Merge tag 'sound-5.0-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/skbuff.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
104 #include <net/dst.h>
105 #include <net/dst_metadata.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <linux/highmem.h>
111 #include <linux/init.h>
112 #include <linux/module.h>
113 #include <linux/netpoll.h>
114 #include <linux/rcupdate.h>
115 #include <linux/delay.h>
116 #include <net/iw_handler.h>
117 #include <asm/current.h>
118 #include <linux/audit.h>
119 #include <linux/dmaengine.h>
120 #include <linux/err.h>
121 #include <linux/ctype.h>
122 #include <linux/if_arp.h>
123 #include <linux/if_vlan.h>
124 #include <linux/ip.h>
125 #include <net/ip.h>
126 #include <net/mpls.h>
127 #include <linux/ipv6.h>
128 #include <linux/in.h>
129 #include <linux/jhash.h>
130 #include <linux/random.h>
131 #include <trace/events/napi.h>
132 #include <trace/events/net.h>
133 #include <trace/events/skb.h>
134 #include <linux/pci.h>
135 #include <linux/inetdevice.h>
136 #include <linux/cpu_rmap.h>
137 #include <linux/static_key.h>
138 #include <linux/hashtable.h>
139 #include <linux/vmalloc.h>
140 #include <linux/if_macvlan.h>
141 #include <linux/errqueue.h>
142 #include <linux/hrtimer.h>
143 #include <linux/netfilter_ingress.h>
144 #include <linux/crash_dump.h>
145 #include <linux/sctp.h>
146 #include <net/udp_tunnel.h>
147 #include <linux/net_namespace.h>
148 #include <linux/indirect_call_wrapper.h>
149
150 #include "net-sysfs.h"
151
152 #define MAX_GRO_SKBS 8
153
154 /* This should be increased if a protocol with a bigger head is added. */
155 #define GRO_MAX_HEAD (MAX_HEADER + 128)
156
157 static DEFINE_SPINLOCK(ptype_lock);
158 static DEFINE_SPINLOCK(offload_lock);
159 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160 struct list_head ptype_all __read_mostly;       /* Taps */
161 static struct list_head offload_base __read_mostly;
162
163 static int netif_rx_internal(struct sk_buff *skb);
164 static int call_netdevice_notifiers_info(unsigned long val,
165                                          struct netdev_notifier_info *info);
166 static int call_netdevice_notifiers_extack(unsigned long val,
167                                            struct net_device *dev,
168                                            struct netlink_ext_ack *extack);
169 static struct napi_struct *napi_by_id(unsigned int napi_id);
170
171 /*
172  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
173  * semaphore.
174  *
175  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
176  *
177  * Writers must hold the rtnl semaphore while they loop through the
178  * dev_base_head list, and hold dev_base_lock for writing when they do the
179  * actual updates.  This allows pure readers to access the list even
180  * while a writer is preparing to update it.
181  *
182  * To put it another way, dev_base_lock is held for writing only to
183  * protect against pure readers; the rtnl semaphore provides the
184  * protection against other writers.
185  *
186  * See, for example usages, register_netdevice() and
187  * unregister_netdevice(), which must be called with the rtnl
188  * semaphore held.
189  */
190 DEFINE_RWLOCK(dev_base_lock);
191 EXPORT_SYMBOL(dev_base_lock);
192
193 static DEFINE_MUTEX(ifalias_mutex);
194
195 /* protects napi_hash addition/deletion and napi_gen_id */
196 static DEFINE_SPINLOCK(napi_hash_lock);
197
198 static unsigned int napi_gen_id = NR_CPUS;
199 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
200
201 static seqcount_t devnet_rename_seq;
202
203 static inline void dev_base_seq_inc(struct net *net)
204 {
205         while (++net->dev_base_seq == 0)
206                 ;
207 }
208
209 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
210 {
211         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
212
213         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
214 }
215
216 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
217 {
218         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
219 }
220
221 static inline void rps_lock(struct softnet_data *sd)
222 {
223 #ifdef CONFIG_RPS
224         spin_lock(&sd->input_pkt_queue.lock);
225 #endif
226 }
227
228 static inline void rps_unlock(struct softnet_data *sd)
229 {
230 #ifdef CONFIG_RPS
231         spin_unlock(&sd->input_pkt_queue.lock);
232 #endif
233 }
234
235 /* Device list insertion */
236 static void list_netdevice(struct net_device *dev)
237 {
238         struct net *net = dev_net(dev);
239
240         ASSERT_RTNL();
241
242         write_lock_bh(&dev_base_lock);
243         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
244         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
245         hlist_add_head_rcu(&dev->index_hlist,
246                            dev_index_hash(net, dev->ifindex));
247         write_unlock_bh(&dev_base_lock);
248
249         dev_base_seq_inc(net);
250 }
251
252 /* Device list removal
253  * caller must respect a RCU grace period before freeing/reusing dev
254  */
255 static void unlist_netdevice(struct net_device *dev)
256 {
257         ASSERT_RTNL();
258
259         /* Unlink dev from the device chain */
260         write_lock_bh(&dev_base_lock);
261         list_del_rcu(&dev->dev_list);
262         hlist_del_rcu(&dev->name_hlist);
263         hlist_del_rcu(&dev->index_hlist);
264         write_unlock_bh(&dev_base_lock);
265
266         dev_base_seq_inc(dev_net(dev));
267 }
268
269 /*
270  *      Our notifier list
271  */
272
273 static RAW_NOTIFIER_HEAD(netdev_chain);
274
275 /*
276  *      Device drivers call our routines to queue packets here. We empty the
277  *      queue in the local softnet handler.
278  */
279
280 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
281 EXPORT_PER_CPU_SYMBOL(softnet_data);
282
283 #ifdef CONFIG_LOCKDEP
284 /*
285  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
286  * according to dev->type
287  */
288 static const unsigned short netdev_lock_type[] = {
289          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
290          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
291          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
292          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
293          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
294          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
295          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
296          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
297          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
298          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
299          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
300          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
301          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
302          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
303          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
304
305 static const char *const netdev_lock_name[] = {
306         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
307         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
308         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
309         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
310         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
311         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
312         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
313         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
314         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
315         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
316         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
317         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
318         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
319         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
320         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
321
322 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
323 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
324
325 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
326 {
327         int i;
328
329         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
330                 if (netdev_lock_type[i] == dev_type)
331                         return i;
332         /* the last key is used by default */
333         return ARRAY_SIZE(netdev_lock_type) - 1;
334 }
335
336 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
337                                                  unsigned short dev_type)
338 {
339         int i;
340
341         i = netdev_lock_pos(dev_type);
342         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
343                                    netdev_lock_name[i]);
344 }
345
346 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
347 {
348         int i;
349
350         i = netdev_lock_pos(dev->type);
351         lockdep_set_class_and_name(&dev->addr_list_lock,
352                                    &netdev_addr_lock_key[i],
353                                    netdev_lock_name[i]);
354 }
355 #else
356 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
357                                                  unsigned short dev_type)
358 {
359 }
360 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
361 {
362 }
363 #endif
364
365 /*******************************************************************************
366  *
367  *              Protocol management and registration routines
368  *
369  *******************************************************************************/
370
371
372 /*
373  *      Add a protocol ID to the list. Now that the input handler is
374  *      smarter we can dispense with all the messy stuff that used to be
375  *      here.
376  *
377  *      BEWARE!!! Protocol handlers, mangling input packets,
378  *      MUST BE last in hash buckets and checking protocol handlers
379  *      MUST start from promiscuous ptype_all chain in net_bh.
380  *      It is true now, do not change it.
381  *      Explanation follows: if protocol handler, mangling packet, will
382  *      be the first on list, it is not able to sense, that packet
383  *      is cloned and should be copied-on-write, so that it will
384  *      change it and subsequent readers will get broken packet.
385  *                                                      --ANK (980803)
386  */
387
388 static inline struct list_head *ptype_head(const struct packet_type *pt)
389 {
390         if (pt->type == htons(ETH_P_ALL))
391                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
392         else
393                 return pt->dev ? &pt->dev->ptype_specific :
394                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
395 }
396
397 /**
398  *      dev_add_pack - add packet handler
399  *      @pt: packet type declaration
400  *
401  *      Add a protocol handler to the networking stack. The passed &packet_type
402  *      is linked into kernel lists and may not be freed until it has been
403  *      removed from the kernel lists.
404  *
405  *      This call does not sleep therefore it can not
406  *      guarantee all CPU's that are in middle of receiving packets
407  *      will see the new packet type (until the next received packet).
408  */
409
410 void dev_add_pack(struct packet_type *pt)
411 {
412         struct list_head *head = ptype_head(pt);
413
414         spin_lock(&ptype_lock);
415         list_add_rcu(&pt->list, head);
416         spin_unlock(&ptype_lock);
417 }
418 EXPORT_SYMBOL(dev_add_pack);
419
420 /**
421  *      __dev_remove_pack        - remove packet handler
422  *      @pt: packet type declaration
423  *
424  *      Remove a protocol handler that was previously added to the kernel
425  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
426  *      from the kernel lists and can be freed or reused once this function
427  *      returns.
428  *
429  *      The packet type might still be in use by receivers
430  *      and must not be freed until after all the CPU's have gone
431  *      through a quiescent state.
432  */
433 void __dev_remove_pack(struct packet_type *pt)
434 {
435         struct list_head *head = ptype_head(pt);
436         struct packet_type *pt1;
437
438         spin_lock(&ptype_lock);
439
440         list_for_each_entry(pt1, head, list) {
441                 if (pt == pt1) {
442                         list_del_rcu(&pt->list);
443                         goto out;
444                 }
445         }
446
447         pr_warn("dev_remove_pack: %p not found\n", pt);
448 out:
449         spin_unlock(&ptype_lock);
450 }
451 EXPORT_SYMBOL(__dev_remove_pack);
452
453 /**
454  *      dev_remove_pack  - remove packet handler
455  *      @pt: packet type declaration
456  *
457  *      Remove a protocol handler that was previously added to the kernel
458  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
459  *      from the kernel lists and can be freed or reused once this function
460  *      returns.
461  *
462  *      This call sleeps to guarantee that no CPU is looking at the packet
463  *      type after return.
464  */
465 void dev_remove_pack(struct packet_type *pt)
466 {
467         __dev_remove_pack(pt);
468
469         synchronize_net();
470 }
471 EXPORT_SYMBOL(dev_remove_pack);
472
473
474 /**
475  *      dev_add_offload - register offload handlers
476  *      @po: protocol offload declaration
477  *
478  *      Add protocol offload handlers to the networking stack. The passed
479  *      &proto_offload is linked into kernel lists and may not be freed until
480  *      it has been removed from the kernel lists.
481  *
482  *      This call does not sleep therefore it can not
483  *      guarantee all CPU's that are in middle of receiving packets
484  *      will see the new offload handlers (until the next received packet).
485  */
486 void dev_add_offload(struct packet_offload *po)
487 {
488         struct packet_offload *elem;
489
490         spin_lock(&offload_lock);
491         list_for_each_entry(elem, &offload_base, list) {
492                 if (po->priority < elem->priority)
493                         break;
494         }
495         list_add_rcu(&po->list, elem->list.prev);
496         spin_unlock(&offload_lock);
497 }
498 EXPORT_SYMBOL(dev_add_offload);
499
500 /**
501  *      __dev_remove_offload     - remove offload handler
502  *      @po: packet offload declaration
503  *
504  *      Remove a protocol offload handler that was previously added to the
505  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
506  *      is removed from the kernel lists and can be freed or reused once this
507  *      function returns.
508  *
509  *      The packet type might still be in use by receivers
510  *      and must not be freed until after all the CPU's have gone
511  *      through a quiescent state.
512  */
513 static void __dev_remove_offload(struct packet_offload *po)
514 {
515         struct list_head *head = &offload_base;
516         struct packet_offload *po1;
517
518         spin_lock(&offload_lock);
519
520         list_for_each_entry(po1, head, list) {
521                 if (po == po1) {
522                         list_del_rcu(&po->list);
523                         goto out;
524                 }
525         }
526
527         pr_warn("dev_remove_offload: %p not found\n", po);
528 out:
529         spin_unlock(&offload_lock);
530 }
531
532 /**
533  *      dev_remove_offload       - remove packet offload handler
534  *      @po: packet offload declaration
535  *
536  *      Remove a packet offload handler that was previously added to the kernel
537  *      offload handlers by dev_add_offload(). The passed &offload_type is
538  *      removed from the kernel lists and can be freed or reused once this
539  *      function returns.
540  *
541  *      This call sleeps to guarantee that no CPU is looking at the packet
542  *      type after return.
543  */
544 void dev_remove_offload(struct packet_offload *po)
545 {
546         __dev_remove_offload(po);
547
548         synchronize_net();
549 }
550 EXPORT_SYMBOL(dev_remove_offload);
551
552 /******************************************************************************
553  *
554  *                    Device Boot-time Settings Routines
555  *
556  ******************************************************************************/
557
558 /* Boot time configuration table */
559 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
560
561 /**
562  *      netdev_boot_setup_add   - add new setup entry
563  *      @name: name of the device
564  *      @map: configured settings for the device
565  *
566  *      Adds new setup entry to the dev_boot_setup list.  The function
567  *      returns 0 on error and 1 on success.  This is a generic routine to
568  *      all netdevices.
569  */
570 static int netdev_boot_setup_add(char *name, struct ifmap *map)
571 {
572         struct netdev_boot_setup *s;
573         int i;
574
575         s = dev_boot_setup;
576         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
577                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
578                         memset(s[i].name, 0, sizeof(s[i].name));
579                         strlcpy(s[i].name, name, IFNAMSIZ);
580                         memcpy(&s[i].map, map, sizeof(s[i].map));
581                         break;
582                 }
583         }
584
585         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
586 }
587
588 /**
589  * netdev_boot_setup_check      - check boot time settings
590  * @dev: the netdevice
591  *
592  * Check boot time settings for the device.
593  * The found settings are set for the device to be used
594  * later in the device probing.
595  * Returns 0 if no settings found, 1 if they are.
596  */
597 int netdev_boot_setup_check(struct net_device *dev)
598 {
599         struct netdev_boot_setup *s = dev_boot_setup;
600         int i;
601
602         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
603                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
604                     !strcmp(dev->name, s[i].name)) {
605                         dev->irq = s[i].map.irq;
606                         dev->base_addr = s[i].map.base_addr;
607                         dev->mem_start = s[i].map.mem_start;
608                         dev->mem_end = s[i].map.mem_end;
609                         return 1;
610                 }
611         }
612         return 0;
613 }
614 EXPORT_SYMBOL(netdev_boot_setup_check);
615
616
617 /**
618  * netdev_boot_base     - get address from boot time settings
619  * @prefix: prefix for network device
620  * @unit: id for network device
621  *
622  * Check boot time settings for the base address of device.
623  * The found settings are set for the device to be used
624  * later in the device probing.
625  * Returns 0 if no settings found.
626  */
627 unsigned long netdev_boot_base(const char *prefix, int unit)
628 {
629         const struct netdev_boot_setup *s = dev_boot_setup;
630         char name[IFNAMSIZ];
631         int i;
632
633         sprintf(name, "%s%d", prefix, unit);
634
635         /*
636          * If device already registered then return base of 1
637          * to indicate not to probe for this interface
638          */
639         if (__dev_get_by_name(&init_net, name))
640                 return 1;
641
642         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
643                 if (!strcmp(name, s[i].name))
644                         return s[i].map.base_addr;
645         return 0;
646 }
647
648 /*
649  * Saves at boot time configured settings for any netdevice.
650  */
651 int __init netdev_boot_setup(char *str)
652 {
653         int ints[5];
654         struct ifmap map;
655
656         str = get_options(str, ARRAY_SIZE(ints), ints);
657         if (!str || !*str)
658                 return 0;
659
660         /* Save settings */
661         memset(&map, 0, sizeof(map));
662         if (ints[0] > 0)
663                 map.irq = ints[1];
664         if (ints[0] > 1)
665                 map.base_addr = ints[2];
666         if (ints[0] > 2)
667                 map.mem_start = ints[3];
668         if (ints[0] > 3)
669                 map.mem_end = ints[4];
670
671         /* Add new entry to the list */
672         return netdev_boot_setup_add(str, &map);
673 }
674
675 __setup("netdev=", netdev_boot_setup);
676
677 /*******************************************************************************
678  *
679  *                          Device Interface Subroutines
680  *
681  *******************************************************************************/
682
683 /**
684  *      dev_get_iflink  - get 'iflink' value of a interface
685  *      @dev: targeted interface
686  *
687  *      Indicates the ifindex the interface is linked to.
688  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
689  */
690
691 int dev_get_iflink(const struct net_device *dev)
692 {
693         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
694                 return dev->netdev_ops->ndo_get_iflink(dev);
695
696         return dev->ifindex;
697 }
698 EXPORT_SYMBOL(dev_get_iflink);
699
700 /**
701  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
702  *      @dev: targeted interface
703  *      @skb: The packet.
704  *
705  *      For better visibility of tunnel traffic OVS needs to retrieve
706  *      egress tunnel information for a packet. Following API allows
707  *      user to get this info.
708  */
709 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
710 {
711         struct ip_tunnel_info *info;
712
713         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
714                 return -EINVAL;
715
716         info = skb_tunnel_info_unclone(skb);
717         if (!info)
718                 return -ENOMEM;
719         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
720                 return -EINVAL;
721
722         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
723 }
724 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
725
726 /**
727  *      __dev_get_by_name       - find a device by its name
728  *      @net: the applicable net namespace
729  *      @name: name to find
730  *
731  *      Find an interface by name. Must be called under RTNL semaphore
732  *      or @dev_base_lock. If the name is found a pointer to the device
733  *      is returned. If the name is not found then %NULL is returned. The
734  *      reference counters are not incremented so the caller must be
735  *      careful with locks.
736  */
737
738 struct net_device *__dev_get_by_name(struct net *net, const char *name)
739 {
740         struct net_device *dev;
741         struct hlist_head *head = dev_name_hash(net, name);
742
743         hlist_for_each_entry(dev, head, name_hlist)
744                 if (!strncmp(dev->name, name, IFNAMSIZ))
745                         return dev;
746
747         return NULL;
748 }
749 EXPORT_SYMBOL(__dev_get_by_name);
750
751 /**
752  * dev_get_by_name_rcu  - find a device by its name
753  * @net: the applicable net namespace
754  * @name: name to find
755  *
756  * Find an interface by name.
757  * If the name is found a pointer to the device is returned.
758  * If the name is not found then %NULL is returned.
759  * The reference counters are not incremented so the caller must be
760  * careful with locks. The caller must hold RCU lock.
761  */
762
763 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
764 {
765         struct net_device *dev;
766         struct hlist_head *head = dev_name_hash(net, name);
767
768         hlist_for_each_entry_rcu(dev, head, name_hlist)
769                 if (!strncmp(dev->name, name, IFNAMSIZ))
770                         return dev;
771
772         return NULL;
773 }
774 EXPORT_SYMBOL(dev_get_by_name_rcu);
775
776 /**
777  *      dev_get_by_name         - find a device by its name
778  *      @net: the applicable net namespace
779  *      @name: name to find
780  *
781  *      Find an interface by name. This can be called from any
782  *      context and does its own locking. The returned handle has
783  *      the usage count incremented and the caller must use dev_put() to
784  *      release it when it is no longer needed. %NULL is returned if no
785  *      matching device is found.
786  */
787
788 struct net_device *dev_get_by_name(struct net *net, const char *name)
789 {
790         struct net_device *dev;
791
792         rcu_read_lock();
793         dev = dev_get_by_name_rcu(net, name);
794         if (dev)
795                 dev_hold(dev);
796         rcu_read_unlock();
797         return dev;
798 }
799 EXPORT_SYMBOL(dev_get_by_name);
800
801 /**
802  *      __dev_get_by_index - find a device by its ifindex
803  *      @net: the applicable net namespace
804  *      @ifindex: index of device
805  *
806  *      Search for an interface by index. Returns %NULL if the device
807  *      is not found or a pointer to the device. The device has not
808  *      had its reference counter increased so the caller must be careful
809  *      about locking. The caller must hold either the RTNL semaphore
810  *      or @dev_base_lock.
811  */
812
813 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
814 {
815         struct net_device *dev;
816         struct hlist_head *head = dev_index_hash(net, ifindex);
817
818         hlist_for_each_entry(dev, head, index_hlist)
819                 if (dev->ifindex == ifindex)
820                         return dev;
821
822         return NULL;
823 }
824 EXPORT_SYMBOL(__dev_get_by_index);
825
826 /**
827  *      dev_get_by_index_rcu - find a device by its ifindex
828  *      @net: the applicable net namespace
829  *      @ifindex: index of device
830  *
831  *      Search for an interface by index. Returns %NULL if the device
832  *      is not found or a pointer to the device. The device has not
833  *      had its reference counter increased so the caller must be careful
834  *      about locking. The caller must hold RCU lock.
835  */
836
837 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
838 {
839         struct net_device *dev;
840         struct hlist_head *head = dev_index_hash(net, ifindex);
841
842         hlist_for_each_entry_rcu(dev, head, index_hlist)
843                 if (dev->ifindex == ifindex)
844                         return dev;
845
846         return NULL;
847 }
848 EXPORT_SYMBOL(dev_get_by_index_rcu);
849
850
851 /**
852  *      dev_get_by_index - find a device by its ifindex
853  *      @net: the applicable net namespace
854  *      @ifindex: index of device
855  *
856  *      Search for an interface by index. Returns NULL if the device
857  *      is not found or a pointer to the device. The device returned has
858  *      had a reference added and the pointer is safe until the user calls
859  *      dev_put to indicate they have finished with it.
860  */
861
862 struct net_device *dev_get_by_index(struct net *net, int ifindex)
863 {
864         struct net_device *dev;
865
866         rcu_read_lock();
867         dev = dev_get_by_index_rcu(net, ifindex);
868         if (dev)
869                 dev_hold(dev);
870         rcu_read_unlock();
871         return dev;
872 }
873 EXPORT_SYMBOL(dev_get_by_index);
874
875 /**
876  *      dev_get_by_napi_id - find a device by napi_id
877  *      @napi_id: ID of the NAPI struct
878  *
879  *      Search for an interface by NAPI ID. Returns %NULL if the device
880  *      is not found or a pointer to the device. The device has not had
881  *      its reference counter increased so the caller must be careful
882  *      about locking. The caller must hold RCU lock.
883  */
884
885 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
886 {
887         struct napi_struct *napi;
888
889         WARN_ON_ONCE(!rcu_read_lock_held());
890
891         if (napi_id < MIN_NAPI_ID)
892                 return NULL;
893
894         napi = napi_by_id(napi_id);
895
896         return napi ? napi->dev : NULL;
897 }
898 EXPORT_SYMBOL(dev_get_by_napi_id);
899
900 /**
901  *      netdev_get_name - get a netdevice name, knowing its ifindex.
902  *      @net: network namespace
903  *      @name: a pointer to the buffer where the name will be stored.
904  *      @ifindex: the ifindex of the interface to get the name from.
905  *
906  *      The use of raw_seqcount_begin() and cond_resched() before
907  *      retrying is required as we want to give the writers a chance
908  *      to complete when CONFIG_PREEMPT is not set.
909  */
910 int netdev_get_name(struct net *net, char *name, int ifindex)
911 {
912         struct net_device *dev;
913         unsigned int seq;
914
915 retry:
916         seq = raw_seqcount_begin(&devnet_rename_seq);
917         rcu_read_lock();
918         dev = dev_get_by_index_rcu(net, ifindex);
919         if (!dev) {
920                 rcu_read_unlock();
921                 return -ENODEV;
922         }
923
924         strcpy(name, dev->name);
925         rcu_read_unlock();
926         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
927                 cond_resched();
928                 goto retry;
929         }
930
931         return 0;
932 }
933
934 /**
935  *      dev_getbyhwaddr_rcu - find a device by its hardware address
936  *      @net: the applicable net namespace
937  *      @type: media type of device
938  *      @ha: hardware address
939  *
940  *      Search for an interface by MAC address. Returns NULL if the device
941  *      is not found or a pointer to the device.
942  *      The caller must hold RCU or RTNL.
943  *      The returned device has not had its ref count increased
944  *      and the caller must therefore be careful about locking
945  *
946  */
947
948 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
949                                        const char *ha)
950 {
951         struct net_device *dev;
952
953         for_each_netdev_rcu(net, dev)
954                 if (dev->type == type &&
955                     !memcmp(dev->dev_addr, ha, dev->addr_len))
956                         return dev;
957
958         return NULL;
959 }
960 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
961
962 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
963 {
964         struct net_device *dev;
965
966         ASSERT_RTNL();
967         for_each_netdev(net, dev)
968                 if (dev->type == type)
969                         return dev;
970
971         return NULL;
972 }
973 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
974
975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
976 {
977         struct net_device *dev, *ret = NULL;
978
979         rcu_read_lock();
980         for_each_netdev_rcu(net, dev)
981                 if (dev->type == type) {
982                         dev_hold(dev);
983                         ret = dev;
984                         break;
985                 }
986         rcu_read_unlock();
987         return ret;
988 }
989 EXPORT_SYMBOL(dev_getfirstbyhwtype);
990
991 /**
992  *      __dev_get_by_flags - find any device with given flags
993  *      @net: the applicable net namespace
994  *      @if_flags: IFF_* values
995  *      @mask: bitmask of bits in if_flags to check
996  *
997  *      Search for any interface with the given flags. Returns NULL if a device
998  *      is not found or a pointer to the device. Must be called inside
999  *      rtnl_lock(), and result refcount is unchanged.
1000  */
1001
1002 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1003                                       unsigned short mask)
1004 {
1005         struct net_device *dev, *ret;
1006
1007         ASSERT_RTNL();
1008
1009         ret = NULL;
1010         for_each_netdev(net, dev) {
1011                 if (((dev->flags ^ if_flags) & mask) == 0) {
1012                         ret = dev;
1013                         break;
1014                 }
1015         }
1016         return ret;
1017 }
1018 EXPORT_SYMBOL(__dev_get_by_flags);
1019
1020 /**
1021  *      dev_valid_name - check if name is okay for network device
1022  *      @name: name string
1023  *
1024  *      Network device names need to be valid file names to
1025  *      to allow sysfs to work.  We also disallow any kind of
1026  *      whitespace.
1027  */
1028 bool dev_valid_name(const char *name)
1029 {
1030         if (*name == '\0')
1031                 return false;
1032         if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1033                 return false;
1034         if (!strcmp(name, ".") || !strcmp(name, ".."))
1035                 return false;
1036
1037         while (*name) {
1038                 if (*name == '/' || *name == ':' || isspace(*name))
1039                         return false;
1040                 name++;
1041         }
1042         return true;
1043 }
1044 EXPORT_SYMBOL(dev_valid_name);
1045
1046 /**
1047  *      __dev_alloc_name - allocate a name for a device
1048  *      @net: network namespace to allocate the device name in
1049  *      @name: name format string
1050  *      @buf:  scratch buffer and result name string
1051  *
1052  *      Passed a format string - eg "lt%d" it will try and find a suitable
1053  *      id. It scans list of devices to build up a free map, then chooses
1054  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1055  *      while allocating the name and adding the device in order to avoid
1056  *      duplicates.
1057  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1058  *      Returns the number of the unit assigned or a negative errno code.
1059  */
1060
1061 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1062 {
1063         int i = 0;
1064         const char *p;
1065         const int max_netdevices = 8*PAGE_SIZE;
1066         unsigned long *inuse;
1067         struct net_device *d;
1068
1069         if (!dev_valid_name(name))
1070                 return -EINVAL;
1071
1072         p = strchr(name, '%');
1073         if (p) {
1074                 /*
1075                  * Verify the string as this thing may have come from
1076                  * the user.  There must be either one "%d" and no other "%"
1077                  * characters.
1078                  */
1079                 if (p[1] != 'd' || strchr(p + 2, '%'))
1080                         return -EINVAL;
1081
1082                 /* Use one page as a bit array of possible slots */
1083                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1084                 if (!inuse)
1085                         return -ENOMEM;
1086
1087                 for_each_netdev(net, d) {
1088                         if (!sscanf(d->name, name, &i))
1089                                 continue;
1090                         if (i < 0 || i >= max_netdevices)
1091                                 continue;
1092
1093                         /*  avoid cases where sscanf is not exact inverse of printf */
1094                         snprintf(buf, IFNAMSIZ, name, i);
1095                         if (!strncmp(buf, d->name, IFNAMSIZ))
1096                                 set_bit(i, inuse);
1097                 }
1098
1099                 i = find_first_zero_bit(inuse, max_netdevices);
1100                 free_page((unsigned long) inuse);
1101         }
1102
1103         snprintf(buf, IFNAMSIZ, name, i);
1104         if (!__dev_get_by_name(net, buf))
1105                 return i;
1106
1107         /* It is possible to run out of possible slots
1108          * when the name is long and there isn't enough space left
1109          * for the digits, or if all bits are used.
1110          */
1111         return -ENFILE;
1112 }
1113
1114 static int dev_alloc_name_ns(struct net *net,
1115                              struct net_device *dev,
1116                              const char *name)
1117 {
1118         char buf[IFNAMSIZ];
1119         int ret;
1120
1121         BUG_ON(!net);
1122         ret = __dev_alloc_name(net, name, buf);
1123         if (ret >= 0)
1124                 strlcpy(dev->name, buf, IFNAMSIZ);
1125         return ret;
1126 }
1127
1128 /**
1129  *      dev_alloc_name - allocate a name for a device
1130  *      @dev: device
1131  *      @name: name format string
1132  *
1133  *      Passed a format string - eg "lt%d" it will try and find a suitable
1134  *      id. It scans list of devices to build up a free map, then chooses
1135  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1136  *      while allocating the name and adding the device in order to avoid
1137  *      duplicates.
1138  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1139  *      Returns the number of the unit assigned or a negative errno code.
1140  */
1141
1142 int dev_alloc_name(struct net_device *dev, const char *name)
1143 {
1144         return dev_alloc_name_ns(dev_net(dev), dev, name);
1145 }
1146 EXPORT_SYMBOL(dev_alloc_name);
1147
1148 int dev_get_valid_name(struct net *net, struct net_device *dev,
1149                        const char *name)
1150 {
1151         BUG_ON(!net);
1152
1153         if (!dev_valid_name(name))
1154                 return -EINVAL;
1155
1156         if (strchr(name, '%'))
1157                 return dev_alloc_name_ns(net, dev, name);
1158         else if (__dev_get_by_name(net, name))
1159                 return -EEXIST;
1160         else if (dev->name != name)
1161                 strlcpy(dev->name, name, IFNAMSIZ);
1162
1163         return 0;
1164 }
1165 EXPORT_SYMBOL(dev_get_valid_name);
1166
1167 /**
1168  *      dev_change_name - change name of a device
1169  *      @dev: device
1170  *      @newname: name (or format string) must be at least IFNAMSIZ
1171  *
1172  *      Change name of a device, can pass format strings "eth%d".
1173  *      for wildcarding.
1174  */
1175 int dev_change_name(struct net_device *dev, const char *newname)
1176 {
1177         unsigned char old_assign_type;
1178         char oldname[IFNAMSIZ];
1179         int err = 0;
1180         int ret;
1181         struct net *net;
1182
1183         ASSERT_RTNL();
1184         BUG_ON(!dev_net(dev));
1185
1186         net = dev_net(dev);
1187         if (dev->flags & IFF_UP)
1188                 return -EBUSY;
1189
1190         write_seqcount_begin(&devnet_rename_seq);
1191
1192         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1193                 write_seqcount_end(&devnet_rename_seq);
1194                 return 0;
1195         }
1196
1197         memcpy(oldname, dev->name, IFNAMSIZ);
1198
1199         err = dev_get_valid_name(net, dev, newname);
1200         if (err < 0) {
1201                 write_seqcount_end(&devnet_rename_seq);
1202                 return err;
1203         }
1204
1205         if (oldname[0] && !strchr(oldname, '%'))
1206                 netdev_info(dev, "renamed from %s\n", oldname);
1207
1208         old_assign_type = dev->name_assign_type;
1209         dev->name_assign_type = NET_NAME_RENAMED;
1210
1211 rollback:
1212         ret = device_rename(&dev->dev, dev->name);
1213         if (ret) {
1214                 memcpy(dev->name, oldname, IFNAMSIZ);
1215                 dev->name_assign_type = old_assign_type;
1216                 write_seqcount_end(&devnet_rename_seq);
1217                 return ret;
1218         }
1219
1220         write_seqcount_end(&devnet_rename_seq);
1221
1222         netdev_adjacent_rename_links(dev, oldname);
1223
1224         write_lock_bh(&dev_base_lock);
1225         hlist_del_rcu(&dev->name_hlist);
1226         write_unlock_bh(&dev_base_lock);
1227
1228         synchronize_rcu();
1229
1230         write_lock_bh(&dev_base_lock);
1231         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1232         write_unlock_bh(&dev_base_lock);
1233
1234         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1235         ret = notifier_to_errno(ret);
1236
1237         if (ret) {
1238                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1239                 if (err >= 0) {
1240                         err = ret;
1241                         write_seqcount_begin(&devnet_rename_seq);
1242                         memcpy(dev->name, oldname, IFNAMSIZ);
1243                         memcpy(oldname, newname, IFNAMSIZ);
1244                         dev->name_assign_type = old_assign_type;
1245                         old_assign_type = NET_NAME_RENAMED;
1246                         goto rollback;
1247                 } else {
1248                         pr_err("%s: name change rollback failed: %d\n",
1249                                dev->name, ret);
1250                 }
1251         }
1252
1253         return err;
1254 }
1255
1256 /**
1257  *      dev_set_alias - change ifalias of a device
1258  *      @dev: device
1259  *      @alias: name up to IFALIASZ
1260  *      @len: limit of bytes to copy from info
1261  *
1262  *      Set ifalias for a device,
1263  */
1264 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1265 {
1266         struct dev_ifalias *new_alias = NULL;
1267
1268         if (len >= IFALIASZ)
1269                 return -EINVAL;
1270
1271         if (len) {
1272                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1273                 if (!new_alias)
1274                         return -ENOMEM;
1275
1276                 memcpy(new_alias->ifalias, alias, len);
1277                 new_alias->ifalias[len] = 0;
1278         }
1279
1280         mutex_lock(&ifalias_mutex);
1281         rcu_swap_protected(dev->ifalias, new_alias,
1282                            mutex_is_locked(&ifalias_mutex));
1283         mutex_unlock(&ifalias_mutex);
1284
1285         if (new_alias)
1286                 kfree_rcu(new_alias, rcuhead);
1287
1288         return len;
1289 }
1290 EXPORT_SYMBOL(dev_set_alias);
1291
1292 /**
1293  *      dev_get_alias - get ifalias of a device
1294  *      @dev: device
1295  *      @name: buffer to store name of ifalias
1296  *      @len: size of buffer
1297  *
1298  *      get ifalias for a device.  Caller must make sure dev cannot go
1299  *      away,  e.g. rcu read lock or own a reference count to device.
1300  */
1301 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1302 {
1303         const struct dev_ifalias *alias;
1304         int ret = 0;
1305
1306         rcu_read_lock();
1307         alias = rcu_dereference(dev->ifalias);
1308         if (alias)
1309                 ret = snprintf(name, len, "%s", alias->ifalias);
1310         rcu_read_unlock();
1311
1312         return ret;
1313 }
1314
1315 /**
1316  *      netdev_features_change - device changes features
1317  *      @dev: device to cause notification
1318  *
1319  *      Called to indicate a device has changed features.
1320  */
1321 void netdev_features_change(struct net_device *dev)
1322 {
1323         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1324 }
1325 EXPORT_SYMBOL(netdev_features_change);
1326
1327 /**
1328  *      netdev_state_change - device changes state
1329  *      @dev: device to cause notification
1330  *
1331  *      Called to indicate a device has changed state. This function calls
1332  *      the notifier chains for netdev_chain and sends a NEWLINK message
1333  *      to the routing socket.
1334  */
1335 void netdev_state_change(struct net_device *dev)
1336 {
1337         if (dev->flags & IFF_UP) {
1338                 struct netdev_notifier_change_info change_info = {
1339                         .info.dev = dev,
1340                 };
1341
1342                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1343                                               &change_info.info);
1344                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1345         }
1346 }
1347 EXPORT_SYMBOL(netdev_state_change);
1348
1349 /**
1350  * netdev_notify_peers - notify network peers about existence of @dev
1351  * @dev: network device
1352  *
1353  * Generate traffic such that interested network peers are aware of
1354  * @dev, such as by generating a gratuitous ARP. This may be used when
1355  * a device wants to inform the rest of the network about some sort of
1356  * reconfiguration such as a failover event or virtual machine
1357  * migration.
1358  */
1359 void netdev_notify_peers(struct net_device *dev)
1360 {
1361         rtnl_lock();
1362         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1363         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1364         rtnl_unlock();
1365 }
1366 EXPORT_SYMBOL(netdev_notify_peers);
1367
1368 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1369 {
1370         const struct net_device_ops *ops = dev->netdev_ops;
1371         int ret;
1372
1373         ASSERT_RTNL();
1374
1375         if (!netif_device_present(dev))
1376                 return -ENODEV;
1377
1378         /* Block netpoll from trying to do any rx path servicing.
1379          * If we don't do this there is a chance ndo_poll_controller
1380          * or ndo_poll may be running while we open the device
1381          */
1382         netpoll_poll_disable(dev);
1383
1384         ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1385         ret = notifier_to_errno(ret);
1386         if (ret)
1387                 return ret;
1388
1389         set_bit(__LINK_STATE_START, &dev->state);
1390
1391         if (ops->ndo_validate_addr)
1392                 ret = ops->ndo_validate_addr(dev);
1393
1394         if (!ret && ops->ndo_open)
1395                 ret = ops->ndo_open(dev);
1396
1397         netpoll_poll_enable(dev);
1398
1399         if (ret)
1400                 clear_bit(__LINK_STATE_START, &dev->state);
1401         else {
1402                 dev->flags |= IFF_UP;
1403                 dev_set_rx_mode(dev);
1404                 dev_activate(dev);
1405                 add_device_randomness(dev->dev_addr, dev->addr_len);
1406         }
1407
1408         return ret;
1409 }
1410
1411 /**
1412  *      dev_open        - prepare an interface for use.
1413  *      @dev: device to open
1414  *      @extack: netlink extended ack
1415  *
1416  *      Takes a device from down to up state. The device's private open
1417  *      function is invoked and then the multicast lists are loaded. Finally
1418  *      the device is moved into the up state and a %NETDEV_UP message is
1419  *      sent to the netdev notifier chain.
1420  *
1421  *      Calling this function on an active interface is a nop. On a failure
1422  *      a negative errno code is returned.
1423  */
1424 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1425 {
1426         int ret;
1427
1428         if (dev->flags & IFF_UP)
1429                 return 0;
1430
1431         ret = __dev_open(dev, extack);
1432         if (ret < 0)
1433                 return ret;
1434
1435         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1436         call_netdevice_notifiers(NETDEV_UP, dev);
1437
1438         return ret;
1439 }
1440 EXPORT_SYMBOL(dev_open);
1441
1442 static void __dev_close_many(struct list_head *head)
1443 {
1444         struct net_device *dev;
1445
1446         ASSERT_RTNL();
1447         might_sleep();
1448
1449         list_for_each_entry(dev, head, close_list) {
1450                 /* Temporarily disable netpoll until the interface is down */
1451                 netpoll_poll_disable(dev);
1452
1453                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1454
1455                 clear_bit(__LINK_STATE_START, &dev->state);
1456
1457                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1458                  * can be even on different cpu. So just clear netif_running().
1459                  *
1460                  * dev->stop() will invoke napi_disable() on all of it's
1461                  * napi_struct instances on this device.
1462                  */
1463                 smp_mb__after_atomic(); /* Commit netif_running(). */
1464         }
1465
1466         dev_deactivate_many(head);
1467
1468         list_for_each_entry(dev, head, close_list) {
1469                 const struct net_device_ops *ops = dev->netdev_ops;
1470
1471                 /*
1472                  *      Call the device specific close. This cannot fail.
1473                  *      Only if device is UP
1474                  *
1475                  *      We allow it to be called even after a DETACH hot-plug
1476                  *      event.
1477                  */
1478                 if (ops->ndo_stop)
1479                         ops->ndo_stop(dev);
1480
1481                 dev->flags &= ~IFF_UP;
1482                 netpoll_poll_enable(dev);
1483         }
1484 }
1485
1486 static void __dev_close(struct net_device *dev)
1487 {
1488         LIST_HEAD(single);
1489
1490         list_add(&dev->close_list, &single);
1491         __dev_close_many(&single);
1492         list_del(&single);
1493 }
1494
1495 void dev_close_many(struct list_head *head, bool unlink)
1496 {
1497         struct net_device *dev, *tmp;
1498
1499         /* Remove the devices that don't need to be closed */
1500         list_for_each_entry_safe(dev, tmp, head, close_list)
1501                 if (!(dev->flags & IFF_UP))
1502                         list_del_init(&dev->close_list);
1503
1504         __dev_close_many(head);
1505
1506         list_for_each_entry_safe(dev, tmp, head, close_list) {
1507                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1508                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1509                 if (unlink)
1510                         list_del_init(&dev->close_list);
1511         }
1512 }
1513 EXPORT_SYMBOL(dev_close_many);
1514
1515 /**
1516  *      dev_close - shutdown an interface.
1517  *      @dev: device to shutdown
1518  *
1519  *      This function moves an active device into down state. A
1520  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1521  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1522  *      chain.
1523  */
1524 void dev_close(struct net_device *dev)
1525 {
1526         if (dev->flags & IFF_UP) {
1527                 LIST_HEAD(single);
1528
1529                 list_add(&dev->close_list, &single);
1530                 dev_close_many(&single, true);
1531                 list_del(&single);
1532         }
1533 }
1534 EXPORT_SYMBOL(dev_close);
1535
1536
1537 /**
1538  *      dev_disable_lro - disable Large Receive Offload on a device
1539  *      @dev: device
1540  *
1541  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1542  *      called under RTNL.  This is needed if received packets may be
1543  *      forwarded to another interface.
1544  */
1545 void dev_disable_lro(struct net_device *dev)
1546 {
1547         struct net_device *lower_dev;
1548         struct list_head *iter;
1549
1550         dev->wanted_features &= ~NETIF_F_LRO;
1551         netdev_update_features(dev);
1552
1553         if (unlikely(dev->features & NETIF_F_LRO))
1554                 netdev_WARN(dev, "failed to disable LRO!\n");
1555
1556         netdev_for_each_lower_dev(dev, lower_dev, iter)
1557                 dev_disable_lro(lower_dev);
1558 }
1559 EXPORT_SYMBOL(dev_disable_lro);
1560
1561 /**
1562  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1563  *      @dev: device
1564  *
1565  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1566  *      called under RTNL.  This is needed if Generic XDP is installed on
1567  *      the device.
1568  */
1569 static void dev_disable_gro_hw(struct net_device *dev)
1570 {
1571         dev->wanted_features &= ~NETIF_F_GRO_HW;
1572         netdev_update_features(dev);
1573
1574         if (unlikely(dev->features & NETIF_F_GRO_HW))
1575                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1576 }
1577
1578 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1579 {
1580 #define N(val)                                          \
1581         case NETDEV_##val:                              \
1582                 return "NETDEV_" __stringify(val);
1583         switch (cmd) {
1584         N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1585         N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1586         N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1587         N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1588         N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1589         N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1590         N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1591         N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1592         N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1593         N(PRE_CHANGEADDR)
1594         }
1595 #undef N
1596         return "UNKNOWN_NETDEV_EVENT";
1597 }
1598 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1599
1600 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1601                                    struct net_device *dev)
1602 {
1603         struct netdev_notifier_info info = {
1604                 .dev = dev,
1605         };
1606
1607         return nb->notifier_call(nb, val, &info);
1608 }
1609
1610 static int dev_boot_phase = 1;
1611
1612 /**
1613  * register_netdevice_notifier - register a network notifier block
1614  * @nb: notifier
1615  *
1616  * Register a notifier to be called when network device events occur.
1617  * The notifier passed is linked into the kernel structures and must
1618  * not be reused until it has been unregistered. A negative errno code
1619  * is returned on a failure.
1620  *
1621  * When registered all registration and up events are replayed
1622  * to the new notifier to allow device to have a race free
1623  * view of the network device list.
1624  */
1625
1626 int register_netdevice_notifier(struct notifier_block *nb)
1627 {
1628         struct net_device *dev;
1629         struct net_device *last;
1630         struct net *net;
1631         int err;
1632
1633         /* Close race with setup_net() and cleanup_net() */
1634         down_write(&pernet_ops_rwsem);
1635         rtnl_lock();
1636         err = raw_notifier_chain_register(&netdev_chain, nb);
1637         if (err)
1638                 goto unlock;
1639         if (dev_boot_phase)
1640                 goto unlock;
1641         for_each_net(net) {
1642                 for_each_netdev(net, dev) {
1643                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1644                         err = notifier_to_errno(err);
1645                         if (err)
1646                                 goto rollback;
1647
1648                         if (!(dev->flags & IFF_UP))
1649                                 continue;
1650
1651                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1652                 }
1653         }
1654
1655 unlock:
1656         rtnl_unlock();
1657         up_write(&pernet_ops_rwsem);
1658         return err;
1659
1660 rollback:
1661         last = dev;
1662         for_each_net(net) {
1663                 for_each_netdev(net, dev) {
1664                         if (dev == last)
1665                                 goto outroll;
1666
1667                         if (dev->flags & IFF_UP) {
1668                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1669                                                         dev);
1670                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1671                         }
1672                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1673                 }
1674         }
1675
1676 outroll:
1677         raw_notifier_chain_unregister(&netdev_chain, nb);
1678         goto unlock;
1679 }
1680 EXPORT_SYMBOL(register_netdevice_notifier);
1681
1682 /**
1683  * unregister_netdevice_notifier - unregister a network notifier block
1684  * @nb: notifier
1685  *
1686  * Unregister a notifier previously registered by
1687  * register_netdevice_notifier(). The notifier is unlinked into the
1688  * kernel structures and may then be reused. A negative errno code
1689  * is returned on a failure.
1690  *
1691  * After unregistering unregister and down device events are synthesized
1692  * for all devices on the device list to the removed notifier to remove
1693  * the need for special case cleanup code.
1694  */
1695
1696 int unregister_netdevice_notifier(struct notifier_block *nb)
1697 {
1698         struct net_device *dev;
1699         struct net *net;
1700         int err;
1701
1702         /* Close race with setup_net() and cleanup_net() */
1703         down_write(&pernet_ops_rwsem);
1704         rtnl_lock();
1705         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1706         if (err)
1707                 goto unlock;
1708
1709         for_each_net(net) {
1710                 for_each_netdev(net, dev) {
1711                         if (dev->flags & IFF_UP) {
1712                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1713                                                         dev);
1714                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1715                         }
1716                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1717                 }
1718         }
1719 unlock:
1720         rtnl_unlock();
1721         up_write(&pernet_ops_rwsem);
1722         return err;
1723 }
1724 EXPORT_SYMBOL(unregister_netdevice_notifier);
1725
1726 /**
1727  *      call_netdevice_notifiers_info - call all network notifier blocks
1728  *      @val: value passed unmodified to notifier function
1729  *      @info: notifier information data
1730  *
1731  *      Call all network notifier blocks.  Parameters and return value
1732  *      are as for raw_notifier_call_chain().
1733  */
1734
1735 static int call_netdevice_notifiers_info(unsigned long val,
1736                                          struct netdev_notifier_info *info)
1737 {
1738         ASSERT_RTNL();
1739         return raw_notifier_call_chain(&netdev_chain, val, info);
1740 }
1741
1742 static int call_netdevice_notifiers_extack(unsigned long val,
1743                                            struct net_device *dev,
1744                                            struct netlink_ext_ack *extack)
1745 {
1746         struct netdev_notifier_info info = {
1747                 .dev = dev,
1748                 .extack = extack,
1749         };
1750
1751         return call_netdevice_notifiers_info(val, &info);
1752 }
1753
1754 /**
1755  *      call_netdevice_notifiers - call all network notifier blocks
1756  *      @val: value passed unmodified to notifier function
1757  *      @dev: net_device pointer passed unmodified to notifier function
1758  *
1759  *      Call all network notifier blocks.  Parameters and return value
1760  *      are as for raw_notifier_call_chain().
1761  */
1762
1763 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1764 {
1765         return call_netdevice_notifiers_extack(val, dev, NULL);
1766 }
1767 EXPORT_SYMBOL(call_netdevice_notifiers);
1768
1769 /**
1770  *      call_netdevice_notifiers_mtu - call all network notifier blocks
1771  *      @val: value passed unmodified to notifier function
1772  *      @dev: net_device pointer passed unmodified to notifier function
1773  *      @arg: additional u32 argument passed to the notifier function
1774  *
1775  *      Call all network notifier blocks.  Parameters and return value
1776  *      are as for raw_notifier_call_chain().
1777  */
1778 static int call_netdevice_notifiers_mtu(unsigned long val,
1779                                         struct net_device *dev, u32 arg)
1780 {
1781         struct netdev_notifier_info_ext info = {
1782                 .info.dev = dev,
1783                 .ext.mtu = arg,
1784         };
1785
1786         BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1787
1788         return call_netdevice_notifiers_info(val, &info.info);
1789 }
1790
1791 #ifdef CONFIG_NET_INGRESS
1792 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1793
1794 void net_inc_ingress_queue(void)
1795 {
1796         static_branch_inc(&ingress_needed_key);
1797 }
1798 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1799
1800 void net_dec_ingress_queue(void)
1801 {
1802         static_branch_dec(&ingress_needed_key);
1803 }
1804 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1805 #endif
1806
1807 #ifdef CONFIG_NET_EGRESS
1808 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1809
1810 void net_inc_egress_queue(void)
1811 {
1812         static_branch_inc(&egress_needed_key);
1813 }
1814 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1815
1816 void net_dec_egress_queue(void)
1817 {
1818         static_branch_dec(&egress_needed_key);
1819 }
1820 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1821 #endif
1822
1823 static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1824 #ifdef CONFIG_JUMP_LABEL
1825 static atomic_t netstamp_needed_deferred;
1826 static atomic_t netstamp_wanted;
1827 static void netstamp_clear(struct work_struct *work)
1828 {
1829         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1830         int wanted;
1831
1832         wanted = atomic_add_return(deferred, &netstamp_wanted);
1833         if (wanted > 0)
1834                 static_branch_enable(&netstamp_needed_key);
1835         else
1836                 static_branch_disable(&netstamp_needed_key);
1837 }
1838 static DECLARE_WORK(netstamp_work, netstamp_clear);
1839 #endif
1840
1841 void net_enable_timestamp(void)
1842 {
1843 #ifdef CONFIG_JUMP_LABEL
1844         int wanted;
1845
1846         while (1) {
1847                 wanted = atomic_read(&netstamp_wanted);
1848                 if (wanted <= 0)
1849                         break;
1850                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1851                         return;
1852         }
1853         atomic_inc(&netstamp_needed_deferred);
1854         schedule_work(&netstamp_work);
1855 #else
1856         static_branch_inc(&netstamp_needed_key);
1857 #endif
1858 }
1859 EXPORT_SYMBOL(net_enable_timestamp);
1860
1861 void net_disable_timestamp(void)
1862 {
1863 #ifdef CONFIG_JUMP_LABEL
1864         int wanted;
1865
1866         while (1) {
1867                 wanted = atomic_read(&netstamp_wanted);
1868                 if (wanted <= 1)
1869                         break;
1870                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1871                         return;
1872         }
1873         atomic_dec(&netstamp_needed_deferred);
1874         schedule_work(&netstamp_work);
1875 #else
1876         static_branch_dec(&netstamp_needed_key);
1877 #endif
1878 }
1879 EXPORT_SYMBOL(net_disable_timestamp);
1880
1881 static inline void net_timestamp_set(struct sk_buff *skb)
1882 {
1883         skb->tstamp = 0;
1884         if (static_branch_unlikely(&netstamp_needed_key))
1885                 __net_timestamp(skb);
1886 }
1887
1888 #define net_timestamp_check(COND, SKB)                          \
1889         if (static_branch_unlikely(&netstamp_needed_key)) {     \
1890                 if ((COND) && !(SKB)->tstamp)                   \
1891                         __net_timestamp(SKB);                   \
1892         }                                                       \
1893
1894 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1895 {
1896         unsigned int len;
1897
1898         if (!(dev->flags & IFF_UP))
1899                 return false;
1900
1901         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1902         if (skb->len <= len)
1903                 return true;
1904
1905         /* if TSO is enabled, we don't care about the length as the packet
1906          * could be forwarded without being segmented before
1907          */
1908         if (skb_is_gso(skb))
1909                 return true;
1910
1911         return false;
1912 }
1913 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1914
1915 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1916 {
1917         int ret = ____dev_forward_skb(dev, skb);
1918
1919         if (likely(!ret)) {
1920                 skb->protocol = eth_type_trans(skb, dev);
1921                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1922         }
1923
1924         return ret;
1925 }
1926 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1927
1928 /**
1929  * dev_forward_skb - loopback an skb to another netif
1930  *
1931  * @dev: destination network device
1932  * @skb: buffer to forward
1933  *
1934  * return values:
1935  *      NET_RX_SUCCESS  (no congestion)
1936  *      NET_RX_DROP     (packet was dropped, but freed)
1937  *
1938  * dev_forward_skb can be used for injecting an skb from the
1939  * start_xmit function of one device into the receive queue
1940  * of another device.
1941  *
1942  * The receiving device may be in another namespace, so
1943  * we have to clear all information in the skb that could
1944  * impact namespace isolation.
1945  */
1946 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1947 {
1948         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1949 }
1950 EXPORT_SYMBOL_GPL(dev_forward_skb);
1951
1952 static inline int deliver_skb(struct sk_buff *skb,
1953                               struct packet_type *pt_prev,
1954                               struct net_device *orig_dev)
1955 {
1956         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1957                 return -ENOMEM;
1958         refcount_inc(&skb->users);
1959         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1960 }
1961
1962 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1963                                           struct packet_type **pt,
1964                                           struct net_device *orig_dev,
1965                                           __be16 type,
1966                                           struct list_head *ptype_list)
1967 {
1968         struct packet_type *ptype, *pt_prev = *pt;
1969
1970         list_for_each_entry_rcu(ptype, ptype_list, list) {
1971                 if (ptype->type != type)
1972                         continue;
1973                 if (pt_prev)
1974                         deliver_skb(skb, pt_prev, orig_dev);
1975                 pt_prev = ptype;
1976         }
1977         *pt = pt_prev;
1978 }
1979
1980 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1981 {
1982         if (!ptype->af_packet_priv || !skb->sk)
1983                 return false;
1984
1985         if (ptype->id_match)
1986                 return ptype->id_match(ptype, skb->sk);
1987         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1988                 return true;
1989
1990         return false;
1991 }
1992
1993 /**
1994  * dev_nit_active - return true if any network interface taps are in use
1995  *
1996  * @dev: network device to check for the presence of taps
1997  */
1998 bool dev_nit_active(struct net_device *dev)
1999 {
2000         return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2001 }
2002 EXPORT_SYMBOL_GPL(dev_nit_active);
2003
2004 /*
2005  *      Support routine. Sends outgoing frames to any network
2006  *      taps currently in use.
2007  */
2008
2009 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2010 {
2011         struct packet_type *ptype;
2012         struct sk_buff *skb2 = NULL;
2013         struct packet_type *pt_prev = NULL;
2014         struct list_head *ptype_list = &ptype_all;
2015
2016         rcu_read_lock();
2017 again:
2018         list_for_each_entry_rcu(ptype, ptype_list, list) {
2019                 if (ptype->ignore_outgoing)
2020                         continue;
2021
2022                 /* Never send packets back to the socket
2023                  * they originated from - MvS (miquels@drinkel.ow.org)
2024                  */
2025                 if (skb_loop_sk(ptype, skb))
2026                         continue;
2027
2028                 if (pt_prev) {
2029                         deliver_skb(skb2, pt_prev, skb->dev);
2030                         pt_prev = ptype;
2031                         continue;
2032                 }
2033
2034                 /* need to clone skb, done only once */
2035                 skb2 = skb_clone(skb, GFP_ATOMIC);
2036                 if (!skb2)
2037                         goto out_unlock;
2038
2039                 net_timestamp_set(skb2);
2040
2041                 /* skb->nh should be correctly
2042                  * set by sender, so that the second statement is
2043                  * just protection against buggy protocols.
2044                  */
2045                 skb_reset_mac_header(skb2);
2046
2047                 if (skb_network_header(skb2) < skb2->data ||
2048                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2049                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2050                                              ntohs(skb2->protocol),
2051                                              dev->name);
2052                         skb_reset_network_header(skb2);
2053                 }
2054
2055                 skb2->transport_header = skb2->network_header;
2056                 skb2->pkt_type = PACKET_OUTGOING;
2057                 pt_prev = ptype;
2058         }
2059
2060         if (ptype_list == &ptype_all) {
2061                 ptype_list = &dev->ptype_all;
2062                 goto again;
2063         }
2064 out_unlock:
2065         if (pt_prev) {
2066                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2067                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2068                 else
2069                         kfree_skb(skb2);
2070         }
2071         rcu_read_unlock();
2072 }
2073 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2074
2075 /**
2076  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2077  * @dev: Network device
2078  * @txq: number of queues available
2079  *
2080  * If real_num_tx_queues is changed the tc mappings may no longer be
2081  * valid. To resolve this verify the tc mapping remains valid and if
2082  * not NULL the mapping. With no priorities mapping to this
2083  * offset/count pair it will no longer be used. In the worst case TC0
2084  * is invalid nothing can be done so disable priority mappings. If is
2085  * expected that drivers will fix this mapping if they can before
2086  * calling netif_set_real_num_tx_queues.
2087  */
2088 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2089 {
2090         int i;
2091         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2092
2093         /* If TC0 is invalidated disable TC mapping */
2094         if (tc->offset + tc->count > txq) {
2095                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2096                 dev->num_tc = 0;
2097                 return;
2098         }
2099
2100         /* Invalidated prio to tc mappings set to TC0 */
2101         for (i = 1; i < TC_BITMASK + 1; i++) {
2102                 int q = netdev_get_prio_tc_map(dev, i);
2103
2104                 tc = &dev->tc_to_txq[q];
2105                 if (tc->offset + tc->count > txq) {
2106                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2107                                 i, q);
2108                         netdev_set_prio_tc_map(dev, i, 0);
2109                 }
2110         }
2111 }
2112
2113 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2114 {
2115         if (dev->num_tc) {
2116                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2117                 int i;
2118
2119                 /* walk through the TCs and see if it falls into any of them */
2120                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2121                         if ((txq - tc->offset) < tc->count)
2122                                 return i;
2123                 }
2124
2125                 /* didn't find it, just return -1 to indicate no match */
2126                 return -1;
2127         }
2128
2129         return 0;
2130 }
2131 EXPORT_SYMBOL(netdev_txq_to_tc);
2132
2133 #ifdef CONFIG_XPS
2134 struct static_key xps_needed __read_mostly;
2135 EXPORT_SYMBOL(xps_needed);
2136 struct static_key xps_rxqs_needed __read_mostly;
2137 EXPORT_SYMBOL(xps_rxqs_needed);
2138 static DEFINE_MUTEX(xps_map_mutex);
2139 #define xmap_dereference(P)             \
2140         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2141
2142 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2143                              int tci, u16 index)
2144 {
2145         struct xps_map *map = NULL;
2146         int pos;
2147
2148         if (dev_maps)
2149                 map = xmap_dereference(dev_maps->attr_map[tci]);
2150         if (!map)
2151                 return false;
2152
2153         for (pos = map->len; pos--;) {
2154                 if (map->queues[pos] != index)
2155                         continue;
2156
2157                 if (map->len > 1) {
2158                         map->queues[pos] = map->queues[--map->len];
2159                         break;
2160                 }
2161
2162                 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2163                 kfree_rcu(map, rcu);
2164                 return false;
2165         }
2166
2167         return true;
2168 }
2169
2170 static bool remove_xps_queue_cpu(struct net_device *dev,
2171                                  struct xps_dev_maps *dev_maps,
2172                                  int cpu, u16 offset, u16 count)
2173 {
2174         int num_tc = dev->num_tc ? : 1;
2175         bool active = false;
2176         int tci;
2177
2178         for (tci = cpu * num_tc; num_tc--; tci++) {
2179                 int i, j;
2180
2181                 for (i = count, j = offset; i--; j++) {
2182                         if (!remove_xps_queue(dev_maps, tci, j))
2183                                 break;
2184                 }
2185
2186                 active |= i < 0;
2187         }
2188
2189         return active;
2190 }
2191
2192 static void reset_xps_maps(struct net_device *dev,
2193                            struct xps_dev_maps *dev_maps,
2194                            bool is_rxqs_map)
2195 {
2196         if (is_rxqs_map) {
2197                 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2198                 RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2199         } else {
2200                 RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2201         }
2202         static_key_slow_dec_cpuslocked(&xps_needed);
2203         kfree_rcu(dev_maps, rcu);
2204 }
2205
2206 static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2207                            struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2208                            u16 offset, u16 count, bool is_rxqs_map)
2209 {
2210         bool active = false;
2211         int i, j;
2212
2213         for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2214              j < nr_ids;)
2215                 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2216                                                count);
2217         if (!active)
2218                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2219
2220         if (!is_rxqs_map) {
2221                 for (i = offset + (count - 1); count--; i--) {
2222                         netdev_queue_numa_node_write(
2223                                 netdev_get_tx_queue(dev, i),
2224                                 NUMA_NO_NODE);
2225                 }
2226         }
2227 }
2228
2229 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2230                                    u16 count)
2231 {
2232         const unsigned long *possible_mask = NULL;
2233         struct xps_dev_maps *dev_maps;
2234         unsigned int nr_ids;
2235
2236         if (!static_key_false(&xps_needed))
2237                 return;
2238
2239         cpus_read_lock();
2240         mutex_lock(&xps_map_mutex);
2241
2242         if (static_key_false(&xps_rxqs_needed)) {
2243                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2244                 if (dev_maps) {
2245                         nr_ids = dev->num_rx_queues;
2246                         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2247                                        offset, count, true);
2248                 }
2249         }
2250
2251         dev_maps = xmap_dereference(dev->xps_cpus_map);
2252         if (!dev_maps)
2253                 goto out_no_maps;
2254
2255         if (num_possible_cpus() > 1)
2256                 possible_mask = cpumask_bits(cpu_possible_mask);
2257         nr_ids = nr_cpu_ids;
2258         clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2259                        false);
2260
2261 out_no_maps:
2262         mutex_unlock(&xps_map_mutex);
2263         cpus_read_unlock();
2264 }
2265
2266 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2267 {
2268         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2269 }
2270
2271 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2272                                       u16 index, bool is_rxqs_map)
2273 {
2274         struct xps_map *new_map;
2275         int alloc_len = XPS_MIN_MAP_ALLOC;
2276         int i, pos;
2277
2278         for (pos = 0; map && pos < map->len; pos++) {
2279                 if (map->queues[pos] != index)
2280                         continue;
2281                 return map;
2282         }
2283
2284         /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2285         if (map) {
2286                 if (pos < map->alloc_len)
2287                         return map;
2288
2289                 alloc_len = map->alloc_len * 2;
2290         }
2291
2292         /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2293          *  map
2294          */
2295         if (is_rxqs_map)
2296                 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2297         else
2298                 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2299                                        cpu_to_node(attr_index));
2300         if (!new_map)
2301                 return NULL;
2302
2303         for (i = 0; i < pos; i++)
2304                 new_map->queues[i] = map->queues[i];
2305         new_map->alloc_len = alloc_len;
2306         new_map->len = pos;
2307
2308         return new_map;
2309 }
2310
2311 /* Must be called under cpus_read_lock */
2312 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2313                           u16 index, bool is_rxqs_map)
2314 {
2315         const unsigned long *online_mask = NULL, *possible_mask = NULL;
2316         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2317         int i, j, tci, numa_node_id = -2;
2318         int maps_sz, num_tc = 1, tc = 0;
2319         struct xps_map *map, *new_map;
2320         bool active = false;
2321         unsigned int nr_ids;
2322
2323         if (dev->num_tc) {
2324                 /* Do not allow XPS on subordinate device directly */
2325                 num_tc = dev->num_tc;
2326                 if (num_tc < 0)
2327                         return -EINVAL;
2328
2329                 /* If queue belongs to subordinate dev use its map */
2330                 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2331
2332                 tc = netdev_txq_to_tc(dev, index);
2333                 if (tc < 0)
2334                         return -EINVAL;
2335         }
2336
2337         mutex_lock(&xps_map_mutex);
2338         if (is_rxqs_map) {
2339                 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2340                 dev_maps = xmap_dereference(dev->xps_rxqs_map);
2341                 nr_ids = dev->num_rx_queues;
2342         } else {
2343                 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2344                 if (num_possible_cpus() > 1) {
2345                         online_mask = cpumask_bits(cpu_online_mask);
2346                         possible_mask = cpumask_bits(cpu_possible_mask);
2347                 }
2348                 dev_maps = xmap_dereference(dev->xps_cpus_map);
2349                 nr_ids = nr_cpu_ids;
2350         }
2351
2352         if (maps_sz < L1_CACHE_BYTES)
2353                 maps_sz = L1_CACHE_BYTES;
2354
2355         /* allocate memory for queue storage */
2356         for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2357              j < nr_ids;) {
2358                 if (!new_dev_maps)
2359                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2360                 if (!new_dev_maps) {
2361                         mutex_unlock(&xps_map_mutex);
2362                         return -ENOMEM;
2363                 }
2364
2365                 tci = j * num_tc + tc;
2366                 map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2367                                  NULL;
2368
2369                 map = expand_xps_map(map, j, index, is_rxqs_map);
2370                 if (!map)
2371                         goto error;
2372
2373                 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2374         }
2375
2376         if (!new_dev_maps)
2377                 goto out_no_new_maps;
2378
2379         if (!dev_maps) {
2380                 /* Increment static keys at most once per type */
2381                 static_key_slow_inc_cpuslocked(&xps_needed);
2382                 if (is_rxqs_map)
2383                         static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2384         }
2385
2386         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2387              j < nr_ids;) {
2388                 /* copy maps belonging to foreign traffic classes */
2389                 for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2390                         /* fill in the new device map from the old device map */
2391                         map = xmap_dereference(dev_maps->attr_map[tci]);
2392                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2393                 }
2394
2395                 /* We need to explicitly update tci as prevous loop
2396                  * could break out early if dev_maps is NULL.
2397                  */
2398                 tci = j * num_tc + tc;
2399
2400                 if (netif_attr_test_mask(j, mask, nr_ids) &&
2401                     netif_attr_test_online(j, online_mask, nr_ids)) {
2402                         /* add tx-queue to CPU/rx-queue maps */
2403                         int pos = 0;
2404
2405                         map = xmap_dereference(new_dev_maps->attr_map[tci]);
2406                         while ((pos < map->len) && (map->queues[pos] != index))
2407                                 pos++;
2408
2409                         if (pos == map->len)
2410                                 map->queues[map->len++] = index;
2411 #ifdef CONFIG_NUMA
2412                         if (!is_rxqs_map) {
2413                                 if (numa_node_id == -2)
2414                                         numa_node_id = cpu_to_node(j);
2415                                 else if (numa_node_id != cpu_to_node(j))
2416                                         numa_node_id = -1;
2417                         }
2418 #endif
2419                 } else if (dev_maps) {
2420                         /* fill in the new device map from the old device map */
2421                         map = xmap_dereference(dev_maps->attr_map[tci]);
2422                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2423                 }
2424
2425                 /* copy maps belonging to foreign traffic classes */
2426                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2427                         /* fill in the new device map from the old device map */
2428                         map = xmap_dereference(dev_maps->attr_map[tci]);
2429                         RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2430                 }
2431         }
2432
2433         if (is_rxqs_map)
2434                 rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2435         else
2436                 rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2437
2438         /* Cleanup old maps */
2439         if (!dev_maps)
2440                 goto out_no_old_maps;
2441
2442         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2443              j < nr_ids;) {
2444                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2445                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2446                         map = xmap_dereference(dev_maps->attr_map[tci]);
2447                         if (map && map != new_map)
2448                                 kfree_rcu(map, rcu);
2449                 }
2450         }
2451
2452         kfree_rcu(dev_maps, rcu);
2453
2454 out_no_old_maps:
2455         dev_maps = new_dev_maps;
2456         active = true;
2457
2458 out_no_new_maps:
2459         if (!is_rxqs_map) {
2460                 /* update Tx queue numa node */
2461                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2462                                              (numa_node_id >= 0) ?
2463                                              numa_node_id : NUMA_NO_NODE);
2464         }
2465
2466         if (!dev_maps)
2467                 goto out_no_maps;
2468
2469         /* removes tx-queue from unused CPUs/rx-queues */
2470         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2471              j < nr_ids;) {
2472                 for (i = tc, tci = j * num_tc; i--; tci++)
2473                         active |= remove_xps_queue(dev_maps, tci, index);
2474                 if (!netif_attr_test_mask(j, mask, nr_ids) ||
2475                     !netif_attr_test_online(j, online_mask, nr_ids))
2476                         active |= remove_xps_queue(dev_maps, tci, index);
2477                 for (i = num_tc - tc, tci++; --i; tci++)
2478                         active |= remove_xps_queue(dev_maps, tci, index);
2479         }
2480
2481         /* free map if not active */
2482         if (!active)
2483                 reset_xps_maps(dev, dev_maps, is_rxqs_map);
2484
2485 out_no_maps:
2486         mutex_unlock(&xps_map_mutex);
2487
2488         return 0;
2489 error:
2490         /* remove any maps that we added */
2491         for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2492              j < nr_ids;) {
2493                 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2494                         new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2495                         map = dev_maps ?
2496                               xmap_dereference(dev_maps->attr_map[tci]) :
2497                               NULL;
2498                         if (new_map && new_map != map)
2499                                 kfree(new_map);
2500                 }
2501         }
2502
2503         mutex_unlock(&xps_map_mutex);
2504
2505         kfree(new_dev_maps);
2506         return -ENOMEM;
2507 }
2508 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2509
2510 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2511                         u16 index)
2512 {
2513         int ret;
2514
2515         cpus_read_lock();
2516         ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2517         cpus_read_unlock();
2518
2519         return ret;
2520 }
2521 EXPORT_SYMBOL(netif_set_xps_queue);
2522
2523 #endif
2524 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2525 {
2526         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2527
2528         /* Unbind any subordinate channels */
2529         while (txq-- != &dev->_tx[0]) {
2530                 if (txq->sb_dev)
2531                         netdev_unbind_sb_channel(dev, txq->sb_dev);
2532         }
2533 }
2534
2535 void netdev_reset_tc(struct net_device *dev)
2536 {
2537 #ifdef CONFIG_XPS
2538         netif_reset_xps_queues_gt(dev, 0);
2539 #endif
2540         netdev_unbind_all_sb_channels(dev);
2541
2542         /* Reset TC configuration of device */
2543         dev->num_tc = 0;
2544         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2545         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2546 }
2547 EXPORT_SYMBOL(netdev_reset_tc);
2548
2549 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2550 {
2551         if (tc >= dev->num_tc)
2552                 return -EINVAL;
2553
2554 #ifdef CONFIG_XPS
2555         netif_reset_xps_queues(dev, offset, count);
2556 #endif
2557         dev->tc_to_txq[tc].count = count;
2558         dev->tc_to_txq[tc].offset = offset;
2559         return 0;
2560 }
2561 EXPORT_SYMBOL(netdev_set_tc_queue);
2562
2563 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2564 {
2565         if (num_tc > TC_MAX_QUEUE)
2566                 return -EINVAL;
2567
2568 #ifdef CONFIG_XPS
2569         netif_reset_xps_queues_gt(dev, 0);
2570 #endif
2571         netdev_unbind_all_sb_channels(dev);
2572
2573         dev->num_tc = num_tc;
2574         return 0;
2575 }
2576 EXPORT_SYMBOL(netdev_set_num_tc);
2577
2578 void netdev_unbind_sb_channel(struct net_device *dev,
2579                               struct net_device *sb_dev)
2580 {
2581         struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2582
2583 #ifdef CONFIG_XPS
2584         netif_reset_xps_queues_gt(sb_dev, 0);
2585 #endif
2586         memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2587         memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2588
2589         while (txq-- != &dev->_tx[0]) {
2590                 if (txq->sb_dev == sb_dev)
2591                         txq->sb_dev = NULL;
2592         }
2593 }
2594 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2595
2596 int netdev_bind_sb_channel_queue(struct net_device *dev,
2597                                  struct net_device *sb_dev,
2598                                  u8 tc, u16 count, u16 offset)
2599 {
2600         /* Make certain the sb_dev and dev are already configured */
2601         if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2602                 return -EINVAL;
2603
2604         /* We cannot hand out queues we don't have */
2605         if ((offset + count) > dev->real_num_tx_queues)
2606                 return -EINVAL;
2607
2608         /* Record the mapping */
2609         sb_dev->tc_to_txq[tc].count = count;
2610         sb_dev->tc_to_txq[tc].offset = offset;
2611
2612         /* Provide a way for Tx queue to find the tc_to_txq map or
2613          * XPS map for itself.
2614          */
2615         while (count--)
2616                 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2617
2618         return 0;
2619 }
2620 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2621
2622 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2623 {
2624         /* Do not use a multiqueue device to represent a subordinate channel */
2625         if (netif_is_multiqueue(dev))
2626                 return -ENODEV;
2627
2628         /* We allow channels 1 - 32767 to be used for subordinate channels.
2629          * Channel 0 is meant to be "native" mode and used only to represent
2630          * the main root device. We allow writing 0 to reset the device back
2631          * to normal mode after being used as a subordinate channel.
2632          */
2633         if (channel > S16_MAX)
2634                 return -EINVAL;
2635
2636         dev->num_tc = -channel;
2637
2638         return 0;
2639 }
2640 EXPORT_SYMBOL(netdev_set_sb_channel);
2641
2642 /*
2643  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2644  * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2645  */
2646 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2647 {
2648         bool disabling;
2649         int rc;
2650
2651         disabling = txq < dev->real_num_tx_queues;
2652
2653         if (txq < 1 || txq > dev->num_tx_queues)
2654                 return -EINVAL;
2655
2656         if (dev->reg_state == NETREG_REGISTERED ||
2657             dev->reg_state == NETREG_UNREGISTERING) {
2658                 ASSERT_RTNL();
2659
2660                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2661                                                   txq);
2662                 if (rc)
2663                         return rc;
2664
2665                 if (dev->num_tc)
2666                         netif_setup_tc(dev, txq);
2667
2668                 dev->real_num_tx_queues = txq;
2669
2670                 if (disabling) {
2671                         synchronize_net();
2672                         qdisc_reset_all_tx_gt(dev, txq);
2673 #ifdef CONFIG_XPS
2674                         netif_reset_xps_queues_gt(dev, txq);
2675 #endif
2676                 }
2677         } else {
2678                 dev->real_num_tx_queues = txq;
2679         }
2680
2681         return 0;
2682 }
2683 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2684
2685 #ifdef CONFIG_SYSFS
2686 /**
2687  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2688  *      @dev: Network device
2689  *      @rxq: Actual number of RX queues
2690  *
2691  *      This must be called either with the rtnl_lock held or before
2692  *      registration of the net device.  Returns 0 on success, or a
2693  *      negative error code.  If called before registration, it always
2694  *      succeeds.
2695  */
2696 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2697 {
2698         int rc;
2699
2700         if (rxq < 1 || rxq > dev->num_rx_queues)
2701                 return -EINVAL;
2702
2703         if (dev->reg_state == NETREG_REGISTERED) {
2704                 ASSERT_RTNL();
2705
2706                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2707                                                   rxq);
2708                 if (rc)
2709                         return rc;
2710         }
2711
2712         dev->real_num_rx_queues = rxq;
2713         return 0;
2714 }
2715 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2716 #endif
2717
2718 /**
2719  * netif_get_num_default_rss_queues - default number of RSS queues
2720  *
2721  * This routine should set an upper limit on the number of RSS queues
2722  * used by default by multiqueue devices.
2723  */
2724 int netif_get_num_default_rss_queues(void)
2725 {
2726         return is_kdump_kernel() ?
2727                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2728 }
2729 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2730
2731 static void __netif_reschedule(struct Qdisc *q)
2732 {
2733         struct softnet_data *sd;
2734         unsigned long flags;
2735
2736         local_irq_save(flags);
2737         sd = this_cpu_ptr(&softnet_data);
2738         q->next_sched = NULL;
2739         *sd->output_queue_tailp = q;
2740         sd->output_queue_tailp = &q->next_sched;
2741         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2742         local_irq_restore(flags);
2743 }
2744
2745 void __netif_schedule(struct Qdisc *q)
2746 {
2747         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2748                 __netif_reschedule(q);
2749 }
2750 EXPORT_SYMBOL(__netif_schedule);
2751
2752 struct dev_kfree_skb_cb {
2753         enum skb_free_reason reason;
2754 };
2755
2756 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2757 {
2758         return (struct dev_kfree_skb_cb *)skb->cb;
2759 }
2760
2761 void netif_schedule_queue(struct netdev_queue *txq)
2762 {
2763         rcu_read_lock();
2764         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2765                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2766
2767                 __netif_schedule(q);
2768         }
2769         rcu_read_unlock();
2770 }
2771 EXPORT_SYMBOL(netif_schedule_queue);
2772
2773 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2774 {
2775         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2776                 struct Qdisc *q;
2777
2778                 rcu_read_lock();
2779                 q = rcu_dereference(dev_queue->qdisc);
2780                 __netif_schedule(q);
2781                 rcu_read_unlock();
2782         }
2783 }
2784 EXPORT_SYMBOL(netif_tx_wake_queue);
2785
2786 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2787 {
2788         unsigned long flags;
2789
2790         if (unlikely(!skb))
2791                 return;
2792
2793         if (likely(refcount_read(&skb->users) == 1)) {
2794                 smp_rmb();
2795                 refcount_set(&skb->users, 0);
2796         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2797                 return;
2798         }
2799         get_kfree_skb_cb(skb)->reason = reason;
2800         local_irq_save(flags);
2801         skb->next = __this_cpu_read(softnet_data.completion_queue);
2802         __this_cpu_write(softnet_data.completion_queue, skb);
2803         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2804         local_irq_restore(flags);
2805 }
2806 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2807
2808 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2809 {
2810         if (in_irq() || irqs_disabled())
2811                 __dev_kfree_skb_irq(skb, reason);
2812         else
2813                 dev_kfree_skb(skb);
2814 }
2815 EXPORT_SYMBOL(__dev_kfree_skb_any);
2816
2817
2818 /**
2819  * netif_device_detach - mark device as removed
2820  * @dev: network device
2821  *
2822  * Mark device as removed from system and therefore no longer available.
2823  */
2824 void netif_device_detach(struct net_device *dev)
2825 {
2826         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2827             netif_running(dev)) {
2828                 netif_tx_stop_all_queues(dev);
2829         }
2830 }
2831 EXPORT_SYMBOL(netif_device_detach);
2832
2833 /**
2834  * netif_device_attach - mark device as attached
2835  * @dev: network device
2836  *
2837  * Mark device as attached from system and restart if needed.
2838  */
2839 void netif_device_attach(struct net_device *dev)
2840 {
2841         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2842             netif_running(dev)) {
2843                 netif_tx_wake_all_queues(dev);
2844                 __netdev_watchdog_up(dev);
2845         }
2846 }
2847 EXPORT_SYMBOL(netif_device_attach);
2848
2849 /*
2850  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2851  * to be used as a distribution range.
2852  */
2853 static u16 skb_tx_hash(const struct net_device *dev,
2854                        const struct net_device *sb_dev,
2855                        struct sk_buff *skb)
2856 {
2857         u32 hash;
2858         u16 qoffset = 0;
2859         u16 qcount = dev->real_num_tx_queues;
2860
2861         if (dev->num_tc) {
2862                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2863
2864                 qoffset = sb_dev->tc_to_txq[tc].offset;
2865                 qcount = sb_dev->tc_to_txq[tc].count;
2866         }
2867
2868         if (skb_rx_queue_recorded(skb)) {
2869                 hash = skb_get_rx_queue(skb);
2870                 while (unlikely(hash >= qcount))
2871                         hash -= qcount;
2872                 return hash + qoffset;
2873         }
2874
2875         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2876 }
2877
2878 static void skb_warn_bad_offload(const struct sk_buff *skb)
2879 {
2880         static const netdev_features_t null_features;
2881         struct net_device *dev = skb->dev;
2882         const char *name = "";
2883
2884         if (!net_ratelimit())
2885                 return;
2886
2887         if (dev) {
2888                 if (dev->dev.parent)
2889                         name = dev_driver_string(dev->dev.parent);
2890                 else
2891                         name = netdev_name(dev);
2892         }
2893         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2894              "gso_type=%d ip_summed=%d\n",
2895              name, dev ? &dev->features : &null_features,
2896              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2897              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2898              skb_shinfo(skb)->gso_type, skb->ip_summed);
2899 }
2900
2901 /*
2902  * Invalidate hardware checksum when packet is to be mangled, and
2903  * complete checksum manually on outgoing path.
2904  */
2905 int skb_checksum_help(struct sk_buff *skb)
2906 {
2907         __wsum csum;
2908         int ret = 0, offset;
2909
2910         if (skb->ip_summed == CHECKSUM_COMPLETE)
2911                 goto out_set_summed;
2912
2913         if (unlikely(skb_shinfo(skb)->gso_size)) {
2914                 skb_warn_bad_offload(skb);
2915                 return -EINVAL;
2916         }
2917
2918         /* Before computing a checksum, we should make sure no frag could
2919          * be modified by an external entity : checksum could be wrong.
2920          */
2921         if (skb_has_shared_frag(skb)) {
2922                 ret = __skb_linearize(skb);
2923                 if (ret)
2924                         goto out;
2925         }
2926
2927         offset = skb_checksum_start_offset(skb);
2928         BUG_ON(offset >= skb_headlen(skb));
2929         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2930
2931         offset += skb->csum_offset;
2932         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2933
2934         if (skb_cloned(skb) &&
2935             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2936                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2937                 if (ret)
2938                         goto out;
2939         }
2940
2941         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2942 out_set_summed:
2943         skb->ip_summed = CHECKSUM_NONE;
2944 out:
2945         return ret;
2946 }
2947 EXPORT_SYMBOL(skb_checksum_help);
2948
2949 int skb_crc32c_csum_help(struct sk_buff *skb)
2950 {
2951         __le32 crc32c_csum;
2952         int ret = 0, offset, start;
2953
2954         if (skb->ip_summed != CHECKSUM_PARTIAL)
2955                 goto out;
2956
2957         if (unlikely(skb_is_gso(skb)))
2958                 goto out;
2959
2960         /* Before computing a checksum, we should make sure no frag could
2961          * be modified by an external entity : checksum could be wrong.
2962          */
2963         if (unlikely(skb_has_shared_frag(skb))) {
2964                 ret = __skb_linearize(skb);
2965                 if (ret)
2966                         goto out;
2967         }
2968         start = skb_checksum_start_offset(skb);
2969         offset = start + offsetof(struct sctphdr, checksum);
2970         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2971                 ret = -EINVAL;
2972                 goto out;
2973         }
2974         if (skb_cloned(skb) &&
2975             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2976                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2977                 if (ret)
2978                         goto out;
2979         }
2980         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2981                                                   skb->len - start, ~(__u32)0,
2982                                                   crc32c_csum_stub));
2983         *(__le32 *)(skb->data + offset) = crc32c_csum;
2984         skb->ip_summed = CHECKSUM_NONE;
2985         skb->csum_not_inet = 0;
2986 out:
2987         return ret;
2988 }
2989
2990 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2991 {
2992         __be16 type = skb->protocol;
2993
2994         /* Tunnel gso handlers can set protocol to ethernet. */
2995         if (type == htons(ETH_P_TEB)) {
2996                 struct ethhdr *eth;
2997
2998                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2999                         return 0;
3000
3001                 eth = (struct ethhdr *)skb->data;
3002                 type = eth->h_proto;
3003         }
3004
3005         return __vlan_get_protocol(skb, type, depth);
3006 }
3007
3008 /**
3009  *      skb_mac_gso_segment - mac layer segmentation handler.
3010  *      @skb: buffer to segment
3011  *      @features: features for the output path (see dev->features)
3012  */
3013 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3014                                     netdev_features_t features)
3015 {
3016         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3017         struct packet_offload *ptype;
3018         int vlan_depth = skb->mac_len;
3019         __be16 type = skb_network_protocol(skb, &vlan_depth);
3020
3021         if (unlikely(!type))
3022                 return ERR_PTR(-EINVAL);
3023
3024         __skb_pull(skb, vlan_depth);
3025
3026         rcu_read_lock();
3027         list_for_each_entry_rcu(ptype, &offload_base, list) {
3028                 if (ptype->type == type && ptype->callbacks.gso_segment) {
3029                         segs = ptype->callbacks.gso_segment(skb, features);
3030                         break;
3031                 }
3032         }
3033         rcu_read_unlock();
3034
3035         __skb_push(skb, skb->data - skb_mac_header(skb));
3036
3037         return segs;
3038 }
3039 EXPORT_SYMBOL(skb_mac_gso_segment);
3040
3041
3042 /* openvswitch calls this on rx path, so we need a different check.
3043  */
3044 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3045 {
3046         if (tx_path)
3047                 return skb->ip_summed != CHECKSUM_PARTIAL &&
3048                        skb->ip_summed != CHECKSUM_UNNECESSARY;
3049
3050         return skb->ip_summed == CHECKSUM_NONE;
3051 }
3052
3053 /**
3054  *      __skb_gso_segment - Perform segmentation on skb.
3055  *      @skb: buffer to segment
3056  *      @features: features for the output path (see dev->features)
3057  *      @tx_path: whether it is called in TX path
3058  *
3059  *      This function segments the given skb and returns a list of segments.
3060  *
3061  *      It may return NULL if the skb requires no segmentation.  This is
3062  *      only possible when GSO is used for verifying header integrity.
3063  *
3064  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3065  */
3066 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3067                                   netdev_features_t features, bool tx_path)
3068 {
3069         struct sk_buff *segs;
3070
3071         if (unlikely(skb_needs_check(skb, tx_path))) {
3072                 int err;
3073
3074                 /* We're going to init ->check field in TCP or UDP header */
3075                 err = skb_cow_head(skb, 0);
3076                 if (err < 0)
3077                         return ERR_PTR(err);
3078         }
3079
3080         /* Only report GSO partial support if it will enable us to
3081          * support segmentation on this frame without needing additional
3082          * work.
3083          */
3084         if (features & NETIF_F_GSO_PARTIAL) {
3085                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3086                 struct net_device *dev = skb->dev;
3087
3088                 partial_features |= dev->features & dev->gso_partial_features;
3089                 if (!skb_gso_ok(skb, features | partial_features))
3090                         features &= ~NETIF_F_GSO_PARTIAL;
3091         }
3092
3093         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3094                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3095
3096         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3097         SKB_GSO_CB(skb)->encap_level = 0;
3098
3099         skb_reset_mac_header(skb);
3100         skb_reset_mac_len(skb);
3101
3102         segs = skb_mac_gso_segment(skb, features);
3103
3104         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3105                 skb_warn_bad_offload(skb);
3106
3107         return segs;
3108 }
3109 EXPORT_SYMBOL(__skb_gso_segment);
3110
3111 /* Take action when hardware reception checksum errors are detected. */
3112 #ifdef CONFIG_BUG
3113 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3114 {
3115         if (net_ratelimit()) {
3116                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3117                 if (dev)
3118                         pr_err("dev features: %pNF\n", &dev->features);
3119                 pr_err("skb len=%u data_len=%u pkt_type=%u gso_size=%u gso_type=%u nr_frags=%u ip_summed=%u csum=%x csum_complete_sw=%d csum_valid=%d csum_level=%u\n",
3120                        skb->len, skb->data_len, skb->pkt_type,
3121                        skb_shinfo(skb)->gso_size, skb_shinfo(skb)->gso_type,
3122                        skb_shinfo(skb)->nr_frags, skb->ip_summed, skb->csum,
3123                        skb->csum_complete_sw, skb->csum_valid, skb->csum_level);
3124                 dump_stack();
3125         }
3126 }
3127 EXPORT_SYMBOL(netdev_rx_csum_fault);
3128 #endif
3129
3130 /* XXX: check that highmem exists at all on the given machine. */
3131 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3132 {
3133 #ifdef CONFIG_HIGHMEM
3134         int i;
3135
3136         if (!(dev->features & NETIF_F_HIGHDMA)) {
3137                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3138                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3139
3140                         if (PageHighMem(skb_frag_page(frag)))
3141                                 return 1;
3142                 }
3143         }
3144 #endif
3145         return 0;
3146 }
3147
3148 /* If MPLS offload request, verify we are testing hardware MPLS features
3149  * instead of standard features for the netdev.
3150  */
3151 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3152 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3153                                            netdev_features_t features,
3154                                            __be16 type)
3155 {
3156         if (eth_p_mpls(type))
3157                 features &= skb->dev->mpls_features;
3158
3159         return features;
3160 }
3161 #else
3162 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3163                                            netdev_features_t features,
3164                                            __be16 type)
3165 {
3166         return features;
3167 }
3168 #endif
3169
3170 static netdev_features_t harmonize_features(struct sk_buff *skb,
3171         netdev_features_t features)
3172 {
3173         int tmp;
3174         __be16 type;
3175
3176         type = skb_network_protocol(skb, &tmp);
3177         features = net_mpls_features(skb, features, type);
3178
3179         if (skb->ip_summed != CHECKSUM_NONE &&
3180             !can_checksum_protocol(features, type)) {
3181                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3182         }
3183         if (illegal_highdma(skb->dev, skb))
3184                 features &= ~NETIF_F_SG;
3185
3186         return features;
3187 }
3188
3189 netdev_features_t passthru_features_check(struct sk_buff *skb,
3190                                           struct net_device *dev,
3191                                           netdev_features_t features)
3192 {
3193         return features;
3194 }
3195 EXPORT_SYMBOL(passthru_features_check);
3196
3197 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3198                                              struct net_device *dev,
3199                                              netdev_features_t features)
3200 {
3201         return vlan_features_check(skb, features);
3202 }
3203
3204 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3205                                             struct net_device *dev,
3206                                             netdev_features_t features)
3207 {
3208         u16 gso_segs = skb_shinfo(skb)->gso_segs;
3209
3210         if (gso_segs > dev->gso_max_segs)
3211                 return features & ~NETIF_F_GSO_MASK;
3212
3213         /* Support for GSO partial features requires software
3214          * intervention before we can actually process the packets
3215          * so we need to strip support for any partial features now
3216          * and we can pull them back in after we have partially
3217          * segmented the frame.
3218          */
3219         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3220                 features &= ~dev->gso_partial_features;
3221
3222         /* Make sure to clear the IPv4 ID mangling feature if the
3223          * IPv4 header has the potential to be fragmented.
3224          */
3225         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3226                 struct iphdr *iph = skb->encapsulation ?
3227                                     inner_ip_hdr(skb) : ip_hdr(skb);
3228
3229                 if (!(iph->frag_off & htons(IP_DF)))
3230                         features &= ~NETIF_F_TSO_MANGLEID;
3231         }
3232
3233         return features;
3234 }
3235
3236 netdev_features_t netif_skb_features(struct sk_buff *skb)
3237 {
3238         struct net_device *dev = skb->dev;
3239         netdev_features_t features = dev->features;
3240
3241         if (skb_is_gso(skb))
3242                 features = gso_features_check(skb, dev, features);
3243
3244         /* If encapsulation offload request, verify we are testing
3245          * hardware encapsulation features instead of standard
3246          * features for the netdev
3247          */
3248         if (skb->encapsulation)
3249                 features &= dev->hw_enc_features;
3250
3251         if (skb_vlan_tagged(skb))
3252                 features = netdev_intersect_features(features,
3253                                                      dev->vlan_features |
3254                                                      NETIF_F_HW_VLAN_CTAG_TX |
3255                                                      NETIF_F_HW_VLAN_STAG_TX);
3256
3257         if (dev->netdev_ops->ndo_features_check)
3258                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3259                                                                 features);
3260         else
3261                 features &= dflt_features_check(skb, dev, features);
3262
3263         return harmonize_features(skb, features);
3264 }
3265 EXPORT_SYMBOL(netif_skb_features);
3266
3267 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3268                     struct netdev_queue *txq, bool more)
3269 {
3270         unsigned int len;
3271         int rc;
3272
3273         if (dev_nit_active(dev))
3274                 dev_queue_xmit_nit(skb, dev);
3275
3276         len = skb->len;
3277         trace_net_dev_start_xmit(skb, dev);
3278         rc = netdev_start_xmit(skb, dev, txq, more);
3279         trace_net_dev_xmit(skb, rc, dev, len);
3280
3281         return rc;
3282 }
3283
3284 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3285                                     struct netdev_queue *txq, int *ret)
3286 {
3287         struct sk_buff *skb = first;
3288         int rc = NETDEV_TX_OK;
3289
3290         while (skb) {
3291                 struct sk_buff *next = skb->next;
3292
3293                 skb_mark_not_on_list(skb);
3294                 rc = xmit_one(skb, dev, txq, next != NULL);
3295                 if (unlikely(!dev_xmit_complete(rc))) {
3296                         skb->next = next;
3297                         goto out;
3298                 }
3299
3300                 skb = next;
3301                 if (netif_tx_queue_stopped(txq) && skb) {
3302                         rc = NETDEV_TX_BUSY;
3303                         break;
3304                 }
3305         }
3306
3307 out:
3308         *ret = rc;
3309         return skb;
3310 }
3311
3312 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3313                                           netdev_features_t features)
3314 {
3315         if (skb_vlan_tag_present(skb) &&
3316             !vlan_hw_offload_capable(features, skb->vlan_proto))
3317                 skb = __vlan_hwaccel_push_inside(skb);
3318         return skb;
3319 }
3320
3321 int skb_csum_hwoffload_help(struct sk_buff *skb,
3322                             const netdev_features_t features)
3323 {
3324         if (unlikely(skb->csum_not_inet))
3325                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3326                         skb_crc32c_csum_help(skb);
3327
3328         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3329 }
3330 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3331
3332 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3333 {
3334         netdev_features_t features;
3335
3336         features = netif_skb_features(skb);
3337         skb = validate_xmit_vlan(skb, features);
3338         if (unlikely(!skb))
3339                 goto out_null;
3340
3341         skb = sk_validate_xmit_skb(skb, dev);
3342         if (unlikely(!skb))
3343                 goto out_null;
3344
3345         if (netif_needs_gso(skb, features)) {
3346                 struct sk_buff *segs;
3347
3348                 segs = skb_gso_segment(skb, features);
3349                 if (IS_ERR(segs)) {
3350                         goto out_kfree_skb;
3351                 } else if (segs) {
3352                         consume_skb(skb);
3353                         skb = segs;
3354                 }
3355         } else {
3356                 if (skb_needs_linearize(skb, features) &&
3357                     __skb_linearize(skb))
3358                         goto out_kfree_skb;
3359
3360                 /* If packet is not checksummed and device does not
3361                  * support checksumming for this protocol, complete
3362                  * checksumming here.
3363                  */
3364                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3365                         if (skb->encapsulation)
3366                                 skb_set_inner_transport_header(skb,
3367                                                                skb_checksum_start_offset(skb));
3368                         else
3369                                 skb_set_transport_header(skb,
3370                                                          skb_checksum_start_offset(skb));
3371                         if (skb_csum_hwoffload_help(skb, features))
3372                                 goto out_kfree_skb;
3373                 }
3374         }
3375
3376         skb = validate_xmit_xfrm(skb, features, again);
3377
3378         return skb;
3379
3380 out_kfree_skb:
3381         kfree_skb(skb);
3382 out_null:
3383         atomic_long_inc(&dev->tx_dropped);
3384         return NULL;
3385 }
3386
3387 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3388 {
3389         struct sk_buff *next, *head = NULL, *tail;
3390
3391         for (; skb != NULL; skb = next) {
3392                 next = skb->next;
3393                 skb_mark_not_on_list(skb);
3394
3395                 /* in case skb wont be segmented, point to itself */
3396                 skb->prev = skb;
3397
3398                 skb = validate_xmit_skb(skb, dev, again);
3399                 if (!skb)
3400                         continue;
3401
3402                 if (!head)
3403                         head = skb;
3404                 else
3405                         tail->next = skb;
3406                 /* If skb was segmented, skb->prev points to
3407                  * the last segment. If not, it still contains skb.
3408                  */
3409                 tail = skb->prev;
3410         }
3411         return head;
3412 }
3413 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3414
3415 static void qdisc_pkt_len_init(struct sk_buff *skb)
3416 {
3417         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3418
3419         qdisc_skb_cb(skb)->pkt_len = skb->len;
3420
3421         /* To get more precise estimation of bytes sent on wire,
3422          * we add to pkt_len the headers size of all segments
3423          */
3424         if (shinfo->gso_size)  {
3425                 unsigned int hdr_len;
3426                 u16 gso_segs = shinfo->gso_segs;
3427
3428                 /* mac layer + network layer */
3429                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3430
3431                 /* + transport layer */
3432                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3433                         const struct tcphdr *th;
3434                         struct tcphdr _tcphdr;
3435
3436                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3437                                                 sizeof(_tcphdr), &_tcphdr);
3438                         if (likely(th))
3439                                 hdr_len += __tcp_hdrlen(th);
3440                 } else {
3441                         struct udphdr _udphdr;
3442
3443                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3444                                                sizeof(_udphdr), &_udphdr))
3445                                 hdr_len += sizeof(struct udphdr);
3446                 }
3447
3448                 if (shinfo->gso_type & SKB_GSO_DODGY)
3449                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3450                                                 shinfo->gso_size);
3451
3452                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3453         }
3454 }
3455
3456 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3457                                  struct net_device *dev,
3458                                  struct netdev_queue *txq)
3459 {
3460         spinlock_t *root_lock = qdisc_lock(q);
3461         struct sk_buff *to_free = NULL;
3462         bool contended;
3463         int rc;
3464
3465         qdisc_calculate_pkt_len(skb, q);
3466
3467         if (q->flags & TCQ_F_NOLOCK) {
3468                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3469                         __qdisc_drop(skb, &to_free);
3470                         rc = NET_XMIT_DROP;
3471                 } else {
3472                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3473                         qdisc_run(q);
3474                 }
3475
3476                 if (unlikely(to_free))
3477                         kfree_skb_list(to_free);
3478                 return rc;
3479         }
3480
3481         /*
3482          * Heuristic to force contended enqueues to serialize on a
3483          * separate lock before trying to get qdisc main lock.
3484          * This permits qdisc->running owner to get the lock more
3485          * often and dequeue packets faster.
3486          */
3487         contended = qdisc_is_running(q);
3488         if (unlikely(contended))
3489                 spin_lock(&q->busylock);
3490
3491         spin_lock(root_lock);
3492         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3493                 __qdisc_drop(skb, &to_free);
3494                 rc = NET_XMIT_DROP;
3495         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3496                    qdisc_run_begin(q)) {
3497                 /*
3498                  * This is a work-conserving queue; there are no old skbs
3499                  * waiting to be sent out; and the qdisc is not running -
3500                  * xmit the skb directly.
3501                  */
3502
3503                 qdisc_bstats_update(q, skb);
3504
3505                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3506                         if (unlikely(contended)) {
3507                                 spin_unlock(&q->busylock);
3508                                 contended = false;
3509                         }
3510                         __qdisc_run(q);
3511                 }
3512
3513                 qdisc_run_end(q);
3514                 rc = NET_XMIT_SUCCESS;
3515         } else {
3516                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3517                 if (qdisc_run_begin(q)) {
3518                         if (unlikely(contended)) {
3519                                 spin_unlock(&q->busylock);
3520                                 contended = false;
3521                         }
3522                         __qdisc_run(q);
3523                         qdisc_run_end(q);
3524                 }
3525         }
3526         spin_unlock(root_lock);
3527         if (unlikely(to_free))
3528                 kfree_skb_list(to_free);
3529         if (unlikely(contended))
3530                 spin_unlock(&q->busylock);
3531         return rc;
3532 }
3533
3534 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3535 static void skb_update_prio(struct sk_buff *skb)
3536 {
3537         const struct netprio_map *map;
3538         const struct sock *sk;
3539         unsigned int prioidx;
3540
3541         if (skb->priority)
3542                 return;
3543         map = rcu_dereference_bh(skb->dev->priomap);
3544         if (!map)
3545                 return;
3546         sk = skb_to_full_sk(skb);
3547         if (!sk)
3548                 return;
3549
3550         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3551
3552         if (prioidx < map->priomap_len)
3553                 skb->priority = map->priomap[prioidx];
3554 }
3555 #else
3556 #define skb_update_prio(skb)
3557 #endif
3558
3559 DEFINE_PER_CPU(int, xmit_recursion);
3560 EXPORT_SYMBOL(xmit_recursion);
3561
3562 /**
3563  *      dev_loopback_xmit - loop back @skb
3564  *      @net: network namespace this loopback is happening in
3565  *      @sk:  sk needed to be a netfilter okfn
3566  *      @skb: buffer to transmit
3567  */
3568 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3569 {
3570         skb_reset_mac_header(skb);
3571         __skb_pull(skb, skb_network_offset(skb));
3572         skb->pkt_type = PACKET_LOOPBACK;
3573         skb->ip_summed = CHECKSUM_UNNECESSARY;
3574         WARN_ON(!skb_dst(skb));
3575         skb_dst_force(skb);
3576         netif_rx_ni(skb);
3577         return 0;
3578 }
3579 EXPORT_SYMBOL(dev_loopback_xmit);
3580
3581 #ifdef CONFIG_NET_EGRESS
3582 static struct sk_buff *
3583 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3584 {
3585         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3586         struct tcf_result cl_res;
3587
3588         if (!miniq)
3589                 return skb;
3590
3591         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3592         mini_qdisc_bstats_cpu_update(miniq, skb);
3593
3594         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3595         case TC_ACT_OK:
3596         case TC_ACT_RECLASSIFY:
3597                 skb->tc_index = TC_H_MIN(cl_res.classid);
3598                 break;
3599         case TC_ACT_SHOT:
3600                 mini_qdisc_qstats_cpu_drop(miniq);
3601                 *ret = NET_XMIT_DROP;
3602                 kfree_skb(skb);
3603                 return NULL;
3604         case TC_ACT_STOLEN:
3605         case TC_ACT_QUEUED:
3606         case TC_ACT_TRAP:
3607                 *ret = NET_XMIT_SUCCESS;
3608                 consume_skb(skb);
3609                 return NULL;
3610         case TC_ACT_REDIRECT:
3611                 /* No need to push/pop skb's mac_header here on egress! */
3612                 skb_do_redirect(skb);
3613                 *ret = NET_XMIT_SUCCESS;
3614                 return NULL;
3615         default:
3616                 break;
3617         }
3618
3619         return skb;
3620 }
3621 #endif /* CONFIG_NET_EGRESS */
3622
3623 #ifdef CONFIG_XPS
3624 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3625                                struct xps_dev_maps *dev_maps, unsigned int tci)
3626 {
3627         struct xps_map *map;
3628         int queue_index = -1;
3629
3630         if (dev->num_tc) {
3631                 tci *= dev->num_tc;
3632                 tci += netdev_get_prio_tc_map(dev, skb->priority);
3633         }
3634
3635         map = rcu_dereference(dev_maps->attr_map[tci]);
3636         if (map) {
3637                 if (map->len == 1)
3638                         queue_index = map->queues[0];
3639                 else
3640                         queue_index = map->queues[reciprocal_scale(
3641                                                 skb_get_hash(skb), map->len)];
3642                 if (unlikely(queue_index >= dev->real_num_tx_queues))
3643                         queue_index = -1;
3644         }
3645         return queue_index;
3646 }
3647 #endif
3648
3649 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3650                          struct sk_buff *skb)
3651 {
3652 #ifdef CONFIG_XPS
3653         struct xps_dev_maps *dev_maps;
3654         struct sock *sk = skb->sk;
3655         int queue_index = -1;
3656
3657         if (!static_key_false(&xps_needed))
3658                 return -1;
3659
3660         rcu_read_lock();
3661         if (!static_key_false(&xps_rxqs_needed))
3662                 goto get_cpus_map;
3663
3664         dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3665         if (dev_maps) {
3666                 int tci = sk_rx_queue_get(sk);
3667
3668                 if (tci >= 0 && tci < dev->num_rx_queues)
3669                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3670                                                           tci);
3671         }
3672
3673 get_cpus_map:
3674         if (queue_index < 0) {
3675                 dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3676                 if (dev_maps) {
3677                         unsigned int tci = skb->sender_cpu - 1;
3678
3679                         queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3680                                                           tci);
3681                 }
3682         }
3683         rcu_read_unlock();
3684
3685         return queue_index;
3686 #else
3687         return -1;
3688 #endif
3689 }
3690
3691 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3692                      struct net_device *sb_dev,
3693                      select_queue_fallback_t fallback)
3694 {
3695         return 0;
3696 }
3697 EXPORT_SYMBOL(dev_pick_tx_zero);
3698
3699 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3700                        struct net_device *sb_dev,
3701                        select_queue_fallback_t fallback)
3702 {
3703         return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3704 }
3705 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3706
3707 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3708                             struct net_device *sb_dev)
3709 {
3710         struct sock *sk = skb->sk;
3711         int queue_index = sk_tx_queue_get(sk);
3712
3713         sb_dev = sb_dev ? : dev;
3714
3715         if (queue_index < 0 || skb->ooo_okay ||
3716             queue_index >= dev->real_num_tx_queues) {
3717                 int new_index = get_xps_queue(dev, sb_dev, skb);
3718
3719                 if (new_index < 0)
3720                         new_index = skb_tx_hash(dev, sb_dev, skb);
3721
3722                 if (queue_index != new_index && sk &&
3723                     sk_fullsock(sk) &&
3724                     rcu_access_pointer(sk->sk_dst_cache))
3725                         sk_tx_queue_set(sk, new_index);
3726
3727                 queue_index = new_index;
3728         }
3729
3730         return queue_index;
3731 }
3732
3733 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3734                                     struct sk_buff *skb,
3735                                     struct net_device *sb_dev)
3736 {
3737         int queue_index = 0;
3738
3739 #ifdef CONFIG_XPS
3740         u32 sender_cpu = skb->sender_cpu - 1;
3741
3742         if (sender_cpu >= (u32)NR_CPUS)
3743                 skb->sender_cpu = raw_smp_processor_id() + 1;
3744 #endif
3745
3746         if (dev->real_num_tx_queues != 1) {
3747                 const struct net_device_ops *ops = dev->netdev_ops;
3748
3749                 if (ops->ndo_select_queue)
3750                         queue_index = ops->ndo_select_queue(dev, skb, sb_dev,
3751                                                             __netdev_pick_tx);
3752                 else
3753                         queue_index = __netdev_pick_tx(dev, skb, sb_dev);
3754
3755                 queue_index = netdev_cap_txqueue(dev, queue_index);
3756         }
3757
3758         skb_set_queue_mapping(skb, queue_index);
3759         return netdev_get_tx_queue(dev, queue_index);
3760 }
3761
3762 /**
3763  *      __dev_queue_xmit - transmit a buffer
3764  *      @skb: buffer to transmit
3765  *      @sb_dev: suboordinate device used for L2 forwarding offload
3766  *
3767  *      Queue a buffer for transmission to a network device. The caller must
3768  *      have set the device and priority and built the buffer before calling
3769  *      this function. The function can be called from an interrupt.
3770  *
3771  *      A negative errno code is returned on a failure. A success does not
3772  *      guarantee the frame will be transmitted as it may be dropped due
3773  *      to congestion or traffic shaping.
3774  *
3775  * -----------------------------------------------------------------------------------
3776  *      I notice this method can also return errors from the queue disciplines,
3777  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3778  *      be positive.
3779  *
3780  *      Regardless of the return value, the skb is consumed, so it is currently
3781  *      difficult to retry a send to this method.  (You can bump the ref count
3782  *      before sending to hold a reference for retry if you are careful.)
3783  *
3784  *      When calling this method, interrupts MUST be enabled.  This is because
3785  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3786  *          --BLG
3787  */
3788 static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3789 {
3790         struct net_device *dev = skb->dev;
3791         struct netdev_queue *txq;
3792         struct Qdisc *q;
3793         int rc = -ENOMEM;
3794         bool again = false;
3795
3796         skb_reset_mac_header(skb);
3797
3798         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3799                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3800
3801         /* Disable soft irqs for various locks below. Also
3802          * stops preemption for RCU.
3803          */
3804         rcu_read_lock_bh();
3805
3806         skb_update_prio(skb);
3807
3808         qdisc_pkt_len_init(skb);
3809 #ifdef CONFIG_NET_CLS_ACT
3810         skb->tc_at_ingress = 0;
3811 # ifdef CONFIG_NET_EGRESS
3812         if (static_branch_unlikely(&egress_needed_key)) {
3813                 skb = sch_handle_egress(skb, &rc, dev);
3814                 if (!skb)
3815                         goto out;
3816         }
3817 # endif
3818 #endif
3819         /* If device/qdisc don't need skb->dst, release it right now while
3820          * its hot in this cpu cache.
3821          */
3822         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3823                 skb_dst_drop(skb);
3824         else
3825                 skb_dst_force(skb);
3826
3827         txq = netdev_pick_tx(dev, skb, sb_dev);
3828         q = rcu_dereference_bh(txq->qdisc);
3829
3830         trace_net_dev_queue(skb);
3831         if (q->enqueue) {
3832                 rc = __dev_xmit_skb(skb, q, dev, txq);
3833                 goto out;
3834         }
3835
3836         /* The device has no queue. Common case for software devices:
3837          * loopback, all the sorts of tunnels...
3838
3839          * Really, it is unlikely that netif_tx_lock protection is necessary
3840          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3841          * counters.)
3842          * However, it is possible, that they rely on protection
3843          * made by us here.
3844
3845          * Check this and shot the lock. It is not prone from deadlocks.
3846          *Either shot noqueue qdisc, it is even simpler 8)
3847          */
3848         if (dev->flags & IFF_UP) {
3849                 int cpu = smp_processor_id(); /* ok because BHs are off */
3850
3851                 if (txq->xmit_lock_owner != cpu) {
3852                         if (unlikely(__this_cpu_read(xmit_recursion) >
3853                                      XMIT_RECURSION_LIMIT))
3854                                 goto recursion_alert;
3855
3856                         skb = validate_xmit_skb(skb, dev, &again);
3857                         if (!skb)
3858                                 goto out;
3859
3860                         HARD_TX_LOCK(dev, txq, cpu);
3861
3862                         if (!netif_xmit_stopped(txq)) {
3863                                 __this_cpu_inc(xmit_recursion);
3864                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3865                                 __this_cpu_dec(xmit_recursion);
3866                                 if (dev_xmit_complete(rc)) {
3867                                         HARD_TX_UNLOCK(dev, txq);
3868                                         goto out;
3869                                 }
3870                         }
3871                         HARD_TX_UNLOCK(dev, txq);
3872                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3873                                              dev->name);
3874                 } else {
3875                         /* Recursion is detected! It is possible,
3876                          * unfortunately
3877                          */
3878 recursion_alert:
3879                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3880                                              dev->name);
3881                 }
3882         }
3883
3884         rc = -ENETDOWN;
3885         rcu_read_unlock_bh();
3886
3887         atomic_long_inc(&dev->tx_dropped);
3888         kfree_skb_list(skb);
3889         return rc;
3890 out:
3891         rcu_read_unlock_bh();
3892         return rc;
3893 }
3894
3895 int dev_queue_xmit(struct sk_buff *skb)
3896 {
3897         return __dev_queue_xmit(skb, NULL);
3898 }
3899 EXPORT_SYMBOL(dev_queue_xmit);
3900
3901 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3902 {
3903         return __dev_queue_xmit(skb, sb_dev);
3904 }
3905 EXPORT_SYMBOL(dev_queue_xmit_accel);
3906
3907 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3908 {
3909         struct net_device *dev = skb->dev;
3910         struct sk_buff *orig_skb = skb;
3911         struct netdev_queue *txq;
3912         int ret = NETDEV_TX_BUSY;
3913         bool again = false;
3914
3915         if (unlikely(!netif_running(dev) ||
3916                      !netif_carrier_ok(dev)))
3917                 goto drop;
3918
3919         skb = validate_xmit_skb_list(skb, dev, &again);
3920         if (skb != orig_skb)
3921                 goto drop;
3922
3923         skb_set_queue_mapping(skb, queue_id);
3924         txq = skb_get_tx_queue(dev, skb);
3925
3926         local_bh_disable();
3927
3928         HARD_TX_LOCK(dev, txq, smp_processor_id());
3929         if (!netif_xmit_frozen_or_drv_stopped(txq))
3930                 ret = netdev_start_xmit(skb, dev, txq, false);
3931         HARD_TX_UNLOCK(dev, txq);
3932
3933         local_bh_enable();
3934
3935         if (!dev_xmit_complete(ret))
3936                 kfree_skb(skb);
3937
3938         return ret;
3939 drop:
3940         atomic_long_inc(&dev->tx_dropped);
3941         kfree_skb_list(skb);
3942         return NET_XMIT_DROP;
3943 }
3944 EXPORT_SYMBOL(dev_direct_xmit);
3945
3946 /*************************************************************************
3947  *                      Receiver routines
3948  *************************************************************************/
3949
3950 int netdev_max_backlog __read_mostly = 1000;
3951 EXPORT_SYMBOL(netdev_max_backlog);
3952
3953 int netdev_tstamp_prequeue __read_mostly = 1;
3954 int netdev_budget __read_mostly = 300;
3955 unsigned int __read_mostly netdev_budget_usecs = 2000;
3956 int weight_p __read_mostly = 64;           /* old backlog weight */
3957 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3958 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3959 int dev_rx_weight __read_mostly = 64;
3960 int dev_tx_weight __read_mostly = 64;
3961
3962 /* Called with irq disabled */
3963 static inline void ____napi_schedule(struct softnet_data *sd,
3964                                      struct napi_struct *napi)
3965 {
3966         list_add_tail(&napi->poll_list, &sd->poll_list);
3967         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3968 }
3969
3970 #ifdef CONFIG_RPS
3971
3972 /* One global table that all flow-based protocols share. */
3973 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3974 EXPORT_SYMBOL(rps_sock_flow_table);
3975 u32 rps_cpu_mask __read_mostly;
3976 EXPORT_SYMBOL(rps_cpu_mask);
3977
3978 struct static_key rps_needed __read_mostly;
3979 EXPORT_SYMBOL(rps_needed);
3980 struct static_key rfs_needed __read_mostly;
3981 EXPORT_SYMBOL(rfs_needed);
3982
3983 static struct rps_dev_flow *
3984 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3985             struct rps_dev_flow *rflow, u16 next_cpu)
3986 {
3987         if (next_cpu < nr_cpu_ids) {
3988 #ifdef CONFIG_RFS_ACCEL
3989                 struct netdev_rx_queue *rxqueue;
3990                 struct rps_dev_flow_table *flow_table;
3991                 struct rps_dev_flow *old_rflow;
3992                 u32 flow_id;
3993                 u16 rxq_index;
3994                 int rc;
3995
3996                 /* Should we steer this flow to a different hardware queue? */
3997                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3998                     !(dev->features & NETIF_F_NTUPLE))
3999                         goto out;
4000                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4001                 if (rxq_index == skb_get_rx_queue(skb))
4002                         goto out;
4003
4004                 rxqueue = dev->_rx + rxq_index;
4005                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4006                 if (!flow_table)
4007                         goto out;
4008                 flow_id = skb_get_hash(skb) & flow_table->mask;
4009                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4010                                                         rxq_index, flow_id);
4011                 if (rc < 0)
4012                         goto out;
4013                 old_rflow = rflow;
4014                 rflow = &flow_table->flows[flow_id];
4015                 rflow->filter = rc;
4016                 if (old_rflow->filter == rflow->filter)
4017                         old_rflow->filter = RPS_NO_FILTER;
4018         out:
4019 #endif
4020                 rflow->last_qtail =
4021                         per_cpu(softnet_data, next_cpu).input_queue_head;
4022         }
4023
4024         rflow->cpu = next_cpu;
4025         return rflow;
4026 }
4027
4028 /*
4029  * get_rps_cpu is called from netif_receive_skb and returns the target
4030  * CPU from the RPS map of the receiving queue for a given skb.
4031  * rcu_read_lock must be held on entry.
4032  */
4033 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4034                        struct rps_dev_flow **rflowp)
4035 {
4036         const struct rps_sock_flow_table *sock_flow_table;
4037         struct netdev_rx_queue *rxqueue = dev->_rx;
4038         struct rps_dev_flow_table *flow_table;
4039         struct rps_map *map;
4040         int cpu = -1;
4041         u32 tcpu;
4042         u32 hash;
4043
4044         if (skb_rx_queue_recorded(skb)) {
4045                 u16 index = skb_get_rx_queue(skb);
4046
4047                 if (unlikely(index >= dev->real_num_rx_queues)) {
4048                         WARN_ONCE(dev->real_num_rx_queues > 1,
4049                                   "%s received packet on queue %u, but number "
4050                                   "of RX queues is %u\n",
4051                                   dev->name, index, dev->real_num_rx_queues);
4052                         goto done;
4053                 }
4054                 rxqueue += index;
4055         }
4056
4057         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4058
4059         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4060         map = rcu_dereference(rxqueue->rps_map);
4061         if (!flow_table && !map)
4062                 goto done;
4063
4064         skb_reset_network_header(skb);
4065         hash = skb_get_hash(skb);
4066         if (!hash)
4067                 goto done;
4068
4069         sock_flow_table = rcu_dereference(rps_sock_flow_table);
4070         if (flow_table && sock_flow_table) {
4071                 struct rps_dev_flow *rflow;
4072                 u32 next_cpu;
4073                 u32 ident;
4074
4075                 /* First check into global flow table if there is a match */
4076                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4077                 if ((ident ^ hash) & ~rps_cpu_mask)
4078                         goto try_rps;
4079
4080                 next_cpu = ident & rps_cpu_mask;
4081
4082                 /* OK, now we know there is a match,
4083                  * we can look at the local (per receive queue) flow table
4084                  */
4085                 rflow = &flow_table->flows[hash & flow_table->mask];
4086                 tcpu = rflow->cpu;
4087
4088                 /*
4089                  * If the desired CPU (where last recvmsg was done) is
4090                  * different from current CPU (one in the rx-queue flow
4091                  * table entry), switch if one of the following holds:
4092                  *   - Current CPU is unset (>= nr_cpu_ids).
4093                  *   - Current CPU is offline.
4094                  *   - The current CPU's queue tail has advanced beyond the
4095                  *     last packet that was enqueued using this table entry.
4096                  *     This guarantees that all previous packets for the flow
4097                  *     have been dequeued, thus preserving in order delivery.
4098                  */
4099                 if (unlikely(tcpu != next_cpu) &&
4100                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4101                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4102                       rflow->last_qtail)) >= 0)) {
4103                         tcpu = next_cpu;
4104                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4105                 }
4106
4107                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4108                         *rflowp = rflow;
4109                         cpu = tcpu;
4110                         goto done;
4111                 }
4112         }
4113
4114 try_rps:
4115
4116         if (map) {
4117                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4118                 if (cpu_online(tcpu)) {
4119                         cpu = tcpu;
4120                         goto done;
4121                 }
4122         }
4123
4124 done:
4125         return cpu;
4126 }
4127
4128 #ifdef CONFIG_RFS_ACCEL
4129
4130 /**
4131  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4132  * @dev: Device on which the filter was set
4133  * @rxq_index: RX queue index
4134  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4135  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4136  *
4137  * Drivers that implement ndo_rx_flow_steer() should periodically call
4138  * this function for each installed filter and remove the filters for
4139  * which it returns %true.
4140  */
4141 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4142                          u32 flow_id, u16 filter_id)
4143 {
4144         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4145         struct rps_dev_flow_table *flow_table;
4146         struct rps_dev_flow *rflow;
4147         bool expire = true;
4148         unsigned int cpu;
4149
4150         rcu_read_lock();
4151         flow_table = rcu_dereference(rxqueue->rps_flow_table);
4152         if (flow_table && flow_id <= flow_table->mask) {
4153                 rflow = &flow_table->flows[flow_id];
4154                 cpu = READ_ONCE(rflow->cpu);
4155                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4156                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4157                            rflow->last_qtail) <
4158                      (int)(10 * flow_table->mask)))
4159                         expire = false;
4160         }
4161         rcu_read_unlock();
4162         return expire;
4163 }
4164 EXPORT_SYMBOL(rps_may_expire_flow);
4165
4166 #endif /* CONFIG_RFS_ACCEL */
4167
4168 /* Called from hardirq (IPI) context */
4169 static void rps_trigger_softirq(void *data)
4170 {
4171         struct softnet_data *sd = data;
4172
4173         ____napi_schedule(sd, &sd->backlog);
4174         sd->received_rps++;
4175 }
4176
4177 #endif /* CONFIG_RPS */
4178
4179 /*
4180  * Check if this softnet_data structure is another cpu one
4181  * If yes, queue it to our IPI list and return 1
4182  * If no, return 0
4183  */
4184 static int rps_ipi_queued(struct softnet_data *sd)
4185 {
4186 #ifdef CONFIG_RPS
4187         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4188
4189         if (sd != mysd) {
4190                 sd->rps_ipi_next = mysd->rps_ipi_list;
4191                 mysd->rps_ipi_list = sd;
4192
4193                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4194                 return 1;
4195         }
4196 #endif /* CONFIG_RPS */
4197         return 0;
4198 }
4199
4200 #ifdef CONFIG_NET_FLOW_LIMIT
4201 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4202 #endif
4203
4204 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4205 {
4206 #ifdef CONFIG_NET_FLOW_LIMIT
4207         struct sd_flow_limit *fl;
4208         struct softnet_data *sd;
4209         unsigned int old_flow, new_flow;
4210
4211         if (qlen < (netdev_max_backlog >> 1))
4212                 return false;
4213
4214         sd = this_cpu_ptr(&softnet_data);
4215
4216         rcu_read_lock();
4217         fl = rcu_dereference(sd->flow_limit);
4218         if (fl) {
4219                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4220                 old_flow = fl->history[fl->history_head];
4221                 fl->history[fl->history_head] = new_flow;
4222
4223                 fl->history_head++;
4224                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4225
4226                 if (likely(fl->buckets[old_flow]))
4227                         fl->buckets[old_flow]--;
4228
4229                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4230                         fl->count++;
4231                         rcu_read_unlock();
4232                         return true;
4233                 }
4234         }
4235         rcu_read_unlock();
4236 #endif
4237         return false;
4238 }
4239
4240 /*
4241  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4242  * queue (may be a remote CPU queue).
4243  */
4244 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4245                               unsigned int *qtail)
4246 {
4247         struct softnet_data *sd;
4248         unsigned long flags;
4249         unsigned int qlen;
4250
4251         sd = &per_cpu(softnet_data, cpu);
4252
4253         local_irq_save(flags);
4254
4255         rps_lock(sd);
4256         if (!netif_running(skb->dev))
4257                 goto drop;
4258         qlen = skb_queue_len(&sd->input_pkt_queue);
4259         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4260                 if (qlen) {
4261 enqueue:
4262                         __skb_queue_tail(&sd->input_pkt_queue, skb);
4263                         input_queue_tail_incr_save(sd, qtail);
4264                         rps_unlock(sd);
4265                         local_irq_restore(flags);
4266                         return NET_RX_SUCCESS;
4267                 }
4268
4269                 /* Schedule NAPI for backlog device
4270                  * We can use non atomic operation since we own the queue lock
4271                  */
4272                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4273                         if (!rps_ipi_queued(sd))
4274                                 ____napi_schedule(sd, &sd->backlog);
4275                 }
4276                 goto enqueue;
4277         }
4278
4279 drop:
4280         sd->dropped++;
4281         rps_unlock(sd);
4282
4283         local_irq_restore(flags);
4284
4285         atomic_long_inc(&skb->dev->rx_dropped);
4286         kfree_skb(skb);
4287         return NET_RX_DROP;
4288 }
4289
4290 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4291 {
4292         struct net_device *dev = skb->dev;
4293         struct netdev_rx_queue *rxqueue;
4294
4295         rxqueue = dev->_rx;
4296
4297         if (skb_rx_queue_recorded(skb)) {
4298                 u16 index = skb_get_rx_queue(skb);
4299
4300                 if (unlikely(index >= dev->real_num_rx_queues)) {
4301                         WARN_ONCE(dev->real_num_rx_queues > 1,
4302                                   "%s received packet on queue %u, but number "
4303                                   "of RX queues is %u\n",
4304                                   dev->name, index, dev->real_num_rx_queues);
4305
4306                         return rxqueue; /* Return first rxqueue */
4307                 }
4308                 rxqueue += index;
4309         }
4310         return rxqueue;
4311 }
4312
4313 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4314                                      struct xdp_buff *xdp,
4315                                      struct bpf_prog *xdp_prog)
4316 {
4317         struct netdev_rx_queue *rxqueue;
4318         void *orig_data, *orig_data_end;
4319         u32 metalen, act = XDP_DROP;
4320         __be16 orig_eth_type;
4321         struct ethhdr *eth;
4322         bool orig_bcast;
4323         int hlen, off;
4324         u32 mac_len;
4325
4326         /* Reinjected packets coming from act_mirred or similar should
4327          * not get XDP generic processing.
4328          */
4329         if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4330                 return XDP_PASS;
4331
4332         /* XDP packets must be linear and must have sufficient headroom
4333          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4334          * native XDP provides, thus we need to do it here as well.
4335          */
4336         if (skb_is_nonlinear(skb) ||
4337             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4338                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4339                 int troom = skb->tail + skb->data_len - skb->end;
4340
4341                 /* In case we have to go down the path and also linearize,
4342                  * then lets do the pskb_expand_head() work just once here.
4343                  */
4344                 if (pskb_expand_head(skb,
4345                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4346                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4347                         goto do_drop;
4348                 if (skb_linearize(skb))
4349                         goto do_drop;
4350         }
4351
4352         /* The XDP program wants to see the packet starting at the MAC
4353          * header.
4354          */
4355         mac_len = skb->data - skb_mac_header(skb);
4356         hlen = skb_headlen(skb) + mac_len;
4357         xdp->data = skb->data - mac_len;
4358         xdp->data_meta = xdp->data;
4359         xdp->data_end = xdp->data + hlen;
4360         xdp->data_hard_start = skb->data - skb_headroom(skb);
4361         orig_data_end = xdp->data_end;
4362         orig_data = xdp->data;
4363         eth = (struct ethhdr *)xdp->data;
4364         orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4365         orig_eth_type = eth->h_proto;
4366
4367         rxqueue = netif_get_rxqueue(skb);
4368         xdp->rxq = &rxqueue->xdp_rxq;
4369
4370         act = bpf_prog_run_xdp(xdp_prog, xdp);
4371
4372         off = xdp->data - orig_data;
4373         if (off > 0)
4374                 __skb_pull(skb, off);
4375         else if (off < 0)
4376                 __skb_push(skb, -off);
4377         skb->mac_header += off;
4378
4379         /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4380          * pckt.
4381          */
4382         off = orig_data_end - xdp->data_end;
4383         if (off != 0) {
4384                 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4385                 skb->len -= off;
4386
4387         }
4388
4389         /* check if XDP changed eth hdr such SKB needs update */
4390         eth = (struct ethhdr *)xdp->data;
4391         if ((orig_eth_type != eth->h_proto) ||
4392             (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4393                 __skb_push(skb, ETH_HLEN);
4394                 skb->protocol = eth_type_trans(skb, skb->dev);
4395         }
4396
4397         switch (act) {
4398         case XDP_REDIRECT:
4399         case XDP_TX:
4400                 __skb_push(skb, mac_len);
4401                 break;
4402         case XDP_PASS:
4403                 metalen = xdp->data - xdp->data_meta;
4404                 if (metalen)
4405                         skb_metadata_set(skb, metalen);
4406                 break;
4407         default:
4408                 bpf_warn_invalid_xdp_action(act);
4409                 /* fall through */
4410         case XDP_ABORTED:
4411                 trace_xdp_exception(skb->dev, xdp_prog, act);
4412                 /* fall through */
4413         case XDP_DROP:
4414         do_drop:
4415                 kfree_skb(skb);
4416                 break;
4417         }
4418
4419         return act;
4420 }
4421
4422 /* When doing generic XDP we have to bypass the qdisc layer and the
4423  * network taps in order to match in-driver-XDP behavior.
4424  */
4425 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4426 {
4427         struct net_device *dev = skb->dev;
4428         struct netdev_queue *txq;
4429         bool free_skb = true;
4430         int cpu, rc;
4431
4432         txq = netdev_pick_tx(dev, skb, NULL);
4433         cpu = smp_processor_id();
4434         HARD_TX_LOCK(dev, txq, cpu);
4435         if (!netif_xmit_stopped(txq)) {
4436                 rc = netdev_start_xmit(skb, dev, txq, 0);
4437                 if (dev_xmit_complete(rc))
4438                         free_skb = false;
4439         }
4440         HARD_TX_UNLOCK(dev, txq);
4441         if (free_skb) {
4442                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4443                 kfree_skb(skb);
4444         }
4445 }
4446 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4447
4448 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4449
4450 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4451 {
4452         if (xdp_prog) {
4453                 struct xdp_buff xdp;
4454                 u32 act;
4455                 int err;
4456
4457                 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4458                 if (act != XDP_PASS) {
4459                         switch (act) {
4460                         case XDP_REDIRECT:
4461                                 err = xdp_do_generic_redirect(skb->dev, skb,
4462                                                               &xdp, xdp_prog);
4463                                 if (err)
4464                                         goto out_redir;
4465                                 break;
4466                         case XDP_TX:
4467                                 generic_xdp_tx(skb, xdp_prog);
4468                                 break;
4469                         }
4470                         return XDP_DROP;
4471                 }
4472         }
4473         return XDP_PASS;
4474 out_redir:
4475         kfree_skb(skb);
4476         return XDP_DROP;
4477 }
4478 EXPORT_SYMBOL_GPL(do_xdp_generic);
4479
4480 static int netif_rx_internal(struct sk_buff *skb)
4481 {
4482         int ret;
4483
4484         net_timestamp_check(netdev_tstamp_prequeue, skb);
4485
4486         trace_netif_rx(skb);
4487
4488         if (static_branch_unlikely(&generic_xdp_needed_key)) {
4489                 int ret;
4490
4491                 preempt_disable();
4492                 rcu_read_lock();
4493                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4494                 rcu_read_unlock();
4495                 preempt_enable();
4496
4497                 /* Consider XDP consuming the packet a success from
4498                  * the netdev point of view we do not want to count
4499                  * this as an error.
4500                  */
4501                 if (ret != XDP_PASS)
4502                         return NET_RX_SUCCESS;
4503         }
4504
4505 #ifdef CONFIG_RPS
4506         if (static_key_false(&rps_needed)) {
4507                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4508                 int cpu;
4509
4510                 preempt_disable();
4511                 rcu_read_lock();
4512
4513                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4514                 if (cpu < 0)
4515                         cpu = smp_processor_id();
4516
4517                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4518
4519                 rcu_read_unlock();
4520                 preempt_enable();
4521         } else
4522 #endif
4523         {
4524                 unsigned int qtail;
4525
4526                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4527                 put_cpu();
4528         }
4529         return ret;
4530 }
4531
4532 /**
4533  *      netif_rx        -       post buffer to the network code
4534  *      @skb: buffer to post
4535  *
4536  *      This function receives a packet from a device driver and queues it for
4537  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4538  *      may be dropped during processing for congestion control or by the
4539  *      protocol layers.
4540  *
4541  *      return values:
4542  *      NET_RX_SUCCESS  (no congestion)
4543  *      NET_RX_DROP     (packet was dropped)
4544  *
4545  */
4546
4547 int netif_rx(struct sk_buff *skb)
4548 {
4549         int ret;
4550
4551         trace_netif_rx_entry(skb);
4552
4553         ret = netif_rx_internal(skb);
4554         trace_netif_rx_exit(ret);
4555
4556         return ret;
4557 }
4558 EXPORT_SYMBOL(netif_rx);
4559
4560 int netif_rx_ni(struct sk_buff *skb)
4561 {
4562         int err;
4563
4564         trace_netif_rx_ni_entry(skb);
4565
4566         preempt_disable();
4567         err = netif_rx_internal(skb);
4568         if (local_softirq_pending())
4569                 do_softirq();
4570         preempt_enable();
4571         trace_netif_rx_ni_exit(err);
4572
4573         return err;
4574 }
4575 EXPORT_SYMBOL(netif_rx_ni);
4576
4577 static __latent_entropy void net_tx_action(struct softirq_action *h)
4578 {
4579         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4580
4581         if (sd->completion_queue) {
4582                 struct sk_buff *clist;
4583
4584                 local_irq_disable();
4585                 clist = sd->completion_queue;
4586                 sd->completion_queue = NULL;
4587                 local_irq_enable();
4588
4589                 while (clist) {
4590                         struct sk_buff *skb = clist;
4591
4592                         clist = clist->next;
4593
4594                         WARN_ON(refcount_read(&skb->users));
4595                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4596                                 trace_consume_skb(skb);
4597                         else
4598                                 trace_kfree_skb(skb, net_tx_action);
4599
4600                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4601                                 __kfree_skb(skb);
4602                         else
4603                                 __kfree_skb_defer(skb);
4604                 }
4605
4606                 __kfree_skb_flush();
4607         }
4608
4609         if (sd->output_queue) {
4610                 struct Qdisc *head;
4611
4612                 local_irq_disable();
4613                 head = sd->output_queue;
4614                 sd->output_queue = NULL;
4615                 sd->output_queue_tailp = &sd->output_queue;
4616                 local_irq_enable();
4617
4618                 while (head) {
4619                         struct Qdisc *q = head;
4620                         spinlock_t *root_lock = NULL;
4621
4622                         head = head->next_sched;
4623
4624                         if (!(q->flags & TCQ_F_NOLOCK)) {
4625                                 root_lock = qdisc_lock(q);
4626                                 spin_lock(root_lock);
4627                         }
4628                         /* We need to make sure head->next_sched is read
4629                          * before clearing __QDISC_STATE_SCHED
4630                          */
4631                         smp_mb__before_atomic();
4632                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4633                         qdisc_run(q);
4634                         if (root_lock)
4635                                 spin_unlock(root_lock);
4636                 }
4637         }
4638
4639         xfrm_dev_backlog(sd);
4640 }
4641
4642 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4643 /* This hook is defined here for ATM LANE */
4644 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4645                              unsigned char *addr) __read_mostly;
4646 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4647 #endif
4648
4649 static inline struct sk_buff *
4650 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4651                    struct net_device *orig_dev)
4652 {
4653 #ifdef CONFIG_NET_CLS_ACT
4654         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4655         struct tcf_result cl_res;
4656
4657         /* If there's at least one ingress present somewhere (so
4658          * we get here via enabled static key), remaining devices
4659          * that are not configured with an ingress qdisc will bail
4660          * out here.
4661          */
4662         if (!miniq)
4663                 return skb;
4664
4665         if (*pt_prev) {
4666                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4667                 *pt_prev = NULL;
4668         }
4669
4670         qdisc_skb_cb(skb)->pkt_len = skb->len;
4671         skb->tc_at_ingress = 1;
4672         mini_qdisc_bstats_cpu_update(miniq, skb);
4673
4674         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4675         case TC_ACT_OK:
4676         case TC_ACT_RECLASSIFY:
4677                 skb->tc_index = TC_H_MIN(cl_res.classid);
4678                 break;
4679         case TC_ACT_SHOT:
4680                 mini_qdisc_qstats_cpu_drop(miniq);
4681                 kfree_skb(skb);
4682                 return NULL;
4683         case TC_ACT_STOLEN:
4684         case TC_ACT_QUEUED:
4685         case TC_ACT_TRAP:
4686                 consume_skb(skb);
4687                 return NULL;
4688         case TC_ACT_REDIRECT:
4689                 /* skb_mac_header check was done by cls/act_bpf, so
4690                  * we can safely push the L2 header back before
4691                  * redirecting to another netdev
4692                  */
4693                 __skb_push(skb, skb->mac_len);
4694                 skb_do_redirect(skb);
4695                 return NULL;
4696         case TC_ACT_REINSERT:
4697                 /* this does not scrub the packet, and updates stats on error */
4698                 skb_tc_reinsert(skb, &cl_res);
4699                 return NULL;
4700         default:
4701                 break;
4702         }
4703 #endif /* CONFIG_NET_CLS_ACT */
4704         return skb;
4705 }
4706
4707 /**
4708  *      netdev_is_rx_handler_busy - check if receive handler is registered
4709  *      @dev: device to check
4710  *
4711  *      Check if a receive handler is already registered for a given device.
4712  *      Return true if there one.
4713  *
4714  *      The caller must hold the rtnl_mutex.
4715  */
4716 bool netdev_is_rx_handler_busy(struct net_device *dev)
4717 {
4718         ASSERT_RTNL();
4719         return dev && rtnl_dereference(dev->rx_handler);
4720 }
4721 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4722
4723 /**
4724  *      netdev_rx_handler_register - register receive handler
4725  *      @dev: device to register a handler for
4726  *      @rx_handler: receive handler to register
4727  *      @rx_handler_data: data pointer that is used by rx handler
4728  *
4729  *      Register a receive handler for a device. This handler will then be
4730  *      called from __netif_receive_skb. A negative errno code is returned
4731  *      on a failure.
4732  *
4733  *      The caller must hold the rtnl_mutex.
4734  *
4735  *      For a general description of rx_handler, see enum rx_handler_result.
4736  */
4737 int netdev_rx_handler_register(struct net_device *dev,
4738                                rx_handler_func_t *rx_handler,
4739                                void *rx_handler_data)
4740 {
4741         if (netdev_is_rx_handler_busy(dev))
4742                 return -EBUSY;
4743
4744         if (dev->priv_flags & IFF_NO_RX_HANDLER)
4745                 return -EINVAL;
4746
4747         /* Note: rx_handler_data must be set before rx_handler */
4748         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4749         rcu_assign_pointer(dev->rx_handler, rx_handler);
4750
4751         return 0;
4752 }
4753 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4754
4755 /**
4756  *      netdev_rx_handler_unregister - unregister receive handler
4757  *      @dev: device to unregister a handler from
4758  *
4759  *      Unregister a receive handler from a device.
4760  *
4761  *      The caller must hold the rtnl_mutex.
4762  */
4763 void netdev_rx_handler_unregister(struct net_device *dev)
4764 {
4765
4766         ASSERT_RTNL();
4767         RCU_INIT_POINTER(dev->rx_handler, NULL);
4768         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4769          * section has a guarantee to see a non NULL rx_handler_data
4770          * as well.
4771          */
4772         synchronize_net();
4773         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4774 }
4775 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4776
4777 /*
4778  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4779  * the special handling of PFMEMALLOC skbs.
4780  */
4781 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4782 {
4783         switch (skb->protocol) {
4784         case htons(ETH_P_ARP):
4785         case htons(ETH_P_IP):
4786         case htons(ETH_P_IPV6):
4787         case htons(ETH_P_8021Q):
4788         case htons(ETH_P_8021AD):
4789                 return true;
4790         default:
4791                 return false;
4792         }
4793 }
4794
4795 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4796                              int *ret, struct net_device *orig_dev)
4797 {
4798 #ifdef CONFIG_NETFILTER_INGRESS
4799         if (nf_hook_ingress_active(skb)) {
4800                 int ingress_retval;
4801
4802                 if (*pt_prev) {
4803                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4804                         *pt_prev = NULL;
4805                 }
4806
4807                 rcu_read_lock();
4808                 ingress_retval = nf_hook_ingress(skb);
4809                 rcu_read_unlock();
4810                 return ingress_retval;
4811         }
4812 #endif /* CONFIG_NETFILTER_INGRESS */
4813         return 0;
4814 }
4815
4816 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4817                                     struct packet_type **ppt_prev)
4818 {
4819         struct packet_type *ptype, *pt_prev;
4820         rx_handler_func_t *rx_handler;
4821         struct net_device *orig_dev;
4822         bool deliver_exact = false;
4823         int ret = NET_RX_DROP;
4824         __be16 type;
4825
4826         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4827
4828         trace_netif_receive_skb(skb);
4829
4830         orig_dev = skb->dev;
4831
4832         skb_reset_network_header(skb);
4833         if (!skb_transport_header_was_set(skb))
4834                 skb_reset_transport_header(skb);
4835         skb_reset_mac_len(skb);
4836
4837         pt_prev = NULL;
4838
4839 another_round:
4840         skb->skb_iif = skb->dev->ifindex;
4841
4842         __this_cpu_inc(softnet_data.processed);
4843
4844         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4845             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4846                 skb = skb_vlan_untag(skb);
4847                 if (unlikely(!skb))
4848                         goto out;
4849         }
4850
4851         if (skb_skip_tc_classify(skb))
4852                 goto skip_classify;
4853
4854         if (pfmemalloc)
4855                 goto skip_taps;
4856
4857         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4858                 if (pt_prev)
4859                         ret = deliver_skb(skb, pt_prev, orig_dev);
4860                 pt_prev = ptype;
4861         }
4862
4863         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4864                 if (pt_prev)
4865                         ret = deliver_skb(skb, pt_prev, orig_dev);
4866                 pt_prev = ptype;
4867         }
4868
4869 skip_taps:
4870 #ifdef CONFIG_NET_INGRESS
4871         if (static_branch_unlikely(&ingress_needed_key)) {
4872                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4873                 if (!skb)
4874                         goto out;
4875
4876                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4877                         goto out;
4878         }
4879 #endif
4880         skb_reset_tc(skb);
4881 skip_classify:
4882         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4883                 goto drop;
4884
4885         if (skb_vlan_tag_present(skb)) {
4886                 if (pt_prev) {
4887                         ret = deliver_skb(skb, pt_prev, orig_dev);
4888                         pt_prev = NULL;
4889                 }
4890                 if (vlan_do_receive(&skb))
4891                         goto another_round;
4892                 else if (unlikely(!skb))
4893                         goto out;
4894         }
4895
4896         rx_handler = rcu_dereference(skb->dev->rx_handler);
4897         if (rx_handler) {
4898                 if (pt_prev) {
4899                         ret = deliver_skb(skb, pt_prev, orig_dev);
4900                         pt_prev = NULL;
4901                 }
4902                 switch (rx_handler(&skb)) {
4903                 case RX_HANDLER_CONSUMED:
4904                         ret = NET_RX_SUCCESS;
4905                         goto out;
4906                 case RX_HANDLER_ANOTHER:
4907                         goto another_round;
4908                 case RX_HANDLER_EXACT:
4909                         deliver_exact = true;
4910                 case RX_HANDLER_PASS:
4911                         break;
4912                 default:
4913                         BUG();
4914                 }
4915         }
4916
4917         if (unlikely(skb_vlan_tag_present(skb))) {
4918                 if (skb_vlan_tag_get_id(skb))
4919                         skb->pkt_type = PACKET_OTHERHOST;
4920                 /* Note: we might in the future use prio bits
4921                  * and set skb->priority like in vlan_do_receive()
4922                  * For the time being, just ignore Priority Code Point
4923                  */
4924                 __vlan_hwaccel_clear_tag(skb);
4925         }
4926
4927         type = skb->protocol;
4928
4929         /* deliver only exact match when indicated */
4930         if (likely(!deliver_exact)) {
4931                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4932                                        &ptype_base[ntohs(type) &
4933                                                    PTYPE_HASH_MASK]);
4934         }
4935
4936         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4937                                &orig_dev->ptype_specific);
4938
4939         if (unlikely(skb->dev != orig_dev)) {
4940                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4941                                        &skb->dev->ptype_specific);
4942         }
4943
4944         if (pt_prev) {
4945                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4946                         goto drop;
4947                 *ppt_prev = pt_prev;
4948         } else {
4949 drop:
4950                 if (!deliver_exact)
4951                         atomic_long_inc(&skb->dev->rx_dropped);
4952                 else
4953                         atomic_long_inc(&skb->dev->rx_nohandler);
4954                 kfree_skb(skb);
4955                 /* Jamal, now you will not able to escape explaining
4956                  * me how you were going to use this. :-)
4957                  */
4958                 ret = NET_RX_DROP;
4959         }
4960
4961 out:
4962         return ret;
4963 }
4964
4965 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4966 {
4967         struct net_device *orig_dev = skb->dev;
4968         struct packet_type *pt_prev = NULL;
4969         int ret;
4970
4971         ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
4972         if (pt_prev)
4973                 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4974         return ret;
4975 }
4976
4977 /**
4978  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4979  *      @skb: buffer to process
4980  *
4981  *      More direct receive version of netif_receive_skb().  It should
4982  *      only be used by callers that have a need to skip RPS and Generic XDP.
4983  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4984  *
4985  *      This function may only be called from softirq context and interrupts
4986  *      should be enabled.
4987  *
4988  *      Return values (usually ignored):
4989  *      NET_RX_SUCCESS: no congestion
4990  *      NET_RX_DROP: packet was dropped
4991  */
4992 int netif_receive_skb_core(struct sk_buff *skb)
4993 {
4994         int ret;
4995
4996         rcu_read_lock();
4997         ret = __netif_receive_skb_one_core(skb, false);
4998         rcu_read_unlock();
4999
5000         return ret;
5001 }
5002 EXPORT_SYMBOL(netif_receive_skb_core);
5003
5004 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5005                                                   struct packet_type *pt_prev,
5006                                                   struct net_device *orig_dev)
5007 {
5008         struct sk_buff *skb, *next;
5009
5010         if (!pt_prev)
5011                 return;
5012         if (list_empty(head))
5013                 return;
5014         if (pt_prev->list_func != NULL)
5015                 pt_prev->list_func(head, pt_prev, orig_dev);
5016         else
5017                 list_for_each_entry_safe(skb, next, head, list)
5018                         pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5019 }
5020
5021 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5022 {
5023         /* Fast-path assumptions:
5024          * - There is no RX handler.
5025          * - Only one packet_type matches.
5026          * If either of these fails, we will end up doing some per-packet
5027          * processing in-line, then handling the 'last ptype' for the whole
5028          * sublist.  This can't cause out-of-order delivery to any single ptype,
5029          * because the 'last ptype' must be constant across the sublist, and all
5030          * other ptypes are handled per-packet.
5031          */
5032         /* Current (common) ptype of sublist */
5033         struct packet_type *pt_curr = NULL;
5034         /* Current (common) orig_dev of sublist */
5035         struct net_device *od_curr = NULL;
5036         struct list_head sublist;
5037         struct sk_buff *skb, *next;
5038
5039         INIT_LIST_HEAD(&sublist);
5040         list_for_each_entry_safe(skb, next, head, list) {
5041                 struct net_device *orig_dev = skb->dev;
5042                 struct packet_type *pt_prev = NULL;
5043
5044                 skb_list_del_init(skb);
5045                 __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5046                 if (!pt_prev)
5047                         continue;
5048                 if (pt_curr != pt_prev || od_curr != orig_dev) {
5049                         /* dispatch old sublist */
5050                         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5051                         /* start new sublist */
5052                         INIT_LIST_HEAD(&sublist);
5053                         pt_curr = pt_prev;
5054                         od_curr = orig_dev;
5055                 }
5056                 list_add_tail(&skb->list, &sublist);
5057         }
5058
5059         /* dispatch final sublist */
5060         __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5061 }
5062
5063 static int __netif_receive_skb(struct sk_buff *skb)
5064 {
5065         int ret;
5066
5067         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5068                 unsigned int noreclaim_flag;
5069
5070                 /*
5071                  * PFMEMALLOC skbs are special, they should
5072                  * - be delivered to SOCK_MEMALLOC sockets only
5073                  * - stay away from userspace
5074                  * - have bounded memory usage
5075                  *
5076                  * Use PF_MEMALLOC as this saves us from propagating the allocation
5077                  * context down to all allocation sites.
5078                  */
5079                 noreclaim_flag = memalloc_noreclaim_save();
5080                 ret = __netif_receive_skb_one_core(skb, true);
5081                 memalloc_noreclaim_restore(noreclaim_flag);
5082         } else
5083                 ret = __netif_receive_skb_one_core(skb, false);
5084
5085         return ret;
5086 }
5087
5088 static void __netif_receive_skb_list(struct list_head *head)
5089 {
5090         unsigned long noreclaim_flag = 0;
5091         struct sk_buff *skb, *next;
5092         bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5093
5094         list_for_each_entry_safe(skb, next, head, list) {
5095                 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5096                         struct list_head sublist;
5097
5098                         /* Handle the previous sublist */
5099                         list_cut_before(&sublist, head, &skb->list);
5100                         if (!list_empty(&sublist))
5101                                 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5102                         pfmemalloc = !pfmemalloc;
5103                         /* See comments in __netif_receive_skb */
5104                         if (pfmemalloc)
5105                                 noreclaim_flag = memalloc_noreclaim_save();
5106                         else
5107                                 memalloc_noreclaim_restore(noreclaim_flag);
5108                 }
5109         }
5110         /* Handle the remaining sublist */
5111         if (!list_empty(head))
5112                 __netif_receive_skb_list_core(head, pfmemalloc);
5113         /* Restore pflags */
5114         if (pfmemalloc)
5115                 memalloc_noreclaim_restore(noreclaim_flag);
5116 }
5117
5118 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5119 {
5120         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5121         struct bpf_prog *new = xdp->prog;
5122         int ret = 0;
5123
5124         switch (xdp->command) {
5125         case XDP_SETUP_PROG:
5126                 rcu_assign_pointer(dev->xdp_prog, new);
5127                 if (old)
5128                         bpf_prog_put(old);
5129
5130                 if (old && !new) {
5131                         static_branch_dec(&generic_xdp_needed_key);
5132                 } else if (new && !old) {
5133                         static_branch_inc(&generic_xdp_needed_key);
5134                         dev_disable_lro(dev);
5135                         dev_disable_gro_hw(dev);
5136                 }
5137                 break;
5138
5139         case XDP_QUERY_PROG:
5140                 xdp->prog_id = old ? old->aux->id : 0;
5141                 break;
5142
5143         default:
5144                 ret = -EINVAL;
5145                 break;
5146         }
5147
5148         return ret;
5149 }
5150
5151 static int netif_receive_skb_internal(struct sk_buff *skb)
5152 {
5153         int ret;
5154
5155         net_timestamp_check(netdev_tstamp_prequeue, skb);
5156
5157         if (skb_defer_rx_timestamp(skb))
5158                 return NET_RX_SUCCESS;
5159
5160         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5161                 int ret;
5162
5163                 preempt_disable();
5164                 rcu_read_lock();
5165                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5166                 rcu_read_unlock();
5167                 preempt_enable();
5168
5169                 if (ret != XDP_PASS)
5170                         return NET_RX_DROP;
5171         }
5172
5173         rcu_read_lock();
5174 #ifdef CONFIG_RPS
5175         if (static_key_false(&rps_needed)) {
5176                 struct rps_dev_flow voidflow, *rflow = &voidflow;
5177                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5178
5179                 if (cpu >= 0) {
5180                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5181                         rcu_read_unlock();
5182                         return ret;
5183                 }
5184         }
5185 #endif
5186         ret = __netif_receive_skb(skb);
5187         rcu_read_unlock();
5188         return ret;
5189 }
5190
5191 static void netif_receive_skb_list_internal(struct list_head *head)
5192 {
5193         struct bpf_prog *xdp_prog = NULL;
5194         struct sk_buff *skb, *next;
5195         struct list_head sublist;
5196
5197         INIT_LIST_HEAD(&sublist);
5198         list_for_each_entry_safe(skb, next, head, list) {
5199                 net_timestamp_check(netdev_tstamp_prequeue, skb);
5200                 skb_list_del_init(skb);
5201                 if (!skb_defer_rx_timestamp(skb))
5202                         list_add_tail(&skb->list, &sublist);
5203         }
5204         list_splice_init(&sublist, head);
5205
5206         if (static_branch_unlikely(&generic_xdp_needed_key)) {
5207                 preempt_disable();
5208                 rcu_read_lock();
5209                 list_for_each_entry_safe(skb, next, head, list) {
5210                         xdp_prog = rcu_dereference(skb->dev->xdp_prog);
5211                         skb_list_del_init(skb);
5212                         if (do_xdp_generic(xdp_prog, skb) == XDP_PASS)
5213                                 list_add_tail(&skb->list, &sublist);
5214                 }
5215                 rcu_read_unlock();
5216                 preempt_enable();
5217                 /* Put passed packets back on main list */
5218                 list_splice_init(&sublist, head);
5219         }
5220
5221         rcu_read_lock();
5222 #ifdef CONFIG_RPS
5223         if (static_key_false(&rps_needed)) {
5224                 list_for_each_entry_safe(skb, next, head, list) {
5225                         struct rps_dev_flow voidflow, *rflow = &voidflow;
5226                         int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5227
5228                         if (cpu >= 0) {
5229                                 /* Will be handled, remove from list */
5230                                 skb_list_del_init(skb);
5231                                 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5232                         }
5233                 }
5234         }
5235 #endif
5236         __netif_receive_skb_list(head);
5237         rcu_read_unlock();
5238 }
5239
5240 /**
5241  *      netif_receive_skb - process receive buffer from network
5242  *      @skb: buffer to process
5243  *
5244  *      netif_receive_skb() is the main receive data processing function.
5245  *      It always succeeds. The buffer may be dropped during processing
5246  *      for congestion control or by the protocol layers.
5247  *
5248  *      This function may only be called from softirq context and interrupts
5249  *      should be enabled.
5250  *
5251  *      Return values (usually ignored):
5252  *      NET_RX_SUCCESS: no congestion
5253  *      NET_RX_DROP: packet was dropped
5254  */
5255 int netif_receive_skb(struct sk_buff *skb)
5256 {
5257         int ret;
5258
5259         trace_netif_receive_skb_entry(skb);
5260
5261         ret = netif_receive_skb_internal(skb);
5262         trace_netif_receive_skb_exit(ret);
5263
5264         return ret;
5265 }
5266 EXPORT_SYMBOL(netif_receive_skb);
5267
5268 /**
5269  *      netif_receive_skb_list - process many receive buffers from network
5270  *      @head: list of skbs to process.
5271  *
5272  *      Since return value of netif_receive_skb() is normally ignored, and
5273  *      wouldn't be meaningful for a list, this function returns void.
5274  *
5275  *      This function may only be called from softirq context and interrupts
5276  *      should be enabled.
5277  */
5278 void netif_receive_skb_list(struct list_head *head)
5279 {
5280         struct sk_buff *skb;
5281
5282         if (list_empty(head))
5283                 return;
5284         if (trace_netif_receive_skb_list_entry_enabled()) {
5285                 list_for_each_entry(skb, head, list)
5286                         trace_netif_receive_skb_list_entry(skb);
5287         }
5288         netif_receive_skb_list_internal(head);
5289         trace_netif_receive_skb_list_exit(0);
5290 }
5291 EXPORT_SYMBOL(netif_receive_skb_list);
5292
5293 DEFINE_PER_CPU(struct work_struct, flush_works);
5294
5295 /* Network device is going away, flush any packets still pending */
5296 static void flush_backlog(struct work_struct *work)
5297 {
5298         struct sk_buff *skb, *tmp;
5299         struct softnet_data *sd;
5300
5301         local_bh_disable();
5302         sd = this_cpu_ptr(&softnet_data);
5303
5304         local_irq_disable();
5305         rps_lock(sd);
5306         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5307                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5308                         __skb_unlink(skb, &sd->input_pkt_queue);
5309                         kfree_skb(skb);
5310                         input_queue_head_incr(sd);
5311                 }
5312         }
5313         rps_unlock(sd);
5314         local_irq_enable();
5315
5316         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5317                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5318                         __skb_unlink(skb, &sd->process_queue);
5319                         kfree_skb(skb);
5320                         input_queue_head_incr(sd);
5321                 }
5322         }
5323         local_bh_enable();
5324 }
5325
5326 static void flush_all_backlogs(void)
5327 {
5328         unsigned int cpu;
5329
5330         get_online_cpus();
5331
5332         for_each_online_cpu(cpu)
5333                 queue_work_on(cpu, system_highpri_wq,
5334                               per_cpu_ptr(&flush_works, cpu));
5335
5336         for_each_online_cpu(cpu)
5337                 flush_work(per_cpu_ptr(&flush_works, cpu));
5338
5339         put_online_cpus();
5340 }
5341
5342 INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5343 INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5344 static int napi_gro_complete(struct sk_buff *skb)
5345 {
5346         struct packet_offload *ptype;
5347         __be16 type = skb->protocol;
5348         struct list_head *head = &offload_base;
5349         int err = -ENOENT;
5350
5351         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5352
5353         if (NAPI_GRO_CB(skb)->count == 1) {
5354                 skb_shinfo(skb)->gso_size = 0;
5355                 goto out;
5356         }
5357
5358         rcu_read_lock();
5359         list_for_each_entry_rcu(ptype, head, list) {
5360                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5361                         continue;
5362
5363                 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5364                                          ipv6_gro_complete, inet_gro_complete,
5365                                          skb, 0);
5366                 break;
5367         }
5368         rcu_read_unlock();
5369
5370         if (err) {
5371                 WARN_ON(&ptype->list == head);
5372                 kfree_skb(skb);
5373                 return NET_RX_SUCCESS;
5374         }
5375
5376 out:
5377         return netif_receive_skb_internal(skb);
5378 }
5379
5380 static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5381                                    bool flush_old)
5382 {
5383         struct list_head *head = &napi->gro_hash[index].list;
5384         struct sk_buff *skb, *p;
5385
5386         list_for_each_entry_safe_reverse(skb, p, head, list) {
5387                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5388                         return;
5389                 skb_list_del_init(skb);
5390                 napi_gro_complete(skb);
5391                 napi->gro_hash[index].count--;
5392         }
5393
5394         if (!napi->gro_hash[index].count)
5395                 __clear_bit(index, &napi->gro_bitmask);
5396 }
5397
5398 /* napi->gro_hash[].list contains packets ordered by age.
5399  * youngest packets at the head of it.
5400  * Complete skbs in reverse order to reduce latencies.
5401  */
5402 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5403 {
5404         unsigned long bitmask = napi->gro_bitmask;
5405         unsigned int i, base = ~0U;
5406
5407         while ((i = ffs(bitmask)) != 0) {
5408                 bitmask >>= i;
5409                 base += i;
5410                 __napi_gro_flush_chain(napi, base, flush_old);
5411         }
5412 }
5413 EXPORT_SYMBOL(napi_gro_flush);
5414
5415 static struct list_head *gro_list_prepare(struct napi_struct *napi,
5416                                           struct sk_buff *skb)
5417 {
5418         unsigned int maclen = skb->dev->hard_header_len;
5419         u32 hash = skb_get_hash_raw(skb);
5420         struct list_head *head;
5421         struct sk_buff *p;
5422
5423         head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5424         list_for_each_entry(p, head, list) {
5425                 unsigned long diffs;
5426
5427                 NAPI_GRO_CB(p)->flush = 0;
5428
5429                 if (hash != skb_get_hash_raw(p)) {
5430                         NAPI_GRO_CB(p)->same_flow = 0;
5431                         continue;
5432                 }
5433
5434                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5435                 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5436                 if (skb_vlan_tag_present(p))
5437                         diffs |= p->vlan_tci ^ skb->vlan_tci;
5438                 diffs |= skb_metadata_dst_cmp(p, skb);
5439                 diffs |= skb_metadata_differs(p, skb);
5440                 if (maclen == ETH_HLEN)
5441                         diffs |= compare_ether_header(skb_mac_header(p),
5442                                                       skb_mac_header(skb));
5443                 else if (!diffs)
5444                         diffs = memcmp(skb_mac_header(p),
5445                                        skb_mac_header(skb),
5446                                        maclen);
5447                 NAPI_GRO_CB(p)->same_flow = !diffs;
5448         }
5449
5450         return head;
5451 }
5452
5453 static void skb_gro_reset_offset(struct sk_buff *skb)
5454 {
5455         const struct skb_shared_info *pinfo = skb_shinfo(skb);
5456         const skb_frag_t *frag0 = &pinfo->frags[0];
5457
5458         NAPI_GRO_CB(skb)->data_offset = 0;
5459         NAPI_GRO_CB(skb)->frag0 = NULL;
5460         NAPI_GRO_CB(skb)->frag0_len = 0;
5461
5462         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5463             pinfo->nr_frags &&
5464             !PageHighMem(skb_frag_page(frag0))) {
5465                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5466                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5467                                                     skb_frag_size(frag0),
5468                                                     skb->end - skb->tail);
5469         }
5470 }
5471
5472 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5473 {
5474         struct skb_shared_info *pinfo = skb_shinfo(skb);
5475
5476         BUG_ON(skb->end - skb->tail < grow);
5477
5478         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5479
5480         skb->data_len -= grow;
5481         skb->tail += grow;
5482
5483         pinfo->frags[0].page_offset += grow;
5484         skb_frag_size_sub(&pinfo->frags[0], grow);
5485
5486         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5487                 skb_frag_unref(skb, 0);
5488                 memmove(pinfo->frags, pinfo->frags + 1,
5489                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5490         }
5491 }
5492
5493 static void gro_flush_oldest(struct list_head *head)
5494 {
5495         struct sk_buff *oldest;
5496
5497         oldest = list_last_entry(head, struct sk_buff, list);
5498
5499         /* We are called with head length >= MAX_GRO_SKBS, so this is
5500          * impossible.
5501          */
5502         if (WARN_ON_ONCE(!oldest))
5503                 return;
5504
5505         /* Do not adjust napi->gro_hash[].count, caller is adding a new
5506          * SKB to the chain.
5507          */
5508         skb_list_del_init(oldest);
5509         napi_gro_complete(oldest);
5510 }
5511
5512 INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5513                                                            struct sk_buff *));
5514 INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5515                                                            struct sk_buff *));
5516 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5517 {
5518         u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5519         struct list_head *head = &offload_base;
5520         struct packet_offload *ptype;
5521         __be16 type = skb->protocol;
5522         struct list_head *gro_head;
5523         struct sk_buff *pp = NULL;
5524         enum gro_result ret;
5525         int same_flow;
5526         int grow;
5527
5528         if (netif_elide_gro(skb->dev))
5529                 goto normal;
5530
5531         gro_head = gro_list_prepare(napi, skb);
5532
5533         rcu_read_lock();
5534         list_for_each_entry_rcu(ptype, head, list) {
5535                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5536                         continue;
5537
5538                 skb_set_network_header(skb, skb_gro_offset(skb));
5539                 skb_reset_mac_len(skb);
5540                 NAPI_GRO_CB(skb)->same_flow = 0;
5541                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5542                 NAPI_GRO_CB(skb)->free = 0;
5543                 NAPI_GRO_CB(skb)->encap_mark = 0;
5544                 NAPI_GRO_CB(skb)->recursion_counter = 0;
5545                 NAPI_GRO_CB(skb)->is_fou = 0;
5546                 NAPI_GRO_CB(skb)->is_atomic = 1;
5547                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5548
5549                 /* Setup for GRO checksum validation */
5550                 switch (skb->ip_summed) {
5551                 case CHECKSUM_COMPLETE:
5552                         NAPI_GRO_CB(skb)->csum = skb->csum;
5553                         NAPI_GRO_CB(skb)->csum_valid = 1;
5554                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5555                         break;
5556                 case CHECKSUM_UNNECESSARY:
5557                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5558                         NAPI_GRO_CB(skb)->csum_valid = 0;
5559                         break;
5560                 default:
5561                         NAPI_GRO_CB(skb)->csum_cnt = 0;
5562                         NAPI_GRO_CB(skb)->csum_valid = 0;
5563                 }
5564
5565                 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5566                                         ipv6_gro_receive, inet_gro_receive,
5567                                         gro_head, skb);
5568                 break;
5569         }
5570         rcu_read_unlock();
5571
5572         if (&ptype->list == head)
5573                 goto normal;
5574
5575         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5576                 ret = GRO_CONSUMED;
5577                 goto ok;
5578         }
5579
5580         same_flow = NAPI_GRO_CB(skb)->same_flow;
5581         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5582
5583         if (pp) {
5584                 skb_list_del_init(pp);
5585                 napi_gro_complete(pp);
5586                 napi->gro_hash[hash].count--;
5587         }
5588
5589         if (same_flow)
5590                 goto ok;
5591
5592         if (NAPI_GRO_CB(skb)->flush)
5593                 goto normal;
5594
5595         if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5596                 gro_flush_oldest(gro_head);
5597         } else {
5598                 napi->gro_hash[hash].count++;
5599         }
5600         NAPI_GRO_CB(skb)->count = 1;
5601         NAPI_GRO_CB(skb)->age = jiffies;
5602         NAPI_GRO_CB(skb)->last = skb;
5603         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5604         list_add(&skb->list, gro_head);
5605         ret = GRO_HELD;
5606
5607 pull:
5608         grow = skb_gro_offset(skb) - skb_headlen(skb);
5609         if (grow > 0)
5610                 gro_pull_from_frag0(skb, grow);
5611 ok:
5612         if (napi->gro_hash[hash].count) {
5613                 if (!test_bit(hash, &napi->gro_bitmask))
5614                         __set_bit(hash, &napi->gro_bitmask);
5615         } else if (test_bit(hash, &napi->gro_bitmask)) {
5616                 __clear_bit(hash, &napi->gro_bitmask);
5617         }
5618
5619         return ret;
5620
5621 normal:
5622         ret = GRO_NORMAL;
5623         goto pull;
5624 }
5625
5626 struct packet_offload *gro_find_receive_by_type(__be16 type)
5627 {
5628         struct list_head *offload_head = &offload_base;
5629         struct packet_offload *ptype;
5630
5631         list_for_each_entry_rcu(ptype, offload_head, list) {
5632                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5633                         continue;
5634                 return ptype;
5635         }
5636         return NULL;
5637 }
5638 EXPORT_SYMBOL(gro_find_receive_by_type);
5639
5640 struct packet_offload *gro_find_complete_by_type(__be16 type)
5641 {
5642         struct list_head *offload_head = &offload_base;
5643         struct packet_offload *ptype;
5644
5645         list_for_each_entry_rcu(ptype, offload_head, list) {
5646                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5647                         continue;
5648                 return ptype;
5649         }
5650         return NULL;
5651 }
5652 EXPORT_SYMBOL(gro_find_complete_by_type);
5653
5654 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5655 {
5656         skb_dst_drop(skb);
5657         secpath_reset(skb);
5658         kmem_cache_free(skbuff_head_cache, skb);
5659 }
5660
5661 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5662 {
5663         switch (ret) {
5664         case GRO_NORMAL:
5665                 if (netif_receive_skb_internal(skb))
5666                         ret = GRO_DROP;
5667                 break;
5668
5669         case GRO_DROP:
5670                 kfree_skb(skb);
5671                 break;
5672
5673         case GRO_MERGED_FREE:
5674                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5675                         napi_skb_free_stolen_head(skb);
5676                 else
5677                         __kfree_skb(skb);
5678                 break;
5679
5680         case GRO_HELD:
5681         case GRO_MERGED:
5682         case GRO_CONSUMED:
5683                 break;
5684         }
5685
5686         return ret;
5687 }
5688
5689 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5690 {
5691         gro_result_t ret;
5692
5693         skb_mark_napi_id(skb, napi);
5694         trace_napi_gro_receive_entry(skb);
5695
5696         skb_gro_reset_offset(skb);
5697
5698         ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5699         trace_napi_gro_receive_exit(ret);
5700
5701         return ret;
5702 }
5703 EXPORT_SYMBOL(napi_gro_receive);
5704
5705 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5706 {
5707         if (unlikely(skb->pfmemalloc)) {
5708                 consume_skb(skb);
5709                 return;
5710         }
5711         __skb_pull(skb, skb_headlen(skb));
5712         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5713         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5714         __vlan_hwaccel_clear_tag(skb);
5715         skb->dev = napi->dev;
5716         skb->skb_iif = 0;
5717
5718         /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5719         skb->pkt_type = PACKET_HOST;
5720
5721         skb->encapsulation = 0;
5722         skb_shinfo(skb)->gso_type = 0;
5723         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5724         secpath_reset(skb);
5725
5726         napi->skb = skb;
5727 }
5728
5729 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5730 {
5731         struct sk_buff *skb = napi->skb;
5732
5733         if (!skb) {
5734                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5735                 if (skb) {
5736                         napi->skb = skb;
5737                         skb_mark_napi_id(skb, napi);
5738                 }
5739         }
5740         return skb;
5741 }
5742 EXPORT_SYMBOL(napi_get_frags);
5743
5744 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5745                                       struct sk_buff *skb,
5746                                       gro_result_t ret)
5747 {
5748         switch (ret) {
5749         case GRO_NORMAL:
5750         case GRO_HELD:
5751                 __skb_push(skb, ETH_HLEN);
5752                 skb->protocol = eth_type_trans(skb, skb->dev);
5753                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5754                         ret = GRO_DROP;
5755                 break;
5756
5757         case GRO_DROP:
5758                 napi_reuse_skb(napi, skb);
5759                 break;
5760
5761         case GRO_MERGED_FREE:
5762                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5763                         napi_skb_free_stolen_head(skb);
5764                 else
5765                         napi_reuse_skb(napi, skb);
5766                 break;
5767
5768         case GRO_MERGED:
5769         case GRO_CONSUMED:
5770                 break;
5771         }
5772
5773         return ret;
5774 }
5775
5776 /* Upper GRO stack assumes network header starts at gro_offset=0
5777  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5778  * We copy ethernet header into skb->data to have a common layout.
5779  */
5780 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5781 {
5782         struct sk_buff *skb = napi->skb;
5783         const struct ethhdr *eth;
5784         unsigned int hlen = sizeof(*eth);
5785
5786         napi->skb = NULL;
5787
5788         skb_reset_mac_header(skb);
5789         skb_gro_reset_offset(skb);
5790
5791         eth = skb_gro_header_fast(skb, 0);
5792         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5793                 eth = skb_gro_header_slow(skb, hlen, 0);
5794                 if (unlikely(!eth)) {
5795                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5796                                              __func__, napi->dev->name);
5797                         napi_reuse_skb(napi, skb);
5798                         return NULL;
5799                 }
5800         } else {
5801                 gro_pull_from_frag0(skb, hlen);
5802                 NAPI_GRO_CB(skb)->frag0 += hlen;
5803                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5804         }
5805         __skb_pull(skb, hlen);
5806
5807         /*
5808          * This works because the only protocols we care about don't require
5809          * special handling.
5810          * We'll fix it up properly in napi_frags_finish()
5811          */
5812         skb->protocol = eth->h_proto;
5813
5814         return skb;
5815 }
5816
5817 gro_result_t napi_gro_frags(struct napi_struct *napi)
5818 {
5819         gro_result_t ret;
5820         struct sk_buff *skb = napi_frags_skb(napi);
5821
5822         if (!skb)
5823                 return GRO_DROP;
5824
5825         trace_napi_gro_frags_entry(skb);
5826
5827         ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5828         trace_napi_gro_frags_exit(ret);
5829
5830         return ret;
5831 }
5832 EXPORT_SYMBOL(napi_gro_frags);
5833
5834 /* Compute the checksum from gro_offset and return the folded value
5835  * after adding in any pseudo checksum.
5836  */
5837 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5838 {
5839         __wsum wsum;
5840         __sum16 sum;
5841
5842         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5843
5844         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5845         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5846         /* See comments in __skb_checksum_complete(). */
5847         if (likely(!sum)) {
5848                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5849                     !skb->csum_complete_sw)
5850                         netdev_rx_csum_fault(skb->dev, skb);
5851         }
5852
5853         NAPI_GRO_CB(skb)->csum = wsum;
5854         NAPI_GRO_CB(skb)->csum_valid = 1;
5855
5856         return sum;
5857 }
5858 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5859
5860 static void net_rps_send_ipi(struct softnet_data *remsd)
5861 {
5862 #ifdef CONFIG_RPS
5863         while (remsd) {
5864                 struct softnet_data *next = remsd->rps_ipi_next;
5865
5866                 if (cpu_online(remsd->cpu))
5867                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5868                 remsd = next;
5869         }
5870 #endif
5871 }
5872
5873 /*
5874  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5875  * Note: called with local irq disabled, but exits with local irq enabled.
5876  */
5877 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5878 {
5879 #ifdef CONFIG_RPS
5880         struct softnet_data *remsd = sd->rps_ipi_list;
5881
5882         if (remsd) {
5883                 sd->rps_ipi_list = NULL;
5884
5885                 local_irq_enable();
5886
5887                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5888                 net_rps_send_ipi(remsd);
5889         } else
5890 #endif
5891                 local_irq_enable();
5892 }
5893
5894 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5895 {
5896 #ifdef CONFIG_RPS
5897         return sd->rps_ipi_list != NULL;
5898 #else
5899         return false;
5900 #endif
5901 }
5902
5903 static int process_backlog(struct napi_struct *napi, int quota)
5904 {
5905         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5906         bool again = true;
5907         int work = 0;
5908
5909         /* Check if we have pending ipi, its better to send them now,
5910          * not waiting net_rx_action() end.
5911          */
5912         if (sd_has_rps_ipi_waiting(sd)) {
5913                 local_irq_disable();
5914                 net_rps_action_and_irq_enable(sd);
5915         }
5916
5917         napi->weight = dev_rx_weight;
5918         while (again) {
5919                 struct sk_buff *skb;
5920
5921                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5922                         rcu_read_lock();
5923                         __netif_receive_skb(skb);
5924                         rcu_read_unlock();
5925                         input_queue_head_incr(sd);
5926                         if (++work >= quota)
5927                                 return work;
5928
5929                 }
5930
5931                 local_irq_disable();
5932                 rps_lock(sd);
5933                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5934                         /*
5935                          * Inline a custom version of __napi_complete().
5936                          * only current cpu owns and manipulates this napi,
5937                          * and NAPI_STATE_SCHED is the only possible flag set
5938                          * on backlog.
5939                          * We can use a plain write instead of clear_bit(),
5940                          * and we dont need an smp_mb() memory barrier.
5941                          */
5942                         napi->state = 0;
5943                         again = false;
5944                 } else {
5945                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5946                                                    &sd->process_queue);
5947                 }
5948                 rps_unlock(sd);
5949                 local_irq_enable();
5950         }
5951
5952         return work;
5953 }
5954
5955 /**
5956  * __napi_schedule - schedule for receive
5957  * @n: entry to schedule
5958  *
5959  * The entry's receive function will be scheduled to run.
5960  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5961  */
5962 void __napi_schedule(struct napi_struct *n)
5963 {
5964         unsigned long flags;
5965
5966         local_irq_save(flags);
5967         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5968         local_irq_restore(flags);
5969 }
5970 EXPORT_SYMBOL(__napi_schedule);
5971
5972 /**
5973  *      napi_schedule_prep - check if napi can be scheduled
5974  *      @n: napi context
5975  *
5976  * Test if NAPI routine is already running, and if not mark
5977  * it as running.  This is used as a condition variable
5978  * insure only one NAPI poll instance runs.  We also make
5979  * sure there is no pending NAPI disable.
5980  */
5981 bool napi_schedule_prep(struct napi_struct *n)
5982 {
5983         unsigned long val, new;
5984
5985         do {
5986                 val = READ_ONCE(n->state);
5987                 if (unlikely(val & NAPIF_STATE_DISABLE))
5988                         return false;
5989                 new = val | NAPIF_STATE_SCHED;
5990
5991                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5992                  * This was suggested by Alexander Duyck, as compiler
5993                  * emits better code than :
5994                  * if (val & NAPIF_STATE_SCHED)
5995                  *     new |= NAPIF_STATE_MISSED;
5996                  */
5997                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5998                                                    NAPIF_STATE_MISSED;
5999         } while (cmpxchg(&n->state, val, new) != val);
6000
6001         return !(val & NAPIF_STATE_SCHED);
6002 }
6003 EXPORT_SYMBOL(napi_schedule_prep);
6004
6005 /**
6006  * __napi_schedule_irqoff - schedule for receive
6007  * @n: entry to schedule
6008  *
6009  * Variant of __napi_schedule() assuming hard irqs are masked
6010  */
6011 void __napi_schedule_irqoff(struct napi_struct *n)
6012 {
6013         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6014 }
6015 EXPORT_SYMBOL(__napi_schedule_irqoff);
6016
6017 bool napi_complete_done(struct napi_struct *n, int work_done)
6018 {
6019         unsigned long flags, val, new;
6020
6021         /*
6022          * 1) Don't let napi dequeue from the cpu poll list
6023          *    just in case its running on a different cpu.
6024          * 2) If we are busy polling, do nothing here, we have
6025          *    the guarantee we will be called later.
6026          */
6027         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6028                                  NAPIF_STATE_IN_BUSY_POLL)))
6029                 return false;
6030
6031         if (n->gro_bitmask) {
6032                 unsigned long timeout = 0;
6033
6034                 if (work_done)
6035                         timeout = n->dev->gro_flush_timeout;
6036
6037                 /* When the NAPI instance uses a timeout and keeps postponing
6038                  * it, we need to bound somehow the time packets are kept in
6039                  * the GRO layer
6040                  */
6041                 napi_gro_flush(n, !!timeout);
6042                 if (timeout)
6043                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
6044                                       HRTIMER_MODE_REL_PINNED);
6045         }
6046         if (unlikely(!list_empty(&n->poll_list))) {
6047                 /* If n->poll_list is not empty, we need to mask irqs */
6048                 local_irq_save(flags);
6049                 list_del_init(&n->poll_list);
6050                 local_irq_restore(flags);
6051         }
6052
6053         do {
6054                 val = READ_ONCE(n->state);
6055
6056                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6057
6058                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6059
6060                 /* If STATE_MISSED was set, leave STATE_SCHED set,
6061                  * because we will call napi->poll() one more time.
6062                  * This C code was suggested by Alexander Duyck to help gcc.
6063                  */
6064                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6065                                                     NAPIF_STATE_SCHED;
6066         } while (cmpxchg(&n->state, val, new) != val);
6067
6068         if (unlikely(val & NAPIF_STATE_MISSED)) {
6069                 __napi_schedule(n);
6070                 return false;
6071         }
6072
6073         return true;
6074 }
6075 EXPORT_SYMBOL(napi_complete_done);
6076
6077 /* must be called under rcu_read_lock(), as we dont take a reference */
6078 static struct napi_struct *napi_by_id(unsigned int napi_id)
6079 {
6080         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6081         struct napi_struct *napi;
6082
6083         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6084                 if (napi->napi_id == napi_id)
6085                         return napi;
6086
6087         return NULL;
6088 }
6089
6090 #if defined(CONFIG_NET_RX_BUSY_POLL)
6091
6092 #define BUSY_POLL_BUDGET 8
6093
6094 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6095 {
6096         int rc;
6097
6098         /* Busy polling means there is a high chance device driver hard irq
6099          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6100          * set in napi_schedule_prep().
6101          * Since we are about to call napi->poll() once more, we can safely
6102          * clear NAPI_STATE_MISSED.
6103          *
6104          * Note: x86 could use a single "lock and ..." instruction
6105          * to perform these two clear_bit()
6106          */
6107         clear_bit(NAPI_STATE_MISSED, &napi->state);
6108         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6109
6110         local_bh_disable();
6111
6112         /* All we really want here is to re-enable device interrupts.
6113          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6114          */
6115         rc = napi->poll(napi, BUSY_POLL_BUDGET);
6116         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6117         netpoll_poll_unlock(have_poll_lock);
6118         if (rc == BUSY_POLL_BUDGET)
6119                 __napi_schedule(napi);
6120         local_bh_enable();
6121 }
6122
6123 void napi_busy_loop(unsigned int napi_id,
6124                     bool (*loop_end)(void *, unsigned long),
6125                     void *loop_end_arg)
6126 {
6127         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6128         int (*napi_poll)(struct napi_struct *napi, int budget);
6129         void *have_poll_lock = NULL;
6130         struct napi_struct *napi;
6131
6132 restart:
6133         napi_poll = NULL;
6134
6135         rcu_read_lock();
6136
6137         napi = napi_by_id(napi_id);
6138         if (!napi)
6139                 goto out;
6140
6141         preempt_disable();
6142         for (;;) {
6143                 int work = 0;
6144
6145                 local_bh_disable();
6146                 if (!napi_poll) {
6147                         unsigned long val = READ_ONCE(napi->state);
6148
6149                         /* If multiple threads are competing for this napi,
6150                          * we avoid dirtying napi->state as much as we can.
6151                          */
6152                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6153                                    NAPIF_STATE_IN_BUSY_POLL))
6154                                 goto count;
6155                         if (cmpxchg(&napi->state, val,
6156                                     val | NAPIF_STATE_IN_BUSY_POLL |
6157                                           NAPIF_STATE_SCHED) != val)
6158                                 goto count;
6159                         have_poll_lock = netpoll_poll_lock(napi);
6160                         napi_poll = napi->poll;
6161                 }
6162                 work = napi_poll(napi, BUSY_POLL_BUDGET);
6163                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6164 count:
6165                 if (work > 0)
6166                         __NET_ADD_STATS(dev_net(napi->dev),
6167                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
6168                 local_bh_enable();
6169
6170                 if (!loop_end || loop_end(loop_end_arg, start_time))
6171                         break;
6172
6173                 if (unlikely(need_resched())) {
6174                         if (napi_poll)
6175                                 busy_poll_stop(napi, have_poll_lock);
6176                         preempt_enable();
6177                         rcu_read_unlock();
6178                         cond_resched();
6179                         if (loop_end(loop_end_arg, start_time))
6180                                 return;
6181                         goto restart;
6182                 }
6183                 cpu_relax();
6184         }
6185         if (napi_poll)
6186                 busy_poll_stop(napi, have_poll_lock);
6187         preempt_enable();
6188 out:
6189         rcu_read_unlock();
6190 }
6191 EXPORT_SYMBOL(napi_busy_loop);
6192
6193 #endif /* CONFIG_NET_RX_BUSY_POLL */
6194
6195 static void napi_hash_add(struct napi_struct *napi)
6196 {
6197         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6198             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6199                 return;
6200
6201         spin_lock(&napi_hash_lock);
6202
6203         /* 0..NR_CPUS range is reserved for sender_cpu use */
6204         do {
6205                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6206                         napi_gen_id = MIN_NAPI_ID;
6207         } while (napi_by_id(napi_gen_id));
6208         napi->napi_id = napi_gen_id;
6209
6210         hlist_add_head_rcu(&napi->napi_hash_node,
6211                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6212
6213         spin_unlock(&napi_hash_lock);
6214 }
6215
6216 /* Warning : caller is responsible to make sure rcu grace period
6217  * is respected before freeing memory containing @napi
6218  */
6219 bool napi_hash_del(struct napi_struct *napi)
6220 {
6221         bool rcu_sync_needed = false;
6222
6223         spin_lock(&napi_hash_lock);
6224
6225         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6226                 rcu_sync_needed = true;
6227                 hlist_del_rcu(&napi->napi_hash_node);
6228         }
6229         spin_unlock(&napi_hash_lock);
6230         return rcu_sync_needed;
6231 }
6232 EXPORT_SYMBOL_GPL(napi_hash_del);
6233
6234 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6235 {
6236         struct napi_struct *napi;
6237
6238         napi = container_of(timer, struct napi_struct, timer);
6239
6240         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6241          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6242          */
6243         if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6244             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6245                 __napi_schedule_irqoff(napi);
6246
6247         return HRTIMER_NORESTART;
6248 }
6249
6250 static void init_gro_hash(struct napi_struct *napi)
6251 {
6252         int i;
6253
6254         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6255                 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6256                 napi->gro_hash[i].count = 0;
6257         }
6258         napi->gro_bitmask = 0;
6259 }
6260
6261 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6262                     int (*poll)(struct napi_struct *, int), int weight)
6263 {
6264         INIT_LIST_HEAD(&napi->poll_list);
6265         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6266         napi->timer.function = napi_watchdog;
6267         init_gro_hash(napi);
6268         napi->skb = NULL;
6269         napi->poll = poll;
6270         if (weight > NAPI_POLL_WEIGHT)
6271                 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6272                                 weight);
6273         napi->weight = weight;
6274         list_add(&napi->dev_list, &dev->napi_list);
6275         napi->dev = dev;
6276 #ifdef CONFIG_NETPOLL
6277         napi->poll_owner = -1;
6278 #endif
6279         set_bit(NAPI_STATE_SCHED, &napi->state);
6280         napi_hash_add(napi);
6281 }
6282 EXPORT_SYMBOL(netif_napi_add);
6283
6284 void napi_disable(struct napi_struct *n)
6285 {
6286         might_sleep();
6287         set_bit(NAPI_STATE_DISABLE, &n->state);
6288
6289         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6290                 msleep(1);
6291         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6292                 msleep(1);
6293
6294         hrtimer_cancel(&n->timer);
6295
6296         clear_bit(NAPI_STATE_DISABLE, &n->state);
6297 }
6298 EXPORT_SYMBOL(napi_disable);
6299
6300 static void flush_gro_hash(struct napi_struct *napi)
6301 {
6302         int i;
6303
6304         for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6305                 struct sk_buff *skb, *n;
6306
6307                 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6308                         kfree_skb(skb);
6309                 napi->gro_hash[i].count = 0;
6310         }
6311 }
6312
6313 /* Must be called in process context */
6314 void netif_napi_del(struct napi_struct *napi)
6315 {
6316         might_sleep();
6317         if (napi_hash_del(napi))
6318                 synchronize_net();
6319         list_del_init(&napi->dev_list);
6320         napi_free_frags(napi);
6321
6322         flush_gro_hash(napi);
6323         napi->gro_bitmask = 0;
6324 }
6325 EXPORT_SYMBOL(netif_napi_del);
6326
6327 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6328 {
6329         void *have;
6330         int work, weight;
6331
6332         list_del_init(&n->poll_list);
6333
6334         have = netpoll_poll_lock(n);
6335
6336         weight = n->weight;
6337
6338         /* This NAPI_STATE_SCHED test is for avoiding a race
6339          * with netpoll's poll_napi().  Only the entity which
6340          * obtains the lock and sees NAPI_STATE_SCHED set will
6341          * actually make the ->poll() call.  Therefore we avoid
6342          * accidentally calling ->poll() when NAPI is not scheduled.
6343          */
6344         work = 0;
6345         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6346                 work = n->poll(n, weight);
6347                 trace_napi_poll(n, work, weight);
6348         }
6349
6350         WARN_ON_ONCE(work > weight);
6351
6352         if (likely(work < weight))
6353                 goto out_unlock;
6354
6355         /* Drivers must not modify the NAPI state if they
6356          * consume the entire weight.  In such cases this code
6357          * still "owns" the NAPI instance and therefore can
6358          * move the instance around on the list at-will.
6359          */
6360         if (unlikely(napi_disable_pending(n))) {
6361                 napi_complete(n);
6362                 goto out_unlock;
6363         }
6364
6365         if (n->gro_bitmask) {
6366                 /* flush too old packets
6367                  * If HZ < 1000, flush all packets.
6368                  */
6369                 napi_gro_flush(n, HZ >= 1000);
6370         }
6371
6372         /* Some drivers may have called napi_schedule
6373          * prior to exhausting their budget.
6374          */
6375         if (unlikely(!list_empty(&n->poll_list))) {
6376                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6377                              n->dev ? n->dev->name : "backlog");
6378                 goto out_unlock;
6379         }
6380
6381         list_add_tail(&n->poll_list, repoll);
6382
6383 out_unlock:
6384         netpoll_poll_unlock(have);
6385
6386         return work;
6387 }
6388
6389 static __latent_entropy void net_rx_action(struct softirq_action *h)
6390 {
6391         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6392         unsigned long time_limit = jiffies +
6393                 usecs_to_jiffies(netdev_budget_usecs);
6394         int budget = netdev_budget;
6395         LIST_HEAD(list);
6396         LIST_HEAD(repoll);
6397
6398         local_irq_disable();
6399         list_splice_init(&sd->poll_list, &list);
6400         local_irq_enable();
6401
6402         for (;;) {
6403                 struct napi_struct *n;
6404
6405                 if (list_empty(&list)) {
6406                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6407                                 goto out;
6408                         break;
6409                 }
6410
6411                 n = list_first_entry(&list, struct napi_struct, poll_list);
6412                 budget -= napi_poll(n, &repoll);
6413
6414                 /* If softirq window is exhausted then punt.
6415                  * Allow this to run for 2 jiffies since which will allow
6416                  * an average latency of 1.5/HZ.
6417                  */
6418                 if (unlikely(budget <= 0 ||
6419                              time_after_eq(jiffies, time_limit))) {
6420                         sd->time_squeeze++;
6421                         break;
6422                 }
6423         }
6424
6425         local_irq_disable();
6426
6427         list_splice_tail_init(&sd->poll_list, &list);
6428         list_splice_tail(&repoll, &list);
6429         list_splice(&list, &sd->poll_list);
6430         if (!list_empty(&sd->poll_list))
6431                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6432
6433         net_rps_action_and_irq_enable(sd);
6434 out:
6435         __kfree_skb_flush();
6436 }
6437
6438 struct netdev_adjacent {
6439         struct net_device *dev;
6440
6441         /* upper master flag, there can only be one master device per list */
6442         bool master;
6443
6444         /* counter for the number of times this device was added to us */
6445         u16 ref_nr;
6446
6447         /* private field for the users */
6448         void *private;
6449
6450         struct list_head list;
6451         struct rcu_head rcu;
6452 };
6453
6454 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6455                                                  struct list_head *adj_list)
6456 {
6457         struct netdev_adjacent *adj;
6458
6459         list_for_each_entry(adj, adj_list, list) {
6460                 if (adj->dev == adj_dev)
6461                         return adj;
6462         }
6463         return NULL;
6464 }
6465
6466 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6467 {
6468         struct net_device *dev = data;
6469
6470         return upper_dev == dev;
6471 }
6472
6473 /**
6474  * netdev_has_upper_dev - Check if device is linked to an upper device
6475  * @dev: device
6476  * @upper_dev: upper device to check
6477  *
6478  * Find out if a device is linked to specified upper device and return true
6479  * in case it is. Note that this checks only immediate upper device,
6480  * not through a complete stack of devices. The caller must hold the RTNL lock.
6481  */
6482 bool netdev_has_upper_dev(struct net_device *dev,
6483                           struct net_device *upper_dev)
6484 {
6485         ASSERT_RTNL();
6486
6487         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6488                                              upper_dev);
6489 }
6490 EXPORT_SYMBOL(netdev_has_upper_dev);
6491
6492 /**
6493  * netdev_has_upper_dev_all - Check if device is linked to an upper device
6494  * @dev: device
6495  * @upper_dev: upper device to check
6496  *
6497  * Find out if a device is linked to specified upper device and return true
6498  * in case it is. Note that this checks the entire upper device chain.
6499  * The caller must hold rcu lock.
6500  */
6501
6502 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6503                                   struct net_device *upper_dev)
6504 {
6505         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6506                                                upper_dev);
6507 }
6508 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6509
6510 /**
6511  * netdev_has_any_upper_dev - Check if device is linked to some device
6512  * @dev: device
6513  *
6514  * Find out if a device is linked to an upper device and return true in case
6515  * it is. The caller must hold the RTNL lock.
6516  */
6517 bool netdev_has_any_upper_dev(struct net_device *dev)
6518 {
6519         ASSERT_RTNL();
6520
6521         return !list_empty(&dev->adj_list.upper);
6522 }
6523 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6524
6525 /**
6526  * netdev_master_upper_dev_get - Get master upper device
6527  * @dev: device
6528  *
6529  * Find a master upper device and return pointer to it or NULL in case
6530  * it's not there. The caller must hold the RTNL lock.
6531  */
6532 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6533 {
6534         struct netdev_adjacent *upper;
6535
6536         ASSERT_RTNL();
6537
6538         if (list_empty(&dev->adj_list.upper))
6539                 return NULL;
6540
6541         upper = list_first_entry(&dev->adj_list.upper,
6542                                  struct netdev_adjacent, list);
6543         if (likely(upper->master))
6544                 return upper->dev;
6545         return NULL;
6546 }
6547 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6548
6549 /**
6550  * netdev_has_any_lower_dev - Check if device is linked to some device
6551  * @dev: device
6552  *
6553  * Find out if a device is linked to a lower device and return true in case
6554  * it is. The caller must hold the RTNL lock.
6555  */
6556 static bool netdev_has_any_lower_dev(struct net_device *dev)
6557 {
6558         ASSERT_RTNL();
6559
6560         return !list_empty(&dev->adj_list.lower);
6561 }
6562
6563 void *netdev_adjacent_get_private(struct list_head *adj_list)
6564 {
6565         struct netdev_adjacent *adj;
6566
6567         adj = list_entry(adj_list, struct netdev_adjacent, list);
6568
6569         return adj->private;
6570 }
6571 EXPORT_SYMBOL(netdev_adjacent_get_private);
6572
6573 /**
6574  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6575  * @dev: device
6576  * @iter: list_head ** of the current position
6577  *
6578  * Gets the next device from the dev's upper list, starting from iter
6579  * position. The caller must hold RCU read lock.
6580  */
6581 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6582                                                  struct list_head **iter)
6583 {
6584         struct netdev_adjacent *upper;
6585
6586         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6587
6588         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6589
6590         if (&upper->list == &dev->adj_list.upper)
6591                 return NULL;
6592
6593         *iter = &upper->list;
6594
6595         return upper->dev;
6596 }
6597 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6598
6599 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6600                                                     struct list_head **iter)
6601 {
6602         struct netdev_adjacent *upper;
6603
6604         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6605
6606         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6607
6608         if (&upper->list == &dev->adj_list.upper)
6609                 return NULL;
6610
6611         *iter = &upper->list;
6612
6613         return upper->dev;
6614 }
6615
6616 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6617                                   int (*fn)(struct net_device *dev,
6618                                             void *data),
6619                                   void *data)
6620 {
6621         struct net_device *udev;
6622         struct list_head *iter;
6623         int ret;
6624
6625         for (iter = &dev->adj_list.upper,
6626              udev = netdev_next_upper_dev_rcu(dev, &iter);
6627              udev;
6628              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6629                 /* first is the upper device itself */
6630                 ret = fn(udev, data);
6631                 if (ret)
6632                         return ret;
6633
6634                 /* then look at all of its upper devices */
6635                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6636                 if (ret)
6637                         return ret;
6638         }
6639
6640         return 0;
6641 }
6642 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6643
6644 /**
6645  * netdev_lower_get_next_private - Get the next ->private from the
6646  *                                 lower neighbour list
6647  * @dev: device
6648  * @iter: list_head ** of the current position
6649  *
6650  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6651  * list, starting from iter position. The caller must hold either hold the
6652  * RTNL lock or its own locking that guarantees that the neighbour lower
6653  * list will remain unchanged.
6654  */
6655 void *netdev_lower_get_next_private(struct net_device *dev,
6656                                     struct list_head **iter)
6657 {
6658         struct netdev_adjacent *lower;
6659
6660         lower = list_entry(*iter, struct netdev_adjacent, list);
6661
6662         if (&lower->list == &dev->adj_list.lower)
6663                 return NULL;
6664
6665         *iter = lower->list.next;
6666
6667         return lower->private;
6668 }
6669 EXPORT_SYMBOL(netdev_lower_get_next_private);
6670
6671 /**
6672  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6673  *                                     lower neighbour list, RCU
6674  *                                     variant
6675  * @dev: device
6676  * @iter: list_head ** of the current position
6677  *
6678  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6679  * list, starting from iter position. The caller must hold RCU read lock.
6680  */
6681 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6682                                         struct list_head **iter)
6683 {
6684         struct netdev_adjacent *lower;
6685
6686         WARN_ON_ONCE(!rcu_read_lock_held());
6687
6688         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6689
6690         if (&lower->list == &dev->adj_list.lower)
6691                 return NULL;
6692
6693         *iter = &lower->list;
6694
6695         return lower->private;
6696 }
6697 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6698
6699 /**
6700  * netdev_lower_get_next - Get the next device from the lower neighbour
6701  *                         list
6702  * @dev: device
6703  * @iter: list_head ** of the current position
6704  *
6705  * Gets the next netdev_adjacent from the dev's lower neighbour
6706  * list, starting from iter position. The caller must hold RTNL lock or
6707  * its own locking that guarantees that the neighbour lower
6708  * list will remain unchanged.
6709  */
6710 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6711 {
6712         struct netdev_adjacent *lower;
6713
6714         lower = list_entry(*iter, struct netdev_adjacent, list);
6715
6716         if (&lower->list == &dev->adj_list.lower)
6717                 return NULL;
6718
6719         *iter = lower->list.next;
6720
6721         return lower->dev;
6722 }
6723 EXPORT_SYMBOL(netdev_lower_get_next);
6724
6725 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6726                                                 struct list_head **iter)
6727 {
6728         struct netdev_adjacent *lower;
6729
6730         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6731
6732         if (&lower->list == &dev->adj_list.lower)
6733                 return NULL;
6734
6735         *iter = &lower->list;
6736
6737         return lower->dev;
6738 }
6739
6740 int netdev_walk_all_lower_dev(struct net_device *dev,
6741                               int (*fn)(struct net_device *dev,
6742                                         void *data),
6743                               void *data)
6744 {
6745         struct net_device *ldev;
6746         struct list_head *iter;
6747         int ret;
6748
6749         for (iter = &dev->adj_list.lower,
6750              ldev = netdev_next_lower_dev(dev, &iter);
6751              ldev;
6752              ldev = netdev_next_lower_dev(dev, &iter)) {
6753                 /* first is the lower device itself */
6754                 ret = fn(ldev, data);
6755                 if (ret)
6756                         return ret;
6757
6758                 /* then look at all of its lower devices */
6759                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6760                 if (ret)
6761                         return ret;
6762         }
6763
6764         return 0;
6765 }
6766 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6767
6768 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6769                                                     struct list_head **iter)
6770 {
6771         struct netdev_adjacent *lower;
6772
6773         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6774         if (&lower->list == &dev->adj_list.lower)
6775                 return NULL;
6776
6777         *iter = &lower->list;
6778
6779         return lower->dev;
6780 }
6781
6782 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6783                                   int (*fn)(struct net_device *dev,
6784                                             void *data),
6785                                   void *data)
6786 {
6787         struct net_device *ldev;
6788         struct list_head *iter;
6789         int ret;
6790
6791         for (iter = &dev->adj_list.lower,
6792              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6793              ldev;
6794              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6795                 /* first is the lower device itself */
6796                 ret = fn(ldev, data);
6797                 if (ret)
6798                         return ret;
6799
6800                 /* then look at all of its lower devices */
6801                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6802                 if (ret)
6803                         return ret;
6804         }
6805
6806         return 0;
6807 }
6808 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6809
6810 /**
6811  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6812  *                                     lower neighbour list, RCU
6813  *                                     variant
6814  * @dev: device
6815  *
6816  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6817  * list. The caller must hold RCU read lock.
6818  */
6819 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6820 {
6821         struct netdev_adjacent *lower;
6822
6823         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6824                         struct netdev_adjacent, list);
6825         if (lower)
6826                 return lower->private;
6827         return NULL;
6828 }
6829 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6830
6831 /**
6832  * netdev_master_upper_dev_get_rcu - Get master upper device
6833  * @dev: device
6834  *
6835  * Find a master upper device and return pointer to it or NULL in case
6836  * it's not there. The caller must hold the RCU read lock.
6837  */
6838 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6839 {
6840         struct netdev_adjacent *upper;
6841
6842         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6843                                        struct netdev_adjacent, list);
6844         if (upper && likely(upper->master))
6845                 return upper->dev;
6846         return NULL;
6847 }
6848 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6849
6850 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6851                               struct net_device *adj_dev,
6852                               struct list_head *dev_list)
6853 {
6854         char linkname[IFNAMSIZ+7];
6855
6856         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6857                 "upper_%s" : "lower_%s", adj_dev->name);
6858         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6859                                  linkname);
6860 }
6861 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6862                                char *name,
6863                                struct list_head *dev_list)
6864 {
6865         char linkname[IFNAMSIZ+7];
6866
6867         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6868                 "upper_%s" : "lower_%s", name);
6869         sysfs_remove_link(&(dev->dev.kobj), linkname);
6870 }
6871
6872 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6873                                                  struct net_device *adj_dev,
6874                                                  struct list_head *dev_list)
6875 {
6876         return (dev_list == &dev->adj_list.upper ||
6877                 dev_list == &dev->adj_list.lower) &&
6878                 net_eq(dev_net(dev), dev_net(adj_dev));
6879 }
6880
6881 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6882                                         struct net_device *adj_dev,
6883                                         struct list_head *dev_list,
6884                                         void *private, bool master)
6885 {
6886         struct netdev_adjacent *adj;
6887         int ret;
6888
6889         adj = __netdev_find_adj(adj_dev, dev_list);
6890
6891         if (adj) {
6892                 adj->ref_nr += 1;
6893                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6894                          dev->name, adj_dev->name, adj->ref_nr);
6895
6896                 return 0;
6897         }
6898
6899         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6900         if (!adj)
6901                 return -ENOMEM;
6902
6903         adj->dev = adj_dev;
6904         adj->master = master;
6905         adj->ref_nr = 1;
6906         adj->private = private;
6907         dev_hold(adj_dev);
6908
6909         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6910                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6911
6912         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6913                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6914                 if (ret)
6915                         goto free_adj;
6916         }
6917
6918         /* Ensure that master link is always the first item in list. */
6919         if (master) {
6920                 ret = sysfs_create_link(&(dev->dev.kobj),
6921                                         &(adj_dev->dev.kobj), "master");
6922                 if (ret)
6923                         goto remove_symlinks;
6924
6925                 list_add_rcu(&adj->list, dev_list);
6926         } else {
6927                 list_add_tail_rcu(&adj->list, dev_list);
6928         }
6929
6930         return 0;
6931
6932 remove_symlinks:
6933         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6934                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6935 free_adj:
6936         kfree(adj);
6937         dev_put(adj_dev);
6938
6939         return ret;
6940 }
6941
6942 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6943                                          struct net_device *adj_dev,
6944                                          u16 ref_nr,
6945                                          struct list_head *dev_list)
6946 {
6947         struct netdev_adjacent *adj;
6948
6949         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6950                  dev->name, adj_dev->name, ref_nr);
6951
6952         adj = __netdev_find_adj(adj_dev, dev_list);
6953
6954         if (!adj) {
6955                 pr_err("Adjacency does not exist for device %s from %s\n",
6956                        dev->name, adj_dev->name);
6957                 WARN_ON(1);
6958                 return;
6959         }
6960
6961         if (adj->ref_nr > ref_nr) {
6962                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6963                          dev->name, adj_dev->name, ref_nr,
6964                          adj->ref_nr - ref_nr);
6965                 adj->ref_nr -= ref_nr;
6966                 return;
6967         }
6968
6969         if (adj->master)
6970                 sysfs_remove_link(&(dev->dev.kobj), "master");
6971
6972         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6973                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6974
6975         list_del_rcu(&adj->list);
6976         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6977                  adj_dev->name, dev->name, adj_dev->name);
6978         dev_put(adj_dev);
6979         kfree_rcu(adj, rcu);
6980 }
6981
6982 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6983                                             struct net_device *upper_dev,
6984                                             struct list_head *up_list,
6985                                             struct list_head *down_list,
6986                                             void *private, bool master)
6987 {
6988         int ret;
6989
6990         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6991                                            private, master);
6992         if (ret)
6993                 return ret;
6994
6995         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6996                                            private, false);
6997         if (ret) {
6998                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6999                 return ret;
7000         }
7001
7002         return 0;
7003 }
7004
7005 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7006                                                struct net_device *upper_dev,
7007                                                u16 ref_nr,
7008                                                struct list_head *up_list,
7009                                                struct list_head *down_list)
7010 {
7011         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7012         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7013 }
7014
7015 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7016                                                 struct net_device *upper_dev,
7017                                                 void *private, bool master)
7018 {
7019         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7020                                                 &dev->adj_list.upper,
7021                                                 &upper_dev->adj_list.lower,
7022                                                 private, master);
7023 }
7024
7025 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7026                                                    struct net_device *upper_dev)
7027 {
7028         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7029                                            &dev->adj_list.upper,
7030                                            &upper_dev->adj_list.lower);
7031 }
7032
7033 static int __netdev_upper_dev_link(struct net_device *dev,
7034                                    struct net_device *upper_dev, bool master,
7035                                    void *upper_priv, void *upper_info,
7036                                    struct netlink_ext_ack *extack)
7037 {
7038         struct netdev_notifier_changeupper_info changeupper_info = {
7039                 .info = {
7040                         .dev = dev,
7041                         .extack = extack,
7042                 },
7043                 .upper_dev = upper_dev,
7044                 .master = master,
7045                 .linking = true,
7046                 .upper_info = upper_info,
7047         };
7048         struct net_device *master_dev;
7049         int ret = 0;
7050
7051         ASSERT_RTNL();
7052
7053         if (dev == upper_dev)
7054                 return -EBUSY;
7055
7056         /* To prevent loops, check if dev is not upper device to upper_dev. */
7057         if (netdev_has_upper_dev(upper_dev, dev))
7058                 return -EBUSY;
7059
7060         if (!master) {
7061                 if (netdev_has_upper_dev(dev, upper_dev))
7062                         return -EEXIST;
7063         } else {
7064                 master_dev = netdev_master_upper_dev_get(dev);
7065                 if (master_dev)
7066                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
7067         }
7068
7069         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7070                                             &changeupper_info.info);
7071         ret = notifier_to_errno(ret);
7072         if (ret)
7073                 return ret;
7074
7075         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7076                                                    master);
7077         if (ret)
7078                 return ret;
7079
7080         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7081                                             &changeupper_info.info);
7082         ret = notifier_to_errno(ret);
7083         if (ret)
7084                 goto rollback;
7085
7086         return 0;
7087
7088 rollback:
7089         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7090
7091         return ret;
7092 }
7093
7094 /**
7095  * netdev_upper_dev_link - Add a link to the upper device
7096  * @dev: device
7097  * @upper_dev: new upper device
7098  * @extack: netlink extended ack
7099  *
7100  * Adds a link to device which is upper to this one. The caller must hold
7101  * the RTNL lock. On a failure a negative errno code is returned.
7102  * On success the reference counts are adjusted and the function
7103  * returns zero.
7104  */
7105 int netdev_upper_dev_link(struct net_device *dev,
7106                           struct net_device *upper_dev,
7107                           struct netlink_ext_ack *extack)
7108 {
7109         return __netdev_upper_dev_link(dev, upper_dev, false,
7110                                        NULL, NULL, extack);
7111 }
7112 EXPORT_SYMBOL(netdev_upper_dev_link);
7113
7114 /**
7115  * netdev_master_upper_dev_link - Add a master link to the upper device
7116  * @dev: device
7117  * @upper_dev: new upper device
7118  * @upper_priv: upper device private
7119  * @upper_info: upper info to be passed down via notifier
7120  * @extack: netlink extended ack
7121  *
7122  * Adds a link to device which is upper to this one. In this case, only
7123  * one master upper device can be linked, although other non-master devices
7124  * might be linked as well. The caller must hold the RTNL lock.
7125  * On a failure a negative errno code is returned. On success the reference
7126  * counts are adjusted and the function returns zero.
7127  */
7128 int netdev_master_upper_dev_link(struct net_device *dev,
7129                                  struct net_device *upper_dev,
7130                                  void *upper_priv, void *upper_info,
7131                                  struct netlink_ext_ack *extack)
7132 {
7133         return __netdev_upper_dev_link(dev, upper_dev, true,
7134                                        upper_priv, upper_info, extack);
7135 }
7136 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7137
7138 /**
7139  * netdev_upper_dev_unlink - Removes a link to upper device
7140  * @dev: device
7141  * @upper_dev: new upper device
7142  *
7143  * Removes a link to device which is upper to this one. The caller must hold
7144  * the RTNL lock.
7145  */
7146 void netdev_upper_dev_unlink(struct net_device *dev,
7147                              struct net_device *upper_dev)
7148 {
7149         struct netdev_notifier_changeupper_info changeupper_info = {
7150                 .info = {
7151                         .dev = dev,
7152                 },
7153                 .upper_dev = upper_dev,
7154                 .linking = false,
7155         };
7156
7157         ASSERT_RTNL();
7158
7159         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7160
7161         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7162                                       &changeupper_info.info);
7163
7164         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7165
7166         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7167                                       &changeupper_info.info);
7168 }
7169 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7170
7171 /**
7172  * netdev_bonding_info_change - Dispatch event about slave change
7173  * @dev: device
7174  * @bonding_info: info to dispatch
7175  *
7176  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7177  * The caller must hold the RTNL lock.
7178  */
7179 void netdev_bonding_info_change(struct net_device *dev,
7180                                 struct netdev_bonding_info *bonding_info)
7181 {
7182         struct netdev_notifier_bonding_info info = {
7183                 .info.dev = dev,
7184         };
7185
7186         memcpy(&info.bonding_info, bonding_info,
7187                sizeof(struct netdev_bonding_info));
7188         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7189                                       &info.info);
7190 }
7191 EXPORT_SYMBOL(netdev_bonding_info_change);
7192
7193 static void netdev_adjacent_add_links(struct net_device *dev)
7194 {
7195         struct netdev_adjacent *iter;
7196
7197         struct net *net = dev_net(dev);
7198
7199         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7200                 if (!net_eq(net, dev_net(iter->dev)))
7201                         continue;
7202                 netdev_adjacent_sysfs_add(iter->dev, dev,
7203                                           &iter->dev->adj_list.lower);
7204                 netdev_adjacent_sysfs_add(dev, iter->dev,
7205                                           &dev->adj_list.upper);
7206         }
7207
7208         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7209                 if (!net_eq(net, dev_net(iter->dev)))
7210                         continue;
7211                 netdev_adjacent_sysfs_add(iter->dev, dev,
7212                                           &iter->dev->adj_list.upper);
7213                 netdev_adjacent_sysfs_add(dev, iter->dev,
7214                                           &dev->adj_list.lower);
7215         }
7216 }
7217
7218 static void netdev_adjacent_del_links(struct net_device *dev)
7219 {
7220         struct netdev_adjacent *iter;
7221
7222         struct net *net = dev_net(dev);
7223
7224         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7225                 if (!net_eq(net, dev_net(iter->dev)))
7226                         continue;
7227                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7228                                           &iter->dev->adj_list.lower);
7229                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7230                                           &dev->adj_list.upper);
7231         }
7232
7233         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7234                 if (!net_eq(net, dev_net(iter->dev)))
7235                         continue;
7236                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
7237                                           &iter->dev->adj_list.upper);
7238                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
7239                                           &dev->adj_list.lower);
7240         }
7241 }
7242
7243 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7244 {
7245         struct netdev_adjacent *iter;
7246
7247         struct net *net = dev_net(dev);
7248
7249         list_for_each_entry(iter, &dev->adj_list.upper, list) {
7250                 if (!net_eq(net, dev_net(iter->dev)))
7251                         continue;
7252                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7253                                           &iter->dev->adj_list.lower);
7254                 netdev_adjacent_sysfs_add(iter->dev, dev,
7255                                           &iter->dev->adj_list.lower);
7256         }
7257
7258         list_for_each_entry(iter, &dev->adj_list.lower, list) {
7259                 if (!net_eq(net, dev_net(iter->dev)))
7260                         continue;
7261                 netdev_adjacent_sysfs_del(iter->dev, oldname,
7262                                           &iter->dev->adj_list.upper);
7263                 netdev_adjacent_sysfs_add(iter->dev, dev,
7264                                           &iter->dev->adj_list.upper);
7265         }
7266 }
7267
7268 void *netdev_lower_dev_get_private(struct net_device *dev,
7269                                    struct net_device *lower_dev)
7270 {
7271         struct netdev_adjacent *lower;
7272
7273         if (!lower_dev)
7274                 return NULL;
7275         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7276         if (!lower)
7277                 return NULL;
7278
7279         return lower->private;
7280 }
7281 EXPORT_SYMBOL(netdev_lower_dev_get_private);
7282
7283
7284 int dev_get_nest_level(struct net_device *dev)
7285 {
7286         struct net_device *lower = NULL;
7287         struct list_head *iter;
7288         int max_nest = -1;
7289         int nest;
7290
7291         ASSERT_RTNL();
7292
7293         netdev_for_each_lower_dev(dev, lower, iter) {
7294                 nest = dev_get_nest_level(lower);
7295                 if (max_nest < nest)
7296                         max_nest = nest;
7297         }
7298
7299         return max_nest + 1;
7300 }
7301 EXPORT_SYMBOL(dev_get_nest_level);
7302
7303 /**
7304  * netdev_lower_change - Dispatch event about lower device state change
7305  * @lower_dev: device
7306  * @lower_state_info: state to dispatch
7307  *
7308  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7309  * The caller must hold the RTNL lock.
7310  */
7311 void netdev_lower_state_changed(struct net_device *lower_dev,
7312                                 void *lower_state_info)
7313 {
7314         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7315                 .info.dev = lower_dev,
7316         };
7317
7318         ASSERT_RTNL();
7319         changelowerstate_info.lower_state_info = lower_state_info;
7320         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7321                                       &changelowerstate_info.info);
7322 }
7323 EXPORT_SYMBOL(netdev_lower_state_changed);
7324
7325 static void dev_change_rx_flags(struct net_device *dev, int flags)
7326 {
7327         const struct net_device_ops *ops = dev->netdev_ops;
7328
7329         if (ops->ndo_change_rx_flags)
7330                 ops->ndo_change_rx_flags(dev, flags);
7331 }
7332
7333 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7334 {
7335         unsigned int old_flags = dev->flags;
7336         kuid_t uid;
7337         kgid_t gid;
7338
7339         ASSERT_RTNL();
7340
7341         dev->flags |= IFF_PROMISC;
7342         dev->promiscuity += inc;
7343         if (dev->promiscuity == 0) {
7344                 /*
7345                  * Avoid overflow.
7346                  * If inc causes overflow, untouch promisc and return error.
7347                  */
7348                 if (inc < 0)
7349                         dev->flags &= ~IFF_PROMISC;
7350                 else {
7351                         dev->promiscuity -= inc;
7352                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7353                                 dev->name);
7354                         return -EOVERFLOW;
7355                 }
7356         }
7357         if (dev->flags != old_flags) {
7358                 pr_info("device %s %s promiscuous mode\n",
7359                         dev->name,
7360                         dev->flags & IFF_PROMISC ? "entered" : "left");
7361                 if (audit_enabled) {
7362                         current_uid_gid(&uid, &gid);
7363                         audit_log(audit_context(), GFP_ATOMIC,
7364                                   AUDIT_ANOM_PROMISCUOUS,
7365                                   "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7366                                   dev->name, (dev->flags & IFF_PROMISC),
7367                                   (old_flags & IFF_PROMISC),
7368                                   from_kuid(&init_user_ns, audit_get_loginuid(current)),
7369                                   from_kuid(&init_user_ns, uid),
7370                                   from_kgid(&init_user_ns, gid),
7371                                   audit_get_sessionid(current));
7372                 }
7373
7374                 dev_change_rx_flags(dev, IFF_PROMISC);
7375         }
7376         if (notify)
7377                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7378         return 0;
7379 }
7380
7381 /**
7382  *      dev_set_promiscuity     - update promiscuity count on a device
7383  *      @dev: device
7384  *      @inc: modifier
7385  *
7386  *      Add or remove promiscuity from a device. While the count in the device
7387  *      remains above zero the interface remains promiscuous. Once it hits zero
7388  *      the device reverts back to normal filtering operation. A negative inc
7389  *      value is used to drop promiscuity on the device.
7390  *      Return 0 if successful or a negative errno code on error.
7391  */
7392 int dev_set_promiscuity(struct net_device *dev, int inc)
7393 {
7394         unsigned int old_flags = dev->flags;
7395         int err;
7396
7397         err = __dev_set_promiscuity(dev, inc, true);
7398         if (err < 0)
7399                 return err;
7400         if (dev->flags != old_flags)
7401                 dev_set_rx_mode(dev);
7402         return err;
7403 }
7404 EXPORT_SYMBOL(dev_set_promiscuity);
7405
7406 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7407 {
7408         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7409
7410         ASSERT_RTNL();
7411
7412         dev->flags |= IFF_ALLMULTI;
7413         dev->allmulti += inc;
7414         if (dev->allmulti == 0) {
7415                 /*
7416                  * Avoid overflow.
7417                  * If inc causes overflow, untouch allmulti and return error.
7418                  */
7419                 if (inc < 0)
7420                         dev->flags &= ~IFF_ALLMULTI;
7421                 else {
7422                         dev->allmulti -= inc;
7423                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7424                                 dev->name);
7425                         return -EOVERFLOW;
7426                 }
7427         }
7428         if (dev->flags ^ old_flags) {
7429                 dev_change_rx_flags(dev, IFF_ALLMULTI);
7430                 dev_set_rx_mode(dev);
7431                 if (notify)
7432                         __dev_notify_flags(dev, old_flags,
7433                                            dev->gflags ^ old_gflags);
7434         }
7435         return 0;
7436 }
7437
7438 /**
7439  *      dev_set_allmulti        - update allmulti count on a device
7440  *      @dev: device
7441  *      @inc: modifier
7442  *
7443  *      Add or remove reception of all multicast frames to a device. While the
7444  *      count in the device remains above zero the interface remains listening
7445  *      to all interfaces. Once it hits zero the device reverts back to normal
7446  *      filtering operation. A negative @inc value is used to drop the counter
7447  *      when releasing a resource needing all multicasts.
7448  *      Return 0 if successful or a negative errno code on error.
7449  */
7450
7451 int dev_set_allmulti(struct net_device *dev, int inc)
7452 {
7453         return __dev_set_allmulti(dev, inc, true);
7454 }
7455 EXPORT_SYMBOL(dev_set_allmulti);
7456
7457 /*
7458  *      Upload unicast and multicast address lists to device and
7459  *      configure RX filtering. When the device doesn't support unicast
7460  *      filtering it is put in promiscuous mode while unicast addresses
7461  *      are present.
7462  */
7463 void __dev_set_rx_mode(struct net_device *dev)
7464 {
7465         const struct net_device_ops *ops = dev->netdev_ops;
7466
7467         /* dev_open will call this function so the list will stay sane. */
7468         if (!(dev->flags&IFF_UP))
7469                 return;
7470
7471         if (!netif_device_present(dev))
7472                 return;
7473
7474         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7475                 /* Unicast addresses changes may only happen under the rtnl,
7476                  * therefore calling __dev_set_promiscuity here is safe.
7477                  */
7478                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7479                         __dev_set_promiscuity(dev, 1, false);
7480                         dev->uc_promisc = true;
7481                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7482                         __dev_set_promiscuity(dev, -1, false);
7483                         dev->uc_promisc = false;
7484                 }
7485         }
7486
7487         if (ops->ndo_set_rx_mode)
7488                 ops->ndo_set_rx_mode(dev);
7489 }
7490
7491 void dev_set_rx_mode(struct net_device *dev)
7492 {
7493         netif_addr_lock_bh(dev);
7494         __dev_set_rx_mode(dev);
7495         netif_addr_unlock_bh(dev);
7496 }
7497
7498 /**
7499  *      dev_get_flags - get flags reported to userspace
7500  *      @dev: device
7501  *
7502  *      Get the combination of flag bits exported through APIs to userspace.
7503  */
7504 unsigned int dev_get_flags(const struct net_device *dev)
7505 {
7506         unsigned int flags;
7507
7508         flags = (dev->flags & ~(IFF_PROMISC |
7509                                 IFF_ALLMULTI |
7510                                 IFF_RUNNING |
7511                                 IFF_LOWER_UP |
7512                                 IFF_DORMANT)) |
7513                 (dev->gflags & (IFF_PROMISC |
7514                                 IFF_ALLMULTI));
7515
7516         if (netif_running(dev)) {
7517                 if (netif_oper_up(dev))
7518                         flags |= IFF_RUNNING;
7519                 if (netif_carrier_ok(dev))
7520                         flags |= IFF_LOWER_UP;
7521                 if (netif_dormant(dev))
7522                         flags |= IFF_DORMANT;
7523         }
7524
7525         return flags;
7526 }
7527 EXPORT_SYMBOL(dev_get_flags);
7528
7529 int __dev_change_flags(struct net_device *dev, unsigned int flags,
7530                        struct netlink_ext_ack *extack)
7531 {
7532         unsigned int old_flags = dev->flags;
7533         int ret;
7534
7535         ASSERT_RTNL();
7536
7537         /*
7538          *      Set the flags on our device.
7539          */
7540
7541         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7542                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7543                                IFF_AUTOMEDIA)) |
7544                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7545                                     IFF_ALLMULTI));
7546
7547         /*
7548          *      Load in the correct multicast list now the flags have changed.
7549          */
7550
7551         if ((old_flags ^ flags) & IFF_MULTICAST)
7552                 dev_change_rx_flags(dev, IFF_MULTICAST);
7553
7554         dev_set_rx_mode(dev);
7555
7556         /*
7557          *      Have we downed the interface. We handle IFF_UP ourselves
7558          *      according to user attempts to set it, rather than blindly
7559          *      setting it.
7560          */
7561
7562         ret = 0;
7563         if ((old_flags ^ flags) & IFF_UP) {
7564                 if (old_flags & IFF_UP)
7565                         __dev_close(dev);
7566                 else
7567                         ret = __dev_open(dev, extack);
7568         }
7569
7570         if ((flags ^ dev->gflags) & IFF_PROMISC) {
7571                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
7572                 unsigned int old_flags = dev->flags;
7573
7574                 dev->gflags ^= IFF_PROMISC;
7575
7576                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
7577                         if (dev->flags != old_flags)
7578                                 dev_set_rx_mode(dev);
7579         }
7580
7581         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7582          * is important. Some (broken) drivers set IFF_PROMISC, when
7583          * IFF_ALLMULTI is requested not asking us and not reporting.
7584          */
7585         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7586                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7587
7588                 dev->gflags ^= IFF_ALLMULTI;
7589                 __dev_set_allmulti(dev, inc, false);
7590         }
7591
7592         return ret;
7593 }
7594
7595 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7596                         unsigned int gchanges)
7597 {
7598         unsigned int changes = dev->flags ^ old_flags;
7599
7600         if (gchanges)
7601                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7602
7603         if (changes & IFF_UP) {
7604                 if (dev->flags & IFF_UP)
7605                         call_netdevice_notifiers(NETDEV_UP, dev);
7606                 else
7607                         call_netdevice_notifiers(NETDEV_DOWN, dev);
7608         }
7609
7610         if (dev->flags & IFF_UP &&
7611             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7612                 struct netdev_notifier_change_info change_info = {
7613                         .info = {
7614                                 .dev = dev,
7615                         },
7616                         .flags_changed = changes,
7617                 };
7618
7619                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7620         }
7621 }
7622
7623 /**
7624  *      dev_change_flags - change device settings
7625  *      @dev: device
7626  *      @flags: device state flags
7627  *      @extack: netlink extended ack
7628  *
7629  *      Change settings on device based state flags. The flags are
7630  *      in the userspace exported format.
7631  */
7632 int dev_change_flags(struct net_device *dev, unsigned int flags,
7633                      struct netlink_ext_ack *extack)
7634 {
7635         int ret;
7636         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7637
7638         ret = __dev_change_flags(dev, flags, extack);
7639         if (ret < 0)
7640                 return ret;
7641
7642         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7643         __dev_notify_flags(dev, old_flags, changes);
7644         return ret;
7645 }
7646 EXPORT_SYMBOL(dev_change_flags);
7647
7648 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7649 {
7650         const struct net_device_ops *ops = dev->netdev_ops;
7651
7652         if (ops->ndo_change_mtu)
7653                 return ops->ndo_change_mtu(dev, new_mtu);
7654
7655         dev->mtu = new_mtu;
7656         return 0;
7657 }
7658 EXPORT_SYMBOL(__dev_set_mtu);
7659
7660 /**
7661  *      dev_set_mtu_ext - Change maximum transfer unit
7662  *      @dev: device
7663  *      @new_mtu: new transfer unit
7664  *      @extack: netlink extended ack
7665  *
7666  *      Change the maximum transfer size of the network device.
7667  */
7668 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7669                     struct netlink_ext_ack *extack)
7670 {
7671         int err, orig_mtu;
7672
7673         if (new_mtu == dev->mtu)
7674                 return 0;
7675
7676         /* MTU must be positive, and in range */
7677         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7678                 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7679                 return -EINVAL;
7680         }
7681
7682         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7683                 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7684                 return -EINVAL;
7685         }
7686
7687         if (!netif_device_present(dev))
7688                 return -ENODEV;
7689
7690         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7691         err = notifier_to_errno(err);
7692         if (err)
7693                 return err;
7694
7695         orig_mtu = dev->mtu;
7696         err = __dev_set_mtu(dev, new_mtu);
7697
7698         if (!err) {
7699                 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7700                                                    orig_mtu);
7701                 err = notifier_to_errno(err);
7702                 if (err) {
7703                         /* setting mtu back and notifying everyone again,
7704                          * so that they have a chance to revert changes.
7705                          */
7706                         __dev_set_mtu(dev, orig_mtu);
7707                         call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7708                                                      new_mtu);
7709                 }
7710         }
7711         return err;
7712 }
7713
7714 int dev_set_mtu(struct net_device *dev, int new_mtu)
7715 {
7716         struct netlink_ext_ack extack;
7717         int err;
7718
7719         memset(&extack, 0, sizeof(extack));
7720         err = dev_set_mtu_ext(dev, new_mtu, &extack);
7721         if (err && extack._msg)
7722                 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7723         return err;
7724 }
7725 EXPORT_SYMBOL(dev_set_mtu);
7726
7727 /**
7728  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7729  *      @dev: device
7730  *      @new_len: new tx queue length
7731  */
7732 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7733 {
7734         unsigned int orig_len = dev->tx_queue_len;
7735         int res;
7736
7737         if (new_len != (unsigned int)new_len)
7738                 return -ERANGE;
7739
7740         if (new_len != orig_len) {
7741                 dev->tx_queue_len = new_len;
7742                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7743                 res = notifier_to_errno(res);
7744                 if (res)
7745                         goto err_rollback;
7746                 res = dev_qdisc_change_tx_queue_len(dev);
7747                 if (res)
7748                         goto err_rollback;
7749         }
7750
7751         return 0;
7752
7753 err_rollback:
7754         netdev_err(dev, "refused to change device tx_queue_len\n");
7755         dev->tx_queue_len = orig_len;
7756         return res;
7757 }
7758
7759 /**
7760  *      dev_set_group - Change group this device belongs to
7761  *      @dev: device
7762  *      @new_group: group this device should belong to
7763  */
7764 void dev_set_group(struct net_device *dev, int new_group)
7765 {
7766         dev->group = new_group;
7767 }
7768 EXPORT_SYMBOL(dev_set_group);
7769
7770 /**
7771  *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7772  *      @dev: device
7773  *      @addr: new address
7774  *      @extack: netlink extended ack
7775  */
7776 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7777                               struct netlink_ext_ack *extack)
7778 {
7779         struct netdev_notifier_pre_changeaddr_info info = {
7780                 .info.dev = dev,
7781                 .info.extack = extack,
7782                 .dev_addr = addr,
7783         };
7784         int rc;
7785
7786         rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7787         return notifier_to_errno(rc);
7788 }
7789 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7790
7791 /**
7792  *      dev_set_mac_address - Change Media Access Control Address
7793  *      @dev: device
7794  *      @sa: new address
7795  *      @extack: netlink extended ack
7796  *
7797  *      Change the hardware (MAC) address of the device
7798  */
7799 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7800                         struct netlink_ext_ack *extack)
7801 {
7802         const struct net_device_ops *ops = dev->netdev_ops;
7803         int err;
7804
7805         if (!ops->ndo_set_mac_address)
7806                 return -EOPNOTSUPP;
7807         if (sa->sa_family != dev->type)
7808                 return -EINVAL;
7809         if (!netif_device_present(dev))
7810                 return -ENODEV;
7811         err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7812         if (err)
7813                 return err;
7814         err = ops->ndo_set_mac_address(dev, sa);
7815         if (err)
7816                 return err;
7817         dev->addr_assign_type = NET_ADDR_SET;
7818         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7819         add_device_randomness(dev->dev_addr, dev->addr_len);
7820         return 0;
7821 }
7822 EXPORT_SYMBOL(dev_set_mac_address);
7823
7824 /**
7825  *      dev_change_carrier - Change device carrier
7826  *      @dev: device
7827  *      @new_carrier: new value
7828  *
7829  *      Change device carrier
7830  */
7831 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7832 {
7833         const struct net_device_ops *ops = dev->netdev_ops;
7834
7835         if (!ops->ndo_change_carrier)
7836                 return -EOPNOTSUPP;
7837         if (!netif_device_present(dev))
7838                 return -ENODEV;
7839         return ops->ndo_change_carrier(dev, new_carrier);
7840 }
7841 EXPORT_SYMBOL(dev_change_carrier);
7842
7843 /**
7844  *      dev_get_phys_port_id - Get device physical port ID
7845  *      @dev: device
7846  *      @ppid: port ID
7847  *
7848  *      Get device physical port ID
7849  */
7850 int dev_get_phys_port_id(struct net_device *dev,
7851                          struct netdev_phys_item_id *ppid)
7852 {
7853         const struct net_device_ops *ops = dev->netdev_ops;
7854
7855         if (!ops->ndo_get_phys_port_id)
7856                 return -EOPNOTSUPP;
7857         return ops->ndo_get_phys_port_id(dev, ppid);
7858 }
7859 EXPORT_SYMBOL(dev_get_phys_port_id);
7860
7861 /**
7862  *      dev_get_phys_port_name - Get device physical port name
7863  *      @dev: device
7864  *      @name: port name
7865  *      @len: limit of bytes to copy to name
7866  *
7867  *      Get device physical port name
7868  */
7869 int dev_get_phys_port_name(struct net_device *dev,
7870                            char *name, size_t len)
7871 {
7872         const struct net_device_ops *ops = dev->netdev_ops;
7873
7874         if (!ops->ndo_get_phys_port_name)
7875                 return -EOPNOTSUPP;
7876         return ops->ndo_get_phys_port_name(dev, name, len);
7877 }
7878 EXPORT_SYMBOL(dev_get_phys_port_name);
7879
7880 /**
7881  *      dev_change_proto_down - update protocol port state information
7882  *      @dev: device
7883  *      @proto_down: new value
7884  *
7885  *      This info can be used by switch drivers to set the phys state of the
7886  *      port.
7887  */
7888 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7889 {
7890         const struct net_device_ops *ops = dev->netdev_ops;
7891
7892         if (!ops->ndo_change_proto_down)
7893                 return -EOPNOTSUPP;
7894         if (!netif_device_present(dev))
7895                 return -ENODEV;
7896         return ops->ndo_change_proto_down(dev, proto_down);
7897 }
7898 EXPORT_SYMBOL(dev_change_proto_down);
7899
7900 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7901                     enum bpf_netdev_command cmd)
7902 {
7903         struct netdev_bpf xdp;
7904
7905         if (!bpf_op)
7906                 return 0;
7907
7908         memset(&xdp, 0, sizeof(xdp));
7909         xdp.command = cmd;
7910
7911         /* Query must always succeed. */
7912         WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
7913
7914         return xdp.prog_id;
7915 }
7916
7917 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7918                            struct netlink_ext_ack *extack, u32 flags,
7919                            struct bpf_prog *prog)
7920 {
7921         struct netdev_bpf xdp;
7922
7923         memset(&xdp, 0, sizeof(xdp));
7924         if (flags & XDP_FLAGS_HW_MODE)
7925                 xdp.command = XDP_SETUP_PROG_HW;
7926         else
7927                 xdp.command = XDP_SETUP_PROG;
7928         xdp.extack = extack;
7929         xdp.flags = flags;
7930         xdp.prog = prog;
7931
7932         return bpf_op(dev, &xdp);
7933 }
7934
7935 static void dev_xdp_uninstall(struct net_device *dev)
7936 {
7937         struct netdev_bpf xdp;
7938         bpf_op_t ndo_bpf;
7939
7940         /* Remove generic XDP */
7941         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7942
7943         /* Remove from the driver */
7944         ndo_bpf = dev->netdev_ops->ndo_bpf;
7945         if (!ndo_bpf)
7946                 return;
7947
7948         memset(&xdp, 0, sizeof(xdp));
7949         xdp.command = XDP_QUERY_PROG;
7950         WARN_ON(ndo_bpf(dev, &xdp));
7951         if (xdp.prog_id)
7952                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7953                                         NULL));
7954
7955         /* Remove HW offload */
7956         memset(&xdp, 0, sizeof(xdp));
7957         xdp.command = XDP_QUERY_PROG_HW;
7958         if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
7959                 WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
7960                                         NULL));
7961 }
7962
7963 /**
7964  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7965  *      @dev: device
7966  *      @extack: netlink extended ack
7967  *      @fd: new program fd or negative value to clear
7968  *      @flags: xdp-related flags
7969  *
7970  *      Set or clear a bpf program for a device
7971  */
7972 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7973                       int fd, u32 flags)
7974 {
7975         const struct net_device_ops *ops = dev->netdev_ops;
7976         enum bpf_netdev_command query;
7977         struct bpf_prog *prog = NULL;
7978         bpf_op_t bpf_op, bpf_chk;
7979         int err;
7980
7981         ASSERT_RTNL();
7982
7983         query = flags & XDP_FLAGS_HW_MODE ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
7984
7985         bpf_op = bpf_chk = ops->ndo_bpf;
7986         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7987                 return -EOPNOTSUPP;
7988         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7989                 bpf_op = generic_xdp_install;
7990         if (bpf_op == bpf_chk)
7991                 bpf_chk = generic_xdp_install;
7992
7993         if (fd >= 0) {
7994                 if (__dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG) ||
7995                     __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG_HW))
7996                         return -EEXIST;
7997                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7998                     __dev_xdp_query(dev, bpf_op, query))
7999                         return -EBUSY;
8000
8001                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8002                                              bpf_op == ops->ndo_bpf);
8003                 if (IS_ERR(prog))
8004                         return PTR_ERR(prog);
8005
8006                 if (!(flags & XDP_FLAGS_HW_MODE) &&
8007                     bpf_prog_is_dev_bound(prog->aux)) {
8008                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8009                         bpf_prog_put(prog);
8010                         return -EINVAL;
8011                 }
8012         }
8013
8014         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8015         if (err < 0 && prog)
8016                 bpf_prog_put(prog);
8017
8018         return err;
8019 }
8020
8021 /**
8022  *      dev_new_index   -       allocate an ifindex
8023  *      @net: the applicable net namespace
8024  *
8025  *      Returns a suitable unique value for a new device interface
8026  *      number.  The caller must hold the rtnl semaphore or the
8027  *      dev_base_lock to be sure it remains unique.
8028  */
8029 static int dev_new_index(struct net *net)
8030 {
8031         int ifindex = net->ifindex;
8032
8033         for (;;) {
8034                 if (++ifindex <= 0)
8035                         ifindex = 1;
8036                 if (!__dev_get_by_index(net, ifindex))
8037                         return net->ifindex = ifindex;
8038         }
8039 }
8040
8041 /* Delayed registration/unregisteration */
8042 static LIST_HEAD(net_todo_list);
8043 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8044
8045 static void net_set_todo(struct net_device *dev)
8046 {
8047         list_add_tail(&dev->todo_list, &net_todo_list);
8048         dev_net(dev)->dev_unreg_count++;
8049 }
8050
8051 static void rollback_registered_many(struct list_head *head)
8052 {
8053         struct net_device *dev, *tmp;
8054         LIST_HEAD(close_head);
8055
8056         BUG_ON(dev_boot_phase);
8057         ASSERT_RTNL();
8058
8059         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8060                 /* Some devices call without registering
8061                  * for initialization unwind. Remove those
8062                  * devices and proceed with the remaining.
8063                  */
8064                 if (dev->reg_state == NETREG_UNINITIALIZED) {
8065                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8066                                  dev->name, dev);
8067
8068                         WARN_ON(1);
8069                         list_del(&dev->unreg_list);
8070                         continue;
8071                 }
8072                 dev->dismantle = true;
8073                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
8074         }
8075
8076         /* If device is running, close it first. */
8077         list_for_each_entry(dev, head, unreg_list)
8078                 list_add_tail(&dev->close_list, &close_head);
8079         dev_close_many(&close_head, true);
8080
8081         list_for_each_entry(dev, head, unreg_list) {
8082                 /* And unlink it from device chain. */
8083                 unlist_netdevice(dev);
8084
8085                 dev->reg_state = NETREG_UNREGISTERING;
8086         }
8087         flush_all_backlogs();
8088
8089         synchronize_net();
8090
8091         list_for_each_entry(dev, head, unreg_list) {
8092                 struct sk_buff *skb = NULL;
8093
8094                 /* Shutdown queueing discipline. */
8095                 dev_shutdown(dev);
8096
8097                 dev_xdp_uninstall(dev);
8098
8099                 /* Notify protocols, that we are about to destroy
8100                  * this device. They should clean all the things.
8101                  */
8102                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8103
8104                 if (!dev->rtnl_link_ops ||
8105                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8106                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8107                                                      GFP_KERNEL, NULL, 0);
8108
8109                 /*
8110                  *      Flush the unicast and multicast chains
8111                  */
8112                 dev_uc_flush(dev);
8113                 dev_mc_flush(dev);
8114
8115                 if (dev->netdev_ops->ndo_uninit)
8116                         dev->netdev_ops->ndo_uninit(dev);
8117
8118                 if (skb)
8119                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8120
8121                 /* Notifier chain MUST detach us all upper devices. */
8122                 WARN_ON(netdev_has_any_upper_dev(dev));
8123                 WARN_ON(netdev_has_any_lower_dev(dev));
8124
8125                 /* Remove entries from kobject tree */
8126                 netdev_unregister_kobject(dev);
8127 #ifdef CONFIG_XPS
8128                 /* Remove XPS queueing entries */
8129                 netif_reset_xps_queues_gt(dev, 0);
8130 #endif
8131         }
8132
8133         synchronize_net();
8134
8135         list_for_each_entry(dev, head, unreg_list)
8136                 dev_put(dev);
8137 }
8138
8139 static void rollback_registered(struct net_device *dev)
8140 {
8141         LIST_HEAD(single);
8142
8143         list_add(&dev->unreg_list, &single);
8144         rollback_registered_many(&single);
8145         list_del(&single);
8146 }
8147
8148 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8149         struct net_device *upper, netdev_features_t features)
8150 {
8151         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8152         netdev_features_t feature;
8153         int feature_bit;
8154
8155         for_each_netdev_feature(&upper_disables, feature_bit) {
8156                 feature = __NETIF_F_BIT(feature_bit);
8157                 if (!(upper->wanted_features & feature)
8158                     && (features & feature)) {
8159                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8160                                    &feature, upper->name);
8161                         features &= ~feature;
8162                 }
8163         }
8164
8165         return features;
8166 }
8167
8168 static void netdev_sync_lower_features(struct net_device *upper,
8169         struct net_device *lower, netdev_features_t features)
8170 {
8171         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8172         netdev_features_t feature;
8173         int feature_bit;
8174
8175         for_each_netdev_feature(&upper_disables, feature_bit) {
8176                 feature = __NETIF_F_BIT(feature_bit);
8177                 if (!(features & feature) && (lower->features & feature)) {
8178                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8179                                    &feature, lower->name);
8180                         lower->wanted_features &= ~feature;
8181                         netdev_update_features(lower);
8182
8183                         if (unlikely(lower->features & feature))
8184                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8185                                             &feature, lower->name);
8186                 }
8187         }
8188 }
8189
8190 static netdev_features_t netdev_fix_features(struct net_device *dev,
8191         netdev_features_t features)
8192 {
8193         /* Fix illegal checksum combinations */
8194         if ((features & NETIF_F_HW_CSUM) &&
8195             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8196                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8197                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8198         }
8199
8200         /* TSO requires that SG is present as well. */
8201         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8202                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8203                 features &= ~NETIF_F_ALL_TSO;
8204         }
8205
8206         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8207                                         !(features & NETIF_F_IP_CSUM)) {
8208                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8209                 features &= ~NETIF_F_TSO;
8210                 features &= ~NETIF_F_TSO_ECN;
8211         }
8212
8213         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8214                                          !(features & NETIF_F_IPV6_CSUM)) {
8215                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8216                 features &= ~NETIF_F_TSO6;
8217         }
8218
8219         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8220         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8221                 features &= ~NETIF_F_TSO_MANGLEID;
8222
8223         /* TSO ECN requires that TSO is present as well. */
8224         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8225                 features &= ~NETIF_F_TSO_ECN;
8226
8227         /* Software GSO depends on SG. */
8228         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8229                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8230                 features &= ~NETIF_F_GSO;
8231         }
8232
8233         /* GSO partial features require GSO partial be set */
8234         if ((features & dev->gso_partial_features) &&
8235             !(features & NETIF_F_GSO_PARTIAL)) {
8236                 netdev_dbg(dev,
8237                            "Dropping partially supported GSO features since no GSO partial.\n");
8238                 features &= ~dev->gso_partial_features;
8239         }
8240
8241         if (!(features & NETIF_F_RXCSUM)) {
8242                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8243                  * successfully merged by hardware must also have the
8244                  * checksum verified by hardware.  If the user does not
8245                  * want to enable RXCSUM, logically, we should disable GRO_HW.
8246                  */
8247                 if (features & NETIF_F_GRO_HW) {
8248                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8249                         features &= ~NETIF_F_GRO_HW;
8250                 }
8251         }
8252
8253         /* LRO/HW-GRO features cannot be combined with RX-FCS */
8254         if (features & NETIF_F_RXFCS) {
8255                 if (features & NETIF_F_LRO) {
8256                         netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8257                         features &= ~NETIF_F_LRO;
8258                 }
8259
8260                 if (features & NETIF_F_GRO_HW) {
8261                         netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8262                         features &= ~NETIF_F_GRO_HW;
8263                 }
8264         }
8265
8266         return features;
8267 }
8268
8269 int __netdev_update_features(struct net_device *dev)
8270 {
8271         struct net_device *upper, *lower;
8272         netdev_features_t features;
8273         struct list_head *iter;
8274         int err = -1;
8275
8276         ASSERT_RTNL();
8277
8278         features = netdev_get_wanted_features(dev);
8279
8280         if (dev->netdev_ops->ndo_fix_features)
8281                 features = dev->netdev_ops->ndo_fix_features(dev, features);
8282
8283         /* driver might be less strict about feature dependencies */
8284         features = netdev_fix_features(dev, features);
8285
8286         /* some features can't be enabled if they're off an an upper device */
8287         netdev_for_each_upper_dev_rcu(dev, upper, iter)
8288                 features = netdev_sync_upper_features(dev, upper, features);
8289
8290         if (dev->features == features)
8291                 goto sync_lower;
8292
8293         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8294                 &dev->features, &features);
8295
8296         if (dev->netdev_ops->ndo_set_features)
8297                 err = dev->netdev_ops->ndo_set_features(dev, features);
8298         else
8299                 err = 0;
8300
8301         if (unlikely(err < 0)) {
8302                 netdev_err(dev,
8303                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
8304                         err, &features, &dev->features);
8305                 /* return non-0 since some features might have changed and
8306                  * it's better to fire a spurious notification than miss it
8307                  */
8308                 return -1;
8309         }
8310
8311 sync_lower:
8312         /* some features must be disabled on lower devices when disabled
8313          * on an upper device (think: bonding master or bridge)
8314          */
8315         netdev_for_each_lower_dev(dev, lower, iter)
8316                 netdev_sync_lower_features(dev, lower, features);
8317
8318         if (!err) {
8319                 netdev_features_t diff = features ^ dev->features;
8320
8321                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8322                         /* udp_tunnel_{get,drop}_rx_info both need
8323                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8324                          * device, or they won't do anything.
8325                          * Thus we need to update dev->features
8326                          * *before* calling udp_tunnel_get_rx_info,
8327                          * but *after* calling udp_tunnel_drop_rx_info.
8328                          */
8329                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8330                                 dev->features = features;
8331                                 udp_tunnel_get_rx_info(dev);
8332                         } else {
8333                                 udp_tunnel_drop_rx_info(dev);
8334                         }
8335                 }
8336
8337                 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8338                         if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8339                                 dev->features = features;
8340                                 err |= vlan_get_rx_ctag_filter_info(dev);
8341                         } else {
8342                                 vlan_drop_rx_ctag_filter_info(dev);
8343                         }
8344                 }
8345
8346                 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8347                         if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8348                                 dev->features = features;
8349                                 err |= vlan_get_rx_stag_filter_info(dev);
8350                         } else {
8351                                 vlan_drop_rx_stag_filter_info(dev);
8352                         }
8353                 }
8354
8355                 dev->features = features;
8356         }
8357
8358         return err < 0 ? 0 : 1;
8359 }
8360
8361 /**
8362  *      netdev_update_features - recalculate device features
8363  *      @dev: the device to check
8364  *
8365  *      Recalculate dev->features set and send notifications if it
8366  *      has changed. Should be called after driver or hardware dependent
8367  *      conditions might have changed that influence the features.
8368  */
8369 void netdev_update_features(struct net_device *dev)
8370 {
8371         if (__netdev_update_features(dev))
8372                 netdev_features_change(dev);
8373 }
8374 EXPORT_SYMBOL(netdev_update_features);
8375
8376 /**
8377  *      netdev_change_features - recalculate device features
8378  *      @dev: the device to check
8379  *
8380  *      Recalculate dev->features set and send notifications even
8381  *      if they have not changed. Should be called instead of
8382  *      netdev_update_features() if also dev->vlan_features might
8383  *      have changed to allow the changes to be propagated to stacked
8384  *      VLAN devices.
8385  */
8386 void netdev_change_features(struct net_device *dev)
8387 {
8388         __netdev_update_features(dev);
8389         netdev_features_change(dev);
8390 }
8391 EXPORT_SYMBOL(netdev_change_features);
8392
8393 /**
8394  *      netif_stacked_transfer_operstate -      transfer operstate
8395  *      @rootdev: the root or lower level device to transfer state from
8396  *      @dev: the device to transfer operstate to
8397  *
8398  *      Transfer operational state from root to device. This is normally
8399  *      called when a stacking relationship exists between the root
8400  *      device and the device(a leaf device).
8401  */
8402 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8403                                         struct net_device *dev)
8404 {
8405         if (rootdev->operstate == IF_OPER_DORMANT)
8406                 netif_dormant_on(dev);
8407         else
8408                 netif_dormant_off(dev);
8409
8410         if (netif_carrier_ok(rootdev))
8411                 netif_carrier_on(dev);
8412         else
8413                 netif_carrier_off(dev);
8414 }
8415 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8416
8417 static int netif_alloc_rx_queues(struct net_device *dev)
8418 {
8419         unsigned int i, count = dev->num_rx_queues;
8420         struct netdev_rx_queue *rx;
8421         size_t sz = count * sizeof(*rx);
8422         int err = 0;
8423
8424         BUG_ON(count < 1);
8425
8426         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8427         if (!rx)
8428                 return -ENOMEM;
8429
8430         dev->_rx = rx;
8431
8432         for (i = 0; i < count; i++) {
8433                 rx[i].dev = dev;
8434
8435                 /* XDP RX-queue setup */
8436                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8437                 if (err < 0)
8438                         goto err_rxq_info;
8439         }
8440         return 0;
8441
8442 err_rxq_info:
8443         /* Rollback successful reg's and free other resources */
8444         while (i--)
8445                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8446         kvfree(dev->_rx);
8447         dev->_rx = NULL;
8448         return err;
8449 }
8450
8451 static void netif_free_rx_queues(struct net_device *dev)
8452 {
8453         unsigned int i, count = dev->num_rx_queues;
8454
8455         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8456         if (!dev->_rx)
8457                 return;
8458
8459         for (i = 0; i < count; i++)
8460                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8461
8462         kvfree(dev->_rx);
8463 }
8464
8465 static void netdev_init_one_queue(struct net_device *dev,
8466                                   struct netdev_queue *queue, void *_unused)
8467 {
8468         /* Initialize queue lock */
8469         spin_lock_init(&queue->_xmit_lock);
8470         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8471         queue->xmit_lock_owner = -1;
8472         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8473         queue->dev = dev;
8474 #ifdef CONFIG_BQL
8475         dql_init(&queue->dql, HZ);
8476 #endif
8477 }
8478
8479 static void netif_free_tx_queues(struct net_device *dev)
8480 {
8481         kvfree(dev->_tx);
8482 }
8483
8484 static int netif_alloc_netdev_queues(struct net_device *dev)
8485 {
8486         unsigned int count = dev->num_tx_queues;
8487         struct netdev_queue *tx;
8488         size_t sz = count * sizeof(*tx);
8489
8490         if (count < 1 || count > 0xffff)
8491                 return -EINVAL;
8492
8493         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8494         if (!tx)
8495                 return -ENOMEM;
8496
8497         dev->_tx = tx;
8498
8499         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8500         spin_lock_init(&dev->tx_global_lock);
8501
8502         return 0;
8503 }
8504
8505 void netif_tx_stop_all_queues(struct net_device *dev)
8506 {
8507         unsigned int i;
8508
8509         for (i = 0; i < dev->num_tx_queues; i++) {
8510                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8511
8512                 netif_tx_stop_queue(txq);
8513         }
8514 }
8515 EXPORT_SYMBOL(netif_tx_stop_all_queues);
8516
8517 /**
8518  *      register_netdevice      - register a network device
8519  *      @dev: device to register
8520  *
8521  *      Take a completed network device structure and add it to the kernel
8522  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8523  *      chain. 0 is returned on success. A negative errno code is returned
8524  *      on a failure to set up the device, or if the name is a duplicate.
8525  *
8526  *      Callers must hold the rtnl semaphore. You may want
8527  *      register_netdev() instead of this.
8528  *
8529  *      BUGS:
8530  *      The locking appears insufficient to guarantee two parallel registers
8531  *      will not get the same name.
8532  */
8533
8534 int register_netdevice(struct net_device *dev)
8535 {
8536         int ret;
8537         struct net *net = dev_net(dev);
8538
8539         BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8540                      NETDEV_FEATURE_COUNT);
8541         BUG_ON(dev_boot_phase);
8542         ASSERT_RTNL();
8543
8544         might_sleep();
8545
8546         /* When net_device's are persistent, this will be fatal. */
8547         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8548         BUG_ON(!net);
8549
8550         spin_lock_init(&dev->addr_list_lock);
8551         netdev_set_addr_lockdep_class(dev);
8552
8553         ret = dev_get_valid_name(net, dev, dev->name);
8554         if (ret < 0)
8555                 goto out;
8556
8557         /* Init, if this function is available */
8558         if (dev->netdev_ops->ndo_init) {
8559                 ret = dev->netdev_ops->ndo_init(dev);
8560                 if (ret) {
8561                         if (ret > 0)
8562                                 ret = -EIO;
8563                         goto out;
8564                 }
8565         }
8566
8567         if (((dev->hw_features | dev->features) &
8568              NETIF_F_HW_VLAN_CTAG_FILTER) &&
8569             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8570              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8571                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8572                 ret = -EINVAL;
8573                 goto err_uninit;
8574         }
8575
8576         ret = -EBUSY;
8577         if (!dev->ifindex)
8578                 dev->ifindex = dev_new_index(net);
8579         else if (__dev_get_by_index(net, dev->ifindex))
8580                 goto err_uninit;
8581
8582         /* Transfer changeable features to wanted_features and enable
8583          * software offloads (GSO and GRO).
8584          */
8585         dev->hw_features |= NETIF_F_SOFT_FEATURES;
8586         dev->features |= NETIF_F_SOFT_FEATURES;
8587
8588         if (dev->netdev_ops->ndo_udp_tunnel_add) {
8589                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8590                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8591         }
8592
8593         dev->wanted_features = dev->features & dev->hw_features;
8594
8595         if (!(dev->flags & IFF_LOOPBACK))
8596                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
8597
8598         /* If IPv4 TCP segmentation offload is supported we should also
8599          * allow the device to enable segmenting the frame with the option
8600          * of ignoring a static IP ID value.  This doesn't enable the
8601          * feature itself but allows the user to enable it later.
8602          */
8603         if (dev->hw_features & NETIF_F_TSO)
8604                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
8605         if (dev->vlan_features & NETIF_F_TSO)
8606                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8607         if (dev->mpls_features & NETIF_F_TSO)
8608                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8609         if (dev->hw_enc_features & NETIF_F_TSO)
8610                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8611
8612         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8613          */
8614         dev->vlan_features |= NETIF_F_HIGHDMA;
8615
8616         /* Make NETIF_F_SG inheritable to tunnel devices.
8617          */
8618         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8619
8620         /* Make NETIF_F_SG inheritable to MPLS.
8621          */
8622         dev->mpls_features |= NETIF_F_SG;
8623
8624         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8625         ret = notifier_to_errno(ret);
8626         if (ret)
8627                 goto err_uninit;
8628
8629         ret = netdev_register_kobject(dev);
8630         if (ret)
8631                 goto err_uninit;
8632         dev->reg_state = NETREG_REGISTERED;
8633
8634         __netdev_update_features(dev);
8635
8636         /*
8637          *      Default initial state at registry is that the
8638          *      device is present.
8639          */
8640
8641         set_bit(__LINK_STATE_PRESENT, &dev->state);
8642
8643         linkwatch_init_dev(dev);
8644
8645         dev_init_scheduler(dev);
8646         dev_hold(dev);
8647         list_netdevice(dev);
8648         add_device_randomness(dev->dev_addr, dev->addr_len);
8649
8650         /* If the device has permanent device address, driver should
8651          * set dev_addr and also addr_assign_type should be set to
8652          * NET_ADDR_PERM (default value).
8653          */
8654         if (dev->addr_assign_type == NET_ADDR_PERM)
8655                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8656
8657         /* Notify protocols, that a new device appeared. */
8658         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8659         ret = notifier_to_errno(ret);
8660         if (ret) {
8661                 rollback_registered(dev);
8662                 dev->reg_state = NETREG_UNREGISTERED;
8663         }
8664         /*
8665          *      Prevent userspace races by waiting until the network
8666          *      device is fully setup before sending notifications.
8667          */
8668         if (!dev->rtnl_link_ops ||
8669             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8670                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8671
8672 out:
8673         return ret;
8674
8675 err_uninit:
8676         if (dev->netdev_ops->ndo_uninit)
8677                 dev->netdev_ops->ndo_uninit(dev);
8678         if (dev->priv_destructor)
8679                 dev->priv_destructor(dev);
8680         goto out;
8681 }
8682 EXPORT_SYMBOL(register_netdevice);
8683
8684 /**
8685  *      init_dummy_netdev       - init a dummy network device for NAPI
8686  *      @dev: device to init
8687  *
8688  *      This takes a network device structure and initialize the minimum
8689  *      amount of fields so it can be used to schedule NAPI polls without
8690  *      registering a full blown interface. This is to be used by drivers
8691  *      that need to tie several hardware interfaces to a single NAPI
8692  *      poll scheduler due to HW limitations.
8693  */
8694 int init_dummy_netdev(struct net_device *dev)
8695 {
8696         /* Clear everything. Note we don't initialize spinlocks
8697          * are they aren't supposed to be taken by any of the
8698          * NAPI code and this dummy netdev is supposed to be
8699          * only ever used for NAPI polls
8700          */
8701         memset(dev, 0, sizeof(struct net_device));
8702
8703         /* make sure we BUG if trying to hit standard
8704          * register/unregister code path
8705          */
8706         dev->reg_state = NETREG_DUMMY;
8707
8708         /* NAPI wants this */
8709         INIT_LIST_HEAD(&dev->napi_list);
8710
8711         /* a dummy interface is started by default */
8712         set_bit(__LINK_STATE_PRESENT, &dev->state);
8713         set_bit(__LINK_STATE_START, &dev->state);
8714
8715         /* napi_busy_loop stats accounting wants this */
8716         dev_net_set(dev, &init_net);
8717
8718         /* Note : We dont allocate pcpu_refcnt for dummy devices,
8719          * because users of this 'device' dont need to change
8720          * its refcount.
8721          */
8722
8723         return 0;
8724 }
8725 EXPORT_SYMBOL_GPL(init_dummy_netdev);
8726
8727
8728 /**
8729  *      register_netdev - register a network device
8730  *      @dev: device to register
8731  *
8732  *      Take a completed network device structure and add it to the kernel
8733  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8734  *      chain. 0 is returned on success. A negative errno code is returned
8735  *      on a failure to set up the device, or if the name is a duplicate.
8736  *
8737  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8738  *      and expands the device name if you passed a format string to
8739  *      alloc_netdev.
8740  */
8741 int register_netdev(struct net_device *dev)
8742 {
8743         int err;
8744
8745         if (rtnl_lock_killable())
8746                 return -EINTR;
8747         err = register_netdevice(dev);
8748         rtnl_unlock();
8749         return err;
8750 }
8751 EXPORT_SYMBOL(register_netdev);
8752
8753 int netdev_refcnt_read(const struct net_device *dev)
8754 {
8755         int i, refcnt = 0;
8756
8757         for_each_possible_cpu(i)
8758                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8759         return refcnt;
8760 }
8761 EXPORT_SYMBOL(netdev_refcnt_read);
8762
8763 /**
8764  * netdev_wait_allrefs - wait until all references are gone.
8765  * @dev: target net_device
8766  *
8767  * This is called when unregistering network devices.
8768  *
8769  * Any protocol or device that holds a reference should register
8770  * for netdevice notification, and cleanup and put back the
8771  * reference if they receive an UNREGISTER event.
8772  * We can get stuck here if buggy protocols don't correctly
8773  * call dev_put.
8774  */
8775 static void netdev_wait_allrefs(struct net_device *dev)
8776 {
8777         unsigned long rebroadcast_time, warning_time;
8778         int refcnt;
8779
8780         linkwatch_forget_dev(dev);
8781
8782         rebroadcast_time = warning_time = jiffies;
8783         refcnt = netdev_refcnt_read(dev);
8784
8785         while (refcnt != 0) {
8786                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8787                         rtnl_lock();
8788
8789                         /* Rebroadcast unregister notification */
8790                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8791
8792                         __rtnl_unlock();
8793                         rcu_barrier();
8794                         rtnl_lock();
8795
8796                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8797                                      &dev->state)) {
8798                                 /* We must not have linkwatch events
8799                                  * pending on unregister. If this
8800                                  * happens, we simply run the queue
8801                                  * unscheduled, resulting in a noop
8802                                  * for this device.
8803                                  */
8804                                 linkwatch_run_queue();
8805                         }
8806
8807                         __rtnl_unlock();
8808
8809                         rebroadcast_time = jiffies;
8810                 }
8811
8812                 msleep(250);
8813
8814                 refcnt = netdev_refcnt_read(dev);
8815
8816                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8817                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8818                                  dev->name, refcnt);
8819                         warning_time = jiffies;
8820                 }
8821         }
8822 }
8823
8824 /* The sequence is:
8825  *
8826  *      rtnl_lock();
8827  *      ...
8828  *      register_netdevice(x1);
8829  *      register_netdevice(x2);
8830  *      ...
8831  *      unregister_netdevice(y1);
8832  *      unregister_netdevice(y2);
8833  *      ...
8834  *      rtnl_unlock();
8835  *      free_netdev(y1);
8836  *      free_netdev(y2);
8837  *
8838  * We are invoked by rtnl_unlock().
8839  * This allows us to deal with problems:
8840  * 1) We can delete sysfs objects which invoke hotplug
8841  *    without deadlocking with linkwatch via keventd.
8842  * 2) Since we run with the RTNL semaphore not held, we can sleep
8843  *    safely in order to wait for the netdev refcnt to drop to zero.
8844  *
8845  * We must not return until all unregister events added during
8846  * the interval the lock was held have been completed.
8847  */
8848 void netdev_run_todo(void)
8849 {
8850         struct list_head list;
8851
8852         /* Snapshot list, allow later requests */
8853         list_replace_init(&net_todo_list, &list);
8854
8855         __rtnl_unlock();
8856
8857
8858         /* Wait for rcu callbacks to finish before next phase */
8859         if (!list_empty(&list))
8860                 rcu_barrier();
8861
8862         while (!list_empty(&list)) {
8863                 struct net_device *dev
8864                         = list_first_entry(&list, struct net_device, todo_list);
8865                 list_del(&dev->todo_list);
8866
8867                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8868                         pr_err("network todo '%s' but state %d\n",
8869                                dev->name, dev->reg_state);
8870                         dump_stack();
8871                         continue;
8872                 }
8873
8874                 dev->reg_state = NETREG_UNREGISTERED;
8875
8876                 netdev_wait_allrefs(dev);
8877
8878                 /* paranoia */
8879                 BUG_ON(netdev_refcnt_read(dev));
8880                 BUG_ON(!list_empty(&dev->ptype_all));
8881                 BUG_ON(!list_empty(&dev->ptype_specific));
8882                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8883                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8884 #if IS_ENABLED(CONFIG_DECNET)
8885                 WARN_ON(dev->dn_ptr);
8886 #endif
8887                 if (dev->priv_destructor)
8888                         dev->priv_destructor(dev);
8889                 if (dev->needs_free_netdev)
8890                         free_netdev(dev);
8891
8892                 /* Report a network device has been unregistered */
8893                 rtnl_lock();
8894                 dev_net(dev)->dev_unreg_count--;
8895                 __rtnl_unlock();
8896                 wake_up(&netdev_unregistering_wq);
8897
8898                 /* Free network device */
8899                 kobject_put(&dev->dev.kobj);
8900         }
8901 }
8902
8903 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8904  * all the same fields in the same order as net_device_stats, with only
8905  * the type differing, but rtnl_link_stats64 may have additional fields
8906  * at the end for newer counters.
8907  */
8908 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8909                              const struct net_device_stats *netdev_stats)
8910 {
8911 #if BITS_PER_LONG == 64
8912         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8913         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8914         /* zero out counters that only exist in rtnl_link_stats64 */
8915         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8916                sizeof(*stats64) - sizeof(*netdev_stats));
8917 #else
8918         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8919         const unsigned long *src = (const unsigned long *)netdev_stats;
8920         u64 *dst = (u64 *)stats64;
8921
8922         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8923         for (i = 0; i < n; i++)
8924                 dst[i] = src[i];
8925         /* zero out counters that only exist in rtnl_link_stats64 */
8926         memset((char *)stats64 + n * sizeof(u64), 0,
8927                sizeof(*stats64) - n * sizeof(u64));
8928 #endif
8929 }
8930 EXPORT_SYMBOL(netdev_stats_to_stats64);
8931
8932 /**
8933  *      dev_get_stats   - get network device statistics
8934  *      @dev: device to get statistics from
8935  *      @storage: place to store stats
8936  *
8937  *      Get network statistics from device. Return @storage.
8938  *      The device driver may provide its own method by setting
8939  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8940  *      otherwise the internal statistics structure is used.
8941  */
8942 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8943                                         struct rtnl_link_stats64 *storage)
8944 {
8945         const struct net_device_ops *ops = dev->netdev_ops;
8946
8947         if (ops->ndo_get_stats64) {
8948                 memset(storage, 0, sizeof(*storage));
8949                 ops->ndo_get_stats64(dev, storage);
8950         } else if (ops->ndo_get_stats) {
8951                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8952         } else {
8953                 netdev_stats_to_stats64(storage, &dev->stats);
8954         }
8955         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8956         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8957         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8958         return storage;
8959 }
8960 EXPORT_SYMBOL(dev_get_stats);
8961
8962 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8963 {
8964         struct netdev_queue *queue = dev_ingress_queue(dev);
8965
8966 #ifdef CONFIG_NET_CLS_ACT
8967         if (queue)
8968                 return queue;
8969         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8970         if (!queue)
8971                 return NULL;
8972         netdev_init_one_queue(dev, queue, NULL);
8973         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8974         queue->qdisc_sleeping = &noop_qdisc;
8975         rcu_assign_pointer(dev->ingress_queue, queue);
8976 #endif
8977         return queue;
8978 }
8979
8980 static const struct ethtool_ops default_ethtool_ops;
8981
8982 void netdev_set_default_ethtool_ops(struct net_device *dev,
8983                                     const struct ethtool_ops *ops)
8984 {
8985         if (dev->ethtool_ops == &default_ethtool_ops)
8986                 dev->ethtool_ops = ops;
8987 }
8988 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8989
8990 void netdev_freemem(struct net_device *dev)
8991 {
8992         char *addr = (char *)dev - dev->padded;
8993
8994         kvfree(addr);
8995 }
8996
8997 /**
8998  * alloc_netdev_mqs - allocate network device
8999  * @sizeof_priv: size of private data to allocate space for
9000  * @name: device name format string
9001  * @name_assign_type: origin of device name
9002  * @setup: callback to initialize device
9003  * @txqs: the number of TX subqueues to allocate
9004  * @rxqs: the number of RX subqueues to allocate
9005  *
9006  * Allocates a struct net_device with private data area for driver use
9007  * and performs basic initialization.  Also allocates subqueue structs
9008  * for each queue on the device.
9009  */
9010 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9011                 unsigned char name_assign_type,
9012                 void (*setup)(struct net_device *),
9013                 unsigned int txqs, unsigned int rxqs)
9014 {
9015         struct net_device *dev;
9016         unsigned int alloc_size;
9017         struct net_device *p;
9018
9019         BUG_ON(strlen(name) >= sizeof(dev->name));
9020
9021         if (txqs < 1) {
9022                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9023                 return NULL;
9024         }
9025
9026         if (rxqs < 1) {
9027                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9028                 return NULL;
9029         }
9030
9031         alloc_size = sizeof(struct net_device);
9032         if (sizeof_priv) {
9033                 /* ensure 32-byte alignment of private area */
9034                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9035                 alloc_size += sizeof_priv;
9036         }
9037         /* ensure 32-byte alignment of whole construct */
9038         alloc_size += NETDEV_ALIGN - 1;
9039
9040         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9041         if (!p)
9042                 return NULL;
9043
9044         dev = PTR_ALIGN(p, NETDEV_ALIGN);
9045         dev->padded = (char *)dev - (char *)p;
9046
9047         dev->pcpu_refcnt = alloc_percpu(int);
9048         if (!dev->pcpu_refcnt)
9049                 goto free_dev;
9050
9051         if (dev_addr_init(dev))
9052                 goto free_pcpu;
9053
9054         dev_mc_init(dev);
9055         dev_uc_init(dev);
9056
9057         dev_net_set(dev, &init_net);
9058
9059         dev->gso_max_size = GSO_MAX_SIZE;
9060         dev->gso_max_segs = GSO_MAX_SEGS;
9061
9062         INIT_LIST_HEAD(&dev->napi_list);
9063         INIT_LIST_HEAD(&dev->unreg_list);
9064         INIT_LIST_HEAD(&dev->close_list);
9065         INIT_LIST_HEAD(&dev->link_watch_list);
9066         INIT_LIST_HEAD(&dev->adj_list.upper);
9067         INIT_LIST_HEAD(&dev->adj_list.lower);
9068         INIT_LIST_HEAD(&dev->ptype_all);
9069         INIT_LIST_HEAD(&dev->ptype_specific);
9070 #ifdef CONFIG_NET_SCHED
9071         hash_init(dev->qdisc_hash);
9072 #endif
9073         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9074         setup(dev);
9075
9076         if (!dev->tx_queue_len) {
9077                 dev->priv_flags |= IFF_NO_QUEUE;
9078                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9079         }
9080
9081         dev->num_tx_queues = txqs;
9082         dev->real_num_tx_queues = txqs;
9083         if (netif_alloc_netdev_queues(dev))
9084                 goto free_all;
9085
9086         dev->num_rx_queues = rxqs;
9087         dev->real_num_rx_queues = rxqs;
9088         if (netif_alloc_rx_queues(dev))
9089                 goto free_all;
9090
9091         strcpy(dev->name, name);
9092         dev->name_assign_type = name_assign_type;
9093         dev->group = INIT_NETDEV_GROUP;
9094         if (!dev->ethtool_ops)
9095                 dev->ethtool_ops = &default_ethtool_ops;
9096
9097         nf_hook_ingress_init(dev);
9098
9099         return dev;
9100
9101 free_all:
9102         free_netdev(dev);
9103         return NULL;
9104
9105 free_pcpu:
9106         free_percpu(dev->pcpu_refcnt);
9107 free_dev:
9108         netdev_freemem(dev);
9109         return NULL;
9110 }
9111 EXPORT_SYMBOL(alloc_netdev_mqs);
9112
9113 /**
9114  * free_netdev - free network device
9115  * @dev: device
9116  *
9117  * This function does the last stage of destroying an allocated device
9118  * interface. The reference to the device object is released. If this
9119  * is the last reference then it will be freed.Must be called in process
9120  * context.
9121  */
9122 void free_netdev(struct net_device *dev)
9123 {
9124         struct napi_struct *p, *n;
9125
9126         might_sleep();
9127         netif_free_tx_queues(dev);
9128         netif_free_rx_queues(dev);
9129
9130         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9131
9132         /* Flush device addresses */
9133         dev_addr_flush(dev);
9134
9135         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9136                 netif_napi_del(p);
9137
9138         free_percpu(dev->pcpu_refcnt);
9139         dev->pcpu_refcnt = NULL;
9140
9141         /*  Compatibility with error handling in drivers */
9142         if (dev->reg_state == NETREG_UNINITIALIZED) {
9143                 netdev_freemem(dev);
9144                 return;
9145         }
9146
9147         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9148         dev->reg_state = NETREG_RELEASED;
9149
9150         /* will free via device release */
9151         put_device(&dev->dev);
9152 }
9153 EXPORT_SYMBOL(free_netdev);
9154
9155 /**
9156  *      synchronize_net -  Synchronize with packet receive processing
9157  *
9158  *      Wait for packets currently being received to be done.
9159  *      Does not block later packets from starting.
9160  */
9161 void synchronize_net(void)
9162 {
9163         might_sleep();
9164         if (rtnl_is_locked())
9165                 synchronize_rcu_expedited();
9166         else
9167                 synchronize_rcu();
9168 }
9169 EXPORT_SYMBOL(synchronize_net);
9170
9171 /**
9172  *      unregister_netdevice_queue - remove device from the kernel
9173  *      @dev: device
9174  *      @head: list
9175  *
9176  *      This function shuts down a device interface and removes it
9177  *      from the kernel tables.
9178  *      If head not NULL, device is queued to be unregistered later.
9179  *
9180  *      Callers must hold the rtnl semaphore.  You may want
9181  *      unregister_netdev() instead of this.
9182  */
9183
9184 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9185 {
9186         ASSERT_RTNL();
9187
9188         if (head) {
9189                 list_move_tail(&dev->unreg_list, head);
9190         } else {
9191                 rollback_registered(dev);
9192                 /* Finish processing unregister after unlock */
9193                 net_set_todo(dev);
9194         }
9195 }
9196 EXPORT_SYMBOL(unregister_netdevice_queue);
9197
9198 /**
9199  *      unregister_netdevice_many - unregister many devices
9200  *      @head: list of devices
9201  *
9202  *  Note: As most callers use a stack allocated list_head,
9203  *  we force a list_del() to make sure stack wont be corrupted later.
9204  */
9205 void unregister_netdevice_many(struct list_head *head)
9206 {
9207         struct net_device *dev;
9208
9209         if (!list_empty(head)) {
9210                 rollback_registered_many(head);
9211                 list_for_each_entry(dev, head, unreg_list)
9212                         net_set_todo(dev);
9213                 list_del(head);
9214         }
9215 }
9216 EXPORT_SYMBOL(unregister_netdevice_many);
9217
9218 /**
9219  *      unregister_netdev - remove device from the kernel
9220  *      @dev: device
9221  *
9222  *      This function shuts down a device interface and removes it
9223  *      from the kernel tables.
9224  *
9225  *      This is just a wrapper for unregister_netdevice that takes
9226  *      the rtnl semaphore.  In general you want to use this and not
9227  *      unregister_netdevice.
9228  */
9229 void unregister_netdev(struct net_device *dev)
9230 {
9231         rtnl_lock();
9232         unregister_netdevice(dev);
9233         rtnl_unlock();
9234 }
9235 EXPORT_SYMBOL(unregister_netdev);
9236
9237 /**
9238  *      dev_change_net_namespace - move device to different nethost namespace
9239  *      @dev: device
9240  *      @net: network namespace
9241  *      @pat: If not NULL name pattern to try if the current device name
9242  *            is already taken in the destination network namespace.
9243  *
9244  *      This function shuts down a device interface and moves it
9245  *      to a new network namespace. On success 0 is returned, on
9246  *      a failure a netagive errno code is returned.
9247  *
9248  *      Callers must hold the rtnl semaphore.
9249  */
9250
9251 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9252 {
9253         int err, new_nsid, new_ifindex;
9254
9255         ASSERT_RTNL();
9256
9257         /* Don't allow namespace local devices to be moved. */
9258         err = -EINVAL;
9259         if (dev->features & NETIF_F_NETNS_LOCAL)
9260                 goto out;
9261
9262         /* Ensure the device has been registrered */
9263         if (dev->reg_state != NETREG_REGISTERED)
9264                 goto out;
9265
9266         /* Get out if there is nothing todo */
9267         err = 0;
9268         if (net_eq(dev_net(dev), net))
9269                 goto out;
9270
9271         /* Pick the destination device name, and ensure
9272          * we can use it in the destination network namespace.
9273          */
9274         err = -EEXIST;
9275         if (__dev_get_by_name(net, dev->name)) {
9276                 /* We get here if we can't use the current device name */
9277                 if (!pat)
9278                         goto out;
9279                 err = dev_get_valid_name(net, dev, pat);
9280                 if (err < 0)
9281                         goto out;
9282         }
9283
9284         /*
9285          * And now a mini version of register_netdevice unregister_netdevice.
9286          */
9287
9288         /* If device is running close it first. */
9289         dev_close(dev);
9290
9291         /* And unlink it from device chain */
9292         unlist_netdevice(dev);
9293
9294         synchronize_net();
9295
9296         /* Shutdown queueing discipline. */
9297         dev_shutdown(dev);
9298
9299         /* Notify protocols, that we are about to destroy
9300          * this device. They should clean all the things.
9301          *
9302          * Note that dev->reg_state stays at NETREG_REGISTERED.
9303          * This is wanted because this way 8021q and macvlan know
9304          * the device is just moving and can keep their slaves up.
9305          */
9306         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9307         rcu_barrier();
9308
9309         new_nsid = peernet2id_alloc(dev_net(dev), net);
9310         /* If there is an ifindex conflict assign a new one */
9311         if (__dev_get_by_index(net, dev->ifindex))
9312                 new_ifindex = dev_new_index(net);
9313         else
9314                 new_ifindex = dev->ifindex;
9315
9316         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9317                             new_ifindex);
9318
9319         /*
9320          *      Flush the unicast and multicast chains
9321          */
9322         dev_uc_flush(dev);
9323         dev_mc_flush(dev);
9324
9325         /* Send a netdev-removed uevent to the old namespace */
9326         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9327         netdev_adjacent_del_links(dev);
9328
9329         /* Actually switch the network namespace */
9330         dev_net_set(dev, net);
9331         dev->ifindex = new_ifindex;
9332
9333         /* Send a netdev-add uevent to the new namespace */
9334         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9335         netdev_adjacent_add_links(dev);
9336
9337         /* Fixup kobjects */
9338         err = device_rename(&dev->dev, dev->name);
9339         WARN_ON(err);
9340
9341         /* Add the device back in the hashes */
9342         list_netdevice(dev);
9343
9344         /* Notify protocols, that a new device appeared. */
9345         call_netdevice_notifiers(NETDEV_REGISTER, dev);
9346
9347         /*
9348          *      Prevent userspace races by waiting until the network
9349          *      device is fully setup before sending notifications.
9350          */
9351         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9352
9353         synchronize_net();
9354         err = 0;
9355 out:
9356         return err;
9357 }
9358 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9359
9360 static int dev_cpu_dead(unsigned int oldcpu)
9361 {
9362         struct sk_buff **list_skb;
9363         struct sk_buff *skb;
9364         unsigned int cpu;
9365         struct softnet_data *sd, *oldsd, *remsd = NULL;
9366
9367         local_irq_disable();
9368         cpu = smp_processor_id();
9369         sd = &per_cpu(softnet_data, cpu);
9370         oldsd = &per_cpu(softnet_data, oldcpu);
9371
9372         /* Find end of our completion_queue. */
9373         list_skb = &sd->completion_queue;
9374         while (*list_skb)
9375                 list_skb = &(*list_skb)->next;
9376         /* Append completion queue from offline CPU. */
9377         *list_skb = oldsd->completion_queue;
9378         oldsd->completion_queue = NULL;
9379
9380         /* Append output queue from offline CPU. */
9381         if (oldsd->output_queue) {
9382                 *sd->output_queue_tailp = oldsd->output_queue;
9383                 sd->output_queue_tailp = oldsd->output_queue_tailp;
9384                 oldsd->output_queue = NULL;
9385                 oldsd->output_queue_tailp = &oldsd->output_queue;
9386         }
9387         /* Append NAPI poll list from offline CPU, with one exception :
9388          * process_backlog() must be called by cpu owning percpu backlog.
9389          * We properly handle process_queue & input_pkt_queue later.
9390          */
9391         while (!list_empty(&oldsd->poll_list)) {
9392                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9393                                                             struct napi_struct,
9394                                                             poll_list);
9395
9396                 list_del_init(&napi->poll_list);
9397                 if (napi->poll == process_backlog)
9398                         napi->state = 0;
9399                 else
9400                         ____napi_schedule(sd, napi);
9401         }
9402
9403         raise_softirq_irqoff(NET_TX_SOFTIRQ);
9404         local_irq_enable();
9405
9406 #ifdef CONFIG_RPS
9407         remsd = oldsd->rps_ipi_list;
9408         oldsd->rps_ipi_list = NULL;
9409 #endif
9410         /* send out pending IPI's on offline CPU */
9411         net_rps_send_ipi(remsd);
9412
9413         /* Process offline CPU's input_pkt_queue */
9414         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9415                 netif_rx_ni(skb);
9416                 input_queue_head_incr(oldsd);
9417         }
9418         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9419                 netif_rx_ni(skb);
9420                 input_queue_head_incr(oldsd);
9421         }
9422
9423         return 0;
9424 }
9425
9426 /**
9427  *      netdev_increment_features - increment feature set by one
9428  *      @all: current feature set
9429  *      @one: new feature set
9430  *      @mask: mask feature set
9431  *
9432  *      Computes a new feature set after adding a device with feature set
9433  *      @one to the master device with current feature set @all.  Will not
9434  *      enable anything that is off in @mask. Returns the new feature set.
9435  */
9436 netdev_features_t netdev_increment_features(netdev_features_t all,
9437         netdev_features_t one, netdev_features_t mask)
9438 {
9439         if (mask & NETIF_F_HW_CSUM)
9440                 mask |= NETIF_F_CSUM_MASK;
9441         mask |= NETIF_F_VLAN_CHALLENGED;
9442
9443         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9444         all &= one | ~NETIF_F_ALL_FOR_ALL;
9445
9446         /* If one device supports hw checksumming, set for all. */
9447         if (all & NETIF_F_HW_CSUM)
9448                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9449
9450         return all;
9451 }
9452 EXPORT_SYMBOL(netdev_increment_features);
9453
9454 static struct hlist_head * __net_init netdev_create_hash(void)
9455 {
9456         int i;
9457         struct hlist_head *hash;
9458
9459         hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9460         if (hash != NULL)
9461                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
9462                         INIT_HLIST_HEAD(&hash[i]);
9463
9464         return hash;
9465 }
9466
9467 /* Initialize per network namespace state */
9468 static int __net_init netdev_init(struct net *net)
9469 {
9470         BUILD_BUG_ON(GRO_HASH_BUCKETS >
9471                      8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9472
9473         if (net != &init_net)
9474                 INIT_LIST_HEAD(&net->dev_base_head);
9475
9476         net->dev_name_head = netdev_create_hash();
9477         if (net->dev_name_head == NULL)
9478                 goto err_name;
9479
9480         net->dev_index_head = netdev_create_hash();
9481         if (net->dev_index_head == NULL)
9482                 goto err_idx;
9483
9484         return 0;
9485
9486 err_idx:
9487         kfree(net->dev_name_head);
9488 err_name:
9489         return -ENOMEM;
9490 }
9491
9492 /**
9493  *      netdev_drivername - network driver for the device
9494  *      @dev: network device
9495  *
9496  *      Determine network driver for device.
9497  */
9498 const char *netdev_drivername(const struct net_device *dev)
9499 {
9500         const struct device_driver *driver;
9501         const struct device *parent;
9502         const char *empty = "";
9503
9504         parent = dev->dev.parent;
9505         if (!parent)
9506                 return empty;
9507
9508         driver = parent->driver;
9509         if (driver && driver->name)
9510                 return driver->name;
9511         return empty;
9512 }
9513
9514 static void __netdev_printk(const char *level, const struct net_device *dev,
9515                             struct va_format *vaf)
9516 {
9517         if (dev && dev->dev.parent) {
9518                 dev_printk_emit(level[1] - '0',
9519                                 dev->dev.parent,
9520                                 "%s %s %s%s: %pV",
9521                                 dev_driver_string(dev->dev.parent),
9522                                 dev_name(dev->dev.parent),
9523                                 netdev_name(dev), netdev_reg_state(dev),
9524                                 vaf);
9525         } else if (dev) {
9526                 printk("%s%s%s: %pV",
9527                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
9528         } else {
9529                 printk("%s(NULL net_device): %pV", level, vaf);
9530         }
9531 }
9532
9533 void netdev_printk(const char *level, const struct net_device *dev,
9534                    const char *format, ...)
9535 {
9536         struct va_format vaf;
9537         va_list args;
9538
9539         va_start(args, format);
9540
9541         vaf.fmt = format;
9542         vaf.va = &args;
9543
9544         __netdev_printk(level, dev, &vaf);
9545
9546         va_end(args);
9547 }
9548 EXPORT_SYMBOL(netdev_printk);
9549
9550 #define define_netdev_printk_level(func, level)                 \
9551 void func(const struct net_device *dev, const char *fmt, ...)   \
9552 {                                                               \
9553         struct va_format vaf;                                   \
9554         va_list args;                                           \
9555                                                                 \
9556         va_start(args, fmt);                                    \
9557                                                                 \
9558         vaf.fmt = fmt;                                          \
9559         vaf.va = &args;                                         \
9560                                                                 \
9561         __netdev_printk(level, dev, &vaf);                      \
9562                                                                 \
9563         va_end(args);                                           \
9564 }                                                               \
9565 EXPORT_SYMBOL(func);
9566
9567 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9568 define_netdev_printk_level(netdev_alert, KERN_ALERT);
9569 define_netdev_printk_level(netdev_crit, KERN_CRIT);
9570 define_netdev_printk_level(netdev_err, KERN_ERR);
9571 define_netdev_printk_level(netdev_warn, KERN_WARNING);
9572 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9573 define_netdev_printk_level(netdev_info, KERN_INFO);
9574
9575 static void __net_exit netdev_exit(struct net *net)
9576 {
9577         kfree(net->dev_name_head);
9578         kfree(net->dev_index_head);
9579         if (net != &init_net)
9580                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9581 }
9582
9583 static struct pernet_operations __net_initdata netdev_net_ops = {
9584         .init = netdev_init,
9585         .exit = netdev_exit,
9586 };
9587
9588 static void __net_exit default_device_exit(struct net *net)
9589 {
9590         struct net_device *dev, *aux;
9591         /*
9592          * Push all migratable network devices back to the
9593          * initial network namespace
9594          */
9595         rtnl_lock();
9596         for_each_netdev_safe(net, dev, aux) {
9597                 int err;
9598                 char fb_name[IFNAMSIZ];
9599
9600                 /* Ignore unmoveable devices (i.e. loopback) */
9601                 if (dev->features & NETIF_F_NETNS_LOCAL)
9602                         continue;
9603
9604                 /* Leave virtual devices for the generic cleanup */
9605                 if (dev->rtnl_link_ops)
9606                         continue;
9607
9608                 /* Push remaining network devices to init_net */
9609                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9610                 err = dev_change_net_namespace(dev, &init_net, fb_name);
9611                 if (err) {
9612                         pr_emerg("%s: failed to move %s to init_net: %d\n",
9613                                  __func__, dev->name, err);
9614                         BUG();
9615                 }
9616         }
9617         rtnl_unlock();
9618 }
9619
9620 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9621 {
9622         /* Return with the rtnl_lock held when there are no network
9623          * devices unregistering in any network namespace in net_list.
9624          */
9625         struct net *net;
9626         bool unregistering;
9627         DEFINE_WAIT_FUNC(wait, woken_wake_function);
9628
9629         add_wait_queue(&netdev_unregistering_wq, &wait);
9630         for (;;) {
9631                 unregistering = false;
9632                 rtnl_lock();
9633                 list_for_each_entry(net, net_list, exit_list) {
9634                         if (net->dev_unreg_count > 0) {
9635                                 unregistering = true;
9636                                 break;
9637                         }
9638                 }
9639                 if (!unregistering)
9640                         break;
9641                 __rtnl_unlock();
9642
9643                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9644         }
9645         remove_wait_queue(&netdev_unregistering_wq, &wait);
9646 }
9647
9648 static void __net_exit default_device_exit_batch(struct list_head *net_list)
9649 {
9650         /* At exit all network devices most be removed from a network
9651          * namespace.  Do this in the reverse order of registration.
9652          * Do this across as many network namespaces as possible to
9653          * improve batching efficiency.
9654          */
9655         struct net_device *dev;
9656         struct net *net;
9657         LIST_HEAD(dev_kill_list);
9658
9659         /* To prevent network device cleanup code from dereferencing
9660          * loopback devices or network devices that have been freed
9661          * wait here for all pending unregistrations to complete,
9662          * before unregistring the loopback device and allowing the
9663          * network namespace be freed.
9664          *
9665          * The netdev todo list containing all network devices
9666          * unregistrations that happen in default_device_exit_batch
9667          * will run in the rtnl_unlock() at the end of
9668          * default_device_exit_batch.
9669          */
9670         rtnl_lock_unregistering(net_list);
9671         list_for_each_entry(net, net_list, exit_list) {
9672                 for_each_netdev_reverse(net, dev) {
9673                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9674                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9675                         else
9676                                 unregister_netdevice_queue(dev, &dev_kill_list);
9677                 }
9678         }
9679         unregister_netdevice_many(&dev_kill_list);
9680         rtnl_unlock();
9681 }
9682
9683 static struct pernet_operations __net_initdata default_device_ops = {
9684         .exit = default_device_exit,
9685         .exit_batch = default_device_exit_batch,
9686 };
9687
9688 /*
9689  *      Initialize the DEV module. At boot time this walks the device list and
9690  *      unhooks any devices that fail to initialise (normally hardware not
9691  *      present) and leaves us with a valid list of present and active devices.
9692  *
9693  */
9694
9695 /*
9696  *       This is called single threaded during boot, so no need
9697  *       to take the rtnl semaphore.
9698  */
9699 static int __init net_dev_init(void)
9700 {
9701         int i, rc = -ENOMEM;
9702
9703         BUG_ON(!dev_boot_phase);
9704
9705         if (dev_proc_init())
9706                 goto out;
9707
9708         if (netdev_kobject_init())
9709                 goto out;
9710
9711         INIT_LIST_HEAD(&ptype_all);
9712         for (i = 0; i < PTYPE_HASH_SIZE; i++)
9713                 INIT_LIST_HEAD(&ptype_base[i]);
9714
9715         INIT_LIST_HEAD(&offload_base);
9716
9717         if (register_pernet_subsys(&netdev_net_ops))
9718                 goto out;
9719
9720         /*
9721          *      Initialise the packet receive queues.
9722          */
9723
9724         for_each_possible_cpu(i) {
9725                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9726                 struct softnet_data *sd = &per_cpu(softnet_data, i);
9727
9728                 INIT_WORK(flush, flush_backlog);
9729
9730                 skb_queue_head_init(&sd->input_pkt_queue);
9731                 skb_queue_head_init(&sd->process_queue);
9732 #ifdef CONFIG_XFRM_OFFLOAD
9733                 skb_queue_head_init(&sd->xfrm_backlog);
9734 #endif
9735                 INIT_LIST_HEAD(&sd->poll_list);
9736                 sd->output_queue_tailp = &sd->output_queue;
9737 #ifdef CONFIG_RPS
9738                 sd->csd.func = rps_trigger_softirq;
9739                 sd->csd.info = sd;
9740                 sd->cpu = i;
9741 #endif
9742
9743                 init_gro_hash(&sd->backlog);
9744                 sd->backlog.poll = process_backlog;
9745                 sd->backlog.weight = weight_p;
9746         }
9747
9748         dev_boot_phase = 0;
9749
9750         /* The loopback device is special if any other network devices
9751          * is present in a network namespace the loopback device must
9752          * be present. Since we now dynamically allocate and free the
9753          * loopback device ensure this invariant is maintained by
9754          * keeping the loopback device as the first device on the
9755          * list of network devices.  Ensuring the loopback devices
9756          * is the first device that appears and the last network device
9757          * that disappears.
9758          */
9759         if (register_pernet_device(&loopback_net_ops))
9760                 goto out;
9761
9762         if (register_pernet_device(&default_device_ops))
9763                 goto out;
9764
9765         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9766         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9767
9768         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9769                                        NULL, dev_cpu_dead);
9770         WARN_ON(rc < 0);
9771         rc = 0;
9772 out:
9773         return rc;
9774 }
9775
9776 subsys_initcall(net_dev_init);