away from userspace
4245                  * - have bounded memory usage
4246                  *
4247                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4248                  * context down to all allocation sites.
4249                  */
4250                 noreclaim_flag = memalloc_noreclaim_save();
4251                 ret = __netif_receive_skb_core(skb, true);
4252                 memalloc_noreclaim_restore(noreclaim_flag);
4253         } else
4254                 ret = __netif_receive_skb_core(skb, false);
4255
4256         return ret;
4257 }
4258
4259 static struct static_key generic_xdp_needed __read_mostly;
4260
4261 static int generic_xdp_install(struct net_device *dev, struct netdev_xdp *xdp)
4262 {
4263         struct bpf_prog *new = xdp->prog;
4264         int ret = 0;
4265
4266         switch (xdp->command) {
4267         case XDP_SETUP_PROG: {
4268                 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4269
4270                 rcu_assign_pointer(dev->xdp_prog, new);
4271                 if (old)
4272                         bpf_prog_put(old);
4273
4274                 if (old && !new) {
4275                         static_key_slow_dec(&generic_xdp_needed);
4276                 } else if (new && !old) {
4277                         static_key_slow_inc(&generic_xdp_needed);
4278                         dev_disable_lro(dev);
4279                 }
4280                 break;
4281         }
4282
4283         case XDP_QUERY_PROG:
4284                 xdp->prog_attached = !!rcu_access_pointer(dev->xdp_prog);
4285                 break;
4286
4287         default:
4288                 ret = -EINVAL;
4289                 break;
4290         }
4291
4292         return ret;
4293 }
4294
4295 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4296                                      struct bpf_prog *xdp_prog)
4297 {
4298         struct xdp_buff xdp;
4299         u32 act = XDP_DROP;
4300         void *orig_data;
4301         int hlen, off;
4302         u32 mac_len;
4303
4304         /* Reinjected packets coming from act_mirred or similar should
4305          * not get XDP generic processing.
4306          */
4307         if (skb_cloned(skb))
4308                 return XDP_PASS;
4309
4310         if (skb_linearize(skb))
4311                 goto do_drop;
4312
4313         /* The XDP program wants to see the packet starting at the MAC
4314          * header.
4315          */
4316         mac_len = skb->data - skb_mac_header(skb);
4317         hlen = skb_headlen(skb) + mac_len;
4318         xdp.data = skb->data - mac_len;
4319         xdp.data_end = xdp.data + hlen;
4320         xdp.data_hard_start = skb->data - skb_headroom(skb);
4321         orig_data = xdp.data;
4322
4323         act = bpf_prog_run_xdp(xdp_prog, &xdp);
4324
4325         off = xdp.data - orig_data;
4326         if (off > 0)
4327                 __skb_pull(skb, off);
4328         else if (off < 0)
4329                 __skb_push(skb, -off);
4330
4331         switch (act) {
4332         case XDP_TX:
4333                 __skb_push(skb, mac_len);
4334                 /* fall through */
4335         case XDP_PASS:
4336                 break;
4337
4338         default:
4339                 bpf_warn_invalid_xdp_action(act);
4340                 /* fall through */
4341         case XDP_ABORTED:
4342                 trace_xdp_exception(skb->dev, xdp_prog, act);
4343                 /* fall through */
4344         case XDP_DROP:
4345         do_drop:
4346                 kfree_skb(skb);
4347                 break;
4348         }
4349
4350         return act;
4351 }
4352
4353 /* When doing generic XDP we have to bypass the qdisc layer and the
4354  * network taps in order to match in-driver-XDP behavior.
4355  */
4356 static void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4357 {
4358         struct net_device *dev = skb->dev;
4359         struct netdev_queue *txq;
4360         bool free_skb = true;
4361         int cpu, rc;
4362
4363         txq = netdev_pick_tx(dev, skb, NULL);
4364         cpu = smp_processor_id();
4365         HARD_TX_LOCK(dev, txq, cpu);
4366         if (!netif_xmit_stopped(txq)) {
4367                 rc = netdev_start_xmit(skb, dev, txq, 0);
4368                 if (dev_xmit_complete(rc))
4369                         free_skb = false;
4370         }
4371         HARD_TX_UNLOCK(dev, txq);
4372         if (free_skb) {
4373                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4374                 kfree_skb(skb);
4375         }
4376 }
4377
4378 static int netif_receive_skb_internal(struct sk_buff *skb)
4379 {
4380         int ret;
4381
4382         net_timestamp_check(netdev_tstamp_prequeue, skb);
4383
4384         if (skb_defer_rx_timestamp(skb))
4385                 return NET_RX_SUCCESS;
4386
4387         rcu_read_lock();
4388
4389         if (static_key_false(&generic_xdp_needed)) {
4390                 struct bpf_prog *xdp_prog = rcu_dereference(skb->dev->xdp_prog);
4391
4392                 if (xdp_prog) {
4393                         u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4394
4395                         if (act != XDP_PASS) {
4396                                 rcu_read_unlock();
4397                                 if (act == XDP_TX)
4398                                         generic_xdp_tx(skb, xdp_prog);
4399                                 return NET_RX_DROP;
4400                         }
4401                 }
4402         }
4403
4404 #ifdef CONFIG_RPS
4405         if (static_key_false(&rps_needed)) {
4406                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4407                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4408
4409                 if (cpu >= 0) {
4410                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4411                         rcu_read_unlock();
4412                         return ret;
4413                 }
4414         }
4415 #endif
4416         ret = __netif_receive_skb(skb);
4417         rcu_read_unlock();
4418         return ret;
4419 }
4420
4421 /**
4422  *      netif_receive_skb - process receive buffer from network
4423  *      @skb: buffer to process
4424  *
4425  *      netif_receive_skb() is the main receive data processing function.
4426  *      It always succeeds. The buffer may be dropped during processing
4427  *      for congestion control or by the protocol layers.
4428  *
4429  *      This function may only be called from softirq context and interrupts
4430  *      should be enabled.
4431  *
4432  *      Return values (usually ignored):
4433  *      NET_RX_SUCCESS: no congestion
4434  *      NET_RX_DROP: packet was dropped
4435  */
4436 int netif_receive_skb(struct sk_buff *skb)
4437 {
4438         trace_netif_receive_skb_entry(skb);
4439
4440         return netif_receive_skb_internal(skb);
4441 }
4442 EXPORT_SYMBOL(netif_receive_skb);
4443
4444 DEFINE_PER_CPU(struct work_struct, flush_works);
4445
4446 /* Network device is going away, flush any packets still pending */
4447 static void flush_backlog(struct work_struct *work)
4448 {
4449         struct sk_buff *skb, *tmp;
4450         struct softnet_data *sd;
4451
4452         local_bh_disable();
4453         sd = this_cpu_ptr(&softnet_data);
4454
4455         local_irq_disable();
4456         rps_lock(sd);
4457         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4458                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4459                         __skb_unlink(skb, &sd->input_pkt_queue);
4460                         kfree_skb(skb);
4461                         input_queue_head_incr(sd);
4462                 }
4463         }
4464         rps_unlock(sd);
4465         local_irq_enable();
4466
4467         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4468                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4469                         __skb_unlink(skb, &sd->process_queue);
4470                         kfree_skb(skb);
4471                         input_queue_head_incr(sd);
4472                 }
4473         }
4474         local_bh_enable();
4475 }
4476
4477 static void flush_all_backlogs(void)
4478 {
4479         unsigned int cpu;
4480
4481         get_online_cpus();
4482
4483         for_each_online_cpu(cpu)
4484                 queue_work_on(cpu, system_highpri_wq,
4485                               per_cpu_ptr(&flush_works, cpu));
4486
4487         for_each_online_cpu(cpu)
4488                 flush_work(per_cpu_ptr(&flush_works, cpu));
4489
4490         put_online_cpus();
4491 }
4492
4493 static int napi_gro_complete(struct sk_buff *skb)
4494 {
4495         struct packet_offload *ptype;
4496         __be16 type = skb->protocol;
4497         struct list_head *head = &offload_base;
4498         int err = -ENOENT;
4499
4500         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4501
4502         if (NAPI_GRO_CB(skb)->count == 1) {
4503                 skb_shinfo(skb)->gso_size = 0;
4504                 goto out;
4505         }
4506
4507         rcu_read_lock();
4508         list_for_each_entry_rcu(ptype, head, list) {
4509                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4510                         continue;
4511
4512                 err = ptype->callbacks.gro_complete(skb, 0);
4513                 break;
4514         }
4515         rcu_read_unlock();
4516
4517         if (err) {
4518                 WARN_ON(&ptype->list == head);
4519                 kfree_skb(skb);
4520                 return NET_RX_SUCCESS;
4521         }
4522
4523 out:
4524         return netif_receive_skb_internal(skb);
4525 }
4526
4527 /* napi->gro_list contains packets ordered by age.
4528  * youngest packets at the head of it.
4529  * Complete skbs in reverse order to reduce latencies.
4530  */
4531 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4532 {
4533         struct sk_buff *skb, *prev = NULL;
4534
4535         /* scan list and build reverse chain */
4536         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4537                 skb->prev = prev;
4538                 prev = skb;
4539         }
4540
4541         for (skb = prev; skb; skb = prev) {
4542                 skb->next = NULL;
4543
4544                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4545                         return;
4546
4547                 prev = skb->prev;
4548                 napi_gro_complete(skb);
4549                 napi->gro_count--;
4550         }
4551
4552         napi->gro_list = NULL;
4553 }
4554 EXPORT_SYMBOL(napi_gro_flush);
4555
4556 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4557 {
4558         struct sk_buff *p;
4559         unsigned int maclen = skb->dev->hard_header_len;
4560         u32 hash = skb_get_hash_raw(skb);
4561
4562         for (p = napi->gro_list; p; p = p->next) {
4563                 unsigned long diffs;
4564
4565                 NAPI_GRO_CB(p)->flush = 0;
4566
4567                 if (hash != skb_get_hash_raw(p)) {
4568                         NAPI_GRO_CB(p)->same_flow = 0;
4569                         continue;
4570                 }
4571
4572                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4573                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4574                 diffs |= skb_metadata_dst_cmp(p, skb);
4575                 if (maclen == ETH_HLEN)
4576                         diffs |= compare_ether_header(skb_mac_header(p),
4577                                                       skb_mac_header(skb));
4578                 else if (!diffs)
4579                         diffs = memcmp(skb_mac_header(p),
4580                                        skb_mac_header(skb),
4581                                        maclen);
4582                 NAPI_GRO_CB(p)->same_flow = !diffs;
4583         }
4584 }
4585
4586 static void skb_gro_reset_offset(struct sk_buff *skb)
4587 {
4588         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4589         const skb_frag_t *frag0 = &pinfo->frags[0];
4590
4591         NAPI_GRO_CB(skb)->data_offset = 0;
4592         NAPI_GRO_CB(skb)->frag0 = NULL;
4593         NAPI_GRO_CB(skb)->frag0_len = 0;
4594
4595         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4596             pinfo->nr_frags &&
4597             !PageHighMem(skb_frag_page(frag0))) {
4598                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4599                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4600                                                     skb_frag_size(frag0),
4601                                                     skb->end - skb->tail);
4602         }
4603 }
4604
4605 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4606 {
4607         struct skb_shared_info *pinfo = skb_shinfo(skb);
4608
4609         BUG_ON(skb->end - skb->tail < grow);
4610
4611         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4612
4613         skb->data_len -= grow;
4614         skb->tail += grow;
4615
4616         pinfo->frags[0].page_offset += grow;
4617         skb_frag_size_sub(&pinfo->frags[0], grow);
4618
4619         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4620                 skb_frag_unref(skb, 0);
4621                 memmove(pinfo->frags, pinfo->frags + 1,
4622                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4623         }
4624 }
4625
4626 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4627 {
4628         struct sk_buff **pp = NULL;
4629         struct packet_offload *ptype;
4630         __be16 type = skb->protocol;
4631         struct list_head *head = &offload_base;
4632         int same_flow;
4633         enum gro_result ret;
4634         int grow;
4635
4636         if (netif_elide_gro(skb->dev))
4637                 goto normal;
4638
4639         if (skb->csum_bad)
4640                 goto normal;
4641
4642         gro_list_prepare(napi, skb);
4643
4644         rcu_read_lock();
4645         list_for_each_entry_rcu(ptype, head, list) {
4646                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4647                         continue;
4648
4649                 skb_set_network_header(skb, skb_gro_offset(skb));
4650                 skb_reset_mac_len(skb);
4651                 NAPI_GRO_CB(skb)->same_flow = 0;
4652                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4653                 NAPI_GRO_CB(skb)->free = 0;
4654                 NAPI_GRO_CB(skb)->encap_mark = 0;
4655                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4656                 NAPI_GRO_CB(skb)->is_fou = 0;
4657                 NAPI_GRO_CB(skb)->is_atomic = 1;
4658                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4659
4660                 /* Setup for GRO checksum validation */
4661                 switch (skb->ip_summed) {
4662                 case CHECKSUM_COMPLETE:
4663                         NAPI_GRO_CB(skb)->csum = skb->csum;
4664                         NAPI_GRO_CB(skb)->csum_valid = 1;
4665                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4666                         break;
4667                 case CHECKSUM_UNNECESSARY:
4668                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4669                         NAPI_GRO_CB(skb)->csum_valid = 0;
4670                         break;
4671                 default:
4672                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4673                         NAPI_GRO_CB(skb)->csum_valid = 0;
4674                 }
4675
4676                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4677                 break;
4678         }
4679         rcu_read_unlock();
4680
4681         if (&ptype->list == head)
4682                 goto normal;
4683
4684         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4685                 ret = GRO_CONSUMED;
4686                 goto ok;
4687         }
4688
4689         same_flow = NAPI_GRO_CB(skb)->same_flow;
4690         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4691
4692         if (pp) {
4693                 struct sk_buff *nskb = *pp;
4694
4695                 *pp = nskb->next;
4696                 nskb->next = NULL;
4697                 napi_gro_complete(nskb);
4698                 napi->gro_count--;
4699         }
4700
4701         if (same_flow)
4702                 goto ok;
4703
4704         if (NAPI_GRO_CB(skb)->flush)
4705                 goto normal;
4706
4707         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4708                 struct sk_buff *nskb = napi->gro_list;
4709
4710                 /* locate the end of the list to select the 'oldest' flow */
4711                 while (nskb->next) {
4712                         pp = &nskb->next;
4713                         nskb = *pp;
4714                 }
4715                 *pp = NULL;
4716                 nskb->next = NULL;
4717                 napi_gro_complete(nskb);
4718         } else {
4719                 napi->gro_count++;
4720         }
4721         NAPI_GRO_CB(skb)->count = 1;
4722         NAPI_GRO_CB(skb)->age = jiffies;
4723         NAPI_GRO_CB(skb)->last = skb;
4724         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4725         skb->next = napi->gro_list;
4726         napi->gro_list = skb;
4727         ret = GRO_HELD;
4728
4729 pull:
4730         grow = skb_gro_offset(skb) - skb_headlen(skb);
4731         if (grow > 0)
4732                 gro_pull_from_frag0(skb, grow);
4733 ok:
4734         return ret;
4735
4736 normal:
4737         ret = GRO_NORMAL;
4738         goto pull;
4739 }
4740
4741 struct packet_offload *gro_find_receive_by_type(__be16 type)
4742 {
4743         struct list_head *offload_head = &offload_base;
4744         struct packet_offload *ptype;
4745
4746         list_for_each_entry_rcu(ptype, offload_head, list) {
4747                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4748                         continue;
4749                 return ptype;
4750         }
4751         return NULL;
4752 }
4753 EXPORT_SYMBOL(gro_find_receive_by_type);
4754
4755 struct packet_offload *gro_find_complete_by_type(__be16 type)
4756 {
4757         struct list_head *offload_head = &offload_base;
4758         struct packet_offload *ptype;
4759
4760         list_for_each_entry_rcu(ptype, offload_head, list) {
4761                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4762                         continue;
4763                 return ptype;
4764         }
4765         return NULL;
4766 }
4767 EXPORT_SYMBOL(gro_find_complete_by_type);
4768
4769 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4770 {
4771         switch (ret) {
4772         case GRO_NORMAL:
4773                 if (netif_receive_skb_internal(skb))
4774                         ret = GRO_DROP;
4775                 break;
4776
4777         case GRO_DROP:
4778                 kfree_skb(skb);
4779                 break;
4780
4781         case GRO_MERGED_FREE:
4782                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4783                         skb_dst_drop(skb);
4784                         secpath_reset(skb);
4785                         kmem_cache_free(skbuff_head_cache, skb);
4786                 } else {
4787                         __kfree_skb(skb);
4788                 }
4789                 break;
4790
4791         case GRO_HELD:
4792         case GRO_MERGED:
4793         case GRO_CONSUMED:
4794                 break;
4795         }
4796
4797         return ret;
4798 }
4799
4800 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4801 {
4802         skb_mark_napi_id(skb, napi);
4803         trace_napi_gro_receive_entry(skb);
4804
4805         skb_gro_reset_offset(skb);
4806
4807         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4808 }
4809 EXPORT_SYMBOL(napi_gro_receive);
4810
4811 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4812 {
4813         if (unlikely(skb->pfmemalloc)) {
4814                 consume_skb(skb);
4815                 return;
4816         }
4817         __skb_pull(skb, skb_headlen(skb));
4818         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
4819         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4820         skb->vlan_tci = 0;
4821         skb->dev = napi->dev;
4822         skb->skb_iif = 0;
4823         skb->encapsulation = 0;
4824         skb_shinfo(skb)->gso_type = 0;
4825         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4826         secpath_reset(skb);
4827
4828         napi->skb = skb;
4829 }
4830
4831 struct sk_buff *napi_get_frags(struct napi_struct *napi)
4832 {
4833         struct sk_buff *skb = napi->skb;
4834
4835         if (!skb) {
4836                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4837                 if (skb) {
4838                         napi->skb = skb;
4839                         skb_mark_napi_id(skb, napi);
4840                 }
4841         }
4842         return skb;
4843 }
4844 EXPORT_SYMBOL(napi_get_frags);
4845
4846 static gro_result_t napi_frags_finish(struct napi_struct *napi,
4847                                       struct sk_buff *skb,
4848                                       gro_result_t ret)
4849 {
4850         switch (ret) {
4851         case GRO_NORMAL:
4852         case GRO_HELD:
4853                 __skb_push(skb, ETH_HLEN);
4854                 skb->protocol = eth_type_trans(skb, skb->dev);
4855                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4856                         ret = GRO_DROP;
4857                 break;
4858
4859         case GRO_DROP:
4860         case GRO_MERGED_FREE:
4861                 napi_reuse_skb(napi, skb);
4862                 break;
4863
4864         case GRO_MERGED:
4865         case GRO_CONSUMED:
4866                 break;
4867         }
4868
4869         return ret;
4870 }
4871
4872 /* Upper GRO stack assumes network header starts at gro_offset=0
4873  * Drivers could call both napi_gro_frags() and napi_gro_receive()
4874  * We copy ethernet header into skb->data to have a common layout.
4875  */
4876 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4877 {
4878         struct sk_buff *skb = napi->skb;
4879         const struct ethhdr *eth;
4880         unsigned int hlen = sizeof(*eth);
4881
4882         napi->skb = NULL;
4883
4884         skb_reset_mac_header(skb);
4885         skb_gro_reset_offset(skb);
4886
4887         eth = skb_gro_header_fast(skb, 0);
4888         if (unlikely(skb_gro_header_hard(skb, hlen))) {
4889                 eth = skb_gro_header_slow(skb, hlen, 0);
4890                 if (unlikely(!eth)) {
4891                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
4892                                              __func__, napi->dev->name);
4893                         napi_reuse_skb(napi, skb);
4894                         return NULL;
4895                 }
4896         } else {
4897                 gro_pull_from_frag0(skb, hlen);
4898                 NAPI_GRO_CB(skb)->frag0 += hlen;
4899                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
4900         }
4901         __skb_pull(skb, hlen);
4902
4903         /*
4904          * This works because the only protocols we care about don't require
4905          * special handling.
4906          * We'll fix it up properly in napi_frags_finish()
4907          */
4908         skb->protocol = eth->h_proto;
4909
4910         return skb;
4911 }
4912
4913 gro_result_t napi_gro_frags(struct napi_struct *napi)
4914 {
4915         struct sk_buff *skb = napi_frags_skb(napi);
4916
4917         if (!skb)
4918                 return GRO_DROP;
4919
4920         trace_napi_gro_frags_entry(skb);
4921
4922         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4923 }
4924 EXPORT_SYMBOL(napi_gro_frags);
4925
4926 /* Compute the checksum from gro_offset and return the folded value
4927  * after adding in any pseudo checksum.
4928  */
4929 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4930 {
4931         __wsum wsum;
4932         __sum16 sum;
4933
4934         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4935
4936         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4937         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4938         if (likely(!sum)) {
4939                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4940                     !skb->csum_complete_sw)
4941                         netdev_rx_csum_fault(skb->dev);
4942         }
4943
4944         NAPI_GRO_CB(skb)->csum = wsum;
4945         NAPI_GRO_CB(skb)->csum_valid = 1;
4946
4947         return sum;
4948 }
4949 EXPORT_SYMBOL(__skb_gro_checksum_complete);
4950
4951 /*
4952  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4953  * Note: called with local irq disabled, but exits with local irq enabled.
4954  */
4955 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4956 {
4957 #ifdef CONFIG_RPS
4958         struct softnet_data *remsd = sd->rps_ipi_list;
4959
4960         if (remsd) {
4961                 sd->rps_ipi_list = NULL;
4962
4963                 local_irq_enable();
4964
4965                 /* Send pending IPI's to kick RPS processing on remote cpus. */
4966                 while (remsd) {
4967                         struct softnet_data *next = remsd->rps_ipi_next;
4968
4969                         if (cpu_online(remsd->cpu))
4970                                 smp_call_function_single_async(remsd->cpu,
4971                                                            &remsd->csd);
4972                         remsd = next;
4973                 }
4974         } else
4975 #endif
4976                 local_irq_enable();
4977 }
4978
4979 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4980 {
4981 #ifdef CONFIG_RPS
4982         return sd->rps_ipi_list != NULL;
4983 #else
4984         return false;
4985 #endif
4986 }
4987
4988 static int process_backlog(struct napi_struct *napi, int quota)
4989 {
4990         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4991         bool again = true;
4992         int work = 0;
4993
4994         /* Check if we have pending ipi, its better to send them now,
4995          * not waiting net_rx_action() end.
4996          */
4997         if (sd_has_rps_ipi_waiting(sd)) {
4998                 local_irq_disable();
4999                 net_rps_action_and_irq_enable(sd);
5000         }
5001
5002         napi->weight = dev_rx_weight;
5003         while (again) {
5004                 struct sk_buff *skb;
5005
5006                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5007                         rcu_read_lock();
5008                         __netif_receive_skb(skb);
5009                         rcu_read_unlock();
5010                         input_queue_head_incr(sd);
5011                         if (++work >= quota)
5012                                 return work;
5013
5014                 }
5015
5016                 local_irq_disable();
5017                 rps_lock(sd);
5018                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5019                         /*
5020                          * Inline a custom version of __napi_complete().
5021                          * only current cpu owns and manipulates this napi,
5022                          * and NAPI_STATE_SCHED is the only possible flag set
5023                          * on backlog.
5024                          * We can use a plain write instead of clear_bit(),
5025                          * and we dont need an smp_mb() memory barrier.
5026                          */
5027                         napi->state = 0;
5028                         again = false;
5029                 } else {
5030                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5031                                                    &sd->process_queue);
5032                 }
5033                 rps_unlock(sd);
5034                 local_irq_enable();
5035         }
5036
5037         return work;
5038 }
5039
5040 /**
5041  * __napi_schedule - schedule for receive
5042  * @n: entry to schedule
5043  *
5044  * The entry's receive function will be scheduled to run.
5045  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5046  */
5047 void __napi_schedule(struct napi_struct *n)
5048 {
5049         unsigned long flags;
5050
5051         local_irq_save(flags);
5052         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5053         local_irq_restore(flags);
5054 }
5055 EXPORT_SYMBOL(__napi_schedule);
5056
5057 /**
5058  *      napi_schedule_prep - check if napi can be scheduled
5059  *      @n: napi context
5060  *
5061  * Test if NAPI routine is already running, and if not mark
5062  * it as running.  This is used as a condition variable
5063  * insure only one NAPI poll instance runs.  We also make
5064  * sure there is no pending NAPI disable.
5065  */
5066 bool napi_schedule_prep(struct napi_struct *n)
5067 {
5068         unsigned long val, new;
5069
5070         do {
5071                 val = READ_ONCE(n->state);
5072                 if (unlikely(val & NAPIF_STATE_DISABLE))
5073                         return false;
5074                 new = val | NAPIF_STATE_SCHED;
5075
5076                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5077                  * This was suggested by Alexander Duyck, as compiler
5078                  * emits better code than :
5079                  * if (val & NAPIF_STATE_SCHED)
5080                  *     new |= NAPIF_STATE_MISSED;
5081                  */
5082                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5083                                                    NAPIF_STATE_MISSED;
5084         } while (cmpxchg(&n->state, val, new) != val);
5085
5086         return !(val & NAPIF_STATE_SCHED);
5087 }
5088 EXPORT_SYMBOL(napi_schedule_prep);
5089
5090 /**
5091  * __napi_schedule_irqoff - schedule for receive
5092  * @n: entry to schedule
5093  *
5094  * Variant of __napi_schedule() assuming hard irqs are masked
5095  */
5096 void __napi_schedule_irqoff(struct napi_struct *n)
5097 {
5098         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5099 }
5100 EXPORT_SYMBOL(__napi_schedule_irqoff);
5101
5102 bool napi_complete_done(struct napi_struct *n, int work_done)
5103 {
5104         unsigned long flags, val, new;
5105
5106         /*
5107          * 1) Don't let napi dequeue from the cpu poll list
5108          *    just in case its running on a different cpu.
5109          * 2) If we are busy polling, do nothing here, we have
5110          *    the guarantee we will be called later.
5111          */
5112         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5113                                  NAPIF_STATE_IN_BUSY_POLL)))
5114                 return false;
5115
5116         if (n->gro_list) {
5117                 unsigned long timeout = 0;
5118
5119                 if (work_done)
5120                         timeout = n->dev->gro_flush_timeout;
5121
5122                 if (timeout)
5123                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5124                                       HRTIMER_MODE_REL_PINNED);
5125                 else
5126                         napi_gro_flush(n, false);
5127         }
5128         if (unlikely(!list_empty(&n->poll_list))) {
5129                 /* If n->poll_list is not empty, we need to mask irqs */
5130                 local_irq_save(flags);
5131                 list_del_init(&n->poll_list);
5132                 local_irq_restore(flags);
5133         }
5134
5135         do {
5136                 val = READ_ONCE(n->state);
5137
5138                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5139
5140                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5141
5142                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5143                  * because we will call napi->poll() one more time.
5144                  * This C code was suggested by Alexander Duyck to help gcc.
5145                  */
5146                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5147                                                     NAPIF_STATE_SCHED;
5148         } while (cmpxchg(&n->state, val, new) != val);
5149
5150         if (unlikely(val & NAPIF_STATE_MISSED)) {
5151                 __napi_schedule(n);
5152                 return false;
5153         }
5154
5155         return true;
5156 }
5157 EXPORT_SYMBOL(napi_complete_done);
5158
5159 /* must be called under rcu_read_lock(), as we dont take a reference */
5160 static struct napi_struct *napi_by_id(unsigned int napi_id)
5161 {
5162         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5163         struct napi_struct *napi;
5164
5165         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5166                 if (napi->napi_id == napi_id)
5167                         return napi;
5168
5169         return NULL;
5170 }
5171
5172 #if defined(CONFIG_NET_RX_BUSY_POLL)
5173
5174 #define BUSY_POLL_BUDGET 8
5175
5176 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5177 {
5178         int rc;
5179
5180         /* Busy polling means there is a high chance device driver hard irq
5181          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5182          * set in napi_schedule_prep().
5183          * Since we are about to call napi->poll() once more, we can safely
5184          * clear NAPI_STATE_MISSED.
5185          *
5186          * Note: x86 could use a single "lock and ..." instruction
5187          * to perform these two clear_bit()
5188          */
5189         clear_bit(NAPI_STATE_MISSED, &napi->state);
5190         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5191
5192         local_bh_disable();
5193
5194         /* All we really want here is to re-enable device interrupts.
5195          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5196          */
5197         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5198         netpoll_poll_unlock(have_poll_lock);
5199         if (rc == BUSY_POLL_BUDGET)
5200                 __napi_schedule(napi);
5201         local_bh_enable();
5202         if (local_softirq_pending())
5203                 do_softirq();
5204 }
5205
5206 void napi_busy_loop(unsigned int napi_id,
5207                     bool (*loop_end)(void *, unsigned long),
5208                     void *loop_end_arg)
5209 {
5210         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5211         int (*napi_poll)(struct napi_struct *napi, int budget);
5212         void *have_poll_lock = NULL;
5213         struct napi_struct *napi;
5214
5215 restart:
5216         napi_poll = NULL;
5217
5218         rcu_read_lock();
5219
5220         napi = napi_by_id(napi_id);
5221         if (!napi)
5222                 goto out;
5223
5224         preempt_disable();
5225         for (;;) {
5226                 int work = 0;
5227
5228                 local_bh_disable();
5229                 if (!napi_poll) {
5230                         unsigned long val = READ_ONCE(napi->state);
5231
5232                         /* If multiple threads are competing for this napi,
5233                          * we avoid dirtying napi->state as much as we can.
5234                          */
5235                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5236                                    NAPIF_STATE_IN_BUSY_POLL))
5237                                 goto count;
5238                         if (cmpxchg(&napi->state, val,
5239                                     val | NAPIF_STATE_IN_BUSY_POLL |
5240                                           NAPIF_STATE_SCHED) != val)
5241                                 goto count;
5242                         have_poll_lock = netpoll_poll_lock(napi);
5243                         napi_poll = napi->poll;
5244                 }
5245                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5246                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5247 count:
5248                 if (work > 0)
5249                         __NET_ADD_STATS(dev_net(napi->dev),
5250                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5251                 local_bh_enable();
5252
5253                 if (!loop_end || loop_end(loop_end_arg, start_time))
5254                         break;
5255
5256                 if (unlikely(need_resched())) {
5257                         if (napi_poll)
5258                                 busy_poll_stop(napi, have_poll_lock);
5259                         preempt_enable();
5260                         rcu_read_unlock();
5261                         cond_resched();
5262                         if (loop_end(loop_end_arg, start_time))
5263                                 return;
5264                         goto restart;
5265                 }
5266                 cpu_relax();
5267         }
5268         if (napi_poll)
5269                 busy_poll_stop(napi, have_poll_lock);
5270         preempt_enable();
5271 out:
5272         rcu_read_unlock();
5273 }
5274 EXPORT_SYMBOL(napi_busy_loop);
5275
5276 #endif /* CONFIG_NET_RX_BUSY_POLL */
5277
5278 static void napi_hash_add(struct napi_struct *napi)
5279 {
5280         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5281             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5282                 return;
5283
5284         spin_lock(&napi_hash_lock);
5285
5286         /* 0..NR_CPUS range is reserved for sender_cpu use */
5287         do {
5288                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5289                         napi_gen_id = MIN_NAPI_ID;
5290         } while (napi_by_id(napi_gen_id));
5291         napi->napi_id = napi_gen_id;
5292
5293         hlist_add_head_rcu(&napi->napi_hash_node,
5294                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5295
5296         spin_unlock(&napi_hash_lock);
5297 }
5298
5299 /* Warning : caller is responsible to make sure rcu grace period
5300  * is respected before freeing memory containing @napi
5301  */
5302 bool napi_hash_del(struct napi_struct *napi)
5303 {
5304         bool rcu_sync_needed = false;
5305
5306         spin_lock(&napi_hash_lock);
5307
5308         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5309                 rcu_sync_needed = true;
5310                 hlist_del_rcu(&napi->napi_hash_node);
5311         }
5312         spin_unlock(&napi_hash_lock);
5313         return rcu_sync_needed;
5314 }
5315 EXPORT_SYMBOL_GPL(napi_hash_del);
5316
5317 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5318 {
5319         struct napi_struct *napi;
5320
5321         napi = container_of(timer, struct napi_struct, timer);
5322
5323         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5324          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5325          */
5326         if (napi->gro_list && !napi_disable_pending(napi) &&
5327             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5328                 __napi_schedule_irqoff(napi);
5329
5330         return HRTIMER_NORESTART;
5331 }
5332
5333 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5334                     int (*poll)(struct napi_struct *, int), int weight)
5335 {
5336         INIT_LIST_HEAD(&napi->poll_list);
5337         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5338         napi->timer.function = napi_watchdog;
5339         napi->gro_count = 0;
5340         napi->gro_list = NULL;
5341         napi->skb = NULL;
5342         napi->poll = poll;
5343         if (weight > NAPI_POLL_WEIGHT)
5344                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5345                             weight, dev->name);
5346         napi->weight = weight;
5347         list_add(&napi->dev_list, &dev->napi_list);
5348         napi->dev = dev;
5349 #ifdef CONFIG_NETPOLL
5350         napi->poll_owner = -1;
5351 #endif
5352         set_bit(NAPI_STATE_SCHED, &napi->state);
5353         napi_hash_add(napi);
5354 }
5355 EXPORT_SYMBOL(netif_napi_add);
5356
5357 void napi_disable(struct napi_struct *n)
5358 {
5359         might_sleep();
5360         set_bit(NAPI_STATE_DISABLE, &n->state);
5361
5362         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5363                 msleep(1);
5364         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5365                 msleep(1);
5366
5367         hrtimer_cancel(&n->timer);
5368
5369         clear_bit(NAPI_STATE_DISABLE, &n->state);
5370 }
5371 EXPORT_SYMBOL(napi_disable);
5372
5373 /* Must be called in process context */
5374 void netif_napi_del(struct napi_struct *napi)
5375 {
5376         might_sleep();
5377         if (napi_hash_del(napi))
5378                 synchronize_net();
5379         list_del_init(&napi->dev_list);
5380         napi_free_frags(napi);
5381
5382         kfree_skb_list(napi->gro_list);
5383         napi->gro_list = NULL;
5384         napi->gro_count = 0;
5385 }
5386 EXPORT_SYMBOL(netif_napi_del);
5387
5388 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5389 {
5390         void *have;
5391         int work, weight;
5392
5393         list_del_init(&n->poll_list);
5394
5395         have = netpoll_poll_lock(n);
5396
5397         weight = n->weight;
5398
5399         /* This NAPI_STATE_SCHED test is for avoiding a race
5400          * with netpoll's poll_napi().  Only the entity which
5401          * obtains the lock and sees NAPI_STATE_SCHED set will
5402          * actually make the ->poll() call.  Therefore we avoid
5403          * accidentally calling ->poll() when NAPI is not scheduled.
5404          */
5405         work = 0;
5406         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5407                 work = n->poll(n, weight);
5408                 trace_napi_poll(n, work, weight);
5409         }
5410
5411         WARN_ON_ONCE(work > weight);
5412
5413         if (likely(work < weight))
5414                 goto out_unlock;
5415
5416         /* Drivers must not modify the NAPI state if they
5417          * consume the entire weight.  In such cases this code
5418          * still "owns" the NAPI instance and therefore can
5419          * move the instance around on the list at-will.
5420          */
5421         if (unlikely(napi_disable_pending(n))) {
5422                 napi_complete(n);
5423                 goto out_unlock;
5424         }
5425
5426         if (n->gro_list) {
5427                 /* flush too old packets
5428                  * If HZ < 1000, flush all packets.
5429                  */
5430                 napi_gro_flush(n, HZ >= 1000);
5431         }
5432
5433         /* Some drivers may have called napi_schedule
5434          * prior to exhausting their budget.
5435          */
5436         if (unlikely(!list_empty(&n->poll_list))) {
5437                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5438                              n->dev ? n->dev->name : "backlog");
5439                 goto out_unlock;
5440         }
5441
5442         list_add_tail(&n->poll_list, repoll);
5443
5444 out_unlock:
5445         netpoll_poll_unlock(have);
5446
5447         return work;
5448 }
5449
5450 static __latent_entropy void net_rx_action(struct softirq_action *h)
5451 {
5452         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5453         unsigned long time_limit = jiffies +
5454                 usecs_to_jiffies(netdev_budget_usecs);
5455         int budget = netdev_budget;
5456         LIST_HEAD(list);
5457         LIST_HEAD(repoll);
5458
5459         local_irq_disable();
5460         list_splice_init(&sd->poll_list, &list);
5461         local_irq_enable();
5462
5463         for (;;) {
5464                 struct napi_struct *n;
5465
5466                 if (list_empty(&list)) {
5467                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5468                                 goto out;
5469                         break;
5470                 }
5471
5472                 n = list_first_entry(&list, struct napi_struct, poll_list);
5473                 budget -= napi_poll(n, &repoll);
5474
5475                 /* If softirq window is exhausted then punt.
5476                  * Allow this to run for 2 jiffies since which will allow
5477                  * an average latency of 1.5/HZ.
5478                  */
5479                 if (unlikely(budget <= 0 ||
5480                              time_after_eq(jiffies, time_limit))) {
5481                         sd->time_squeeze++;
5482                         break;
5483                 }
5484         }
5485
5486         local_irq_disable();
5487
5488         list_splice_tail_init(&sd->poll_list, &list);
5489         list_splice_tail(&repoll, &list);
5490         list_splice(&list, &sd->poll_list);
5491         if (!list_empty(&sd->poll_list))
5492                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5493
5494         net_rps_action_and_irq_enable(sd);
5495 out:
5496         __kfree_skb_flush();
5497 }
5498
5499 struct netdev_adjacent {
5500         struct net_device *dev;
5501
5502         /* upper master flag, there can only be one master device per list */
5503         bool master;
5504
5505         /* counter for the number of times this device was added to us */
5506         u16 ref_nr;
5507
5508         /* private field for the users */
5509         void *private;
5510
5511         struct list_head list;
5512         struct rcu_head rcu;
5513 };
5514
5515 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5516                                                  struct list_head *adj_list)
5517 {
5518         struct netdev_adjacent *adj;
5519
5520         list_for_each_entry(adj, adj_list, list) {
5521                 if (adj->dev == adj_dev)
5522                         return adj;
5523         }
5524         return NULL;
5525 }
5526
5527 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5528 {
5529         struct net_device *dev = data;
5530
5531         return upper_dev == dev;
5532 }
5533
5534 /**
5535  * netdev_has_upper_dev - Check if device is linked to an upper device
5536  * @dev: device
5537  * @upper_dev: upper device to check
5538  *
5539  * Find out if a device is linked to specified upper device and return true
5540  * in case it is. Note that this checks only immediate upper device,
5541  * not through a complete stack of devices. The caller must hold the RTNL lock.
5542  */
5543 bool netdev_has_upper_dev(struct net_device *dev,
5544                           struct net_device *upper_dev)
5545 {
5546         ASSERT_RTNL();
5547
5548         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5549                                              upper_dev);
5550 }
5551 EXPORT_SYMBOL(netdev_has_upper_dev);
5552
5553 /**
5554  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5555  * @dev: device
5556  * @upper_dev: upper device to check
5557  *
5558  * Find out if a device is linked to specified upper device and return true
5559  * in case it is. Note that this checks the entire upper device chain.
5560  * The caller must hold rcu lock.
5561  */
5562
5563 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5564                                   struct net_device *upper_dev)
5565 {
5566         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5567                                                upper_dev);
5568 }
5569 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5570
5571 /**
5572  * netdev_has_any_upper_dev - Check if device is linked to some device
5573  * @dev: device
5574  *
5575  * Find out if a device is linked to an upper device and return true in case
5576  * it is. The caller must hold the RTNL lock.
5577  */
5578 static bool netdev_has_any_upper_dev(struct net_device *dev)
5579 {
5580         ASSERT_RTNL();
5581
5582         return !list_empty(&dev->adj_list.upper);
5583 }
5584
5585 /**
5586  * netdev_master_upper_dev_get - Get master upper device
5587  * @dev: device
5588  *
5589  * Find a master upper device and return pointer to it or NULL in case
5590  * it's not there. The caller must hold the RTNL lock.
5591  */
5592 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5593 {
5594         struct netdev_adjacent *upper;
5595
5596         ASSERT_RTNL();
5597
5598         if (list_empty(&dev->adj_list.upper))
5599                 return NULL;
5600
5601         upper = list_first_entry(&dev->adj_list.upper,
5602                                  struct netdev_adjacent, list);
5603         if (likely(upper->master))
5604                 return upper->dev;
5605         return NULL;
5606 }
5607 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5608
5609 /**
5610  * netdev_has_any_lower_dev - Check if device is linked to some device
5611  * @dev: device
5612  *
5613  * Find out if a device is linked to a lower device and return true in case
5614  * it is. The caller must hold the RTNL lock.
5615  */
5616 static bool netdev_has_any_lower_dev(struct net_device *dev)
5617 {
5618         ASSERT_RTNL();
5619
5620         return !list_empty(&dev->adj_list.lower);
5621 }
5622
5623 void *netdev_adjacent_get_private(struct list_head *adj_list)
5624 {
5625         struct netdev_adjacent *adj;
5626
5627         adj = list_entry(adj_list, struct netdev_adjacent, list);
5628
5629         return adj->private;
5630 }
5631 EXPORT_SYMBOL(netdev_adjacent_get_private);
5632
5633 /**
5634  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5635  * @dev: device
5636  * @iter: list_head ** of the current position
5637  *
5638  * Gets the next device from the dev's upper list, starting from iter
5639  * position. The caller must hold RCU read lock.
5640  */
5641 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5642                                                  struct list_head **iter)
5643 {
5644         struct netdev_adjacent *upper;
5645
5646         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5647
5648         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5649
5650         if (&upper->list == &dev->adj_list.upper)
5651                 return NULL;
5652
5653         *iter = &upper->list;
5654
5655         return upper->dev;
5656 }
5657 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5658
5659 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5660                                                     struct list_head **iter)
5661 {
5662         struct netdev_adjacent *upper;
5663
5664         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5665
5666         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5667
5668         if (&upper->list == &dev->adj_list.upper)
5669                 return NULL;
5670
5671         *iter = &upper->list;
5672
5673         return upper->dev;
5674 }
5675
5676 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5677                                   int (*fn)(struct net_device *dev,
5678                                             void *data),
5679                                   void *data)
5680 {
5681         struct net_device *udev;
5682         struct list_head *iter;
5683         int ret;
5684
5685         for (iter = &dev->adj_list.upper,
5686              udev = netdev_next_upper_dev_rcu(dev, &iter);
5687              udev;
5688              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5689                 /* first is the upper device itself */
5690                 ret = fn(udev, data);
5691                 if (ret)
5692                         return ret;
5693
5694                 /* then look at all of its upper devices */
5695                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5696                 if (ret)
5697                         return ret;
5698         }
5699
5700         return 0;
5701 }
5702 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
5703
5704 /**
5705  * netdev_lower_get_next_private - Get the next ->private from the
5706  *                                 lower neighbour list
5707  * @dev: device
5708  * @iter: list_head ** of the current position
5709  *
5710  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5711  * list, starting from iter position. The caller must hold either hold the
5712  * RTNL lock or its own locking that guarantees that the neighbour lower
5713  * list will remain unchanged.
5714  */
5715 void *netdev_lower_get_next_private(struct net_device *dev,
5716                                     struct list_head **iter)
5717 {
5718         struct netdev_adjacent *lower;
5719
5720         lower = list_entry(*iter, struct netdev_adjacent, list);
5721
5722         if (&lower->list == &dev->adj_list.lower)
5723                 return NULL;
5724
5725         *iter = lower->list.next;
5726
5727         return lower->private;
5728 }
5729 EXPORT_SYMBOL(netdev_lower_get_next_private);
5730
5731 /**
5732  * netdev_lower_get_next_private_rcu - Get the next ->private from the
5733  *                                     lower neighbour list, RCU
5734  *                                     variant
5735  * @dev: device
5736  * @iter: list_head ** of the current position
5737  *
5738  * Gets the next netdev_adjacent->private from the dev's lower neighbour
5739  * list, starting from iter position. The caller must hold RCU read lock.
5740  */
5741 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5742                                         struct list_head **iter)
5743 {
5744         struct netdev_adjacent *lower;
5745
5746         WARN_ON_ONCE(!rcu_read_lock_held());
5747
5748         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5749
5750         if (&lower->list == &dev->adj_list.lower)
5751                 return NULL;
5752
5753         *iter = &lower->list;
5754
5755         return lower->private;
5756 }
5757 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5758
5759 /**
5760  * netdev_lower_get_next - Get the next device from the lower neighbour
5761  *                         list
5762  * @dev: device
5763  * @iter: list_head ** of the current position
5764  *
5765  * Gets the next netdev_adjacent from the dev's lower neighbour
5766  * list, starting from iter position. The caller must hold RTNL lock or
5767  * its own locking that guarantees that the neighbour lower
5768  * list will remain unchanged.
5769  */
5770 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5771 {
5772         struct netdev_adjacent *lower;
5773
5774         lower = list_entry(*iter, struct netdev_adjacent, list);
5775
5776         if (&lower->list == &dev->adj_list.lower)
5777                 return NULL;
5778
5779         *iter = lower->list.next;
5780
5781         return lower->dev;
5782 }
5783 EXPORT_SYMBOL(netdev_lower_get_next);
5784
5785 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
5786                                                 struct list_head **iter)
5787 {
5788         struct netdev_adjacent *lower;
5789
5790         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
5791
5792         if (&lower->list == &dev->adj_list.lower)
5793                 return NULL;
5794
5795         *iter = &lower->list;
5796
5797         return lower->dev;
5798 }
5799
5800 int netdev_walk_all_lower_dev(struct net_device *dev,
5801                               int (*fn)(struct net_device *dev,
5802                                         void *data),
5803                               void *data)
5804 {
5805         struct net_device *ldev;
5806         struct list_head *iter;
5807         int ret;
5808
5809         for (iter = &dev->adj_list.lower,
5810              ldev = netdev_next_lower_dev(dev, &iter);
5811              ldev;
5812              ldev = netdev_next_lower_dev(dev, &iter)) {
5813                 /* first is the lower device itself */
5814                 ret = fn(ldev, data);
5815                 if (ret)
5816                         return ret;
5817
5818                 /* then look at all of its lower devices */
5819                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
5820                 if (ret)
5821                         return ret;
5822         }
5823
5824         return 0;
5825 }
5826 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
5827
5828 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
5829                                                     struct list_head **iter)
5830 {
5831         struct netdev_adjacent *lower;
5832
5833         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5834         if (&lower->list == &dev->adj_list.lower)
5835                 return NULL;
5836
5837         *iter = &lower->list;
5838
5839         return lower->dev;
5840 }
5841
5842 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
5843                                   int (*fn)(struct net_device *dev,
5844                                             void *data),
5845                                   void *data)
5846 {
5847         struct net_device *ldev;
5848         struct list_head *iter;
5849         int ret;
5850
5851         for (iter = &dev->adj_list.lower,
5852              ldev = netdev_next_lower_dev_rcu(dev, &iter);
5853              ldev;
5854              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
5855                 /* first is the lower device itself */
5856                 ret = fn(ldev, data);
5857                 if (ret)
5858                         return ret;
5859
5860                 /* then look at all of its lower devices */
5861                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
5862                 if (ret)
5863                         return ret;
5864         }
5865
5866         return 0;
5867 }
5868 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
5869
5870 /**
5871  * netdev_lower_get_first_private_rcu - Get the first ->private from the
5872  *                                     lower neighbour list, RCU
5873  *                                     variant
5874  * @dev: device
5875  *
5876  * Gets the first netdev_adjacent->private from the dev's lower neighbour
5877  * list. The caller must hold RCU read lock.
5878  */
5879 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5880 {
5881         struct netdev_adjacent *lower;
5882
5883         lower = list_first_or_null_rcu(&dev->adj_list.lower,
5884                         struct netdev_adjacent, list);
5885         if (lower)
5886                 return lower->private;
5887         return NULL;
5888 }
5889 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5890
5891 /**
5892  * netdev_master_upper_dev_get_rcu - Get master upper device
5893  * @dev: device
5894  *
5895  * Find a master upper device and return pointer to it or NULL in case
5896  * it's not there. The caller must hold the RCU read lock.
5897  */
5898 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5899 {
5900         struct netdev_adjacent *upper;
5901
5902         upper = list_first_or_null_rcu(&dev->adj_list.upper,
5903                                        struct netdev_adjacent, list);
5904         if (upper && likely(upper->master))
5905                 return upper->dev;
5906         return NULL;
5907 }
5908 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5909
5910 static int netdev_adjacent_sysfs_add(struct net_device *dev,
5911                               struct net_device *adj_dev,
5912                               struct list_head *dev_list)
5913 {
5914         char linkname[IFNAMSIZ+7];
5915
5916         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5917                 "upper_%s" : "lower_%s", adj_dev->name);
5918         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5919                                  linkname);
5920 }
5921 static void netdev_adjacent_sysfs_del(struct net_device *dev,
5922                                char *name,
5923                                struct list_head *dev_list)
5924 {
5925         char linkname[IFNAMSIZ+7];
5926
5927         sprintf(linkname, dev_list == &dev->adj_list.upper ?
5928                 "upper_%s" : "lower_%s", name);
5929         sysfs_remove_link(&(dev->dev.kobj), linkname);
5930 }
5931
5932 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5933                                                  struct net_device *adj_dev,
5934                                                  struct list_head *dev_list)
5935 {
5936         return (dev_list == &dev->adj_list.upper ||
5937                 dev_list == &dev->adj_list.lower) &&
5938                 net_eq(dev_net(dev), dev_net(adj_dev));
5939 }
5940
5941 static int __netdev_adjacent_dev_insert(struct net_device *dev,
5942                                         struct net_device *adj_dev,
5943                                         struct list_head *dev_list,
5944                                         void *private, bool master)
5945 {
5946         struct netdev_adjacent *adj;
5947         int ret;
5948
5949         adj = __netdev_find_adj(adj_dev, dev_list);
5950
5951         if (adj) {
5952                 adj->ref_nr += 1;
5953                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
5954                          dev->name, adj_dev->name, adj->ref_nr);
5955
5956                 return 0;
5957         }
5958
5959         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5960         if (!adj)
5961                 return -ENOMEM;
5962
5963         adj->dev = adj_dev;
5964         adj->master = master;
5965         adj->ref_nr = 1;
5966         adj->private = private;
5967         dev_hold(adj_dev);
5968
5969         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
5970                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
5971
5972         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5973                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5974                 if (ret)
5975                         goto free_adj;
5976         }
5977
5978         /* Ensure that master link is always the first item in list. */
5979         if (master) {
5980                 ret = sysfs_create_link(&(dev->dev.kobj),
5981                                         &(adj_dev->dev.kobj), "master");
5982                 if (ret)
5983                         goto remove_symlinks;
5984
5985                 list_add_rcu(&adj->list, dev_list);
5986         } else {
5987                 list_add_tail_rcu(&adj->list, dev_list);
5988         }
5989
5990         return 0;
5991
5992 remove_symlinks:
5993         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5994                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5995 free_adj:
5996         kfree(adj);
5997         dev_put(adj_dev);
5998
5999         return ret;
6000 }
6001
6002 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6003                                          struct net_device *adj_dev,
6004                                          u16 ref_nr,
6005                                          struct list_head *dev_list)
6006 {
6007         struct netdev_adjacent *adj;
6008
6009         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6010                  dev->name, adj_dev->name, ref_nr);
6011
6012         adj = __netdev_find_adj(adj_dev, dev_list);
6013
6014         if (!adj) {
6015                 pr_err("Adjacency does not exist for device %s from %s\n",
6016                        dev->name, adj_dev->name);
6017                 WARN_ON(1);
6018                 return;
6019         }
6020
6021         if (adj->ref_nr > ref_nr) {
6022                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6023                          dev->name, adj_dev->name, ref_nr,
6024                          adj->ref_nr - ref_nr);
6025                 adj->ref_nr -= ref_nr;
6026                 return;
6027         }
6028
6029         if (adj->master)
6030                 sysfs_remove_link(&(dev->dev.kobj), "master");
6031
6032         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6033                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6034
6035         list_del_rcu(&adj->list);
6036         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6037                  adj_dev->name, dev->name, adj_dev->name);
6038         dev_put(adj_dev);
6039         kfree_rcu(adj, rcu);
6040 }
6041
6042 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6043                                             struct net_device *upper_dev,
6044                                             struct list_head *up_list,
6045                                             struct list_head *down_list,
6046                                             void *private, bool master)
6047 {
6048         int ret;
6049
6050         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6051                                            private, master);
6052         if (ret)
6053                 return ret;
6054
6055         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6056                                            private, false);
6057         if (ret) {
6058                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6059                 return ret;
6060         }
6061
6062         return 0;
6063 }
6064
6065 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6066                                                struct net_device *upper_dev,
6067                                                u16 ref_nr,
6068                                                struct list_head *up_list,
6069                                                struct list_head *down_list)
6070 {
6071         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6072         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6073 }
6074
6075 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6076                                                 struct net_device *upper_dev,
6077                                                 void *private, bool master)
6078 {
6079         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6080                                                 &dev->adj_list.upper,
6081                                                 &upper_dev->adj_list.lower,
6082                                                 private, master);
6083 }
6084
6085 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6086                                                    struct net_device *upper_dev)
6087 {
6088         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6089                                            &dev->adj_list.upper,
6090                                            &upper_dev->adj_list.lower);
6091 }
6092
6093 static int __netdev_upper_dev_link(struct net_device *dev,
6094                                    struct net_device *upper_dev, bool master,
6095                                    void *upper_priv, void *upper_info)
6096 {
6097         struct netdev_notifier_changeupper_info changeupper_info;
6098         int ret = 0;
6099
6100         ASSERT_RTNL();
6101
6102         if (dev == upper_dev)
6103                 return -EBUSY;
6104
6105         /* To prevent loops, check if dev is not upper device to upper_dev. */
6106         if (netdev_has_upper_dev(upper_dev, dev))
6107                 return -EBUSY;
6108
6109         if (netdev_has_upper_dev(dev, upper_dev))
6110                 return -EEXIST;
6111
6112         if (master && netdev_master_upper_dev_get(dev))
6113                 return -EBUSY;
6114
6115         changeupper_info.upper_dev = upper_dev;
6116         changeupper_info.master = master;
6117         changeupper_info.linking = true;
6118         changeupper_info.upper_info = upper_info;
6119
6120         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6121                                             &changeupper_info.info);
6122         ret = notifier_to_errno(ret);
6123         if (ret)
6124                 return ret;
6125
6126         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6127                                                    master);
6128         if (ret)
6129                 return ret;
6130
6131         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6132                                             &changeupper_info.info);
6133         ret = notifier_to_errno(ret);
6134         if (ret)
6135                 goto rollback;
6136
6137         return 0;
6138
6139 rollback:
6140         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6141
6142         return ret;
6143 }
6144
6145 /**
6146  * netdev_upper_dev_link - Add a link to the upper device
6147  * @dev: device
6148  * @upper_dev: new upper device
6149  *
6150  * Adds a link to device which is upper to this one. The caller must hold
6151  * the RTNL lock. On a failure a negative errno code is returned.
6152  * On success the reference counts are adjusted and the function
6153  * returns zero.
6154  */
6155 int netdev_upper_dev_link(struct net_device *dev,
6156                           struct net_device *upper_dev)
6157 {
6158         return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
6159 }
6160 EXPORT_SYMBOL(netdev_upper_dev_link);
6161
6162 /**
6163  * netdev_master_upper_dev_link - Add a master link to the upper device
6164  * @dev: device
6165  * @upper_dev: new upper device
6166  * @upper_priv: upper device private
6167  * @upper_info: upper info to be passed down via notifier
6168  *
6169  * Adds a link to device which is upper to this one. In this case, only
6170  * one master upper device can be linked, although other non-master devices
6171  * might be linked as well. The caller must hold the RTNL lock.
6172  * On a failure a negative errno code is returned. On success the reference
6173  * counts are adjusted and the function returns zero.
6174  */
6175 int netdev_master_upper_dev_link(struct net_device *dev,
6176                                  struct net_device *upper_dev,
6177                                  void *upper_priv, void *upper_info)
6178 {
6179         return __netdev_upper_dev_link(dev, upper_dev, true,
6180                                        upper_priv, upper_info);
6181 }
6182 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6183
6184 /**
6185  * netdev_upper_dev_unlink - Removes a link to upper device
6186  * @dev: device
6187  * @upper_dev: new upper device
6188  *
6189  * Removes a link to device which is upper to this one. The caller must hold
6190  * the RTNL lock.
6191  */
6192 void netdev_upper_dev_unlink(struct net_device *dev,
6193                              struct net_device *upper_dev)
6194 {
6195         struct netdev_notifier_changeupper_info changeupper_info;
6196
6197         ASSERT_RTNL();
6198
6199         changeupper_info.upper_dev = upper_dev;
6200         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6201         changeupper_info.linking = false;
6202
6203         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
6204                                       &changeupper_info.info);
6205
6206         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6207
6208         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
6209                                       &changeupper_info.info);
6210 }
6211 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6212
6213 /**
6214  * netdev_bonding_info_change - Dispatch event about slave change
6215  * @dev: device
6216  * @bonding_info: info to dispatch
6217  *
6218  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6219  * The caller must hold the RTNL lock.
6220  */
6221 void netdev_bonding_info_change(struct net_device *dev,
6222                                 struct netdev_bonding_info *bonding_info)
6223 {
6224         struct netdev_notifier_bonding_info     info;
6225
6226         memcpy(&info.bonding_info, bonding_info,
6227                sizeof(struct netdev_bonding_info));
6228         call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
6229                                       &info.info);
6230 }
6231 EXPORT_SYMBOL(netdev_bonding_info_change);
6232
6233 static void netdev_adjacent_add_links(struct net_device *dev)
6234 {
6235         struct netdev_adjacent *iter;
6236
6237         struct net *net = dev_net(dev);
6238
6239         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6240                 if (!net_eq(net, dev_net(iter->dev)))
6241                         continue;
6242                 netdev_adjacent_sysfs_add(iter->dev, dev,
6243                                           &iter->dev->adj_list.lower);
6244                 netdev_adjacent_sysfs_add(dev, iter->dev,
6245                                           &dev->adj_list.upper);
6246         }
6247
6248         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6249                 if (!net_eq(net, dev_net(iter->dev)))
6250                         continue;
6251                 netdev_adjacent_sysfs_add(iter->dev, dev,
6252                                           &iter->dev->adj_list.upper);
6253                 netdev_adjacent_sysfs_add(dev, iter->dev,
6254                                           &dev->adj_list.lower);
6255         }
6256 }
6257
6258 static void netdev_adjacent_del_links(struct net_device *dev)
6259 {
6260         struct netdev_adjacent *iter;
6261
6262         struct net *net = dev_net(dev);
6263
6264         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6265                 if (!net_eq(net, dev_net(iter->dev)))
6266                         continue;
6267                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6268                                           &iter->dev->adj_list.lower);
6269                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6270                                           &dev->adj_list.upper);
6271         }
6272
6273         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6274                 if (!net_eq(net, dev_net(iter->dev)))
6275                         continue;
6276                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6277                                           &iter->dev->adj_list.upper);
6278                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6279                                           &dev->adj_list.lower);
6280         }
6281 }
6282
6283 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6284 {
6285         struct netdev_adjacent *iter;
6286
6287         struct net *net = dev_net(dev);
6288
6289         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6290                 if (!net_eq(net, dev_net(iter->dev)))
6291                         continue;
6292                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6293                                           &iter->dev->adj_list.lower);
6294                 netdev_adjacent_sysfs_add(iter->dev, dev,
6295                                           &iter->dev->adj_list.lower);
6296         }
6297
6298         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6299                 if (!net_eq(net, dev_net(iter->dev)))
6300                         continue;
6301                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6302                                           &iter->dev->adj_list.upper);
6303                 netdev_adjacent_sysfs_add(iter->dev, dev,
6304                                           &iter->dev->adj_list.upper);
6305         }
6306 }
6307
6308 void *netdev_lower_dev_get_private(struct net_device *dev,
6309                                    struct net_device *lower_dev)
6310 {
6311         struct netdev_adjacent *lower;
6312
6313         if (!lower_dev)
6314                 return NULL;
6315         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6316         if (!lower)
6317                 return NULL;
6318
6319         return lower->private;
6320 }
6321 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6322
6323
6324 int dev_get_nest_level(struct net_device *dev)
6325 {
6326         struct net_device *lower = NULL;
6327         struct list_head *iter;
6328         int max_nest = -1;
6329         int nest;
6330
6331         ASSERT_RTNL();
6332
6333         netdev_for_each_lower_dev(dev, lower, iter) {
6334                 nest = dev_get_nest_level(lower);
6335                 if (max_nest < nest)
6336                         max_nest = nest;
6337         }
6338
6339         return max_nest + 1;
6340 }
6341 EXPORT_SYMBOL(dev_get_nest_level);
6342
6343 /**
6344  * netdev_lower_change - Dispatch event about lower device state change
6345  * @lower_dev: device
6346  * @lower_state_info: state to dispatch
6347  *
6348  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6349  * The caller must hold the RTNL lock.
6350  */
6351 void netdev_lower_state_changed(struct net_device *lower_dev,
6352                                 void *lower_state_info)
6353 {
6354         struct netdev_notifier_changelowerstate_info changelowerstate_info;
6355
6356         ASSERT_RTNL();
6357         changelowerstate_info.lower_state_info = lower_state_info;
6358         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
6359                                       &changelowerstate_info.info);
6360 }
6361 EXPORT_SYMBOL(netdev_lower_state_changed);
6362
6363 static void dev_change_rx_flags(struct net_device *dev, int flags)
6364 {
6365         const struct net_device_ops *ops = dev->netdev_ops;
6366
6367         if (ops->ndo_change_rx_flags)
6368                 ops->ndo_change_rx_flags(dev, flags);
6369 }
6370
6371 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6372 {
6373         unsigned int old_flags = dev->flags;
6374         kuid_t uid;
6375         kgid_t gid;
6376
6377         ASSERT_RTNL();
6378
6379         dev->flags |= IFF_PROMISC;
6380         dev->promiscuity += inc;
6381         if (dev->promiscuity == 0) {
6382                 /*
6383                  * Avoid overflow.
6384                  * If inc causes overflow, untouch promisc and return error.
6385                  */
6386                 if (inc < 0)
6387                         dev->flags &= ~IFF_PROMISC;
6388                 else {
6389                         dev->promiscuity -= inc;
6390                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6391                                 dev->name);
6392                         return -EOVERFLOW;
6393                 }
6394         }
6395         if (dev->flags != old_flags) {
6396                 pr_info("device %s %s promiscuous mode\n",
6397                         dev->name,
6398                         dev->flags & IFF_PROMISC ? "entered" : "left");
6399                 if (audit_enabled) {
6400                         current_uid_gid(&uid, &gid);
6401                         audit_log(current->audit_context, GFP_ATOMIC,
6402                                 AUDIT_ANOM_PROMISCUOUS,
6403                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6404                                 dev->name, (dev->flags & IFF_PROMISC),
6405                                 (old_flags & IFF_PROMISC),
6406                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6407                                 from_kuid(&init_user_ns, uid),
6408                                 from_kgid(&init_user_ns, gid),
6409                                 audit_get_sessionid(current));
6410                 }
6411
6412                 dev_change_rx_flags(dev, IFF_PROMISC);
6413         }
6414         if (notify)
6415                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6416         return 0;
6417 }
6418
6419 /**
6420  *      dev_set_promiscuity     - update promiscuity count on a device
6421  *      @dev: device
6422  *      @inc: modifier
6423  *
6424  *      Add or remove promiscuity from a device. While the count in the device
6425  *      remains above zero the interface remains promiscuous. Once it hits zero
6426  *      the device reverts back to normal filtering operation. A negative inc
6427  *      value is used to drop promiscuity on the device.
6428  *      Return 0 if successful or a negative errno code on error.
6429  */
6430 int dev_set_promiscuity(struct net_device *dev, int inc)
6431 {
6432         unsigned int old_flags = dev->flags;
6433         int err;
6434
6435         err = __dev_set_promiscuity(dev, inc, true);
6436         if (err < 0)
6437                 return err;
6438         if (dev->flags != old_flags)
6439                 dev_set_rx_mode(dev);
6440         return err;
6441 }
6442 EXPORT_SYMBOL(dev_set_promiscuity);
6443
6444 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6445 {
6446         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6447
6448         ASSERT_RTNL();
6449
6450         dev->flags |= IFF_ALLMULTI;
6451         dev->allmulti += inc;
6452         if (dev->allmulti == 0) {
6453                 /*
6454                  * Avoid overflow.
6455                  * If inc causes overflow, untouch allmulti and return error.
6456                  */
6457                 if (inc < 0)
6458                         dev->flags &= ~IFF_ALLMULTI;
6459                 else {
6460                         dev->allmulti -= inc;
6461                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6462                                 dev->name);
6463                         return -EOVERFLOW;
6464                 }
6465         }
6466         if (dev->flags ^ old_flags) {
6467                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6468                 dev_set_rx_mode(dev);
6469                 if (notify)
6470                         __dev_notify_flags(dev, old_flags,
6471                                            dev->gflags ^ old_gflags);
6472         }
6473         return 0;
6474 }
6475
6476 /**
6477  *      dev_set_allmulti        - update allmulti count on a device
6478  *      @dev: device
6479  *      @inc: modifier
6480  *
6481  *      Add or remove reception of all multicast frames to a device. While the
6482  *      count in the device remains above zero the interface remains listening
6483  *      to all interfaces. Once it hits zero the device reverts back to normal
6484  *      filtering operation. A negative @inc value is used to drop the counter
6485  *      when releasing a resource needing all multicasts.
6486  *      Return 0 if successful or a negative errno code on error.
6487  */
6488
6489 int dev_set_allmulti(struct net_device *dev, int inc)
6490 {
6491         return __dev_set_allmulti(dev, inc, true);
6492 }
6493 EXPORT_SYMBOL(dev_set_allmulti);
6494
6495 /*
6496  *      Upload unicast and multicast address lists to device and
6497  *      configure RX filtering. When the device doesn't support unicast
6498  *      filtering it is put in promiscuous mode while unicast addresses
6499  *      are present.
6500  */
6501 void __dev_set_rx_mode(struct net_device *dev)
6502 {
6503         const struct net_device_ops *ops = dev->netdev_ops;
6504
6505         /* dev_open will call this function so the list will stay sane. */
6506         if (!(dev->flags&IFF_UP))
6507                 return;
6508
6509         if (!netif_device_present(dev))
6510                 return;
6511
6512         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6513                 /* Unicast addresses changes may only happen under the rtnl,
6514                  * therefore calling __dev_set_promiscuity here is safe.
6515                  */
6516                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6517                         __dev_set_promiscuity(dev, 1, false);
6518                         dev->uc_promisc = true;
6519                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6520                         __dev_set_promiscuity(dev, -1, false);
6521                         dev->uc_promisc = false;
6522                 }
6523         }
6524
6525         if (ops->ndo_set_rx_mode)
6526                 ops->ndo_set_rx_mode(dev);
6527 }
6528
6529 void dev_set_rx_mode(struct net_device *dev)
6530 {
6531         netif_addr_lock_bh(dev);
6532         __dev_set_rx_mode(dev);
6533         netif_addr_unlock_bh(dev);
6534 }
6535
6536 /**
6537  *      dev_get_flags - get flags reported to userspace
6538  *      @dev: device
6539  *
6540  *      Get the combination of flag bits exported through APIs to userspace.
6541  */
6542 unsigned int dev_get_flags(const struct net_device *dev)
6543 {
6544         unsigned int flags;
6545
6546         flags = (dev->flags & ~(IFF_PROMISC |
6547                                 IFF_ALLMULTI |
6548                                 IFF_RUNNING |
6549                                 IFF_LOWER_UP |
6550                                 IFF_DORMANT)) |
6551                 (dev->gflags & (IFF_PROMISC |
6552                                 IFF_ALLMULTI));
6553
6554         if (netif_running(dev)) {
6555                 if (netif_oper_up(dev))
6556                         flags |= IFF_RUNNING;
6557                 if (netif_carrier_ok(dev))
6558                         flags |= IFF_LOWER_UP;
6559                 if (netif_dormant(dev))
6560                         flags |= IFF_DORMANT;
6561         }
6562
6563         return flags;
6564 }
6565 EXPORT_SYMBOL(dev_get_flags);
6566
6567 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6568 {
6569         unsigned int old_flags = dev->flags;
6570         int ret;
6571
6572         ASSERT_RTNL();
6573
6574         /*
6575          *      Set the flags on our device.
6576          */
6577
6578         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6579                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6580                                IFF_AUTOMEDIA)) |
6581                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6582                                     IFF_ALLMULTI));
6583
6584         /*
6585          *      Load in the correct multicast list now the flags have changed.
6586          */
6587
6588         if ((old_flags ^ flags) & IFF_MULTICAST)
6589                 dev_change_rx_flags(dev, IFF_MULTICAST);
6590
6591         dev_set_rx_mode(dev);
6592
6593         /*
6594          *      Have we downed the interface. We handle IFF_UP ourselves
6595          *      according to user attempts to set it, rather than blindly
6596          *      setting it.
6597          */
6598
6599         ret = 0;
6600         if ((old_flags ^ flags) & IFF_UP)
6601                 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
6602
6603         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6604                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6605                 unsigned int old_flags = dev->flags;
6606
6607                 dev->gflags ^= IFF_PROMISC;
6608
6609                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6610                         if (dev->flags != old_flags)
6611                                 dev_set_rx_mode(dev);
6612         }
6613
6614         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6615          * is important. Some (broken) drivers set IFF_PROMISC, when
6616          * IFF_ALLMULTI is requested not asking us and not reporting.
6617          */
6618         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6619                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6620
6621                 dev->gflags ^= IFF_ALLMULTI;
6622                 __dev_set_allmulti(dev, inc, false);
6623         }
6624
6625         return ret;
6626 }
6627
6628 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6629                         unsigned int gchanges)
6630 {
6631         unsigned int changes = dev->flags ^ old_flags;
6632
6633         if (gchanges)
6634                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6635
6636         if (changes & IFF_UP) {
6637                 if (dev->flags & IFF_UP)
6638                         call_netdevice_notifiers(NETDEV_UP, dev);
6639                 else
6640                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6641         }
6642
6643         if (dev->flags & IFF_UP &&
6644             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6645                 struct netdev_notifier_change_info change_info;
6646
6647                 change_info.flags_changed = changes;
6648                 call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6649                                               &change_info.info);
6650         }
6651 }
6652
6653 /**
6654  *      dev_change_flags - change device settings
6655  *      @dev: device
6656  *      @flags: device state flags
6657  *
6658  *      Change settings on device based state flags. The flags are
6659  *      in the userspace exported format.
6660  */
6661 int dev_change_flags(struct net_device *dev, unsigned int flags)
6662 {
6663         int ret;
6664         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6665
6666         ret = __dev_change_flags(dev, flags);
6667         if (ret < 0)
6668                 return ret;
6669
6670         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6671         __dev_notify_flags(dev, old_flags, changes);
6672         return ret;
6673 }
6674 EXPORT_SYMBOL(dev_change_flags);
6675
6676 static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6677 {
6678         const struct net_device_ops *ops = dev->netdev_ops;
6679
6680         if (ops->ndo_change_mtu)
6681                 return ops->ndo_change_mtu(dev, new_mtu);
6682
6683         dev->mtu = new_mtu;
6684         return 0;
6685 }
6686
6687 /**
6688  *      dev_set_mtu - Change maximum transfer unit
6689  *      @dev: device
6690  *      @new_mtu: new transfer unit
6691  *
6692  *      Change the maximum transfer size of the network device.
6693  */
6694 int dev_set_mtu(struct net_device *dev, int new_mtu)
6695 {
6696         int err, orig_mtu;
6697
6698         if (new_mtu == dev->mtu)
6699                 return 0;
6700
6701         /* MTU must be positive, and in range */
6702         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
6703                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
6704                                     dev->name, new_mtu, dev->min_mtu);
6705                 return -EINVAL;
6706         }
6707
6708         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
6709                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
6710                                     dev->name, new_mtu, dev->max_mtu);
6711                 return -EINVAL;
6712         }
6713
6714         if (!netif_device_present(dev))
6715                 return -ENODEV;
6716
6717         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6718         err = notifier_to_errno(err);
6719         if (err)
6720                 return err;
6721
6722         orig_mtu = dev->mtu;
6723         err = __dev_set_mtu(dev, new_mtu);
6724
6725         if (!err) {
6726                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6727                 err = notifier_to_errno(err);
6728                 if (err) {
6729                         /* setting mtu back and notifying everyone again,
6730                          * so that they have a chance to revert changes.
6731                          */
6732                         __dev_set_mtu(dev, orig_mtu);
6733                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
6734                 }
6735         }
6736         return err;
6737 }
6738 EXPORT_SYMBOL(dev_set_mtu);
6739
6740 /**
6741  *      dev_set_group - Change group this device belongs to
6742  *      @dev: device
6743  *      @new_group: group this device should belong to
6744  */
6745 void dev_set_group(struct net_device *dev, int new_group)
6746 {
6747         dev->group = new_group;
6748 }
6749 EXPORT_SYMBOL(dev_set_group);
6750
6751 /**
6752  *      dev_set_mac_address - Change Media Access Control Address
6753  *      @dev: device
6754  *      @sa: new address
6755  *
6756  *      Change the hardware (MAC) address of the device
6757  */
6758 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
6759 {
6760         const struct net_device_ops *ops = dev->netdev_ops;
6761         int err;
6762
6763         if (!ops->ndo_set_mac_address)
6764                 return -EOPNOTSUPP;
6765         if (sa->sa_family != dev->type)
6766                 return -EINVAL;
6767         if (!netif_device_present(dev))
6768                 return -ENODEV;
6769         err = ops->ndo_set_mac_address(dev, sa);
6770         if (err)
6771                 return err;
6772         dev->addr_assign_type = NET_ADDR_SET;
6773         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6774         add_device_randomness(dev->dev_addr, dev->addr_len);
6775         return 0;
6776 }
6777 EXPORT_SYMBOL(dev_set_mac_address);
6778
6779 /**
6780  *      dev_change_carrier - Change device carrier
6781  *      @dev: device
6782  *      @new_carrier: new value
6783  *
6784  *      Change device carrier
6785  */
6786 int dev_change_carrier(struct net_device *dev, bool new_carrier)
6787 {
6788         const struct net_device_ops *ops = dev->netdev_ops;
6789
6790         if (!ops->ndo_change_carrier)
6791                 return -EOPNOTSUPP;
6792         if (!netif_device_present(dev))
6793                 return -ENODEV;
6794         return ops->ndo_change_carrier(dev, new_carrier);
6795 }
6796 EXPORT_SYMBOL(dev_change_carrier);
6797
6798 /**
6799  *      dev_get_phys_port_id - Get device physical port ID
6800  *      @dev: device
6801  *      @ppid: port ID
6802  *
6803  *      Get device physical port ID
6804  */
6805 int dev_get_phys_port_id(struct net_device *dev,
6806                          struct netdev_phys_item_id *ppid)
6807 {
6808         const struct net_device_ops *ops = dev->netdev_ops;
6809
6810         if (!ops->ndo_get_phys_port_id)
6811                 return -EOPNOTSUPP;
6812         return ops->ndo_get_phys_port_id(dev, ppid);
6813 }
6814 EXPORT_SYMBOL(dev_get_phys_port_id);
6815
6816 /**
6817  *      dev_get_phys_port_name - Get device physical port name
6818  *      @dev: device
6819  *      @name: port name
6820  *      @len: limit of bytes to copy to name
6821  *
6822  *      Get device physical port name
6823  */
6824 int dev_get_phys_port_name(struct net_device *dev,
6825                            char *name, size_t len)
6826 {
6827         const struct net_device_ops *ops = dev->netdev_ops;
6828
6829         if (!ops->ndo_get_phys_port_name)
6830                 return -EOPNOTSUPP;
6831         return ops->ndo_get_phys_port_name(dev, name, len);
6832 }
6833 EXPORT_SYMBOL(dev_get_phys_port_name);
6834
6835 /**
6836  *      dev_change_proto_down - update protocol port state information
6837  *      @dev: device
6838  *      @proto_down: new value
6839  *
6840  *      This info can be used by switch drivers to set the phys state of the
6841  *      port.
6842  */
6843 int dev_change_proto_down(struct net_device *dev, bool proto_down)
6844 {
6845         const struct net_device_ops *ops = dev->netdev_ops;
6846
6847         if (!ops->ndo_change_proto_down)
6848                 return -EOPNOTSUPP;
6849         if (!netif_device_present(dev))
6850                 return -ENODEV;
6851         return ops->ndo_change_proto_down(dev, proto_down);
6852 }
6853 EXPORT_SYMBOL(dev_change_proto_down);
6854
6855 bool __dev_xdp_attached(struct net_device *dev, xdp_op_t xdp_op)
6856 {
6857         struct netdev_xdp xdp;
6858
6859         memset(&xdp, 0, sizeof(xdp));
6860         xdp.command = XDP_QUERY_PROG;
6861
6862         /* Query must always succeed. */
6863         WARN_ON(xdp_op(dev, &xdp) < 0);
6864         return xdp.prog_attached;
6865 }
6866
6867 static int dev_xdp_install(struct net_device *dev, xdp_op_t xdp_op,
6868                            struct netlink_ext_ack *extack,
6869                            struct bpf_prog *prog)
6870 {
6871         struct netdev_xdp xdp;
6872
6873         memset(&xdp, 0, sizeof(xdp));
6874         xdp.command = XDP_SETUP_PROG;
6875         xdp.extack = extack;
6876         xdp.prog = prog;
6877
6878         return xdp_op(dev, &xdp);
6879 }
6880
6881 /**
6882  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
6883  *      @dev: device
6884  *      @extack: netlink extended ack
6885  *      @fd: new program fd or negative value to clear
6886  *      @flags: xdp-related flags
6887  *
6888  *      Set or clear a bpf program for a device
6889  */
6890 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
6891                       int fd, u32 flags)
6892 {
6893         const struct net_device_ops *ops = dev->netdev_ops;
6894         struct bpf_prog *prog = NULL;
6895         xdp_op_t xdp_op, xdp_chk;
6896         int err;
6897
6898         ASSERT_RTNL();
6899
6900         xdp_op = xdp_chk = ops->ndo_xdp;
6901         if (!xdp_op && (flags & XDP_FLAGS_DRV_MODE))
6902                 return -EOPNOTSUPP;
6903         if (!xdp_op || (flags & XDP_FLAGS_SKB_MODE))
6904                 xdp_op = generic_xdp_install;
6905         if (xdp_op == xdp_chk)
6906                 xdp_chk = generic_xdp_install;
6907
6908         if (fd >= 0) {
6909                 if (xdp_chk && __dev_xdp_attached(dev, xdp_chk))
6910                         return -EEXIST;
6911                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
6912                     __dev_xdp_attached(dev, xdp_op))
6913                         return -EBUSY;
6914
6915                 prog = bpf_prog_get_type(fd, BPF_PROG_TYPE_XDP);
6916                 if (IS_ERR(prog))
6917                         return PTR_ERR(prog);
6918         }
6919
6920         err = dev_xdp_install(dev, xdp_op, extack, prog);
6921         if (err < 0 && prog)
6922                 bpf_prog_put(prog);
6923
6924         return err;
6925 }
6926
6927 /**
6928  *      dev_new_index   -       allocate an ifindex
6929  *      @net: the applicable net namespace
6930  *
6931  *      Returns a suitable unique value for a new device interface
6932  *      number.  The caller must hold the rtnl semaphore or the
6933  *      dev_base_lock to be sure it remains unique.
6934  */
6935 static int dev_new_index(struct net *net)
6936 {
6937         int ifindex = net->ifindex;
6938
6939         for (;;) {
6940                 if (++ifindex <= 0)
6941                         ifindex = 1;
6942                 if (!__dev_get_by_index(net, ifindex))
6943                         return net->ifindex = ifindex;
6944         }
6945 }
6946
6947 /* Delayed registration/unregisteration */
6948 static LIST_HEAD(net_todo_list);
6949 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
6950
6951 static void net_set_todo(struct net_device *dev)
6952 {
6953         list_add_tail(&dev->todo_list, &net_todo_list);
6954         dev_net(dev)->dev_unreg_count++;
6955 }
6956
6957 static void rollback_registered_many(struct list_head *head)
6958 {
6959         struct net_device *dev, *tmp;
6960         LIST_HEAD(close_head);
6961
6962         BUG_ON(dev_boot_phase);
6963         ASSERT_RTNL();
6964
6965         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6966                 /* Some devices call without registering
6967                  * for initialization unwind. Remove those
6968                  * devices and proceed with the remaining.
6969                  */
6970                 if (dev->reg_state == NETREG_UNINITIALIZED) {
6971                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6972                                  dev->name, dev);
6973
6974                         WARN_ON(1);
6975                         list_del(&dev->unreg_list);
6976                         continue;
6977                 }
6978                 dev->dismantle = true;
6979                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
6980         }
6981
6982         /* If device is running, close it first. */
6983         list_for_each_entry(dev, head, unreg_list)
6984                 list_add_tail(&dev->close_list, &close_head);
6985         dev_close_many(&close_head, true);
6986
6987         list_for_each_entry(dev, head, unreg_list) {
6988                 /* And unlink it from device chain. */
6989                 unlist_netdevice(dev);
6990
6991                 dev->reg_state = NETREG_UNREGISTERING;
6992         }
6993         flush_all_backlogs();
6994
6995         synchronize_net();
6996
6997         list_for_each_entry(dev, head, unreg_list) {
6998                 struct sk_buff *skb = NULL;
6999
7000                 /* Shutdown queueing discipline. */
7001                 dev_shutdown(dev);
7002
7003
7004                 /* Notify protocols, that we are about to destroy
7005                  * this device. They should clean all the things.
7006                  */
7007                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7008
7009                 if (!dev->rtnl_link_ops ||
7010                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7011                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
7012                                                      GFP_KERNEL);
7013
7014                 /*
7015                  *      Flush the unicast and multicast chains
7016                  */
7017                 dev_uc_flush(dev);
7018                 dev_mc_flush(dev);
7019
7020                 if (dev->netdev_ops->ndo_uninit)
7021                         dev->netdev_ops->ndo_uninit(dev);
7022
7023                 if (skb)
7024                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7025
7026                 /* Notifier chain MUST detach us all upper devices. */
7027                 WARN_ON(netdev_has_any_upper_dev(dev));
7028                 WARN_ON(netdev_has_any_lower_dev(dev));
7029
7030                 /* Remove entries from kobject tree */
7031                 netdev_unregister_kobject(dev);
7032 #ifdef CONFIG_XPS
7033                 /* Remove XPS queueing entries */
7034                 netif_reset_xps_queues_gt(dev, 0);
7035 #endif
7036         }
7037
7038         synchronize_net();
7039
7040         list_for_each_entry(dev, head, unreg_list)
7041                 dev_put(dev);
7042 }
7043
7044 static void rollback_registered(struct net_device *dev)
7045 {
7046         LIST_HEAD(single);
7047
7048         list_add(&dev->unreg_list, &single);
7049         rollback_registered_many(&single);
7050         list_del(&single);
7051 }
7052
7053 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7054         struct net_device *upper, netdev_features_t features)
7055 {
7056         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7057         netdev_features_t feature;
7058         int feature_bit;
7059
7060         for_each_netdev_feature(&upper_disables, feature_bit) {
7061                 feature = __NETIF_F_BIT(feature_bit);
7062                 if (!(upper->wanted_features & feature)
7063                     && (features & feature)) {
7064                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7065                                    &feature, upper->name);
7066                         features &= ~feature;
7067                 }
7068         }
7069
7070         return features;
7071 }
7072
7073 static void netdev_sync_lower_features(struct net_device *upper,
7074         struct net_device *lower, netdev_features_t features)
7075 {
7076         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7077         netdev_features_t feature;
7078         int feature_bit;
7079
7080         for_each_netdev_feature(&upper_disables, feature_bit) {
7081                 feature = __NETIF_F_BIT(feature_bit);
7082                 if (!(features & feature) && (lower->features & feature)) {
7083                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7084                                    &feature, lower->name);
7085                         lower->wanted_features &= ~feature;
7086                         netdev_update_features(lower);
7087
7088                         if (unlikely(lower->features & feature))
7089                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7090                                             &feature, lower->name);
7091                 }
7092         }
7093 }
7094
7095 static netdev_features_t netdev_fix_features(struct net_device *dev,
7096         netdev_features_t features)
7097 {
7098         /* Fix illegal checksum combinations */
7099         if ((features & NETIF_F_HW_CSUM) &&
7100             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7101                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7102                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7103         }
7104
7105         /* TSO requires that SG is present as well. */
7106         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7107                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7108                 features &= ~NETIF_F_ALL_TSO;
7109         }
7110
7111         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7112                                         !(features & NETIF_F_IP_CSUM)) {
7113                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7114                 features &= ~NETIF_F_TSO;
7115                 features &= ~NETIF_F_TSO_ECN;
7116         }
7117
7118         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7119                                          !(features & NETIF_F_IPV6_CSUM)) {
7120                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7121                 features &= ~NETIF_F_TSO6;
7122         }
7123
7124         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7125         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7126                 features &= ~NETIF_F_TSO_MANGLEID;
7127
7128         /* TSO ECN requires that TSO is present as well. */
7129         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7130                 features &= ~NETIF_F_TSO_ECN;
7131
7132         /* Software GSO depends on SG. */
7133         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7134                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7135                 features &= ~NETIF_F_GSO;
7136         }
7137
7138         /* UFO needs SG and checksumming */
7139         if (features & NETIF_F_UFO) {
7140                 /* maybe split UFO into V4 and V6? */
7141                 if (!(features & NETIF_F_HW_CSUM) &&
7142                     ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
7143                      (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
7144                         netdev_dbg(dev,
7145                                 "Dropping NETIF_F_UFO since no checksum offload features.\n");
7146                         features &= ~NETIF_F_UFO;
7147                 }
7148
7149                 if (!(features & NETIF_F_SG)) {
7150                         netdev_dbg(dev,
7151                                 "Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
7152                         features &= ~NETIF_F_UFO;
7153                 }
7154         }
7155
7156         /* GSO partial features require GSO partial be set */
7157         if ((features & dev->gso_partial_features) &&
7158             !(features & NETIF_F_GSO_PARTIAL)) {
7159                 netdev_dbg(dev,
7160                            "Dropping partially supported GSO features since no GSO partial.\n");
7161                 features &= ~dev->gso_partial_features;
7162         }
7163
7164         return features;
7165 }
7166
7167 int __netdev_update_features(struct net_device *dev)
7168 {
7169         struct net_device *upper, *lower;
7170         netdev_features_t features;
7171         struct list_head *iter;
7172         int err = -1;
7173
7174         ASSERT_RTNL();
7175
7176         features = netdev_get_wanted_features(dev);
7177
7178         if (dev->netdev_ops->ndo_fix_features)
7179                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7180
7181         /* driver might be less strict about feature dependencies */
7182         features = netdev_fix_features(dev, features);
7183
7184         /* some features can't be enabled if they're off an an upper device */
7185         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7186                 features = netdev_sync_upper_features(dev, upper, features);
7187
7188         if (dev->features == features)
7189                 goto sync_lower;
7190
7191         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7192                 &dev->features, &features);
7193
7194         if (dev->netdev_ops->ndo_set_features)
7195                 err = dev->netdev_ops->ndo_set_features(dev, features);
7196         else
7197                 err = 0;
7198
7199         if (unlikely(err < 0)) {
7200                 netdev_err(dev,
7201                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7202                         err, &features, &dev->features);
7203                 /* return non-0 since some features might have changed and
7204                  * it's better to fire a spurious notification than miss it
7205                  */
7206                 return -1;
7207         }
7208
7209 sync_lower:
7210         /* some features must be disabled on lower devices when disabled
7211          * on an upper device (think: bonding master or bridge)
7212          */
7213         netdev_for_each_lower_dev(dev, lower, iter)
7214                 netdev_sync_lower_features(dev, lower, features);
7215
7216         if (!err)
7217                 dev->features = features;
7218
7219         return err < 0 ? 0 : 1;
7220 }
7221
7222 /**
7223  *      netdev_update_features - recalculate device features
7224  *      @dev: the device to check
7225  *
7226  *      Recalculate dev->features set and send notifications if it
7227  *      has changed. Should be called after driver or hardware dependent
7228  *      conditions might have changed that influence the features.
7229  */
7230 void netdev_update_features(struct net_device *dev)
7231 {
7232         if (__netdev_update_features(dev))
7233                 netdev_features_change(dev);
7234 }
7235 EXPORT_SYMBOL(netdev_update_features);
7236
7237 /**
7238  *      netdev_change_features - recalculate device features
7239  *      @dev: the device to check
7240  *
7241  *      Recalculate dev->features set and send notifications even
7242  *      if they have not changed. Should be called instead of
7243  *      netdev_update_features() if also dev->vlan_features might
7244  *      have changed to allow the changes to be propagated to stacked
7245  *      VLAN devices.
7246  */
7247 void netdev_change_features(struct net_device *dev)
7248 {
7249         __netdev_update_features(dev);
7250         netdev_features_change(dev);
7251 }
7252 EXPORT_SYMBOL(netdev_change_features);
7253
7254 /**
7255  *      netif_stacked_transfer_operstate -      transfer operstate
7256  *      @rootdev: the root or lower level device to transfer state from
7257  *      @dev: the device to transfer operstate to
7258  *
7259  *      Transfer operational state from root to device. This is normally
7260  *      called when a stacking relationship exists between the root
7261  *      device and the device(a leaf device).
7262  */
7263 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7264                                         struct net_device *dev)
7265 {
7266         if (rootdev->operstate == IF_OPER_DORMANT)
7267                 netif_dormant_on(dev);
7268         else
7269                 netif_dormant_off(dev);
7270
7271         if (netif_carrier_ok(rootdev))
7272                 netif_carrier_on(dev);
7273         else
7274                 netif_carrier_off(dev);
7275 }
7276 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7277
7278 #ifdef CONFIG_SYSFS
7279 static int netif_alloc_rx_queues(struct net_device *dev)
7280 {
7281         unsigned int i, count = dev->num_rx_queues;
7282         struct netdev_rx_queue *rx;
7283         size_t sz = count * sizeof(*rx);
7284
7285         BUG_ON(count < 1);
7286
7287         rx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7288         if (!rx)
7289                 return -ENOMEM;
7290
7291         dev->_rx = rx;
7292
7293         for (i = 0; i < count; i++)
7294                 rx[i].dev = dev;
7295         return 0;
7296 }
7297 #endif
7298
7299 static void netdev_init_one_queue(struct net_device *dev,
7300                                   struct netdev_queue *queue, void *_unused)
7301 {
7302         /* Initialize queue lock */
7303         spin_lock_init(&queue->_xmit_lock);
7304         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7305         queue->xmit_lock_owner = -1;
7306         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7307         queue->dev = dev;
7308 #ifdef CONFIG_BQL
7309         dql_init(&queue->dql, HZ);
7310 #endif
7311 }
7312
7313 static void netif_free_tx_queues(struct net_device *dev)
7314 {
7315         kvfree(dev->_tx);
7316 }
7317
7318 static int netif_alloc_netdev_queues(struct net_device *dev)
7319 {
7320         unsigned int count = dev->num_tx_queues;
7321         struct netdev_queue *tx;
7322         size_t sz = count * sizeof(*tx);
7323
7324         if (count < 1 || count > 0xffff)
7325                 return -EINVAL;
7326
7327         tx = kvzalloc(sz, GFP_KERNEL | __GFP_REPEAT);
7328         if (!tx)
7329                 return -ENOMEM;
7330
7331         dev->_tx = tx;
7332
7333         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7334         spin_lock_init(&dev->tx_global_lock);
7335
7336         return 0;
7337 }
7338
7339 void netif_tx_stop_all_queues(struct net_device *dev)
7340 {
7341         unsigned int i;
7342
7343         for (i = 0; i < dev->num_tx_queues; i++) {
7344                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7345
7346                 netif_tx_stop_queue(txq);
7347         }
7348 }
7349 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7350
7351 /**
7352  *      register_netdevice      - register a network device
7353  *      @dev: device to register
7354  *
7355  *      Take a completed network device structure and add it to the kernel
7356  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7357  *      chain. 0 is returned on success. A negative errno code is returned
7358  *      on a failure to set up the device, or if the name is a duplicate.
7359  *
7360  *      Callers must hold the rtnl semaphore. You may want
7361  *      register_netdev() instead of this.
7362  *
7363  *      BUGS:
7364  *      The locking appears insufficient to guarantee two parallel registers
7365  *      will not get the same name.
7366  */
7367
7368 int register_netdevice(struct net_device *dev)
7369 {
7370         int ret;
7371         struct net *net = dev_net(dev);
7372
7373         BUG_ON(dev_boot_phase);
7374         ASSERT_RTNL();
7375
7376         might_sleep();
7377
7378         /* When net_device's are persistent, this will be fatal. */
7379         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7380         BUG_ON(!net);
7381
7382         spin_lock_init(&dev->addr_list_lock);
7383         netdev_set_addr_lockdep_class(dev);
7384
7385         ret = dev_get_valid_name(net, dev, dev->name);
7386         if (ret < 0)
7387                 goto out;
7388
7389         /* Init, if this function is available */
7390         if (dev->netdev_ops->ndo_init) {
7391                 ret = dev->netdev_ops->ndo_init(dev);
7392                 if (ret) {
7393                         if (ret > 0)
7394                                 ret = -EIO;
7395                         goto out;
7396                 }
7397         }
7398
7399         if (((dev->hw_features | dev->features) &
7400              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7401             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7402              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7403                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7404                 ret = -EINVAL;
7405                 goto err_uninit;
7406         }
7407
7408         ret = -EBUSY;
7409         if (!dev->ifindex)
7410                 dev->ifindex = dev_new_index(net);
7411         else if (__dev_get_by_index(net, dev->ifindex))
7412                 goto err_uninit;
7413
7414         /* Transfer changeable features to wanted_features and enable
7415          * software offloads (GSO and GRO).
7416          */
7417         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7418         dev->features |= NETIF_F_SOFT_FEATURES;
7419         dev->wanted_features = dev->features & dev->hw_features;
7420
7421         if (!(dev->flags & IFF_LOOPBACK))
7422                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7423
7424         /* If IPv4 TCP segmentation offload is supported we should also
7425          * allow the device to enable segmenting the frame with the option
7426          * of ignoring a static IP ID value.  This doesn't enable the
7427          * feature itself but allows the user to enable it later.
7428          */
7429         if (dev->hw_features & NETIF_F_TSO)
7430                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7431         if (dev->vlan_features & NETIF_F_TSO)
7432                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7433         if (dev->mpls_features & NETIF_F_TSO)
7434                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7435         if (dev->hw_enc_features & NETIF_F_TSO)
7436                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7437
7438         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7439          */
7440         dev->vlan_features |= NETIF_F_HIGHDMA;
7441
7442         /* Make NETIF_F_SG inheritable to tunnel devices.
7443          */
7444         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7445
7446         /* Make NETIF_F_SG inheritable to MPLS.
7447          */
7448         dev->mpls_features |= NETIF_F_SG;
7449
7450         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7451         ret = notifier_to_errno(ret);
7452         if (ret)
7453                 goto err_uninit;
7454
7455         ret = netdev_register_kobject(dev);
7456         if (ret)
7457                 goto err_uninit;
7458         dev->reg_state = NETREG_REGISTERED;
7459
7460         __netdev_update_features(dev);
7461
7462         /*
7463          *      Default initial state at registry is that the
7464          *      device is present.
7465          */
7466
7467         set_bit(__LINK_STATE_PRESENT, &dev->state);
7468
7469         linkwatch_init_dev(dev);
7470
7471         dev_init_scheduler(dev);
7472         dev_hold(dev);
7473         list_netdevice(dev);
7474         add_device_randomness(dev->dev_addr, dev->addr_len);
7475
7476         /* If the device has permanent device address, driver should
7477          * set dev_addr and also addr_assign_type should be set to
7478          * NET_ADDR_PERM (default value).
7479          */
7480         if (dev->addr_assign_type == NET_ADDR_PERM)
7481                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7482
7483         /* Notify protocols, that a new device appeared. */
7484         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7485         ret = notifier_to_errno(ret);
7486         if (ret) {
7487                 rollback_registered(dev);
7488                 dev->reg_state = NETREG_UNREGISTERED;
7489         }
7490         /*
7491          *      Prevent userspace races by waiting until the network
7492          *      device is fully setup before sending notifications.
7493          */
7494         if (!dev->rtnl_link_ops ||
7495             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7496                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7497
7498 out:
7499         return ret;
7500
7501 err_uninit:
7502         if (dev->netdev_ops->ndo_uninit)
7503                 dev->netdev_ops->ndo_uninit(dev);
7504         goto out;
7505 }
7506 EXPORT_SYMBOL(register_netdevice);
7507
7508 /**
7509  *      init_dummy_netdev       - init a dummy network device for NAPI
7510  *      @dev: device to init
7511  *
7512  *      This takes a network device structure and initialize the minimum
7513  *      amount of fields so it can be used to schedule NAPI polls without
7514  *      registering a full blown interface. This is to be used by drivers
7515  *      that need to tie several hardware interfaces to a single NAPI
7516  *      poll scheduler due to HW limitations.
7517  */
7518 int init_dummy_netdev(struct net_device *dev)
7519 {
7520         /* Clear everything. Note we don't initialize spinlocks
7521          * are they aren't supposed to be taken by any of the
7522          * NAPI code and this dummy netdev is supposed to be
7523          * only ever used for NAPI polls
7524          */
7525         memset(dev, 0, sizeof(struct net_device));
7526
7527         /* make sure we BUG if trying to hit standard
7528          * register/unregister code path
7529          */
7530         dev->reg_state = NETREG_DUMMY;
7531
7532         /* NAPI wants this */
7533         INIT_LIST_HEAD(&dev->napi_list);
7534
7535         /* a dummy interface is started by default */
7536         set_bit(__LINK_STATE_PRESENT, &dev->state);
7537         set_bit(__LINK_STATE_START, &dev->state);
7538
7539         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7540          * because users of this 'device' dont need to change
7541          * its refcount.
7542          */
7543
7544         return 0;
7545 }
7546 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7547
7548
7549 /**
7550  *      register_netdev - register a network device
7551  *      @dev: device to register
7552  *
7553  *      Take a completed network device structure and add it to the kernel
7554  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7555  *      chain. 0 is returned on success. A negative errno code is returned
7556  *      on a failure to set up the device, or if the name is a duplicate.
7557  *
7558  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
7559  *      and expands the device name if you passed a format string to
7560  *      alloc_netdev.
7561  */
7562 int register_netdev(struct net_device *dev)
7563 {
7564         int err;
7565
7566         rtnl_lock();
7567         err = register_netdevice(dev);
7568         rtnl_unlock();
7569         return err;
7570 }
7571 EXPORT_SYMBOL(register_netdev);
7572
7573 int netdev_refcnt_read(const struct net_device *dev)
7574 {
7575         int i, refcnt = 0;
7576
7577         for_each_possible_cpu(i)
7578                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7579         return refcnt;
7580 }
7581 EXPORT_SYMBOL(netdev_refcnt_read);
7582
7583 /**
7584  * netdev_wait_allrefs - wait until all references are gone.
7585  * @dev: target net_device
7586  *
7587  * This is called when unregistering network devices.
7588  *
7589  * Any protocol or device that holds a reference should register
7590  * for netdevice notification, and cleanup and put back the
7591  * reference if they receive an UNREGISTER event.
7592  * We can get stuck here if buggy protocols don't correctly
7593  * call dev_put.
7594  */
7595 static void netdev_wait_allrefs(struct net_device *dev)
7596 {
7597         unsigned long rebroadcast_time, warning_time;
7598         int refcnt;
7599
7600         linkwatch_forget_dev(dev);
7601
7602         rebroadcast_time = warning_time = jiffies;
7603         refcnt = netdev_refcnt_read(dev);
7604
7605         while (refcnt != 0) {
7606                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7607                         rtnl_lock();
7608
7609                         /* Rebroadcast unregister notification */
7610                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7611
7612                         __rtnl_unlock();
7613                         rcu_barrier();
7614                         rtnl_lock();
7615
7616                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7617                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7618                                      &dev->state)) {
7619                                 /* We must not have linkwatch events
7620                                  * pending on unregister. If this
7621                                  * happens, we simply run the queue
7622                                  * unscheduled, resulting in a noop
7623                                  * for this device.
7624                                  */
7625                                 linkwatch_run_queue();
7626                         }
7627
7628                         __rtnl_unlock();
7629
7630                         rebroadcast_time = jiffies;
7631                 }
7632
7633                 msleep(250);
7634
7635                 refcnt = netdev_refcnt_read(dev);
7636
7637                 if (time_after(jiffies, warning_time + 10 * HZ)) {
7638                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7639                                  dev->name, refcnt);
7640                         warning_time = jiffies;
7641                 }
7642         }
7643 }
7644
7645 /* The sequence is:
7646  *
7647  *      rtnl_lock();
7648  *      ...
7649  *      register_netdevice(x1);
7650  *      register_netdevice(x2);
7651  *      ...
7652  *      unregister_netdevice(y1);
7653  *      unregister_netdevice(y2);
7654  *      ...
7655  *      rtnl_unlock();
7656  *      free_netdev(y1);
7657  *      free_netdev(y2);
7658  *
7659  * We are invoked by rtnl_unlock().
7660  * This allows us to deal with problems:
7661  * 1) We can delete sysfs objects which invoke hotplug
7662  *    without deadlocking with linkwatch via keventd.
7663  * 2) Since we run with the RTNL semaphore not held, we can sleep
7664  *    safely in order to wait for the netdev refcnt to drop to zero.
7665  *
7666  * We must not return until all unregister events added during
7667  * the interval the lock was held have been completed.
7668  */
7669 void netdev_run_todo(void)
7670 {
7671         struct list_head list;
7672
7673         /* Snapshot list, allow later requests */
7674         list_replace_init(&net_todo_list, &list);
7675
7676         __rtnl_unlock();
7677
7678
7679         /* Wait for rcu callbacks to finish before next phase */
7680         if (!list_empty(&list))
7681                 rcu_barrier();
7682
7683         while (!list_empty(&list)) {
7684                 struct net_device *dev
7685                         = list_first_entry(&list, struct net_device, todo_list);
7686                 list_del(&dev->todo_list);
7687
7688                 rtnl_lock();
7689                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7690                 __rtnl_unlock();
7691
7692                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7693                         pr_err("network todo '%s' but state %d\n",
7694                                dev->name, dev->reg_state);
7695                         dump_stack();
7696                         continue;
7697                 }
7698
7699                 dev->reg_state = NETREG_UNREGISTERED;
7700
7701                 netdev_wait_allrefs(dev);
7702
7703                 /* paranoia */
7704                 BUG_ON(netdev_refcnt_read(dev));
7705                 BUG_ON(!list_empty(&dev->ptype_all));
7706                 BUG_ON(!list_empty(&dev->ptype_specific));
7707                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
7708                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7709                 WARN_ON(dev->dn_ptr);
7710
7711                 if (dev->destructor)
7712                         dev->destructor(dev);
7713
7714                 /* Report a network device has been unregistered */
7715                 rtnl_lock();
7716                 dev_net(dev)->dev_unreg_count--;
7717                 __rtnl_unlock();
7718                 wake_up(&netdev_unregistering_wq);
7719
7720                 /* Free network device */
7721                 kobject_put(&dev->dev.kobj);
7722         }
7723 }
7724
7725 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7726  * all the same fields in the same order as net_device_stats, with only
7727  * the type differing, but rtnl_link_stats64 may have additional fields
7728  * at the end for newer counters.
7729  */
7730 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7731                              const struct net_device_stats *netdev_stats)
7732 {
7733 #if BITS_PER_LONG == 64
7734         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7735         memcpy(stats64, netdev_stats, sizeof(*stats64));
7736         /* zero out counters that only exist in rtnl_link_stats64 */
7737         memset((char *)stats64 + sizeof(*netdev_stats), 0,
7738                sizeof(*stats64) - sizeof(*netdev_stats));
7739 #else
7740         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7741         const unsigned long *src = (const unsigned long *)netdev_stats;
7742         u64 *dst = (u64 *)stats64;
7743
7744         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7745         for (i = 0; i < n; i++)
7746                 dst[i] = src[i];
7747         /* zero out counters that only exist in rtnl_link_stats64 */
7748         memset((char *)stats64 + n * sizeof(u64), 0,
7749                sizeof(*stats64) - n * sizeof(u64));
7750 #endif
7751 }
7752 EXPORT_SYMBOL(netdev_stats_to_stats64);
7753
7754 /**
7755  *      dev_get_stats   - get network device statistics
7756  *      @dev: device to get statistics from
7757  *      @storage: place to store stats
7758  *
7759  *      Get network statistics from device. Return @storage.
7760  *      The device driver may provide its own method by setting
7761  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7762  *      otherwise the internal statistics structure is used.
7763  */
7764 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7765                                         struct rtnl_link_stats64 *storage)
7766 {
7767         const struct net_device_ops *ops = dev->netdev_ops;
7768
7769         if (ops->ndo_get_stats64) {
7770                 memset(storage, 0, sizeof(*storage));
7771                 ops->ndo_get_stats64(dev, storage);
7772         } else if (ops->ndo_get_stats) {
7773                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
7774         } else {
7775                 netdev_stats_to_stats64(storage, &dev->stats);
7776         }
7777         storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7778         storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7779         storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
7780         return storage;
7781 }
7782 EXPORT_SYMBOL(dev_get_stats);
7783
7784 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7785 {
7786         struct netdev_queue *queue = dev_ingress_queue(dev);
7787
7788 #ifdef CONFIG_NET_CLS_ACT
7789         if (queue)
7790                 return queue;
7791         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7792         if (!queue)
7793                 return NULL;
7794         netdev_init_one_queue(dev, queue, NULL);
7795         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7796         queue->qdisc_sleeping = &noop_qdisc;
7797         rcu_assign_pointer(dev->ingress_queue, queue);
7798 #endif
7799         return queue;
7800 }
7801
7802 static const struct ethtool_ops default_ethtool_ops;
7803
7804 void netdev_set_default_ethtool_ops(struct net_device *dev,
7805                                     const struct ethtool_ops *ops)
7806 {
7807         if (dev->ethtool_ops == &default_ethtool_ops)
7808                 dev->ethtool_ops = ops;
7809 }
7810 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7811
7812 void netdev_freemem(struct net_device *dev)
7813 {
7814         char *addr = (char *)dev - dev->padded;
7815
7816         kvfree(addr);
7817 }
7818
7819 /**
7820  * alloc_netdev_mqs - allocate network device
7821  * @sizeof_priv: size of private data to allocate space for
7822  * @name: device name format string
7823  * @name_assign_type: origin of device name
7824  * @setup: callback to initialize device
7825  * @txqs: the number of TX subqueues to allocate
7826  * @rxqs: the number of RX subqueues to allocate
7827  *
7828  * Allocates a struct net_device with private data area for driver use
7829  * and performs basic initialization.  Also allocates subqueue structs
7830  * for each queue on the device.
7831  */
7832 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7833                 unsigned char name_assign_type,
7834                 void (*setup)(struct net_device *),
7835                 unsigned int txqs, unsigned int rxqs)
7836 {
7837         struct net_device *dev;
7838         size_t alloc_size;
7839         struct net_device *p;
7840
7841         BUG_ON(strlen(name) >= sizeof(dev->name));
7842
7843         if (txqs < 1) {
7844                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7845                 return NULL;
7846         }
7847
7848 #ifdef CONFIG_SYSFS
7849         if (rxqs < 1) {
7850                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7851                 return NULL;
7852         }
7853 #endif
7854
7855         alloc_size = sizeof(struct net_device);
7856         if (sizeof_priv) {
7857                 /* ensure 32-byte alignment of private area */
7858                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7859                 alloc_size += sizeof_priv;
7860         }
7861         /* ensure 32-byte alignment of whole construct */
7862         alloc_size += NETDEV_ALIGN - 1;
7863
7864         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_REPEAT);
7865         if (!p)
7866                 return NULL;
7867
7868         dev = PTR_ALIGN(p, NETDEV_ALIGN);
7869         dev->padded = (char *)dev - (char *)p;
7870
7871         dev->pcpu_refcnt = alloc_percpu(int);
7872         if (!dev->pcpu_refcnt)
7873                 goto free_dev;
7874
7875         if (dev_addr_init(dev))
7876                 goto free_pcpu;
7877
7878         dev_mc_init(dev);
7879         dev_uc_init(dev);
7880
7881         dev_net_set(dev, &init_net);
7882
7883         dev->gso_max_size = GSO_MAX_SIZE;
7884         dev->gso_max_segs = GSO_MAX_SEGS;
7885
7886         INIT_LIST_HEAD(&dev->napi_list);
7887         INIT_LIST_HEAD(&dev->unreg_list);
7888         INIT_LIST_HEAD(&dev->close_list);
7889         INIT_LIST_HEAD(&dev->link_watch_list);
7890         INIT_LIST_HEAD(&dev->adj_list.upper);
7891         INIT_LIST_HEAD(&dev->adj_list.lower);
7892         INIT_LIST_HEAD(&dev->ptype_all);
7893         INIT_LIST_HEAD(&dev->ptype_specific);
7894 #ifdef CONFIG_NET_SCHED
7895         hash_init(dev->qdisc_hash);
7896 #endif
7897         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7898         setup(dev);
7899
7900         if (!dev->tx_queue_len) {
7901                 dev->priv_flags |= IFF_NO_QUEUE;
7902                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
7903         }
7904
7905         dev->num_tx_queues = txqs;
7906         dev->real_num_tx_queues = txqs;
7907         if (netif_alloc_netdev_queues(dev))
7908                 goto free_all;
7909
7910 #ifdef CONFIG_SYSFS
7911         dev->num_rx_queues = rxqs;
7912         dev->real_num_rx_queues = rxqs;
7913         if (netif_alloc_rx_queues(dev))
7914                 goto free_all;
7915 #endif
7916
7917         strcpy(dev->name, name);
7918         dev->name_assign_type = name_assign_type;
7919         dev->group = INIT_NETDEV_GROUP;
7920         if (!dev->ethtool_ops)
7921                 dev->ethtool_ops = &default_ethtool_ops;
7922
7923         nf_hook_ingress_init(dev);
7924
7925         return dev;
7926
7927 free_all:
7928         free_netdev(dev);
7929         return NULL;
7930
7931 free_pcpu:
7932         free_percpu(dev->pcpu_refcnt);
7933 free_dev:
7934         netdev_freemem(dev);
7935         return NULL;
7936 }
7937 EXPORT_SYMBOL(alloc_netdev_mqs);
7938
7939 /**
7940  * free_netdev - free network device
7941  * @dev: device
7942  *
7943  * This function does the last stage of destroying an allocated device
7944  * interface. The reference to the device object is released. If this
7945  * is the last reference then it will be freed.Must be called in process
7946  * context.
7947  */
7948 void free_netdev(struct net_device *dev)
7949 {
7950         struct napi_struct *p, *n;
7951         struct bpf_prog *prog;
7952
7953         might_sleep();
7954         netif_free_tx_queues(dev);
7955 #ifdef CONFIG_SYSFS
7956         kvfree(dev->_rx);
7957 #endif
7958
7959         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7960
7961         /* Flush device addresses */
7962         dev_addr_flush(dev);
7963
7964         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7965                 netif_napi_del(p);
7966
7967         free_percpu(dev->pcpu_refcnt);
7968         dev->pcpu_refcnt = NULL;
7969
7970         prog = rcu_dereference_protected(dev->xdp_prog, 1);
7971         if (prog) {
7972                 bpf_prog_put(prog);
7973                 static_key_slow_dec(&generic_xdp_needed);
7974         }
7975
7976         /*  Compatibility with error handling in drivers */
7977         if (dev->reg_state == NETREG_UNINITIALIZED) {
7978                 netdev_freemem(dev);
7979                 return;
7980         }
7981
7982         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7983         dev->reg_state = NETREG_RELEASED;
7984
7985         /* will free via device release */
7986         put_device(&dev->dev);
7987 }
7988 EXPORT_SYMBOL(free_netdev);
7989
7990 /**
7991  *      synchronize_net -  Synchronize with packet receive processing
7992  *
7993  *      Wait for packets currently being received to be done.
7994  *      Does not block later packets from starting.
7995  */
7996 void synchronize_net(void)
7997 {
7998         might_sleep();
7999         if (rtnl_is_locked())
8000                 synchronize_rcu_expedited();
8001         else
8002                 synchronize_rcu();
8003 }
8004 EXPORT_SYMBOL(synchronize_net);
8005
8006 /**
8007  *      unregister_netdevice_queue - remove device from the kernel
8008  *      @dev: device
8009  *      @head: list
8010  *
8011  *      This function shuts down a device interface and removes it
8012  *      from the kernel tables.
8013  *      If head not NULL, device is queued to be unregistered later.
8014  *
8015  *      Callers must hold the rtnl semaphore.  You may want
8016  *      unregister_netdev() instead of this.
8017  */
8018
8019 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8020 {
8021         ASSERT_RTNL();
8022
8023         if (head) {
8024                 list_move_tail(&dev->unreg_list, head);
8025         } else {
8026                 rollback_registered(dev);
8027                 /* Finish processing unregister after unlock */
8028                 net_set_todo(dev);
8029         }
8030 }
8031 EXPORT_SYMBOL(unregister_netdevice_queue);
8032
8033 /**
8034  *      unregister_netdevice_many - unregister many devices
8035  *      @head: list of devices
8036  *
8037  *  Note: As most callers use a stack allocated list_head,
8038  *  we force a list_del() to make sure stack wont be corrupted later.
8039  */
8040 void unregister_netdevice_many(struct list_head *head)
8041 {
8042         struct net_device *dev;
8043
8044         if (!list_empty(head)) {
8045                 rollback_registered_many(head);
8046                 list_for_each_entry(dev, head, unreg_list)
8047                         net_set_todo(dev);
8048                 list_del(head);
8049         }
8050 }
8051 EXPORT_SYMBOL(unregister_netdevice_many);
8052
8053 /**
8054  *      unregister_netdev - remove device from the kernel
8055  *      @dev: device
8056  *
8057  *      This function shuts down a device interface and removes it
8058  *      from the kernel tables.
8059  *
8060  *      This is just a wrapper for unregister_netdevice that takes
8061  *      the rtnl semaphore.  In general you want to use this and not
8062  *      unregister_netdevice.
8063  */
8064 void unregister_netdev(struct net_device *dev)
8065 {
8066         rtnl_lock();
8067         unregister_netdevice(dev);
8068         rtnl_unlock();
8069 }
8070 EXPORT_SYMBOL(unregister_netdev);
8071
8072 /**
8073  *      dev_change_net_namespace - move device to different nethost namespace
8074  *      @dev: device
8075  *      @net: network namespace
8076  *      @pat: If not NULL name pattern to try if the current device name
8077  *            is already taken in the destination network namespace.
8078  *
8079  *      This function shuts down a device interface and moves it
8080  *      to a new network namespace. On success 0 is returned, on
8081  *      a failure a netagive errno code is returned.
8082  *
8083  *      Callers must hold the rtnl semaphore.
8084  */
8085
8086 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8087 {
8088         int err;
8089
8090         ASSERT_RTNL();
8091
8092         /* Don't allow namespace local devices to be moved. */
8093         err = -EINVAL;
8094         if (dev->features & NETIF_F_NETNS_LOCAL)
8095                 goto out;
8096
8097         /* Ensure the device has been registrered */
8098         if (dev->reg_state != NETREG_REGISTERED)
8099                 goto out;
8100
8101         /* Get out if there is nothing todo */
8102         err = 0;
8103         if (net_eq(dev_net(dev), net))
8104                 goto out;
8105
8106         /* Pick the destination device name, and ensure
8107          * we can use it in the destination network namespace.
8108          */
8109         err = -EEXIST;
8110         if (__dev_get_by_name(net, dev->name)) {
8111                 /* We get here if we can't use the current device name */
8112                 if (!pat)
8113                         goto out;
8114                 if (dev_get_valid_name(net, dev, pat) < 0)
8115                         goto out;
8116         }
8117
8118         /*
8119          * And now a mini version of register_netdevice unregister_netdevice.
8120          */
8121
8122         /* If device is running close it first. */
8123         dev_close(dev);
8124
8125         /* And unlink it from device chain */
8126         err = -ENODEV;
8127         unlist_netdevice(dev);
8128
8129         synchronize_net();
8130
8131         /* Shutdown queueing discipline. */
8132         dev_shutdown(dev);
8133
8134         /* Notify protocols, that we are about to destroy
8135          * this device. They should clean all the things.
8136          *
8137          * Note that dev->reg_state stays at NETREG_REGISTERED.
8138          * This is wanted because this way 8021q and macvlan know
8139          * the device is just moving and can keep their slaves up.
8140          */
8141         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8142         rcu_barrier();
8143         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8144         rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
8145
8146         /*
8147          *      Flush the unicast and multicast chains
8148          */
8149         dev_uc_flush(dev);
8150         dev_mc_flush(dev);
8151
8152         /* Send a netdev-removed uevent to the old namespace */
8153         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8154         netdev_adjacent_del_links(dev);
8155
8156         /* Actually switch the network namespace */
8157         dev_net_set(dev, net);
8158
8159         /* If there is an ifindex conflict assign a new one */
8160         if (__dev_get_by_index(net, dev->ifindex))
8161                 dev->ifindex = dev_new_index(net);
8162
8163         /* Send a netdev-add uevent to the new namespace */
8164         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8165         netdev_adjacent_add_links(dev);
8166
8167         /* Fixup kobjects */
8168         err = device_rename(&dev->dev, dev->name);
8169         WARN_ON(err);
8170
8171         /* Add the device back in the hashes */
8172         list_netdevice(dev);
8173
8174         /* Notify protocols, that a new device appeared. */
8175         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8176
8177         /*
8178          *      Prevent userspace races by waiting until the network
8179          *      device is fully setup before sending notifications.
8180          */
8181         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8182
8183         synchronize_net();
8184         err = 0;
8185 out:
8186         return err;
8187 }
8188 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8189
8190 static int dev_cpu_dead(unsigned int oldcpu)
8191 {
8192         struct sk_buff **list_skb;
8193         struct sk_buff *skb;
8194         unsigned int cpu;
8195         struct softnet_data *sd, *oldsd;
8196
8197         local_irq_disable();
8198         cpu = smp_processor_id();
8199         sd = &per_cpu(softnet_data, cpu);
8200         oldsd = &per_cpu(softnet_data, oldcpu);
8201
8202         /* Find end of our completion_queue. */
8203         list_skb = &sd->completion_queue;
8204         while (*list_skb)
8205                 list_skb = &(*list_skb)->next;
8206         /* Append completion queue from offline CPU. */
8207         *list_skb = oldsd->completion_queue;
8208         oldsd->completion_queue = NULL;
8209
8210         /* Append output queue from offline CPU. */
8211         if (oldsd->output_queue) {
8212                 *sd->output_queue_tailp = oldsd->output_queue;
8213                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8214                 oldsd->output_queue = NULL;
8215                 oldsd->output_queue_tailp = &oldsd->output_queue;
8216         }
8217         /* Append NAPI poll list from offline CPU, with one exception :
8218          * process_backlog() must be called by cpu owning percpu backlog.
8219          * We properly handle process_queue & input_pkt_queue later.
8220          */
8221         while (!list_empty(&oldsd->poll_list)) {
8222                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8223                                                             struct napi_struct,
8224                                                             poll_list);
8225
8226                 list_del_init(&napi->poll_list);
8227                 if (napi->poll == process_backlog)
8228                         napi->state = 0;
8229                 else
8230                         ____napi_schedule(sd, napi);
8231         }
8232
8233         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8234         local_irq_enable();
8235
8236         /* Process offline CPU's input_pkt_queue */
8237         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8238                 netif_rx_ni(skb);
8239                 input_queue_head_incr(oldsd);
8240         }
8241         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8242                 netif_rx_ni(skb);
8243                 input_queue_head_incr(oldsd);
8244         }
8245
8246         return 0;
8247 }
8248
8249 /**
8250  *      netdev_increment_features - increment feature set by one
8251  *      @all: current feature set
8252  *      @one: new feature set
8253  *      @mask: mask feature set
8254  *
8255  *      Computes a new feature set after adding a device with feature set
8256  *      @one to the master device with current feature set @all.  Will not
8257  *      enable anything that is off in @mask. Returns the new feature set.
8258  */
8259 netdev_features_t netdev_increment_features(netdev_features_t all,
8260         netdev_features_t one, netdev_features_t mask)
8261 {
8262         if (mask & NETIF_F_HW_CSUM)
8263                 mask |= NETIF_F_CSUM_MASK;
8264         mask |= NETIF_F_VLAN_CHALLENGED;
8265
8266         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8267         all &= one | ~NETIF_F_ALL_FOR_ALL;
8268
8269         /* If one device supports hw checksumming, set for all. */
8270         if (all & NETIF_F_HW_CSUM)
8271                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8272
8273         return all;
8274 }
8275 EXPORT_SYMBOL(netdev_increment_features);
8276
8277 static struct hlist_head * __net_init netdev_create_hash(void)
8278 {
8279         int i;
8280         struct hlist_head *hash;
8281
8282         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8283         if (hash != NULL)
8284                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8285                         INIT_HLIST_HEAD(&hash[i]);
8286
8287         return hash;
8288 }
8289
8290 /* Initialize per network namespace state */
8291 static int __net_init netdev_init(struct net *net)
8292 {
8293         if (net != &init_net)
8294                 INIT_LIST_HEAD(&net->dev_base_head);
8295
8296         net->dev_name_head = netdev_create_hash();
8297         if (net->dev_name_head == NULL)
8298                 goto err_name;
8299
8300         net->dev_index_head = netdev_create_hash();
8301         if (net->dev_index_head == NULL)
8302                 goto err_idx;
8303
8304         return 0;
8305
8306 err_idx:
8307         kfree(net->dev_name_head);
8308 err_name:
8309         return -ENOMEM;
8310 }
8311
8312 /**
8313  *      netdev_drivername - network driver for the device
8314  *      @dev: network device
8315  *
8316  *      Determine network driver for device.
8317  */
8318 const char *netdev_drivername(const struct net_device *dev)
8319 {
8320         const struct device_driver *driver;
8321         const struct device *parent;
8322         const char *empty = "";
8323
8324         parent = dev->dev.parent;
8325         if (!parent)
8326                 return empty;
8327
8328         driver = parent->driver;
8329         if (driver && driver->name)
8330                 return driver->name;
8331         return empty;
8332 }
8333
8334 static void __netdev_printk(const char *level, const struct net_device *dev,
8335                             struct va_format *vaf)
8336 {
8337         if (dev && dev->dev.parent) {
8338                 dev_printk_emit(level[1] - '0',
8339                                 dev->dev.parent,
8340                                 "%s %s %s%s: %pV",
8341                                 dev_driver_string(dev->dev.parent),
8342                                 dev_name(dev->dev.parent),
8343                                 netdev_name(dev), netdev_reg_state(dev),
8344                                 vaf);
8345         } else if (dev) {
8346                 printk("%s%s%s: %pV",
8347                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8348         } else {
8349                 printk("%s(NULL net_device): %pV", level, vaf);
8350         }
8351 }
8352
8353 void netdev_printk(const char *level, const struct net_device *dev,
8354                    const char *format, ...)
8355 {
8356         struct va_format vaf;
8357         va_list args;
8358
8359         va_start(args, format);
8360
8361         vaf.fmt = format;
8362         vaf.va = &args;
8363
8364         __netdev_printk(level, dev, &vaf);
8365
8366         va_end(args);
8367 }
8368 EXPORT_SYMBOL(netdev_printk);
8369
8370 #define define_netdev_printk_level(func, level)                 \
8371 void func(const struct net_device *dev, const char *fmt, ...)   \
8372 {                                                               \
8373         struct va_format vaf;                                   \
8374         va_list args;                                           \
8375                                                                 \
8376         va_start(args, fmt);                                    \
8377                                                                 \
8378         vaf.fmt = fmt;                                          \
8379         vaf.va = &args;                                         \
8380                                                                 \
8381         __netdev_printk(level, dev, &vaf);                      \
8382                                                                 \
8383         va_end(args);                                           \
8384 }                                                               \
8385 EXPORT_SYMBOL(func);
8386
8387 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8388 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8389 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8390 define_netdev_printk_level(netdev_err, KERN_ERR);
8391 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8392 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8393 define_netdev_printk_level(netdev_info, KERN_INFO);
8394
8395 static void __net_exit netdev_exit(struct net *net)
8396 {
8397         kfree(net->dev_name_head);
8398         kfree(net->dev_index_head);
8399 }
8400
8401 static struct pernet_operations __net_initdata netdev_net_ops = {
8402         .init = netdev_init,
8403         .exit = netdev_exit,
8404 };
8405
8406 static void __net_exit default_device_exit(struct net *net)
8407 {
8408         struct net_device *dev, *aux;
8409         /*
8410          * Push all migratable network devices back to the
8411          * initial network namespace
8412          */
8413         rtnl_lock();
8414         for_each_netdev_safe(net, dev, aux) {
8415                 int err;
8416                 char fb_name[IFNAMSIZ];
8417
8418                 /* Ignore unmoveable devices (i.e. loopback) */
8419                 if (dev->features & NETIF_F_NETNS_LOCAL)
8420                         continue;
8421
8422                 /* Leave virtual devices for the generic cleanup */
8423                 if (dev->rtnl_link_ops)
8424                         continue;
8425
8426                 /* Push remaining network devices to init_net */
8427                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8428                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8429                 if (err) {
8430                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8431                                  __func__, dev->name, err);
8432                         BUG();
8433                 }
8434         }
8435         rtnl_unlock();
8436 }
8437
8438 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8439 {
8440         /* Return with the rtnl_lock held when there are no network
8441          * devices unregistering in any network namespace in net_list.
8442          */
8443         struct net *net;
8444         bool unregistering;
8445         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8446
8447         add_wait_queue(&netdev_unregistering_wq, &wait);
8448         for (;;) {
8449                 unregistering = false;
8450                 rtnl_lock();
8451                 list_for_each_entry(net, net_list, exit_list) {
8452                         if (net->dev_unreg_count > 0) {
8453                                 unregistering = true;
8454                                 break;
8455                         }
8456                 }
8457                 if (!unregistering)
8458                         break;
8459                 __rtnl_unlock();
8460
8461                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8462         }
8463         remove_wait_queue(&netdev_unregistering_wq, &wait);
8464 }
8465
8466 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8467 {
8468         /* At exit all network devices most be removed from a network
8469          * namespace.  Do this in the reverse order of registration.
8470          * Do this across as many network namespaces as possible to
8471          * improve batching efficiency.
8472          */
8473         struct net_device *dev;
8474         struct net *net;
8475         LIST_HEAD(dev_kill_list);
8476
8477         /* To prevent network device cleanup code from dereferencing
8478          * loopback devices or network devices that have been freed
8479          * wait here for all pending unregistrations to complete,
8480          * before unregistring the loopback device and allowing the
8481          * network namespace be freed.
8482          *
8483          * The netdev todo list containing all network devices
8484          * unregistrations that happen in default_device_exit_batch
8485          * will run in the rtnl_unlock() at the end of
8486          * default_device_exit_batch.
8487          */
8488         rtnl_lock_unregistering(net_list);
8489         list_for_each_entry(net, net_list, exit_list) {
8490                 for_each_netdev_reverse(net, dev) {
8491                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8492                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8493                         else
8494                                 unregister_netdevice_queue(dev, &dev_kill_list);
8495                 }
8496         }
8497         unregister_netdevice_many(&dev_kill_list);
8498         rtnl_unlock();
8499 }
8500
8501 static struct pernet_operations __net_initdata default_device_ops = {
8502         .exit = default_device_exit,
8503         .exit_batch = default_device_exit_batch,
8504 };
8505
8506 /*
8507  *      Initialize the DEV module. At boot time this walks the device list and
8508  *      unhooks any devices that fail to initialise (normally hardware not
8509  *      present) and leaves us with a valid list of present and active devices.
8510  *
8511  */
8512
8513 /*
8514  *       This is called single threaded during boot, so no need
8515  *       to take the rtnl semaphore.
8516  */
8517 static int __init net_dev_init(void)
8518 {
8519         int i, rc = -ENOMEM;
8520
8521         BUG_ON(!dev_boot_phase);
8522
8523         if (dev_proc_init())
8524                 goto out;
8525
8526         if (netdev_kobject_init())
8527                 goto out;
8528
8529         INIT_LIST_HEAD(&ptype_all);
8530         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8531                 INIT_LIST_HEAD(&ptype_base[i]);
8532
8533         INIT_LIST_HEAD(&offload_base);
8534
8535         if (register_pernet_subsys(&netdev_net_ops))
8536                 goto out;
8537
8538         /*
8539          *      Initialise the packet receive queues.
8540          */
8541
8542         for_each_possible_cpu(i) {
8543                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8544                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8545
8546                 INIT_WORK(flush, flush_backlog);
8547
8548                 skb_queue_head_init(&sd->input_pkt_queue);
8549                 skb_queue_head_init(&sd->process_queue);
8550                 INIT_LIST_HEAD(&sd->poll_list);
8551                 sd->output_queue_tailp = &sd->output_queue;
8552 #ifdef CONFIG_RPS
8553                 sd->csd.func = rps_trigger_softirq;
8554                 sd->csd.info = sd;
8555                 sd->cpu = i;
8556 #endif
8557
8558                 sd->backlog.poll = process_backlog;
8559                 sd->backlog.weight = weight_p;
8560         }
8561
8562         dev_boot_phase = 0;
8563
8564         /* The loopback device is special if any other network devices
8565          * is present in a network namespace the loopback device must
8566          * be present. Since we now dynamically allocate and free the
8567          * loopback device ensure this invariant is maintained by
8568          * keeping the loopback device as the first device on the
8569          * list of network devices.  Ensuring the loopback devices
8570          * is the first device that appears and the last network device
8571          * that disappears.
8572          */
8573         if (register_pernet_device(&loopback_net_ops))
8574                 goto out;
8575
8576         if (register_pernet_device(&default_device_ops))
8577                 goto out;
8578
8579         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8580         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8581
8582         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
8583                                        NULL, dev_cpu_dead);
8584         WARN_ON(rc < 0);
8585         dst_subsys_init();
8586         rc = 0;
8587 out:
8588         return rc;
8589 }
8590
8591 subsys_initcall(net_dev_init);