Merge tag 'media/v4.16-4' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[sfrench/cifs-2.6.git] / net / core / dev.c
1 /*
2  *      NET3    Protocol independent device support routines.
3  *
4  *              This program is free software; you can redistribute it and/or
5  *              modify it under the terms of the GNU General Public License
6  *              as published by the Free Software Foundation; either version
7  *              2 of the License, or (at your option) any later version.
8  *
9  *      Derived from the non IP parts of dev.c 1.0.19
10  *              Authors:        Ross Biro
11  *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
13  *
14  *      Additional Authors:
15  *              Florian la Roche <rzsfl@rz.uni-sb.de>
16  *              Alan Cox <gw4pts@gw4pts.ampr.org>
17  *              David Hinds <dahinds@users.sourceforge.net>
18  *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19  *              Adam Sulmicki <adam@cfar.umd.edu>
20  *              Pekka Riikonen <priikone@poesidon.pspt.fi>
21  *
22  *      Changes:
23  *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
24  *                                      to 2 if register_netdev gets called
25  *                                      before net_dev_init & also removed a
26  *                                      few lines of code in the process.
27  *              Alan Cox        :       device private ioctl copies fields back.
28  *              Alan Cox        :       Transmit queue code does relevant
29  *                                      stunts to keep the queue safe.
30  *              Alan Cox        :       Fixed double lock.
31  *              Alan Cox        :       Fixed promisc NULL pointer trap
32  *              ????????        :       Support the full private ioctl range
33  *              Alan Cox        :       Moved ioctl permission check into
34  *                                      drivers
35  *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
36  *              Alan Cox        :       100 backlog just doesn't cut it when
37  *                                      you start doing multicast video 8)
38  *              Alan Cox        :       Rewrote net_bh and list manager.
39  *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
40  *              Alan Cox        :       Took out transmit every packet pass
41  *                                      Saved a few bytes in the ioctl handler
42  *              Alan Cox        :       Network driver sets packet type before
43  *                                      calling netif_rx. Saves a function
44  *                                      call a packet.
45  *              Alan Cox        :       Hashed net_bh()
46  *              Richard Kooijman:       Timestamp fixes.
47  *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
48  *              Alan Cox        :       Device lock protection.
49  *              Alan Cox        :       Fixed nasty side effect of device close
50  *                                      changes.
51  *              Rudi Cilibrasi  :       Pass the right thing to
52  *                                      set_mac_address()
53  *              Dave Miller     :       32bit quantity for the device lock to
54  *                                      make it work out on a Sparc.
55  *              Bjorn Ekwall    :       Added KERNELD hack.
56  *              Alan Cox        :       Cleaned up the backlog initialise.
57  *              Craig Metz      :       SIOCGIFCONF fix if space for under
58  *                                      1 device.
59  *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
60  *                                      is no device open function.
61  *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
62  *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
63  *              Cyrus Durgin    :       Cleaned for KMOD
64  *              Adam Sulmicki   :       Bug Fix : Network Device Unload
65  *                                      A network device unload needs to purge
66  *                                      the backlog queue.
67  *      Paul Rusty Russell      :       SIOCSIFNAME
68  *              Pekka Riikonen  :       Netdev boot-time settings code
69  *              Andrew Morton   :       Make unregister_netdevice wait
70  *                                      indefinitely on dev->refcnt
71  *              J Hadi Salim    :       - Backlog queue sampling
72  *                                      - netif_rx() feedback
73  */
74
75 #include <linux/uaccess.h>
76 #include <linux/bitops.h>
77 #include <linux/capability.h>
78 #include <linux/cpu.h>
79 #include <linux/types.h>
80 #include <linux/kernel.h>
81 #include <linux/hash.h>
82 #include <linux/slab.h>
83 #include <linux/sched.h>
84 #include <linux/sched/mm.h>
85 #include <linux/mutex.h>
86 #include <linux/string.h>
87 #include <linux/mm.h>
88 #include <linux/socket.h>
89 #include <linux/sockios.h>
90 #include <linux/errno.h>
91 #include <linux/interrupt.h>
92 #include <linux/if_ether.h>
93 #include <linux/netdevice.h>
94 #include <linux/etherdevice.h>
95 #include <linux/ethtool.h>
96 #include <linux/notifier.h>
97 #include <linux/skbuff.h>
98 #include <linux/bpf.h>
99 #include <linux/bpf_trace.h>
100 #include <net/net_namespace.h>
101 #include <net/sock.h>
102 #include <net/busy_poll.h>
103 #include <linux/rtnetlink.h>
104 #include <linux/stat.h>
105 #include <net/dst.h>
106 #include <net/dst_metadata.h>
107 #include <net/pkt_sched.h>
108 #include <net/pkt_cls.h>
109 #include <net/checksum.h>
110 #include <net/xfrm.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <linux/pci.h>
136 #include <linux/inetdevice.h>
137 #include <linux/cpu_rmap.h>
138 #include <linux/static_key.h>
139 #include <linux/hashtable.h>
140 #include <linux/vmalloc.h>
141 #include <linux/if_macvlan.h>
142 #include <linux/errqueue.h>
143 #include <linux/hrtimer.h>
144 #include <linux/netfilter_ingress.h>
145 #include <linux/crash_dump.h>
146 #include <linux/sctp.h>
147 #include <net/udp_tunnel.h>
148 #include <linux/net_namespace.h>
149
150 #include "net-sysfs.h"
151
152 /* Instead of increasing this, you should create a hash table. */
153 #define MAX_GRO_SKBS 8
154
155 /* This should be increased if a protocol with a bigger head is added. */
156 #define GRO_MAX_HEAD (MAX_HEADER + 128)
157
158 static DEFINE_SPINLOCK(ptype_lock);
159 static DEFINE_SPINLOCK(offload_lock);
160 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
161 struct list_head ptype_all __read_mostly;       /* Taps */
162 static struct list_head offload_base __read_mostly;
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_info(unsigned long val,
166                                          struct netdev_notifier_info *info);
167 static struct napi_struct *napi_by_id(unsigned int napi_id);
168
169 /*
170  * The @dev_base_head list is protected by @dev_base_lock and the rtnl
171  * semaphore.
172  *
173  * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
174  *
175  * Writers must hold the rtnl semaphore while they loop through the
176  * dev_base_head list, and hold dev_base_lock for writing when they do the
177  * actual updates.  This allows pure readers to access the list even
178  * while a writer is preparing to update it.
179  *
180  * To put it another way, dev_base_lock is held for writing only to
181  * protect against pure readers; the rtnl semaphore provides the
182  * protection against other writers.
183  *
184  * See, for example usages, register_netdevice() and
185  * unregister_netdevice(), which must be called with the rtnl
186  * semaphore held.
187  */
188 DEFINE_RWLOCK(dev_base_lock);
189 EXPORT_SYMBOL(dev_base_lock);
190
191 static DEFINE_MUTEX(ifalias_mutex);
192
193 /* protects napi_hash addition/deletion and napi_gen_id */
194 static DEFINE_SPINLOCK(napi_hash_lock);
195
196 static unsigned int napi_gen_id = NR_CPUS;
197 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
198
199 static seqcount_t devnet_rename_seq;
200
201 static inline void dev_base_seq_inc(struct net *net)
202 {
203         while (++net->dev_base_seq == 0)
204                 ;
205 }
206
207 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
208 {
209         unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
210
211         return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
212 }
213
214 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
215 {
216         return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
217 }
218
219 static inline void rps_lock(struct softnet_data *sd)
220 {
221 #ifdef CONFIG_RPS
222         spin_lock(&sd->input_pkt_queue.lock);
223 #endif
224 }
225
226 static inline void rps_unlock(struct softnet_data *sd)
227 {
228 #ifdef CONFIG_RPS
229         spin_unlock(&sd->input_pkt_queue.lock);
230 #endif
231 }
232
233 /* Device list insertion */
234 static void list_netdevice(struct net_device *dev)
235 {
236         struct net *net = dev_net(dev);
237
238         ASSERT_RTNL();
239
240         write_lock_bh(&dev_base_lock);
241         list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
242         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
243         hlist_add_head_rcu(&dev->index_hlist,
244                            dev_index_hash(net, dev->ifindex));
245         write_unlock_bh(&dev_base_lock);
246
247         dev_base_seq_inc(net);
248 }
249
250 /* Device list removal
251  * caller must respect a RCU grace period before freeing/reusing dev
252  */
253 static void unlist_netdevice(struct net_device *dev)
254 {
255         ASSERT_RTNL();
256
257         /* Unlink dev from the device chain */
258         write_lock_bh(&dev_base_lock);
259         list_del_rcu(&dev->dev_list);
260         hlist_del_rcu(&dev->name_hlist);
261         hlist_del_rcu(&dev->index_hlist);
262         write_unlock_bh(&dev_base_lock);
263
264         dev_base_seq_inc(dev_net(dev));
265 }
266
267 /*
268  *      Our notifier list
269  */
270
271 static RAW_NOTIFIER_HEAD(netdev_chain);
272
273 /*
274  *      Device drivers call our routines to queue packets here. We empty the
275  *      queue in the local softnet handler.
276  */
277
278 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
279 EXPORT_PER_CPU_SYMBOL(softnet_data);
280
281 #ifdef CONFIG_LOCKDEP
282 /*
283  * register_netdevice() inits txq->_xmit_lock and sets lockdep class
284  * according to dev->type
285  */
286 static const unsigned short netdev_lock_type[] = {
287          ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
288          ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
289          ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
290          ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
291          ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
292          ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
293          ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
294          ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
295          ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
296          ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
297          ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
298          ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
299          ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
300          ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
301          ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
302
303 static const char *const netdev_lock_name[] = {
304         "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
305         "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
306         "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
307         "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
308         "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
309         "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
310         "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
311         "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
312         "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
313         "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
314         "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
315         "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
316         "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
317         "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
318         "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
319
320 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
321 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
322
323 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
324 {
325         int i;
326
327         for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
328                 if (netdev_lock_type[i] == dev_type)
329                         return i;
330         /* the last key is used by default */
331         return ARRAY_SIZE(netdev_lock_type) - 1;
332 }
333
334 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
335                                                  unsigned short dev_type)
336 {
337         int i;
338
339         i = netdev_lock_pos(dev_type);
340         lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
341                                    netdev_lock_name[i]);
342 }
343
344 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
345 {
346         int i;
347
348         i = netdev_lock_pos(dev->type);
349         lockdep_set_class_and_name(&dev->addr_list_lock,
350                                    &netdev_addr_lock_key[i],
351                                    netdev_lock_name[i]);
352 }
353 #else
354 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
355                                                  unsigned short dev_type)
356 {
357 }
358 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
359 {
360 }
361 #endif
362
363 /*******************************************************************************
364  *
365  *              Protocol management and registration routines
366  *
367  *******************************************************************************/
368
369
370 /*
371  *      Add a protocol ID to the list. Now that the input handler is
372  *      smarter we can dispense with all the messy stuff that used to be
373  *      here.
374  *
375  *      BEWARE!!! Protocol handlers, mangling input packets,
376  *      MUST BE last in hash buckets and checking protocol handlers
377  *      MUST start from promiscuous ptype_all chain in net_bh.
378  *      It is true now, do not change it.
379  *      Explanation follows: if protocol handler, mangling packet, will
380  *      be the first on list, it is not able to sense, that packet
381  *      is cloned and should be copied-on-write, so that it will
382  *      change it and subsequent readers will get broken packet.
383  *                                                      --ANK (980803)
384  */
385
386 static inline struct list_head *ptype_head(const struct packet_type *pt)
387 {
388         if (pt->type == htons(ETH_P_ALL))
389                 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
390         else
391                 return pt->dev ? &pt->dev->ptype_specific :
392                                  &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
393 }
394
395 /**
396  *      dev_add_pack - add packet handler
397  *      @pt: packet type declaration
398  *
399  *      Add a protocol handler to the networking stack. The passed &packet_type
400  *      is linked into kernel lists and may not be freed until it has been
401  *      removed from the kernel lists.
402  *
403  *      This call does not sleep therefore it can not
404  *      guarantee all CPU's that are in middle of receiving packets
405  *      will see the new packet type (until the next received packet).
406  */
407
408 void dev_add_pack(struct packet_type *pt)
409 {
410         struct list_head *head = ptype_head(pt);
411
412         spin_lock(&ptype_lock);
413         list_add_rcu(&pt->list, head);
414         spin_unlock(&ptype_lock);
415 }
416 EXPORT_SYMBOL(dev_add_pack);
417
418 /**
419  *      __dev_remove_pack        - remove packet handler
420  *      @pt: packet type declaration
421  *
422  *      Remove a protocol handler that was previously added to the kernel
423  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
424  *      from the kernel lists and can be freed or reused once this function
425  *      returns.
426  *
427  *      The packet type might still be in use by receivers
428  *      and must not be freed until after all the CPU's have gone
429  *      through a quiescent state.
430  */
431 void __dev_remove_pack(struct packet_type *pt)
432 {
433         struct list_head *head = ptype_head(pt);
434         struct packet_type *pt1;
435
436         spin_lock(&ptype_lock);
437
438         list_for_each_entry(pt1, head, list) {
439                 if (pt == pt1) {
440                         list_del_rcu(&pt->list);
441                         goto out;
442                 }
443         }
444
445         pr_warn("dev_remove_pack: %p not found\n", pt);
446 out:
447         spin_unlock(&ptype_lock);
448 }
449 EXPORT_SYMBOL(__dev_remove_pack);
450
451 /**
452  *      dev_remove_pack  - remove packet handler
453  *      @pt: packet type declaration
454  *
455  *      Remove a protocol handler that was previously added to the kernel
456  *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
457  *      from the kernel lists and can be freed or reused once this function
458  *      returns.
459  *
460  *      This call sleeps to guarantee that no CPU is looking at the packet
461  *      type after return.
462  */
463 void dev_remove_pack(struct packet_type *pt)
464 {
465         __dev_remove_pack(pt);
466
467         synchronize_net();
468 }
469 EXPORT_SYMBOL(dev_remove_pack);
470
471
472 /**
473  *      dev_add_offload - register offload handlers
474  *      @po: protocol offload declaration
475  *
476  *      Add protocol offload handlers to the networking stack. The passed
477  *      &proto_offload is linked into kernel lists and may not be freed until
478  *      it has been removed from the kernel lists.
479  *
480  *      This call does not sleep therefore it can not
481  *      guarantee all CPU's that are in middle of receiving packets
482  *      will see the new offload handlers (until the next received packet).
483  */
484 void dev_add_offload(struct packet_offload *po)
485 {
486         struct packet_offload *elem;
487
488         spin_lock(&offload_lock);
489         list_for_each_entry(elem, &offload_base, list) {
490                 if (po->priority < elem->priority)
491                         break;
492         }
493         list_add_rcu(&po->list, elem->list.prev);
494         spin_unlock(&offload_lock);
495 }
496 EXPORT_SYMBOL(dev_add_offload);
497
498 /**
499  *      __dev_remove_offload     - remove offload handler
500  *      @po: packet offload declaration
501  *
502  *      Remove a protocol offload handler that was previously added to the
503  *      kernel offload handlers by dev_add_offload(). The passed &offload_type
504  *      is removed from the kernel lists and can be freed or reused once this
505  *      function returns.
506  *
507  *      The packet type might still be in use by receivers
508  *      and must not be freed until after all the CPU's have gone
509  *      through a quiescent state.
510  */
511 static void __dev_remove_offload(struct packet_offload *po)
512 {
513         struct list_head *head = &offload_base;
514         struct packet_offload *po1;
515
516         spin_lock(&offload_lock);
517
518         list_for_each_entry(po1, head, list) {
519                 if (po == po1) {
520                         list_del_rcu(&po->list);
521                         goto out;
522                 }
523         }
524
525         pr_warn("dev_remove_offload: %p not found\n", po);
526 out:
527         spin_unlock(&offload_lock);
528 }
529
530 /**
531  *      dev_remove_offload       - remove packet offload handler
532  *      @po: packet offload declaration
533  *
534  *      Remove a packet offload handler that was previously added to the kernel
535  *      offload handlers by dev_add_offload(). The passed &offload_type is
536  *      removed from the kernel lists and can be freed or reused once this
537  *      function returns.
538  *
539  *      This call sleeps to guarantee that no CPU is looking at the packet
540  *      type after return.
541  */
542 void dev_remove_offload(struct packet_offload *po)
543 {
544         __dev_remove_offload(po);
545
546         synchronize_net();
547 }
548 EXPORT_SYMBOL(dev_remove_offload);
549
550 /******************************************************************************
551  *
552  *                    Device Boot-time Settings Routines
553  *
554  ******************************************************************************/
555
556 /* Boot time configuration table */
557 static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
558
559 /**
560  *      netdev_boot_setup_add   - add new setup entry
561  *      @name: name of the device
562  *      @map: configured settings for the device
563  *
564  *      Adds new setup entry to the dev_boot_setup list.  The function
565  *      returns 0 on error and 1 on success.  This is a generic routine to
566  *      all netdevices.
567  */
568 static int netdev_boot_setup_add(char *name, struct ifmap *map)
569 {
570         struct netdev_boot_setup *s;
571         int i;
572
573         s = dev_boot_setup;
574         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
575                 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
576                         memset(s[i].name, 0, sizeof(s[i].name));
577                         strlcpy(s[i].name, name, IFNAMSIZ);
578                         memcpy(&s[i].map, map, sizeof(s[i].map));
579                         break;
580                 }
581         }
582
583         return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
584 }
585
586 /**
587  * netdev_boot_setup_check      - check boot time settings
588  * @dev: the netdevice
589  *
590  * Check boot time settings for the device.
591  * The found settings are set for the device to be used
592  * later in the device probing.
593  * Returns 0 if no settings found, 1 if they are.
594  */
595 int netdev_boot_setup_check(struct net_device *dev)
596 {
597         struct netdev_boot_setup *s = dev_boot_setup;
598         int i;
599
600         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
601                 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
602                     !strcmp(dev->name, s[i].name)) {
603                         dev->irq = s[i].map.irq;
604                         dev->base_addr = s[i].map.base_addr;
605                         dev->mem_start = s[i].map.mem_start;
606                         dev->mem_end = s[i].map.mem_end;
607                         return 1;
608                 }
609         }
610         return 0;
611 }
612 EXPORT_SYMBOL(netdev_boot_setup_check);
613
614
615 /**
616  * netdev_boot_base     - get address from boot time settings
617  * @prefix: prefix for network device
618  * @unit: id for network device
619  *
620  * Check boot time settings for the base address of device.
621  * The found settings are set for the device to be used
622  * later in the device probing.
623  * Returns 0 if no settings found.
624  */
625 unsigned long netdev_boot_base(const char *prefix, int unit)
626 {
627         const struct netdev_boot_setup *s = dev_boot_setup;
628         char name[IFNAMSIZ];
629         int i;
630
631         sprintf(name, "%s%d", prefix, unit);
632
633         /*
634          * If device already registered then return base of 1
635          * to indicate not to probe for this interface
636          */
637         if (__dev_get_by_name(&init_net, name))
638                 return 1;
639
640         for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
641                 if (!strcmp(name, s[i].name))
642                         return s[i].map.base_addr;
643         return 0;
644 }
645
646 /*
647  * Saves at boot time configured settings for any netdevice.
648  */
649 int __init netdev_boot_setup(char *str)
650 {
651         int ints[5];
652         struct ifmap map;
653
654         str = get_options(str, ARRAY_SIZE(ints), ints);
655         if (!str || !*str)
656                 return 0;
657
658         /* Save settings */
659         memset(&map, 0, sizeof(map));
660         if (ints[0] > 0)
661                 map.irq = ints[1];
662         if (ints[0] > 1)
663                 map.base_addr = ints[2];
664         if (ints[0] > 2)
665                 map.mem_start = ints[3];
666         if (ints[0] > 3)
667                 map.mem_end = ints[4];
668
669         /* Add new entry to the list */
670         return netdev_boot_setup_add(str, &map);
671 }
672
673 __setup("netdev=", netdev_boot_setup);
674
675 /*******************************************************************************
676  *
677  *                          Device Interface Subroutines
678  *
679  *******************************************************************************/
680
681 /**
682  *      dev_get_iflink  - get 'iflink' value of a interface
683  *      @dev: targeted interface
684  *
685  *      Indicates the ifindex the interface is linked to.
686  *      Physical interfaces have the same 'ifindex' and 'iflink' values.
687  */
688
689 int dev_get_iflink(const struct net_device *dev)
690 {
691         if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
692                 return dev->netdev_ops->ndo_get_iflink(dev);
693
694         return dev->ifindex;
695 }
696 EXPORT_SYMBOL(dev_get_iflink);
697
698 /**
699  *      dev_fill_metadata_dst - Retrieve tunnel egress information.
700  *      @dev: targeted interface
701  *      @skb: The packet.
702  *
703  *      For better visibility of tunnel traffic OVS needs to retrieve
704  *      egress tunnel information for a packet. Following API allows
705  *      user to get this info.
706  */
707 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
708 {
709         struct ip_tunnel_info *info;
710
711         if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
712                 return -EINVAL;
713
714         info = skb_tunnel_info_unclone(skb);
715         if (!info)
716                 return -ENOMEM;
717         if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
718                 return -EINVAL;
719
720         return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
721 }
722 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
723
724 /**
725  *      __dev_get_by_name       - find a device by its name
726  *      @net: the applicable net namespace
727  *      @name: name to find
728  *
729  *      Find an interface by name. Must be called under RTNL semaphore
730  *      or @dev_base_lock. If the name is found a pointer to the device
731  *      is returned. If the name is not found then %NULL is returned. The
732  *      reference counters are not incremented so the caller must be
733  *      careful with locks.
734  */
735
736 struct net_device *__dev_get_by_name(struct net *net, const char *name)
737 {
738         struct net_device *dev;
739         struct hlist_head *head = dev_name_hash(net, name);
740
741         hlist_for_each_entry(dev, head, name_hlist)
742                 if (!strncmp(dev->name, name, IFNAMSIZ))
743                         return dev;
744
745         return NULL;
746 }
747 EXPORT_SYMBOL(__dev_get_by_name);
748
749 /**
750  * dev_get_by_name_rcu  - find a device by its name
751  * @net: the applicable net namespace
752  * @name: name to find
753  *
754  * Find an interface by name.
755  * If the name is found a pointer to the device is returned.
756  * If the name is not found then %NULL is returned.
757  * The reference counters are not incremented so the caller must be
758  * careful with locks. The caller must hold RCU lock.
759  */
760
761 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
762 {
763         struct net_device *dev;
764         struct hlist_head *head = dev_name_hash(net, name);
765
766         hlist_for_each_entry_rcu(dev, head, name_hlist)
767                 if (!strncmp(dev->name, name, IFNAMSIZ))
768                         return dev;
769
770         return NULL;
771 }
772 EXPORT_SYMBOL(dev_get_by_name_rcu);
773
774 /**
775  *      dev_get_by_name         - find a device by its name
776  *      @net: the applicable net namespace
777  *      @name: name to find
778  *
779  *      Find an interface by name. This can be called from any
780  *      context and does its own locking. The returned handle has
781  *      the usage count incremented and the caller must use dev_put() to
782  *      release it when it is no longer needed. %NULL is returned if no
783  *      matching device is found.
784  */
785
786 struct net_device *dev_get_by_name(struct net *net, const char *name)
787 {
788         struct net_device *dev;
789
790         rcu_read_lock();
791         dev = dev_get_by_name_rcu(net, name);
792         if (dev)
793                 dev_hold(dev);
794         rcu_read_unlock();
795         return dev;
796 }
797 EXPORT_SYMBOL(dev_get_by_name);
798
799 /**
800  *      __dev_get_by_index - find a device by its ifindex
801  *      @net: the applicable net namespace
802  *      @ifindex: index of device
803  *
804  *      Search for an interface by index. Returns %NULL if the device
805  *      is not found or a pointer to the device. The device has not
806  *      had its reference counter increased so the caller must be careful
807  *      about locking. The caller must hold either the RTNL semaphore
808  *      or @dev_base_lock.
809  */
810
811 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
812 {
813         struct net_device *dev;
814         struct hlist_head *head = dev_index_hash(net, ifindex);
815
816         hlist_for_each_entry(dev, head, index_hlist)
817                 if (dev->ifindex == ifindex)
818                         return dev;
819
820         return NULL;
821 }
822 EXPORT_SYMBOL(__dev_get_by_index);
823
824 /**
825  *      dev_get_by_index_rcu - find a device by its ifindex
826  *      @net: the applicable net namespace
827  *      @ifindex: index of device
828  *
829  *      Search for an interface by index. Returns %NULL if the device
830  *      is not found or a pointer to the device. The device has not
831  *      had its reference counter increased so the caller must be careful
832  *      about locking. The caller must hold RCU lock.
833  */
834
835 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
836 {
837         struct net_device *dev;
838         struct hlist_head *head = dev_index_hash(net, ifindex);
839
840         hlist_for_each_entry_rcu(dev, head, index_hlist)
841                 if (dev->ifindex == ifindex)
842                         return dev;
843
844         return NULL;
845 }
846 EXPORT_SYMBOL(dev_get_by_index_rcu);
847
848
849 /**
850  *      dev_get_by_index - find a device by its ifindex
851  *      @net: the applicable net namespace
852  *      @ifindex: index of device
853  *
854  *      Search for an interface by index. Returns NULL if the device
855  *      is not found or a pointer to the device. The device returned has
856  *      had a reference added and the pointer is safe until the user calls
857  *      dev_put to indicate they have finished with it.
858  */
859
860 struct net_device *dev_get_by_index(struct net *net, int ifindex)
861 {
862         struct net_device *dev;
863
864         rcu_read_lock();
865         dev = dev_get_by_index_rcu(net, ifindex);
866         if (dev)
867                 dev_hold(dev);
868         rcu_read_unlock();
869         return dev;
870 }
871 EXPORT_SYMBOL(dev_get_by_index);
872
873 /**
874  *      dev_get_by_napi_id - find a device by napi_id
875  *      @napi_id: ID of the NAPI struct
876  *
877  *      Search for an interface by NAPI ID. Returns %NULL if the device
878  *      is not found or a pointer to the device. The device has not had
879  *      its reference counter increased so the caller must be careful
880  *      about locking. The caller must hold RCU lock.
881  */
882
883 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
884 {
885         struct napi_struct *napi;
886
887         WARN_ON_ONCE(!rcu_read_lock_held());
888
889         if (napi_id < MIN_NAPI_ID)
890                 return NULL;
891
892         napi = napi_by_id(napi_id);
893
894         return napi ? napi->dev : NULL;
895 }
896 EXPORT_SYMBOL(dev_get_by_napi_id);
897
898 /**
899  *      netdev_get_name - get a netdevice name, knowing its ifindex.
900  *      @net: network namespace
901  *      @name: a pointer to the buffer where the name will be stored.
902  *      @ifindex: the ifindex of the interface to get the name from.
903  *
904  *      The use of raw_seqcount_begin() and cond_resched() before
905  *      retrying is required as we want to give the writers a chance
906  *      to complete when CONFIG_PREEMPT is not set.
907  */
908 int netdev_get_name(struct net *net, char *name, int ifindex)
909 {
910         struct net_device *dev;
911         unsigned int seq;
912
913 retry:
914         seq = raw_seqcount_begin(&devnet_rename_seq);
915         rcu_read_lock();
916         dev = dev_get_by_index_rcu(net, ifindex);
917         if (!dev) {
918                 rcu_read_unlock();
919                 return -ENODEV;
920         }
921
922         strcpy(name, dev->name);
923         rcu_read_unlock();
924         if (read_seqcount_retry(&devnet_rename_seq, seq)) {
925                 cond_resched();
926                 goto retry;
927         }
928
929         return 0;
930 }
931
932 /**
933  *      dev_getbyhwaddr_rcu - find a device by its hardware address
934  *      @net: the applicable net namespace
935  *      @type: media type of device
936  *      @ha: hardware address
937  *
938  *      Search for an interface by MAC address. Returns NULL if the device
939  *      is not found or a pointer to the device.
940  *      The caller must hold RCU or RTNL.
941  *      The returned device has not had its ref count increased
942  *      and the caller must therefore be careful about locking
943  *
944  */
945
946 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
947                                        const char *ha)
948 {
949         struct net_device *dev;
950
951         for_each_netdev_rcu(net, dev)
952                 if (dev->type == type &&
953                     !memcmp(dev->dev_addr, ha, dev->addr_len))
954                         return dev;
955
956         return NULL;
957 }
958 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
959
960 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
961 {
962         struct net_device *dev;
963
964         ASSERT_RTNL();
965         for_each_netdev(net, dev)
966                 if (dev->type == type)
967                         return dev;
968
969         return NULL;
970 }
971 EXPORT_SYMBOL(__dev_getfirstbyhwtype);
972
973 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
974 {
975         struct net_device *dev, *ret = NULL;
976
977         rcu_read_lock();
978         for_each_netdev_rcu(net, dev)
979                 if (dev->type == type) {
980                         dev_hold(dev);
981                         ret = dev;
982                         break;
983                 }
984         rcu_read_unlock();
985         return ret;
986 }
987 EXPORT_SYMBOL(dev_getfirstbyhwtype);
988
989 /**
990  *      __dev_get_by_flags - find any device with given flags
991  *      @net: the applicable net namespace
992  *      @if_flags: IFF_* values
993  *      @mask: bitmask of bits in if_flags to check
994  *
995  *      Search for any interface with the given flags. Returns NULL if a device
996  *      is not found or a pointer to the device. Must be called inside
997  *      rtnl_lock(), and result refcount is unchanged.
998  */
999
1000 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1001                                       unsigned short mask)
1002 {
1003         struct net_device *dev, *ret;
1004
1005         ASSERT_RTNL();
1006
1007         ret = NULL;
1008         for_each_netdev(net, dev) {
1009                 if (((dev->flags ^ if_flags) & mask) == 0) {
1010                         ret = dev;
1011                         break;
1012                 }
1013         }
1014         return ret;
1015 }
1016 EXPORT_SYMBOL(__dev_get_by_flags);
1017
1018 /**
1019  *      dev_valid_name - check if name is okay for network device
1020  *      @name: name string
1021  *
1022  *      Network device names need to be valid file names to
1023  *      to allow sysfs to work.  We also disallow any kind of
1024  *      whitespace.
1025  */
1026 bool dev_valid_name(const char *name)
1027 {
1028         if (*name == '\0')
1029                 return false;
1030         if (strlen(name) >= IFNAMSIZ)
1031                 return false;
1032         if (!strcmp(name, ".") || !strcmp(name, ".."))
1033                 return false;
1034
1035         while (*name) {
1036                 if (*name == '/' || *name == ':' || isspace(*name))
1037                         return false;
1038                 name++;
1039         }
1040         return true;
1041 }
1042 EXPORT_SYMBOL(dev_valid_name);
1043
1044 /**
1045  *      __dev_alloc_name - allocate a name for a device
1046  *      @net: network namespace to allocate the device name in
1047  *      @name: name format string
1048  *      @buf:  scratch buffer and result name string
1049  *
1050  *      Passed a format string - eg "lt%d" it will try and find a suitable
1051  *      id. It scans list of devices to build up a free map, then chooses
1052  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1053  *      while allocating the name and adding the device in order to avoid
1054  *      duplicates.
1055  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1056  *      Returns the number of the unit assigned or a negative errno code.
1057  */
1058
1059 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1060 {
1061         int i = 0;
1062         const char *p;
1063         const int max_netdevices = 8*PAGE_SIZE;
1064         unsigned long *inuse;
1065         struct net_device *d;
1066
1067         if (!dev_valid_name(name))
1068                 return -EINVAL;
1069
1070         p = strchr(name, '%');
1071         if (p) {
1072                 /*
1073                  * Verify the string as this thing may have come from
1074                  * the user.  There must be either one "%d" and no other "%"
1075                  * characters.
1076                  */
1077                 if (p[1] != 'd' || strchr(p + 2, '%'))
1078                         return -EINVAL;
1079
1080                 /* Use one page as a bit array of possible slots */
1081                 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1082                 if (!inuse)
1083                         return -ENOMEM;
1084
1085                 for_each_netdev(net, d) {
1086                         if (!sscanf(d->name, name, &i))
1087                                 continue;
1088                         if (i < 0 || i >= max_netdevices)
1089                                 continue;
1090
1091                         /*  avoid cases where sscanf is not exact inverse of printf */
1092                         snprintf(buf, IFNAMSIZ, name, i);
1093                         if (!strncmp(buf, d->name, IFNAMSIZ))
1094                                 set_bit(i, inuse);
1095                 }
1096
1097                 i = find_first_zero_bit(inuse, max_netdevices);
1098                 free_page((unsigned long) inuse);
1099         }
1100
1101         snprintf(buf, IFNAMSIZ, name, i);
1102         if (!__dev_get_by_name(net, buf))
1103                 return i;
1104
1105         /* It is possible to run out of possible slots
1106          * when the name is long and there isn't enough space left
1107          * for the digits, or if all bits are used.
1108          */
1109         return -ENFILE;
1110 }
1111
1112 static int dev_alloc_name_ns(struct net *net,
1113                              struct net_device *dev,
1114                              const char *name)
1115 {
1116         char buf[IFNAMSIZ];
1117         int ret;
1118
1119         BUG_ON(!net);
1120         ret = __dev_alloc_name(net, name, buf);
1121         if (ret >= 0)
1122                 strlcpy(dev->name, buf, IFNAMSIZ);
1123         return ret;
1124 }
1125
1126 /**
1127  *      dev_alloc_name - allocate a name for a device
1128  *      @dev: device
1129  *      @name: name format string
1130  *
1131  *      Passed a format string - eg "lt%d" it will try and find a suitable
1132  *      id. It scans list of devices to build up a free map, then chooses
1133  *      the first empty slot. The caller must hold the dev_base or rtnl lock
1134  *      while allocating the name and adding the device in order to avoid
1135  *      duplicates.
1136  *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1137  *      Returns the number of the unit assigned or a negative errno code.
1138  */
1139
1140 int dev_alloc_name(struct net_device *dev, const char *name)
1141 {
1142         return dev_alloc_name_ns(dev_net(dev), dev, name);
1143 }
1144 EXPORT_SYMBOL(dev_alloc_name);
1145
1146 int dev_get_valid_name(struct net *net, struct net_device *dev,
1147                        const char *name)
1148 {
1149         BUG_ON(!net);
1150
1151         if (!dev_valid_name(name))
1152                 return -EINVAL;
1153
1154         if (strchr(name, '%'))
1155                 return dev_alloc_name_ns(net, dev, name);
1156         else if (__dev_get_by_name(net, name))
1157                 return -EEXIST;
1158         else if (dev->name != name)
1159                 strlcpy(dev->name, name, IFNAMSIZ);
1160
1161         return 0;
1162 }
1163 EXPORT_SYMBOL(dev_get_valid_name);
1164
1165 /**
1166  *      dev_change_name - change name of a device
1167  *      @dev: device
1168  *      @newname: name (or format string) must be at least IFNAMSIZ
1169  *
1170  *      Change name of a device, can pass format strings "eth%d".
1171  *      for wildcarding.
1172  */
1173 int dev_change_name(struct net_device *dev, const char *newname)
1174 {
1175         unsigned char old_assign_type;
1176         char oldname[IFNAMSIZ];
1177         int err = 0;
1178         int ret;
1179         struct net *net;
1180
1181         ASSERT_RTNL();
1182         BUG_ON(!dev_net(dev));
1183
1184         net = dev_net(dev);
1185         if (dev->flags & IFF_UP)
1186                 return -EBUSY;
1187
1188         write_seqcount_begin(&devnet_rename_seq);
1189
1190         if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1191                 write_seqcount_end(&devnet_rename_seq);
1192                 return 0;
1193         }
1194
1195         memcpy(oldname, dev->name, IFNAMSIZ);
1196
1197         err = dev_get_valid_name(net, dev, newname);
1198         if (err < 0) {
1199                 write_seqcount_end(&devnet_rename_seq);
1200                 return err;
1201         }
1202
1203         if (oldname[0] && !strchr(oldname, '%'))
1204                 netdev_info(dev, "renamed from %s\n", oldname);
1205
1206         old_assign_type = dev->name_assign_type;
1207         dev->name_assign_type = NET_NAME_RENAMED;
1208
1209 rollback:
1210         ret = device_rename(&dev->dev, dev->name);
1211         if (ret) {
1212                 memcpy(dev->name, oldname, IFNAMSIZ);
1213                 dev->name_assign_type = old_assign_type;
1214                 write_seqcount_end(&devnet_rename_seq);
1215                 return ret;
1216         }
1217
1218         write_seqcount_end(&devnet_rename_seq);
1219
1220         netdev_adjacent_rename_links(dev, oldname);
1221
1222         write_lock_bh(&dev_base_lock);
1223         hlist_del_rcu(&dev->name_hlist);
1224         write_unlock_bh(&dev_base_lock);
1225
1226         synchronize_rcu();
1227
1228         write_lock_bh(&dev_base_lock);
1229         hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1230         write_unlock_bh(&dev_base_lock);
1231
1232         ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1233         ret = notifier_to_errno(ret);
1234
1235         if (ret) {
1236                 /* err >= 0 after dev_alloc_name() or stores the first errno */
1237                 if (err >= 0) {
1238                         err = ret;
1239                         write_seqcount_begin(&devnet_rename_seq);
1240                         memcpy(dev->name, oldname, IFNAMSIZ);
1241                         memcpy(oldname, newname, IFNAMSIZ);
1242                         dev->name_assign_type = old_assign_type;
1243                         old_assign_type = NET_NAME_RENAMED;
1244                         goto rollback;
1245                 } else {
1246                         pr_err("%s: name change rollback failed: %d\n",
1247                                dev->name, ret);
1248                 }
1249         }
1250
1251         return err;
1252 }
1253
1254 /**
1255  *      dev_set_alias - change ifalias of a device
1256  *      @dev: device
1257  *      @alias: name up to IFALIASZ
1258  *      @len: limit of bytes to copy from info
1259  *
1260  *      Set ifalias for a device,
1261  */
1262 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1263 {
1264         struct dev_ifalias *new_alias = NULL;
1265
1266         if (len >= IFALIASZ)
1267                 return -EINVAL;
1268
1269         if (len) {
1270                 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1271                 if (!new_alias)
1272                         return -ENOMEM;
1273
1274                 memcpy(new_alias->ifalias, alias, len);
1275                 new_alias->ifalias[len] = 0;
1276         }
1277
1278         mutex_lock(&ifalias_mutex);
1279         rcu_swap_protected(dev->ifalias, new_alias,
1280                            mutex_is_locked(&ifalias_mutex));
1281         mutex_unlock(&ifalias_mutex);
1282
1283         if (new_alias)
1284                 kfree_rcu(new_alias, rcuhead);
1285
1286         return len;
1287 }
1288
1289 /**
1290  *      dev_get_alias - get ifalias of a device
1291  *      @dev: device
1292  *      @name: buffer to store name of ifalias
1293  *      @len: size of buffer
1294  *
1295  *      get ifalias for a device.  Caller must make sure dev cannot go
1296  *      away,  e.g. rcu read lock or own a reference count to device.
1297  */
1298 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1299 {
1300         const struct dev_ifalias *alias;
1301         int ret = 0;
1302
1303         rcu_read_lock();
1304         alias = rcu_dereference(dev->ifalias);
1305         if (alias)
1306                 ret = snprintf(name, len, "%s", alias->ifalias);
1307         rcu_read_unlock();
1308
1309         return ret;
1310 }
1311
1312 /**
1313  *      netdev_features_change - device changes features
1314  *      @dev: device to cause notification
1315  *
1316  *      Called to indicate a device has changed features.
1317  */
1318 void netdev_features_change(struct net_device *dev)
1319 {
1320         call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1321 }
1322 EXPORT_SYMBOL(netdev_features_change);
1323
1324 /**
1325  *      netdev_state_change - device changes state
1326  *      @dev: device to cause notification
1327  *
1328  *      Called to indicate a device has changed state. This function calls
1329  *      the notifier chains for netdev_chain and sends a NEWLINK message
1330  *      to the routing socket.
1331  */
1332 void netdev_state_change(struct net_device *dev)
1333 {
1334         if (dev->flags & IFF_UP) {
1335                 struct netdev_notifier_change_info change_info = {
1336                         .info.dev = dev,
1337                 };
1338
1339                 call_netdevice_notifiers_info(NETDEV_CHANGE,
1340                                               &change_info.info);
1341                 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1342         }
1343 }
1344 EXPORT_SYMBOL(netdev_state_change);
1345
1346 /**
1347  * netdev_notify_peers - notify network peers about existence of @dev
1348  * @dev: network device
1349  *
1350  * Generate traffic such that interested network peers are aware of
1351  * @dev, such as by generating a gratuitous ARP. This may be used when
1352  * a device wants to inform the rest of the network about some sort of
1353  * reconfiguration such as a failover event or virtual machine
1354  * migration.
1355  */
1356 void netdev_notify_peers(struct net_device *dev)
1357 {
1358         rtnl_lock();
1359         call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1360         call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1361         rtnl_unlock();
1362 }
1363 EXPORT_SYMBOL(netdev_notify_peers);
1364
1365 static int __dev_open(struct net_device *dev)
1366 {
1367         const struct net_device_ops *ops = dev->netdev_ops;
1368         int ret;
1369
1370         ASSERT_RTNL();
1371
1372         if (!netif_device_present(dev))
1373                 return -ENODEV;
1374
1375         /* Block netpoll from trying to do any rx path servicing.
1376          * If we don't do this there is a chance ndo_poll_controller
1377          * or ndo_poll may be running while we open the device
1378          */
1379         netpoll_poll_disable(dev);
1380
1381         ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1382         ret = notifier_to_errno(ret);
1383         if (ret)
1384                 return ret;
1385
1386         set_bit(__LINK_STATE_START, &dev->state);
1387
1388         if (ops->ndo_validate_addr)
1389                 ret = ops->ndo_validate_addr(dev);
1390
1391         if (!ret && ops->ndo_open)
1392                 ret = ops->ndo_open(dev);
1393
1394         netpoll_poll_enable(dev);
1395
1396         if (ret)
1397                 clear_bit(__LINK_STATE_START, &dev->state);
1398         else {
1399                 dev->flags |= IFF_UP;
1400                 dev_set_rx_mode(dev);
1401                 dev_activate(dev);
1402                 add_device_randomness(dev->dev_addr, dev->addr_len);
1403         }
1404
1405         return ret;
1406 }
1407
1408 /**
1409  *      dev_open        - prepare an interface for use.
1410  *      @dev:   device to open
1411  *
1412  *      Takes a device from down to up state. The device's private open
1413  *      function is invoked and then the multicast lists are loaded. Finally
1414  *      the device is moved into the up state and a %NETDEV_UP message is
1415  *      sent to the netdev notifier chain.
1416  *
1417  *      Calling this function on an active interface is a nop. On a failure
1418  *      a negative errno code is returned.
1419  */
1420 int dev_open(struct net_device *dev)
1421 {
1422         int ret;
1423
1424         if (dev->flags & IFF_UP)
1425                 return 0;
1426
1427         ret = __dev_open(dev);
1428         if (ret < 0)
1429                 return ret;
1430
1431         rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1432         call_netdevice_notifiers(NETDEV_UP, dev);
1433
1434         return ret;
1435 }
1436 EXPORT_SYMBOL(dev_open);
1437
1438 static void __dev_close_many(struct list_head *head)
1439 {
1440         struct net_device *dev;
1441
1442         ASSERT_RTNL();
1443         might_sleep();
1444
1445         list_for_each_entry(dev, head, close_list) {
1446                 /* Temporarily disable netpoll until the interface is down */
1447                 netpoll_poll_disable(dev);
1448
1449                 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1450
1451                 clear_bit(__LINK_STATE_START, &dev->state);
1452
1453                 /* Synchronize to scheduled poll. We cannot touch poll list, it
1454                  * can be even on different cpu. So just clear netif_running().
1455                  *
1456                  * dev->stop() will invoke napi_disable() on all of it's
1457                  * napi_struct instances on this device.
1458                  */
1459                 smp_mb__after_atomic(); /* Commit netif_running(). */
1460         }
1461
1462         dev_deactivate_many(head);
1463
1464         list_for_each_entry(dev, head, close_list) {
1465                 const struct net_device_ops *ops = dev->netdev_ops;
1466
1467                 /*
1468                  *      Call the device specific close. This cannot fail.
1469                  *      Only if device is UP
1470                  *
1471                  *      We allow it to be called even after a DETACH hot-plug
1472                  *      event.
1473                  */
1474                 if (ops->ndo_stop)
1475                         ops->ndo_stop(dev);
1476
1477                 dev->flags &= ~IFF_UP;
1478                 netpoll_poll_enable(dev);
1479         }
1480 }
1481
1482 static void __dev_close(struct net_device *dev)
1483 {
1484         LIST_HEAD(single);
1485
1486         list_add(&dev->close_list, &single);
1487         __dev_close_many(&single);
1488         list_del(&single);
1489 }
1490
1491 void dev_close_many(struct list_head *head, bool unlink)
1492 {
1493         struct net_device *dev, *tmp;
1494
1495         /* Remove the devices that don't need to be closed */
1496         list_for_each_entry_safe(dev, tmp, head, close_list)
1497                 if (!(dev->flags & IFF_UP))
1498                         list_del_init(&dev->close_list);
1499
1500         __dev_close_many(head);
1501
1502         list_for_each_entry_safe(dev, tmp, head, close_list) {
1503                 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1504                 call_netdevice_notifiers(NETDEV_DOWN, dev);
1505                 if (unlink)
1506                         list_del_init(&dev->close_list);
1507         }
1508 }
1509 EXPORT_SYMBOL(dev_close_many);
1510
1511 /**
1512  *      dev_close - shutdown an interface.
1513  *      @dev: device to shutdown
1514  *
1515  *      This function moves an active device into down state. A
1516  *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1517  *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1518  *      chain.
1519  */
1520 void dev_close(struct net_device *dev)
1521 {
1522         if (dev->flags & IFF_UP) {
1523                 LIST_HEAD(single);
1524
1525                 list_add(&dev->close_list, &single);
1526                 dev_close_many(&single, true);
1527                 list_del(&single);
1528         }
1529 }
1530 EXPORT_SYMBOL(dev_close);
1531
1532
1533 /**
1534  *      dev_disable_lro - disable Large Receive Offload on a device
1535  *      @dev: device
1536  *
1537  *      Disable Large Receive Offload (LRO) on a net device.  Must be
1538  *      called under RTNL.  This is needed if received packets may be
1539  *      forwarded to another interface.
1540  */
1541 void dev_disable_lro(struct net_device *dev)
1542 {
1543         struct net_device *lower_dev;
1544         struct list_head *iter;
1545
1546         dev->wanted_features &= ~NETIF_F_LRO;
1547         netdev_update_features(dev);
1548
1549         if (unlikely(dev->features & NETIF_F_LRO))
1550                 netdev_WARN(dev, "failed to disable LRO!\n");
1551
1552         netdev_for_each_lower_dev(dev, lower_dev, iter)
1553                 dev_disable_lro(lower_dev);
1554 }
1555 EXPORT_SYMBOL(dev_disable_lro);
1556
1557 /**
1558  *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1559  *      @dev: device
1560  *
1561  *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1562  *      called under RTNL.  This is needed if Generic XDP is installed on
1563  *      the device.
1564  */
1565 static void dev_disable_gro_hw(struct net_device *dev)
1566 {
1567         dev->wanted_features &= ~NETIF_F_GRO_HW;
1568         netdev_update_features(dev);
1569
1570         if (unlikely(dev->features & NETIF_F_GRO_HW))
1571                 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1572 }
1573
1574 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1575                                    struct net_device *dev)
1576 {
1577         struct netdev_notifier_info info = {
1578                 .dev = dev,
1579         };
1580
1581         return nb->notifier_call(nb, val, &info);
1582 }
1583
1584 static int dev_boot_phase = 1;
1585
1586 /**
1587  * register_netdevice_notifier - register a network notifier block
1588  * @nb: notifier
1589  *
1590  * Register a notifier to be called when network device events occur.
1591  * The notifier passed is linked into the kernel structures and must
1592  * not be reused until it has been unregistered. A negative errno code
1593  * is returned on a failure.
1594  *
1595  * When registered all registration and up events are replayed
1596  * to the new notifier to allow device to have a race free
1597  * view of the network device list.
1598  */
1599
1600 int register_netdevice_notifier(struct notifier_block *nb)
1601 {
1602         struct net_device *dev;
1603         struct net_device *last;
1604         struct net *net;
1605         int err;
1606
1607         rtnl_lock();
1608         err = raw_notifier_chain_register(&netdev_chain, nb);
1609         if (err)
1610                 goto unlock;
1611         if (dev_boot_phase)
1612                 goto unlock;
1613         for_each_net(net) {
1614                 for_each_netdev(net, dev) {
1615                         err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1616                         err = notifier_to_errno(err);
1617                         if (err)
1618                                 goto rollback;
1619
1620                         if (!(dev->flags & IFF_UP))
1621                                 continue;
1622
1623                         call_netdevice_notifier(nb, NETDEV_UP, dev);
1624                 }
1625         }
1626
1627 unlock:
1628         rtnl_unlock();
1629         return err;
1630
1631 rollback:
1632         last = dev;
1633         for_each_net(net) {
1634                 for_each_netdev(net, dev) {
1635                         if (dev == last)
1636                                 goto outroll;
1637
1638                         if (dev->flags & IFF_UP) {
1639                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1640                                                         dev);
1641                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1642                         }
1643                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1644                 }
1645         }
1646
1647 outroll:
1648         raw_notifier_chain_unregister(&netdev_chain, nb);
1649         goto unlock;
1650 }
1651 EXPORT_SYMBOL(register_netdevice_notifier);
1652
1653 /**
1654  * unregister_netdevice_notifier - unregister a network notifier block
1655  * @nb: notifier
1656  *
1657  * Unregister a notifier previously registered by
1658  * register_netdevice_notifier(). The notifier is unlinked into the
1659  * kernel structures and may then be reused. A negative errno code
1660  * is returned on a failure.
1661  *
1662  * After unregistering unregister and down device events are synthesized
1663  * for all devices on the device list to the removed notifier to remove
1664  * the need for special case cleanup code.
1665  */
1666
1667 int unregister_netdevice_notifier(struct notifier_block *nb)
1668 {
1669         struct net_device *dev;
1670         struct net *net;
1671         int err;
1672
1673         rtnl_lock();
1674         err = raw_notifier_chain_unregister(&netdev_chain, nb);
1675         if (err)
1676                 goto unlock;
1677
1678         for_each_net(net) {
1679                 for_each_netdev(net, dev) {
1680                         if (dev->flags & IFF_UP) {
1681                                 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1682                                                         dev);
1683                                 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1684                         }
1685                         call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1686                 }
1687         }
1688 unlock:
1689         rtnl_unlock();
1690         return err;
1691 }
1692 EXPORT_SYMBOL(unregister_netdevice_notifier);
1693
1694 /**
1695  *      call_netdevice_notifiers_info - call all network notifier blocks
1696  *      @val: value passed unmodified to notifier function
1697  *      @info: notifier information data
1698  *
1699  *      Call all network notifier blocks.  Parameters and return value
1700  *      are as for raw_notifier_call_chain().
1701  */
1702
1703 static int call_netdevice_notifiers_info(unsigned long val,
1704                                          struct netdev_notifier_info *info)
1705 {
1706         ASSERT_RTNL();
1707         return raw_notifier_call_chain(&netdev_chain, val, info);
1708 }
1709
1710 /**
1711  *      call_netdevice_notifiers - call all network notifier blocks
1712  *      @val: value passed unmodified to notifier function
1713  *      @dev: net_device pointer passed unmodified to notifier function
1714  *
1715  *      Call all network notifier blocks.  Parameters and return value
1716  *      are as for raw_notifier_call_chain().
1717  */
1718
1719 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1720 {
1721         struct netdev_notifier_info info = {
1722                 .dev = dev,
1723         };
1724
1725         return call_netdevice_notifiers_info(val, &info);
1726 }
1727 EXPORT_SYMBOL(call_netdevice_notifiers);
1728
1729 #ifdef CONFIG_NET_INGRESS
1730 static struct static_key ingress_needed __read_mostly;
1731
1732 void net_inc_ingress_queue(void)
1733 {
1734         static_key_slow_inc(&ingress_needed);
1735 }
1736 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1737
1738 void net_dec_ingress_queue(void)
1739 {
1740         static_key_slow_dec(&ingress_needed);
1741 }
1742 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1743 #endif
1744
1745 #ifdef CONFIG_NET_EGRESS
1746 static struct static_key egress_needed __read_mostly;
1747
1748 void net_inc_egress_queue(void)
1749 {
1750         static_key_slow_inc(&egress_needed);
1751 }
1752 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1753
1754 void net_dec_egress_queue(void)
1755 {
1756         static_key_slow_dec(&egress_needed);
1757 }
1758 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1759 #endif
1760
1761 static struct static_key netstamp_needed __read_mostly;
1762 #ifdef HAVE_JUMP_LABEL
1763 static atomic_t netstamp_needed_deferred;
1764 static atomic_t netstamp_wanted;
1765 static void netstamp_clear(struct work_struct *work)
1766 {
1767         int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1768         int wanted;
1769
1770         wanted = atomic_add_return(deferred, &netstamp_wanted);
1771         if (wanted > 0)
1772                 static_key_enable(&netstamp_needed);
1773         else
1774                 static_key_disable(&netstamp_needed);
1775 }
1776 static DECLARE_WORK(netstamp_work, netstamp_clear);
1777 #endif
1778
1779 void net_enable_timestamp(void)
1780 {
1781 #ifdef HAVE_JUMP_LABEL
1782         int wanted;
1783
1784         while (1) {
1785                 wanted = atomic_read(&netstamp_wanted);
1786                 if (wanted <= 0)
1787                         break;
1788                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1789                         return;
1790         }
1791         atomic_inc(&netstamp_needed_deferred);
1792         schedule_work(&netstamp_work);
1793 #else
1794         static_key_slow_inc(&netstamp_needed);
1795 #endif
1796 }
1797 EXPORT_SYMBOL(net_enable_timestamp);
1798
1799 void net_disable_timestamp(void)
1800 {
1801 #ifdef HAVE_JUMP_LABEL
1802         int wanted;
1803
1804         while (1) {
1805                 wanted = atomic_read(&netstamp_wanted);
1806                 if (wanted <= 1)
1807                         break;
1808                 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1809                         return;
1810         }
1811         atomic_dec(&netstamp_needed_deferred);
1812         schedule_work(&netstamp_work);
1813 #else
1814         static_key_slow_dec(&netstamp_needed);
1815 #endif
1816 }
1817 EXPORT_SYMBOL(net_disable_timestamp);
1818
1819 static inline void net_timestamp_set(struct sk_buff *skb)
1820 {
1821         skb->tstamp = 0;
1822         if (static_key_false(&netstamp_needed))
1823                 __net_timestamp(skb);
1824 }
1825
1826 #define net_timestamp_check(COND, SKB)                  \
1827         if (static_key_false(&netstamp_needed)) {               \
1828                 if ((COND) && !(SKB)->tstamp)   \
1829                         __net_timestamp(SKB);           \
1830         }                                               \
1831
1832 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1833 {
1834         unsigned int len;
1835
1836         if (!(dev->flags & IFF_UP))
1837                 return false;
1838
1839         len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1840         if (skb->len <= len)
1841                 return true;
1842
1843         /* if TSO is enabled, we don't care about the length as the packet
1844          * could be forwarded without being segmented before
1845          */
1846         if (skb_is_gso(skb))
1847                 return true;
1848
1849         return false;
1850 }
1851 EXPORT_SYMBOL_GPL(is_skb_forwardable);
1852
1853 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1854 {
1855         int ret = ____dev_forward_skb(dev, skb);
1856
1857         if (likely(!ret)) {
1858                 skb->protocol = eth_type_trans(skb, dev);
1859                 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1860         }
1861
1862         return ret;
1863 }
1864 EXPORT_SYMBOL_GPL(__dev_forward_skb);
1865
1866 /**
1867  * dev_forward_skb - loopback an skb to another netif
1868  *
1869  * @dev: destination network device
1870  * @skb: buffer to forward
1871  *
1872  * return values:
1873  *      NET_RX_SUCCESS  (no congestion)
1874  *      NET_RX_DROP     (packet was dropped, but freed)
1875  *
1876  * dev_forward_skb can be used for injecting an skb from the
1877  * start_xmit function of one device into the receive queue
1878  * of another device.
1879  *
1880  * The receiving device may be in another namespace, so
1881  * we have to clear all information in the skb that could
1882  * impact namespace isolation.
1883  */
1884 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1885 {
1886         return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1887 }
1888 EXPORT_SYMBOL_GPL(dev_forward_skb);
1889
1890 static inline int deliver_skb(struct sk_buff *skb,
1891                               struct packet_type *pt_prev,
1892                               struct net_device *orig_dev)
1893 {
1894         if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1895                 return -ENOMEM;
1896         refcount_inc(&skb->users);
1897         return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1898 }
1899
1900 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1901                                           struct packet_type **pt,
1902                                           struct net_device *orig_dev,
1903                                           __be16 type,
1904                                           struct list_head *ptype_list)
1905 {
1906         struct packet_type *ptype, *pt_prev = *pt;
1907
1908         list_for_each_entry_rcu(ptype, ptype_list, list) {
1909                 if (ptype->type != type)
1910                         continue;
1911                 if (pt_prev)
1912                         deliver_skb(skb, pt_prev, orig_dev);
1913                 pt_prev = ptype;
1914         }
1915         *pt = pt_prev;
1916 }
1917
1918 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1919 {
1920         if (!ptype->af_packet_priv || !skb->sk)
1921                 return false;
1922
1923         if (ptype->id_match)
1924                 return ptype->id_match(ptype, skb->sk);
1925         else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1926                 return true;
1927
1928         return false;
1929 }
1930
1931 /*
1932  *      Support routine. Sends outgoing frames to any network
1933  *      taps currently in use.
1934  */
1935
1936 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1937 {
1938         struct packet_type *ptype;
1939         struct sk_buff *skb2 = NULL;
1940         struct packet_type *pt_prev = NULL;
1941         struct list_head *ptype_list = &ptype_all;
1942
1943         rcu_read_lock();
1944 again:
1945         list_for_each_entry_rcu(ptype, ptype_list, list) {
1946                 /* Never send packets back to the socket
1947                  * they originated from - MvS (miquels@drinkel.ow.org)
1948                  */
1949                 if (skb_loop_sk(ptype, skb))
1950                         continue;
1951
1952                 if (pt_prev) {
1953                         deliver_skb(skb2, pt_prev, skb->dev);
1954                         pt_prev = ptype;
1955                         continue;
1956                 }
1957
1958                 /* need to clone skb, done only once */
1959                 skb2 = skb_clone(skb, GFP_ATOMIC);
1960                 if (!skb2)
1961                         goto out_unlock;
1962
1963                 net_timestamp_set(skb2);
1964
1965                 /* skb->nh should be correctly
1966                  * set by sender, so that the second statement is
1967                  * just protection against buggy protocols.
1968                  */
1969                 skb_reset_mac_header(skb2);
1970
1971                 if (skb_network_header(skb2) < skb2->data ||
1972                     skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1973                         net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1974                                              ntohs(skb2->protocol),
1975                                              dev->name);
1976                         skb_reset_network_header(skb2);
1977                 }
1978
1979                 skb2->transport_header = skb2->network_header;
1980                 skb2->pkt_type = PACKET_OUTGOING;
1981                 pt_prev = ptype;
1982         }
1983
1984         if (ptype_list == &ptype_all) {
1985                 ptype_list = &dev->ptype_all;
1986                 goto again;
1987         }
1988 out_unlock:
1989         if (pt_prev) {
1990                 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
1991                         pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
1992                 else
1993                         kfree_skb(skb2);
1994         }
1995         rcu_read_unlock();
1996 }
1997 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
1998
1999 /**
2000  * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2001  * @dev: Network device
2002  * @txq: number of queues available
2003  *
2004  * If real_num_tx_queues is changed the tc mappings may no longer be
2005  * valid. To resolve this verify the tc mapping remains valid and if
2006  * not NULL the mapping. With no priorities mapping to this
2007  * offset/count pair it will no longer be used. In the worst case TC0
2008  * is invalid nothing can be done so disable priority mappings. If is
2009  * expected that drivers will fix this mapping if they can before
2010  * calling netif_set_real_num_tx_queues.
2011  */
2012 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2013 {
2014         int i;
2015         struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2016
2017         /* If TC0 is invalidated disable TC mapping */
2018         if (tc->offset + tc->count > txq) {
2019                 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2020                 dev->num_tc = 0;
2021                 return;
2022         }
2023
2024         /* Invalidated prio to tc mappings set to TC0 */
2025         for (i = 1; i < TC_BITMASK + 1; i++) {
2026                 int q = netdev_get_prio_tc_map(dev, i);
2027
2028                 tc = &dev->tc_to_txq[q];
2029                 if (tc->offset + tc->count > txq) {
2030                         pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2031                                 i, q);
2032                         netdev_set_prio_tc_map(dev, i, 0);
2033                 }
2034         }
2035 }
2036
2037 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2038 {
2039         if (dev->num_tc) {
2040                 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2041                 int i;
2042
2043                 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2044                         if ((txq - tc->offset) < tc->count)
2045                                 return i;
2046                 }
2047
2048                 return -1;
2049         }
2050
2051         return 0;
2052 }
2053 EXPORT_SYMBOL(netdev_txq_to_tc);
2054
2055 #ifdef CONFIG_XPS
2056 static DEFINE_MUTEX(xps_map_mutex);
2057 #define xmap_dereference(P)             \
2058         rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2059
2060 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2061                              int tci, u16 index)
2062 {
2063         struct xps_map *map = NULL;
2064         int pos;
2065
2066         if (dev_maps)
2067                 map = xmap_dereference(dev_maps->cpu_map[tci]);
2068         if (!map)
2069                 return false;
2070
2071         for (pos = map->len; pos--;) {
2072                 if (map->queues[pos] != index)
2073                         continue;
2074
2075                 if (map->len > 1) {
2076                         map->queues[pos] = map->queues[--map->len];
2077                         break;
2078                 }
2079
2080                 RCU_INIT_POINTER(dev_maps->cpu_map[tci], NULL);
2081                 kfree_rcu(map, rcu);
2082                 return false;
2083         }
2084
2085         return true;
2086 }
2087
2088 static bool remove_xps_queue_cpu(struct net_device *dev,
2089                                  struct xps_dev_maps *dev_maps,
2090                                  int cpu, u16 offset, u16 count)
2091 {
2092         int num_tc = dev->num_tc ? : 1;
2093         bool active = false;
2094         int tci;
2095
2096         for (tci = cpu * num_tc; num_tc--; tci++) {
2097                 int i, j;
2098
2099                 for (i = count, j = offset; i--; j++) {
2100                         if (!remove_xps_queue(dev_maps, cpu, j))
2101                                 break;
2102                 }
2103
2104                 active |= i < 0;
2105         }
2106
2107         return active;
2108 }
2109
2110 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2111                                    u16 count)
2112 {
2113         struct xps_dev_maps *dev_maps;
2114         int cpu, i;
2115         bool active = false;
2116
2117         mutex_lock(&xps_map_mutex);
2118         dev_maps = xmap_dereference(dev->xps_maps);
2119
2120         if (!dev_maps)
2121                 goto out_no_maps;
2122
2123         for_each_possible_cpu(cpu)
2124                 active |= remove_xps_queue_cpu(dev, dev_maps, cpu,
2125                                                offset, count);
2126
2127         if (!active) {
2128                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2129                 kfree_rcu(dev_maps, rcu);
2130         }
2131
2132         for (i = offset + (count - 1); count--; i--)
2133                 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2134                                              NUMA_NO_NODE);
2135
2136 out_no_maps:
2137         mutex_unlock(&xps_map_mutex);
2138 }
2139
2140 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2141 {
2142         netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2143 }
2144
2145 static struct xps_map *expand_xps_map(struct xps_map *map,
2146                                       int cpu, u16 index)
2147 {
2148         struct xps_map *new_map;
2149         int alloc_len = XPS_MIN_MAP_ALLOC;
2150         int i, pos;
2151
2152         for (pos = 0; map && pos < map->len; pos++) {
2153                 if (map->queues[pos] != index)
2154                         continue;
2155                 return map;
2156         }
2157
2158         /* Need to add queue to this CPU's existing map */
2159         if (map) {
2160                 if (pos < map->alloc_len)
2161                         return map;
2162
2163                 alloc_len = map->alloc_len * 2;
2164         }
2165
2166         /* Need to allocate new map to store queue on this CPU's map */
2167         new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2168                                cpu_to_node(cpu));
2169         if (!new_map)
2170                 return NULL;
2171
2172         for (i = 0; i < pos; i++)
2173                 new_map->queues[i] = map->queues[i];
2174         new_map->alloc_len = alloc_len;
2175         new_map->len = pos;
2176
2177         return new_map;
2178 }
2179
2180 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2181                         u16 index)
2182 {
2183         struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2184         int i, cpu, tci, numa_node_id = -2;
2185         int maps_sz, num_tc = 1, tc = 0;
2186         struct xps_map *map, *new_map;
2187         bool active = false;
2188
2189         if (dev->num_tc) {
2190                 num_tc = dev->num_tc;
2191                 tc = netdev_txq_to_tc(dev, index);
2192                 if (tc < 0)
2193                         return -EINVAL;
2194         }
2195
2196         maps_sz = XPS_DEV_MAPS_SIZE(num_tc);
2197         if (maps_sz < L1_CACHE_BYTES)
2198                 maps_sz = L1_CACHE_BYTES;
2199
2200         mutex_lock(&xps_map_mutex);
2201
2202         dev_maps = xmap_dereference(dev->xps_maps);
2203
2204         /* allocate memory for queue storage */
2205         for_each_cpu_and(cpu, cpu_online_mask, mask) {
2206                 if (!new_dev_maps)
2207                         new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2208                 if (!new_dev_maps) {
2209                         mutex_unlock(&xps_map_mutex);
2210                         return -ENOMEM;
2211                 }
2212
2213                 tci = cpu * num_tc + tc;
2214                 map = dev_maps ? xmap_dereference(dev_maps->cpu_map[tci]) :
2215                                  NULL;
2216
2217                 map = expand_xps_map(map, cpu, index);
2218                 if (!map)
2219                         goto error;
2220
2221                 RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2222         }
2223
2224         if (!new_dev_maps)
2225                 goto out_no_new_maps;
2226
2227         for_each_possible_cpu(cpu) {
2228                 /* copy maps belonging to foreign traffic classes */
2229                 for (i = tc, tci = cpu * num_tc; dev_maps && i--; tci++) {
2230                         /* fill in the new device map from the old device map */
2231                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2232                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2233                 }
2234
2235                 /* We need to explicitly update tci as prevous loop
2236                  * could break out early if dev_maps is NULL.
2237                  */
2238                 tci = cpu * num_tc + tc;
2239
2240                 if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2241                         /* add queue to CPU maps */
2242                         int pos = 0;
2243
2244                         map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2245                         while ((pos < map->len) && (map->queues[pos] != index))
2246                                 pos++;
2247
2248                         if (pos == map->len)
2249                                 map->queues[map->len++] = index;
2250 #ifdef CONFIG_NUMA
2251                         if (numa_node_id == -2)
2252                                 numa_node_id = cpu_to_node(cpu);
2253                         else if (numa_node_id != cpu_to_node(cpu))
2254                                 numa_node_id = -1;
2255 #endif
2256                 } else if (dev_maps) {
2257                         /* fill in the new device map from the old device map */
2258                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2259                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2260                 }
2261
2262                 /* copy maps belonging to foreign traffic classes */
2263                 for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2264                         /* fill in the new device map from the old device map */
2265                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2266                         RCU_INIT_POINTER(new_dev_maps->cpu_map[tci], map);
2267                 }
2268         }
2269
2270         rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2271
2272         /* Cleanup old maps */
2273         if (!dev_maps)
2274                 goto out_no_old_maps;
2275
2276         for_each_possible_cpu(cpu) {
2277                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2278                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2279                         map = xmap_dereference(dev_maps->cpu_map[tci]);
2280                         if (map && map != new_map)
2281                                 kfree_rcu(map, rcu);
2282                 }
2283         }
2284
2285         kfree_rcu(dev_maps, rcu);
2286
2287 out_no_old_maps:
2288         dev_maps = new_dev_maps;
2289         active = true;
2290
2291 out_no_new_maps:
2292         /* update Tx queue numa node */
2293         netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2294                                      (numa_node_id >= 0) ? numa_node_id :
2295                                      NUMA_NO_NODE);
2296
2297         if (!dev_maps)
2298                 goto out_no_maps;
2299
2300         /* removes queue from unused CPUs */
2301         for_each_possible_cpu(cpu) {
2302                 for (i = tc, tci = cpu * num_tc; i--; tci++)
2303                         active |= remove_xps_queue(dev_maps, tci, index);
2304                 if (!cpumask_test_cpu(cpu, mask) || !cpu_online(cpu))
2305                         active |= remove_xps_queue(dev_maps, tci, index);
2306                 for (i = num_tc - tc, tci++; --i; tci++)
2307                         active |= remove_xps_queue(dev_maps, tci, index);
2308         }
2309
2310         /* free map if not active */
2311         if (!active) {
2312                 RCU_INIT_POINTER(dev->xps_maps, NULL);
2313                 kfree_rcu(dev_maps, rcu);
2314         }
2315
2316 out_no_maps:
2317         mutex_unlock(&xps_map_mutex);
2318
2319         return 0;
2320 error:
2321         /* remove any maps that we added */
2322         for_each_possible_cpu(cpu) {
2323                 for (i = num_tc, tci = cpu * num_tc; i--; tci++) {
2324                         new_map = xmap_dereference(new_dev_maps->cpu_map[tci]);
2325                         map = dev_maps ?
2326                               xmap_dereference(dev_maps->cpu_map[tci]) :
2327                               NULL;
2328                         if (new_map && new_map != map)
2329                                 kfree(new_map);
2330                 }
2331         }
2332
2333         mutex_unlock(&xps_map_mutex);
2334
2335         kfree(new_dev_maps);
2336         return -ENOMEM;
2337 }
2338 EXPORT_SYMBOL(netif_set_xps_queue);
2339
2340 #endif
2341 void netdev_reset_tc(struct net_device *dev)
2342 {
2343 #ifdef CONFIG_XPS
2344         netif_reset_xps_queues_gt(dev, 0);
2345 #endif
2346         dev->num_tc = 0;
2347         memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2348         memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2349 }
2350 EXPORT_SYMBOL(netdev_reset_tc);
2351
2352 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2353 {
2354         if (tc >= dev->num_tc)
2355                 return -EINVAL;
2356
2357 #ifdef CONFIG_XPS
2358         netif_reset_xps_queues(dev, offset, count);
2359 #endif
2360         dev->tc_to_txq[tc].count = count;
2361         dev->tc_to_txq[tc].offset = offset;
2362         return 0;
2363 }
2364 EXPORT_SYMBOL(netdev_set_tc_queue);
2365
2366 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2367 {
2368         if (num_tc > TC_MAX_QUEUE)
2369                 return -EINVAL;
2370
2371 #ifdef CONFIG_XPS
2372         netif_reset_xps_queues_gt(dev, 0);
2373 #endif
2374         dev->num_tc = num_tc;
2375         return 0;
2376 }
2377 EXPORT_SYMBOL(netdev_set_num_tc);
2378
2379 /*
2380  * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2381  * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2382  */
2383 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2384 {
2385         bool disabling;
2386         int rc;
2387
2388         disabling = txq < dev->real_num_tx_queues;
2389
2390         if (txq < 1 || txq > dev->num_tx_queues)
2391                 return -EINVAL;
2392
2393         if (dev->reg_state == NETREG_REGISTERED ||
2394             dev->reg_state == NETREG_UNREGISTERING) {
2395                 ASSERT_RTNL();
2396
2397                 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2398                                                   txq);
2399                 if (rc)
2400                         return rc;
2401
2402                 if (dev->num_tc)
2403                         netif_setup_tc(dev, txq);
2404
2405                 dev->real_num_tx_queues = txq;
2406
2407                 if (disabling) {
2408                         synchronize_net();
2409                         qdisc_reset_all_tx_gt(dev, txq);
2410 #ifdef CONFIG_XPS
2411                         netif_reset_xps_queues_gt(dev, txq);
2412 #endif
2413                 }
2414         } else {
2415                 dev->real_num_tx_queues = txq;
2416         }
2417
2418         return 0;
2419 }
2420 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2421
2422 #ifdef CONFIG_SYSFS
2423 /**
2424  *      netif_set_real_num_rx_queues - set actual number of RX queues used
2425  *      @dev: Network device
2426  *      @rxq: Actual number of RX queues
2427  *
2428  *      This must be called either with the rtnl_lock held or before
2429  *      registration of the net device.  Returns 0 on success, or a
2430  *      negative error code.  If called before registration, it always
2431  *      succeeds.
2432  */
2433 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2434 {
2435         int rc;
2436
2437         if (rxq < 1 || rxq > dev->num_rx_queues)
2438                 return -EINVAL;
2439
2440         if (dev->reg_state == NETREG_REGISTERED) {
2441                 ASSERT_RTNL();
2442
2443                 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2444                                                   rxq);
2445                 if (rc)
2446                         return rc;
2447         }
2448
2449         dev->real_num_rx_queues = rxq;
2450         return 0;
2451 }
2452 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2453 #endif
2454
2455 /**
2456  * netif_get_num_default_rss_queues - default number of RSS queues
2457  *
2458  * This routine should set an upper limit on the number of RSS queues
2459  * used by default by multiqueue devices.
2460  */
2461 int netif_get_num_default_rss_queues(void)
2462 {
2463         return is_kdump_kernel() ?
2464                 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2465 }
2466 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2467
2468 static void __netif_reschedule(struct Qdisc *q)
2469 {
2470         struct softnet_data *sd;
2471         unsigned long flags;
2472
2473         local_irq_save(flags);
2474         sd = this_cpu_ptr(&softnet_data);
2475         q->next_sched = NULL;
2476         *sd->output_queue_tailp = q;
2477         sd->output_queue_tailp = &q->next_sched;
2478         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2479         local_irq_restore(flags);
2480 }
2481
2482 void __netif_schedule(struct Qdisc *q)
2483 {
2484         if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2485                 __netif_reschedule(q);
2486 }
2487 EXPORT_SYMBOL(__netif_schedule);
2488
2489 struct dev_kfree_skb_cb {
2490         enum skb_free_reason reason;
2491 };
2492
2493 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2494 {
2495         return (struct dev_kfree_skb_cb *)skb->cb;
2496 }
2497
2498 void netif_schedule_queue(struct netdev_queue *txq)
2499 {
2500         rcu_read_lock();
2501         if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2502                 struct Qdisc *q = rcu_dereference(txq->qdisc);
2503
2504                 __netif_schedule(q);
2505         }
2506         rcu_read_unlock();
2507 }
2508 EXPORT_SYMBOL(netif_schedule_queue);
2509
2510 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2511 {
2512         if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2513                 struct Qdisc *q;
2514
2515                 rcu_read_lock();
2516                 q = rcu_dereference(dev_queue->qdisc);
2517                 __netif_schedule(q);
2518                 rcu_read_unlock();
2519         }
2520 }
2521 EXPORT_SYMBOL(netif_tx_wake_queue);
2522
2523 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2524 {
2525         unsigned long flags;
2526
2527         if (unlikely(!skb))
2528                 return;
2529
2530         if (likely(refcount_read(&skb->users) == 1)) {
2531                 smp_rmb();
2532                 refcount_set(&skb->users, 0);
2533         } else if (likely(!refcount_dec_and_test(&skb->users))) {
2534                 return;
2535         }
2536         get_kfree_skb_cb(skb)->reason = reason;
2537         local_irq_save(flags);
2538         skb->next = __this_cpu_read(softnet_data.completion_queue);
2539         __this_cpu_write(softnet_data.completion_queue, skb);
2540         raise_softirq_irqoff(NET_TX_SOFTIRQ);
2541         local_irq_restore(flags);
2542 }
2543 EXPORT_SYMBOL(__dev_kfree_skb_irq);
2544
2545 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2546 {
2547         if (in_irq() || irqs_disabled())
2548                 __dev_kfree_skb_irq(skb, reason);
2549         else
2550                 dev_kfree_skb(skb);
2551 }
2552 EXPORT_SYMBOL(__dev_kfree_skb_any);
2553
2554
2555 /**
2556  * netif_device_detach - mark device as removed
2557  * @dev: network device
2558  *
2559  * Mark device as removed from system and therefore no longer available.
2560  */
2561 void netif_device_detach(struct net_device *dev)
2562 {
2563         if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2564             netif_running(dev)) {
2565                 netif_tx_stop_all_queues(dev);
2566         }
2567 }
2568 EXPORT_SYMBOL(netif_device_detach);
2569
2570 /**
2571  * netif_device_attach - mark device as attached
2572  * @dev: network device
2573  *
2574  * Mark device as attached from system and restart if needed.
2575  */
2576 void netif_device_attach(struct net_device *dev)
2577 {
2578         if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2579             netif_running(dev)) {
2580                 netif_tx_wake_all_queues(dev);
2581                 __netdev_watchdog_up(dev);
2582         }
2583 }
2584 EXPORT_SYMBOL(netif_device_attach);
2585
2586 /*
2587  * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2588  * to be used as a distribution range.
2589  */
2590 u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2591                   unsigned int num_tx_queues)
2592 {
2593         u32 hash;
2594         u16 qoffset = 0;
2595         u16 qcount = num_tx_queues;
2596
2597         if (skb_rx_queue_recorded(skb)) {
2598                 hash = skb_get_rx_queue(skb);
2599                 while (unlikely(hash >= num_tx_queues))
2600                         hash -= num_tx_queues;
2601                 return hash;
2602         }
2603
2604         if (dev->num_tc) {
2605                 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2606
2607                 qoffset = dev->tc_to_txq[tc].offset;
2608                 qcount = dev->tc_to_txq[tc].count;
2609         }
2610
2611         return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2612 }
2613 EXPORT_SYMBOL(__skb_tx_hash);
2614
2615 static void skb_warn_bad_offload(const struct sk_buff *skb)
2616 {
2617         static const netdev_features_t null_features;
2618         struct net_device *dev = skb->dev;
2619         const char *name = "";
2620
2621         if (!net_ratelimit())
2622                 return;
2623
2624         if (dev) {
2625                 if (dev->dev.parent)
2626                         name = dev_driver_string(dev->dev.parent);
2627                 else
2628                         name = netdev_name(dev);
2629         }
2630         WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2631              "gso_type=%d ip_summed=%d\n",
2632              name, dev ? &dev->features : &null_features,
2633              skb->sk ? &skb->sk->sk_route_caps : &null_features,
2634              skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2635              skb_shinfo(skb)->gso_type, skb->ip_summed);
2636 }
2637
2638 /*
2639  * Invalidate hardware checksum when packet is to be mangled, and
2640  * complete checksum manually on outgoing path.
2641  */
2642 int skb_checksum_help(struct sk_buff *skb)
2643 {
2644         __wsum csum;
2645         int ret = 0, offset;
2646
2647         if (skb->ip_summed == CHECKSUM_COMPLETE)
2648                 goto out_set_summed;
2649
2650         if (unlikely(skb_shinfo(skb)->gso_size)) {
2651                 skb_warn_bad_offload(skb);
2652                 return -EINVAL;
2653         }
2654
2655         /* Before computing a checksum, we should make sure no frag could
2656          * be modified by an external entity : checksum could be wrong.
2657          */
2658         if (skb_has_shared_frag(skb)) {
2659                 ret = __skb_linearize(skb);
2660                 if (ret)
2661                         goto out;
2662         }
2663
2664         offset = skb_checksum_start_offset(skb);
2665         BUG_ON(offset >= skb_headlen(skb));
2666         csum = skb_checksum(skb, offset, skb->len - offset, 0);
2667
2668         offset += skb->csum_offset;
2669         BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2670
2671         if (skb_cloned(skb) &&
2672             !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2673                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2674                 if (ret)
2675                         goto out;
2676         }
2677
2678         *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2679 out_set_summed:
2680         skb->ip_summed = CHECKSUM_NONE;
2681 out:
2682         return ret;
2683 }
2684 EXPORT_SYMBOL(skb_checksum_help);
2685
2686 int skb_crc32c_csum_help(struct sk_buff *skb)
2687 {
2688         __le32 crc32c_csum;
2689         int ret = 0, offset, start;
2690
2691         if (skb->ip_summed != CHECKSUM_PARTIAL)
2692                 goto out;
2693
2694         if (unlikely(skb_is_gso(skb)))
2695                 goto out;
2696
2697         /* Before computing a checksum, we should make sure no frag could
2698          * be modified by an external entity : checksum could be wrong.
2699          */
2700         if (unlikely(skb_has_shared_frag(skb))) {
2701                 ret = __skb_linearize(skb);
2702                 if (ret)
2703                         goto out;
2704         }
2705         start = skb_checksum_start_offset(skb);
2706         offset = start + offsetof(struct sctphdr, checksum);
2707         if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2708                 ret = -EINVAL;
2709                 goto out;
2710         }
2711         if (skb_cloned(skb) &&
2712             !skb_clone_writable(skb, offset + sizeof(__le32))) {
2713                 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2714                 if (ret)
2715                         goto out;
2716         }
2717         crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2718                                                   skb->len - start, ~(__u32)0,
2719                                                   crc32c_csum_stub));
2720         *(__le32 *)(skb->data + offset) = crc32c_csum;
2721         skb->ip_summed = CHECKSUM_NONE;
2722         skb->csum_not_inet = 0;
2723 out:
2724         return ret;
2725 }
2726
2727 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2728 {
2729         __be16 type = skb->protocol;
2730
2731         /* Tunnel gso handlers can set protocol to ethernet. */
2732         if (type == htons(ETH_P_TEB)) {
2733                 struct ethhdr *eth;
2734
2735                 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2736                         return 0;
2737
2738                 eth = (struct ethhdr *)skb_mac_header(skb);
2739                 type = eth->h_proto;
2740         }
2741
2742         return __vlan_get_protocol(skb, type, depth);
2743 }
2744
2745 /**
2746  *      skb_mac_gso_segment - mac layer segmentation handler.
2747  *      @skb: buffer to segment
2748  *      @features: features for the output path (see dev->features)
2749  */
2750 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2751                                     netdev_features_t features)
2752 {
2753         struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2754         struct packet_offload *ptype;
2755         int vlan_depth = skb->mac_len;
2756         __be16 type = skb_network_protocol(skb, &vlan_depth);
2757
2758         if (unlikely(!type))
2759                 return ERR_PTR(-EINVAL);
2760
2761         __skb_pull(skb, vlan_depth);
2762
2763         rcu_read_lock();
2764         list_for_each_entry_rcu(ptype, &offload_base, list) {
2765                 if (ptype->type == type && ptype->callbacks.gso_segment) {
2766                         segs = ptype->callbacks.gso_segment(skb, features);
2767                         break;
2768                 }
2769         }
2770         rcu_read_unlock();
2771
2772         __skb_push(skb, skb->data - skb_mac_header(skb));
2773
2774         return segs;
2775 }
2776 EXPORT_SYMBOL(skb_mac_gso_segment);
2777
2778
2779 /* openvswitch calls this on rx path, so we need a different check.
2780  */
2781 static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2782 {
2783         if (tx_path)
2784                 return skb->ip_summed != CHECKSUM_PARTIAL &&
2785                        skb->ip_summed != CHECKSUM_UNNECESSARY;
2786
2787         return skb->ip_summed == CHECKSUM_NONE;
2788 }
2789
2790 /**
2791  *      __skb_gso_segment - Perform segmentation on skb.
2792  *      @skb: buffer to segment
2793  *      @features: features for the output path (see dev->features)
2794  *      @tx_path: whether it is called in TX path
2795  *
2796  *      This function segments the given skb and returns a list of segments.
2797  *
2798  *      It may return NULL if the skb requires no segmentation.  This is
2799  *      only possible when GSO is used for verifying header integrity.
2800  *
2801  *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2802  */
2803 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2804                                   netdev_features_t features, bool tx_path)
2805 {
2806         struct sk_buff *segs;
2807
2808         if (unlikely(skb_needs_check(skb, tx_path))) {
2809                 int err;
2810
2811                 /* We're going to init ->check field in TCP or UDP header */
2812                 err = skb_cow_head(skb, 0);
2813                 if (err < 0)
2814                         return ERR_PTR(err);
2815         }
2816
2817         /* Only report GSO partial support if it will enable us to
2818          * support segmentation on this frame without needing additional
2819          * work.
2820          */
2821         if (features & NETIF_F_GSO_PARTIAL) {
2822                 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
2823                 struct net_device *dev = skb->dev;
2824
2825                 partial_features |= dev->features & dev->gso_partial_features;
2826                 if (!skb_gso_ok(skb, features | partial_features))
2827                         features &= ~NETIF_F_GSO_PARTIAL;
2828         }
2829
2830         BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2831                      sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2832
2833         SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2834         SKB_GSO_CB(skb)->encap_level = 0;
2835
2836         skb_reset_mac_header(skb);
2837         skb_reset_mac_len(skb);
2838
2839         segs = skb_mac_gso_segment(skb, features);
2840
2841         if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
2842                 skb_warn_bad_offload(skb);
2843
2844         return segs;
2845 }
2846 EXPORT_SYMBOL(__skb_gso_segment);
2847
2848 /* Take action when hardware reception checksum errors are detected. */
2849 #ifdef CONFIG_BUG
2850 void netdev_rx_csum_fault(struct net_device *dev)
2851 {
2852         if (net_ratelimit()) {
2853                 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2854                 dump_stack();
2855         }
2856 }
2857 EXPORT_SYMBOL(netdev_rx_csum_fault);
2858 #endif
2859
2860 /* Actually, we should eliminate this check as soon as we know, that:
2861  * 1. IOMMU is present and allows to map all the memory.
2862  * 2. No high memory really exists on this machine.
2863  */
2864
2865 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2866 {
2867 #ifdef CONFIG_HIGHMEM
2868         int i;
2869
2870         if (!(dev->features & NETIF_F_HIGHDMA)) {
2871                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2872                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2873
2874                         if (PageHighMem(skb_frag_page(frag)))
2875                                 return 1;
2876                 }
2877         }
2878
2879         if (PCI_DMA_BUS_IS_PHYS) {
2880                 struct device *pdev = dev->dev.parent;
2881
2882                 if (!pdev)
2883                         return 0;
2884                 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2885                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2886                         dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2887
2888                         if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2889                                 return 1;
2890                 }
2891         }
2892 #endif
2893         return 0;
2894 }
2895
2896 /* If MPLS offload request, verify we are testing hardware MPLS features
2897  * instead of standard features for the netdev.
2898  */
2899 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2900 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2901                                            netdev_features_t features,
2902                                            __be16 type)
2903 {
2904         if (eth_p_mpls(type))
2905                 features &= skb->dev->mpls_features;
2906
2907         return features;
2908 }
2909 #else
2910 static netdev_features_t net_mpls_features(struct sk_buff *skb,
2911                                            netdev_features_t features,
2912                                            __be16 type)
2913 {
2914         return features;
2915 }
2916 #endif
2917
2918 static netdev_features_t harmonize_features(struct sk_buff *skb,
2919         netdev_features_t features)
2920 {
2921         int tmp;
2922         __be16 type;
2923
2924         type = skb_network_protocol(skb, &tmp);
2925         features = net_mpls_features(skb, features, type);
2926
2927         if (skb->ip_summed != CHECKSUM_NONE &&
2928             !can_checksum_protocol(features, type)) {
2929                 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2930         }
2931         if (illegal_highdma(skb->dev, skb))
2932                 features &= ~NETIF_F_SG;
2933
2934         return features;
2935 }
2936
2937 netdev_features_t passthru_features_check(struct sk_buff *skb,
2938                                           struct net_device *dev,
2939                                           netdev_features_t features)
2940 {
2941         return features;
2942 }
2943 EXPORT_SYMBOL(passthru_features_check);
2944
2945 static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2946                                              struct net_device *dev,
2947                                              netdev_features_t features)
2948 {
2949         return vlan_features_check(skb, features);
2950 }
2951
2952 static netdev_features_t gso_features_check(const struct sk_buff *skb,
2953                                             struct net_device *dev,
2954                                             netdev_features_t features)
2955 {
2956         u16 gso_segs = skb_shinfo(skb)->gso_segs;
2957
2958         if (gso_segs > dev->gso_max_segs)
2959                 return features & ~NETIF_F_GSO_MASK;
2960
2961         /* Support for GSO partial features requires software
2962          * intervention before we can actually process the packets
2963          * so we need to strip support for any partial features now
2964          * and we can pull them back in after we have partially
2965          * segmented the frame.
2966          */
2967         if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
2968                 features &= ~dev->gso_partial_features;
2969
2970         /* Make sure to clear the IPv4 ID mangling feature if the
2971          * IPv4 header has the potential to be fragmented.
2972          */
2973         if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
2974                 struct iphdr *iph = skb->encapsulation ?
2975                                     inner_ip_hdr(skb) : ip_hdr(skb);
2976
2977                 if (!(iph->frag_off & htons(IP_DF)))
2978                         features &= ~NETIF_F_TSO_MANGLEID;
2979         }
2980
2981         return features;
2982 }
2983
2984 netdev_features_t netif_skb_features(struct sk_buff *skb)
2985 {
2986         struct net_device *dev = skb->dev;
2987         netdev_features_t features = dev->features;
2988
2989         if (skb_is_gso(skb))
2990                 features = gso_features_check(skb, dev, features);
2991
2992         /* If encapsulation offload request, verify we are testing
2993          * hardware encapsulation features instead of standard
2994          * features for the netdev
2995          */
2996         if (skb->encapsulation)
2997                 features &= dev->hw_enc_features;
2998
2999         if (skb_vlan_tagged(skb))
3000                 features = netdev_intersect_features(features,
3001                                                      dev->vlan_features |
3002                                                      NETIF_F_HW_VLAN_CTAG_TX |
3003                                                      NETIF_F_HW_VLAN_STAG_TX);
3004
3005         if (dev->netdev_ops->ndo_features_check)
3006                 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3007                                                                 features);
3008         else
3009                 features &= dflt_features_check(skb, dev, features);
3010
3011         return harmonize_features(skb, features);
3012 }
3013 EXPORT_SYMBOL(netif_skb_features);
3014
3015 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3016                     struct netdev_queue *txq, bool more)
3017 {
3018         unsigned int len;
3019         int rc;
3020
3021         if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
3022                 dev_queue_xmit_nit(skb, dev);
3023
3024         len = skb->len;
3025         trace_net_dev_start_xmit(skb, dev);
3026         rc = netdev_start_xmit(skb, dev, txq, more);
3027         trace_net_dev_xmit(skb, rc, dev, len);
3028
3029         return rc;
3030 }
3031
3032 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3033                                     struct netdev_queue *txq, int *ret)
3034 {
3035         struct sk_buff *skb = first;
3036         int rc = NETDEV_TX_OK;
3037
3038         while (skb) {
3039                 struct sk_buff *next = skb->next;
3040
3041                 skb->next = NULL;
3042                 rc = xmit_one(skb, dev, txq, next != NULL);
3043                 if (unlikely(!dev_xmit_complete(rc))) {
3044                         skb->next = next;
3045                         goto out;
3046                 }
3047
3048                 skb = next;
3049                 if (netif_xmit_stopped(txq) && skb) {
3050                         rc = NETDEV_TX_BUSY;
3051                         break;
3052                 }
3053         }
3054
3055 out:
3056         *ret = rc;
3057         return skb;
3058 }
3059
3060 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3061                                           netdev_features_t features)
3062 {
3063         if (skb_vlan_tag_present(skb) &&
3064             !vlan_hw_offload_capable(features, skb->vlan_proto))
3065                 skb = __vlan_hwaccel_push_inside(skb);
3066         return skb;
3067 }
3068
3069 int skb_csum_hwoffload_help(struct sk_buff *skb,
3070                             const netdev_features_t features)
3071 {
3072         if (unlikely(skb->csum_not_inet))
3073                 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3074                         skb_crc32c_csum_help(skb);
3075
3076         return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3077 }
3078 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3079
3080 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3081 {
3082         netdev_features_t features;
3083
3084         features = netif_skb_features(skb);
3085         skb = validate_xmit_vlan(skb, features);
3086         if (unlikely(!skb))
3087                 goto out_null;
3088
3089         if (netif_needs_gso(skb, features)) {
3090                 struct sk_buff *segs;
3091
3092                 segs = skb_gso_segment(skb, features);
3093                 if (IS_ERR(segs)) {
3094                         goto out_kfree_skb;
3095                 } else if (segs) {
3096                         consume_skb(skb);
3097                         skb = segs;
3098                 }
3099         } else {
3100                 if (skb_needs_linearize(skb, features) &&
3101                     __skb_linearize(skb))
3102                         goto out_kfree_skb;
3103
3104                 /* If packet is not checksummed and device does not
3105                  * support checksumming for this protocol, complete
3106                  * checksumming here.
3107                  */
3108                 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3109                         if (skb->encapsulation)
3110                                 skb_set_inner_transport_header(skb,
3111                                                                skb_checksum_start_offset(skb));
3112                         else
3113                                 skb_set_transport_header(skb,
3114                                                          skb_checksum_start_offset(skb));
3115                         if (skb_csum_hwoffload_help(skb, features))
3116                                 goto out_kfree_skb;
3117                 }
3118         }
3119
3120         skb = validate_xmit_xfrm(skb, features, again);
3121
3122         return skb;
3123
3124 out_kfree_skb:
3125         kfree_skb(skb);
3126 out_null:
3127         atomic_long_inc(&dev->tx_dropped);
3128         return NULL;
3129 }
3130
3131 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3132 {
3133         struct sk_buff *next, *head = NULL, *tail;
3134
3135         for (; skb != NULL; skb = next) {
3136                 next = skb->next;
3137                 skb->next = NULL;
3138
3139                 /* in case skb wont be segmented, point to itself */
3140                 skb->prev = skb;
3141
3142                 skb = validate_xmit_skb(skb, dev, again);
3143                 if (!skb)
3144                         continue;
3145
3146                 if (!head)
3147                         head = skb;
3148                 else
3149                         tail->next = skb;
3150                 /* If skb was segmented, skb->prev points to
3151                  * the last segment. If not, it still contains skb.
3152                  */
3153                 tail = skb->prev;
3154         }
3155         return head;
3156 }
3157 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3158
3159 static void qdisc_pkt_len_init(struct sk_buff *skb)
3160 {
3161         const struct skb_shared_info *shinfo = skb_shinfo(skb);
3162
3163         qdisc_skb_cb(skb)->pkt_len = skb->len;
3164
3165         /* To get more precise estimation of bytes sent on wire,
3166          * we add to pkt_len the headers size of all segments
3167          */
3168         if (shinfo->gso_size)  {
3169                 unsigned int hdr_len;
3170                 u16 gso_segs = shinfo->gso_segs;
3171
3172                 /* mac layer + network layer */
3173                 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3174
3175                 /* + transport layer */
3176                 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3177                         const struct tcphdr *th;
3178                         struct tcphdr _tcphdr;
3179
3180                         th = skb_header_pointer(skb, skb_transport_offset(skb),
3181                                                 sizeof(_tcphdr), &_tcphdr);
3182                         if (likely(th))
3183                                 hdr_len += __tcp_hdrlen(th);
3184                 } else {
3185                         struct udphdr _udphdr;
3186
3187                         if (skb_header_pointer(skb, skb_transport_offset(skb),
3188                                                sizeof(_udphdr), &_udphdr))
3189                                 hdr_len += sizeof(struct udphdr);
3190                 }
3191
3192                 if (shinfo->gso_type & SKB_GSO_DODGY)
3193                         gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3194                                                 shinfo->gso_size);
3195
3196                 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3197         }
3198 }
3199
3200 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3201                                  struct net_device *dev,
3202                                  struct netdev_queue *txq)
3203 {
3204         spinlock_t *root_lock = qdisc_lock(q);
3205         struct sk_buff *to_free = NULL;
3206         bool contended;
3207         int rc;
3208
3209         qdisc_calculate_pkt_len(skb, q);
3210
3211         if (q->flags & TCQ_F_NOLOCK) {
3212                 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3213                         __qdisc_drop(skb, &to_free);
3214                         rc = NET_XMIT_DROP;
3215                 } else {
3216                         rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3217                         __qdisc_run(q);
3218                 }
3219
3220                 if (unlikely(to_free))
3221                         kfree_skb_list(to_free);
3222                 return rc;
3223         }
3224
3225         /*
3226          * Heuristic to force contended enqueues to serialize on a
3227          * separate lock before trying to get qdisc main lock.
3228          * This permits qdisc->running owner to get the lock more
3229          * often and dequeue packets faster.
3230          */
3231         contended = qdisc_is_running(q);
3232         if (unlikely(contended))
3233                 spin_lock(&q->busylock);
3234
3235         spin_lock(root_lock);
3236         if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3237                 __qdisc_drop(skb, &to_free);
3238                 rc = NET_XMIT_DROP;
3239         } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3240                    qdisc_run_begin(q)) {
3241                 /*
3242                  * This is a work-conserving queue; there are no old skbs
3243                  * waiting to be sent out; and the qdisc is not running -
3244                  * xmit the skb directly.
3245                  */
3246
3247                 qdisc_bstats_update(q, skb);
3248
3249                 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3250                         if (unlikely(contended)) {
3251                                 spin_unlock(&q->busylock);
3252                                 contended = false;
3253                         }
3254                         __qdisc_run(q);
3255                 }
3256
3257                 qdisc_run_end(q);
3258                 rc = NET_XMIT_SUCCESS;
3259         } else {
3260                 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3261                 if (qdisc_run_begin(q)) {
3262                         if (unlikely(contended)) {
3263                                 spin_unlock(&q->busylock);
3264                                 contended = false;
3265                         }
3266                         __qdisc_run(q);
3267                         qdisc_run_end(q);
3268                 }
3269         }
3270         spin_unlock(root_lock);
3271         if (unlikely(to_free))
3272                 kfree_skb_list(to_free);
3273         if (unlikely(contended))
3274                 spin_unlock(&q->busylock);
3275         return rc;
3276 }
3277
3278 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3279 static void skb_update_prio(struct sk_buff *skb)
3280 {
3281         const struct netprio_map *map;
3282         const struct sock *sk;
3283         unsigned int prioidx;
3284
3285         if (skb->priority)
3286                 return;
3287         map = rcu_dereference_bh(skb->dev->priomap);
3288         if (!map)
3289                 return;
3290         sk = skb_to_full_sk(skb);
3291         if (!sk)
3292                 return;
3293
3294         prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3295
3296         if (prioidx < map->priomap_len)
3297                 skb->priority = map->priomap[prioidx];
3298 }
3299 #else
3300 #define skb_update_prio(skb)
3301 #endif
3302
3303 DEFINE_PER_CPU(int, xmit_recursion);
3304 EXPORT_SYMBOL(xmit_recursion);
3305
3306 /**
3307  *      dev_loopback_xmit - loop back @skb
3308  *      @net: network namespace this loopback is happening in
3309  *      @sk:  sk needed to be a netfilter okfn
3310  *      @skb: buffer to transmit
3311  */
3312 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3313 {
3314         skb_reset_mac_header(skb);
3315         __skb_pull(skb, skb_network_offset(skb));
3316         skb->pkt_type = PACKET_LOOPBACK;
3317         skb->ip_summed = CHECKSUM_UNNECESSARY;
3318         WARN_ON(!skb_dst(skb));
3319         skb_dst_force(skb);
3320         netif_rx_ni(skb);
3321         return 0;
3322 }
3323 EXPORT_SYMBOL(dev_loopback_xmit);
3324
3325 #ifdef CONFIG_NET_EGRESS
3326 static struct sk_buff *
3327 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3328 {
3329         struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3330         struct tcf_result cl_res;
3331
3332         if (!miniq)
3333                 return skb;
3334
3335         /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3336         mini_qdisc_bstats_cpu_update(miniq, skb);
3337
3338         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3339         case TC_ACT_OK:
3340         case TC_ACT_RECLASSIFY:
3341                 skb->tc_index = TC_H_MIN(cl_res.classid);
3342                 break;
3343         case TC_ACT_SHOT:
3344                 mini_qdisc_qstats_cpu_drop(miniq);
3345                 *ret = NET_XMIT_DROP;
3346                 kfree_skb(skb);
3347                 return NULL;
3348         case TC_ACT_STOLEN:
3349         case TC_ACT_QUEUED:
3350         case TC_ACT_TRAP:
3351                 *ret = NET_XMIT_SUCCESS;
3352                 consume_skb(skb);
3353                 return NULL;
3354         case TC_ACT_REDIRECT:
3355                 /* No need to push/pop skb's mac_header here on egress! */
3356                 skb_do_redirect(skb);
3357                 *ret = NET_XMIT_SUCCESS;
3358                 return NULL;
3359         default:
3360                 break;
3361         }
3362
3363         return skb;
3364 }
3365 #endif /* CONFIG_NET_EGRESS */
3366
3367 static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
3368 {
3369 #ifdef CONFIG_XPS
3370         struct xps_dev_maps *dev_maps;
3371         struct xps_map *map;
3372         int queue_index = -1;
3373
3374         rcu_read_lock();
3375         dev_maps = rcu_dereference(dev->xps_maps);
3376         if (dev_maps) {
3377                 unsigned int tci = skb->sender_cpu - 1;
3378
3379                 if (dev->num_tc) {
3380                         tci *= dev->num_tc;
3381                         tci += netdev_get_prio_tc_map(dev, skb->priority);
3382                 }
3383
3384                 map = rcu_dereference(dev_maps->cpu_map[tci]);
3385                 if (map) {
3386                         if (map->len == 1)
3387                                 queue_index = map->queues[0];
3388                         else
3389                                 queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3390                                                                            map->len)];
3391                         if (unlikely(queue_index >= dev->real_num_tx_queues))
3392                                 queue_index = -1;
3393                 }
3394         }
3395         rcu_read_unlock();
3396
3397         return queue_index;
3398 #else
3399         return -1;
3400 #endif
3401 }
3402
3403 static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
3404 {
3405         struct sock *sk = skb->sk;
3406         int queue_index = sk_tx_queue_get(sk);
3407
3408         if (queue_index < 0 || skb->ooo_okay ||
3409             queue_index >= dev->real_num_tx_queues) {
3410                 int new_index = get_xps_queue(dev, skb);
3411
3412                 if (new_index < 0)
3413                         new_index = skb_tx_hash(dev, skb);
3414
3415                 if (queue_index != new_index && sk &&
3416                     sk_fullsock(sk) &&
3417                     rcu_access_pointer(sk->sk_dst_cache))
3418                         sk_tx_queue_set(sk, new_index);
3419
3420                 queue_index = new_index;
3421         }
3422
3423         return queue_index;
3424 }
3425
3426 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3427                                     struct sk_buff *skb,
3428                                     void *accel_priv)
3429 {
3430         int queue_index = 0;
3431
3432 #ifdef CONFIG_XPS
3433         u32 sender_cpu = skb->sender_cpu - 1;
3434
3435         if (sender_cpu >= (u32)NR_CPUS)
3436                 skb->sender_cpu = raw_smp_processor_id() + 1;
3437 #endif
3438
3439         if (dev->real_num_tx_queues != 1) {
3440                 const struct net_device_ops *ops = dev->netdev_ops;
3441
3442                 if (ops->ndo_select_queue)
3443                         queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3444                                                             __netdev_pick_tx);
3445                 else
3446                         queue_index = __netdev_pick_tx(dev, skb);
3447
3448                 queue_index = netdev_cap_txqueue(dev, queue_index);
3449         }
3450
3451         skb_set_queue_mapping(skb, queue_index);
3452         return netdev_get_tx_queue(dev, queue_index);
3453 }
3454
3455 /**
3456  *      __dev_queue_xmit - transmit a buffer
3457  *      @skb: buffer to transmit
3458  *      @accel_priv: private data used for L2 forwarding offload
3459  *
3460  *      Queue a buffer for transmission to a network device. The caller must
3461  *      have set the device and priority and built the buffer before calling
3462  *      this function. The function can be called from an interrupt.
3463  *
3464  *      A negative errno code is returned on a failure. A success does not
3465  *      guarantee the frame will be transmitted as it may be dropped due
3466  *      to congestion or traffic shaping.
3467  *
3468  * -----------------------------------------------------------------------------------
3469  *      I notice this method can also return errors from the queue disciplines,
3470  *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3471  *      be positive.
3472  *
3473  *      Regardless of the return value, the skb is consumed, so it is currently
3474  *      difficult to retry a send to this method.  (You can bump the ref count
3475  *      before sending to hold a reference for retry if you are careful.)
3476  *
3477  *      When calling this method, interrupts MUST be enabled.  This is because
3478  *      the BH enable code must have IRQs enabled so that it will not deadlock.
3479  *          --BLG
3480  */
3481 static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3482 {
3483         struct net_device *dev = skb->dev;
3484         struct netdev_queue *txq;
3485         struct Qdisc *q;
3486         int rc = -ENOMEM;
3487         bool again = false;
3488
3489         skb_reset_mac_header(skb);
3490
3491         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3492                 __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3493
3494         /* Disable soft irqs for various locks below. Also
3495          * stops preemption for RCU.
3496          */
3497         rcu_read_lock_bh();
3498
3499         skb_update_prio(skb);
3500
3501         qdisc_pkt_len_init(skb);
3502 #ifdef CONFIG_NET_CLS_ACT
3503         skb->tc_at_ingress = 0;
3504 # ifdef CONFIG_NET_EGRESS
3505         if (static_key_false(&egress_needed)) {
3506                 skb = sch_handle_egress(skb, &rc, dev);
3507                 if (!skb)
3508                         goto out;
3509         }
3510 # endif
3511 #endif
3512         /* If device/qdisc don't need skb->dst, release it right now while
3513          * its hot in this cpu cache.
3514          */
3515         if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3516                 skb_dst_drop(skb);
3517         else
3518                 skb_dst_force(skb);
3519
3520         txq = netdev_pick_tx(dev, skb, accel_priv);
3521         q = rcu_dereference_bh(txq->qdisc);
3522
3523         trace_net_dev_queue(skb);
3524         if (q->enqueue) {
3525                 rc = __dev_xmit_skb(skb, q, dev, txq);
3526                 goto out;
3527         }
3528
3529         /* The device has no queue. Common case for software devices:
3530          * loopback, all the sorts of tunnels...
3531
3532          * Really, it is unlikely that netif_tx_lock protection is necessary
3533          * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3534          * counters.)
3535          * However, it is possible, that they rely on protection
3536          * made by us here.
3537
3538          * Check this and shot the lock. It is not prone from deadlocks.
3539          *Either shot noqueue qdisc, it is even simpler 8)
3540          */
3541         if (dev->flags & IFF_UP) {
3542                 int cpu = smp_processor_id(); /* ok because BHs are off */
3543
3544                 if (txq->xmit_lock_owner != cpu) {
3545                         if (unlikely(__this_cpu_read(xmit_recursion) >
3546                                      XMIT_RECURSION_LIMIT))
3547                                 goto recursion_alert;
3548
3549                         skb = validate_xmit_skb(skb, dev, &again);
3550                         if (!skb)
3551                                 goto out;
3552
3553                         HARD_TX_LOCK(dev, txq, cpu);
3554
3555                         if (!netif_xmit_stopped(txq)) {
3556                                 __this_cpu_inc(xmit_recursion);
3557                                 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3558                                 __this_cpu_dec(xmit_recursion);
3559                                 if (dev_xmit_complete(rc)) {
3560                                         HARD_TX_UNLOCK(dev, txq);
3561                                         goto out;
3562                                 }
3563                         }
3564                         HARD_TX_UNLOCK(dev, txq);
3565                         net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3566                                              dev->name);
3567                 } else {
3568                         /* Recursion is detected! It is possible,
3569                          * unfortunately
3570                          */
3571 recursion_alert:
3572                         net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3573                                              dev->name);
3574                 }
3575         }
3576
3577         rc = -ENETDOWN;
3578         rcu_read_unlock_bh();
3579
3580         atomic_long_inc(&dev->tx_dropped);
3581         kfree_skb_list(skb);
3582         return rc;
3583 out:
3584         rcu_read_unlock_bh();
3585         return rc;
3586 }
3587
3588 int dev_queue_xmit(struct sk_buff *skb)
3589 {
3590         return __dev_queue_xmit(skb, NULL);
3591 }
3592 EXPORT_SYMBOL(dev_queue_xmit);
3593
3594 int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3595 {
3596         return __dev_queue_xmit(skb, accel_priv);
3597 }
3598 EXPORT_SYMBOL(dev_queue_xmit_accel);
3599
3600
3601 /*************************************************************************
3602  *                      Receiver routines
3603  *************************************************************************/
3604
3605 int netdev_max_backlog __read_mostly = 1000;
3606 EXPORT_SYMBOL(netdev_max_backlog);
3607
3608 int netdev_tstamp_prequeue __read_mostly = 1;
3609 int netdev_budget __read_mostly = 300;
3610 unsigned int __read_mostly netdev_budget_usecs = 2000;
3611 int weight_p __read_mostly = 64;           /* old backlog weight */
3612 int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3613 int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3614 int dev_rx_weight __read_mostly = 64;
3615 int dev_tx_weight __read_mostly = 64;
3616
3617 /* Called with irq disabled */
3618 static inline void ____napi_schedule(struct softnet_data *sd,
3619                                      struct napi_struct *napi)
3620 {
3621         list_add_tail(&napi->poll_list, &sd->poll_list);
3622         __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3623 }
3624
3625 #ifdef CONFIG_RPS
3626
3627 /* One global table that all flow-based protocols share. */
3628 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3629 EXPORT_SYMBOL(rps_sock_flow_table);
3630 u32 rps_cpu_mask __read_mostly;
3631 EXPORT_SYMBOL(rps_cpu_mask);
3632
3633 struct static_key rps_needed __read_mostly;
3634 EXPORT_SYMBOL(rps_needed);
3635 struct static_key rfs_needed __read_mostly;
3636 EXPORT_SYMBOL(rfs_needed);
3637
3638 static struct rps_dev_flow *
3639 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3640             struct rps_dev_flow *rflow, u16 next_cpu)
3641 {
3642         if (next_cpu < nr_cpu_ids) {
3643 #ifdef CONFIG_RFS_ACCEL
3644                 struct netdev_rx_queue *rxqueue;
3645                 struct rps_dev_flow_table *flow_table;
3646                 struct rps_dev_flow *old_rflow;
3647                 u32 flow_id;
3648                 u16 rxq_index;
3649                 int rc;
3650
3651                 /* Should we steer this flow to a different hardware queue? */
3652                 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3653                     !(dev->features & NETIF_F_NTUPLE))
3654                         goto out;
3655                 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3656                 if (rxq_index == skb_get_rx_queue(skb))
3657                         goto out;
3658
3659                 rxqueue = dev->_rx + rxq_index;
3660                 flow_table = rcu_dereference(rxqueue->rps_flow_table);
3661                 if (!flow_table)
3662                         goto out;
3663                 flow_id = skb_get_hash(skb) & flow_table->mask;
3664                 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3665                                                         rxq_index, flow_id);
3666                 if (rc < 0)
3667                         goto out;
3668                 old_rflow = rflow;
3669                 rflow = &flow_table->flows[flow_id];
3670                 rflow->filter = rc;
3671                 if (old_rflow->filter == rflow->filter)
3672                         old_rflow->filter = RPS_NO_FILTER;
3673         out:
3674 #endif
3675                 rflow->last_qtail =
3676                         per_cpu(softnet_data, next_cpu).input_queue_head;
3677         }
3678
3679         rflow->cpu = next_cpu;
3680         return rflow;
3681 }
3682
3683 /*
3684  * get_rps_cpu is called from netif_receive_skb and returns the target
3685  * CPU from the RPS map of the receiving queue for a given skb.
3686  * rcu_read_lock must be held on entry.
3687  */
3688 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3689                        struct rps_dev_flow **rflowp)
3690 {
3691         const struct rps_sock_flow_table *sock_flow_table;
3692         struct netdev_rx_queue *rxqueue = dev->_rx;
3693         struct rps_dev_flow_table *flow_table;
3694         struct rps_map *map;
3695         int cpu = -1;
3696         u32 tcpu;
3697         u32 hash;
3698
3699         if (skb_rx_queue_recorded(skb)) {
3700                 u16 index = skb_get_rx_queue(skb);
3701
3702                 if (unlikely(index >= dev->real_num_rx_queues)) {
3703                         WARN_ONCE(dev->real_num_rx_queues > 1,
3704                                   "%s received packet on queue %u, but number "
3705                                   "of RX queues is %u\n",
3706                                   dev->name, index, dev->real_num_rx_queues);
3707                         goto done;
3708                 }
3709                 rxqueue += index;
3710         }
3711
3712         /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3713
3714         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3715         map = rcu_dereference(rxqueue->rps_map);
3716         if (!flow_table && !map)
3717                 goto done;
3718
3719         skb_reset_network_header(skb);
3720         hash = skb_get_hash(skb);
3721         if (!hash)
3722                 goto done;
3723
3724         sock_flow_table = rcu_dereference(rps_sock_flow_table);
3725         if (flow_table && sock_flow_table) {
3726                 struct rps_dev_flow *rflow;
3727                 u32 next_cpu;
3728                 u32 ident;
3729
3730                 /* First check into global flow table if there is a match */
3731                 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3732                 if ((ident ^ hash) & ~rps_cpu_mask)
3733                         goto try_rps;
3734
3735                 next_cpu = ident & rps_cpu_mask;
3736
3737                 /* OK, now we know there is a match,
3738                  * we can look at the local (per receive queue) flow table
3739                  */
3740                 rflow = &flow_table->flows[hash & flow_table->mask];
3741                 tcpu = rflow->cpu;
3742
3743                 /*
3744                  * If the desired CPU (where last recvmsg was done) is
3745                  * different from current CPU (one in the rx-queue flow
3746                  * table entry), switch if one of the following holds:
3747                  *   - Current CPU is unset (>= nr_cpu_ids).
3748                  *   - Current CPU is offline.
3749                  *   - The current CPU's queue tail has advanced beyond the
3750                  *     last packet that was enqueued using this table entry.
3751                  *     This guarantees that all previous packets for the flow
3752                  *     have been dequeued, thus preserving in order delivery.
3753                  */
3754                 if (unlikely(tcpu != next_cpu) &&
3755                     (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3756                      ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3757                       rflow->last_qtail)) >= 0)) {
3758                         tcpu = next_cpu;
3759                         rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3760                 }
3761
3762                 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3763                         *rflowp = rflow;
3764                         cpu = tcpu;
3765                         goto done;
3766                 }
3767         }
3768
3769 try_rps:
3770
3771         if (map) {
3772                 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3773                 if (cpu_online(tcpu)) {
3774                         cpu = tcpu;
3775                         goto done;
3776                 }
3777         }
3778
3779 done:
3780         return cpu;
3781 }
3782
3783 #ifdef CONFIG_RFS_ACCEL
3784
3785 /**
3786  * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3787  * @dev: Device on which the filter was set
3788  * @rxq_index: RX queue index
3789  * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3790  * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3791  *
3792  * Drivers that implement ndo_rx_flow_steer() should periodically call
3793  * this function for each installed filter and remove the filters for
3794  * which it returns %true.
3795  */
3796 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3797                          u32 flow_id, u16 filter_id)
3798 {
3799         struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3800         struct rps_dev_flow_table *flow_table;
3801         struct rps_dev_flow *rflow;
3802         bool expire = true;
3803         unsigned int cpu;
3804
3805         rcu_read_lock();
3806         flow_table = rcu_dereference(rxqueue->rps_flow_table);
3807         if (flow_table && flow_id <= flow_table->mask) {
3808                 rflow = &flow_table->flows[flow_id];
3809                 cpu = READ_ONCE(rflow->cpu);
3810                 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3811                     ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3812                            rflow->last_qtail) <
3813                      (int)(10 * flow_table->mask)))
3814                         expire = false;
3815         }
3816         rcu_read_unlock();
3817         return expire;
3818 }
3819 EXPORT_SYMBOL(rps_may_expire_flow);
3820
3821 #endif /* CONFIG_RFS_ACCEL */
3822
3823 /* Called from hardirq (IPI) context */
3824 static void rps_trigger_softirq(void *data)
3825 {
3826         struct softnet_data *sd = data;
3827
3828         ____napi_schedule(sd, &sd->backlog);
3829         sd->received_rps++;
3830 }
3831
3832 #endif /* CONFIG_RPS */
3833
3834 /*
3835  * Check if this softnet_data structure is another cpu one
3836  * If yes, queue it to our IPI list and return 1
3837  * If no, return 0
3838  */
3839 static int rps_ipi_queued(struct softnet_data *sd)
3840 {
3841 #ifdef CONFIG_RPS
3842         struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3843
3844         if (sd != mysd) {
3845                 sd->rps_ipi_next = mysd->rps_ipi_list;
3846                 mysd->rps_ipi_list = sd;
3847
3848                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3849                 return 1;
3850         }
3851 #endif /* CONFIG_RPS */
3852         return 0;
3853 }
3854
3855 #ifdef CONFIG_NET_FLOW_LIMIT
3856 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3857 #endif
3858
3859 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3860 {
3861 #ifdef CONFIG_NET_FLOW_LIMIT
3862         struct sd_flow_limit *fl;
3863         struct softnet_data *sd;
3864         unsigned int old_flow, new_flow;
3865
3866         if (qlen < (netdev_max_backlog >> 1))
3867                 return false;
3868
3869         sd = this_cpu_ptr(&softnet_data);
3870
3871         rcu_read_lock();
3872         fl = rcu_dereference(sd->flow_limit);
3873         if (fl) {
3874                 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3875                 old_flow = fl->history[fl->history_head];
3876                 fl->history[fl->history_head] = new_flow;
3877
3878                 fl->history_head++;
3879                 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3880
3881                 if (likely(fl->buckets[old_flow]))
3882                         fl->buckets[old_flow]--;
3883
3884                 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3885                         fl->count++;
3886                         rcu_read_unlock();
3887                         return true;
3888                 }
3889         }
3890         rcu_read_unlock();
3891 #endif
3892         return false;
3893 }
3894
3895 /*
3896  * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3897  * queue (may be a remote CPU queue).
3898  */
3899 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3900                               unsigned int *qtail)
3901 {
3902         struct softnet_data *sd;
3903         unsigned long flags;
3904         unsigned int qlen;
3905
3906         sd = &per_cpu(softnet_data, cpu);
3907
3908         local_irq_save(flags);
3909
3910         rps_lock(sd);
3911         if (!netif_running(skb->dev))
3912                 goto drop;
3913         qlen = skb_queue_len(&sd->input_pkt_queue);
3914         if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
3915                 if (qlen) {
3916 enqueue:
3917                         __skb_queue_tail(&sd->input_pkt_queue, skb);
3918                         input_queue_tail_incr_save(sd, qtail);
3919                         rps_unlock(sd);
3920                         local_irq_restore(flags);
3921                         return NET_RX_SUCCESS;
3922                 }
3923
3924                 /* Schedule NAPI for backlog device
3925                  * We can use non atomic operation since we own the queue lock
3926                  */
3927                 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3928                         if (!rps_ipi_queued(sd))
3929                                 ____napi_schedule(sd, &sd->backlog);
3930                 }
3931                 goto enqueue;
3932         }
3933
3934 drop:
3935         sd->dropped++;
3936         rps_unlock(sd);
3937
3938         local_irq_restore(flags);
3939
3940         atomic_long_inc(&skb->dev->rx_dropped);
3941         kfree_skb(skb);
3942         return NET_RX_DROP;
3943 }
3944
3945 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
3946 {
3947         struct net_device *dev = skb->dev;
3948         struct netdev_rx_queue *rxqueue;
3949
3950         rxqueue = dev->_rx;
3951
3952         if (skb_rx_queue_recorded(skb)) {
3953                 u16 index = skb_get_rx_queue(skb);
3954
3955                 if (unlikely(index >= dev->real_num_rx_queues)) {
3956                         WARN_ONCE(dev->real_num_rx_queues > 1,
3957                                   "%s received packet on queue %u, but number "
3958                                   "of RX queues is %u\n",
3959                                   dev->name, index, dev->real_num_rx_queues);
3960
3961                         return rxqueue; /* Return first rxqueue */
3962                 }
3963                 rxqueue += index;
3964         }
3965         return rxqueue;
3966 }
3967
3968 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
3969                                      struct bpf_prog *xdp_prog)
3970 {
3971         struct netdev_rx_queue *rxqueue;
3972         u32 metalen, act = XDP_DROP;
3973         struct xdp_buff xdp;
3974         void *orig_data;
3975         int hlen, off;
3976         u32 mac_len;
3977
3978         /* Reinjected packets coming from act_mirred or similar should
3979          * not get XDP generic processing.
3980          */
3981         if (skb_cloned(skb))
3982                 return XDP_PASS;
3983
3984         /* XDP packets must be linear and must have sufficient headroom
3985          * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
3986          * native XDP provides, thus we need to do it here as well.
3987          */
3988         if (skb_is_nonlinear(skb) ||
3989             skb_headroom(skb) < XDP_PACKET_HEADROOM) {
3990                 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
3991                 int troom = skb->tail + skb->data_len - skb->end;
3992
3993                 /* In case we have to go down the path and also linearize,
3994                  * then lets do the pskb_expand_head() work just once here.
3995                  */
3996                 if (pskb_expand_head(skb,
3997                                      hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
3998                                      troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
3999                         goto do_drop;
4000                 if (skb_linearize(skb))
4001                         goto do_drop;
4002         }
4003
4004         /* The XDP program wants to see the packet starting at the MAC
4005          * header.
4006          */
4007         mac_len = skb->data - skb_mac_header(skb);
4008         hlen = skb_headlen(skb) + mac_len;
4009         xdp.data = skb->data - mac_len;
4010         xdp.data_meta = xdp.data;
4011         xdp.data_end = xdp.data + hlen;
4012         xdp.data_hard_start = skb->data - skb_headroom(skb);
4013         orig_data = xdp.data;
4014
4015         rxqueue = netif_get_rxqueue(skb);
4016         xdp.rxq = &rxqueue->xdp_rxq;
4017
4018         act = bpf_prog_run_xdp(xdp_prog, &xdp);
4019
4020         off = xdp.data - orig_data;
4021         if (off > 0)
4022                 __skb_pull(skb, off);
4023         else if (off < 0)
4024                 __skb_push(skb, -off);
4025         skb->mac_header += off;
4026
4027         switch (act) {
4028         case XDP_REDIRECT:
4029         case XDP_TX:
4030                 __skb_push(skb, mac_len);
4031                 break;
4032         case XDP_PASS:
4033                 metalen = xdp.data - xdp.data_meta;
4034                 if (metalen)
4035                         skb_metadata_set(skb, metalen);
4036                 break;
4037         default:
4038                 bpf_warn_invalid_xdp_action(act);
4039                 /* fall through */
4040         case XDP_ABORTED:
4041                 trace_xdp_exception(skb->dev, xdp_prog, act);
4042                 /* fall through */
4043         case XDP_DROP:
4044         do_drop:
4045                 kfree_skb(skb);
4046                 break;
4047         }
4048
4049         return act;
4050 }
4051
4052 /* When doing generic XDP we have to bypass the qdisc layer and the
4053  * network taps in order to match in-driver-XDP behavior.
4054  */
4055 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4056 {
4057         struct net_device *dev = skb->dev;
4058         struct netdev_queue *txq;
4059         bool free_skb = true;
4060         int cpu, rc;
4061
4062         txq = netdev_pick_tx(dev, skb, NULL);
4063         cpu = smp_processor_id();
4064         HARD_TX_LOCK(dev, txq, cpu);
4065         if (!netif_xmit_stopped(txq)) {
4066                 rc = netdev_start_xmit(skb, dev, txq, 0);
4067                 if (dev_xmit_complete(rc))
4068                         free_skb = false;
4069         }
4070         HARD_TX_UNLOCK(dev, txq);
4071         if (free_skb) {
4072                 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4073                 kfree_skb(skb);
4074         }
4075 }
4076 EXPORT_SYMBOL_GPL(generic_xdp_tx);
4077
4078 static struct static_key generic_xdp_needed __read_mostly;
4079
4080 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4081 {
4082         if (xdp_prog) {
4083                 u32 act = netif_receive_generic_xdp(skb, xdp_prog);
4084                 int err;
4085
4086                 if (act != XDP_PASS) {
4087                         switch (act) {
4088                         case XDP_REDIRECT:
4089                                 err = xdp_do_generic_redirect(skb->dev, skb,
4090                                                               xdp_prog);
4091                                 if (err)
4092                                         goto out_redir;
4093                         /* fallthru to submit skb */
4094                         case XDP_TX:
4095                                 generic_xdp_tx(skb, xdp_prog);
4096                                 break;
4097                         }
4098                         return XDP_DROP;
4099                 }
4100         }
4101         return XDP_PASS;
4102 out_redir:
4103         kfree_skb(skb);
4104         return XDP_DROP;
4105 }
4106 EXPORT_SYMBOL_GPL(do_xdp_generic);
4107
4108 static int netif_rx_internal(struct sk_buff *skb)
4109 {
4110         int ret;
4111
4112         net_timestamp_check(netdev_tstamp_prequeue, skb);
4113
4114         trace_netif_rx(skb);
4115
4116         if (static_key_false(&generic_xdp_needed)) {
4117                 int ret;
4118
4119                 preempt_disable();
4120                 rcu_read_lock();
4121                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4122                 rcu_read_unlock();
4123                 preempt_enable();
4124
4125                 /* Consider XDP consuming the packet a success from
4126                  * the netdev point of view we do not want to count
4127                  * this as an error.
4128                  */
4129                 if (ret != XDP_PASS)
4130                         return NET_RX_SUCCESS;
4131         }
4132
4133 #ifdef CONFIG_RPS
4134         if (static_key_false(&rps_needed)) {
4135                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4136                 int cpu;
4137
4138                 preempt_disable();
4139                 rcu_read_lock();
4140
4141                 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4142                 if (cpu < 0)
4143                         cpu = smp_processor_id();
4144
4145                 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4146
4147                 rcu_read_unlock();
4148                 preempt_enable();
4149         } else
4150 #endif
4151         {
4152                 unsigned int qtail;
4153
4154                 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4155                 put_cpu();
4156         }
4157         return ret;
4158 }
4159
4160 /**
4161  *      netif_rx        -       post buffer to the network code
4162  *      @skb: buffer to post
4163  *
4164  *      This function receives a packet from a device driver and queues it for
4165  *      the upper (protocol) levels to process.  It always succeeds. The buffer
4166  *      may be dropped during processing for congestion control or by the
4167  *      protocol layers.
4168  *
4169  *      return values:
4170  *      NET_RX_SUCCESS  (no congestion)
4171  *      NET_RX_DROP     (packet was dropped)
4172  *
4173  */
4174
4175 int netif_rx(struct sk_buff *skb)
4176 {
4177         trace_netif_rx_entry(skb);
4178
4179         return netif_rx_internal(skb);
4180 }
4181 EXPORT_SYMBOL(netif_rx);
4182
4183 int netif_rx_ni(struct sk_buff *skb)
4184 {
4185         int err;
4186
4187         trace_netif_rx_ni_entry(skb);
4188
4189         preempt_disable();
4190         err = netif_rx_internal(skb);
4191         if (local_softirq_pending())
4192                 do_softirq();
4193         preempt_enable();
4194
4195         return err;
4196 }
4197 EXPORT_SYMBOL(netif_rx_ni);
4198
4199 static __latent_entropy void net_tx_action(struct softirq_action *h)
4200 {
4201         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4202
4203         if (sd->completion_queue) {
4204                 struct sk_buff *clist;
4205
4206                 local_irq_disable();
4207                 clist = sd->completion_queue;
4208                 sd->completion_queue = NULL;
4209                 local_irq_enable();
4210
4211                 while (clist) {
4212                         struct sk_buff *skb = clist;
4213
4214                         clist = clist->next;
4215
4216                         WARN_ON(refcount_read(&skb->users));
4217                         if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4218                                 trace_consume_skb(skb);
4219                         else
4220                                 trace_kfree_skb(skb, net_tx_action);
4221
4222                         if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4223                                 __kfree_skb(skb);
4224                         else
4225                                 __kfree_skb_defer(skb);
4226                 }
4227
4228                 __kfree_skb_flush();
4229         }
4230
4231         if (sd->output_queue) {
4232                 struct Qdisc *head;
4233
4234                 local_irq_disable();
4235                 head = sd->output_queue;
4236                 sd->output_queue = NULL;
4237                 sd->output_queue_tailp = &sd->output_queue;
4238                 local_irq_enable();
4239
4240                 while (head) {
4241                         struct Qdisc *q = head;
4242                         spinlock_t *root_lock = NULL;
4243
4244                         head = head->next_sched;
4245
4246                         if (!(q->flags & TCQ_F_NOLOCK)) {
4247                                 root_lock = qdisc_lock(q);
4248                                 spin_lock(root_lock);
4249                         }
4250                         /* We need to make sure head->next_sched is read
4251                          * before clearing __QDISC_STATE_SCHED
4252                          */
4253                         smp_mb__before_atomic();
4254                         clear_bit(__QDISC_STATE_SCHED, &q->state);
4255                         qdisc_run(q);
4256                         if (root_lock)
4257                                 spin_unlock(root_lock);
4258                 }
4259         }
4260
4261         xfrm_dev_backlog(sd);
4262 }
4263
4264 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4265 /* This hook is defined here for ATM LANE */
4266 int (*br_fdb_test_addr_hook)(struct net_device *dev,
4267                              unsigned char *addr) __read_mostly;
4268 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4269 #endif
4270
4271 static inline struct sk_buff *
4272 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4273                    struct net_device *orig_dev)
4274 {
4275 #ifdef CONFIG_NET_CLS_ACT
4276         struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4277         struct tcf_result cl_res;
4278
4279         /* If there's at least one ingress present somewhere (so
4280          * we get here via enabled static key), remaining devices
4281          * that are not configured with an ingress qdisc will bail
4282          * out here.
4283          */
4284         if (!miniq)
4285                 return skb;
4286
4287         if (*pt_prev) {
4288                 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4289                 *pt_prev = NULL;
4290         }
4291
4292         qdisc_skb_cb(skb)->pkt_len = skb->len;
4293         skb->tc_at_ingress = 1;
4294         mini_qdisc_bstats_cpu_update(miniq, skb);
4295
4296         switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4297         case TC_ACT_OK:
4298         case TC_ACT_RECLASSIFY:
4299                 skb->tc_index = TC_H_MIN(cl_res.classid);
4300                 break;
4301         case TC_ACT_SHOT:
4302                 mini_qdisc_qstats_cpu_drop(miniq);
4303                 kfree_skb(skb);
4304                 return NULL;
4305         case TC_ACT_STOLEN:
4306         case TC_ACT_QUEUED:
4307         case TC_ACT_TRAP:
4308                 consume_skb(skb);
4309                 return NULL;
4310         case TC_ACT_REDIRECT:
4311                 /* skb_mac_header check was done by cls/act_bpf, so
4312                  * we can safely push the L2 header back before
4313                  * redirecting to another netdev
4314                  */
4315                 __skb_push(skb, skb->mac_len);
4316                 skb_do_redirect(skb);
4317                 return NULL;
4318         default:
4319                 break;
4320         }
4321 #endif /* CONFIG_NET_CLS_ACT */
4322         return skb;
4323 }
4324
4325 /**
4326  *      netdev_is_rx_handler_busy - check if receive handler is registered
4327  *      @dev: device to check
4328  *
4329  *      Check if a receive handler is already registered for a given device.
4330  *      Return true if there one.
4331  *
4332  *      The caller must hold the rtnl_mutex.
4333  */
4334 bool netdev_is_rx_handler_busy(struct net_device *dev)
4335 {
4336         ASSERT_RTNL();
4337         return dev && rtnl_dereference(dev->rx_handler);
4338 }
4339 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4340
4341 /**
4342  *      netdev_rx_handler_register - register receive handler
4343  *      @dev: device to register a handler for
4344  *      @rx_handler: receive handler to register
4345  *      @rx_handler_data: data pointer that is used by rx handler
4346  *
4347  *      Register a receive handler for a device. This handler will then be
4348  *      called from __netif_receive_skb. A negative errno code is returned
4349  *      on a failure.
4350  *
4351  *      The caller must hold the rtnl_mutex.
4352  *
4353  *      For a general description of rx_handler, see enum rx_handler_result.
4354  */
4355 int netdev_rx_handler_register(struct net_device *dev,
4356                                rx_handler_func_t *rx_handler,
4357                                void *rx_handler_data)
4358 {
4359         if (netdev_is_rx_handler_busy(dev))
4360                 return -EBUSY;
4361
4362         /* Note: rx_handler_data must be set before rx_handler */
4363         rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4364         rcu_assign_pointer(dev->rx_handler, rx_handler);
4365
4366         return 0;
4367 }
4368 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4369
4370 /**
4371  *      netdev_rx_handler_unregister - unregister receive handler
4372  *      @dev: device to unregister a handler from
4373  *
4374  *      Unregister a receive handler from a device.
4375  *
4376  *      The caller must hold the rtnl_mutex.
4377  */
4378 void netdev_rx_handler_unregister(struct net_device *dev)
4379 {
4380
4381         ASSERT_RTNL();
4382         RCU_INIT_POINTER(dev->rx_handler, NULL);
4383         /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4384          * section has a guarantee to see a non NULL rx_handler_data
4385          * as well.
4386          */
4387         synchronize_net();
4388         RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4389 }
4390 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4391
4392 /*
4393  * Limit the use of PFMEMALLOC reserves to those protocols that implement
4394  * the special handling of PFMEMALLOC skbs.
4395  */
4396 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4397 {
4398         switch (skb->protocol) {
4399         case htons(ETH_P_ARP):
4400         case htons(ETH_P_IP):
4401         case htons(ETH_P_IPV6):
4402         case htons(ETH_P_8021Q):
4403         case htons(ETH_P_8021AD):
4404                 return true;
4405         default:
4406                 return false;
4407         }
4408 }
4409
4410 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4411                              int *ret, struct net_device *orig_dev)
4412 {
4413 #ifdef CONFIG_NETFILTER_INGRESS
4414         if (nf_hook_ingress_active(skb)) {
4415                 int ingress_retval;
4416
4417                 if (*pt_prev) {
4418                         *ret = deliver_skb(skb, *pt_prev, orig_dev);
4419                         *pt_prev = NULL;
4420                 }
4421
4422                 rcu_read_lock();
4423                 ingress_retval = nf_hook_ingress(skb);
4424                 rcu_read_unlock();
4425                 return ingress_retval;
4426         }
4427 #endif /* CONFIG_NETFILTER_INGRESS */
4428         return 0;
4429 }
4430
4431 static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
4432 {
4433         struct packet_type *ptype, *pt_prev;
4434         rx_handler_func_t *rx_handler;
4435         struct net_device *orig_dev;
4436         bool deliver_exact = false;
4437         int ret = NET_RX_DROP;
4438         __be16 type;
4439
4440         net_timestamp_check(!netdev_tstamp_prequeue, skb);
4441
4442         trace_netif_receive_skb(skb);
4443
4444         orig_dev = skb->dev;
4445
4446         skb_reset_network_header(skb);
4447         if (!skb_transport_header_was_set(skb))
4448                 skb_reset_transport_header(skb);
4449         skb_reset_mac_len(skb);
4450
4451         pt_prev = NULL;
4452
4453 another_round:
4454         skb->skb_iif = skb->dev->ifindex;
4455
4456         __this_cpu_inc(softnet_data.processed);
4457
4458         if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4459             skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4460                 skb = skb_vlan_untag(skb);
4461                 if (unlikely(!skb))
4462                         goto out;
4463         }
4464
4465         if (skb_skip_tc_classify(skb))
4466                 goto skip_classify;
4467
4468         if (pfmemalloc)
4469                 goto skip_taps;
4470
4471         list_for_each_entry_rcu(ptype, &ptype_all, list) {
4472                 if (pt_prev)
4473                         ret = deliver_skb(skb, pt_prev, orig_dev);
4474                 pt_prev = ptype;
4475         }
4476
4477         list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4478                 if (pt_prev)
4479                         ret = deliver_skb(skb, pt_prev, orig_dev);
4480                 pt_prev = ptype;
4481         }
4482
4483 skip_taps:
4484 #ifdef CONFIG_NET_INGRESS
4485         if (static_key_false(&ingress_needed)) {
4486                 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4487                 if (!skb)
4488                         goto out;
4489
4490                 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4491                         goto out;
4492         }
4493 #endif
4494         skb_reset_tc(skb);
4495 skip_classify:
4496         if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4497                 goto drop;
4498
4499         if (skb_vlan_tag_present(skb)) {
4500                 if (pt_prev) {
4501                         ret = deliver_skb(skb, pt_prev, orig_dev);
4502                         pt_prev = NULL;
4503                 }
4504                 if (vlan_do_receive(&skb))
4505                         goto another_round;
4506                 else if (unlikely(!skb))
4507                         goto out;
4508         }
4509
4510         rx_handler = rcu_dereference(skb->dev->rx_handler);
4511         if (rx_handler) {
4512                 if (pt_prev) {
4513                         ret = deliver_skb(skb, pt_prev, orig_dev);
4514                         pt_prev = NULL;
4515                 }
4516                 switch (rx_handler(&skb)) {
4517                 case RX_HANDLER_CONSUMED:
4518                         ret = NET_RX_SUCCESS;
4519                         goto out;
4520                 case RX_HANDLER_ANOTHER:
4521                         goto another_round;
4522                 case RX_HANDLER_EXACT:
4523                         deliver_exact = true;
4524                 case RX_HANDLER_PASS:
4525                         break;
4526                 default:
4527                         BUG();
4528                 }
4529         }
4530
4531         if (unlikely(skb_vlan_tag_present(skb))) {
4532                 if (skb_vlan_tag_get_id(skb))
4533                         skb->pkt_type = PACKET_OTHERHOST;
4534                 /* Note: we might in the future use prio bits
4535                  * and set skb->priority like in vlan_do_receive()
4536                  * For the time being, just ignore Priority Code Point
4537                  */
4538                 skb->vlan_tci = 0;
4539         }
4540
4541         type = skb->protocol;
4542
4543         /* deliver only exact match when indicated */
4544         if (likely(!deliver_exact)) {
4545                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4546                                        &ptype_base[ntohs(type) &
4547                                                    PTYPE_HASH_MASK]);
4548         }
4549
4550         deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4551                                &orig_dev->ptype_specific);
4552
4553         if (unlikely(skb->dev != orig_dev)) {
4554                 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4555                                        &skb->dev->ptype_specific);
4556         }
4557
4558         if (pt_prev) {
4559                 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4560                         goto drop;
4561                 else
4562                         ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4563         } else {
4564 drop:
4565                 if (!deliver_exact)
4566                         atomic_long_inc(&skb->dev->rx_dropped);
4567                 else
4568                         atomic_long_inc(&skb->dev->rx_nohandler);
4569                 kfree_skb(skb);
4570                 /* Jamal, now you will not able to escape explaining
4571                  * me how you were going to use this. :-)
4572                  */
4573                 ret = NET_RX_DROP;
4574         }
4575
4576 out:
4577         return ret;
4578 }
4579
4580 /**
4581  *      netif_receive_skb_core - special purpose version of netif_receive_skb
4582  *      @skb: buffer to process
4583  *
4584  *      More direct receive version of netif_receive_skb().  It should
4585  *      only be used by callers that have a need to skip RPS and Generic XDP.
4586  *      Caller must also take care of handling if (page_is_)pfmemalloc.
4587  *
4588  *      This function may only be called from softirq context and interrupts
4589  *      should be enabled.
4590  *
4591  *      Return values (usually ignored):
4592  *      NET_RX_SUCCESS: no congestion
4593  *      NET_RX_DROP: packet was dropped
4594  */
4595 int netif_receive_skb_core(struct sk_buff *skb)
4596 {
4597         int ret;
4598
4599         rcu_read_lock();
4600         ret = __netif_receive_skb_core(skb, false);
4601         rcu_read_unlock();
4602
4603         return ret;
4604 }
4605 EXPORT_SYMBOL(netif_receive_skb_core);
4606
4607 static int __netif_receive_skb(struct sk_buff *skb)
4608 {
4609         int ret;
4610
4611         if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4612                 unsigned int noreclaim_flag;
4613
4614                 /*
4615                  * PFMEMALLOC skbs are special, they should
4616                  * - be delivered to SOCK_MEMALLOC sockets only
4617                  * - stay away from userspace
4618                  * - have bounded memory usage
4619                  *
4620                  * Use PF_MEMALLOC as this saves us from propagating the allocation
4621                  * context down to all allocation sites.
4622                  */
4623                 noreclaim_flag = memalloc_noreclaim_save();
4624                 ret = __netif_receive_skb_core(skb, true);
4625                 memalloc_noreclaim_restore(noreclaim_flag);
4626         } else
4627                 ret = __netif_receive_skb_core(skb, false);
4628
4629         return ret;
4630 }
4631
4632 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
4633 {
4634         struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
4635         struct bpf_prog *new = xdp->prog;
4636         int ret = 0;
4637
4638         switch (xdp->command) {
4639         case XDP_SETUP_PROG:
4640                 rcu_assign_pointer(dev->xdp_prog, new);
4641                 if (old)
4642                         bpf_prog_put(old);
4643
4644                 if (old && !new) {
4645                         static_key_slow_dec(&generic_xdp_needed);
4646                 } else if (new && !old) {
4647                         static_key_slow_inc(&generic_xdp_needed);
4648                         dev_disable_lro(dev);
4649                         dev_disable_gro_hw(dev);
4650                 }
4651                 break;
4652
4653         case XDP_QUERY_PROG:
4654                 xdp->prog_attached = !!old;
4655                 xdp->prog_id = old ? old->aux->id : 0;
4656                 break;
4657
4658         default:
4659                 ret = -EINVAL;
4660                 break;
4661         }
4662
4663         return ret;
4664 }
4665
4666 static int netif_receive_skb_internal(struct sk_buff *skb)
4667 {
4668         int ret;
4669
4670         net_timestamp_check(netdev_tstamp_prequeue, skb);
4671
4672         if (skb_defer_rx_timestamp(skb))
4673                 return NET_RX_SUCCESS;
4674
4675         if (static_key_false(&generic_xdp_needed)) {
4676                 int ret;
4677
4678                 preempt_disable();
4679                 rcu_read_lock();
4680                 ret = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4681                 rcu_read_unlock();
4682                 preempt_enable();
4683
4684                 if (ret != XDP_PASS)
4685                         return NET_RX_DROP;
4686         }
4687
4688         rcu_read_lock();
4689 #ifdef CONFIG_RPS
4690         if (static_key_false(&rps_needed)) {
4691                 struct rps_dev_flow voidflow, *rflow = &voidflow;
4692                 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4693
4694                 if (cpu >= 0) {
4695                         ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4696                         rcu_read_unlock();
4697                         return ret;
4698                 }
4699         }
4700 #endif
4701         ret = __netif_receive_skb(skb);
4702         rcu_read_unlock();
4703         return ret;
4704 }
4705
4706 /**
4707  *      netif_receive_skb - process receive buffer from network
4708  *      @skb: buffer to process
4709  *
4710  *      netif_receive_skb() is the main receive data processing function.
4711  *      It always succeeds. The buffer may be dropped during processing
4712  *      for congestion control or by the protocol layers.
4713  *
4714  *      This function may only be called from softirq context and interrupts
4715  *      should be enabled.
4716  *
4717  *      Return values (usually ignored):
4718  *      NET_RX_SUCCESS: no congestion
4719  *      NET_RX_DROP: packet was dropped
4720  */
4721 int netif_receive_skb(struct sk_buff *skb)
4722 {
4723         trace_netif_receive_skb_entry(skb);
4724
4725         return netif_receive_skb_internal(skb);
4726 }
4727 EXPORT_SYMBOL(netif_receive_skb);
4728
4729 DEFINE_PER_CPU(struct work_struct, flush_works);
4730
4731 /* Network device is going away, flush any packets still pending */
4732 static void flush_backlog(struct work_struct *work)
4733 {
4734         struct sk_buff *skb, *tmp;
4735         struct softnet_data *sd;
4736
4737         local_bh_disable();
4738         sd = this_cpu_ptr(&softnet_data);
4739
4740         local_irq_disable();
4741         rps_lock(sd);
4742         skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4743                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4744                         __skb_unlink(skb, &sd->input_pkt_queue);
4745                         kfree_skb(skb);
4746                         input_queue_head_incr(sd);
4747                 }
4748         }
4749         rps_unlock(sd);
4750         local_irq_enable();
4751
4752         skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4753                 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
4754                         __skb_unlink(skb, &sd->process_queue);
4755                         kfree_skb(skb);
4756                         input_queue_head_incr(sd);
4757                 }
4758         }
4759         local_bh_enable();
4760 }
4761
4762 static void flush_all_backlogs(void)
4763 {
4764         unsigned int cpu;
4765
4766         get_online_cpus();
4767
4768         for_each_online_cpu(cpu)
4769                 queue_work_on(cpu, system_highpri_wq,
4770                               per_cpu_ptr(&flush_works, cpu));
4771
4772         for_each_online_cpu(cpu)
4773                 flush_work(per_cpu_ptr(&flush_works, cpu));
4774
4775         put_online_cpus();
4776 }
4777
4778 static int napi_gro_complete(struct sk_buff *skb)
4779 {
4780         struct packet_offload *ptype;
4781         __be16 type = skb->protocol;
4782         struct list_head *head = &offload_base;
4783         int err = -ENOENT;
4784
4785         BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4786
4787         if (NAPI_GRO_CB(skb)->count == 1) {
4788                 skb_shinfo(skb)->gso_size = 0;
4789                 goto out;
4790         }
4791
4792         rcu_read_lock();
4793         list_for_each_entry_rcu(ptype, head, list) {
4794                 if (ptype->type != type || !ptype->callbacks.gro_complete)
4795                         continue;
4796
4797                 err = ptype->callbacks.gro_complete(skb, 0);
4798                 break;
4799         }
4800         rcu_read_unlock();
4801
4802         if (err) {
4803                 WARN_ON(&ptype->list == head);
4804                 kfree_skb(skb);
4805                 return NET_RX_SUCCESS;
4806         }
4807
4808 out:
4809         return netif_receive_skb_internal(skb);
4810 }
4811
4812 /* napi->gro_list contains packets ordered by age.
4813  * youngest packets at the head of it.
4814  * Complete skbs in reverse order to reduce latencies.
4815  */
4816 void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4817 {
4818         struct sk_buff *skb, *prev = NULL;
4819
4820         /* scan list and build reverse chain */
4821         for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4822                 skb->prev = prev;
4823                 prev = skb;
4824         }
4825
4826         for (skb = prev; skb; skb = prev) {
4827                 skb->next = NULL;
4828
4829                 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4830                         return;
4831
4832                 prev = skb->prev;
4833                 napi_gro_complete(skb);
4834                 napi->gro_count--;
4835         }
4836
4837         napi->gro_list = NULL;
4838 }
4839 EXPORT_SYMBOL(napi_gro_flush);
4840
4841 static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4842 {
4843         struct sk_buff *p;
4844         unsigned int maclen = skb->dev->hard_header_len;
4845         u32 hash = skb_get_hash_raw(skb);
4846
4847         for (p = napi->gro_list; p; p = p->next) {
4848                 unsigned long diffs;
4849
4850                 NAPI_GRO_CB(p)->flush = 0;
4851
4852                 if (hash != skb_get_hash_raw(p)) {
4853                         NAPI_GRO_CB(p)->same_flow = 0;
4854                         continue;
4855                 }
4856
4857                 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4858                 diffs |= p->vlan_tci ^ skb->vlan_tci;
4859                 diffs |= skb_metadata_dst_cmp(p, skb);
4860                 diffs |= skb_metadata_differs(p, skb);
4861                 if (maclen == ETH_HLEN)
4862                         diffs |= compare_ether_header(skb_mac_header(p),
4863                                                       skb_mac_header(skb));
4864                 else if (!diffs)
4865                         diffs = memcmp(skb_mac_header(p),
4866                                        skb_mac_header(skb),
4867                                        maclen);
4868                 NAPI_GRO_CB(p)->same_flow = !diffs;
4869         }
4870 }
4871
4872 static void skb_gro_reset_offset(struct sk_buff *skb)
4873 {
4874         const struct skb_shared_info *pinfo = skb_shinfo(skb);
4875         const skb_frag_t *frag0 = &pinfo->frags[0];
4876
4877         NAPI_GRO_CB(skb)->data_offset = 0;
4878         NAPI_GRO_CB(skb)->frag0 = NULL;
4879         NAPI_GRO_CB(skb)->frag0_len = 0;
4880
4881         if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4882             pinfo->nr_frags &&
4883             !PageHighMem(skb_frag_page(frag0))) {
4884                 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4885                 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
4886                                                     skb_frag_size(frag0),
4887                                                     skb->end - skb->tail);
4888         }
4889 }
4890
4891 static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4892 {
4893         struct skb_shared_info *pinfo = skb_shinfo(skb);
4894
4895         BUG_ON(skb->end - skb->tail < grow);
4896
4897         memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4898
4899         skb->data_len -= grow;
4900         skb->tail += grow;
4901
4902         pinfo->frags[0].page_offset += grow;
4903         skb_frag_size_sub(&pinfo->frags[0], grow);
4904
4905         if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4906                 skb_frag_unref(skb, 0);
4907                 memmove(pinfo->frags, pinfo->frags + 1,
4908                         --pinfo->nr_frags * sizeof(pinfo->frags[0]));
4909         }
4910 }
4911
4912 static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4913 {
4914         struct sk_buff **pp = NULL;
4915         struct packet_offload *ptype;
4916         __be16 type = skb->protocol;
4917         struct list_head *head = &offload_base;
4918         int same_flow;
4919         enum gro_result ret;
4920         int grow;
4921
4922         if (netif_elide_gro(skb->dev))
4923                 goto normal;
4924
4925         gro_list_prepare(napi, skb);
4926
4927         rcu_read_lock();
4928         list_for_each_entry_rcu(ptype, head, list) {
4929                 if (ptype->type != type || !ptype->callbacks.gro_receive)
4930                         continue;
4931
4932                 skb_set_network_header(skb, skb_gro_offset(skb));
4933                 skb_reset_mac_len(skb);
4934                 NAPI_GRO_CB(skb)->same_flow = 0;
4935                 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
4936                 NAPI_GRO_CB(skb)->free = 0;
4937                 NAPI_GRO_CB(skb)->encap_mark = 0;
4938                 NAPI_GRO_CB(skb)->recursion_counter = 0;
4939                 NAPI_GRO_CB(skb)->is_fou = 0;
4940                 NAPI_GRO_CB(skb)->is_atomic = 1;
4941                 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4942
4943                 /* Setup for GRO checksum validation */
4944                 switch (skb->ip_summed) {
4945                 case CHECKSUM_COMPLETE:
4946                         NAPI_GRO_CB(skb)->csum = skb->csum;
4947                         NAPI_GRO_CB(skb)->csum_valid = 1;
4948                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4949                         break;
4950                 case CHECKSUM_UNNECESSARY:
4951                         NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4952                         NAPI_GRO_CB(skb)->csum_valid = 0;
4953                         break;
4954                 default:
4955                         NAPI_GRO_CB(skb)->csum_cnt = 0;
4956                         NAPI_GRO_CB(skb)->csum_valid = 0;
4957                 }
4958
4959                 pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4960                 break;
4961         }
4962         rcu_read_unlock();
4963
4964         if (&ptype->list == head)
4965                 goto normal;
4966
4967         if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
4968                 ret = GRO_CONSUMED;
4969                 goto ok;
4970         }
4971
4972         same_flow = NAPI_GRO_CB(skb)->same_flow;
4973         ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4974
4975         if (pp) {
4976                 struct sk_buff *nskb = *pp;
4977
4978                 *pp = nskb->next;
4979                 nskb->next = NULL;
4980                 napi_gro_complete(nskb);
4981                 napi->gro_count--;
4982         }
4983
4984         if (same_flow)
4985                 goto ok;
4986
4987         if (NAPI_GRO_CB(skb)->flush)
4988                 goto normal;
4989
4990         if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4991                 struct sk_buff *nskb = napi->gro_list;
4992
4993                 /* locate the end of the list to select the 'oldest' flow */
4994                 while (nskb->next) {
4995                         pp = &nskb->next;
4996                         nskb = *pp;
4997                 }
4998                 *pp = NULL;
4999                 nskb->next = NULL;
5000                 napi_gro_complete(nskb);
5001         } else {
5002                 napi->gro_count++;
5003         }
5004         NAPI_GRO_CB(skb)->count = 1;
5005         NAPI_GRO_CB(skb)->age = jiffies;
5006         NAPI_GRO_CB(skb)->last = skb;
5007         skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5008         skb->next = napi->gro_list;
5009         napi->gro_list = skb;
5010         ret = GRO_HELD;
5011
5012 pull:
5013         grow = skb_gro_offset(skb) - skb_headlen(skb);
5014         if (grow > 0)
5015                 gro_pull_from_frag0(skb, grow);
5016 ok:
5017         return ret;
5018
5019 normal:
5020         ret = GRO_NORMAL;
5021         goto pull;
5022 }
5023
5024 struct packet_offload *gro_find_receive_by_type(__be16 type)
5025 {
5026         struct list_head *offload_head = &offload_base;
5027         struct packet_offload *ptype;
5028
5029         list_for_each_entry_rcu(ptype, offload_head, list) {
5030                 if (ptype->type != type || !ptype->callbacks.gro_receive)
5031                         continue;
5032                 return ptype;
5033         }
5034         return NULL;
5035 }
5036 EXPORT_SYMBOL(gro_find_receive_by_type);
5037
5038 struct packet_offload *gro_find_complete_by_type(__be16 type)
5039 {
5040         struct list_head *offload_head = &offload_base;
5041         struct packet_offload *ptype;
5042
5043         list_for_each_entry_rcu(ptype, offload_head, list) {
5044                 if (ptype->type != type || !ptype->callbacks.gro_complete)
5045                         continue;
5046                 return ptype;
5047         }
5048         return NULL;
5049 }
5050 EXPORT_SYMBOL(gro_find_complete_by_type);
5051
5052 static void napi_skb_free_stolen_head(struct sk_buff *skb)
5053 {
5054         skb_dst_drop(skb);
5055         secpath_reset(skb);
5056         kmem_cache_free(skbuff_head_cache, skb);
5057 }
5058
5059 static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5060 {
5061         switch (ret) {
5062         case GRO_NORMAL:
5063                 if (netif_receive_skb_internal(skb))
5064                         ret = GRO_DROP;
5065                 break;
5066
5067         case GRO_DROP:
5068                 kfree_skb(skb);
5069                 break;
5070
5071         case GRO_MERGED_FREE:
5072                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5073                         napi_skb_free_stolen_head(skb);
5074                 else
5075                         __kfree_skb(skb);
5076                 break;
5077
5078         case GRO_HELD:
5079         case GRO_MERGED:
5080         case GRO_CONSUMED:
5081                 break;
5082         }
5083
5084         return ret;
5085 }
5086
5087 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5088 {
5089         skb_mark_napi_id(skb, napi);
5090         trace_napi_gro_receive_entry(skb);
5091
5092         skb_gro_reset_offset(skb);
5093
5094         return napi_skb_finish(dev_gro_receive(napi, skb), skb);
5095 }
5096 EXPORT_SYMBOL(napi_gro_receive);
5097
5098 static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5099 {
5100         if (unlikely(skb->pfmemalloc)) {
5101                 consume_skb(skb);
5102                 return;
5103         }
5104         __skb_pull(skb, skb_headlen(skb));
5105         /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5106         skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5107         skb->vlan_tci = 0;
5108         skb->dev = napi->dev;
5109         skb->skb_iif = 0;
5110         skb->encapsulation = 0;
5111         skb_shinfo(skb)->gso_type = 0;
5112         skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5113         secpath_reset(skb);
5114
5115         napi->skb = skb;
5116 }
5117
5118 struct sk_buff *napi_get_frags(struct napi_struct *napi)
5119 {
5120         struct sk_buff *skb = napi->skb;
5121
5122         if (!skb) {
5123                 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5124                 if (skb) {
5125                         napi->skb = skb;
5126                         skb_mark_napi_id(skb, napi);
5127                 }
5128         }
5129         return skb;
5130 }
5131 EXPORT_SYMBOL(napi_get_frags);
5132
5133 static gro_result_t napi_frags_finish(struct napi_struct *napi,
5134                                       struct sk_buff *skb,
5135                                       gro_result_t ret)
5136 {
5137         switch (ret) {
5138         case GRO_NORMAL:
5139         case GRO_HELD:
5140                 __skb_push(skb, ETH_HLEN);
5141                 skb->protocol = eth_type_trans(skb, skb->dev);
5142                 if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5143                         ret = GRO_DROP;
5144                 break;
5145
5146         case GRO_DROP:
5147                 napi_reuse_skb(napi, skb);
5148                 break;
5149
5150         case GRO_MERGED_FREE:
5151                 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5152                         napi_skb_free_stolen_head(skb);
5153                 else
5154                         napi_reuse_skb(napi, skb);
5155                 break;
5156
5157         case GRO_MERGED:
5158         case GRO_CONSUMED:
5159                 break;
5160         }
5161
5162         return ret;
5163 }
5164
5165 /* Upper GRO stack assumes network header starts at gro_offset=0
5166  * Drivers could call both napi_gro_frags() and napi_gro_receive()
5167  * We copy ethernet header into skb->data to have a common layout.
5168  */
5169 static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5170 {
5171         struct sk_buff *skb = napi->skb;
5172         const struct ethhdr *eth;
5173         unsigned int hlen = sizeof(*eth);
5174
5175         napi->skb = NULL;
5176
5177         skb_reset_mac_header(skb);
5178         skb_gro_reset_offset(skb);
5179
5180         eth = skb_gro_header_fast(skb, 0);
5181         if (unlikely(skb_gro_header_hard(skb, hlen))) {
5182                 eth = skb_gro_header_slow(skb, hlen, 0);
5183                 if (unlikely(!eth)) {
5184                         net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5185                                              __func__, napi->dev->name);
5186                         napi_reuse_skb(napi, skb);
5187                         return NULL;
5188                 }
5189         } else {
5190                 gro_pull_from_frag0(skb, hlen);
5191                 NAPI_GRO_CB(skb)->frag0 += hlen;
5192                 NAPI_GRO_CB(skb)->frag0_len -= hlen;
5193         }
5194         __skb_pull(skb, hlen);
5195
5196         /*
5197          * This works because the only protocols we care about don't require
5198          * special handling.
5199          * We'll fix it up properly in napi_frags_finish()
5200          */
5201         skb->protocol = eth->h_proto;
5202
5203         return skb;
5204 }
5205
5206 gro_result_t napi_gro_frags(struct napi_struct *napi)
5207 {
5208         struct sk_buff *skb = napi_frags_skb(napi);
5209
5210         if (!skb)
5211                 return GRO_DROP;
5212
5213         trace_napi_gro_frags_entry(skb);
5214
5215         return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5216 }
5217 EXPORT_SYMBOL(napi_gro_frags);
5218
5219 /* Compute the checksum from gro_offset and return the folded value
5220  * after adding in any pseudo checksum.
5221  */
5222 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5223 {
5224         __wsum wsum;
5225         __sum16 sum;
5226
5227         wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5228
5229         /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5230         sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5231         if (likely(!sum)) {
5232                 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5233                     !skb->csum_complete_sw)
5234                         netdev_rx_csum_fault(skb->dev);
5235         }
5236
5237         NAPI_GRO_CB(skb)->csum = wsum;
5238         NAPI_GRO_CB(skb)->csum_valid = 1;
5239
5240         return sum;
5241 }
5242 EXPORT_SYMBOL(__skb_gro_checksum_complete);
5243
5244 static void net_rps_send_ipi(struct softnet_data *remsd)
5245 {
5246 #ifdef CONFIG_RPS
5247         while (remsd) {
5248                 struct softnet_data *next = remsd->rps_ipi_next;
5249
5250                 if (cpu_online(remsd->cpu))
5251                         smp_call_function_single_async(remsd->cpu, &remsd->csd);
5252                 remsd = next;
5253         }
5254 #endif
5255 }
5256
5257 /*
5258  * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5259  * Note: called with local irq disabled, but exits with local irq enabled.
5260  */
5261 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5262 {
5263 #ifdef CONFIG_RPS
5264         struct softnet_data *remsd = sd->rps_ipi_list;
5265
5266         if (remsd) {
5267                 sd->rps_ipi_list = NULL;
5268
5269                 local_irq_enable();
5270
5271                 /* Send pending IPI's to kick RPS processing on remote cpus. */
5272                 net_rps_send_ipi(remsd);
5273         } else
5274 #endif
5275                 local_irq_enable();
5276 }
5277
5278 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5279 {
5280 #ifdef CONFIG_RPS
5281         return sd->rps_ipi_list != NULL;
5282 #else
5283         return false;
5284 #endif
5285 }
5286
5287 static int process_backlog(struct napi_struct *napi, int quota)
5288 {
5289         struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5290         bool again = true;
5291         int work = 0;
5292
5293         /* Check if we have pending ipi, its better to send them now,
5294          * not waiting net_rx_action() end.
5295          */
5296         if (sd_has_rps_ipi_waiting(sd)) {
5297                 local_irq_disable();
5298                 net_rps_action_and_irq_enable(sd);
5299         }
5300
5301         napi->weight = dev_rx_weight;
5302         while (again) {
5303                 struct sk_buff *skb;
5304
5305                 while ((skb = __skb_dequeue(&sd->process_queue))) {
5306                         rcu_read_lock();
5307                         __netif_receive_skb(skb);
5308                         rcu_read_unlock();
5309                         input_queue_head_incr(sd);
5310                         if (++work >= quota)
5311                                 return work;
5312
5313                 }
5314
5315                 local_irq_disable();
5316                 rps_lock(sd);
5317                 if (skb_queue_empty(&sd->input_pkt_queue)) {
5318                         /*
5319                          * Inline a custom version of __napi_complete().
5320                          * only current cpu owns and manipulates this napi,
5321                          * and NAPI_STATE_SCHED is the only possible flag set
5322                          * on backlog.
5323                          * We can use a plain write instead of clear_bit(),
5324                          * and we dont need an smp_mb() memory barrier.
5325                          */
5326                         napi->state = 0;
5327                         again = false;
5328                 } else {
5329                         skb_queue_splice_tail_init(&sd->input_pkt_queue,
5330                                                    &sd->process_queue);
5331                 }
5332                 rps_unlock(sd);
5333                 local_irq_enable();
5334         }
5335
5336         return work;
5337 }
5338
5339 /**
5340  * __napi_schedule - schedule for receive
5341  * @n: entry to schedule
5342  *
5343  * The entry's receive function will be scheduled to run.
5344  * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5345  */
5346 void __napi_schedule(struct napi_struct *n)
5347 {
5348         unsigned long flags;
5349
5350         local_irq_save(flags);
5351         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5352         local_irq_restore(flags);
5353 }
5354 EXPORT_SYMBOL(__napi_schedule);
5355
5356 /**
5357  *      napi_schedule_prep - check if napi can be scheduled
5358  *      @n: napi context
5359  *
5360  * Test if NAPI routine is already running, and if not mark
5361  * it as running.  This is used as a condition variable
5362  * insure only one NAPI poll instance runs.  We also make
5363  * sure there is no pending NAPI disable.
5364  */
5365 bool napi_schedule_prep(struct napi_struct *n)
5366 {
5367         unsigned long val, new;
5368
5369         do {
5370                 val = READ_ONCE(n->state);
5371                 if (unlikely(val & NAPIF_STATE_DISABLE))
5372                         return false;
5373                 new = val | NAPIF_STATE_SCHED;
5374
5375                 /* Sets STATE_MISSED bit if STATE_SCHED was already set
5376                  * This was suggested by Alexander Duyck, as compiler
5377                  * emits better code than :
5378                  * if (val & NAPIF_STATE_SCHED)
5379                  *     new |= NAPIF_STATE_MISSED;
5380                  */
5381                 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
5382                                                    NAPIF_STATE_MISSED;
5383         } while (cmpxchg(&n->state, val, new) != val);
5384
5385         return !(val & NAPIF_STATE_SCHED);
5386 }
5387 EXPORT_SYMBOL(napi_schedule_prep);
5388
5389 /**
5390  * __napi_schedule_irqoff - schedule for receive
5391  * @n: entry to schedule
5392  *
5393  * Variant of __napi_schedule() assuming hard irqs are masked
5394  */
5395 void __napi_schedule_irqoff(struct napi_struct *n)
5396 {
5397         ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5398 }
5399 EXPORT_SYMBOL(__napi_schedule_irqoff);
5400
5401 bool napi_complete_done(struct napi_struct *n, int work_done)
5402 {
5403         unsigned long flags, val, new;
5404
5405         /*
5406          * 1) Don't let napi dequeue from the cpu poll list
5407          *    just in case its running on a different cpu.
5408          * 2) If we are busy polling, do nothing here, we have
5409          *    the guarantee we will be called later.
5410          */
5411         if (unlikely(n->state & (NAPIF_STATE_NPSVC |
5412                                  NAPIF_STATE_IN_BUSY_POLL)))
5413                 return false;
5414
5415         if (n->gro_list) {
5416                 unsigned long timeout = 0;
5417
5418                 if (work_done)
5419                         timeout = n->dev->gro_flush_timeout;
5420
5421                 if (timeout)
5422                         hrtimer_start(&n->timer, ns_to_ktime(timeout),
5423                                       HRTIMER_MODE_REL_PINNED);
5424                 else
5425                         napi_gro_flush(n, false);
5426         }
5427         if (unlikely(!list_empty(&n->poll_list))) {
5428                 /* If n->poll_list is not empty, we need to mask irqs */
5429                 local_irq_save(flags);
5430                 list_del_init(&n->poll_list);
5431                 local_irq_restore(flags);
5432         }
5433
5434         do {
5435                 val = READ_ONCE(n->state);
5436
5437                 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
5438
5439                 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
5440
5441                 /* If STATE_MISSED was set, leave STATE_SCHED set,
5442                  * because we will call napi->poll() one more time.
5443                  * This C code was suggested by Alexander Duyck to help gcc.
5444                  */
5445                 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
5446                                                     NAPIF_STATE_SCHED;
5447         } while (cmpxchg(&n->state, val, new) != val);
5448
5449         if (unlikely(val & NAPIF_STATE_MISSED)) {
5450                 __napi_schedule(n);
5451                 return false;
5452         }
5453
5454         return true;
5455 }
5456 EXPORT_SYMBOL(napi_complete_done);
5457
5458 /* must be called under rcu_read_lock(), as we dont take a reference */
5459 static struct napi_struct *napi_by_id(unsigned int napi_id)
5460 {
5461         unsigned int hash = napi_id % HASH_SIZE(napi_hash);
5462         struct napi_struct *napi;
5463
5464         hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
5465                 if (napi->napi_id == napi_id)
5466                         return napi;
5467
5468         return NULL;
5469 }
5470
5471 #if defined(CONFIG_NET_RX_BUSY_POLL)
5472
5473 #define BUSY_POLL_BUDGET 8
5474
5475 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
5476 {
5477         int rc;
5478
5479         /* Busy polling means there is a high chance device driver hard irq
5480          * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
5481          * set in napi_schedule_prep().
5482          * Since we are about to call napi->poll() once more, we can safely
5483          * clear NAPI_STATE_MISSED.
5484          *
5485          * Note: x86 could use a single "lock and ..." instruction
5486          * to perform these two clear_bit()
5487          */
5488         clear_bit(NAPI_STATE_MISSED, &napi->state);
5489         clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
5490
5491         local_bh_disable();
5492
5493         /* All we really want here is to re-enable device interrupts.
5494          * Ideally, a new ndo_busy_poll_stop() could avoid another round.
5495          */
5496         rc = napi->poll(napi, BUSY_POLL_BUDGET);
5497         trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
5498         netpoll_poll_unlock(have_poll_lock);
5499         if (rc == BUSY_POLL_BUDGET)
5500                 __napi_schedule(napi);
5501         local_bh_enable();
5502 }
5503
5504 void napi_busy_loop(unsigned int napi_id,
5505                     bool (*loop_end)(void *, unsigned long),
5506                     void *loop_end_arg)
5507 {
5508         unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
5509         int (*napi_poll)(struct napi_struct *napi, int budget);
5510         void *have_poll_lock = NULL;
5511         struct napi_struct *napi;
5512
5513 restart:
5514         napi_poll = NULL;
5515
5516         rcu_read_lock();
5517
5518         napi = napi_by_id(napi_id);
5519         if (!napi)
5520                 goto out;
5521
5522         preempt_disable();
5523         for (;;) {
5524                 int work = 0;
5525
5526                 local_bh_disable();
5527                 if (!napi_poll) {
5528                         unsigned long val = READ_ONCE(napi->state);
5529
5530                         /* If multiple threads are competing for this napi,
5531                          * we avoid dirtying napi->state as much as we can.
5532                          */
5533                         if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
5534                                    NAPIF_STATE_IN_BUSY_POLL))
5535                                 goto count;
5536                         if (cmpxchg(&napi->state, val,
5537                                     val | NAPIF_STATE_IN_BUSY_POLL |
5538                                           NAPIF_STATE_SCHED) != val)
5539                                 goto count;
5540                         have_poll_lock = netpoll_poll_lock(napi);
5541                         napi_poll = napi->poll;
5542                 }
5543                 work = napi_poll(napi, BUSY_POLL_BUDGET);
5544                 trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
5545 count:
5546                 if (work > 0)
5547                         __NET_ADD_STATS(dev_net(napi->dev),
5548                                         LINUX_MIB_BUSYPOLLRXPACKETS, work);
5549                 local_bh_enable();
5550
5551                 if (!loop_end || loop_end(loop_end_arg, start_time))
5552                         break;
5553
5554                 if (unlikely(need_resched())) {
5555                         if (napi_poll)
5556                                 busy_poll_stop(napi, have_poll_lock);
5557                         preempt_enable();
5558                         rcu_read_unlock();
5559                         cond_resched();
5560                         if (loop_end(loop_end_arg, start_time))
5561                                 return;
5562                         goto restart;
5563                 }
5564                 cpu_relax();
5565         }
5566         if (napi_poll)
5567                 busy_poll_stop(napi, have_poll_lock);
5568         preempt_enable();
5569 out:
5570         rcu_read_unlock();
5571 }
5572 EXPORT_SYMBOL(napi_busy_loop);
5573
5574 #endif /* CONFIG_NET_RX_BUSY_POLL */
5575
5576 static void napi_hash_add(struct napi_struct *napi)
5577 {
5578         if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
5579             test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
5580                 return;
5581
5582         spin_lock(&napi_hash_lock);
5583
5584         /* 0..NR_CPUS range is reserved for sender_cpu use */
5585         do {
5586                 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
5587                         napi_gen_id = MIN_NAPI_ID;
5588         } while (napi_by_id(napi_gen_id));
5589         napi->napi_id = napi_gen_id;
5590
5591         hlist_add_head_rcu(&napi->napi_hash_node,
5592                            &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
5593
5594         spin_unlock(&napi_hash_lock);
5595 }
5596
5597 /* Warning : caller is responsible to make sure rcu grace period
5598  * is respected before freeing memory containing @napi
5599  */
5600 bool napi_hash_del(struct napi_struct *napi)
5601 {
5602         bool rcu_sync_needed = false;
5603
5604         spin_lock(&napi_hash_lock);
5605
5606         if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
5607                 rcu_sync_needed = true;
5608                 hlist_del_rcu(&napi->napi_hash_node);
5609         }
5610         spin_unlock(&napi_hash_lock);
5611         return rcu_sync_needed;
5612 }
5613 EXPORT_SYMBOL_GPL(napi_hash_del);
5614
5615 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5616 {
5617         struct napi_struct *napi;
5618
5619         napi = container_of(timer, struct napi_struct, timer);
5620
5621         /* Note : we use a relaxed variant of napi_schedule_prep() not setting
5622          * NAPI_STATE_MISSED, since we do not react to a device IRQ.
5623          */
5624         if (napi->gro_list && !napi_disable_pending(napi) &&
5625             !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
5626                 __napi_schedule_irqoff(napi);
5627
5628         return HRTIMER_NORESTART;
5629 }
5630
5631 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5632                     int (*poll)(struct napi_struct *, int), int weight)
5633 {
5634         INIT_LIST_HEAD(&napi->poll_list);
5635         hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5636         napi->timer.function = napi_watchdog;
5637         napi->gro_count = 0;
5638         napi->gro_list = NULL;
5639         napi->skb = NULL;
5640         napi->poll = poll;
5641         if (weight > NAPI_POLL_WEIGHT)
5642                 pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5643                             weight, dev->name);
5644         napi->weight = weight;
5645         list_add(&napi->dev_list, &dev->napi_list);
5646         napi->dev = dev;
5647 #ifdef CONFIG_NETPOLL
5648         napi->poll_owner = -1;
5649 #endif
5650         set_bit(NAPI_STATE_SCHED, &napi->state);
5651         napi_hash_add(napi);
5652 }
5653 EXPORT_SYMBOL(netif_napi_add);
5654
5655 void napi_disable(struct napi_struct *n)
5656 {
5657         might_sleep();
5658         set_bit(NAPI_STATE_DISABLE, &n->state);
5659
5660         while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5661                 msleep(1);
5662         while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5663                 msleep(1);
5664
5665         hrtimer_cancel(&n->timer);
5666
5667         clear_bit(NAPI_STATE_DISABLE, &n->state);
5668 }
5669 EXPORT_SYMBOL(napi_disable);
5670
5671 /* Must be called in process context */
5672 void netif_napi_del(struct napi_struct *napi)
5673 {
5674         might_sleep();
5675         if (napi_hash_del(napi))
5676                 synchronize_net();
5677         list_del_init(&napi->dev_list);
5678         napi_free_frags(napi);
5679
5680         kfree_skb_list(napi->gro_list);
5681         napi->gro_list = NULL;
5682         napi->gro_count = 0;
5683 }
5684 EXPORT_SYMBOL(netif_napi_del);
5685
5686 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5687 {
5688         void *have;
5689         int work, weight;
5690
5691         list_del_init(&n->poll_list);
5692
5693         have = netpoll_poll_lock(n);
5694
5695         weight = n->weight;
5696
5697         /* This NAPI_STATE_SCHED test is for avoiding a race
5698          * with netpoll's poll_napi().  Only the entity which
5699          * obtains the lock and sees NAPI_STATE_SCHED set will
5700          * actually make the ->poll() call.  Therefore we avoid
5701          * accidentally calling ->poll() when NAPI is not scheduled.
5702          */
5703         work = 0;
5704         if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5705                 work = n->poll(n, weight);
5706                 trace_napi_poll(n, work, weight);
5707         }
5708
5709         WARN_ON_ONCE(work > weight);
5710
5711         if (likely(work < weight))
5712                 goto out_unlock;
5713
5714         /* Drivers must not modify the NAPI state if they
5715          * consume the entire weight.  In such cases this code
5716          * still "owns" the NAPI instance and therefore can
5717          * move the instance around on the list at-will.
5718          */
5719         if (unlikely(napi_disable_pending(n))) {
5720                 napi_complete(n);
5721                 goto out_unlock;
5722         }
5723
5724         if (n->gro_list) {
5725                 /* flush too old packets
5726                  * If HZ < 1000, flush all packets.
5727                  */
5728                 napi_gro_flush(n, HZ >= 1000);
5729         }
5730
5731         /* Some drivers may have called napi_schedule
5732          * prior to exhausting their budget.
5733          */
5734         if (unlikely(!list_empty(&n->poll_list))) {
5735                 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5736                              n->dev ? n->dev->name : "backlog");
5737                 goto out_unlock;
5738         }
5739
5740         list_add_tail(&n->poll_list, repoll);
5741
5742 out_unlock:
5743         netpoll_poll_unlock(have);
5744
5745         return work;
5746 }
5747
5748 static __latent_entropy void net_rx_action(struct softirq_action *h)
5749 {
5750         struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5751         unsigned long time_limit = jiffies +
5752                 usecs_to_jiffies(netdev_budget_usecs);
5753         int budget = netdev_budget;
5754         LIST_HEAD(list);
5755         LIST_HEAD(repoll);
5756
5757         local_irq_disable();
5758         list_splice_init(&sd->poll_list, &list);
5759         local_irq_enable();
5760
5761         for (;;) {
5762                 struct napi_struct *n;
5763
5764                 if (list_empty(&list)) {
5765                         if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5766                                 goto out;
5767                         break;
5768                 }
5769
5770                 n = list_first_entry(&list, struct napi_struct, poll_list);
5771                 budget -= napi_poll(n, &repoll);
5772
5773                 /* If softirq window is exhausted then punt.
5774                  * Allow this to run for 2 jiffies since which will allow
5775                  * an average latency of 1.5/HZ.
5776                  */
5777                 if (unlikely(budget <= 0 ||
5778                              time_after_eq(jiffies, time_limit))) {
5779                         sd->time_squeeze++;
5780                         break;
5781                 }
5782         }
5783
5784         local_irq_disable();
5785
5786         list_splice_tail_init(&sd->poll_list, &list);
5787         list_splice_tail(&repoll, &list);
5788         list_splice(&list, &sd->poll_list);
5789         if (!list_empty(&sd->poll_list))
5790                 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
5791
5792         net_rps_action_and_irq_enable(sd);
5793 out:
5794         __kfree_skb_flush();
5795 }
5796
5797 struct netdev_adjacent {
5798         struct net_device *dev;
5799
5800         /* upper master flag, there can only be one master device per list */
5801         bool master;
5802
5803         /* counter for the number of times this device was added to us */
5804         u16 ref_nr;
5805
5806         /* private field for the users */
5807         void *private;
5808
5809         struct list_head list;
5810         struct rcu_head rcu;
5811 };
5812
5813 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5814                                                  struct list_head *adj_list)
5815 {
5816         struct netdev_adjacent *adj;
5817
5818         list_for_each_entry(adj, adj_list, list) {
5819                 if (adj->dev == adj_dev)
5820                         return adj;
5821         }
5822         return NULL;
5823 }
5824
5825 static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
5826 {
5827         struct net_device *dev = data;
5828
5829         return upper_dev == dev;
5830 }
5831
5832 /**
5833  * netdev_has_upper_dev - Check if device is linked to an upper device
5834  * @dev: device
5835  * @upper_dev: upper device to check
5836  *
5837  * Find out if a device is linked to specified upper device and return true
5838  * in case it is. Note that this checks only immediate upper device,
5839  * not through a complete stack of devices. The caller must hold the RTNL lock.
5840  */
5841 bool netdev_has_upper_dev(struct net_device *dev,
5842                           struct net_device *upper_dev)
5843 {
5844         ASSERT_RTNL();
5845
5846         return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5847                                              upper_dev);
5848 }
5849 EXPORT_SYMBOL(netdev_has_upper_dev);
5850
5851 /**
5852  * netdev_has_upper_dev_all - Check if device is linked to an upper device
5853  * @dev: device
5854  * @upper_dev: upper device to check
5855  *
5856  * Find out if a device is linked to specified upper device and return true
5857  * in case it is. Note that this checks the entire upper device chain.
5858  * The caller must hold rcu lock.
5859  */
5860
5861 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
5862                                   struct net_device *upper_dev)
5863 {
5864         return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
5865                                                upper_dev);
5866 }
5867 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
5868
5869 /**
5870  * netdev_has_any_upper_dev - Check if device is linked to some device
5871  * @dev: device
5872  *
5873  * Find out if a device is linked to an upper device and return true in case
5874  * it is. The caller must hold the RTNL lock.
5875  */
5876 bool netdev_has_any_upper_dev(struct net_device *dev)
5877 {
5878         ASSERT_RTNL();
5879
5880         return !list_empty(&dev->adj_list.upper);
5881 }
5882 EXPORT_SYMBOL(netdev_has_any_upper_dev);
5883
5884 /**
5885  * netdev_master_upper_dev_get - Get master upper device
5886  * @dev: device
5887  *
5888  * Find a master upper device and return pointer to it or NULL in case
5889  * it's not there. The caller must hold the RTNL lock.
5890  */
5891 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5892 {
5893         struct netdev_adjacent *upper;
5894
5895         ASSERT_RTNL();
5896
5897         if (list_empty(&dev->adj_list.upper))
5898                 return NULL;
5899
5900         upper = list_first_entry(&dev->adj_list.upper,
5901                                  struct netdev_adjacent, list);
5902         if (likely(upper->master))
5903                 return upper->dev;
5904         return NULL;
5905 }
5906 EXPORT_SYMBOL(netdev_master_upper_dev_get);
5907
5908 /**
5909  * netdev_has_any_lower_dev - Check if device is linked to some device
5910  * @dev: device
5911  *
5912  * Find out if a device is linked to a lower device and return true in case
5913  * it is. The caller must hold the RTNL lock.
5914  */
5915 static bool netdev_has_any_lower_dev(struct net_device *dev)
5916 {
5917         ASSERT_RTNL();
5918
5919         return !list_empty(&dev->adj_list.lower);
5920 }
5921
5922 void *netdev_adjacent_get_private(struct list_head *adj_list)
5923 {
5924         struct netdev_adjacent *adj;
5925
5926         adj = list_entry(adj_list, struct netdev_adjacent, list);
5927
5928         return adj->private;
5929 }
5930 EXPORT_SYMBOL(netdev_adjacent_get_private);
5931
5932 /**
5933  * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5934  * @dev: device
5935  * @iter: list_head ** of the current position
5936  *
5937  * Gets the next device from the dev's upper list, starting from iter
5938  * position. The caller must hold RCU read lock.
5939  */
5940 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5941                                                  struct list_head **iter)
5942 {
5943         struct netdev_adjacent *upper;
5944
5945         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5946
5947         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5948
5949         if (&upper->list == &dev->adj_list.upper)
5950                 return NULL;
5951
5952         *iter = &upper->list;
5953
5954         return upper->dev;
5955 }
5956 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5957
5958 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
5959                                                     struct list_head **iter)
5960 {
5961         struct netdev_adjacent *upper;
5962
5963         WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5964
5965         upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5966
5967         if (&upper->list == &dev->adj_list.upper)
5968                 return NULL;
5969
5970         *iter = &upper->list;
5971
5972         return upper->dev;
5973 }
5974
5975 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
5976                                   int (*fn)(struct net_device *dev,
5977                                             void *data),
5978                                   void *data)
5979 {
5980         struct net_device *udev;
5981         struct list_head *iter;
5982         int ret;
5983
5984         for (iter = &dev->adj_list.upper,
5985              udev = netdev_next_upper_dev_rcu(dev, &iter);
5986              udev;
5987              udev = netdev_next_upper_dev_rcu(dev, &iter)) {
5988                 /* first is the upper device itself */
5989                 ret = fn(udev, data);
5990                 if (ret)
5991                         return ret;
5992
5993                 /* then look at all of its upper devices */
5994                 ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
5995                 if (ret)
5996                         return ret;
5997         }
5998
5999         return 0;
6000 }
6001 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6002
6003 /**
6004  * netdev_lower_get_next_private - Get the next ->private from the
6005  *                                 lower neighbour list
6006  * @dev: device
6007  * @iter: list_head ** of the current position
6008  *
6009  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6010  * list, starting from iter position. The caller must hold either hold the
6011  * RTNL lock or its own locking that guarantees that the neighbour lower
6012  * list will remain unchanged.
6013  */
6014 void *netdev_lower_get_next_private(struct net_device *dev,
6015                                     struct list_head **iter)
6016 {
6017         struct netdev_adjacent *lower;
6018
6019         lower = list_entry(*iter, struct netdev_adjacent, list);
6020
6021         if (&lower->list == &dev->adj_list.lower)
6022                 return NULL;
6023
6024         *iter = lower->list.next;
6025
6026         return lower->private;
6027 }
6028 EXPORT_SYMBOL(netdev_lower_get_next_private);
6029
6030 /**
6031  * netdev_lower_get_next_private_rcu - Get the next ->private from the
6032  *                                     lower neighbour list, RCU
6033  *                                     variant
6034  * @dev: device
6035  * @iter: list_head ** of the current position
6036  *
6037  * Gets the next netdev_adjacent->private from the dev's lower neighbour
6038  * list, starting from iter position. The caller must hold RCU read lock.
6039  */
6040 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6041                                         struct list_head **iter)
6042 {
6043         struct netdev_adjacent *lower;
6044
6045         WARN_ON_ONCE(!rcu_read_lock_held());
6046
6047         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6048
6049         if (&lower->list == &dev->adj_list.lower)
6050                 return NULL;
6051
6052         *iter = &lower->list;
6053
6054         return lower->private;
6055 }
6056 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6057
6058 /**
6059  * netdev_lower_get_next - Get the next device from the lower neighbour
6060  *                         list
6061  * @dev: device
6062  * @iter: list_head ** of the current position
6063  *
6064  * Gets the next netdev_adjacent from the dev's lower neighbour
6065  * list, starting from iter position. The caller must hold RTNL lock or
6066  * its own locking that guarantees that the neighbour lower
6067  * list will remain unchanged.
6068  */
6069 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6070 {
6071         struct netdev_adjacent *lower;
6072
6073         lower = list_entry(*iter, struct netdev_adjacent, list);
6074
6075         if (&lower->list == &dev->adj_list.lower)
6076                 return NULL;
6077
6078         *iter = lower->list.next;
6079
6080         return lower->dev;
6081 }
6082 EXPORT_SYMBOL(netdev_lower_get_next);
6083
6084 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6085                                                 struct list_head **iter)
6086 {
6087         struct netdev_adjacent *lower;
6088
6089         lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6090
6091         if (&lower->list == &dev->adj_list.lower)
6092                 return NULL;
6093
6094         *iter = &lower->list;
6095
6096         return lower->dev;
6097 }
6098
6099 int netdev_walk_all_lower_dev(struct net_device *dev,
6100                               int (*fn)(struct net_device *dev,
6101                                         void *data),
6102                               void *data)
6103 {
6104         struct net_device *ldev;
6105         struct list_head *iter;
6106         int ret;
6107
6108         for (iter = &dev->adj_list.lower,
6109              ldev = netdev_next_lower_dev(dev, &iter);
6110              ldev;
6111              ldev = netdev_next_lower_dev(dev, &iter)) {
6112                 /* first is the lower device itself */
6113                 ret = fn(ldev, data);
6114                 if (ret)
6115                         return ret;
6116
6117                 /* then look at all of its lower devices */
6118                 ret = netdev_walk_all_lower_dev(ldev, fn, data);
6119                 if (ret)
6120                         return ret;
6121         }
6122
6123         return 0;
6124 }
6125 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6126
6127 static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6128                                                     struct list_head **iter)
6129 {
6130         struct netdev_adjacent *lower;
6131
6132         lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6133         if (&lower->list == &dev->adj_list.lower)
6134                 return NULL;
6135
6136         *iter = &lower->list;
6137
6138         return lower->dev;
6139 }
6140
6141 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6142                                   int (*fn)(struct net_device *dev,
6143                                             void *data),
6144                                   void *data)
6145 {
6146         struct net_device *ldev;
6147         struct list_head *iter;
6148         int ret;
6149
6150         for (iter = &dev->adj_list.lower,
6151              ldev = netdev_next_lower_dev_rcu(dev, &iter);
6152              ldev;
6153              ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6154                 /* first is the lower device itself */
6155                 ret = fn(ldev, data);
6156                 if (ret)
6157                         return ret;
6158
6159                 /* then look at all of its lower devices */
6160                 ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6161                 if (ret)
6162                         return ret;
6163         }
6164
6165         return 0;
6166 }
6167 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6168
6169 /**
6170  * netdev_lower_get_first_private_rcu - Get the first ->private from the
6171  *                                     lower neighbour list, RCU
6172  *                                     variant
6173  * @dev: device
6174  *
6175  * Gets the first netdev_adjacent->private from the dev's lower neighbour
6176  * list. The caller must hold RCU read lock.
6177  */
6178 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6179 {
6180         struct netdev_adjacent *lower;
6181
6182         lower = list_first_or_null_rcu(&dev->adj_list.lower,
6183                         struct netdev_adjacent, list);
6184         if (lower)
6185                 return lower->private;
6186         return NULL;
6187 }
6188 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6189
6190 /**
6191  * netdev_master_upper_dev_get_rcu - Get master upper device
6192  * @dev: device
6193  *
6194  * Find a master upper device and return pointer to it or NULL in case
6195  * it's not there. The caller must hold the RCU read lock.
6196  */
6197 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6198 {
6199         struct netdev_adjacent *upper;
6200
6201         upper = list_first_or_null_rcu(&dev->adj_list.upper,
6202                                        struct netdev_adjacent, list);
6203         if (upper && likely(upper->master))
6204                 return upper->dev;
6205         return NULL;
6206 }
6207 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6208
6209 static int netdev_adjacent_sysfs_add(struct net_device *dev,
6210                               struct net_device *adj_dev,
6211                               struct list_head *dev_list)
6212 {
6213         char linkname[IFNAMSIZ+7];
6214
6215         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6216                 "upper_%s" : "lower_%s", adj_dev->name);
6217         return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6218                                  linkname);
6219 }
6220 static void netdev_adjacent_sysfs_del(struct net_device *dev,
6221                                char *name,
6222                                struct list_head *dev_list)
6223 {
6224         char linkname[IFNAMSIZ+7];
6225
6226         sprintf(linkname, dev_list == &dev->adj_list.upper ?
6227                 "upper_%s" : "lower_%s", name);
6228         sysfs_remove_link(&(dev->dev.kobj), linkname);
6229 }
6230
6231 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6232                                                  struct net_device *adj_dev,
6233                                                  struct list_head *dev_list)
6234 {
6235         return (dev_list == &dev->adj_list.upper ||
6236                 dev_list == &dev->adj_list.lower) &&
6237                 net_eq(dev_net(dev), dev_net(adj_dev));
6238 }
6239
6240 static int __netdev_adjacent_dev_insert(struct net_device *dev,
6241                                         struct net_device *adj_dev,
6242                                         struct list_head *dev_list,
6243                                         void *private, bool master)
6244 {
6245         struct netdev_adjacent *adj;
6246         int ret;
6247
6248         adj = __netdev_find_adj(adj_dev, dev_list);
6249
6250         if (adj) {
6251                 adj->ref_nr += 1;
6252                 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6253                          dev->name, adj_dev->name, adj->ref_nr);
6254
6255                 return 0;
6256         }
6257
6258         adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6259         if (!adj)
6260                 return -ENOMEM;
6261
6262         adj->dev = adj_dev;
6263         adj->master = master;
6264         adj->ref_nr = 1;
6265         adj->private = private;
6266         dev_hold(adj_dev);
6267
6268         pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6269                  dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6270
6271         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6272                 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6273                 if (ret)
6274                         goto free_adj;
6275         }
6276
6277         /* Ensure that master link is always the first item in list. */
6278         if (master) {
6279                 ret = sysfs_create_link(&(dev->dev.kobj),
6280                                         &(adj_dev->dev.kobj), "master");
6281                 if (ret)
6282                         goto remove_symlinks;
6283
6284                 list_add_rcu(&adj->list, dev_list);
6285         } else {
6286                 list_add_tail_rcu(&adj->list, dev_list);
6287         }
6288
6289         return 0;
6290
6291 remove_symlinks:
6292         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6293                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6294 free_adj:
6295         kfree(adj);
6296         dev_put(adj_dev);
6297
6298         return ret;
6299 }
6300
6301 static void __netdev_adjacent_dev_remove(struct net_device *dev,
6302                                          struct net_device *adj_dev,
6303                                          u16 ref_nr,
6304                                          struct list_head *dev_list)
6305 {
6306         struct netdev_adjacent *adj;
6307
6308         pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6309                  dev->name, adj_dev->name, ref_nr);
6310
6311         adj = __netdev_find_adj(adj_dev, dev_list);
6312
6313         if (!adj) {
6314                 pr_err("Adjacency does not exist for device %s from %s\n",
6315                        dev->name, adj_dev->name);
6316                 WARN_ON(1);
6317                 return;
6318         }
6319
6320         if (adj->ref_nr > ref_nr) {
6321                 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6322                          dev->name, adj_dev->name, ref_nr,
6323                          adj->ref_nr - ref_nr);
6324                 adj->ref_nr -= ref_nr;
6325                 return;
6326         }
6327
6328         if (adj->master)
6329                 sysfs_remove_link(&(dev->dev.kobj), "master");
6330
6331         if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6332                 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6333
6334         list_del_rcu(&adj->list);
6335         pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6336                  adj_dev->name, dev->name, adj_dev->name);
6337         dev_put(adj_dev);
6338         kfree_rcu(adj, rcu);
6339 }
6340
6341 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6342                                             struct net_device *upper_dev,
6343                                             struct list_head *up_list,
6344                                             struct list_head *down_list,
6345                                             void *private, bool master)
6346 {
6347         int ret;
6348
6349         ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6350                                            private, master);
6351         if (ret)
6352                 return ret;
6353
6354         ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
6355                                            private, false);
6356         if (ret) {
6357                 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
6358                 return ret;
6359         }
6360
6361         return 0;
6362 }
6363
6364 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
6365                                                struct net_device *upper_dev,
6366                                                u16 ref_nr,
6367                                                struct list_head *up_list,
6368                                                struct list_head *down_list)
6369 {
6370         __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
6371         __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
6372 }
6373
6374 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
6375                                                 struct net_device *upper_dev,
6376                                                 void *private, bool master)
6377 {
6378         return __netdev_adjacent_dev_link_lists(dev, upper_dev,
6379                                                 &dev->adj_list.upper,
6380                                                 &upper_dev->adj_list.lower,
6381                                                 private, master);
6382 }
6383
6384 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
6385                                                    struct net_device *upper_dev)
6386 {
6387         __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
6388                                            &dev->adj_list.upper,
6389                                            &upper_dev->adj_list.lower);
6390 }
6391
6392 static int __netdev_upper_dev_link(struct net_device *dev,
6393                                    struct net_device *upper_dev, bool master,
6394                                    void *upper_priv, void *upper_info,
6395                                    struct netlink_ext_ack *extack)
6396 {
6397         struct netdev_notifier_changeupper_info changeupper_info = {
6398                 .info = {
6399                         .dev = dev,
6400                         .extack = extack,
6401                 },
6402                 .upper_dev = upper_dev,
6403                 .master = master,
6404                 .linking = true,
6405                 .upper_info = upper_info,
6406         };
6407         struct net_device *master_dev;
6408         int ret = 0;
6409
6410         ASSERT_RTNL();
6411
6412         if (dev == upper_dev)
6413                 return -EBUSY;
6414
6415         /* To prevent loops, check if dev is not upper device to upper_dev. */
6416         if (netdev_has_upper_dev(upper_dev, dev))
6417                 return -EBUSY;
6418
6419         if (!master) {
6420                 if (netdev_has_upper_dev(dev, upper_dev))
6421                         return -EEXIST;
6422         } else {
6423                 master_dev = netdev_master_upper_dev_get(dev);
6424                 if (master_dev)
6425                         return master_dev == upper_dev ? -EEXIST : -EBUSY;
6426         }
6427
6428         ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6429                                             &changeupper_info.info);
6430         ret = notifier_to_errno(ret);
6431         if (ret)
6432                 return ret;
6433
6434         ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
6435                                                    master);
6436         if (ret)
6437                 return ret;
6438
6439         ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6440                                             &changeupper_info.info);
6441         ret = notifier_to_errno(ret);
6442         if (ret)
6443                 goto rollback;
6444
6445         return 0;
6446
6447 rollback:
6448         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6449
6450         return ret;
6451 }
6452
6453 /**
6454  * netdev_upper_dev_link - Add a link to the upper device
6455  * @dev: device
6456  * @upper_dev: new upper device
6457  * @extack: netlink extended ack
6458  *
6459  * Adds a link to device which is upper to this one. The caller must hold
6460  * the RTNL lock. On a failure a negative errno code is returned.
6461  * On success the reference counts are adjusted and the function
6462  * returns zero.
6463  */
6464 int netdev_upper_dev_link(struct net_device *dev,
6465                           struct net_device *upper_dev,
6466                           struct netlink_ext_ack *extack)
6467 {
6468         return __netdev_upper_dev_link(dev, upper_dev, false,
6469                                        NULL, NULL, extack);
6470 }
6471 EXPORT_SYMBOL(netdev_upper_dev_link);
6472
6473 /**
6474  * netdev_master_upper_dev_link - Add a master link to the upper device
6475  * @dev: device
6476  * @upper_dev: new upper device
6477  * @upper_priv: upper device private
6478  * @upper_info: upper info to be passed down via notifier
6479  * @extack: netlink extended ack
6480  *
6481  * Adds a link to device which is upper to this one. In this case, only
6482  * one master upper device can be linked, although other non-master devices
6483  * might be linked as well. The caller must hold the RTNL lock.
6484  * On a failure a negative errno code is returned. On success the reference
6485  * counts are adjusted and the function returns zero.
6486  */
6487 int netdev_master_upper_dev_link(struct net_device *dev,
6488                                  struct net_device *upper_dev,
6489                                  void *upper_priv, void *upper_info,
6490                                  struct netlink_ext_ack *extack)
6491 {
6492         return __netdev_upper_dev_link(dev, upper_dev, true,
6493                                        upper_priv, upper_info, extack);
6494 }
6495 EXPORT_SYMBOL(netdev_master_upper_dev_link);
6496
6497 /**
6498  * netdev_upper_dev_unlink - Removes a link to upper device
6499  * @dev: device
6500  * @upper_dev: new upper device
6501  *
6502  * Removes a link to device which is upper to this one. The caller must hold
6503  * the RTNL lock.
6504  */
6505 void netdev_upper_dev_unlink(struct net_device *dev,
6506                              struct net_device *upper_dev)
6507 {
6508         struct netdev_notifier_changeupper_info changeupper_info = {
6509                 .info = {
6510                         .dev = dev,
6511                 },
6512                 .upper_dev = upper_dev,
6513                 .linking = false,
6514         };
6515
6516         ASSERT_RTNL();
6517
6518         changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
6519
6520         call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
6521                                       &changeupper_info.info);
6522
6523         __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
6524
6525         call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
6526                                       &changeupper_info.info);
6527 }
6528 EXPORT_SYMBOL(netdev_upper_dev_unlink);
6529
6530 /**
6531  * netdev_bonding_info_change - Dispatch event about slave change
6532  * @dev: device
6533  * @bonding_info: info to dispatch
6534  *
6535  * Send NETDEV_BONDING_INFO to netdev notifiers with info.
6536  * The caller must hold the RTNL lock.
6537  */
6538 void netdev_bonding_info_change(struct net_device *dev,
6539                                 struct netdev_bonding_info *bonding_info)
6540 {
6541         struct netdev_notifier_bonding_info info = {
6542                 .info.dev = dev,
6543         };
6544
6545         memcpy(&info.bonding_info, bonding_info,
6546                sizeof(struct netdev_bonding_info));
6547         call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
6548                                       &info.info);
6549 }
6550 EXPORT_SYMBOL(netdev_bonding_info_change);
6551
6552 static void netdev_adjacent_add_links(struct net_device *dev)
6553 {
6554         struct netdev_adjacent *iter;
6555
6556         struct net *net = dev_net(dev);
6557
6558         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6559                 if (!net_eq(net, dev_net(iter->dev)))
6560                         continue;
6561                 netdev_adjacent_sysfs_add(iter->dev, dev,
6562                                           &iter->dev->adj_list.lower);
6563                 netdev_adjacent_sysfs_add(dev, iter->dev,
6564                                           &dev->adj_list.upper);
6565         }
6566
6567         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6568                 if (!net_eq(net, dev_net(iter->dev)))
6569                         continue;
6570                 netdev_adjacent_sysfs_add(iter->dev, dev,
6571                                           &iter->dev->adj_list.upper);
6572                 netdev_adjacent_sysfs_add(dev, iter->dev,
6573                                           &dev->adj_list.lower);
6574         }
6575 }
6576
6577 static void netdev_adjacent_del_links(struct net_device *dev)
6578 {
6579         struct netdev_adjacent *iter;
6580
6581         struct net *net = dev_net(dev);
6582
6583         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6584                 if (!net_eq(net, dev_net(iter->dev)))
6585                         continue;
6586                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6587                                           &iter->dev->adj_list.lower);
6588                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6589                                           &dev->adj_list.upper);
6590         }
6591
6592         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6593                 if (!net_eq(net, dev_net(iter->dev)))
6594                         continue;
6595                 netdev_adjacent_sysfs_del(iter->dev, dev->name,
6596                                           &iter->dev->adj_list.upper);
6597                 netdev_adjacent_sysfs_del(dev, iter->dev->name,
6598                                           &dev->adj_list.lower);
6599         }
6600 }
6601
6602 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
6603 {
6604         struct netdev_adjacent *iter;
6605
6606         struct net *net = dev_net(dev);
6607
6608         list_for_each_entry(iter, &dev->adj_list.upper, list) {
6609                 if (!net_eq(net, dev_net(iter->dev)))
6610                         continue;
6611                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6612                                           &iter->dev->adj_list.lower);
6613                 netdev_adjacent_sysfs_add(iter->dev, dev,
6614                                           &iter->dev->adj_list.lower);
6615         }
6616
6617         list_for_each_entry(iter, &dev->adj_list.lower, list) {
6618                 if (!net_eq(net, dev_net(iter->dev)))
6619                         continue;
6620                 netdev_adjacent_sysfs_del(iter->dev, oldname,
6621                                           &iter->dev->adj_list.upper);
6622                 netdev_adjacent_sysfs_add(iter->dev, dev,
6623                                           &iter->dev->adj_list.upper);
6624         }
6625 }
6626
6627 void *netdev_lower_dev_get_private(struct net_device *dev,
6628                                    struct net_device *lower_dev)
6629 {
6630         struct netdev_adjacent *lower;
6631
6632         if (!lower_dev)
6633                 return NULL;
6634         lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
6635         if (!lower)
6636                 return NULL;
6637
6638         return lower->private;
6639 }
6640 EXPORT_SYMBOL(netdev_lower_dev_get_private);
6641
6642
6643 int dev_get_nest_level(struct net_device *dev)
6644 {
6645         struct net_device *lower = NULL;
6646         struct list_head *iter;
6647         int max_nest = -1;
6648         int nest;
6649
6650         ASSERT_RTNL();
6651
6652         netdev_for_each_lower_dev(dev, lower, iter) {
6653                 nest = dev_get_nest_level(lower);
6654                 if (max_nest < nest)
6655                         max_nest = nest;
6656         }
6657
6658         return max_nest + 1;
6659 }
6660 EXPORT_SYMBOL(dev_get_nest_level);
6661
6662 /**
6663  * netdev_lower_change - Dispatch event about lower device state change
6664  * @lower_dev: device
6665  * @lower_state_info: state to dispatch
6666  *
6667  * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
6668  * The caller must hold the RTNL lock.
6669  */
6670 void netdev_lower_state_changed(struct net_device *lower_dev,
6671                                 void *lower_state_info)
6672 {
6673         struct netdev_notifier_changelowerstate_info changelowerstate_info = {
6674                 .info.dev = lower_dev,
6675         };
6676
6677         ASSERT_RTNL();
6678         changelowerstate_info.lower_state_info = lower_state_info;
6679         call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
6680                                       &changelowerstate_info.info);
6681 }
6682 EXPORT_SYMBOL(netdev_lower_state_changed);
6683
6684 static void dev_change_rx_flags(struct net_device *dev, int flags)
6685 {
6686         const struct net_device_ops *ops = dev->netdev_ops;
6687
6688         if (ops->ndo_change_rx_flags)
6689                 ops->ndo_change_rx_flags(dev, flags);
6690 }
6691
6692 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6693 {
6694         unsigned int old_flags = dev->flags;
6695         kuid_t uid;
6696         kgid_t gid;
6697
6698         ASSERT_RTNL();
6699
6700         dev->flags |= IFF_PROMISC;
6701         dev->promiscuity += inc;
6702         if (dev->promiscuity == 0) {
6703                 /*
6704                  * Avoid overflow.
6705                  * If inc causes overflow, untouch promisc and return error.
6706                  */
6707                 if (inc < 0)
6708                         dev->flags &= ~IFF_PROMISC;
6709                 else {
6710                         dev->promiscuity -= inc;
6711                         pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6712                                 dev->name);
6713                         return -EOVERFLOW;
6714                 }
6715         }
6716         if (dev->flags != old_flags) {
6717                 pr_info("device %s %s promiscuous mode\n",
6718                         dev->name,
6719                         dev->flags & IFF_PROMISC ? "entered" : "left");
6720                 if (audit_enabled) {
6721                         current_uid_gid(&uid, &gid);
6722                         audit_log(current->audit_context, GFP_ATOMIC,
6723                                 AUDIT_ANOM_PROMISCUOUS,
6724                                 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6725                                 dev->name, (dev->flags & IFF_PROMISC),
6726                                 (old_flags & IFF_PROMISC),
6727                                 from_kuid(&init_user_ns, audit_get_loginuid(current)),
6728                                 from_kuid(&init_user_ns, uid),
6729                                 from_kgid(&init_user_ns, gid),
6730                                 audit_get_sessionid(current));
6731                 }
6732
6733                 dev_change_rx_flags(dev, IFF_PROMISC);
6734         }
6735         if (notify)
6736                 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
6737         return 0;
6738 }
6739
6740 /**
6741  *      dev_set_promiscuity     - update promiscuity count on a device
6742  *      @dev: device
6743  *      @inc: modifier
6744  *
6745  *      Add or remove promiscuity from a device. While the count in the device
6746  *      remains above zero the interface remains promiscuous. Once it hits zero
6747  *      the device reverts back to normal filtering operation. A negative inc
6748  *      value is used to drop promiscuity on the device.
6749  *      Return 0 if successful or a negative errno code on error.
6750  */
6751 int dev_set_promiscuity(struct net_device *dev, int inc)
6752 {
6753         unsigned int old_flags = dev->flags;
6754         int err;
6755
6756         err = __dev_set_promiscuity(dev, inc, true);
6757         if (err < 0)
6758                 return err;
6759         if (dev->flags != old_flags)
6760                 dev_set_rx_mode(dev);
6761         return err;
6762 }
6763 EXPORT_SYMBOL(dev_set_promiscuity);
6764
6765 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6766 {
6767         unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6768
6769         ASSERT_RTNL();
6770
6771         dev->flags |= IFF_ALLMULTI;
6772         dev->allmulti += inc;
6773         if (dev->allmulti == 0) {
6774                 /*
6775                  * Avoid overflow.
6776                  * If inc causes overflow, untouch allmulti and return error.
6777                  */
6778                 if (inc < 0)
6779                         dev->flags &= ~IFF_ALLMULTI;
6780                 else {
6781                         dev->allmulti -= inc;
6782                         pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6783                                 dev->name);
6784                         return -EOVERFLOW;
6785                 }
6786         }
6787         if (dev->flags ^ old_flags) {
6788                 dev_change_rx_flags(dev, IFF_ALLMULTI);
6789                 dev_set_rx_mode(dev);
6790                 if (notify)
6791                         __dev_notify_flags(dev, old_flags,
6792                                            dev->gflags ^ old_gflags);
6793         }
6794         return 0;
6795 }
6796
6797 /**
6798  *      dev_set_allmulti        - update allmulti count on a device
6799  *      @dev: device
6800  *      @inc: modifier
6801  *
6802  *      Add or remove reception of all multicast frames to a device. While the
6803  *      count in the device remains above zero the interface remains listening
6804  *      to all interfaces. Once it hits zero the device reverts back to normal
6805  *      filtering operation. A negative @inc value is used to drop the counter
6806  *      when releasing a resource needing all multicasts.
6807  *      Return 0 if successful or a negative errno code on error.
6808  */
6809
6810 int dev_set_allmulti(struct net_device *dev, int inc)
6811 {
6812         return __dev_set_allmulti(dev, inc, true);
6813 }
6814 EXPORT_SYMBOL(dev_set_allmulti);
6815
6816 /*
6817  *      Upload unicast and multicast address lists to device and
6818  *      configure RX filtering. When the device doesn't support unicast
6819  *      filtering it is put in promiscuous mode while unicast addresses
6820  *      are present.
6821  */
6822 void __dev_set_rx_mode(struct net_device *dev)
6823 {
6824         const struct net_device_ops *ops = dev->netdev_ops;
6825
6826         /* dev_open will call this function so the list will stay sane. */
6827         if (!(dev->flags&IFF_UP))
6828                 return;
6829
6830         if (!netif_device_present(dev))
6831                 return;
6832
6833         if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6834                 /* Unicast addresses changes may only happen under the rtnl,
6835                  * therefore calling __dev_set_promiscuity here is safe.
6836                  */
6837                 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6838                         __dev_set_promiscuity(dev, 1, false);
6839                         dev->uc_promisc = true;
6840                 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6841                         __dev_set_promiscuity(dev, -1, false);
6842                         dev->uc_promisc = false;
6843                 }
6844         }
6845
6846         if (ops->ndo_set_rx_mode)
6847                 ops->ndo_set_rx_mode(dev);
6848 }
6849
6850 void dev_set_rx_mode(struct net_device *dev)
6851 {
6852         netif_addr_lock_bh(dev);
6853         __dev_set_rx_mode(dev);
6854         netif_addr_unlock_bh(dev);
6855 }
6856
6857 /**
6858  *      dev_get_flags - get flags reported to userspace
6859  *      @dev: device
6860  *
6861  *      Get the combination of flag bits exported through APIs to userspace.
6862  */
6863 unsigned int dev_get_flags(const struct net_device *dev)
6864 {
6865         unsigned int flags;
6866
6867         flags = (dev->flags & ~(IFF_PROMISC |
6868                                 IFF_ALLMULTI |
6869                                 IFF_RUNNING |
6870                                 IFF_LOWER_UP |
6871                                 IFF_DORMANT)) |
6872                 (dev->gflags & (IFF_PROMISC |
6873                                 IFF_ALLMULTI));
6874
6875         if (netif_running(dev)) {
6876                 if (netif_oper_up(dev))
6877                         flags |= IFF_RUNNING;
6878                 if (netif_carrier_ok(dev))
6879                         flags |= IFF_LOWER_UP;
6880                 if (netif_dormant(dev))
6881                         flags |= IFF_DORMANT;
6882         }
6883
6884         return flags;
6885 }
6886 EXPORT_SYMBOL(dev_get_flags);
6887
6888 int __dev_change_flags(struct net_device *dev, unsigned int flags)
6889 {
6890         unsigned int old_flags = dev->flags;
6891         int ret;
6892
6893         ASSERT_RTNL();
6894
6895         /*
6896          *      Set the flags on our device.
6897          */
6898
6899         dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6900                                IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6901                                IFF_AUTOMEDIA)) |
6902                      (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6903                                     IFF_ALLMULTI));
6904
6905         /*
6906          *      Load in the correct multicast list now the flags have changed.
6907          */
6908
6909         if ((old_flags ^ flags) & IFF_MULTICAST)
6910                 dev_change_rx_flags(dev, IFF_MULTICAST);
6911
6912         dev_set_rx_mode(dev);
6913
6914         /*
6915          *      Have we downed the interface. We handle IFF_UP ourselves
6916          *      according to user attempts to set it, rather than blindly
6917          *      setting it.
6918          */
6919
6920         ret = 0;
6921         if ((old_flags ^ flags) & IFF_UP) {
6922                 if (old_flags & IFF_UP)
6923                         __dev_close(dev);
6924                 else
6925                         ret = __dev_open(dev);
6926         }
6927
6928         if ((flags ^ dev->gflags) & IFF_PROMISC) {
6929                 int inc = (flags & IFF_PROMISC) ? 1 : -1;
6930                 unsigned int old_flags = dev->flags;
6931
6932                 dev->gflags ^= IFF_PROMISC;
6933
6934                 if (__dev_set_promiscuity(dev, inc, false) >= 0)
6935                         if (dev->flags != old_flags)
6936                                 dev_set_rx_mode(dev);
6937         }
6938
6939         /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6940          * is important. Some (broken) drivers set IFF_PROMISC, when
6941          * IFF_ALLMULTI is requested not asking us and not reporting.
6942          */
6943         if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6944                 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6945
6946                 dev->gflags ^= IFF_ALLMULTI;
6947                 __dev_set_allmulti(dev, inc, false);
6948         }
6949
6950         return ret;
6951 }
6952
6953 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6954                         unsigned int gchanges)
6955 {
6956         unsigned int changes = dev->flags ^ old_flags;
6957
6958         if (gchanges)
6959                 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6960
6961         if (changes & IFF_UP) {
6962                 if (dev->flags & IFF_UP)
6963                         call_netdevice_notifiers(NETDEV_UP, dev);
6964                 else
6965                         call_netdevice_notifiers(NETDEV_DOWN, dev);
6966         }
6967
6968         if (dev->flags & IFF_UP &&
6969             (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6970                 struct netdev_notifier_change_info change_info = {
6971                         .info = {
6972                                 .dev = dev,
6973                         },
6974                         .flags_changed = changes,
6975                 };
6976
6977                 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
6978         }
6979 }
6980
6981 /**
6982  *      dev_change_flags - change device settings
6983  *      @dev: device
6984  *      @flags: device state flags
6985  *
6986  *      Change settings on device based state flags. The flags are
6987  *      in the userspace exported format.
6988  */
6989 int dev_change_flags(struct net_device *dev, unsigned int flags)
6990 {
6991         int ret;
6992         unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6993
6994         ret = __dev_change_flags(dev, flags);
6995         if (ret < 0)
6996                 return ret;
6997
6998         changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6999         __dev_notify_flags(dev, old_flags, changes);
7000         return ret;
7001 }
7002 EXPORT_SYMBOL(dev_change_flags);
7003
7004 int __dev_set_mtu(struct net_device *dev, int new_mtu)
7005 {
7006         const struct net_device_ops *ops = dev->netdev_ops;
7007
7008         if (ops->ndo_change_mtu)
7009                 return ops->ndo_change_mtu(dev, new_mtu);
7010
7011         dev->mtu = new_mtu;
7012         return 0;
7013 }
7014 EXPORT_SYMBOL(__dev_set_mtu);
7015
7016 /**
7017  *      dev_set_mtu - Change maximum transfer unit
7018  *      @dev: device
7019  *      @new_mtu: new transfer unit
7020  *
7021  *      Change the maximum transfer size of the network device.
7022  */
7023 int dev_set_mtu(struct net_device *dev, int new_mtu)
7024 {
7025         int err, orig_mtu;
7026
7027         if (new_mtu == dev->mtu)
7028                 return 0;
7029
7030         /* MTU must be positive, and in range */
7031         if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7032                 net_err_ratelimited("%s: Invalid MTU %d requested, hw min %d\n",
7033                                     dev->name, new_mtu, dev->min_mtu);
7034                 return -EINVAL;
7035         }
7036
7037         if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7038                 net_err_ratelimited("%s: Invalid MTU %d requested, hw max %d\n",
7039                                     dev->name, new_mtu, dev->max_mtu);
7040                 return -EINVAL;
7041         }
7042
7043         if (!netif_device_present(dev))
7044                 return -ENODEV;
7045
7046         err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7047         err = notifier_to_errno(err);
7048         if (err)
7049                 return err;
7050
7051         orig_mtu = dev->mtu;
7052         err = __dev_set_mtu(dev, new_mtu);
7053
7054         if (!err) {
7055                 err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7056                 err = notifier_to_errno(err);
7057                 if (err) {
7058                         /* setting mtu back and notifying everyone again,
7059                          * so that they have a chance to revert changes.
7060                          */
7061                         __dev_set_mtu(dev, orig_mtu);
7062                         call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
7063                 }
7064         }
7065         return err;
7066 }
7067 EXPORT_SYMBOL(dev_set_mtu);
7068
7069 /**
7070  *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7071  *      @dev: device
7072  *      @new_len: new tx queue length
7073  */
7074 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7075 {
7076         unsigned int orig_len = dev->tx_queue_len;
7077         int res;
7078
7079         if (new_len != (unsigned int)new_len)
7080                 return -ERANGE;
7081
7082         if (new_len != orig_len) {
7083                 dev->tx_queue_len = new_len;
7084                 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7085                 res = notifier_to_errno(res);
7086                 if (res) {
7087                         netdev_err(dev,
7088                                    "refused to change device tx_queue_len\n");
7089                         dev->tx_queue_len = orig_len;
7090                         return res;
7091                 }
7092                 return dev_qdisc_change_tx_queue_len(dev);
7093         }
7094
7095         return 0;
7096 }
7097
7098 /**
7099  *      dev_set_group - Change group this device belongs to
7100  *      @dev: device
7101  *      @new_group: group this device should belong to
7102  */
7103 void dev_set_group(struct net_device *dev, int new_group)
7104 {
7105         dev->group = new_group;
7106 }
7107 EXPORT_SYMBOL(dev_set_group);
7108
7109 /**
7110  *      dev_set_mac_address - Change Media Access Control Address
7111  *      @dev: device
7112  *      @sa: new address
7113  *
7114  *      Change the hardware (MAC) address of the device
7115  */
7116 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
7117 {
7118         const struct net_device_ops *ops = dev->netdev_ops;
7119         int err;
7120
7121         if (!ops->ndo_set_mac_address)
7122                 return -EOPNOTSUPP;
7123         if (sa->sa_family != dev->type)
7124                 return -EINVAL;
7125         if (!netif_device_present(dev))
7126                 return -ENODEV;
7127         err = ops->ndo_set_mac_address(dev, sa);
7128         if (err)
7129                 return err;
7130         dev->addr_assign_type = NET_ADDR_SET;
7131         call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7132         add_device_randomness(dev->dev_addr, dev->addr_len);
7133         return 0;
7134 }
7135 EXPORT_SYMBOL(dev_set_mac_address);
7136
7137 /**
7138  *      dev_change_carrier - Change device carrier
7139  *      @dev: device
7140  *      @new_carrier: new value
7141  *
7142  *      Change device carrier
7143  */
7144 int dev_change_carrier(struct net_device *dev, bool new_carrier)
7145 {
7146         const struct net_device_ops *ops = dev->netdev_ops;
7147
7148         if (!ops->ndo_change_carrier)
7149                 return -EOPNOTSUPP;
7150         if (!netif_device_present(dev))
7151                 return -ENODEV;
7152         return ops->ndo_change_carrier(dev, new_carrier);
7153 }
7154 EXPORT_SYMBOL(dev_change_carrier);
7155
7156 /**
7157  *      dev_get_phys_port_id - Get device physical port ID
7158  *      @dev: device
7159  *      @ppid: port ID
7160  *
7161  *      Get device physical port ID
7162  */
7163 int dev_get_phys_port_id(struct net_device *dev,
7164                          struct netdev_phys_item_id *ppid)
7165 {
7166         const struct net_device_ops *ops = dev->netdev_ops;
7167
7168         if (!ops->ndo_get_phys_port_id)
7169                 return -EOPNOTSUPP;
7170         return ops->ndo_get_phys_port_id(dev, ppid);
7171 }
7172 EXPORT_SYMBOL(dev_get_phys_port_id);
7173
7174 /**
7175  *      dev_get_phys_port_name - Get device physical port name
7176  *      @dev: device
7177  *      @name: port name
7178  *      @len: limit of bytes to copy to name
7179  *
7180  *      Get device physical port name
7181  */
7182 int dev_get_phys_port_name(struct net_device *dev,
7183                            char *name, size_t len)
7184 {
7185         const struct net_device_ops *ops = dev->netdev_ops;
7186
7187         if (!ops->ndo_get_phys_port_name)
7188                 return -EOPNOTSUPP;
7189         return ops->ndo_get_phys_port_name(dev, name, len);
7190 }
7191 EXPORT_SYMBOL(dev_get_phys_port_name);
7192
7193 /**
7194  *      dev_change_proto_down - update protocol port state information
7195  *      @dev: device
7196  *      @proto_down: new value
7197  *
7198  *      This info can be used by switch drivers to set the phys state of the
7199  *      port.
7200  */
7201 int dev_change_proto_down(struct net_device *dev, bool proto_down)
7202 {
7203         const struct net_device_ops *ops = dev->netdev_ops;
7204
7205         if (!ops->ndo_change_proto_down)
7206                 return -EOPNOTSUPP;
7207         if (!netif_device_present(dev))
7208                 return -ENODEV;
7209         return ops->ndo_change_proto_down(dev, proto_down);
7210 }
7211 EXPORT_SYMBOL(dev_change_proto_down);
7212
7213 void __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7214                      struct netdev_bpf *xdp)
7215 {
7216         memset(xdp, 0, sizeof(*xdp));
7217         xdp->command = XDP_QUERY_PROG;
7218
7219         /* Query must always succeed. */
7220         WARN_ON(bpf_op(dev, xdp) < 0);
7221 }
7222
7223 static u8 __dev_xdp_attached(struct net_device *dev, bpf_op_t bpf_op)
7224 {
7225         struct netdev_bpf xdp;
7226
7227         __dev_xdp_query(dev, bpf_op, &xdp);
7228
7229         return xdp.prog_attached;
7230 }
7231
7232 static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
7233                            struct netlink_ext_ack *extack, u32 flags,
7234                            struct bpf_prog *prog)
7235 {
7236         struct netdev_bpf xdp;
7237
7238         memset(&xdp, 0, sizeof(xdp));
7239         if (flags & XDP_FLAGS_HW_MODE)
7240                 xdp.command = XDP_SETUP_PROG_HW;
7241         else
7242                 xdp.command = XDP_SETUP_PROG;
7243         xdp.extack = extack;
7244         xdp.flags = flags;
7245         xdp.prog = prog;
7246
7247         return bpf_op(dev, &xdp);
7248 }
7249
7250 static void dev_xdp_uninstall(struct net_device *dev)
7251 {
7252         struct netdev_bpf xdp;
7253         bpf_op_t ndo_bpf;
7254
7255         /* Remove generic XDP */
7256         WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
7257
7258         /* Remove from the driver */
7259         ndo_bpf = dev->netdev_ops->ndo_bpf;
7260         if (!ndo_bpf)
7261                 return;
7262
7263         __dev_xdp_query(dev, ndo_bpf, &xdp);
7264         if (xdp.prog_attached == XDP_ATTACHED_NONE)
7265                 return;
7266
7267         /* Program removal should always succeed */
7268         WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags, NULL));
7269 }
7270
7271 /**
7272  *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
7273  *      @dev: device
7274  *      @extack: netlink extended ack
7275  *      @fd: new program fd or negative value to clear
7276  *      @flags: xdp-related flags
7277  *
7278  *      Set or clear a bpf program for a device
7279  */
7280 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
7281                       int fd, u32 flags)
7282 {
7283         const struct net_device_ops *ops = dev->netdev_ops;
7284         struct bpf_prog *prog = NULL;
7285         bpf_op_t bpf_op, bpf_chk;
7286         int err;
7287
7288         ASSERT_RTNL();
7289
7290         bpf_op = bpf_chk = ops->ndo_bpf;
7291         if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE)))
7292                 return -EOPNOTSUPP;
7293         if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
7294                 bpf_op = generic_xdp_install;
7295         if (bpf_op == bpf_chk)
7296                 bpf_chk = generic_xdp_install;
7297
7298         if (fd >= 0) {
7299                 if (bpf_chk && __dev_xdp_attached(dev, bpf_chk))
7300                         return -EEXIST;
7301                 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
7302                     __dev_xdp_attached(dev, bpf_op))
7303                         return -EBUSY;
7304
7305                 prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
7306                                              bpf_op == ops->ndo_bpf);
7307                 if (IS_ERR(prog))
7308                         return PTR_ERR(prog);
7309
7310                 if (!(flags & XDP_FLAGS_HW_MODE) &&
7311                     bpf_prog_is_dev_bound(prog->aux)) {
7312                         NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
7313                         bpf_prog_put(prog);
7314                         return -EINVAL;
7315                 }
7316         }
7317
7318         err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
7319         if (err < 0 && prog)
7320                 bpf_prog_put(prog);
7321
7322         return err;
7323 }
7324
7325 /**
7326  *      dev_new_index   -       allocate an ifindex
7327  *      @net: the applicable net namespace
7328  *
7329  *      Returns a suitable unique value for a new device interface
7330  *      number.  The caller must hold the rtnl semaphore or the
7331  *      dev_base_lock to be sure it remains unique.
7332  */
7333 static int dev_new_index(struct net *net)
7334 {
7335         int ifindex = net->ifindex;
7336
7337         for (;;) {
7338                 if (++ifindex <= 0)
7339                         ifindex = 1;
7340                 if (!__dev_get_by_index(net, ifindex))
7341                         return net->ifindex = ifindex;
7342         }
7343 }
7344
7345 /* Delayed registration/unregisteration */
7346 static LIST_HEAD(net_todo_list);
7347 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
7348
7349 static void net_set_todo(struct net_device *dev)
7350 {
7351         list_add_tail(&dev->todo_list, &net_todo_list);
7352         dev_net(dev)->dev_unreg_count++;
7353 }
7354
7355 static void rollback_registered_many(struct list_head *head)
7356 {
7357         struct net_device *dev, *tmp;
7358         LIST_HEAD(close_head);
7359
7360         BUG_ON(dev_boot_phase);
7361         ASSERT_RTNL();
7362
7363         list_for_each_entry_safe(dev, tmp, head, unreg_list) {
7364                 /* Some devices call without registering
7365                  * for initialization unwind. Remove those
7366                  * devices and proceed with the remaining.
7367                  */
7368                 if (dev->reg_state == NETREG_UNINITIALIZED) {
7369                         pr_debug("unregister_netdevice: device %s/%p never was registered\n",
7370                                  dev->name, dev);
7371
7372                         WARN_ON(1);
7373                         list_del(&dev->unreg_list);
7374                         continue;
7375                 }
7376                 dev->dismantle = true;
7377                 BUG_ON(dev->reg_state != NETREG_REGISTERED);
7378         }
7379
7380         /* If device is running, close it first. */
7381         list_for_each_entry(dev, head, unreg_list)
7382                 list_add_tail(&dev->close_list, &close_head);
7383         dev_close_many(&close_head, true);
7384
7385         list_for_each_entry(dev, head, unreg_list) {
7386                 /* And unlink it from device chain. */
7387                 unlist_netdevice(dev);
7388
7389                 dev->reg_state = NETREG_UNREGISTERING;
7390         }
7391         flush_all_backlogs();
7392
7393         synchronize_net();
7394
7395         list_for_each_entry(dev, head, unreg_list) {
7396                 struct sk_buff *skb = NULL;
7397
7398                 /* Shutdown queueing discipline. */
7399                 dev_shutdown(dev);
7400
7401                 dev_xdp_uninstall(dev);
7402
7403                 /* Notify protocols, that we are about to destroy
7404                  * this device. They should clean all the things.
7405                  */
7406                 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7407
7408                 if (!dev->rtnl_link_ops ||
7409                     dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7410                         skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
7411                                                      GFP_KERNEL, NULL, 0);
7412
7413                 /*
7414                  *      Flush the unicast and multicast chains
7415                  */
7416                 dev_uc_flush(dev);
7417                 dev_mc_flush(dev);
7418
7419                 if (dev->netdev_ops->ndo_uninit)
7420                         dev->netdev_ops->ndo_uninit(dev);
7421
7422                 if (skb)
7423                         rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
7424
7425                 /* Notifier chain MUST detach us all upper devices. */
7426                 WARN_ON(netdev_has_any_upper_dev(dev));
7427                 WARN_ON(netdev_has_any_lower_dev(dev));
7428
7429                 /* Remove entries from kobject tree */
7430                 netdev_unregister_kobject(dev);
7431 #ifdef CONFIG_XPS
7432                 /* Remove XPS queueing entries */
7433                 netif_reset_xps_queues_gt(dev, 0);
7434 #endif
7435         }
7436
7437         synchronize_net();
7438
7439         list_for_each_entry(dev, head, unreg_list)
7440                 dev_put(dev);
7441 }
7442
7443 static void rollback_registered(struct net_device *dev)
7444 {
7445         LIST_HEAD(single);
7446
7447         list_add(&dev->unreg_list, &single);
7448         rollback_registered_many(&single);
7449         list_del(&single);
7450 }
7451
7452 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
7453         struct net_device *upper, netdev_features_t features)
7454 {
7455         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7456         netdev_features_t feature;
7457         int feature_bit;
7458
7459         for_each_netdev_feature(&upper_disables, feature_bit) {
7460                 feature = __NETIF_F_BIT(feature_bit);
7461                 if (!(upper->wanted_features & feature)
7462                     && (features & feature)) {
7463                         netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
7464                                    &feature, upper->name);
7465                         features &= ~feature;
7466                 }
7467         }
7468
7469         return features;
7470 }
7471
7472 static void netdev_sync_lower_features(struct net_device *upper,
7473         struct net_device *lower, netdev_features_t features)
7474 {
7475         netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
7476         netdev_features_t feature;
7477         int feature_bit;
7478
7479         for_each_netdev_feature(&upper_disables, feature_bit) {
7480                 feature = __NETIF_F_BIT(feature_bit);
7481                 if (!(features & feature) && (lower->features & feature)) {
7482                         netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
7483                                    &feature, lower->name);
7484                         lower->wanted_features &= ~feature;
7485                         netdev_update_features(lower);
7486
7487                         if (unlikely(lower->features & feature))
7488                                 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
7489                                             &feature, lower->name);
7490                 }
7491         }
7492 }
7493
7494 static netdev_features_t netdev_fix_features(struct net_device *dev,
7495         netdev_features_t features)
7496 {
7497         /* Fix illegal checksum combinations */
7498         if ((features & NETIF_F_HW_CSUM) &&
7499             (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
7500                 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
7501                 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
7502         }
7503
7504         /* TSO requires that SG is present as well. */
7505         if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
7506                 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
7507                 features &= ~NETIF_F_ALL_TSO;
7508         }
7509
7510         if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
7511                                         !(features & NETIF_F_IP_CSUM)) {
7512                 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
7513                 features &= ~NETIF_F_TSO;
7514                 features &= ~NETIF_F_TSO_ECN;
7515         }
7516
7517         if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
7518                                          !(features & NETIF_F_IPV6_CSUM)) {
7519                 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
7520                 features &= ~NETIF_F_TSO6;
7521         }
7522
7523         /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
7524         if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
7525                 features &= ~NETIF_F_TSO_MANGLEID;
7526
7527         /* TSO ECN requires that TSO is present as well. */
7528         if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
7529                 features &= ~NETIF_F_TSO_ECN;
7530
7531         /* Software GSO depends on SG. */
7532         if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
7533                 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
7534                 features &= ~NETIF_F_GSO;
7535         }
7536
7537         /* GSO partial features require GSO partial be set */
7538         if ((features & dev->gso_partial_features) &&
7539             !(features & NETIF_F_GSO_PARTIAL)) {
7540                 netdev_dbg(dev,
7541                            "Dropping partially supported GSO features since no GSO partial.\n");
7542                 features &= ~dev->gso_partial_features;
7543         }
7544
7545         if (!(features & NETIF_F_RXCSUM)) {
7546                 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
7547                  * successfully merged by hardware must also have the
7548                  * checksum verified by hardware.  If the user does not
7549                  * want to enable RXCSUM, logically, we should disable GRO_HW.
7550                  */
7551                 if (features & NETIF_F_GRO_HW) {
7552                         netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
7553                         features &= ~NETIF_F_GRO_HW;
7554                 }
7555         }
7556
7557         return features;
7558 }
7559
7560 int __netdev_update_features(struct net_device *dev)
7561 {
7562         struct net_device *upper, *lower;
7563         netdev_features_t features;
7564         struct list_head *iter;
7565         int err = -1;
7566
7567         ASSERT_RTNL();
7568
7569         features = netdev_get_wanted_features(dev);
7570
7571         if (dev->netdev_ops->ndo_fix_features)
7572                 features = dev->netdev_ops->ndo_fix_features(dev, features);
7573
7574         /* driver might be less strict about feature dependencies */
7575         features = netdev_fix_features(dev, features);
7576
7577         /* some features can't be enabled if they're off an an upper device */
7578         netdev_for_each_upper_dev_rcu(dev, upper, iter)
7579                 features = netdev_sync_upper_features(dev, upper, features);
7580
7581         if (dev->features == features)
7582                 goto sync_lower;
7583
7584         netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
7585                 &dev->features, &features);
7586
7587         if (dev->netdev_ops->ndo_set_features)
7588                 err = dev->netdev_ops->ndo_set_features(dev, features);
7589         else
7590                 err = 0;
7591
7592         if (unlikely(err < 0)) {
7593                 netdev_err(dev,
7594                         "set_features() failed (%d); wanted %pNF, left %pNF\n",
7595                         err, &features, &dev->features);
7596                 /* return non-0 since some features might have changed and
7597                  * it's better to fire a spurious notification than miss it
7598                  */
7599                 return -1;
7600         }
7601
7602 sync_lower:
7603         /* some features must be disabled on lower devices when disabled
7604          * on an upper device (think: bonding master or bridge)
7605          */
7606         netdev_for_each_lower_dev(dev, lower, iter)
7607                 netdev_sync_lower_features(dev, lower, features);
7608
7609         if (!err) {
7610                 netdev_features_t diff = features ^ dev->features;
7611
7612                 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
7613                         /* udp_tunnel_{get,drop}_rx_info both need
7614                          * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
7615                          * device, or they won't do anything.
7616                          * Thus we need to update dev->features
7617                          * *before* calling udp_tunnel_get_rx_info,
7618                          * but *after* calling udp_tunnel_drop_rx_info.
7619                          */
7620                         if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
7621                                 dev->features = features;
7622                                 udp_tunnel_get_rx_info(dev);
7623                         } else {
7624                                 udp_tunnel_drop_rx_info(dev);
7625                         }
7626                 }
7627
7628                 dev->features = features;
7629         }
7630
7631         return err < 0 ? 0 : 1;
7632 }
7633
7634 /**
7635  *      netdev_update_features - recalculate device features
7636  *      @dev: the device to check
7637  *
7638  *      Recalculate dev->features set and send notifications if it
7639  *      has changed. Should be called after driver or hardware dependent
7640  *      conditions might have changed that influence the features.
7641  */
7642 void netdev_update_features(struct net_device *dev)
7643 {
7644         if (__netdev_update_features(dev))
7645                 netdev_features_change(dev);
7646 }
7647 EXPORT_SYMBOL(netdev_update_features);
7648
7649 /**
7650  *      netdev_change_features - recalculate device features
7651  *      @dev: the device to check
7652  *
7653  *      Recalculate dev->features set and send notifications even
7654  *      if they have not changed. Should be called instead of
7655  *      netdev_update_features() if also dev->vlan_features might
7656  *      have changed to allow the changes to be propagated to stacked
7657  *      VLAN devices.
7658  */
7659 void netdev_change_features(struct net_device *dev)
7660 {
7661         __netdev_update_features(dev);
7662         netdev_features_change(dev);
7663 }
7664 EXPORT_SYMBOL(netdev_change_features);
7665
7666 /**
7667  *      netif_stacked_transfer_operstate -      transfer operstate
7668  *      @rootdev: the root or lower level device to transfer state from
7669  *      @dev: the device to transfer operstate to
7670  *
7671  *      Transfer operational state from root to device. This is normally
7672  *      called when a stacking relationship exists between the root
7673  *      device and the device(a leaf device).
7674  */
7675 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
7676                                         struct net_device *dev)
7677 {
7678         if (rootdev->operstate == IF_OPER_DORMANT)
7679                 netif_dormant_on(dev);
7680         else
7681                 netif_dormant_off(dev);
7682
7683         if (netif_carrier_ok(rootdev))
7684                 netif_carrier_on(dev);
7685         else
7686                 netif_carrier_off(dev);
7687 }
7688 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
7689
7690 static int netif_alloc_rx_queues(struct net_device *dev)
7691 {
7692         unsigned int i, count = dev->num_rx_queues;
7693         struct netdev_rx_queue *rx;
7694         size_t sz = count * sizeof(*rx);
7695         int err = 0;
7696
7697         BUG_ON(count < 1);
7698
7699         rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7700         if (!rx)
7701                 return -ENOMEM;
7702
7703         dev->_rx = rx;
7704
7705         for (i = 0; i < count; i++) {
7706                 rx[i].dev = dev;
7707
7708                 /* XDP RX-queue setup */
7709                 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
7710                 if (err < 0)
7711                         goto err_rxq_info;
7712         }
7713         return 0;
7714
7715 err_rxq_info:
7716         /* Rollback successful reg's and free other resources */
7717         while (i--)
7718                 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
7719         kvfree(dev->_rx);
7720         dev->_rx = NULL;
7721         return err;
7722 }
7723
7724 static void netif_free_rx_queues(struct net_device *dev)
7725 {
7726         unsigned int i, count = dev->num_rx_queues;
7727
7728         /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
7729         if (!dev->_rx)
7730                 return;
7731
7732         for (i = 0; i < count; i++)
7733                 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
7734
7735         kvfree(dev->_rx);
7736 }
7737
7738 static void netdev_init_one_queue(struct net_device *dev,
7739                                   struct netdev_queue *queue, void *_unused)
7740 {
7741         /* Initialize queue lock */
7742         spin_lock_init(&queue->_xmit_lock);
7743         netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
7744         queue->xmit_lock_owner = -1;
7745         netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
7746         queue->dev = dev;
7747 #ifdef CONFIG_BQL
7748         dql_init(&queue->dql, HZ);
7749 #endif
7750 }
7751
7752 static void netif_free_tx_queues(struct net_device *dev)
7753 {
7754         kvfree(dev->_tx);
7755 }
7756
7757 static int netif_alloc_netdev_queues(struct net_device *dev)
7758 {
7759         unsigned int count = dev->num_tx_queues;
7760         struct netdev_queue *tx;
7761         size_t sz = count * sizeof(*tx);
7762
7763         if (count < 1 || count > 0xffff)
7764                 return -EINVAL;
7765
7766         tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
7767         if (!tx)
7768                 return -ENOMEM;
7769
7770         dev->_tx = tx;
7771
7772         netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
7773         spin_lock_init(&dev->tx_global_lock);
7774
7775         return 0;
7776 }
7777
7778 void netif_tx_stop_all_queues(struct net_device *dev)
7779 {
7780         unsigned int i;
7781
7782         for (i = 0; i < dev->num_tx_queues; i++) {
7783                 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
7784
7785                 netif_tx_stop_queue(txq);
7786         }
7787 }
7788 EXPORT_SYMBOL(netif_tx_stop_all_queues);
7789
7790 /**
7791  *      register_netdevice      - register a network device
7792  *      @dev: device to register
7793  *
7794  *      Take a completed network device structure and add it to the kernel
7795  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7796  *      chain. 0 is returned on success. A negative errno code is returned
7797  *      on a failure to set up the device, or if the name is a duplicate.
7798  *
7799  *      Callers must hold the rtnl semaphore. You may want
7800  *      register_netdev() instead of this.
7801  *
7802  *      BUGS:
7803  *      The locking appears insufficient to guarantee two parallel registers
7804  *      will not get the same name.
7805  */
7806
7807 int register_netdevice(struct net_device *dev)
7808 {
7809         int ret;
7810         struct net *net = dev_net(dev);
7811
7812         BUG_ON(dev_boot_phase);
7813         ASSERT_RTNL();
7814
7815         might_sleep();
7816
7817         /* When net_device's are persistent, this will be fatal. */
7818         BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
7819         BUG_ON(!net);
7820
7821         spin_lock_init(&dev->addr_list_lock);
7822         netdev_set_addr_lockdep_class(dev);
7823
7824         ret = dev_get_valid_name(net, dev, dev->name);
7825         if (ret < 0)
7826                 goto out;
7827
7828         /* Init, if this function is available */
7829         if (dev->netdev_ops->ndo_init) {
7830                 ret = dev->netdev_ops->ndo_init(dev);
7831                 if (ret) {
7832                         if (ret > 0)
7833                                 ret = -EIO;
7834                         goto out;
7835                 }
7836         }
7837
7838         if (((dev->hw_features | dev->features) &
7839              NETIF_F_HW_VLAN_CTAG_FILTER) &&
7840             (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
7841              !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
7842                 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
7843                 ret = -EINVAL;
7844                 goto err_uninit;
7845         }
7846
7847         ret = -EBUSY;
7848         if (!dev->ifindex)
7849                 dev->ifindex = dev_new_index(net);
7850         else if (__dev_get_by_index(net, dev->ifindex))
7851                 goto err_uninit;
7852
7853         /* Transfer changeable features to wanted_features and enable
7854          * software offloads (GSO and GRO).
7855          */
7856         dev->hw_features |= NETIF_F_SOFT_FEATURES;
7857         dev->features |= NETIF_F_SOFT_FEATURES;
7858
7859         if (dev->netdev_ops->ndo_udp_tunnel_add) {
7860                 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7861                 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
7862         }
7863
7864         dev->wanted_features = dev->features & dev->hw_features;
7865
7866         if (!(dev->flags & IFF_LOOPBACK))
7867                 dev->hw_features |= NETIF_F_NOCACHE_COPY;
7868
7869         /* If IPv4 TCP segmentation offload is supported we should also
7870          * allow the device to enable segmenting the frame with the option
7871          * of ignoring a static IP ID value.  This doesn't enable the
7872          * feature itself but allows the user to enable it later.
7873          */
7874         if (dev->hw_features & NETIF_F_TSO)
7875                 dev->hw_features |= NETIF_F_TSO_MANGLEID;
7876         if (dev->vlan_features & NETIF_F_TSO)
7877                 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
7878         if (dev->mpls_features & NETIF_F_TSO)
7879                 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
7880         if (dev->hw_enc_features & NETIF_F_TSO)
7881                 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
7882
7883         /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
7884          */
7885         dev->vlan_features |= NETIF_F_HIGHDMA;
7886
7887         /* Make NETIF_F_SG inheritable to tunnel devices.
7888          */
7889         dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
7890
7891         /* Make NETIF_F_SG inheritable to MPLS.
7892          */
7893         dev->mpls_features |= NETIF_F_SG;
7894
7895         ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
7896         ret = notifier_to_errno(ret);
7897         if (ret)
7898                 goto err_uninit;
7899
7900         ret = netdev_register_kobject(dev);
7901         if (ret)
7902                 goto err_uninit;
7903         dev->reg_state = NETREG_REGISTERED;
7904
7905         __netdev_update_features(dev);
7906
7907         /*
7908          *      Default initial state at registry is that the
7909          *      device is present.
7910          */
7911
7912         set_bit(__LINK_STATE_PRESENT, &dev->state);
7913
7914         linkwatch_init_dev(dev);
7915
7916         dev_init_scheduler(dev);
7917         dev_hold(dev);
7918         list_netdevice(dev);
7919         add_device_randomness(dev->dev_addr, dev->addr_len);
7920
7921         /* If the device has permanent device address, driver should
7922          * set dev_addr and also addr_assign_type should be set to
7923          * NET_ADDR_PERM (default value).
7924          */
7925         if (dev->addr_assign_type == NET_ADDR_PERM)
7926                 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7927
7928         /* Notify protocols, that a new device appeared. */
7929         ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7930         ret = notifier_to_errno(ret);
7931         if (ret) {
7932                 rollback_registered(dev);
7933                 dev->reg_state = NETREG_UNREGISTERED;
7934         }
7935         /*
7936          *      Prevent userspace races by waiting until the network
7937          *      device is fully setup before sending notifications.
7938          */
7939         if (!dev->rtnl_link_ops ||
7940             dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7941                 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7942
7943 out:
7944         return ret;
7945
7946 err_uninit:
7947         if (dev->netdev_ops->ndo_uninit)
7948                 dev->netdev_ops->ndo_uninit(dev);
7949         if (dev->priv_destructor)
7950                 dev->priv_destructor(dev);
7951         goto out;
7952 }
7953 EXPORT_SYMBOL(register_netdevice);
7954
7955 /**
7956  *      init_dummy_netdev       - init a dummy network device for NAPI
7957  *      @dev: device to init
7958  *
7959  *      This takes a network device structure and initialize the minimum
7960  *      amount of fields so it can be used to schedule NAPI polls without
7961  *      registering a full blown interface. This is to be used by drivers
7962  *      that need to tie several hardware interfaces to a single NAPI
7963  *      poll scheduler due to HW limitations.
7964  */
7965 int init_dummy_netdev(struct net_device *dev)
7966 {
7967         /* Clear everything. Note we don't initialize spinlocks
7968          * are they aren't supposed to be taken by any of the
7969          * NAPI code and this dummy netdev is supposed to be
7970          * only ever used for NAPI polls
7971          */
7972         memset(dev, 0, sizeof(struct net_device));
7973
7974         /* make sure we BUG if trying to hit standard
7975          * register/unregister code path
7976          */
7977         dev->reg_state = NETREG_DUMMY;
7978
7979         /* NAPI wants this */
7980         INIT_LIST_HEAD(&dev->napi_list);
7981
7982         /* a dummy interface is started by default */
7983         set_bit(__LINK_STATE_PRESENT, &dev->state);
7984         set_bit(__LINK_STATE_START, &dev->state);
7985
7986         /* Note : We dont allocate pcpu_refcnt for dummy devices,
7987          * because users of this 'device' dont need to change
7988          * its refcount.
7989          */
7990
7991         return 0;
7992 }
7993 EXPORT_SYMBOL_GPL(init_dummy_netdev);
7994
7995
7996 /**
7997  *      register_netdev - register a network device
7998  *      @dev: device to register
7999  *
8000  *      Take a completed network device structure and add it to the kernel
8001  *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8002  *      chain. 0 is returned on success. A negative errno code is returned
8003  *      on a failure to set up the device, or if the name is a duplicate.
8004  *
8005  *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8006  *      and expands the device name if you passed a format string to
8007  *      alloc_netdev.
8008  */
8009 int register_netdev(struct net_device *dev)
8010 {
8011         int err;
8012
8013         rtnl_lock();
8014         err = register_netdevice(dev);
8015         rtnl_unlock();
8016         return err;
8017 }
8018 EXPORT_SYMBOL(register_netdev);
8019
8020 int netdev_refcnt_read(const struct net_device *dev)
8021 {
8022         int i, refcnt = 0;
8023
8024         for_each_possible_cpu(i)
8025                 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8026         return refcnt;
8027 }
8028 EXPORT_SYMBOL(netdev_refcnt_read);
8029
8030 /**
8031  * netdev_wait_allrefs - wait until all references are gone.
8032  * @dev: target net_device
8033  *
8034  * This is called when unregistering network devices.
8035  *
8036  * Any protocol or device that holds a reference should register
8037  * for netdevice notification, and cleanup and put back the
8038  * reference if they receive an UNREGISTER event.
8039  * We can get stuck here if buggy protocols don't correctly
8040  * call dev_put.
8041  */
8042 static void netdev_wait_allrefs(struct net_device *dev)
8043 {
8044         unsigned long rebroadcast_time, warning_time;
8045         int refcnt;
8046
8047         linkwatch_forget_dev(dev);
8048
8049         rebroadcast_time = warning_time = jiffies;
8050         refcnt = netdev_refcnt_read(dev);
8051
8052         while (refcnt != 0) {
8053                 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8054                         rtnl_lock();
8055
8056                         /* Rebroadcast unregister notification */
8057                         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8058
8059                         __rtnl_unlock();
8060                         rcu_barrier();
8061                         rtnl_lock();
8062
8063                         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8064                         if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8065                                      &dev->state)) {
8066                                 /* We must not have linkwatch events
8067                                  * pending on unregister. If this
8068                                  * happens, we simply run the queue
8069                                  * unscheduled, resulting in a noop
8070                                  * for this device.
8071                                  */
8072                                 linkwatch_run_queue();
8073                         }
8074
8075                         __rtnl_unlock();
8076
8077                         rebroadcast_time = jiffies;
8078                 }
8079
8080                 msleep(250);
8081
8082                 refcnt = netdev_refcnt_read(dev);
8083
8084                 if (time_after(jiffies, warning_time + 10 * HZ)) {
8085                         pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8086                                  dev->name, refcnt);
8087                         warning_time = jiffies;
8088                 }
8089         }
8090 }
8091
8092 /* The sequence is:
8093  *
8094  *      rtnl_lock();
8095  *      ...
8096  *      register_netdevice(x1);
8097  *      register_netdevice(x2);
8098  *      ...
8099  *      unregister_netdevice(y1);
8100  *      unregister_netdevice(y2);
8101  *      ...
8102  *      rtnl_unlock();
8103  *      free_netdev(y1);
8104  *      free_netdev(y2);
8105  *
8106  * We are invoked by rtnl_unlock().
8107  * This allows us to deal with problems:
8108  * 1) We can delete sysfs objects which invoke hotplug
8109  *    without deadlocking with linkwatch via keventd.
8110  * 2) Since we run with the RTNL semaphore not held, we can sleep
8111  *    safely in order to wait for the netdev refcnt to drop to zero.
8112  *
8113  * We must not return until all unregister events added during
8114  * the interval the lock was held have been completed.
8115  */
8116 void netdev_run_todo(void)
8117 {
8118         struct list_head list;
8119
8120         /* Snapshot list, allow later requests */
8121         list_replace_init(&net_todo_list, &list);
8122
8123         __rtnl_unlock();
8124
8125
8126         /* Wait for rcu callbacks to finish before next phase */
8127         if (!list_empty(&list))
8128                 rcu_barrier();
8129
8130         while (!list_empty(&list)) {
8131                 struct net_device *dev
8132                         = list_first_entry(&list, struct net_device, todo_list);
8133                 list_del(&dev->todo_list);
8134
8135                 rtnl_lock();
8136                 call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8137                 __rtnl_unlock();
8138
8139                 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8140                         pr_err("network todo '%s' but state %d\n",
8141                                dev->name, dev->reg_state);
8142                         dump_stack();
8143                         continue;
8144                 }
8145
8146                 dev->reg_state = NETREG_UNREGISTERED;
8147
8148                 netdev_wait_allrefs(dev);
8149
8150                 /* paranoia */
8151                 BUG_ON(netdev_refcnt_read(dev));
8152                 BUG_ON(!list_empty(&dev->ptype_all));
8153                 BUG_ON(!list_empty(&dev->ptype_specific));
8154                 WARN_ON(rcu_access_pointer(dev->ip_ptr));
8155                 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8156                 WARN_ON(dev->dn_ptr);
8157
8158                 if (dev->priv_destructor)
8159                         dev->priv_destructor(dev);
8160                 if (dev->needs_free_netdev)
8161                         free_netdev(dev);
8162
8163                 /* Report a network device has been unregistered */
8164                 rtnl_lock();
8165                 dev_net(dev)->dev_unreg_count--;
8166                 __rtnl_unlock();
8167                 wake_up(&netdev_unregistering_wq);
8168
8169                 /* Free network device */
8170                 kobject_put(&dev->dev.kobj);
8171         }
8172 }
8173
8174 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
8175  * all the same fields in the same order as net_device_stats, with only
8176  * the type differing, but rtnl_link_stats64 may have additional fields
8177  * at the end for newer counters.
8178  */
8179 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
8180                              const struct net_device_stats *netdev_stats)
8181 {
8182 #if BITS_PER_LONG == 64
8183         BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
8184         memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
8185         /* zero out counters that only exist in rtnl_link_stats64 */
8186         memset((char *)stats64 + sizeof(*netdev_stats), 0,
8187                sizeof(*stats64) - sizeof(*netdev_stats));
8188 #else
8189         size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
8190         const unsigned long *src = (const unsigned long *)netdev_stats;
8191         u64 *dst = (u64 *)stats64;
8192
8193         BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
8194         for (i = 0; i < n; i++)
8195                 dst[i] = src[i];
8196         /* zero out counters that only exist in rtnl_link_stats64 */
8197         memset((char *)stats64 + n * sizeof(u64), 0,
8198                sizeof(*stats64) - n * sizeof(u64));
8199 #endif
8200 }
8201 EXPORT_SYMBOL(netdev_stats_to_stats64);
8202
8203 /**
8204  *      dev_get_stats   - get network device statistics
8205  *      @dev: device to get statistics from
8206  *      @storage: place to store stats
8207  *
8208  *      Get network statistics from device. Return @storage.
8209  *      The device driver may provide its own method by setting
8210  *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
8211  *      otherwise the internal statistics structure is used.
8212  */
8213 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
8214                                         struct rtnl_link_stats64 *storage)
8215 {
8216         const struct net_device_ops *ops = dev->netdev_ops;
8217
8218         if (ops->ndo_get_stats64) {
8219                 memset(storage, 0, sizeof(*storage));
8220                 ops->ndo_get_stats64(dev, storage);
8221         } else if (ops->ndo_get_stats) {
8222                 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
8223         } else {
8224                 netdev_stats_to_stats64(storage, &dev->stats);
8225         }
8226         storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
8227         storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
8228         storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
8229         return storage;
8230 }
8231 EXPORT_SYMBOL(dev_get_stats);
8232
8233 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
8234 {
8235         struct netdev_queue *queue = dev_ingress_queue(dev);
8236
8237 #ifdef CONFIG_NET_CLS_ACT
8238         if (queue)
8239                 return queue;
8240         queue = kzalloc(sizeof(*queue), GFP_KERNEL);
8241         if (!queue)
8242                 return NULL;
8243         netdev_init_one_queue(dev, queue, NULL);
8244         RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
8245         queue->qdisc_sleeping = &noop_qdisc;
8246         rcu_assign_pointer(dev->ingress_queue, queue);
8247 #endif
8248         return queue;
8249 }
8250
8251 static const struct ethtool_ops default_ethtool_ops;
8252
8253 void netdev_set_default_ethtool_ops(struct net_device *dev,
8254                                     const struct ethtool_ops *ops)
8255 {
8256         if (dev->ethtool_ops == &default_ethtool_ops)
8257                 dev->ethtool_ops = ops;
8258 }
8259 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
8260
8261 void netdev_freemem(struct net_device *dev)
8262 {
8263         char *addr = (char *)dev - dev->padded;
8264
8265         kvfree(addr);
8266 }
8267
8268 /**
8269  * alloc_netdev_mqs - allocate network device
8270  * @sizeof_priv: size of private data to allocate space for
8271  * @name: device name format string
8272  * @name_assign_type: origin of device name
8273  * @setup: callback to initialize device
8274  * @txqs: the number of TX subqueues to allocate
8275  * @rxqs: the number of RX subqueues to allocate
8276  *
8277  * Allocates a struct net_device with private data area for driver use
8278  * and performs basic initialization.  Also allocates subqueue structs
8279  * for each queue on the device.
8280  */
8281 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
8282                 unsigned char name_assign_type,
8283                 void (*setup)(struct net_device *),
8284                 unsigned int txqs, unsigned int rxqs)
8285 {
8286         struct net_device *dev;
8287         unsigned int alloc_size;
8288         struct net_device *p;
8289
8290         BUG_ON(strlen(name) >= sizeof(dev->name));
8291
8292         if (txqs < 1) {
8293                 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
8294                 return NULL;
8295         }
8296
8297         if (rxqs < 1) {
8298                 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
8299                 return NULL;
8300         }
8301
8302         alloc_size = sizeof(struct net_device);
8303         if (sizeof_priv) {
8304                 /* ensure 32-byte alignment of private area */
8305                 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
8306                 alloc_size += sizeof_priv;
8307         }
8308         /* ensure 32-byte alignment of whole construct */
8309         alloc_size += NETDEV_ALIGN - 1;
8310
8311         p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8312         if (!p)
8313                 return NULL;
8314
8315         dev = PTR_ALIGN(p, NETDEV_ALIGN);
8316         dev->padded = (char *)dev - (char *)p;
8317
8318         dev->pcpu_refcnt = alloc_percpu(int);
8319         if (!dev->pcpu_refcnt)
8320                 goto free_dev;
8321
8322         if (dev_addr_init(dev))
8323                 goto free_pcpu;
8324
8325         dev_mc_init(dev);
8326         dev_uc_init(dev);
8327
8328         dev_net_set(dev, &init_net);
8329
8330         dev->gso_max_size = GSO_MAX_SIZE;
8331         dev->gso_max_segs = GSO_MAX_SEGS;
8332
8333         INIT_LIST_HEAD(&dev->napi_list);
8334         INIT_LIST_HEAD(&dev->unreg_list);
8335         INIT_LIST_HEAD(&dev->close_list);
8336         INIT_LIST_HEAD(&dev->link_watch_list);
8337         INIT_LIST_HEAD(&dev->adj_list.upper);
8338         INIT_LIST_HEAD(&dev->adj_list.lower);
8339         INIT_LIST_HEAD(&dev->ptype_all);
8340         INIT_LIST_HEAD(&dev->ptype_specific);
8341 #ifdef CONFIG_NET_SCHED
8342         hash_init(dev->qdisc_hash);
8343 #endif
8344         dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
8345         setup(dev);
8346
8347         if (!dev->tx_queue_len) {
8348                 dev->priv_flags |= IFF_NO_QUEUE;
8349                 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
8350         }
8351
8352         dev->num_tx_queues = txqs;
8353         dev->real_num_tx_queues = txqs;
8354         if (netif_alloc_netdev_queues(dev))
8355                 goto free_all;
8356
8357         dev->num_rx_queues = rxqs;
8358         dev->real_num_rx_queues = rxqs;
8359         if (netif_alloc_rx_queues(dev))
8360                 goto free_all;
8361
8362         strcpy(dev->name, name);
8363         dev->name_assign_type = name_assign_type;
8364         dev->group = INIT_NETDEV_GROUP;
8365         if (!dev->ethtool_ops)
8366                 dev->ethtool_ops = &default_ethtool_ops;
8367
8368         nf_hook_ingress_init(dev);
8369
8370         return dev;
8371
8372 free_all:
8373         free_netdev(dev);
8374         return NULL;
8375
8376 free_pcpu:
8377         free_percpu(dev->pcpu_refcnt);
8378 free_dev:
8379         netdev_freemem(dev);
8380         return NULL;
8381 }
8382 EXPORT_SYMBOL(alloc_netdev_mqs);
8383
8384 /**
8385  * free_netdev - free network device
8386  * @dev: device
8387  *
8388  * This function does the last stage of destroying an allocated device
8389  * interface. The reference to the device object is released. If this
8390  * is the last reference then it will be freed.Must be called in process
8391  * context.
8392  */
8393 void free_netdev(struct net_device *dev)
8394 {
8395         struct napi_struct *p, *n;
8396
8397         might_sleep();
8398         netif_free_tx_queues(dev);
8399         netif_free_rx_queues(dev);
8400
8401         kfree(rcu_dereference_protected(dev->ingress_queue, 1));
8402
8403         /* Flush device addresses */
8404         dev_addr_flush(dev);
8405
8406         list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
8407                 netif_napi_del(p);
8408
8409         free_percpu(dev->pcpu_refcnt);
8410         dev->pcpu_refcnt = NULL;
8411
8412         /*  Compatibility with error handling in drivers */
8413         if (dev->reg_state == NETREG_UNINITIALIZED) {
8414                 netdev_freemem(dev);
8415                 return;
8416         }
8417
8418         BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
8419         dev->reg_state = NETREG_RELEASED;
8420
8421         /* will free via device release */
8422         put_device(&dev->dev);
8423 }
8424 EXPORT_SYMBOL(free_netdev);
8425
8426 /**
8427  *      synchronize_net -  Synchronize with packet receive processing
8428  *
8429  *      Wait for packets currently being received to be done.
8430  *      Does not block later packets from starting.
8431  */
8432 void synchronize_net(void)
8433 {
8434         might_sleep();
8435         if (rtnl_is_locked())
8436                 synchronize_rcu_expedited();
8437         else
8438                 synchronize_rcu();
8439 }
8440 EXPORT_SYMBOL(synchronize_net);
8441
8442 /**
8443  *      unregister_netdevice_queue - remove device from the kernel
8444  *      @dev: device
8445  *      @head: list
8446  *
8447  *      This function shuts down a device interface and removes it
8448  *      from the kernel tables.
8449  *      If head not NULL, device is queued to be unregistered later.
8450  *
8451  *      Callers must hold the rtnl semaphore.  You may want
8452  *      unregister_netdev() instead of this.
8453  */
8454
8455 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
8456 {
8457         ASSERT_RTNL();
8458
8459         if (head) {
8460                 list_move_tail(&dev->unreg_list, head);
8461         } else {
8462                 rollback_registered(dev);
8463                 /* Finish processing unregister after unlock */
8464                 net_set_todo(dev);
8465         }
8466 }
8467 EXPORT_SYMBOL(unregister_netdevice_queue);
8468
8469 /**
8470  *      unregister_netdevice_many - unregister many devices
8471  *      @head: list of devices
8472  *
8473  *  Note: As most callers use a stack allocated list_head,
8474  *  we force a list_del() to make sure stack wont be corrupted later.
8475  */
8476 void unregister_netdevice_many(struct list_head *head)
8477 {
8478         struct net_device *dev;
8479
8480         if (!list_empty(head)) {
8481                 rollback_registered_many(head);
8482                 list_for_each_entry(dev, head, unreg_list)
8483                         net_set_todo(dev);
8484                 list_del(head);
8485         }
8486 }
8487 EXPORT_SYMBOL(unregister_netdevice_many);
8488
8489 /**
8490  *      unregister_netdev - remove device from the kernel
8491  *      @dev: device
8492  *
8493  *      This function shuts down a device interface and removes it
8494  *      from the kernel tables.
8495  *
8496  *      This is just a wrapper for unregister_netdevice that takes
8497  *      the rtnl semaphore.  In general you want to use this and not
8498  *      unregister_netdevice.
8499  */
8500 void unregister_netdev(struct net_device *dev)
8501 {
8502         rtnl_lock();
8503         unregister_netdevice(dev);
8504         rtnl_unlock();
8505 }
8506 EXPORT_SYMBOL(unregister_netdev);
8507
8508 /**
8509  *      dev_change_net_namespace - move device to different nethost namespace
8510  *      @dev: device
8511  *      @net: network namespace
8512  *      @pat: If not NULL name pattern to try if the current device name
8513  *            is already taken in the destination network namespace.
8514  *
8515  *      This function shuts down a device interface and moves it
8516  *      to a new network namespace. On success 0 is returned, on
8517  *      a failure a netagive errno code is returned.
8518  *
8519  *      Callers must hold the rtnl semaphore.
8520  */
8521
8522 int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
8523 {
8524         int err, new_nsid, new_ifindex;
8525
8526         ASSERT_RTNL();
8527
8528         /* Don't allow namespace local devices to be moved. */
8529         err = -EINVAL;
8530         if (dev->features & NETIF_F_NETNS_LOCAL)
8531                 goto out;
8532
8533         /* Ensure the device has been registrered */
8534         if (dev->reg_state != NETREG_REGISTERED)
8535                 goto out;
8536
8537         /* Get out if there is nothing todo */
8538         err = 0;
8539         if (net_eq(dev_net(dev), net))
8540                 goto out;
8541
8542         /* Pick the destination device name, and ensure
8543          * we can use it in the destination network namespace.
8544          */
8545         err = -EEXIST;
8546         if (__dev_get_by_name(net, dev->name)) {
8547                 /* We get here if we can't use the current device name */
8548                 if (!pat)
8549                         goto out;
8550                 if (dev_get_valid_name(net, dev, pat) < 0)
8551                         goto out;
8552         }
8553
8554         /*
8555          * And now a mini version of register_netdevice unregister_netdevice.
8556          */
8557
8558         /* If device is running close it first. */
8559         dev_close(dev);
8560
8561         /* And unlink it from device chain */
8562         err = -ENODEV;
8563         unlist_netdevice(dev);
8564
8565         synchronize_net();
8566
8567         /* Shutdown queueing discipline. */
8568         dev_shutdown(dev);
8569
8570         /* Notify protocols, that we are about to destroy
8571          * this device. They should clean all the things.
8572          *
8573          * Note that dev->reg_state stays at NETREG_REGISTERED.
8574          * This is wanted because this way 8021q and macvlan know
8575          * the device is just moving and can keep their slaves up.
8576          */
8577         call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8578         rcu_barrier();
8579         call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
8580
8581         new_nsid = peernet2id_alloc(dev_net(dev), net);
8582         /* If there is an ifindex conflict assign a new one */
8583         if (__dev_get_by_index(net, dev->ifindex))
8584                 new_ifindex = dev_new_index(net);
8585         else
8586                 new_ifindex = dev->ifindex;
8587
8588         rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
8589                             new_ifindex);
8590
8591         /*
8592          *      Flush the unicast and multicast chains
8593          */
8594         dev_uc_flush(dev);
8595         dev_mc_flush(dev);
8596
8597         /* Send a netdev-removed uevent to the old namespace */
8598         kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
8599         netdev_adjacent_del_links(dev);
8600
8601         /* Actually switch the network namespace */
8602         dev_net_set(dev, net);
8603         dev->ifindex = new_ifindex;
8604
8605         /* Send a netdev-add uevent to the new namespace */
8606         kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
8607         netdev_adjacent_add_links(dev);
8608
8609         /* Fixup kobjects */
8610         err = device_rename(&dev->dev, dev->name);
8611         WARN_ON(err);
8612
8613         /* Add the device back in the hashes */
8614         list_netdevice(dev);
8615
8616         /* Notify protocols, that a new device appeared. */
8617         call_netdevice_notifiers(NETDEV_REGISTER, dev);
8618
8619         /*
8620          *      Prevent userspace races by waiting until the network
8621          *      device is fully setup before sending notifications.
8622          */
8623         rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8624
8625         synchronize_net();
8626         err = 0;
8627 out:
8628         return err;
8629 }
8630 EXPORT_SYMBOL_GPL(dev_change_net_namespace);
8631
8632 static int dev_cpu_dead(unsigned int oldcpu)
8633 {
8634         struct sk_buff **list_skb;
8635         struct sk_buff *skb;
8636         unsigned int cpu;
8637         struct softnet_data *sd, *oldsd, *remsd = NULL;
8638
8639         local_irq_disable();
8640         cpu = smp_processor_id();
8641         sd = &per_cpu(softnet_data, cpu);
8642         oldsd = &per_cpu(softnet_data, oldcpu);
8643
8644         /* Find end of our completion_queue. */
8645         list_skb = &sd->completion_queue;
8646         while (*list_skb)
8647                 list_skb = &(*list_skb)->next;
8648         /* Append completion queue from offline CPU. */
8649         *list_skb = oldsd->completion_queue;
8650         oldsd->completion_queue = NULL;
8651
8652         /* Append output queue from offline CPU. */
8653         if (oldsd->output_queue) {
8654                 *sd->output_queue_tailp = oldsd->output_queue;
8655                 sd->output_queue_tailp = oldsd->output_queue_tailp;
8656                 oldsd->output_queue = NULL;
8657                 oldsd->output_queue_tailp = &oldsd->output_queue;
8658         }
8659         /* Append NAPI poll list from offline CPU, with one exception :
8660          * process_backlog() must be called by cpu owning percpu backlog.
8661          * We properly handle process_queue & input_pkt_queue later.
8662          */
8663         while (!list_empty(&oldsd->poll_list)) {
8664                 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
8665                                                             struct napi_struct,
8666                                                             poll_list);
8667
8668                 list_del_init(&napi->poll_list);
8669                 if (napi->poll == process_backlog)
8670                         napi->state = 0;
8671                 else
8672                         ____napi_schedule(sd, napi);
8673         }
8674
8675         raise_softirq_irqoff(NET_TX_SOFTIRQ);
8676         local_irq_enable();
8677
8678 #ifdef CONFIG_RPS
8679         remsd = oldsd->rps_ipi_list;
8680         oldsd->rps_ipi_list = NULL;
8681 #endif
8682         /* send out pending IPI's on offline CPU */
8683         net_rps_send_ipi(remsd);
8684
8685         /* Process offline CPU's input_pkt_queue */
8686         while ((skb = __skb_dequeue(&oldsd->process_queue))) {
8687                 netif_rx_ni(skb);
8688                 input_queue_head_incr(oldsd);
8689         }
8690         while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
8691                 netif_rx_ni(skb);
8692                 input_queue_head_incr(oldsd);
8693         }
8694
8695         return 0;
8696 }
8697
8698 /**
8699  *      netdev_increment_features - increment feature set by one
8700  *      @all: current feature set
8701  *      @one: new feature set
8702  *      @mask: mask feature set
8703  *
8704  *      Computes a new feature set after adding a device with feature set
8705  *      @one to the master device with current feature set @all.  Will not
8706  *      enable anything that is off in @mask. Returns the new feature set.
8707  */
8708 netdev_features_t netdev_increment_features(netdev_features_t all,
8709         netdev_features_t one, netdev_features_t mask)
8710 {
8711         if (mask & NETIF_F_HW_CSUM)
8712                 mask |= NETIF_F_CSUM_MASK;
8713         mask |= NETIF_F_VLAN_CHALLENGED;
8714
8715         all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
8716         all &= one | ~NETIF_F_ALL_FOR_ALL;
8717
8718         /* If one device supports hw checksumming, set for all. */
8719         if (all & NETIF_F_HW_CSUM)
8720                 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
8721
8722         return all;
8723 }
8724 EXPORT_SYMBOL(netdev_increment_features);
8725
8726 static struct hlist_head * __net_init netdev_create_hash(void)
8727 {
8728         int i;
8729         struct hlist_head *hash;
8730
8731         hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
8732         if (hash != NULL)
8733                 for (i = 0; i < NETDEV_HASHENTRIES; i++)
8734                         INIT_HLIST_HEAD(&hash[i]);
8735
8736         return hash;
8737 }
8738
8739 /* Initialize per network namespace state */
8740 static int __net_init netdev_init(struct net *net)
8741 {
8742         if (net != &init_net)
8743                 INIT_LIST_HEAD(&net->dev_base_head);
8744
8745         net->dev_name_head = netdev_create_hash();
8746         if (net->dev_name_head == NULL)
8747                 goto err_name;
8748
8749         net->dev_index_head = netdev_create_hash();
8750         if (net->dev_index_head == NULL)
8751                 goto err_idx;
8752
8753         return 0;
8754
8755 err_idx:
8756         kfree(net->dev_name_head);
8757 err_name:
8758         return -ENOMEM;
8759 }
8760
8761 /**
8762  *      netdev_drivername - network driver for the device
8763  *      @dev: network device
8764  *
8765  *      Determine network driver for device.
8766  */
8767 const char *netdev_drivername(const struct net_device *dev)
8768 {
8769         const struct device_driver *driver;
8770         const struct device *parent;
8771         const char *empty = "";
8772
8773         parent = dev->dev.parent;
8774         if (!parent)
8775                 return empty;
8776
8777         driver = parent->driver;
8778         if (driver && driver->name)
8779                 return driver->name;
8780         return empty;
8781 }
8782
8783 static void __netdev_printk(const char *level, const struct net_device *dev,
8784                             struct va_format *vaf)
8785 {
8786         if (dev && dev->dev.parent) {
8787                 dev_printk_emit(level[1] - '0',
8788                                 dev->dev.parent,
8789                                 "%s %s %s%s: %pV",
8790                                 dev_driver_string(dev->dev.parent),
8791                                 dev_name(dev->dev.parent),
8792                                 netdev_name(dev), netdev_reg_state(dev),
8793                                 vaf);
8794         } else if (dev) {
8795                 printk("%s%s%s: %pV",
8796                        level, netdev_name(dev), netdev_reg_state(dev), vaf);
8797         } else {
8798                 printk("%s(NULL net_device): %pV", level, vaf);
8799         }
8800 }
8801
8802 void netdev_printk(const char *level, const struct net_device *dev,
8803                    const char *format, ...)
8804 {
8805         struct va_format vaf;
8806         va_list args;
8807
8808         va_start(args, format);
8809
8810         vaf.fmt = format;
8811         vaf.va = &args;
8812
8813         __netdev_printk(level, dev, &vaf);
8814
8815         va_end(args);
8816 }
8817 EXPORT_SYMBOL(netdev_printk);
8818
8819 #define define_netdev_printk_level(func, level)                 \
8820 void func(const struct net_device *dev, const char *fmt, ...)   \
8821 {                                                               \
8822         struct va_format vaf;                                   \
8823         va_list args;                                           \
8824                                                                 \
8825         va_start(args, fmt);                                    \
8826                                                                 \
8827         vaf.fmt = fmt;                                          \
8828         vaf.va = &args;                                         \
8829                                                                 \
8830         __netdev_printk(level, dev, &vaf);                      \
8831                                                                 \
8832         va_end(args);                                           \
8833 }                                                               \
8834 EXPORT_SYMBOL(func);
8835
8836 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
8837 define_netdev_printk_level(netdev_alert, KERN_ALERT);
8838 define_netdev_printk_level(netdev_crit, KERN_CRIT);
8839 define_netdev_printk_level(netdev_err, KERN_ERR);
8840 define_netdev_printk_level(netdev_warn, KERN_WARNING);
8841 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
8842 define_netdev_printk_level(netdev_info, KERN_INFO);
8843
8844 static void __net_exit netdev_exit(struct net *net)
8845 {
8846         kfree(net->dev_name_head);
8847         kfree(net->dev_index_head);
8848         if (net != &init_net)
8849                 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
8850 }
8851
8852 static struct pernet_operations __net_initdata netdev_net_ops = {
8853         .init = netdev_init,
8854         .exit = netdev_exit,
8855 };
8856
8857 static void __net_exit default_device_exit(struct net *net)
8858 {
8859         struct net_device *dev, *aux;
8860         /*
8861          * Push all migratable network devices back to the
8862          * initial network namespace
8863          */
8864         rtnl_lock();
8865         for_each_netdev_safe(net, dev, aux) {
8866                 int err;
8867                 char fb_name[IFNAMSIZ];
8868
8869                 /* Ignore unmoveable devices (i.e. loopback) */
8870                 if (dev->features & NETIF_F_NETNS_LOCAL)
8871                         continue;
8872
8873                 /* Leave virtual devices for the generic cleanup */
8874                 if (dev->rtnl_link_ops)
8875                         continue;
8876
8877                 /* Push remaining network devices to init_net */
8878                 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
8879                 err = dev_change_net_namespace(dev, &init_net, fb_name);
8880                 if (err) {
8881                         pr_emerg("%s: failed to move %s to init_net: %d\n",
8882                                  __func__, dev->name, err);
8883                         BUG();
8884                 }
8885         }
8886         rtnl_unlock();
8887 }
8888
8889 static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
8890 {
8891         /* Return with the rtnl_lock held when there are no network
8892          * devices unregistering in any network namespace in net_list.
8893          */
8894         struct net *net;
8895         bool unregistering;
8896         DEFINE_WAIT_FUNC(wait, woken_wake_function);
8897
8898         add_wait_queue(&netdev_unregistering_wq, &wait);
8899         for (;;) {
8900                 unregistering = false;
8901                 rtnl_lock();
8902                 list_for_each_entry(net, net_list, exit_list) {
8903                         if (net->dev_unreg_count > 0) {
8904                                 unregistering = true;
8905                                 break;
8906                         }
8907                 }
8908                 if (!unregistering)
8909                         break;
8910                 __rtnl_unlock();
8911
8912                 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8913         }
8914         remove_wait_queue(&netdev_unregistering_wq, &wait);
8915 }
8916
8917 static void __net_exit default_device_exit_batch(struct list_head *net_list)
8918 {
8919         /* At exit all network devices most be removed from a network
8920          * namespace.  Do this in the reverse order of registration.
8921          * Do this across as many network namespaces as possible to
8922          * improve batching efficiency.
8923          */
8924         struct net_device *dev;
8925         struct net *net;
8926         LIST_HEAD(dev_kill_list);
8927
8928         /* To prevent network device cleanup code from dereferencing
8929          * loopback devices or network devices that have been freed
8930          * wait here for all pending unregistrations to complete,
8931          * before unregistring the loopback device and allowing the
8932          * network namespace be freed.
8933          *
8934          * The netdev todo list containing all network devices
8935          * unregistrations that happen in default_device_exit_batch
8936          * will run in the rtnl_unlock() at the end of
8937          * default_device_exit_batch.
8938          */
8939         rtnl_lock_unregistering(net_list);
8940         list_for_each_entry(net, net_list, exit_list) {
8941                 for_each_netdev_reverse(net, dev) {
8942                         if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8943                                 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8944                         else
8945                                 unregister_netdevice_queue(dev, &dev_kill_list);
8946                 }
8947         }
8948         unregister_netdevice_many(&dev_kill_list);
8949         rtnl_unlock();
8950 }
8951
8952 static struct pernet_operations __net_initdata default_device_ops = {
8953         .exit = default_device_exit,
8954         .exit_batch = default_device_exit_batch,
8955 };
8956
8957 /*
8958  *      Initialize the DEV module. At boot time this walks the device list and
8959  *      unhooks any devices that fail to initialise (normally hardware not
8960  *      present) and leaves us with a valid list of present and active devices.
8961  *
8962  */
8963
8964 /*
8965  *       This is called single threaded during boot, so no need
8966  *       to take the rtnl semaphore.
8967  */
8968 static int __init net_dev_init(void)
8969 {
8970         int i, rc = -ENOMEM;
8971
8972         BUG_ON(!dev_boot_phase);
8973
8974         if (dev_proc_init())
8975                 goto out;
8976
8977         if (netdev_kobject_init())
8978                 goto out;
8979
8980         INIT_LIST_HEAD(&ptype_all);
8981         for (i = 0; i < PTYPE_HASH_SIZE; i++)
8982                 INIT_LIST_HEAD(&ptype_base[i]);
8983
8984         INIT_LIST_HEAD(&offload_base);
8985
8986         if (register_pernet_subsys(&netdev_net_ops))
8987                 goto out;
8988
8989         /*
8990          *      Initialise the packet receive queues.
8991          */
8992
8993         for_each_possible_cpu(i) {
8994                 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
8995                 struct softnet_data *sd = &per_cpu(softnet_data, i);
8996
8997                 INIT_WORK(flush, flush_backlog);
8998
8999                 skb_queue_head_init(&sd->input_pkt_queue);
9000                 skb_queue_head_init(&sd->process_queue);
9001 #ifdef CONFIG_XFRM_OFFLOAD
9002                 skb_queue_head_init(&sd->xfrm_backlog);
9003 #endif
9004                 INIT_LIST_HEAD(&sd->poll_list);
9005                 sd->output_queue_tailp = &sd->output_queue;
9006 #ifdef CONFIG_RPS
9007                 sd->csd.func = rps_trigger_softirq;
9008                 sd->csd.info = sd;
9009                 sd->cpu = i;
9010 #endif
9011
9012                 sd->backlog.poll = process_backlog;
9013                 sd->backlog.weight = weight_p;
9014         }
9015
9016         dev_boot_phase = 0;
9017
9018         /* The loopback device is special if any other network devices
9019          * is present in a network namespace the loopback device must
9020          * be present. Since we now dynamically allocate and free the
9021          * loopback device ensure this invariant is maintained by
9022          * keeping the loopback device as the first device on the
9023          * list of network devices.  Ensuring the loopback devices
9024          * is the first device that appears and the last network device
9025          * that disappears.
9026          */
9027         if (register_pernet_device(&loopback_net_ops))
9028                 goto out;
9029
9030         if (register_pernet_device(&default_device_ops))
9031                 goto out;
9032
9033         open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9034         open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9035
9036         rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9037                                        NULL, dev_cpu_dead);
9038         WARN_ON(rc < 0);
9039         rc = 0;
9040 out:
9041         return rc;
9042 }
9043
9044 subsys_initcall(net_dev_init);