Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hskinnemoen...
[sfrench/cifs-2.6.git] / mm / vmscan.c
1 /*
2  *  linux/mm/vmscan.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, Stephen Tweedie.
7  *  kswapd added: 7.1.96  sct
8  *  Removed kswapd_ctl limits, and swap out as many pages as needed
9  *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10  *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11  *  Multiqueue VM started 5.8.00, Rik van Riel.
12  */
13
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h>  /* for try_to_release_page(),
27                                         buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41
42 #include <asm/tlbflush.h>
43 #include <asm/div64.h>
44
45 #include <linux/swapops.h>
46
47 #include "internal.h"
48
49 struct scan_control {
50         /* Incremented by the number of inactive pages that were scanned */
51         unsigned long nr_scanned;
52
53         /* This context's GFP mask */
54         gfp_t gfp_mask;
55
56         int may_writepage;
57
58         /* Can pages be swapped as part of reclaim? */
59         int may_swap;
60
61         /* This context's SWAP_CLUSTER_MAX. If freeing memory for
62          * suspend, we effectively ignore SWAP_CLUSTER_MAX.
63          * In this context, it doesn't matter that we scan the
64          * whole list at once. */
65         int swap_cluster_max;
66
67         int swappiness;
68
69         int all_unreclaimable;
70
71         int order;
72
73         /* Which cgroup do we reclaim from */
74         struct mem_cgroup *mem_cgroup;
75
76         /* Pluggable isolate pages callback */
77         unsigned long (*isolate_pages)(unsigned long nr, struct list_head *dst,
78                         unsigned long *scanned, int order, int mode,
79                         struct zone *z, struct mem_cgroup *mem_cont,
80                         int active);
81 };
82
83 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
84
85 #ifdef ARCH_HAS_PREFETCH
86 #define prefetch_prev_lru_page(_page, _base, _field)                    \
87         do {                                                            \
88                 if ((_page)->lru.prev != _base) {                       \
89                         struct page *prev;                              \
90                                                                         \
91                         prev = lru_to_page(&(_page->lru));              \
92                         prefetch(&prev->_field);                        \
93                 }                                                       \
94         } while (0)
95 #else
96 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
97 #endif
98
99 #ifdef ARCH_HAS_PREFETCHW
100 #define prefetchw_prev_lru_page(_page, _base, _field)                   \
101         do {                                                            \
102                 if ((_page)->lru.prev != _base) {                       \
103                         struct page *prev;                              \
104                                                                         \
105                         prev = lru_to_page(&(_page->lru));              \
106                         prefetchw(&prev->_field);                       \
107                 }                                                       \
108         } while (0)
109 #else
110 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
111 #endif
112
113 /*
114  * From 0 .. 100.  Higher means more swappy.
115  */
116 int vm_swappiness = 60;
117 long vm_total_pages;    /* The total number of pages which the VM controls */
118
119 static LIST_HEAD(shrinker_list);
120 static DECLARE_RWSEM(shrinker_rwsem);
121
122 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
123 #define scan_global_lru(sc)     (!(sc)->mem_cgroup)
124 #else
125 #define scan_global_lru(sc)     (1)
126 #endif
127
128 /*
129  * Add a shrinker callback to be called from the vm
130  */
131 void register_shrinker(struct shrinker *shrinker)
132 {
133         shrinker->nr = 0;
134         down_write(&shrinker_rwsem);
135         list_add_tail(&shrinker->list, &shrinker_list);
136         up_write(&shrinker_rwsem);
137 }
138 EXPORT_SYMBOL(register_shrinker);
139
140 /*
141  * Remove one
142  */
143 void unregister_shrinker(struct shrinker *shrinker)
144 {
145         down_write(&shrinker_rwsem);
146         list_del(&shrinker->list);
147         up_write(&shrinker_rwsem);
148 }
149 EXPORT_SYMBOL(unregister_shrinker);
150
151 #define SHRINK_BATCH 128
152 /*
153  * Call the shrink functions to age shrinkable caches
154  *
155  * Here we assume it costs one seek to replace a lru page and that it also
156  * takes a seek to recreate a cache object.  With this in mind we age equal
157  * percentages of the lru and ageable caches.  This should balance the seeks
158  * generated by these structures.
159  *
160  * If the vm encountered mapped pages on the LRU it increase the pressure on
161  * slab to avoid swapping.
162  *
163  * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
164  *
165  * `lru_pages' represents the number of on-LRU pages in all the zones which
166  * are eligible for the caller's allocation attempt.  It is used for balancing
167  * slab reclaim versus page reclaim.
168  *
169  * Returns the number of slab objects which we shrunk.
170  */
171 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
172                         unsigned long lru_pages)
173 {
174         struct shrinker *shrinker;
175         unsigned long ret = 0;
176
177         if (scanned == 0)
178                 scanned = SWAP_CLUSTER_MAX;
179
180         if (!down_read_trylock(&shrinker_rwsem))
181                 return 1;       /* Assume we'll be able to shrink next time */
182
183         list_for_each_entry(shrinker, &shrinker_list, list) {
184                 unsigned long long delta;
185                 unsigned long total_scan;
186                 unsigned long max_pass = (*shrinker->shrink)(0, gfp_mask);
187
188                 delta = (4 * scanned) / shrinker->seeks;
189                 delta *= max_pass;
190                 do_div(delta, lru_pages + 1);
191                 shrinker->nr += delta;
192                 if (shrinker->nr < 0) {
193                         printk(KERN_ERR "%s: nr=%ld\n",
194                                         __FUNCTION__, shrinker->nr);
195                         shrinker->nr = max_pass;
196                 }
197
198                 /*
199                  * Avoid risking looping forever due to too large nr value:
200                  * never try to free more than twice the estimate number of
201                  * freeable entries.
202                  */
203                 if (shrinker->nr > max_pass * 2)
204                         shrinker->nr = max_pass * 2;
205
206                 total_scan = shrinker->nr;
207                 shrinker->nr = 0;
208
209                 while (total_scan >= SHRINK_BATCH) {
210                         long this_scan = SHRINK_BATCH;
211                         int shrink_ret;
212                         int nr_before;
213
214                         nr_before = (*shrinker->shrink)(0, gfp_mask);
215                         shrink_ret = (*shrinker->shrink)(this_scan, gfp_mask);
216                         if (shrink_ret == -1)
217                                 break;
218                         if (shrink_ret < nr_before)
219                                 ret += nr_before - shrink_ret;
220                         count_vm_events(SLABS_SCANNED, this_scan);
221                         total_scan -= this_scan;
222
223                         cond_resched();
224                 }
225
226                 shrinker->nr += total_scan;
227         }
228         up_read(&shrinker_rwsem);
229         return ret;
230 }
231
232 /* Called without lock on whether page is mapped, so answer is unstable */
233 static inline int page_mapping_inuse(struct page *page)
234 {
235         struct address_space *mapping;
236
237         /* Page is in somebody's page tables. */
238         if (page_mapped(page))
239                 return 1;
240
241         /* Be more reluctant to reclaim swapcache than pagecache */
242         if (PageSwapCache(page))
243                 return 1;
244
245         mapping = page_mapping(page);
246         if (!mapping)
247                 return 0;
248
249         /* File is mmap'd by somebody? */
250         return mapping_mapped(mapping);
251 }
252
253 static inline int is_page_cache_freeable(struct page *page)
254 {
255         return page_count(page) - !!PagePrivate(page) == 2;
256 }
257
258 static int may_write_to_queue(struct backing_dev_info *bdi)
259 {
260         if (current->flags & PF_SWAPWRITE)
261                 return 1;
262         if (!bdi_write_congested(bdi))
263                 return 1;
264         if (bdi == current->backing_dev_info)
265                 return 1;
266         return 0;
267 }
268
269 /*
270  * We detected a synchronous write error writing a page out.  Probably
271  * -ENOSPC.  We need to propagate that into the address_space for a subsequent
272  * fsync(), msync() or close().
273  *
274  * The tricky part is that after writepage we cannot touch the mapping: nothing
275  * prevents it from being freed up.  But we have a ref on the page and once
276  * that page is locked, the mapping is pinned.
277  *
278  * We're allowed to run sleeping lock_page() here because we know the caller has
279  * __GFP_FS.
280  */
281 static void handle_write_error(struct address_space *mapping,
282                                 struct page *page, int error)
283 {
284         lock_page(page);
285         if (page_mapping(page) == mapping)
286                 mapping_set_error(mapping, error);
287         unlock_page(page);
288 }
289
290 /* Request for sync pageout. */
291 enum pageout_io {
292         PAGEOUT_IO_ASYNC,
293         PAGEOUT_IO_SYNC,
294 };
295
296 /* possible outcome of pageout() */
297 typedef enum {
298         /* failed to write page out, page is locked */
299         PAGE_KEEP,
300         /* move page to the active list, page is locked */
301         PAGE_ACTIVATE,
302         /* page has been sent to the disk successfully, page is unlocked */
303         PAGE_SUCCESS,
304         /* page is clean and locked */
305         PAGE_CLEAN,
306 } pageout_t;
307
308 /*
309  * pageout is called by shrink_page_list() for each dirty page.
310  * Calls ->writepage().
311  */
312 static pageout_t pageout(struct page *page, struct address_space *mapping,
313                                                 enum pageout_io sync_writeback)
314 {
315         /*
316          * If the page is dirty, only perform writeback if that write
317          * will be non-blocking.  To prevent this allocation from being
318          * stalled by pagecache activity.  But note that there may be
319          * stalls if we need to run get_block().  We could test
320          * PagePrivate for that.
321          *
322          * If this process is currently in generic_file_write() against
323          * this page's queue, we can perform writeback even if that
324          * will block.
325          *
326          * If the page is swapcache, write it back even if that would
327          * block, for some throttling. This happens by accident, because
328          * swap_backing_dev_info is bust: it doesn't reflect the
329          * congestion state of the swapdevs.  Easy to fix, if needed.
330          * See swapfile.c:page_queue_congested().
331          */
332         if (!is_page_cache_freeable(page))
333                 return PAGE_KEEP;
334         if (!mapping) {
335                 /*
336                  * Some data journaling orphaned pages can have
337                  * page->mapping == NULL while being dirty with clean buffers.
338                  */
339                 if (PagePrivate(page)) {
340                         if (try_to_free_buffers(page)) {
341                                 ClearPageDirty(page);
342                                 printk("%s: orphaned page\n", __FUNCTION__);
343                                 return PAGE_CLEAN;
344                         }
345                 }
346                 return PAGE_KEEP;
347         }
348         if (mapping->a_ops->writepage == NULL)
349                 return PAGE_ACTIVATE;
350         if (!may_write_to_queue(mapping->backing_dev_info))
351                 return PAGE_KEEP;
352
353         if (clear_page_dirty_for_io(page)) {
354                 int res;
355                 struct writeback_control wbc = {
356                         .sync_mode = WB_SYNC_NONE,
357                         .nr_to_write = SWAP_CLUSTER_MAX,
358                         .range_start = 0,
359                         .range_end = LLONG_MAX,
360                         .nonblocking = 1,
361                         .for_reclaim = 1,
362                 };
363
364                 SetPageReclaim(page);
365                 res = mapping->a_ops->writepage(page, &wbc);
366                 if (res < 0)
367                         handle_write_error(mapping, page, res);
368                 if (res == AOP_WRITEPAGE_ACTIVATE) {
369                         ClearPageReclaim(page);
370                         return PAGE_ACTIVATE;
371                 }
372
373                 /*
374                  * Wait on writeback if requested to. This happens when
375                  * direct reclaiming a large contiguous area and the
376                  * first attempt to free a range of pages fails.
377                  */
378                 if (PageWriteback(page) && sync_writeback == PAGEOUT_IO_SYNC)
379                         wait_on_page_writeback(page);
380
381                 if (!PageWriteback(page)) {
382                         /* synchronous write or broken a_ops? */
383                         ClearPageReclaim(page);
384                 }
385                 inc_zone_page_state(page, NR_VMSCAN_WRITE);
386                 return PAGE_SUCCESS;
387         }
388
389         return PAGE_CLEAN;
390 }
391
392 /*
393  * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
394  * someone else has a ref on the page, abort and return 0.  If it was
395  * successfully detached, return 1.  Assumes the caller has a single ref on
396  * this page.
397  */
398 int remove_mapping(struct address_space *mapping, struct page *page)
399 {
400         BUG_ON(!PageLocked(page));
401         BUG_ON(mapping != page_mapping(page));
402
403         write_lock_irq(&mapping->tree_lock);
404         /*
405          * The non racy check for a busy page.
406          *
407          * Must be careful with the order of the tests. When someone has
408          * a ref to the page, it may be possible that they dirty it then
409          * drop the reference. So if PageDirty is tested before page_count
410          * here, then the following race may occur:
411          *
412          * get_user_pages(&page);
413          * [user mapping goes away]
414          * write_to(page);
415          *                              !PageDirty(page)    [good]
416          * SetPageDirty(page);
417          * put_page(page);
418          *                              !page_count(page)   [good, discard it]
419          *
420          * [oops, our write_to data is lost]
421          *
422          * Reversing the order of the tests ensures such a situation cannot
423          * escape unnoticed. The smp_rmb is needed to ensure the page->flags
424          * load is not satisfied before that of page->_count.
425          *
426          * Note that if SetPageDirty is always performed via set_page_dirty,
427          * and thus under tree_lock, then this ordering is not required.
428          */
429         if (unlikely(page_count(page) != 2))
430                 goto cannot_free;
431         smp_rmb();
432         if (unlikely(PageDirty(page)))
433                 goto cannot_free;
434
435         if (PageSwapCache(page)) {
436                 swp_entry_t swap = { .val = page_private(page) };
437                 __delete_from_swap_cache(page);
438                 write_unlock_irq(&mapping->tree_lock);
439                 swap_free(swap);
440                 __put_page(page);       /* The pagecache ref */
441                 return 1;
442         }
443
444         __remove_from_page_cache(page);
445         write_unlock_irq(&mapping->tree_lock);
446         __put_page(page);
447         return 1;
448
449 cannot_free:
450         write_unlock_irq(&mapping->tree_lock);
451         return 0;
452 }
453
454 /*
455  * shrink_page_list() returns the number of reclaimed pages
456  */
457 static unsigned long shrink_page_list(struct list_head *page_list,
458                                         struct scan_control *sc,
459                                         enum pageout_io sync_writeback)
460 {
461         LIST_HEAD(ret_pages);
462         struct pagevec freed_pvec;
463         int pgactivate = 0;
464         unsigned long nr_reclaimed = 0;
465
466         cond_resched();
467
468         pagevec_init(&freed_pvec, 1);
469         while (!list_empty(page_list)) {
470                 struct address_space *mapping;
471                 struct page *page;
472                 int may_enter_fs;
473                 int referenced;
474
475                 cond_resched();
476
477                 page = lru_to_page(page_list);
478                 list_del(&page->lru);
479
480                 if (TestSetPageLocked(page))
481                         goto keep;
482
483                 VM_BUG_ON(PageActive(page));
484
485                 sc->nr_scanned++;
486
487                 if (!sc->may_swap && page_mapped(page))
488                         goto keep_locked;
489
490                 /* Double the slab pressure for mapped and swapcache pages */
491                 if (page_mapped(page) || PageSwapCache(page))
492                         sc->nr_scanned++;
493
494                 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
495                         (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
496
497                 if (PageWriteback(page)) {
498                         /*
499                          * Synchronous reclaim is performed in two passes,
500                          * first an asynchronous pass over the list to
501                          * start parallel writeback, and a second synchronous
502                          * pass to wait for the IO to complete.  Wait here
503                          * for any page for which writeback has already
504                          * started.
505                          */
506                         if (sync_writeback == PAGEOUT_IO_SYNC && may_enter_fs)
507                                 wait_on_page_writeback(page);
508                         else
509                                 goto keep_locked;
510                 }
511
512                 referenced = page_referenced(page, 1, sc->mem_cgroup);
513                 /* In active use or really unfreeable?  Activate it. */
514                 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER &&
515                                         referenced && page_mapping_inuse(page))
516                         goto activate_locked;
517
518 #ifdef CONFIG_SWAP
519                 /*
520                  * Anonymous process memory has backing store?
521                  * Try to allocate it some swap space here.
522                  */
523                 if (PageAnon(page) && !PageSwapCache(page))
524                         if (!add_to_swap(page, GFP_ATOMIC))
525                                 goto activate_locked;
526 #endif /* CONFIG_SWAP */
527
528                 mapping = page_mapping(page);
529
530                 /*
531                  * The page is mapped into the page tables of one or more
532                  * processes. Try to unmap it here.
533                  */
534                 if (page_mapped(page) && mapping) {
535                         switch (try_to_unmap(page, 0)) {
536                         case SWAP_FAIL:
537                                 goto activate_locked;
538                         case SWAP_AGAIN:
539                                 goto keep_locked;
540                         case SWAP_SUCCESS:
541                                 ; /* try to free the page below */
542                         }
543                 }
544
545                 if (PageDirty(page)) {
546                         if (sc->order <= PAGE_ALLOC_COSTLY_ORDER && referenced)
547                                 goto keep_locked;
548                         if (!may_enter_fs)
549                                 goto keep_locked;
550                         if (!sc->may_writepage)
551                                 goto keep_locked;
552
553                         /* Page is dirty, try to write it out here */
554                         switch (pageout(page, mapping, sync_writeback)) {
555                         case PAGE_KEEP:
556                                 goto keep_locked;
557                         case PAGE_ACTIVATE:
558                                 goto activate_locked;
559                         case PAGE_SUCCESS:
560                                 if (PageWriteback(page) || PageDirty(page))
561                                         goto keep;
562                                 /*
563                                  * A synchronous write - probably a ramdisk.  Go
564                                  * ahead and try to reclaim the page.
565                                  */
566                                 if (TestSetPageLocked(page))
567                                         goto keep;
568                                 if (PageDirty(page) || PageWriteback(page))
569                                         goto keep_locked;
570                                 mapping = page_mapping(page);
571                         case PAGE_CLEAN:
572                                 ; /* try to free the page below */
573                         }
574                 }
575
576                 /*
577                  * If the page has buffers, try to free the buffer mappings
578                  * associated with this page. If we succeed we try to free
579                  * the page as well.
580                  *
581                  * We do this even if the page is PageDirty().
582                  * try_to_release_page() does not perform I/O, but it is
583                  * possible for a page to have PageDirty set, but it is actually
584                  * clean (all its buffers are clean).  This happens if the
585                  * buffers were written out directly, with submit_bh(). ext3
586                  * will do this, as well as the blockdev mapping. 
587                  * try_to_release_page() will discover that cleanness and will
588                  * drop the buffers and mark the page clean - it can be freed.
589                  *
590                  * Rarely, pages can have buffers and no ->mapping.  These are
591                  * the pages which were not successfully invalidated in
592                  * truncate_complete_page().  We try to drop those buffers here
593                  * and if that worked, and the page is no longer mapped into
594                  * process address space (page_count == 1) it can be freed.
595                  * Otherwise, leave the page on the LRU so it is swappable.
596                  */
597                 if (PagePrivate(page)) {
598                         if (!try_to_release_page(page, sc->gfp_mask))
599                                 goto activate_locked;
600                         if (!mapping && page_count(page) == 1)
601                                 goto free_it;
602                 }
603
604                 if (!mapping || !remove_mapping(mapping, page))
605                         goto keep_locked;
606
607 free_it:
608                 unlock_page(page);
609                 nr_reclaimed++;
610                 if (!pagevec_add(&freed_pvec, page))
611                         __pagevec_release_nonlru(&freed_pvec);
612                 continue;
613
614 activate_locked:
615                 SetPageActive(page);
616                 pgactivate++;
617 keep_locked:
618                 unlock_page(page);
619 keep:
620                 list_add(&page->lru, &ret_pages);
621                 VM_BUG_ON(PageLRU(page));
622         }
623         list_splice(&ret_pages, page_list);
624         if (pagevec_count(&freed_pvec))
625                 __pagevec_release_nonlru(&freed_pvec);
626         count_vm_events(PGACTIVATE, pgactivate);
627         return nr_reclaimed;
628 }
629
630 /* LRU Isolation modes. */
631 #define ISOLATE_INACTIVE 0      /* Isolate inactive pages. */
632 #define ISOLATE_ACTIVE 1        /* Isolate active pages. */
633 #define ISOLATE_BOTH 2          /* Isolate both active and inactive pages. */
634
635 /*
636  * Attempt to remove the specified page from its LRU.  Only take this page
637  * if it is of the appropriate PageActive status.  Pages which are being
638  * freed elsewhere are also ignored.
639  *
640  * page:        page to consider
641  * mode:        one of the LRU isolation modes defined above
642  *
643  * returns 0 on success, -ve errno on failure.
644  */
645 int __isolate_lru_page(struct page *page, int mode)
646 {
647         int ret = -EINVAL;
648
649         /* Only take pages on the LRU. */
650         if (!PageLRU(page))
651                 return ret;
652
653         /*
654          * When checking the active state, we need to be sure we are
655          * dealing with comparible boolean values.  Take the logical not
656          * of each.
657          */
658         if (mode != ISOLATE_BOTH && (!PageActive(page) != !mode))
659                 return ret;
660
661         ret = -EBUSY;
662         if (likely(get_page_unless_zero(page))) {
663                 /*
664                  * Be careful not to clear PageLRU until after we're
665                  * sure the page is not being freed elsewhere -- the
666                  * page release code relies on it.
667                  */
668                 ClearPageLRU(page);
669                 ret = 0;
670         }
671
672         return ret;
673 }
674
675 /*
676  * zone->lru_lock is heavily contended.  Some of the functions that
677  * shrink the lists perform better by taking out a batch of pages
678  * and working on them outside the LRU lock.
679  *
680  * For pagecache intensive workloads, this function is the hottest
681  * spot in the kernel (apart from copy_*_user functions).
682  *
683  * Appropriate locks must be held before calling this function.
684  *
685  * @nr_to_scan: The number of pages to look through on the list.
686  * @src:        The LRU list to pull pages off.
687  * @dst:        The temp list to put pages on to.
688  * @scanned:    The number of pages that were scanned.
689  * @order:      The caller's attempted allocation order
690  * @mode:       One of the LRU isolation modes
691  *
692  * returns how many pages were moved onto *@dst.
693  */
694 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
695                 struct list_head *src, struct list_head *dst,
696                 unsigned long *scanned, int order, int mode)
697 {
698         unsigned long nr_taken = 0;
699         unsigned long scan;
700
701         for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
702                 struct page *page;
703                 unsigned long pfn;
704                 unsigned long end_pfn;
705                 unsigned long page_pfn;
706                 int zone_id;
707
708                 page = lru_to_page(src);
709                 prefetchw_prev_lru_page(page, src, flags);
710
711                 VM_BUG_ON(!PageLRU(page));
712
713                 switch (__isolate_lru_page(page, mode)) {
714                 case 0:
715                         list_move(&page->lru, dst);
716                         nr_taken++;
717                         break;
718
719                 case -EBUSY:
720                         /* else it is being freed elsewhere */
721                         list_move(&page->lru, src);
722                         continue;
723
724                 default:
725                         BUG();
726                 }
727
728                 if (!order)
729                         continue;
730
731                 /*
732                  * Attempt to take all pages in the order aligned region
733                  * surrounding the tag page.  Only take those pages of
734                  * the same active state as that tag page.  We may safely
735                  * round the target page pfn down to the requested order
736                  * as the mem_map is guarenteed valid out to MAX_ORDER,
737                  * where that page is in a different zone we will detect
738                  * it from its zone id and abort this block scan.
739                  */
740                 zone_id = page_zone_id(page);
741                 page_pfn = page_to_pfn(page);
742                 pfn = page_pfn & ~((1 << order) - 1);
743                 end_pfn = pfn + (1 << order);
744                 for (; pfn < end_pfn; pfn++) {
745                         struct page *cursor_page;
746
747                         /* The target page is in the block, ignore it. */
748                         if (unlikely(pfn == page_pfn))
749                                 continue;
750
751                         /* Avoid holes within the zone. */
752                         if (unlikely(!pfn_valid_within(pfn)))
753                                 break;
754
755                         cursor_page = pfn_to_page(pfn);
756                         /* Check that we have not crossed a zone boundary. */
757                         if (unlikely(page_zone_id(cursor_page) != zone_id))
758                                 continue;
759                         switch (__isolate_lru_page(cursor_page, mode)) {
760                         case 0:
761                                 list_move(&cursor_page->lru, dst);
762                                 nr_taken++;
763                                 scan++;
764                                 break;
765
766                         case -EBUSY:
767                                 /* else it is being freed elsewhere */
768                                 list_move(&cursor_page->lru, src);
769                         default:
770                                 break;
771                         }
772                 }
773         }
774
775         *scanned = scan;
776         return nr_taken;
777 }
778
779 static unsigned long isolate_pages_global(unsigned long nr,
780                                         struct list_head *dst,
781                                         unsigned long *scanned, int order,
782                                         int mode, struct zone *z,
783                                         struct mem_cgroup *mem_cont,
784                                         int active)
785 {
786         if (active)
787                 return isolate_lru_pages(nr, &z->active_list, dst,
788                                                 scanned, order, mode);
789         else
790                 return isolate_lru_pages(nr, &z->inactive_list, dst,
791                                                 scanned, order, mode);
792 }
793
794 /*
795  * clear_active_flags() is a helper for shrink_active_list(), clearing
796  * any active bits from the pages in the list.
797  */
798 static unsigned long clear_active_flags(struct list_head *page_list)
799 {
800         int nr_active = 0;
801         struct page *page;
802
803         list_for_each_entry(page, page_list, lru)
804                 if (PageActive(page)) {
805                         ClearPageActive(page);
806                         nr_active++;
807                 }
808
809         return nr_active;
810 }
811
812 /*
813  * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
814  * of reclaimed pages
815  */
816 static unsigned long shrink_inactive_list(unsigned long max_scan,
817                                 struct zone *zone, struct scan_control *sc)
818 {
819         LIST_HEAD(page_list);
820         struct pagevec pvec;
821         unsigned long nr_scanned = 0;
822         unsigned long nr_reclaimed = 0;
823
824         pagevec_init(&pvec, 1);
825
826         lru_add_drain();
827         spin_lock_irq(&zone->lru_lock);
828         do {
829                 struct page *page;
830                 unsigned long nr_taken;
831                 unsigned long nr_scan;
832                 unsigned long nr_freed;
833                 unsigned long nr_active;
834
835                 nr_taken = sc->isolate_pages(sc->swap_cluster_max,
836                              &page_list, &nr_scan, sc->order,
837                              (sc->order > PAGE_ALLOC_COSTLY_ORDER)?
838                                              ISOLATE_BOTH : ISOLATE_INACTIVE,
839                                 zone, sc->mem_cgroup, 0);
840                 nr_active = clear_active_flags(&page_list);
841                 __count_vm_events(PGDEACTIVATE, nr_active);
842
843                 __mod_zone_page_state(zone, NR_ACTIVE, -nr_active);
844                 __mod_zone_page_state(zone, NR_INACTIVE,
845                                                 -(nr_taken - nr_active));
846                 if (scan_global_lru(sc))
847                         zone->pages_scanned += nr_scan;
848                 spin_unlock_irq(&zone->lru_lock);
849
850                 nr_scanned += nr_scan;
851                 nr_freed = shrink_page_list(&page_list, sc, PAGEOUT_IO_ASYNC);
852
853                 /*
854                  * If we are direct reclaiming for contiguous pages and we do
855                  * not reclaim everything in the list, try again and wait
856                  * for IO to complete. This will stall high-order allocations
857                  * but that should be acceptable to the caller
858                  */
859                 if (nr_freed < nr_taken && !current_is_kswapd() &&
860                                         sc->order > PAGE_ALLOC_COSTLY_ORDER) {
861                         congestion_wait(WRITE, HZ/10);
862
863                         /*
864                          * The attempt at page out may have made some
865                          * of the pages active, mark them inactive again.
866                          */
867                         nr_active = clear_active_flags(&page_list);
868                         count_vm_events(PGDEACTIVATE, nr_active);
869
870                         nr_freed += shrink_page_list(&page_list, sc,
871                                                         PAGEOUT_IO_SYNC);
872                 }
873
874                 nr_reclaimed += nr_freed;
875                 local_irq_disable();
876                 if (current_is_kswapd()) {
877                         __count_zone_vm_events(PGSCAN_KSWAPD, zone, nr_scan);
878                         __count_vm_events(KSWAPD_STEAL, nr_freed);
879                 } else if (scan_global_lru(sc))
880                         __count_zone_vm_events(PGSCAN_DIRECT, zone, nr_scan);
881
882                 __count_zone_vm_events(PGSTEAL, zone, nr_freed);
883
884                 if (nr_taken == 0)
885                         goto done;
886
887                 spin_lock(&zone->lru_lock);
888                 /*
889                  * Put back any unfreeable pages.
890                  */
891                 while (!list_empty(&page_list)) {
892                         page = lru_to_page(&page_list);
893                         VM_BUG_ON(PageLRU(page));
894                         SetPageLRU(page);
895                         list_del(&page->lru);
896                         if (PageActive(page))
897                                 add_page_to_active_list(zone, page);
898                         else
899                                 add_page_to_inactive_list(zone, page);
900                         if (!pagevec_add(&pvec, page)) {
901                                 spin_unlock_irq(&zone->lru_lock);
902                                 __pagevec_release(&pvec);
903                                 spin_lock_irq(&zone->lru_lock);
904                         }
905                 }
906         } while (nr_scanned < max_scan);
907         spin_unlock(&zone->lru_lock);
908 done:
909         local_irq_enable();
910         pagevec_release(&pvec);
911         return nr_reclaimed;
912 }
913
914 /*
915  * We are about to scan this zone at a certain priority level.  If that priority
916  * level is smaller (ie: more urgent) than the previous priority, then note
917  * that priority level within the zone.  This is done so that when the next
918  * process comes in to scan this zone, it will immediately start out at this
919  * priority level rather than having to build up its own scanning priority.
920  * Here, this priority affects only the reclaim-mapped threshold.
921  */
922 static inline void note_zone_scanning_priority(struct zone *zone, int priority)
923 {
924         if (priority < zone->prev_priority)
925                 zone->prev_priority = priority;
926 }
927
928 static inline int zone_is_near_oom(struct zone *zone)
929 {
930         return zone->pages_scanned >= (zone_page_state(zone, NR_ACTIVE)
931                                 + zone_page_state(zone, NR_INACTIVE))*3;
932 }
933
934 /*
935  * Determine we should try to reclaim mapped pages.
936  * This is called only when sc->mem_cgroup is NULL.
937  */
938 static int calc_reclaim_mapped(struct scan_control *sc, struct zone *zone,
939                                 int priority)
940 {
941         long mapped_ratio;
942         long distress;
943         long swap_tendency;
944         long imbalance;
945         int reclaim_mapped = 0;
946         int prev_priority;
947
948         if (scan_global_lru(sc) && zone_is_near_oom(zone))
949                 return 1;
950         /*
951          * `distress' is a measure of how much trouble we're having
952          * reclaiming pages.  0 -> no problems.  100 -> great trouble.
953          */
954         if (scan_global_lru(sc))
955                 prev_priority = zone->prev_priority;
956         else
957                 prev_priority = mem_cgroup_get_reclaim_priority(sc->mem_cgroup);
958
959         distress = 100 >> min(prev_priority, priority);
960
961         /*
962          * The point of this algorithm is to decide when to start
963          * reclaiming mapped memory instead of just pagecache.  Work out
964          * how much memory
965          * is mapped.
966          */
967         if (scan_global_lru(sc))
968                 mapped_ratio = ((global_page_state(NR_FILE_MAPPED) +
969                                 global_page_state(NR_ANON_PAGES)) * 100) /
970                                         vm_total_pages;
971         else
972                 mapped_ratio = mem_cgroup_calc_mapped_ratio(sc->mem_cgroup);
973
974         /*
975          * Now decide how much we really want to unmap some pages.  The
976          * mapped ratio is downgraded - just because there's a lot of
977          * mapped memory doesn't necessarily mean that page reclaim
978          * isn't succeeding.
979          *
980          * The distress ratio is important - we don't want to start
981          * going oom.
982          *
983          * A 100% value of vm_swappiness overrides this algorithm
984          * altogether.
985          */
986         swap_tendency = mapped_ratio / 2 + distress + sc->swappiness;
987
988         /*
989          * If there's huge imbalance between active and inactive
990          * (think active 100 times larger than inactive) we should
991          * become more permissive, or the system will take too much
992          * cpu before it start swapping during memory pressure.
993          * Distress is about avoiding early-oom, this is about
994          * making swappiness graceful despite setting it to low
995          * values.
996          *
997          * Avoid div by zero with nr_inactive+1, and max resulting
998          * value is vm_total_pages.
999          */
1000         if (scan_global_lru(sc)) {
1001                 imbalance  = zone_page_state(zone, NR_ACTIVE);
1002                 imbalance /= zone_page_state(zone, NR_INACTIVE) + 1;
1003         } else
1004                 imbalance = mem_cgroup_reclaim_imbalance(sc->mem_cgroup);
1005
1006         /*
1007          * Reduce the effect of imbalance if swappiness is low,
1008          * this means for a swappiness very low, the imbalance
1009          * must be much higher than 100 for this logic to make
1010          * the difference.
1011          *
1012          * Max temporary value is vm_total_pages*100.
1013          */
1014         imbalance *= (vm_swappiness + 1);
1015         imbalance /= 100;
1016
1017         /*
1018          * If not much of the ram is mapped, makes the imbalance
1019          * less relevant, it's high priority we refill the inactive
1020          * list with mapped pages only in presence of high ratio of
1021          * mapped pages.
1022          *
1023          * Max temporary value is vm_total_pages*100.
1024          */
1025         imbalance *= mapped_ratio;
1026         imbalance /= 100;
1027
1028         /* apply imbalance feedback to swap_tendency */
1029         swap_tendency += imbalance;
1030
1031         /*
1032          * Now use this metric to decide whether to start moving mapped
1033          * memory onto the inactive list.
1034          */
1035         if (swap_tendency >= 100)
1036                 reclaim_mapped = 1;
1037
1038         return reclaim_mapped;
1039 }
1040
1041 /*
1042  * This moves pages from the active list to the inactive list.
1043  *
1044  * We move them the other way if the page is referenced by one or more
1045  * processes, from rmap.
1046  *
1047  * If the pages are mostly unmapped, the processing is fast and it is
1048  * appropriate to hold zone->lru_lock across the whole operation.  But if
1049  * the pages are mapped, the processing is slow (page_referenced()) so we
1050  * should drop zone->lru_lock around each page.  It's impossible to balance
1051  * this, so instead we remove the pages from the LRU while processing them.
1052  * It is safe to rely on PG_active against the non-LRU pages in here because
1053  * nobody will play with that bit on a non-LRU page.
1054  *
1055  * The downside is that we have to touch page->_count against each page.
1056  * But we had to alter page->flags anyway.
1057  */
1058
1059
1060 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1061                                 struct scan_control *sc, int priority)
1062 {
1063         unsigned long pgmoved;
1064         int pgdeactivate = 0;
1065         unsigned long pgscanned;
1066         LIST_HEAD(l_hold);      /* The pages which were snipped off */
1067         LIST_HEAD(l_inactive);  /* Pages to go onto the inactive_list */
1068         LIST_HEAD(l_active);    /* Pages to go onto the active_list */
1069         struct page *page;
1070         struct pagevec pvec;
1071         int reclaim_mapped = 0;
1072
1073         if (sc->may_swap)
1074                 reclaim_mapped = calc_reclaim_mapped(sc, zone, priority);
1075
1076         lru_add_drain();
1077         spin_lock_irq(&zone->lru_lock);
1078         pgmoved = sc->isolate_pages(nr_pages, &l_hold, &pgscanned, sc->order,
1079                                         ISOLATE_ACTIVE, zone,
1080                                         sc->mem_cgroup, 1);
1081         /*
1082          * zone->pages_scanned is used for detect zone's oom
1083          * mem_cgroup remembers nr_scan by itself.
1084          */
1085         if (scan_global_lru(sc))
1086                 zone->pages_scanned += pgscanned;
1087
1088         __mod_zone_page_state(zone, NR_ACTIVE, -pgmoved);
1089         spin_unlock_irq(&zone->lru_lock);
1090
1091         while (!list_empty(&l_hold)) {
1092                 cond_resched();
1093                 page = lru_to_page(&l_hold);
1094                 list_del(&page->lru);
1095                 if (page_mapped(page)) {
1096                         if (!reclaim_mapped ||
1097                             (total_swap_pages == 0 && PageAnon(page)) ||
1098                             page_referenced(page, 0, sc->mem_cgroup)) {
1099                                 list_add(&page->lru, &l_active);
1100                                 continue;
1101                         }
1102                 }
1103                 list_add(&page->lru, &l_inactive);
1104         }
1105
1106         pagevec_init(&pvec, 1);
1107         pgmoved = 0;
1108         spin_lock_irq(&zone->lru_lock);
1109         while (!list_empty(&l_inactive)) {
1110                 page = lru_to_page(&l_inactive);
1111                 prefetchw_prev_lru_page(page, &l_inactive, flags);
1112                 VM_BUG_ON(PageLRU(page));
1113                 SetPageLRU(page);
1114                 VM_BUG_ON(!PageActive(page));
1115                 ClearPageActive(page);
1116
1117                 list_move(&page->lru, &zone->inactive_list);
1118                 mem_cgroup_move_lists(page, false);
1119                 pgmoved++;
1120                 if (!pagevec_add(&pvec, page)) {
1121                         __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1122                         spin_unlock_irq(&zone->lru_lock);
1123                         pgdeactivate += pgmoved;
1124                         pgmoved = 0;
1125                         if (buffer_heads_over_limit)
1126                                 pagevec_strip(&pvec);
1127                         __pagevec_release(&pvec);
1128                         spin_lock_irq(&zone->lru_lock);
1129                 }
1130         }
1131         __mod_zone_page_state(zone, NR_INACTIVE, pgmoved);
1132         pgdeactivate += pgmoved;
1133         if (buffer_heads_over_limit) {
1134                 spin_unlock_irq(&zone->lru_lock);
1135                 pagevec_strip(&pvec);
1136                 spin_lock_irq(&zone->lru_lock);
1137         }
1138
1139         pgmoved = 0;
1140         while (!list_empty(&l_active)) {
1141                 page = lru_to_page(&l_active);
1142                 prefetchw_prev_lru_page(page, &l_active, flags);
1143                 VM_BUG_ON(PageLRU(page));
1144                 SetPageLRU(page);
1145                 VM_BUG_ON(!PageActive(page));
1146
1147                 list_move(&page->lru, &zone->active_list);
1148                 mem_cgroup_move_lists(page, true);
1149                 pgmoved++;
1150                 if (!pagevec_add(&pvec, page)) {
1151                         __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1152                         pgmoved = 0;
1153                         spin_unlock_irq(&zone->lru_lock);
1154                         __pagevec_release(&pvec);
1155                         spin_lock_irq(&zone->lru_lock);
1156                 }
1157         }
1158         __mod_zone_page_state(zone, NR_ACTIVE, pgmoved);
1159
1160         __count_zone_vm_events(PGREFILL, zone, pgscanned);
1161         __count_vm_events(PGDEACTIVATE, pgdeactivate);
1162         spin_unlock_irq(&zone->lru_lock);
1163
1164         pagevec_release(&pvec);
1165 }
1166
1167 /*
1168  * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
1169  */
1170 static unsigned long shrink_zone(int priority, struct zone *zone,
1171                                 struct scan_control *sc)
1172 {
1173         unsigned long nr_active;
1174         unsigned long nr_inactive;
1175         unsigned long nr_to_scan;
1176         unsigned long nr_reclaimed = 0;
1177
1178         if (scan_global_lru(sc)) {
1179                 /*
1180                  * Add one to nr_to_scan just to make sure that the kernel
1181                  * will slowly sift through the active list.
1182                  */
1183                 zone->nr_scan_active +=
1184                         (zone_page_state(zone, NR_ACTIVE) >> priority) + 1;
1185                 nr_active = zone->nr_scan_active;
1186                 zone->nr_scan_inactive +=
1187                         (zone_page_state(zone, NR_INACTIVE) >> priority) + 1;
1188                 nr_inactive = zone->nr_scan_inactive;
1189                 if (nr_inactive >= sc->swap_cluster_max)
1190                         zone->nr_scan_inactive = 0;
1191                 else
1192                         nr_inactive = 0;
1193
1194                 if (nr_active >= sc->swap_cluster_max)
1195                         zone->nr_scan_active = 0;
1196                 else
1197                         nr_active = 0;
1198         } else {
1199                 /*
1200                  * This reclaim occurs not because zone memory shortage but
1201                  * because memory controller hits its limit.
1202                  * Then, don't modify zone reclaim related data.
1203                  */
1204                 nr_active = mem_cgroup_calc_reclaim_active(sc->mem_cgroup,
1205                                         zone, priority);
1206
1207                 nr_inactive = mem_cgroup_calc_reclaim_inactive(sc->mem_cgroup,
1208                                         zone, priority);
1209         }
1210
1211
1212         while (nr_active || nr_inactive) {
1213                 if (nr_active) {
1214                         nr_to_scan = min(nr_active,
1215                                         (unsigned long)sc->swap_cluster_max);
1216                         nr_active -= nr_to_scan;
1217                         shrink_active_list(nr_to_scan, zone, sc, priority);
1218                 }
1219
1220                 if (nr_inactive) {
1221                         nr_to_scan = min(nr_inactive,
1222                                         (unsigned long)sc->swap_cluster_max);
1223                         nr_inactive -= nr_to_scan;
1224                         nr_reclaimed += shrink_inactive_list(nr_to_scan, zone,
1225                                                                 sc);
1226                 }
1227         }
1228
1229         throttle_vm_writeout(sc->gfp_mask);
1230         return nr_reclaimed;
1231 }
1232
1233 /*
1234  * This is the direct reclaim path, for page-allocating processes.  We only
1235  * try to reclaim pages from zones which will satisfy the caller's allocation
1236  * request.
1237  *
1238  * We reclaim from a zone even if that zone is over pages_high.  Because:
1239  * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1240  *    allocation or
1241  * b) The zones may be over pages_high but they must go *over* pages_high to
1242  *    satisfy the `incremental min' zone defense algorithm.
1243  *
1244  * Returns the number of reclaimed pages.
1245  *
1246  * If a zone is deemed to be full of pinned pages then just give it a light
1247  * scan then give up on it.
1248  */
1249 static unsigned long shrink_zones(int priority, struct zone **zones,
1250                                         struct scan_control *sc)
1251 {
1252         unsigned long nr_reclaimed = 0;
1253         int i;
1254
1255
1256         sc->all_unreclaimable = 1;
1257         for (i = 0; zones[i] != NULL; i++) {
1258                 struct zone *zone = zones[i];
1259
1260                 if (!populated_zone(zone))
1261                         continue;
1262                 /*
1263                  * Take care memory controller reclaiming has small influence
1264                  * to global LRU.
1265                  */
1266                 if (scan_global_lru(sc)) {
1267                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1268                                 continue;
1269                         note_zone_scanning_priority(zone, priority);
1270
1271                         if (zone_is_all_unreclaimable(zone) &&
1272                                                 priority != DEF_PRIORITY)
1273                                 continue;       /* Let kswapd poll it */
1274                         sc->all_unreclaimable = 0;
1275                 } else {
1276                         /*
1277                          * Ignore cpuset limitation here. We just want to reduce
1278                          * # of used pages by us regardless of memory shortage.
1279                          */
1280                         sc->all_unreclaimable = 0;
1281                         mem_cgroup_note_reclaim_priority(sc->mem_cgroup,
1282                                                         priority);
1283                 }
1284
1285                 nr_reclaimed += shrink_zone(priority, zone, sc);
1286         }
1287
1288         return nr_reclaimed;
1289 }
1290  
1291 /*
1292  * This is the main entry point to direct page reclaim.
1293  *
1294  * If a full scan of the inactive list fails to free enough memory then we
1295  * are "out of memory" and something needs to be killed.
1296  *
1297  * If the caller is !__GFP_FS then the probability of a failure is reasonably
1298  * high - the zone may be full of dirty or under-writeback pages, which this
1299  * caller can't do much about.  We kick pdflush and take explicit naps in the
1300  * hope that some of these pages can be written.  But if the allocating task
1301  * holds filesystem locks which prevent writeout this might not work, and the
1302  * allocation attempt will fail.
1303  */
1304 static unsigned long do_try_to_free_pages(struct zone **zones, gfp_t gfp_mask,
1305                                           struct scan_control *sc)
1306 {
1307         int priority;
1308         int ret = 0;
1309         unsigned long total_scanned = 0;
1310         unsigned long nr_reclaimed = 0;
1311         struct reclaim_state *reclaim_state = current->reclaim_state;
1312         unsigned long lru_pages = 0;
1313         int i;
1314
1315         if (scan_global_lru(sc))
1316                 count_vm_event(ALLOCSTALL);
1317         /*
1318          * mem_cgroup will not do shrink_slab.
1319          */
1320         if (scan_global_lru(sc)) {
1321                 for (i = 0; zones[i] != NULL; i++) {
1322                         struct zone *zone = zones[i];
1323
1324                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1325                                 continue;
1326
1327                         lru_pages += zone_page_state(zone, NR_ACTIVE)
1328                                         + zone_page_state(zone, NR_INACTIVE);
1329                 }
1330         }
1331
1332         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1333                 sc->nr_scanned = 0;
1334                 if (!priority)
1335                         disable_swap_token();
1336                 nr_reclaimed += shrink_zones(priority, zones, sc);
1337                 /*
1338                  * Don't shrink slabs when reclaiming memory from
1339                  * over limit cgroups
1340                  */
1341                 if (scan_global_lru(sc)) {
1342                         shrink_slab(sc->nr_scanned, gfp_mask, lru_pages);
1343                         if (reclaim_state) {
1344                                 nr_reclaimed += reclaim_state->reclaimed_slab;
1345                                 reclaim_state->reclaimed_slab = 0;
1346                         }
1347                 }
1348                 total_scanned += sc->nr_scanned;
1349                 if (nr_reclaimed >= sc->swap_cluster_max) {
1350                         ret = 1;
1351                         goto out;
1352                 }
1353
1354                 /*
1355                  * Try to write back as many pages as we just scanned.  This
1356                  * tends to cause slow streaming writers to write data to the
1357                  * disk smoothly, at the dirtying rate, which is nice.   But
1358                  * that's undesirable in laptop mode, where we *want* lumpy
1359                  * writeout.  So in laptop mode, write out the whole world.
1360                  */
1361                 if (total_scanned > sc->swap_cluster_max +
1362                                         sc->swap_cluster_max / 2) {
1363                         wakeup_pdflush(laptop_mode ? 0 : total_scanned);
1364                         sc->may_writepage = 1;
1365                 }
1366
1367                 /* Take a nap, wait for some writeback to complete */
1368                 if (sc->nr_scanned && priority < DEF_PRIORITY - 2)
1369                         congestion_wait(WRITE, HZ/10);
1370         }
1371         /* top priority shrink_caches still had more to do? don't OOM, then */
1372         if (!sc->all_unreclaimable && scan_global_lru(sc))
1373                 ret = 1;
1374 out:
1375         /*
1376          * Now that we've scanned all the zones at this priority level, note
1377          * that level within the zone so that the next thread which performs
1378          * scanning of this zone will immediately start out at this priority
1379          * level.  This affects only the decision whether or not to bring
1380          * mapped pages onto the inactive list.
1381          */
1382         if (priority < 0)
1383                 priority = 0;
1384
1385         if (scan_global_lru(sc)) {
1386                 for (i = 0; zones[i] != NULL; i++) {
1387                         struct zone *zone = zones[i];
1388
1389                         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1390                                 continue;
1391
1392                         zone->prev_priority = priority;
1393                 }
1394         } else
1395                 mem_cgroup_record_reclaim_priority(sc->mem_cgroup, priority);
1396
1397         return ret;
1398 }
1399
1400 unsigned long try_to_free_pages(struct zone **zones, int order, gfp_t gfp_mask)
1401 {
1402         struct scan_control sc = {
1403                 .gfp_mask = gfp_mask,
1404                 .may_writepage = !laptop_mode,
1405                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1406                 .may_swap = 1,
1407                 .swappiness = vm_swappiness,
1408                 .order = order,
1409                 .mem_cgroup = NULL,
1410                 .isolate_pages = isolate_pages_global,
1411         };
1412
1413         return do_try_to_free_pages(zones, gfp_mask, &sc);
1414 }
1415
1416 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1417
1418 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
1419                                                 gfp_t gfp_mask)
1420 {
1421         struct scan_control sc = {
1422                 .gfp_mask = gfp_mask,
1423                 .may_writepage = !laptop_mode,
1424                 .may_swap = 1,
1425                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1426                 .swappiness = vm_swappiness,
1427                 .order = 0,
1428                 .mem_cgroup = mem_cont,
1429                 .isolate_pages = mem_cgroup_isolate_pages,
1430         };
1431         struct zone **zones;
1432         int target_zone = gfp_zone(GFP_HIGHUSER_MOVABLE);
1433
1434         zones = NODE_DATA(numa_node_id())->node_zonelists[target_zone].zones;
1435         if (do_try_to_free_pages(zones, sc.gfp_mask, &sc))
1436                 return 1;
1437         return 0;
1438 }
1439 #endif
1440
1441 /*
1442  * For kswapd, balance_pgdat() will work across all this node's zones until
1443  * they are all at pages_high.
1444  *
1445  * Returns the number of pages which were actually freed.
1446  *
1447  * There is special handling here for zones which are full of pinned pages.
1448  * This can happen if the pages are all mlocked, or if they are all used by
1449  * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
1450  * What we do is to detect the case where all pages in the zone have been
1451  * scanned twice and there has been zero successful reclaim.  Mark the zone as
1452  * dead and from now on, only perform a short scan.  Basically we're polling
1453  * the zone for when the problem goes away.
1454  *
1455  * kswapd scans the zones in the highmem->normal->dma direction.  It skips
1456  * zones which have free_pages > pages_high, but once a zone is found to have
1457  * free_pages <= pages_high, we scan that zone and the lower zones regardless
1458  * of the number of free pages in the lower zones.  This interoperates with
1459  * the page allocator fallback scheme to ensure that aging of pages is balanced
1460  * across the zones.
1461  */
1462 static unsigned long balance_pgdat(pg_data_t *pgdat, int order)
1463 {
1464         int all_zones_ok;
1465         int priority;
1466         int i;
1467         unsigned long total_scanned;
1468         unsigned long nr_reclaimed;
1469         struct reclaim_state *reclaim_state = current->reclaim_state;
1470         struct scan_control sc = {
1471                 .gfp_mask = GFP_KERNEL,
1472                 .may_swap = 1,
1473                 .swap_cluster_max = SWAP_CLUSTER_MAX,
1474                 .swappiness = vm_swappiness,
1475                 .order = order,
1476                 .mem_cgroup = NULL,
1477                 .isolate_pages = isolate_pages_global,
1478         };
1479         /*
1480          * temp_priority is used to remember the scanning priority at which
1481          * this zone was successfully refilled to free_pages == pages_high.
1482          */
1483         int temp_priority[MAX_NR_ZONES];
1484
1485 loop_again:
1486         total_scanned = 0;
1487         nr_reclaimed = 0;
1488         sc.may_writepage = !laptop_mode;
1489         count_vm_event(PAGEOUTRUN);
1490
1491         for (i = 0; i < pgdat->nr_zones; i++)
1492                 temp_priority[i] = DEF_PRIORITY;
1493
1494         for (priority = DEF_PRIORITY; priority >= 0; priority--) {
1495                 int end_zone = 0;       /* Inclusive.  0 = ZONE_DMA */
1496                 unsigned long lru_pages = 0;
1497
1498                 /* The swap token gets in the way of swapout... */
1499                 if (!priority)
1500                         disable_swap_token();
1501
1502                 all_zones_ok = 1;
1503
1504                 /*
1505                  * Scan in the highmem->dma direction for the highest
1506                  * zone which needs scanning
1507                  */
1508                 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
1509                         struct zone *zone = pgdat->node_zones + i;
1510
1511                         if (!populated_zone(zone))
1512                                 continue;
1513
1514                         if (zone_is_all_unreclaimable(zone) &&
1515                             priority != DEF_PRIORITY)
1516                                 continue;
1517
1518                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1519                                                0, 0)) {
1520                                 end_zone = i;
1521                                 break;
1522                         }
1523                 }
1524                 if (i < 0)
1525                         goto out;
1526
1527                 for (i = 0; i <= end_zone; i++) {
1528                         struct zone *zone = pgdat->node_zones + i;
1529
1530                         lru_pages += zone_page_state(zone, NR_ACTIVE)
1531                                         + zone_page_state(zone, NR_INACTIVE);
1532                 }
1533
1534                 /*
1535                  * Now scan the zone in the dma->highmem direction, stopping
1536                  * at the last zone which needs scanning.
1537                  *
1538                  * We do this because the page allocator works in the opposite
1539                  * direction.  This prevents the page allocator from allocating
1540                  * pages behind kswapd's direction of progress, which would
1541                  * cause too much scanning of the lower zones.
1542                  */
1543                 for (i = 0; i <= end_zone; i++) {
1544                         struct zone *zone = pgdat->node_zones + i;
1545                         int nr_slab;
1546
1547                         if (!populated_zone(zone))
1548                                 continue;
1549
1550                         if (zone_is_all_unreclaimable(zone) &&
1551                                         priority != DEF_PRIORITY)
1552                                 continue;
1553
1554                         if (!zone_watermark_ok(zone, order, zone->pages_high,
1555                                                end_zone, 0))
1556                                 all_zones_ok = 0;
1557                         temp_priority[i] = priority;
1558                         sc.nr_scanned = 0;
1559                         note_zone_scanning_priority(zone, priority);
1560                         /*
1561                          * We put equal pressure on every zone, unless one
1562                          * zone has way too many pages free already.
1563                          */
1564                         if (!zone_watermark_ok(zone, order, 8*zone->pages_high,
1565                                                 end_zone, 0))
1566                                 nr_reclaimed += shrink_zone(priority, zone, &sc);
1567                         reclaim_state->reclaimed_slab = 0;
1568                         nr_slab = shrink_slab(sc.nr_scanned, GFP_KERNEL,
1569                                                 lru_pages);
1570                         nr_reclaimed += reclaim_state->reclaimed_slab;
1571                         total_scanned += sc.nr_scanned;
1572                         if (zone_is_all_unreclaimable(zone))
1573                                 continue;
1574                         if (nr_slab == 0 && zone->pages_scanned >=
1575                                 (zone_page_state(zone, NR_ACTIVE)
1576                                 + zone_page_state(zone, NR_INACTIVE)) * 6)
1577                                         zone_set_flag(zone,
1578                                                       ZONE_ALL_UNRECLAIMABLE);
1579                         /*
1580                          * If we've done a decent amount of scanning and
1581                          * the reclaim ratio is low, start doing writepage
1582                          * even in laptop mode
1583                          */
1584                         if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
1585                             total_scanned > nr_reclaimed + nr_reclaimed / 2)
1586                                 sc.may_writepage = 1;
1587                 }
1588                 if (all_zones_ok)
1589                         break;          /* kswapd: all done */
1590                 /*
1591                  * OK, kswapd is getting into trouble.  Take a nap, then take
1592                  * another pass across the zones.
1593                  */
1594                 if (total_scanned && priority < DEF_PRIORITY - 2)
1595                         congestion_wait(WRITE, HZ/10);
1596
1597                 /*
1598                  * We do this so kswapd doesn't build up large priorities for
1599                  * example when it is freeing in parallel with allocators. It
1600                  * matches the direct reclaim path behaviour in terms of impact
1601                  * on zone->*_priority.
1602                  */
1603                 if (nr_reclaimed >= SWAP_CLUSTER_MAX)
1604                         break;
1605         }
1606 out:
1607         /*
1608          * Note within each zone the priority level at which this zone was
1609          * brought into a happy state.  So that the next thread which scans this
1610          * zone will start out at that priority level.
1611          */
1612         for (i = 0; i < pgdat->nr_zones; i++) {
1613                 struct zone *zone = pgdat->node_zones + i;
1614
1615                 zone->prev_priority = temp_priority[i];
1616         }
1617         if (!all_zones_ok) {
1618                 cond_resched();
1619
1620                 try_to_freeze();
1621
1622                 goto loop_again;
1623         }
1624
1625         return nr_reclaimed;
1626 }
1627
1628 /*
1629  * The background pageout daemon, started as a kernel thread
1630  * from the init process. 
1631  *
1632  * This basically trickles out pages so that we have _some_
1633  * free memory available even if there is no other activity
1634  * that frees anything up. This is needed for things like routing
1635  * etc, where we otherwise might have all activity going on in
1636  * asynchronous contexts that cannot page things out.
1637  *
1638  * If there are applications that are active memory-allocators
1639  * (most normal use), this basically shouldn't matter.
1640  */
1641 static int kswapd(void *p)
1642 {
1643         unsigned long order;
1644         pg_data_t *pgdat = (pg_data_t*)p;
1645         struct task_struct *tsk = current;
1646         DEFINE_WAIT(wait);
1647         struct reclaim_state reclaim_state = {
1648                 .reclaimed_slab = 0,
1649         };
1650         node_to_cpumask_ptr(cpumask, pgdat->node_id);
1651
1652         if (!cpus_empty(*cpumask))
1653                 set_cpus_allowed_ptr(tsk, cpumask);
1654         current->reclaim_state = &reclaim_state;
1655
1656         /*
1657          * Tell the memory management that we're a "memory allocator",
1658          * and that if we need more memory we should get access to it
1659          * regardless (see "__alloc_pages()"). "kswapd" should
1660          * never get caught in the normal page freeing logic.
1661          *
1662          * (Kswapd normally doesn't need memory anyway, but sometimes
1663          * you need a small amount of memory in order to be able to
1664          * page out something else, and this flag essentially protects
1665          * us from recursively trying to free more memory as we're
1666          * trying to free the first piece of memory in the first place).
1667          */
1668         tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
1669         set_freezable();
1670
1671         order = 0;
1672         for ( ; ; ) {
1673                 unsigned long new_order;
1674
1675                 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
1676                 new_order = pgdat->kswapd_max_order;
1677                 pgdat->kswapd_max_order = 0;
1678                 if (order < new_order) {
1679                         /*
1680                          * Don't sleep if someone wants a larger 'order'
1681                          * allocation
1682                          */
1683                         order = new_order;
1684                 } else {
1685                         if (!freezing(current))
1686                                 schedule();
1687
1688                         order = pgdat->kswapd_max_order;
1689                 }
1690                 finish_wait(&pgdat->kswapd_wait, &wait);
1691
1692                 if (!try_to_freeze()) {
1693                         /* We can speed up thawing tasks if we don't call
1694                          * balance_pgdat after returning from the refrigerator
1695                          */
1696                         balance_pgdat(pgdat, order);
1697                 }
1698         }
1699         return 0;
1700 }
1701
1702 /*
1703  * A zone is low on free memory, so wake its kswapd task to service it.
1704  */
1705 void wakeup_kswapd(struct zone *zone, int order)
1706 {
1707         pg_data_t *pgdat;
1708
1709         if (!populated_zone(zone))
1710                 return;
1711
1712         pgdat = zone->zone_pgdat;
1713         if (zone_watermark_ok(zone, order, zone->pages_low, 0, 0))
1714                 return;
1715         if (pgdat->kswapd_max_order < order)
1716                 pgdat->kswapd_max_order = order;
1717         if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
1718                 return;
1719         if (!waitqueue_active(&pgdat->kswapd_wait))
1720                 return;
1721         wake_up_interruptible(&pgdat->kswapd_wait);
1722 }
1723
1724 #ifdef CONFIG_PM
1725 /*
1726  * Helper function for shrink_all_memory().  Tries to reclaim 'nr_pages' pages
1727  * from LRU lists system-wide, for given pass and priority, and returns the
1728  * number of reclaimed pages
1729  *
1730  * For pass > 3 we also try to shrink the LRU lists that contain a few pages
1731  */
1732 static unsigned long shrink_all_zones(unsigned long nr_pages, int prio,
1733                                       int pass, struct scan_control *sc)
1734 {
1735         struct zone *zone;
1736         unsigned long nr_to_scan, ret = 0;
1737
1738         for_each_zone(zone) {
1739
1740                 if (!populated_zone(zone))
1741                         continue;
1742
1743                 if (zone_is_all_unreclaimable(zone) && prio != DEF_PRIORITY)
1744                         continue;
1745
1746                 /* For pass = 0 we don't shrink the active list */
1747                 if (pass > 0) {
1748                         zone->nr_scan_active +=
1749                                 (zone_page_state(zone, NR_ACTIVE) >> prio) + 1;
1750                         if (zone->nr_scan_active >= nr_pages || pass > 3) {
1751                                 zone->nr_scan_active = 0;
1752                                 nr_to_scan = min(nr_pages,
1753                                         zone_page_state(zone, NR_ACTIVE));
1754                                 shrink_active_list(nr_to_scan, zone, sc, prio);
1755                         }
1756                 }
1757
1758                 zone->nr_scan_inactive +=
1759                         (zone_page_state(zone, NR_INACTIVE) >> prio) + 1;
1760                 if (zone->nr_scan_inactive >= nr_pages || pass > 3) {
1761                         zone->nr_scan_inactive = 0;
1762                         nr_to_scan = min(nr_pages,
1763                                 zone_page_state(zone, NR_INACTIVE));
1764                         ret += shrink_inactive_list(nr_to_scan, zone, sc);
1765                         if (ret >= nr_pages)
1766                                 return ret;
1767                 }
1768         }
1769
1770         return ret;
1771 }
1772
1773 static unsigned long count_lru_pages(void)
1774 {
1775         return global_page_state(NR_ACTIVE) + global_page_state(NR_INACTIVE);
1776 }
1777
1778 /*
1779  * Try to free `nr_pages' of memory, system-wide, and return the number of
1780  * freed pages.
1781  *
1782  * Rather than trying to age LRUs the aim is to preserve the overall
1783  * LRU order by reclaiming preferentially
1784  * inactive > active > active referenced > active mapped
1785  */
1786 unsigned long shrink_all_memory(unsigned long nr_pages)
1787 {
1788         unsigned long lru_pages, nr_slab;
1789         unsigned long ret = 0;
1790         int pass;
1791         struct reclaim_state reclaim_state;
1792         struct scan_control sc = {
1793                 .gfp_mask = GFP_KERNEL,
1794                 .may_swap = 0,
1795                 .swap_cluster_max = nr_pages,
1796                 .may_writepage = 1,
1797                 .swappiness = vm_swappiness,
1798                 .isolate_pages = isolate_pages_global,
1799         };
1800
1801         current->reclaim_state = &reclaim_state;
1802
1803         lru_pages = count_lru_pages();
1804         nr_slab = global_page_state(NR_SLAB_RECLAIMABLE);
1805         /* If slab caches are huge, it's better to hit them first */
1806         while (nr_slab >= lru_pages) {
1807                 reclaim_state.reclaimed_slab = 0;
1808                 shrink_slab(nr_pages, sc.gfp_mask, lru_pages);
1809                 if (!reclaim_state.reclaimed_slab)
1810                         break;
1811
1812                 ret += reclaim_state.reclaimed_slab;
1813                 if (ret >= nr_pages)
1814                         goto out;
1815
1816                 nr_slab -= reclaim_state.reclaimed_slab;
1817         }
1818
1819         /*
1820          * We try to shrink LRUs in 5 passes:
1821          * 0 = Reclaim from inactive_list only
1822          * 1 = Reclaim from active list but don't reclaim mapped
1823          * 2 = 2nd pass of type 1
1824          * 3 = Reclaim mapped (normal reclaim)
1825          * 4 = 2nd pass of type 3
1826          */
1827         for (pass = 0; pass < 5; pass++) {
1828                 int prio;
1829
1830                 /* Force reclaiming mapped pages in the passes #3 and #4 */
1831                 if (pass > 2) {
1832                         sc.may_swap = 1;
1833                         sc.swappiness = 100;
1834                 }
1835
1836                 for (prio = DEF_PRIORITY; prio >= 0; prio--) {
1837                         unsigned long nr_to_scan = nr_pages - ret;
1838
1839                         sc.nr_scanned = 0;
1840                         ret += shrink_all_zones(nr_to_scan, prio, pass, &sc);
1841                         if (ret >= nr_pages)
1842                                 goto out;
1843
1844                         reclaim_state.reclaimed_slab = 0;
1845                         shrink_slab(sc.nr_scanned, sc.gfp_mask,
1846                                         count_lru_pages());
1847                         ret += reclaim_state.reclaimed_slab;
1848                         if (ret >= nr_pages)
1849                                 goto out;
1850
1851                         if (sc.nr_scanned && prio < DEF_PRIORITY - 2)
1852                                 congestion_wait(WRITE, HZ / 10);
1853                 }
1854         }
1855
1856         /*
1857          * If ret = 0, we could not shrink LRUs, but there may be something
1858          * in slab caches
1859          */
1860         if (!ret) {
1861                 do {
1862                         reclaim_state.reclaimed_slab = 0;
1863                         shrink_slab(nr_pages, sc.gfp_mask, count_lru_pages());
1864                         ret += reclaim_state.reclaimed_slab;
1865                 } while (ret < nr_pages && reclaim_state.reclaimed_slab > 0);
1866         }
1867
1868 out:
1869         current->reclaim_state = NULL;
1870
1871         return ret;
1872 }
1873 #endif
1874
1875 /* It's optimal to keep kswapds on the same CPUs as their memory, but
1876    not required for correctness.  So if the last cpu in a node goes
1877    away, we get changed to run anywhere: as the first one comes back,
1878    restore their cpu bindings. */
1879 static int __devinit cpu_callback(struct notifier_block *nfb,
1880                                   unsigned long action, void *hcpu)
1881 {
1882         int nid;
1883
1884         if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
1885                 for_each_node_state(nid, N_HIGH_MEMORY) {
1886                         pg_data_t *pgdat = NODE_DATA(nid);
1887                         node_to_cpumask_ptr(mask, pgdat->node_id);
1888
1889                         if (any_online_cpu(*mask) < nr_cpu_ids)
1890                                 /* One of our CPUs online: restore mask */
1891                                 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1892                 }
1893         }
1894         return NOTIFY_OK;
1895 }
1896
1897 /*
1898  * This kswapd start function will be called by init and node-hot-add.
1899  * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
1900  */
1901 int kswapd_run(int nid)
1902 {
1903         pg_data_t *pgdat = NODE_DATA(nid);
1904         int ret = 0;
1905
1906         if (pgdat->kswapd)
1907                 return 0;
1908
1909         pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
1910         if (IS_ERR(pgdat->kswapd)) {
1911                 /* failure at boot is fatal */
1912                 BUG_ON(system_state == SYSTEM_BOOTING);
1913                 printk("Failed to start kswapd on node %d\n",nid);
1914                 ret = -1;
1915         }
1916         return ret;
1917 }
1918
1919 static int __init kswapd_init(void)
1920 {
1921         int nid;
1922
1923         swap_setup();
1924         for_each_node_state(nid, N_HIGH_MEMORY)
1925                 kswapd_run(nid);
1926         hotcpu_notifier(cpu_callback, 0);
1927         return 0;
1928 }
1929
1930 module_init(kswapd_init)
1931
1932 #ifdef CONFIG_NUMA
1933 /*
1934  * Zone reclaim mode
1935  *
1936  * If non-zero call zone_reclaim when the number of free pages falls below
1937  * the watermarks.
1938  */
1939 int zone_reclaim_mode __read_mostly;
1940
1941 #define RECLAIM_OFF 0
1942 #define RECLAIM_ZONE (1<<0)     /* Run shrink_cache on the zone */
1943 #define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
1944 #define RECLAIM_SWAP (1<<2)     /* Swap pages out during reclaim */
1945
1946 /*
1947  * Priority for ZONE_RECLAIM. This determines the fraction of pages
1948  * of a node considered for each zone_reclaim. 4 scans 1/16th of
1949  * a zone.
1950  */
1951 #define ZONE_RECLAIM_PRIORITY 4
1952
1953 /*
1954  * Percentage of pages in a zone that must be unmapped for zone_reclaim to
1955  * occur.
1956  */
1957 int sysctl_min_unmapped_ratio = 1;
1958
1959 /*
1960  * If the number of slab pages in a zone grows beyond this percentage then
1961  * slab reclaim needs to occur.
1962  */
1963 int sysctl_min_slab_ratio = 5;
1964
1965 /*
1966  * Try to free up some pages from this zone through reclaim.
1967  */
1968 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
1969 {
1970         /* Minimum pages needed in order to stay on node */
1971         const unsigned long nr_pages = 1 << order;
1972         struct task_struct *p = current;
1973         struct reclaim_state reclaim_state;
1974         int priority;
1975         unsigned long nr_reclaimed = 0;
1976         struct scan_control sc = {
1977                 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
1978                 .may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP),
1979                 .swap_cluster_max = max_t(unsigned long, nr_pages,
1980                                         SWAP_CLUSTER_MAX),
1981                 .gfp_mask = gfp_mask,
1982                 .swappiness = vm_swappiness,
1983                 .isolate_pages = isolate_pages_global,
1984         };
1985         unsigned long slab_reclaimable;
1986
1987         disable_swap_token();
1988         cond_resched();
1989         /*
1990          * We need to be able to allocate from the reserves for RECLAIM_SWAP
1991          * and we also need to be able to write out pages for RECLAIM_WRITE
1992          * and RECLAIM_SWAP.
1993          */
1994         p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
1995         reclaim_state.reclaimed_slab = 0;
1996         p->reclaim_state = &reclaim_state;
1997
1998         if (zone_page_state(zone, NR_FILE_PAGES) -
1999                 zone_page_state(zone, NR_FILE_MAPPED) >
2000                 zone->min_unmapped_pages) {
2001                 /*
2002                  * Free memory by calling shrink zone with increasing
2003                  * priorities until we have enough memory freed.
2004                  */
2005                 priority = ZONE_RECLAIM_PRIORITY;
2006                 do {
2007                         note_zone_scanning_priority(zone, priority);
2008                         nr_reclaimed += shrink_zone(priority, zone, &sc);
2009                         priority--;
2010                 } while (priority >= 0 && nr_reclaimed < nr_pages);
2011         }
2012
2013         slab_reclaimable = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2014         if (slab_reclaimable > zone->min_slab_pages) {
2015                 /*
2016                  * shrink_slab() does not currently allow us to determine how
2017                  * many pages were freed in this zone. So we take the current
2018                  * number of slab pages and shake the slab until it is reduced
2019                  * by the same nr_pages that we used for reclaiming unmapped
2020                  * pages.
2021                  *
2022                  * Note that shrink_slab will free memory on all zones and may
2023                  * take a long time.
2024                  */
2025                 while (shrink_slab(sc.nr_scanned, gfp_mask, order) &&
2026                         zone_page_state(zone, NR_SLAB_RECLAIMABLE) >
2027                                 slab_reclaimable - nr_pages)
2028                         ;
2029
2030                 /*
2031                  * Update nr_reclaimed by the number of slab pages we
2032                  * reclaimed from this zone.
2033                  */
2034                 nr_reclaimed += slab_reclaimable -
2035                         zone_page_state(zone, NR_SLAB_RECLAIMABLE);
2036         }
2037
2038         p->reclaim_state = NULL;
2039         current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
2040         return nr_reclaimed >= nr_pages;
2041 }
2042
2043 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
2044 {
2045         int node_id;
2046         int ret;
2047
2048         /*
2049          * Zone reclaim reclaims unmapped file backed pages and
2050          * slab pages if we are over the defined limits.
2051          *
2052          * A small portion of unmapped file backed pages is needed for
2053          * file I/O otherwise pages read by file I/O will be immediately
2054          * thrown out if the zone is overallocated. So we do not reclaim
2055          * if less than a specified percentage of the zone is used by
2056          * unmapped file backed pages.
2057          */
2058         if (zone_page_state(zone, NR_FILE_PAGES) -
2059             zone_page_state(zone, NR_FILE_MAPPED) <= zone->min_unmapped_pages
2060             && zone_page_state(zone, NR_SLAB_RECLAIMABLE)
2061                         <= zone->min_slab_pages)
2062                 return 0;
2063
2064         if (zone_is_all_unreclaimable(zone))
2065                 return 0;
2066
2067         /*
2068          * Do not scan if the allocation should not be delayed.
2069          */
2070         if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
2071                         return 0;
2072
2073         /*
2074          * Only run zone reclaim on the local zone or on zones that do not
2075          * have associated processors. This will favor the local processor
2076          * over remote processors and spread off node memory allocations
2077          * as wide as possible.
2078          */
2079         node_id = zone_to_nid(zone);
2080         if (node_state(node_id, N_CPU) && node_id != numa_node_id())
2081                 return 0;
2082
2083         if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
2084                 return 0;
2085         ret = __zone_reclaim(zone, gfp_mask, order);
2086         zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
2087
2088         return ret;
2089 }
2090 #endif