Merge branch 'for-4.13-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[sfrench/cifs-2.6.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static PLIST_HEAD(swap_avail_head);
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 static inline unsigned char swap_count(unsigned char ent)
100 {
101         return ent & ~SWAP_HAS_CACHE;   /* may include SWAP_HAS_CONT flag */
102 }
103
104 /* returns 1 if swap entry is freed */
105 static int
106 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
107 {
108         swp_entry_t entry = swp_entry(si->type, offset);
109         struct page *page;
110         int ret = 0;
111
112         page = find_get_page(swap_address_space(entry), swp_offset(entry));
113         if (!page)
114                 return 0;
115         /*
116          * This function is called from scan_swap_map() and it's called
117          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
118          * We have to use trylock for avoiding deadlock. This is a special
119          * case and you should use try_to_free_swap() with explicit lock_page()
120          * in usual operations.
121          */
122         if (trylock_page(page)) {
123                 ret = try_to_free_swap(page);
124                 unlock_page(page);
125         }
126         put_page(page);
127         return ret;
128 }
129
130 /*
131  * swapon tell device that all the old swap contents can be discarded,
132  * to allow the swap device to optimize its wear-levelling.
133  */
134 static int discard_swap(struct swap_info_struct *si)
135 {
136         struct swap_extent *se;
137         sector_t start_block;
138         sector_t nr_blocks;
139         int err = 0;
140
141         /* Do not discard the swap header page! */
142         se = &si->first_swap_extent;
143         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145         if (nr_blocks) {
146                 err = blkdev_issue_discard(si->bdev, start_block,
147                                 nr_blocks, GFP_KERNEL, 0);
148                 if (err)
149                         return err;
150                 cond_resched();
151         }
152
153         list_for_each_entry(se, &si->first_swap_extent.list, list) {
154                 start_block = se->start_block << (PAGE_SHIFT - 9);
155                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
156
157                 err = blkdev_issue_discard(si->bdev, start_block,
158                                 nr_blocks, GFP_KERNEL, 0);
159                 if (err)
160                         break;
161
162                 cond_resched();
163         }
164         return err;             /* That will often be -EOPNOTSUPP */
165 }
166
167 /*
168  * swap allocation tell device that a cluster of swap can now be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
171 static void discard_swap_cluster(struct swap_info_struct *si,
172                                  pgoff_t start_page, pgoff_t nr_pages)
173 {
174         struct swap_extent *se = si->curr_swap_extent;
175         int found_extent = 0;
176
177         while (nr_pages) {
178                 if (se->start_page <= start_page &&
179                     start_page < se->start_page + se->nr_pages) {
180                         pgoff_t offset = start_page - se->start_page;
181                         sector_t start_block = se->start_block + offset;
182                         sector_t nr_blocks = se->nr_pages - offset;
183
184                         if (nr_blocks > nr_pages)
185                                 nr_blocks = nr_pages;
186                         start_page += nr_blocks;
187                         nr_pages -= nr_blocks;
188
189                         if (!found_extent++)
190                                 si->curr_swap_extent = se;
191
192                         start_block <<= PAGE_SHIFT - 9;
193                         nr_blocks <<= PAGE_SHIFT - 9;
194                         if (blkdev_issue_discard(si->bdev, start_block,
195                                     nr_blocks, GFP_NOIO, 0))
196                                 break;
197                 }
198
199                 se = list_next_entry(se, list);
200         }
201 }
202
203 #ifdef CONFIG_THP_SWAP
204 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
205 #else
206 #define SWAPFILE_CLUSTER        256
207 #endif
208 #define LATENCY_LIMIT           256
209
210 static inline void cluster_set_flag(struct swap_cluster_info *info,
211         unsigned int flag)
212 {
213         info->flags = flag;
214 }
215
216 static inline unsigned int cluster_count(struct swap_cluster_info *info)
217 {
218         return info->data;
219 }
220
221 static inline void cluster_set_count(struct swap_cluster_info *info,
222                                      unsigned int c)
223 {
224         info->data = c;
225 }
226
227 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
228                                          unsigned int c, unsigned int f)
229 {
230         info->flags = f;
231         info->data = c;
232 }
233
234 static inline unsigned int cluster_next(struct swap_cluster_info *info)
235 {
236         return info->data;
237 }
238
239 static inline void cluster_set_next(struct swap_cluster_info *info,
240                                     unsigned int n)
241 {
242         info->data = n;
243 }
244
245 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
246                                          unsigned int n, unsigned int f)
247 {
248         info->flags = f;
249         info->data = n;
250 }
251
252 static inline bool cluster_is_free(struct swap_cluster_info *info)
253 {
254         return info->flags & CLUSTER_FLAG_FREE;
255 }
256
257 static inline bool cluster_is_null(struct swap_cluster_info *info)
258 {
259         return info->flags & CLUSTER_FLAG_NEXT_NULL;
260 }
261
262 static inline void cluster_set_null(struct swap_cluster_info *info)
263 {
264         info->flags = CLUSTER_FLAG_NEXT_NULL;
265         info->data = 0;
266 }
267
268 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
269                                                      unsigned long offset)
270 {
271         struct swap_cluster_info *ci;
272
273         ci = si->cluster_info;
274         if (ci) {
275                 ci += offset / SWAPFILE_CLUSTER;
276                 spin_lock(&ci->lock);
277         }
278         return ci;
279 }
280
281 static inline void unlock_cluster(struct swap_cluster_info *ci)
282 {
283         if (ci)
284                 spin_unlock(&ci->lock);
285 }
286
287 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
288         struct swap_info_struct *si,
289         unsigned long offset)
290 {
291         struct swap_cluster_info *ci;
292
293         ci = lock_cluster(si, offset);
294         if (!ci)
295                 spin_lock(&si->lock);
296
297         return ci;
298 }
299
300 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
301                                                struct swap_cluster_info *ci)
302 {
303         if (ci)
304                 unlock_cluster(ci);
305         else
306                 spin_unlock(&si->lock);
307 }
308
309 static inline bool cluster_list_empty(struct swap_cluster_list *list)
310 {
311         return cluster_is_null(&list->head);
312 }
313
314 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
315 {
316         return cluster_next(&list->head);
317 }
318
319 static void cluster_list_init(struct swap_cluster_list *list)
320 {
321         cluster_set_null(&list->head);
322         cluster_set_null(&list->tail);
323 }
324
325 static void cluster_list_add_tail(struct swap_cluster_list *list,
326                                   struct swap_cluster_info *ci,
327                                   unsigned int idx)
328 {
329         if (cluster_list_empty(list)) {
330                 cluster_set_next_flag(&list->head, idx, 0);
331                 cluster_set_next_flag(&list->tail, idx, 0);
332         } else {
333                 struct swap_cluster_info *ci_tail;
334                 unsigned int tail = cluster_next(&list->tail);
335
336                 /*
337                  * Nested cluster lock, but both cluster locks are
338                  * only acquired when we held swap_info_struct->lock
339                  */
340                 ci_tail = ci + tail;
341                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
342                 cluster_set_next(ci_tail, idx);
343                 spin_unlock(&ci_tail->lock);
344                 cluster_set_next_flag(&list->tail, idx, 0);
345         }
346 }
347
348 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
349                                            struct swap_cluster_info *ci)
350 {
351         unsigned int idx;
352
353         idx = cluster_next(&list->head);
354         if (cluster_next(&list->tail) == idx) {
355                 cluster_set_null(&list->head);
356                 cluster_set_null(&list->tail);
357         } else
358                 cluster_set_next_flag(&list->head,
359                                       cluster_next(&ci[idx]), 0);
360
361         return idx;
362 }
363
364 /* Add a cluster to discard list and schedule it to do discard */
365 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
366                 unsigned int idx)
367 {
368         /*
369          * If scan_swap_map() can't find a free cluster, it will check
370          * si->swap_map directly. To make sure the discarding cluster isn't
371          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
372          * will be cleared after discard
373          */
374         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
375                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
376
377         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
378
379         schedule_work(&si->discard_work);
380 }
381
382 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
383 {
384         struct swap_cluster_info *ci = si->cluster_info;
385
386         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
387         cluster_list_add_tail(&si->free_clusters, ci, idx);
388 }
389
390 /*
391  * Doing discard actually. After a cluster discard is finished, the cluster
392  * will be added to free cluster list. caller should hold si->lock.
393 */
394 static void swap_do_scheduled_discard(struct swap_info_struct *si)
395 {
396         struct swap_cluster_info *info, *ci;
397         unsigned int idx;
398
399         info = si->cluster_info;
400
401         while (!cluster_list_empty(&si->discard_clusters)) {
402                 idx = cluster_list_del_first(&si->discard_clusters, info);
403                 spin_unlock(&si->lock);
404
405                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
406                                 SWAPFILE_CLUSTER);
407
408                 spin_lock(&si->lock);
409                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
410                 __free_cluster(si, idx);
411                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
412                                 0, SWAPFILE_CLUSTER);
413                 unlock_cluster(ci);
414         }
415 }
416
417 static void swap_discard_work(struct work_struct *work)
418 {
419         struct swap_info_struct *si;
420
421         si = container_of(work, struct swap_info_struct, discard_work);
422
423         spin_lock(&si->lock);
424         swap_do_scheduled_discard(si);
425         spin_unlock(&si->lock);
426 }
427
428 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
429 {
430         struct swap_cluster_info *ci = si->cluster_info;
431
432         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
433         cluster_list_del_first(&si->free_clusters, ci);
434         cluster_set_count_flag(ci + idx, 0, 0);
435 }
436
437 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
438 {
439         struct swap_cluster_info *ci = si->cluster_info + idx;
440
441         VM_BUG_ON(cluster_count(ci) != 0);
442         /*
443          * If the swap is discardable, prepare discard the cluster
444          * instead of free it immediately. The cluster will be freed
445          * after discard.
446          */
447         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
448             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
449                 swap_cluster_schedule_discard(si, idx);
450                 return;
451         }
452
453         __free_cluster(si, idx);
454 }
455
456 /*
457  * The cluster corresponding to page_nr will be used. The cluster will be
458  * removed from free cluster list and its usage counter will be increased.
459  */
460 static void inc_cluster_info_page(struct swap_info_struct *p,
461         struct swap_cluster_info *cluster_info, unsigned long page_nr)
462 {
463         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
464
465         if (!cluster_info)
466                 return;
467         if (cluster_is_free(&cluster_info[idx]))
468                 alloc_cluster(p, idx);
469
470         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
471         cluster_set_count(&cluster_info[idx],
472                 cluster_count(&cluster_info[idx]) + 1);
473 }
474
475 /*
476  * The cluster corresponding to page_nr decreases one usage. If the usage
477  * counter becomes 0, which means no page in the cluster is in using, we can
478  * optionally discard the cluster and add it to free cluster list.
479  */
480 static void dec_cluster_info_page(struct swap_info_struct *p,
481         struct swap_cluster_info *cluster_info, unsigned long page_nr)
482 {
483         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
484
485         if (!cluster_info)
486                 return;
487
488         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
489         cluster_set_count(&cluster_info[idx],
490                 cluster_count(&cluster_info[idx]) - 1);
491
492         if (cluster_count(&cluster_info[idx]) == 0)
493                 free_cluster(p, idx);
494 }
495
496 /*
497  * It's possible scan_swap_map() uses a free cluster in the middle of free
498  * cluster list. Avoiding such abuse to avoid list corruption.
499  */
500 static bool
501 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
502         unsigned long offset)
503 {
504         struct percpu_cluster *percpu_cluster;
505         bool conflict;
506
507         offset /= SWAPFILE_CLUSTER;
508         conflict = !cluster_list_empty(&si->free_clusters) &&
509                 offset != cluster_list_first(&si->free_clusters) &&
510                 cluster_is_free(&si->cluster_info[offset]);
511
512         if (!conflict)
513                 return false;
514
515         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
516         cluster_set_null(&percpu_cluster->index);
517         return true;
518 }
519
520 /*
521  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
522  * might involve allocating a new cluster for current CPU too.
523  */
524 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
525         unsigned long *offset, unsigned long *scan_base)
526 {
527         struct percpu_cluster *cluster;
528         struct swap_cluster_info *ci;
529         bool found_free;
530         unsigned long tmp, max;
531
532 new_cluster:
533         cluster = this_cpu_ptr(si->percpu_cluster);
534         if (cluster_is_null(&cluster->index)) {
535                 if (!cluster_list_empty(&si->free_clusters)) {
536                         cluster->index = si->free_clusters.head;
537                         cluster->next = cluster_next(&cluster->index) *
538                                         SWAPFILE_CLUSTER;
539                 } else if (!cluster_list_empty(&si->discard_clusters)) {
540                         /*
541                          * we don't have free cluster but have some clusters in
542                          * discarding, do discard now and reclaim them
543                          */
544                         swap_do_scheduled_discard(si);
545                         *scan_base = *offset = si->cluster_next;
546                         goto new_cluster;
547                 } else
548                         return false;
549         }
550
551         found_free = false;
552
553         /*
554          * Other CPUs can use our cluster if they can't find a free cluster,
555          * check if there is still free entry in the cluster
556          */
557         tmp = cluster->next;
558         max = min_t(unsigned long, si->max,
559                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
560         if (tmp >= max) {
561                 cluster_set_null(&cluster->index);
562                 goto new_cluster;
563         }
564         ci = lock_cluster(si, tmp);
565         while (tmp < max) {
566                 if (!si->swap_map[tmp]) {
567                         found_free = true;
568                         break;
569                 }
570                 tmp++;
571         }
572         unlock_cluster(ci);
573         if (!found_free) {
574                 cluster_set_null(&cluster->index);
575                 goto new_cluster;
576         }
577         cluster->next = tmp + 1;
578         *offset = tmp;
579         *scan_base = tmp;
580         return found_free;
581 }
582
583 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
584                              unsigned int nr_entries)
585 {
586         unsigned int end = offset + nr_entries - 1;
587
588         if (offset == si->lowest_bit)
589                 si->lowest_bit += nr_entries;
590         if (end == si->highest_bit)
591                 si->highest_bit -= nr_entries;
592         si->inuse_pages += nr_entries;
593         if (si->inuse_pages == si->pages) {
594                 si->lowest_bit = si->max;
595                 si->highest_bit = 0;
596                 spin_lock(&swap_avail_lock);
597                 plist_del(&si->avail_list, &swap_avail_head);
598                 spin_unlock(&swap_avail_lock);
599         }
600 }
601
602 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
603                             unsigned int nr_entries)
604 {
605         unsigned long end = offset + nr_entries - 1;
606         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
607
608         if (offset < si->lowest_bit)
609                 si->lowest_bit = offset;
610         if (end > si->highest_bit) {
611                 bool was_full = !si->highest_bit;
612
613                 si->highest_bit = end;
614                 if (was_full && (si->flags & SWP_WRITEOK)) {
615                         spin_lock(&swap_avail_lock);
616                         WARN_ON(!plist_node_empty(&si->avail_list));
617                         if (plist_node_empty(&si->avail_list))
618                                 plist_add(&si->avail_list, &swap_avail_head);
619                         spin_unlock(&swap_avail_lock);
620                 }
621         }
622         atomic_long_add(nr_entries, &nr_swap_pages);
623         si->inuse_pages -= nr_entries;
624         if (si->flags & SWP_BLKDEV)
625                 swap_slot_free_notify =
626                         si->bdev->bd_disk->fops->swap_slot_free_notify;
627         else
628                 swap_slot_free_notify = NULL;
629         while (offset <= end) {
630                 frontswap_invalidate_page(si->type, offset);
631                 if (swap_slot_free_notify)
632                         swap_slot_free_notify(si->bdev, offset);
633                 offset++;
634         }
635 }
636
637 static int scan_swap_map_slots(struct swap_info_struct *si,
638                                unsigned char usage, int nr,
639                                swp_entry_t slots[])
640 {
641         struct swap_cluster_info *ci;
642         unsigned long offset;
643         unsigned long scan_base;
644         unsigned long last_in_cluster = 0;
645         int latency_ration = LATENCY_LIMIT;
646         int n_ret = 0;
647
648         if (nr > SWAP_BATCH)
649                 nr = SWAP_BATCH;
650
651         /*
652          * We try to cluster swap pages by allocating them sequentially
653          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
654          * way, however, we resort to first-free allocation, starting
655          * a new cluster.  This prevents us from scattering swap pages
656          * all over the entire swap partition, so that we reduce
657          * overall disk seek times between swap pages.  -- sct
658          * But we do now try to find an empty cluster.  -Andrea
659          * And we let swap pages go all over an SSD partition.  Hugh
660          */
661
662         si->flags += SWP_SCANNING;
663         scan_base = offset = si->cluster_next;
664
665         /* SSD algorithm */
666         if (si->cluster_info) {
667                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
668                         goto checks;
669                 else
670                         goto scan;
671         }
672
673         if (unlikely(!si->cluster_nr--)) {
674                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
675                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
676                         goto checks;
677                 }
678
679                 spin_unlock(&si->lock);
680
681                 /*
682                  * If seek is expensive, start searching for new cluster from
683                  * start of partition, to minimize the span of allocated swap.
684                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
685                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
686                  */
687                 scan_base = offset = si->lowest_bit;
688                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
689
690                 /* Locate the first empty (unaligned) cluster */
691                 for (; last_in_cluster <= si->highest_bit; offset++) {
692                         if (si->swap_map[offset])
693                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
694                         else if (offset == last_in_cluster) {
695                                 spin_lock(&si->lock);
696                                 offset -= SWAPFILE_CLUSTER - 1;
697                                 si->cluster_next = offset;
698                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
699                                 goto checks;
700                         }
701                         if (unlikely(--latency_ration < 0)) {
702                                 cond_resched();
703                                 latency_ration = LATENCY_LIMIT;
704                         }
705                 }
706
707                 offset = scan_base;
708                 spin_lock(&si->lock);
709                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
710         }
711
712 checks:
713         if (si->cluster_info) {
714                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
715                 /* take a break if we already got some slots */
716                         if (n_ret)
717                                 goto done;
718                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
719                                                         &scan_base))
720                                 goto scan;
721                 }
722         }
723         if (!(si->flags & SWP_WRITEOK))
724                 goto no_page;
725         if (!si->highest_bit)
726                 goto no_page;
727         if (offset > si->highest_bit)
728                 scan_base = offset = si->lowest_bit;
729
730         ci = lock_cluster(si, offset);
731         /* reuse swap entry of cache-only swap if not busy. */
732         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
733                 int swap_was_freed;
734                 unlock_cluster(ci);
735                 spin_unlock(&si->lock);
736                 swap_was_freed = __try_to_reclaim_swap(si, offset);
737                 spin_lock(&si->lock);
738                 /* entry was freed successfully, try to use this again */
739                 if (swap_was_freed)
740                         goto checks;
741                 goto scan; /* check next one */
742         }
743
744         if (si->swap_map[offset]) {
745                 unlock_cluster(ci);
746                 if (!n_ret)
747                         goto scan;
748                 else
749                         goto done;
750         }
751         si->swap_map[offset] = usage;
752         inc_cluster_info_page(si, si->cluster_info, offset);
753         unlock_cluster(ci);
754
755         swap_range_alloc(si, offset, 1);
756         si->cluster_next = offset + 1;
757         slots[n_ret++] = swp_entry(si->type, offset);
758
759         /* got enough slots or reach max slots? */
760         if ((n_ret == nr) || (offset >= si->highest_bit))
761                 goto done;
762
763         /* search for next available slot */
764
765         /* time to take a break? */
766         if (unlikely(--latency_ration < 0)) {
767                 if (n_ret)
768                         goto done;
769                 spin_unlock(&si->lock);
770                 cond_resched();
771                 spin_lock(&si->lock);
772                 latency_ration = LATENCY_LIMIT;
773         }
774
775         /* try to get more slots in cluster */
776         if (si->cluster_info) {
777                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
778                         goto checks;
779                 else
780                         goto done;
781         }
782         /* non-ssd case */
783         ++offset;
784
785         /* non-ssd case, still more slots in cluster? */
786         if (si->cluster_nr && !si->swap_map[offset]) {
787                 --si->cluster_nr;
788                 goto checks;
789         }
790
791 done:
792         si->flags -= SWP_SCANNING;
793         return n_ret;
794
795 scan:
796         spin_unlock(&si->lock);
797         while (++offset <= si->highest_bit) {
798                 if (!si->swap_map[offset]) {
799                         spin_lock(&si->lock);
800                         goto checks;
801                 }
802                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
803                         spin_lock(&si->lock);
804                         goto checks;
805                 }
806                 if (unlikely(--latency_ration < 0)) {
807                         cond_resched();
808                         latency_ration = LATENCY_LIMIT;
809                 }
810         }
811         offset = si->lowest_bit;
812         while (offset < scan_base) {
813                 if (!si->swap_map[offset]) {
814                         spin_lock(&si->lock);
815                         goto checks;
816                 }
817                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
818                         spin_lock(&si->lock);
819                         goto checks;
820                 }
821                 if (unlikely(--latency_ration < 0)) {
822                         cond_resched();
823                         latency_ration = LATENCY_LIMIT;
824                 }
825                 offset++;
826         }
827         spin_lock(&si->lock);
828
829 no_page:
830         si->flags -= SWP_SCANNING;
831         return n_ret;
832 }
833
834 #ifdef CONFIG_THP_SWAP
835 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
836 {
837         unsigned long idx;
838         struct swap_cluster_info *ci;
839         unsigned long offset, i;
840         unsigned char *map;
841
842         if (cluster_list_empty(&si->free_clusters))
843                 return 0;
844
845         idx = cluster_list_first(&si->free_clusters);
846         offset = idx * SWAPFILE_CLUSTER;
847         ci = lock_cluster(si, offset);
848         alloc_cluster(si, idx);
849         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, 0);
850
851         map = si->swap_map + offset;
852         for (i = 0; i < SWAPFILE_CLUSTER; i++)
853                 map[i] = SWAP_HAS_CACHE;
854         unlock_cluster(ci);
855         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
856         *slot = swp_entry(si->type, offset);
857
858         return 1;
859 }
860
861 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
862 {
863         unsigned long offset = idx * SWAPFILE_CLUSTER;
864         struct swap_cluster_info *ci;
865
866         ci = lock_cluster(si, offset);
867         cluster_set_count_flag(ci, 0, 0);
868         free_cluster(si, idx);
869         unlock_cluster(ci);
870         swap_range_free(si, offset, SWAPFILE_CLUSTER);
871 }
872 #else
873 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
874 {
875         VM_WARN_ON_ONCE(1);
876         return 0;
877 }
878 #endif /* CONFIG_THP_SWAP */
879
880 static unsigned long scan_swap_map(struct swap_info_struct *si,
881                                    unsigned char usage)
882 {
883         swp_entry_t entry;
884         int n_ret;
885
886         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
887
888         if (n_ret)
889                 return swp_offset(entry);
890         else
891                 return 0;
892
893 }
894
895 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
896 {
897         unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
898         struct swap_info_struct *si, *next;
899         long avail_pgs;
900         int n_ret = 0;
901
902         /* Only single cluster request supported */
903         WARN_ON_ONCE(n_goal > 1 && cluster);
904
905         avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
906         if (avail_pgs <= 0)
907                 goto noswap;
908
909         if (n_goal > SWAP_BATCH)
910                 n_goal = SWAP_BATCH;
911
912         if (n_goal > avail_pgs)
913                 n_goal = avail_pgs;
914
915         atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
916
917         spin_lock(&swap_avail_lock);
918
919 start_over:
920         plist_for_each_entry_safe(si, next, &swap_avail_head, avail_list) {
921                 /* requeue si to after same-priority siblings */
922                 plist_requeue(&si->avail_list, &swap_avail_head);
923                 spin_unlock(&swap_avail_lock);
924                 spin_lock(&si->lock);
925                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
926                         spin_lock(&swap_avail_lock);
927                         if (plist_node_empty(&si->avail_list)) {
928                                 spin_unlock(&si->lock);
929                                 goto nextsi;
930                         }
931                         WARN(!si->highest_bit,
932                              "swap_info %d in list but !highest_bit\n",
933                              si->type);
934                         WARN(!(si->flags & SWP_WRITEOK),
935                              "swap_info %d in list but !SWP_WRITEOK\n",
936                              si->type);
937                         plist_del(&si->avail_list, &swap_avail_head);
938                         spin_unlock(&si->lock);
939                         goto nextsi;
940                 }
941                 if (cluster)
942                         n_ret = swap_alloc_cluster(si, swp_entries);
943                 else
944                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
945                                                     n_goal, swp_entries);
946                 spin_unlock(&si->lock);
947                 if (n_ret || cluster)
948                         goto check_out;
949                 pr_debug("scan_swap_map of si %d failed to find offset\n",
950                         si->type);
951
952                 spin_lock(&swap_avail_lock);
953 nextsi:
954                 /*
955                  * if we got here, it's likely that si was almost full before,
956                  * and since scan_swap_map() can drop the si->lock, multiple
957                  * callers probably all tried to get a page from the same si
958                  * and it filled up before we could get one; or, the si filled
959                  * up between us dropping swap_avail_lock and taking si->lock.
960                  * Since we dropped the swap_avail_lock, the swap_avail_head
961                  * list may have been modified; so if next is still in the
962                  * swap_avail_head list then try it, otherwise start over
963                  * if we have not gotten any slots.
964                  */
965                 if (plist_node_empty(&next->avail_list))
966                         goto start_over;
967         }
968
969         spin_unlock(&swap_avail_lock);
970
971 check_out:
972         if (n_ret < n_goal)
973                 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
974                                 &nr_swap_pages);
975 noswap:
976         return n_ret;
977 }
978
979 /* The only caller of this function is now suspend routine */
980 swp_entry_t get_swap_page_of_type(int type)
981 {
982         struct swap_info_struct *si;
983         pgoff_t offset;
984
985         si = swap_info[type];
986         spin_lock(&si->lock);
987         if (si && (si->flags & SWP_WRITEOK)) {
988                 atomic_long_dec(&nr_swap_pages);
989                 /* This is called for allocating swap entry, not cache */
990                 offset = scan_swap_map(si, 1);
991                 if (offset) {
992                         spin_unlock(&si->lock);
993                         return swp_entry(type, offset);
994                 }
995                 atomic_long_inc(&nr_swap_pages);
996         }
997         spin_unlock(&si->lock);
998         return (swp_entry_t) {0};
999 }
1000
1001 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1002 {
1003         struct swap_info_struct *p;
1004         unsigned long offset, type;
1005
1006         if (!entry.val)
1007                 goto out;
1008         type = swp_type(entry);
1009         if (type >= nr_swapfiles)
1010                 goto bad_nofile;
1011         p = swap_info[type];
1012         if (!(p->flags & SWP_USED))
1013                 goto bad_device;
1014         offset = swp_offset(entry);
1015         if (offset >= p->max)
1016                 goto bad_offset;
1017         return p;
1018
1019 bad_offset:
1020         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1021         goto out;
1022 bad_device:
1023         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1024         goto out;
1025 bad_nofile:
1026         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1027 out:
1028         return NULL;
1029 }
1030
1031 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1032 {
1033         struct swap_info_struct *p;
1034
1035         p = __swap_info_get(entry);
1036         if (!p)
1037                 goto out;
1038         if (!p->swap_map[swp_offset(entry)])
1039                 goto bad_free;
1040         return p;
1041
1042 bad_free:
1043         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1044         goto out;
1045 out:
1046         return NULL;
1047 }
1048
1049 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1050 {
1051         struct swap_info_struct *p;
1052
1053         p = _swap_info_get(entry);
1054         if (p)
1055                 spin_lock(&p->lock);
1056         return p;
1057 }
1058
1059 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1060                                         struct swap_info_struct *q)
1061 {
1062         struct swap_info_struct *p;
1063
1064         p = _swap_info_get(entry);
1065
1066         if (p != q) {
1067                 if (q != NULL)
1068                         spin_unlock(&q->lock);
1069                 if (p != NULL)
1070                         spin_lock(&p->lock);
1071         }
1072         return p;
1073 }
1074
1075 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1076                                        swp_entry_t entry, unsigned char usage)
1077 {
1078         struct swap_cluster_info *ci;
1079         unsigned long offset = swp_offset(entry);
1080         unsigned char count;
1081         unsigned char has_cache;
1082
1083         ci = lock_cluster_or_swap_info(p, offset);
1084
1085         count = p->swap_map[offset];
1086
1087         has_cache = count & SWAP_HAS_CACHE;
1088         count &= ~SWAP_HAS_CACHE;
1089
1090         if (usage == SWAP_HAS_CACHE) {
1091                 VM_BUG_ON(!has_cache);
1092                 has_cache = 0;
1093         } else if (count == SWAP_MAP_SHMEM) {
1094                 /*
1095                  * Or we could insist on shmem.c using a special
1096                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1097                  */
1098                 count = 0;
1099         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1100                 if (count == COUNT_CONTINUED) {
1101                         if (swap_count_continued(p, offset, count))
1102                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1103                         else
1104                                 count = SWAP_MAP_MAX;
1105                 } else
1106                         count--;
1107         }
1108
1109         usage = count | has_cache;
1110         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1111
1112         unlock_cluster_or_swap_info(p, ci);
1113
1114         return usage;
1115 }
1116
1117 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1118 {
1119         struct swap_cluster_info *ci;
1120         unsigned long offset = swp_offset(entry);
1121         unsigned char count;
1122
1123         ci = lock_cluster(p, offset);
1124         count = p->swap_map[offset];
1125         VM_BUG_ON(count != SWAP_HAS_CACHE);
1126         p->swap_map[offset] = 0;
1127         dec_cluster_info_page(p, p->cluster_info, offset);
1128         unlock_cluster(ci);
1129
1130         mem_cgroup_uncharge_swap(entry, 1);
1131         swap_range_free(p, offset, 1);
1132 }
1133
1134 /*
1135  * Caller has made sure that the swap device corresponding to entry
1136  * is still around or has not been recycled.
1137  */
1138 void swap_free(swp_entry_t entry)
1139 {
1140         struct swap_info_struct *p;
1141
1142         p = _swap_info_get(entry);
1143         if (p) {
1144                 if (!__swap_entry_free(p, entry, 1))
1145                         free_swap_slot(entry);
1146         }
1147 }
1148
1149 /*
1150  * Called after dropping swapcache to decrease refcnt to swap entries.
1151  */
1152 static void swapcache_free(swp_entry_t entry)
1153 {
1154         struct swap_info_struct *p;
1155
1156         p = _swap_info_get(entry);
1157         if (p) {
1158                 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1159                         free_swap_slot(entry);
1160         }
1161 }
1162
1163 #ifdef CONFIG_THP_SWAP
1164 static void swapcache_free_cluster(swp_entry_t entry)
1165 {
1166         unsigned long offset = swp_offset(entry);
1167         unsigned long idx = offset / SWAPFILE_CLUSTER;
1168         struct swap_cluster_info *ci;
1169         struct swap_info_struct *si;
1170         unsigned char *map;
1171         unsigned int i;
1172
1173         si = swap_info_get(entry);
1174         if (!si)
1175                 return;
1176
1177         ci = lock_cluster(si, offset);
1178         map = si->swap_map + offset;
1179         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1180                 VM_BUG_ON(map[i] != SWAP_HAS_CACHE);
1181                 map[i] = 0;
1182         }
1183         unlock_cluster(ci);
1184         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1185         swap_free_cluster(si, idx);
1186         spin_unlock(&si->lock);
1187 }
1188 #else
1189 static inline void swapcache_free_cluster(swp_entry_t entry)
1190 {
1191 }
1192 #endif /* CONFIG_THP_SWAP */
1193
1194 void put_swap_page(struct page *page, swp_entry_t entry)
1195 {
1196         if (!PageTransHuge(page))
1197                 swapcache_free(entry);
1198         else
1199                 swapcache_free_cluster(entry);
1200 }
1201
1202 static int swp_entry_cmp(const void *ent1, const void *ent2)
1203 {
1204         const swp_entry_t *e1 = ent1, *e2 = ent2;
1205
1206         return (int)swp_type(*e1) - (int)swp_type(*e2);
1207 }
1208
1209 void swapcache_free_entries(swp_entry_t *entries, int n)
1210 {
1211         struct swap_info_struct *p, *prev;
1212         int i;
1213
1214         if (n <= 0)
1215                 return;
1216
1217         prev = NULL;
1218         p = NULL;
1219
1220         /*
1221          * Sort swap entries by swap device, so each lock is only taken once.
1222          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1223          * so low that it isn't necessary to optimize further.
1224          */
1225         if (nr_swapfiles > 1)
1226                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1227         for (i = 0; i < n; ++i) {
1228                 p = swap_info_get_cont(entries[i], prev);
1229                 if (p)
1230                         swap_entry_free(p, entries[i]);
1231                 prev = p;
1232         }
1233         if (p)
1234                 spin_unlock(&p->lock);
1235 }
1236
1237 /*
1238  * How many references to page are currently swapped out?
1239  * This does not give an exact answer when swap count is continued,
1240  * but does include the high COUNT_CONTINUED flag to allow for that.
1241  */
1242 int page_swapcount(struct page *page)
1243 {
1244         int count = 0;
1245         struct swap_info_struct *p;
1246         struct swap_cluster_info *ci;
1247         swp_entry_t entry;
1248         unsigned long offset;
1249
1250         entry.val = page_private(page);
1251         p = _swap_info_get(entry);
1252         if (p) {
1253                 offset = swp_offset(entry);
1254                 ci = lock_cluster_or_swap_info(p, offset);
1255                 count = swap_count(p->swap_map[offset]);
1256                 unlock_cluster_or_swap_info(p, ci);
1257         }
1258         return count;
1259 }
1260
1261 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1262 {
1263         int count = 0;
1264         pgoff_t offset = swp_offset(entry);
1265         struct swap_cluster_info *ci;
1266
1267         ci = lock_cluster_or_swap_info(si, offset);
1268         count = swap_count(si->swap_map[offset]);
1269         unlock_cluster_or_swap_info(si, ci);
1270         return count;
1271 }
1272
1273 /*
1274  * How many references to @entry are currently swapped out?
1275  * This does not give an exact answer when swap count is continued,
1276  * but does include the high COUNT_CONTINUED flag to allow for that.
1277  */
1278 int __swp_swapcount(swp_entry_t entry)
1279 {
1280         int count = 0;
1281         struct swap_info_struct *si;
1282
1283         si = __swap_info_get(entry);
1284         if (si)
1285                 count = swap_swapcount(si, entry);
1286         return count;
1287 }
1288
1289 /*
1290  * How many references to @entry are currently swapped out?
1291  * This considers COUNT_CONTINUED so it returns exact answer.
1292  */
1293 int swp_swapcount(swp_entry_t entry)
1294 {
1295         int count, tmp_count, n;
1296         struct swap_info_struct *p;
1297         struct swap_cluster_info *ci;
1298         struct page *page;
1299         pgoff_t offset;
1300         unsigned char *map;
1301
1302         p = _swap_info_get(entry);
1303         if (!p)
1304                 return 0;
1305
1306         offset = swp_offset(entry);
1307
1308         ci = lock_cluster_or_swap_info(p, offset);
1309
1310         count = swap_count(p->swap_map[offset]);
1311         if (!(count & COUNT_CONTINUED))
1312                 goto out;
1313
1314         count &= ~COUNT_CONTINUED;
1315         n = SWAP_MAP_MAX + 1;
1316
1317         page = vmalloc_to_page(p->swap_map + offset);
1318         offset &= ~PAGE_MASK;
1319         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1320
1321         do {
1322                 page = list_next_entry(page, lru);
1323                 map = kmap_atomic(page);
1324                 tmp_count = map[offset];
1325                 kunmap_atomic(map);
1326
1327                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1328                 n *= (SWAP_CONT_MAX + 1);
1329         } while (tmp_count & COUNT_CONTINUED);
1330 out:
1331         unlock_cluster_or_swap_info(p, ci);
1332         return count;
1333 }
1334
1335 /*
1336  * We can write to an anon page without COW if there are no other references
1337  * to it.  And as a side-effect, free up its swap: because the old content
1338  * on disk will never be read, and seeking back there to write new content
1339  * later would only waste time away from clustering.
1340  *
1341  * NOTE: total_mapcount should not be relied upon by the caller if
1342  * reuse_swap_page() returns false, but it may be always overwritten
1343  * (see the other implementation for CONFIG_SWAP=n).
1344  */
1345 bool reuse_swap_page(struct page *page, int *total_mapcount)
1346 {
1347         int count;
1348
1349         VM_BUG_ON_PAGE(!PageLocked(page), page);
1350         if (unlikely(PageKsm(page)))
1351                 return false;
1352         count = page_trans_huge_mapcount(page, total_mapcount);
1353         if (count <= 1 && PageSwapCache(page)) {
1354                 count += page_swapcount(page);
1355                 if (count != 1)
1356                         goto out;
1357                 if (!PageWriteback(page)) {
1358                         delete_from_swap_cache(page);
1359                         SetPageDirty(page);
1360                 } else {
1361                         swp_entry_t entry;
1362                         struct swap_info_struct *p;
1363
1364                         entry.val = page_private(page);
1365                         p = swap_info_get(entry);
1366                         if (p->flags & SWP_STABLE_WRITES) {
1367                                 spin_unlock(&p->lock);
1368                                 return false;
1369                         }
1370                         spin_unlock(&p->lock);
1371                 }
1372         }
1373 out:
1374         return count <= 1;
1375 }
1376
1377 /*
1378  * If swap is getting full, or if there are no more mappings of this page,
1379  * then try_to_free_swap is called to free its swap space.
1380  */
1381 int try_to_free_swap(struct page *page)
1382 {
1383         VM_BUG_ON_PAGE(!PageLocked(page), page);
1384
1385         if (!PageSwapCache(page))
1386                 return 0;
1387         if (PageWriteback(page))
1388                 return 0;
1389         if (page_swapcount(page))
1390                 return 0;
1391
1392         /*
1393          * Once hibernation has begun to create its image of memory,
1394          * there's a danger that one of the calls to try_to_free_swap()
1395          * - most probably a call from __try_to_reclaim_swap() while
1396          * hibernation is allocating its own swap pages for the image,
1397          * but conceivably even a call from memory reclaim - will free
1398          * the swap from a page which has already been recorded in the
1399          * image as a clean swapcache page, and then reuse its swap for
1400          * another page of the image.  On waking from hibernation, the
1401          * original page might be freed under memory pressure, then
1402          * later read back in from swap, now with the wrong data.
1403          *
1404          * Hibernation suspends storage while it is writing the image
1405          * to disk so check that here.
1406          */
1407         if (pm_suspended_storage())
1408                 return 0;
1409
1410         delete_from_swap_cache(page);
1411         SetPageDirty(page);
1412         return 1;
1413 }
1414
1415 /*
1416  * Free the swap entry like above, but also try to
1417  * free the page cache entry if it is the last user.
1418  */
1419 int free_swap_and_cache(swp_entry_t entry)
1420 {
1421         struct swap_info_struct *p;
1422         struct page *page = NULL;
1423         unsigned char count;
1424
1425         if (non_swap_entry(entry))
1426                 return 1;
1427
1428         p = _swap_info_get(entry);
1429         if (p) {
1430                 count = __swap_entry_free(p, entry, 1);
1431                 if (count == SWAP_HAS_CACHE) {
1432                         page = find_get_page(swap_address_space(entry),
1433                                              swp_offset(entry));
1434                         if (page && !trylock_page(page)) {
1435                                 put_page(page);
1436                                 page = NULL;
1437                         }
1438                 } else if (!count)
1439                         free_swap_slot(entry);
1440         }
1441         if (page) {
1442                 /*
1443                  * Not mapped elsewhere, or swap space full? Free it!
1444                  * Also recheck PageSwapCache now page is locked (above).
1445                  */
1446                 if (PageSwapCache(page) && !PageWriteback(page) &&
1447                     (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1448                     !swap_swapcount(p, entry)) {
1449                         delete_from_swap_cache(page);
1450                         SetPageDirty(page);
1451                 }
1452                 unlock_page(page);
1453                 put_page(page);
1454         }
1455         return p != NULL;
1456 }
1457
1458 #ifdef CONFIG_HIBERNATION
1459 /*
1460  * Find the swap type that corresponds to given device (if any).
1461  *
1462  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1463  * from 0, in which the swap header is expected to be located.
1464  *
1465  * This is needed for the suspend to disk (aka swsusp).
1466  */
1467 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1468 {
1469         struct block_device *bdev = NULL;
1470         int type;
1471
1472         if (device)
1473                 bdev = bdget(device);
1474
1475         spin_lock(&swap_lock);
1476         for (type = 0; type < nr_swapfiles; type++) {
1477                 struct swap_info_struct *sis = swap_info[type];
1478
1479                 if (!(sis->flags & SWP_WRITEOK))
1480                         continue;
1481
1482                 if (!bdev) {
1483                         if (bdev_p)
1484                                 *bdev_p = bdgrab(sis->bdev);
1485
1486                         spin_unlock(&swap_lock);
1487                         return type;
1488                 }
1489                 if (bdev == sis->bdev) {
1490                         struct swap_extent *se = &sis->first_swap_extent;
1491
1492                         if (se->start_block == offset) {
1493                                 if (bdev_p)
1494                                         *bdev_p = bdgrab(sis->bdev);
1495
1496                                 spin_unlock(&swap_lock);
1497                                 bdput(bdev);
1498                                 return type;
1499                         }
1500                 }
1501         }
1502         spin_unlock(&swap_lock);
1503         if (bdev)
1504                 bdput(bdev);
1505
1506         return -ENODEV;
1507 }
1508
1509 /*
1510  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1511  * corresponding to given index in swap_info (swap type).
1512  */
1513 sector_t swapdev_block(int type, pgoff_t offset)
1514 {
1515         struct block_device *bdev;
1516
1517         if ((unsigned int)type >= nr_swapfiles)
1518                 return 0;
1519         if (!(swap_info[type]->flags & SWP_WRITEOK))
1520                 return 0;
1521         return map_swap_entry(swp_entry(type, offset), &bdev);
1522 }
1523
1524 /*
1525  * Return either the total number of swap pages of given type, or the number
1526  * of free pages of that type (depending on @free)
1527  *
1528  * This is needed for software suspend
1529  */
1530 unsigned int count_swap_pages(int type, int free)
1531 {
1532         unsigned int n = 0;
1533
1534         spin_lock(&swap_lock);
1535         if ((unsigned int)type < nr_swapfiles) {
1536                 struct swap_info_struct *sis = swap_info[type];
1537
1538                 spin_lock(&sis->lock);
1539                 if (sis->flags & SWP_WRITEOK) {
1540                         n = sis->pages;
1541                         if (free)
1542                                 n -= sis->inuse_pages;
1543                 }
1544                 spin_unlock(&sis->lock);
1545         }
1546         spin_unlock(&swap_lock);
1547         return n;
1548 }
1549 #endif /* CONFIG_HIBERNATION */
1550
1551 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1552 {
1553         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1554 }
1555
1556 /*
1557  * No need to decide whether this PTE shares the swap entry with others,
1558  * just let do_wp_page work it out if a write is requested later - to
1559  * force COW, vm_page_prot omits write permission from any private vma.
1560  */
1561 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1562                 unsigned long addr, swp_entry_t entry, struct page *page)
1563 {
1564         struct page *swapcache;
1565         struct mem_cgroup *memcg;
1566         spinlock_t *ptl;
1567         pte_t *pte;
1568         int ret = 1;
1569
1570         swapcache = page;
1571         page = ksm_might_need_to_copy(page, vma, addr);
1572         if (unlikely(!page))
1573                 return -ENOMEM;
1574
1575         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1576                                 &memcg, false)) {
1577                 ret = -ENOMEM;
1578                 goto out_nolock;
1579         }
1580
1581         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1582         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1583                 mem_cgroup_cancel_charge(page, memcg, false);
1584                 ret = 0;
1585                 goto out;
1586         }
1587
1588         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1589         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1590         get_page(page);
1591         set_pte_at(vma->vm_mm, addr, pte,
1592                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1593         if (page == swapcache) {
1594                 page_add_anon_rmap(page, vma, addr, false);
1595                 mem_cgroup_commit_charge(page, memcg, true, false);
1596         } else { /* ksm created a completely new copy */
1597                 page_add_new_anon_rmap(page, vma, addr, false);
1598                 mem_cgroup_commit_charge(page, memcg, false, false);
1599                 lru_cache_add_active_or_unevictable(page, vma);
1600         }
1601         swap_free(entry);
1602         /*
1603          * Move the page to the active list so it is not
1604          * immediately swapped out again after swapon.
1605          */
1606         activate_page(page);
1607 out:
1608         pte_unmap_unlock(pte, ptl);
1609 out_nolock:
1610         if (page != swapcache) {
1611                 unlock_page(page);
1612                 put_page(page);
1613         }
1614         return ret;
1615 }
1616
1617 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1618                                 unsigned long addr, unsigned long end,
1619                                 swp_entry_t entry, struct page *page)
1620 {
1621         pte_t swp_pte = swp_entry_to_pte(entry);
1622         pte_t *pte;
1623         int ret = 0;
1624
1625         /*
1626          * We don't actually need pte lock while scanning for swp_pte: since
1627          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1628          * page table while we're scanning; though it could get zapped, and on
1629          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1630          * of unmatched parts which look like swp_pte, so unuse_pte must
1631          * recheck under pte lock.  Scanning without pte lock lets it be
1632          * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1633          */
1634         pte = pte_offset_map(pmd, addr);
1635         do {
1636                 /*
1637                  * swapoff spends a _lot_ of time in this loop!
1638                  * Test inline before going to call unuse_pte.
1639                  */
1640                 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1641                         pte_unmap(pte);
1642                         ret = unuse_pte(vma, pmd, addr, entry, page);
1643                         if (ret)
1644                                 goto out;
1645                         pte = pte_offset_map(pmd, addr);
1646                 }
1647         } while (pte++, addr += PAGE_SIZE, addr != end);
1648         pte_unmap(pte - 1);
1649 out:
1650         return ret;
1651 }
1652
1653 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1654                                 unsigned long addr, unsigned long end,
1655                                 swp_entry_t entry, struct page *page)
1656 {
1657         pmd_t *pmd;
1658         unsigned long next;
1659         int ret;
1660
1661         pmd = pmd_offset(pud, addr);
1662         do {
1663                 cond_resched();
1664                 next = pmd_addr_end(addr, end);
1665                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1666                         continue;
1667                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1668                 if (ret)
1669                         return ret;
1670         } while (pmd++, addr = next, addr != end);
1671         return 0;
1672 }
1673
1674 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1675                                 unsigned long addr, unsigned long end,
1676                                 swp_entry_t entry, struct page *page)
1677 {
1678         pud_t *pud;
1679         unsigned long next;
1680         int ret;
1681
1682         pud = pud_offset(p4d, addr);
1683         do {
1684                 next = pud_addr_end(addr, end);
1685                 if (pud_none_or_clear_bad(pud))
1686                         continue;
1687                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1688                 if (ret)
1689                         return ret;
1690         } while (pud++, addr = next, addr != end);
1691         return 0;
1692 }
1693
1694 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1695                                 unsigned long addr, unsigned long end,
1696                                 swp_entry_t entry, struct page *page)
1697 {
1698         p4d_t *p4d;
1699         unsigned long next;
1700         int ret;
1701
1702         p4d = p4d_offset(pgd, addr);
1703         do {
1704                 next = p4d_addr_end(addr, end);
1705                 if (p4d_none_or_clear_bad(p4d))
1706                         continue;
1707                 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1708                 if (ret)
1709                         return ret;
1710         } while (p4d++, addr = next, addr != end);
1711         return 0;
1712 }
1713
1714 static int unuse_vma(struct vm_area_struct *vma,
1715                                 swp_entry_t entry, struct page *page)
1716 {
1717         pgd_t *pgd;
1718         unsigned long addr, end, next;
1719         int ret;
1720
1721         if (page_anon_vma(page)) {
1722                 addr = page_address_in_vma(page, vma);
1723                 if (addr == -EFAULT)
1724                         return 0;
1725                 else
1726                         end = addr + PAGE_SIZE;
1727         } else {
1728                 addr = vma->vm_start;
1729                 end = vma->vm_end;
1730         }
1731
1732         pgd = pgd_offset(vma->vm_mm, addr);
1733         do {
1734                 next = pgd_addr_end(addr, end);
1735                 if (pgd_none_or_clear_bad(pgd))
1736                         continue;
1737                 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1738                 if (ret)
1739                         return ret;
1740         } while (pgd++, addr = next, addr != end);
1741         return 0;
1742 }
1743
1744 static int unuse_mm(struct mm_struct *mm,
1745                                 swp_entry_t entry, struct page *page)
1746 {
1747         struct vm_area_struct *vma;
1748         int ret = 0;
1749
1750         if (!down_read_trylock(&mm->mmap_sem)) {
1751                 /*
1752                  * Activate page so shrink_inactive_list is unlikely to unmap
1753                  * its ptes while lock is dropped, so swapoff can make progress.
1754                  */
1755                 activate_page(page);
1756                 unlock_page(page);
1757                 down_read(&mm->mmap_sem);
1758                 lock_page(page);
1759         }
1760         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1761                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1762                         break;
1763                 cond_resched();
1764         }
1765         up_read(&mm->mmap_sem);
1766         return (ret < 0)? ret: 0;
1767 }
1768
1769 /*
1770  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1771  * from current position to next entry still in use.
1772  * Recycle to start on reaching the end, returning 0 when empty.
1773  */
1774 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1775                                         unsigned int prev, bool frontswap)
1776 {
1777         unsigned int max = si->max;
1778         unsigned int i = prev;
1779         unsigned char count;
1780
1781         /*
1782          * No need for swap_lock here: we're just looking
1783          * for whether an entry is in use, not modifying it; false
1784          * hits are okay, and sys_swapoff() has already prevented new
1785          * allocations from this area (while holding swap_lock).
1786          */
1787         for (;;) {
1788                 if (++i >= max) {
1789                         if (!prev) {
1790                                 i = 0;
1791                                 break;
1792                         }
1793                         /*
1794                          * No entries in use at top of swap_map,
1795                          * loop back to start and recheck there.
1796                          */
1797                         max = prev + 1;
1798                         prev = 0;
1799                         i = 1;
1800                 }
1801                 count = READ_ONCE(si->swap_map[i]);
1802                 if (count && swap_count(count) != SWAP_MAP_BAD)
1803                         if (!frontswap || frontswap_test(si, i))
1804                                 break;
1805                 if ((i % LATENCY_LIMIT) == 0)
1806                         cond_resched();
1807         }
1808         return i;
1809 }
1810
1811 /*
1812  * We completely avoid races by reading each swap page in advance,
1813  * and then search for the process using it.  All the necessary
1814  * page table adjustments can then be made atomically.
1815  *
1816  * if the boolean frontswap is true, only unuse pages_to_unuse pages;
1817  * pages_to_unuse==0 means all pages; ignored if frontswap is false
1818  */
1819 int try_to_unuse(unsigned int type, bool frontswap,
1820                  unsigned long pages_to_unuse)
1821 {
1822         struct swap_info_struct *si = swap_info[type];
1823         struct mm_struct *start_mm;
1824         volatile unsigned char *swap_map; /* swap_map is accessed without
1825                                            * locking. Mark it as volatile
1826                                            * to prevent compiler doing
1827                                            * something odd.
1828                                            */
1829         unsigned char swcount;
1830         struct page *page;
1831         swp_entry_t entry;
1832         unsigned int i = 0;
1833         int retval = 0;
1834
1835         /*
1836          * When searching mms for an entry, a good strategy is to
1837          * start at the first mm we freed the previous entry from
1838          * (though actually we don't notice whether we or coincidence
1839          * freed the entry).  Initialize this start_mm with a hold.
1840          *
1841          * A simpler strategy would be to start at the last mm we
1842          * freed the previous entry from; but that would take less
1843          * advantage of mmlist ordering, which clusters forked mms
1844          * together, child after parent.  If we race with dup_mmap(), we
1845          * prefer to resolve parent before child, lest we miss entries
1846          * duplicated after we scanned child: using last mm would invert
1847          * that.
1848          */
1849         start_mm = &init_mm;
1850         mmget(&init_mm);
1851
1852         /*
1853          * Keep on scanning until all entries have gone.  Usually,
1854          * one pass through swap_map is enough, but not necessarily:
1855          * there are races when an instance of an entry might be missed.
1856          */
1857         while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1858                 if (signal_pending(current)) {
1859                         retval = -EINTR;
1860                         break;
1861                 }
1862
1863                 /*
1864                  * Get a page for the entry, using the existing swap
1865                  * cache page if there is one.  Otherwise, get a clean
1866                  * page and read the swap into it.
1867                  */
1868                 swap_map = &si->swap_map[i];
1869                 entry = swp_entry(type, i);
1870                 page = read_swap_cache_async(entry,
1871                                         GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1872                 if (!page) {
1873                         /*
1874                          * Either swap_duplicate() failed because entry
1875                          * has been freed independently, and will not be
1876                          * reused since sys_swapoff() already disabled
1877                          * allocation from here, or alloc_page() failed.
1878                          */
1879                         swcount = *swap_map;
1880                         /*
1881                          * We don't hold lock here, so the swap entry could be
1882                          * SWAP_MAP_BAD (when the cluster is discarding).
1883                          * Instead of fail out, We can just skip the swap
1884                          * entry because swapoff will wait for discarding
1885                          * finish anyway.
1886                          */
1887                         if (!swcount || swcount == SWAP_MAP_BAD)
1888                                 continue;
1889                         retval = -ENOMEM;
1890                         break;
1891                 }
1892
1893                 /*
1894                  * Don't hold on to start_mm if it looks like exiting.
1895                  */
1896                 if (atomic_read(&start_mm->mm_users) == 1) {
1897                         mmput(start_mm);
1898                         start_mm = &init_mm;
1899                         mmget(&init_mm);
1900                 }
1901
1902                 /*
1903                  * Wait for and lock page.  When do_swap_page races with
1904                  * try_to_unuse, do_swap_page can handle the fault much
1905                  * faster than try_to_unuse can locate the entry.  This
1906                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1907                  * defer to do_swap_page in such a case - in some tests,
1908                  * do_swap_page and try_to_unuse repeatedly compete.
1909                  */
1910                 wait_on_page_locked(page);
1911                 wait_on_page_writeback(page);
1912                 lock_page(page);
1913                 wait_on_page_writeback(page);
1914
1915                 /*
1916                  * Remove all references to entry.
1917                  */
1918                 swcount = *swap_map;
1919                 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1920                         retval = shmem_unuse(entry, page);
1921                         /* page has already been unlocked and released */
1922                         if (retval < 0)
1923                                 break;
1924                         continue;
1925                 }
1926                 if (swap_count(swcount) && start_mm != &init_mm)
1927                         retval = unuse_mm(start_mm, entry, page);
1928
1929                 if (swap_count(*swap_map)) {
1930                         int set_start_mm = (*swap_map >= swcount);
1931                         struct list_head *p = &start_mm->mmlist;
1932                         struct mm_struct *new_start_mm = start_mm;
1933                         struct mm_struct *prev_mm = start_mm;
1934                         struct mm_struct *mm;
1935
1936                         mmget(new_start_mm);
1937                         mmget(prev_mm);
1938                         spin_lock(&mmlist_lock);
1939                         while (swap_count(*swap_map) && !retval &&
1940                                         (p = p->next) != &start_mm->mmlist) {
1941                                 mm = list_entry(p, struct mm_struct, mmlist);
1942                                 if (!mmget_not_zero(mm))
1943                                         continue;
1944                                 spin_unlock(&mmlist_lock);
1945                                 mmput(prev_mm);
1946                                 prev_mm = mm;
1947
1948                                 cond_resched();
1949
1950                                 swcount = *swap_map;
1951                                 if (!swap_count(swcount)) /* any usage ? */
1952                                         ;
1953                                 else if (mm == &init_mm)
1954                                         set_start_mm = 1;
1955                                 else
1956                                         retval = unuse_mm(mm, entry, page);
1957
1958                                 if (set_start_mm && *swap_map < swcount) {
1959                                         mmput(new_start_mm);
1960                                         mmget(mm);
1961                                         new_start_mm = mm;
1962                                         set_start_mm = 0;
1963                                 }
1964                                 spin_lock(&mmlist_lock);
1965                         }
1966                         spin_unlock(&mmlist_lock);
1967                         mmput(prev_mm);
1968                         mmput(start_mm);
1969                         start_mm = new_start_mm;
1970                 }
1971                 if (retval) {
1972                         unlock_page(page);
1973                         put_page(page);
1974                         break;
1975                 }
1976
1977                 /*
1978                  * If a reference remains (rare), we would like to leave
1979                  * the page in the swap cache; but try_to_unmap could
1980                  * then re-duplicate the entry once we drop page lock,
1981                  * so we might loop indefinitely; also, that page could
1982                  * not be swapped out to other storage meanwhile.  So:
1983                  * delete from cache even if there's another reference,
1984                  * after ensuring that the data has been saved to disk -
1985                  * since if the reference remains (rarer), it will be
1986                  * read from disk into another page.  Splitting into two
1987                  * pages would be incorrect if swap supported "shared
1988                  * private" pages, but they are handled by tmpfs files.
1989                  *
1990                  * Given how unuse_vma() targets one particular offset
1991                  * in an anon_vma, once the anon_vma has been determined,
1992                  * this splitting happens to be just what is needed to
1993                  * handle where KSM pages have been swapped out: re-reading
1994                  * is unnecessarily slow, but we can fix that later on.
1995                  */
1996                 if (swap_count(*swap_map) &&
1997                      PageDirty(page) && PageSwapCache(page)) {
1998                         struct writeback_control wbc = {
1999                                 .sync_mode = WB_SYNC_NONE,
2000                         };
2001
2002                         swap_writepage(page, &wbc);
2003                         lock_page(page);
2004                         wait_on_page_writeback(page);
2005                 }
2006
2007                 /*
2008                  * It is conceivable that a racing task removed this page from
2009                  * swap cache just before we acquired the page lock at the top,
2010                  * or while we dropped it in unuse_mm().  The page might even
2011                  * be back in swap cache on another swap area: that we must not
2012                  * delete, since it may not have been written out to swap yet.
2013                  */
2014                 if (PageSwapCache(page) &&
2015                     likely(page_private(page) == entry.val))
2016                         delete_from_swap_cache(page);
2017
2018                 /*
2019                  * So we could skip searching mms once swap count went
2020                  * to 1, we did not mark any present ptes as dirty: must
2021                  * mark page dirty so shrink_page_list will preserve it.
2022                  */
2023                 SetPageDirty(page);
2024                 unlock_page(page);
2025                 put_page(page);
2026
2027                 /*
2028                  * Make sure that we aren't completely killing
2029                  * interactive performance.
2030                  */
2031                 cond_resched();
2032                 if (frontswap && pages_to_unuse > 0) {
2033                         if (!--pages_to_unuse)
2034                                 break;
2035                 }
2036         }
2037
2038         mmput(start_mm);
2039         return retval;
2040 }
2041
2042 /*
2043  * After a successful try_to_unuse, if no swap is now in use, we know
2044  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2045  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2046  * added to the mmlist just after page_duplicate - before would be racy.
2047  */
2048 static void drain_mmlist(void)
2049 {
2050         struct list_head *p, *next;
2051         unsigned int type;
2052
2053         for (type = 0; type < nr_swapfiles; type++)
2054                 if (swap_info[type]->inuse_pages)
2055                         return;
2056         spin_lock(&mmlist_lock);
2057         list_for_each_safe(p, next, &init_mm.mmlist)
2058                 list_del_init(p);
2059         spin_unlock(&mmlist_lock);
2060 }
2061
2062 /*
2063  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2064  * corresponds to page offset for the specified swap entry.
2065  * Note that the type of this function is sector_t, but it returns page offset
2066  * into the bdev, not sector offset.
2067  */
2068 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2069 {
2070         struct swap_info_struct *sis;
2071         struct swap_extent *start_se;
2072         struct swap_extent *se;
2073         pgoff_t offset;
2074
2075         sis = swap_info[swp_type(entry)];
2076         *bdev = sis->bdev;
2077
2078         offset = swp_offset(entry);
2079         start_se = sis->curr_swap_extent;
2080         se = start_se;
2081
2082         for ( ; ; ) {
2083                 if (se->start_page <= offset &&
2084                                 offset < (se->start_page + se->nr_pages)) {
2085                         return se->start_block + (offset - se->start_page);
2086                 }
2087                 se = list_next_entry(se, list);
2088                 sis->curr_swap_extent = se;
2089                 BUG_ON(se == start_se);         /* It *must* be present */
2090         }
2091 }
2092
2093 /*
2094  * Returns the page offset into bdev for the specified page's swap entry.
2095  */
2096 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2097 {
2098         swp_entry_t entry;
2099         entry.val = page_private(page);
2100         return map_swap_entry(entry, bdev);
2101 }
2102
2103 /*
2104  * Free all of a swapdev's extent information
2105  */
2106 static void destroy_swap_extents(struct swap_info_struct *sis)
2107 {
2108         while (!list_empty(&sis->first_swap_extent.list)) {
2109                 struct swap_extent *se;
2110
2111                 se = list_first_entry(&sis->first_swap_extent.list,
2112                                 struct swap_extent, list);
2113                 list_del(&se->list);
2114                 kfree(se);
2115         }
2116
2117         if (sis->flags & SWP_FILE) {
2118                 struct file *swap_file = sis->swap_file;
2119                 struct address_space *mapping = swap_file->f_mapping;
2120
2121                 sis->flags &= ~SWP_FILE;
2122                 mapping->a_ops->swap_deactivate(swap_file);
2123         }
2124 }
2125
2126 /*
2127  * Add a block range (and the corresponding page range) into this swapdev's
2128  * extent list.  The extent list is kept sorted in page order.
2129  *
2130  * This function rather assumes that it is called in ascending page order.
2131  */
2132 int
2133 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2134                 unsigned long nr_pages, sector_t start_block)
2135 {
2136         struct swap_extent *se;
2137         struct swap_extent *new_se;
2138         struct list_head *lh;
2139
2140         if (start_page == 0) {
2141                 se = &sis->first_swap_extent;
2142                 sis->curr_swap_extent = se;
2143                 se->start_page = 0;
2144                 se->nr_pages = nr_pages;
2145                 se->start_block = start_block;
2146                 return 1;
2147         } else {
2148                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2149                 se = list_entry(lh, struct swap_extent, list);
2150                 BUG_ON(se->start_page + se->nr_pages != start_page);
2151                 if (se->start_block + se->nr_pages == start_block) {
2152                         /* Merge it */
2153                         se->nr_pages += nr_pages;
2154                         return 0;
2155                 }
2156         }
2157
2158         /*
2159          * No merge.  Insert a new extent, preserving ordering.
2160          */
2161         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2162         if (new_se == NULL)
2163                 return -ENOMEM;
2164         new_se->start_page = start_page;
2165         new_se->nr_pages = nr_pages;
2166         new_se->start_block = start_block;
2167
2168         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2169         return 1;
2170 }
2171
2172 /*
2173  * A `swap extent' is a simple thing which maps a contiguous range of pages
2174  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2175  * is built at swapon time and is then used at swap_writepage/swap_readpage
2176  * time for locating where on disk a page belongs.
2177  *
2178  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2179  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2180  * swap files identically.
2181  *
2182  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2183  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2184  * swapfiles are handled *identically* after swapon time.
2185  *
2186  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2187  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2188  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2189  * requirements, they are simply tossed out - we will never use those blocks
2190  * for swapping.
2191  *
2192  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2193  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2194  * which will scribble on the fs.
2195  *
2196  * The amount of disk space which a single swap extent represents varies.
2197  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2198  * extents in the list.  To avoid much list walking, we cache the previous
2199  * search location in `curr_swap_extent', and start new searches from there.
2200  * This is extremely effective.  The average number of iterations in
2201  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2202  */
2203 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2204 {
2205         struct file *swap_file = sis->swap_file;
2206         struct address_space *mapping = swap_file->f_mapping;
2207         struct inode *inode = mapping->host;
2208         int ret;
2209
2210         if (S_ISBLK(inode->i_mode)) {
2211                 ret = add_swap_extent(sis, 0, sis->max, 0);
2212                 *span = sis->pages;
2213                 return ret;
2214         }
2215
2216         if (mapping->a_ops->swap_activate) {
2217                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2218                 if (!ret) {
2219                         sis->flags |= SWP_FILE;
2220                         ret = add_swap_extent(sis, 0, sis->max, 0);
2221                         *span = sis->pages;
2222                 }
2223                 return ret;
2224         }
2225
2226         return generic_swapfile_activate(sis, swap_file, span);
2227 }
2228
2229 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2230                                 unsigned char *swap_map,
2231                                 struct swap_cluster_info *cluster_info)
2232 {
2233         if (prio >= 0)
2234                 p->prio = prio;
2235         else
2236                 p->prio = --least_priority;
2237         /*
2238          * the plist prio is negated because plist ordering is
2239          * low-to-high, while swap ordering is high-to-low
2240          */
2241         p->list.prio = -p->prio;
2242         p->avail_list.prio = -p->prio;
2243         p->swap_map = swap_map;
2244         p->cluster_info = cluster_info;
2245         p->flags |= SWP_WRITEOK;
2246         atomic_long_add(p->pages, &nr_swap_pages);
2247         total_swap_pages += p->pages;
2248
2249         assert_spin_locked(&swap_lock);
2250         /*
2251          * both lists are plists, and thus priority ordered.
2252          * swap_active_head needs to be priority ordered for swapoff(),
2253          * which on removal of any swap_info_struct with an auto-assigned
2254          * (i.e. negative) priority increments the auto-assigned priority
2255          * of any lower-priority swap_info_structs.
2256          * swap_avail_head needs to be priority ordered for get_swap_page(),
2257          * which allocates swap pages from the highest available priority
2258          * swap_info_struct.
2259          */
2260         plist_add(&p->list, &swap_active_head);
2261         spin_lock(&swap_avail_lock);
2262         plist_add(&p->avail_list, &swap_avail_head);
2263         spin_unlock(&swap_avail_lock);
2264 }
2265
2266 static void enable_swap_info(struct swap_info_struct *p, int prio,
2267                                 unsigned char *swap_map,
2268                                 struct swap_cluster_info *cluster_info,
2269                                 unsigned long *frontswap_map)
2270 {
2271         frontswap_init(p->type, frontswap_map);
2272         spin_lock(&swap_lock);
2273         spin_lock(&p->lock);
2274          _enable_swap_info(p, prio, swap_map, cluster_info);
2275         spin_unlock(&p->lock);
2276         spin_unlock(&swap_lock);
2277 }
2278
2279 static void reinsert_swap_info(struct swap_info_struct *p)
2280 {
2281         spin_lock(&swap_lock);
2282         spin_lock(&p->lock);
2283         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2284         spin_unlock(&p->lock);
2285         spin_unlock(&swap_lock);
2286 }
2287
2288 bool has_usable_swap(void)
2289 {
2290         bool ret = true;
2291
2292         spin_lock(&swap_lock);
2293         if (plist_head_empty(&swap_active_head))
2294                 ret = false;
2295         spin_unlock(&swap_lock);
2296         return ret;
2297 }
2298
2299 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2300 {
2301         struct swap_info_struct *p = NULL;
2302         unsigned char *swap_map;
2303         struct swap_cluster_info *cluster_info;
2304         unsigned long *frontswap_map;
2305         struct file *swap_file, *victim;
2306         struct address_space *mapping;
2307         struct inode *inode;
2308         struct filename *pathname;
2309         int err, found = 0;
2310         unsigned int old_block_size;
2311
2312         if (!capable(CAP_SYS_ADMIN))
2313                 return -EPERM;
2314
2315         BUG_ON(!current->mm);
2316
2317         pathname = getname(specialfile);
2318         if (IS_ERR(pathname))
2319                 return PTR_ERR(pathname);
2320
2321         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2322         err = PTR_ERR(victim);
2323         if (IS_ERR(victim))
2324                 goto out;
2325
2326         mapping = victim->f_mapping;
2327         spin_lock(&swap_lock);
2328         plist_for_each_entry(p, &swap_active_head, list) {
2329                 if (p->flags & SWP_WRITEOK) {
2330                         if (p->swap_file->f_mapping == mapping) {
2331                                 found = 1;
2332                                 break;
2333                         }
2334                 }
2335         }
2336         if (!found) {
2337                 err = -EINVAL;
2338                 spin_unlock(&swap_lock);
2339                 goto out_dput;
2340         }
2341         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2342                 vm_unacct_memory(p->pages);
2343         else {
2344                 err = -ENOMEM;
2345                 spin_unlock(&swap_lock);
2346                 goto out_dput;
2347         }
2348         spin_lock(&swap_avail_lock);
2349         plist_del(&p->avail_list, &swap_avail_head);
2350         spin_unlock(&swap_avail_lock);
2351         spin_lock(&p->lock);
2352         if (p->prio < 0) {
2353                 struct swap_info_struct *si = p;
2354
2355                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2356                         si->prio++;
2357                         si->list.prio--;
2358                         si->avail_list.prio--;
2359                 }
2360                 least_priority++;
2361         }
2362         plist_del(&p->list, &swap_active_head);
2363         atomic_long_sub(p->pages, &nr_swap_pages);
2364         total_swap_pages -= p->pages;
2365         p->flags &= ~SWP_WRITEOK;
2366         spin_unlock(&p->lock);
2367         spin_unlock(&swap_lock);
2368
2369         disable_swap_slots_cache_lock();
2370
2371         set_current_oom_origin();
2372         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2373         clear_current_oom_origin();
2374
2375         if (err) {
2376                 /* re-insert swap space back into swap_list */
2377                 reinsert_swap_info(p);
2378                 reenable_swap_slots_cache_unlock();
2379                 goto out_dput;
2380         }
2381
2382         reenable_swap_slots_cache_unlock();
2383
2384         flush_work(&p->discard_work);
2385
2386         destroy_swap_extents(p);
2387         if (p->flags & SWP_CONTINUED)
2388                 free_swap_count_continuations(p);
2389
2390         mutex_lock(&swapon_mutex);
2391         spin_lock(&swap_lock);
2392         spin_lock(&p->lock);
2393         drain_mmlist();
2394
2395         /* wait for anyone still in scan_swap_map */
2396         p->highest_bit = 0;             /* cuts scans short */
2397         while (p->flags >= SWP_SCANNING) {
2398                 spin_unlock(&p->lock);
2399                 spin_unlock(&swap_lock);
2400                 schedule_timeout_uninterruptible(1);
2401                 spin_lock(&swap_lock);
2402                 spin_lock(&p->lock);
2403         }
2404
2405         swap_file = p->swap_file;
2406         old_block_size = p->old_block_size;
2407         p->swap_file = NULL;
2408         p->max = 0;
2409         swap_map = p->swap_map;
2410         p->swap_map = NULL;
2411         cluster_info = p->cluster_info;
2412         p->cluster_info = NULL;
2413         frontswap_map = frontswap_map_get(p);
2414         spin_unlock(&p->lock);
2415         spin_unlock(&swap_lock);
2416         frontswap_invalidate_area(p->type);
2417         frontswap_map_set(p, NULL);
2418         mutex_unlock(&swapon_mutex);
2419         free_percpu(p->percpu_cluster);
2420         p->percpu_cluster = NULL;
2421         vfree(swap_map);
2422         kvfree(cluster_info);
2423         kvfree(frontswap_map);
2424         /* Destroy swap account information */
2425         swap_cgroup_swapoff(p->type);
2426         exit_swap_address_space(p->type);
2427
2428         inode = mapping->host;
2429         if (S_ISBLK(inode->i_mode)) {
2430                 struct block_device *bdev = I_BDEV(inode);
2431                 set_blocksize(bdev, old_block_size);
2432                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2433         } else {
2434                 inode_lock(inode);
2435                 inode->i_flags &= ~S_SWAPFILE;
2436                 inode_unlock(inode);
2437         }
2438         filp_close(swap_file, NULL);
2439
2440         /*
2441          * Clear the SWP_USED flag after all resources are freed so that swapon
2442          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2443          * not hold p->lock after we cleared its SWP_WRITEOK.
2444          */
2445         spin_lock(&swap_lock);
2446         p->flags = 0;
2447         spin_unlock(&swap_lock);
2448
2449         err = 0;
2450         atomic_inc(&proc_poll_event);
2451         wake_up_interruptible(&proc_poll_wait);
2452
2453 out_dput:
2454         filp_close(victim, NULL);
2455 out:
2456         putname(pathname);
2457         return err;
2458 }
2459
2460 #ifdef CONFIG_PROC_FS
2461 static unsigned swaps_poll(struct file *file, poll_table *wait)
2462 {
2463         struct seq_file *seq = file->private_data;
2464
2465         poll_wait(file, &proc_poll_wait, wait);
2466
2467         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2468                 seq->poll_event = atomic_read(&proc_poll_event);
2469                 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2470         }
2471
2472         return POLLIN | POLLRDNORM;
2473 }
2474
2475 /* iterator */
2476 static void *swap_start(struct seq_file *swap, loff_t *pos)
2477 {
2478         struct swap_info_struct *si;
2479         int type;
2480         loff_t l = *pos;
2481
2482         mutex_lock(&swapon_mutex);
2483
2484         if (!l)
2485                 return SEQ_START_TOKEN;
2486
2487         for (type = 0; type < nr_swapfiles; type++) {
2488                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2489                 si = swap_info[type];
2490                 if (!(si->flags & SWP_USED) || !si->swap_map)
2491                         continue;
2492                 if (!--l)
2493                         return si;
2494         }
2495
2496         return NULL;
2497 }
2498
2499 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2500 {
2501         struct swap_info_struct *si = v;
2502         int type;
2503
2504         if (v == SEQ_START_TOKEN)
2505                 type = 0;
2506         else
2507                 type = si->type + 1;
2508
2509         for (; type < nr_swapfiles; type++) {
2510                 smp_rmb();      /* read nr_swapfiles before swap_info[type] */
2511                 si = swap_info[type];
2512                 if (!(si->flags & SWP_USED) || !si->swap_map)
2513                         continue;
2514                 ++*pos;
2515                 return si;
2516         }
2517
2518         return NULL;
2519 }
2520
2521 static void swap_stop(struct seq_file *swap, void *v)
2522 {
2523         mutex_unlock(&swapon_mutex);
2524 }
2525
2526 static int swap_show(struct seq_file *swap, void *v)
2527 {
2528         struct swap_info_struct *si = v;
2529         struct file *file;
2530         int len;
2531
2532         if (si == SEQ_START_TOKEN) {
2533                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2534                 return 0;
2535         }
2536
2537         file = si->swap_file;
2538         len = seq_file_path(swap, file, " \t\n\\");
2539         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2540                         len < 40 ? 40 - len : 1, " ",
2541                         S_ISBLK(file_inode(file)->i_mode) ?
2542                                 "partition" : "file\t",
2543                         si->pages << (PAGE_SHIFT - 10),
2544                         si->inuse_pages << (PAGE_SHIFT - 10),
2545                         si->prio);
2546         return 0;
2547 }
2548
2549 static const struct seq_operations swaps_op = {
2550         .start =        swap_start,
2551         .next =         swap_next,
2552         .stop =         swap_stop,
2553         .show =         swap_show
2554 };
2555
2556 static int swaps_open(struct inode *inode, struct file *file)
2557 {
2558         struct seq_file *seq;
2559         int ret;
2560
2561         ret = seq_open(file, &swaps_op);
2562         if (ret)
2563                 return ret;
2564
2565         seq = file->private_data;
2566         seq->poll_event = atomic_read(&proc_poll_event);
2567         return 0;
2568 }
2569
2570 static const struct file_operations proc_swaps_operations = {
2571         .open           = swaps_open,
2572         .read           = seq_read,
2573         .llseek         = seq_lseek,
2574         .release        = seq_release,
2575         .poll           = swaps_poll,
2576 };
2577
2578 static int __init procswaps_init(void)
2579 {
2580         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2581         return 0;
2582 }
2583 __initcall(procswaps_init);
2584 #endif /* CONFIG_PROC_FS */
2585
2586 #ifdef MAX_SWAPFILES_CHECK
2587 static int __init max_swapfiles_check(void)
2588 {
2589         MAX_SWAPFILES_CHECK();
2590         return 0;
2591 }
2592 late_initcall(max_swapfiles_check);
2593 #endif
2594
2595 static struct swap_info_struct *alloc_swap_info(void)
2596 {
2597         struct swap_info_struct *p;
2598         unsigned int type;
2599
2600         p = kzalloc(sizeof(*p), GFP_KERNEL);
2601         if (!p)
2602                 return ERR_PTR(-ENOMEM);
2603
2604         spin_lock(&swap_lock);
2605         for (type = 0; type < nr_swapfiles; type++) {
2606                 if (!(swap_info[type]->flags & SWP_USED))
2607                         break;
2608         }
2609         if (type >= MAX_SWAPFILES) {
2610                 spin_unlock(&swap_lock);
2611                 kfree(p);
2612                 return ERR_PTR(-EPERM);
2613         }
2614         if (type >= nr_swapfiles) {
2615                 p->type = type;
2616                 swap_info[type] = p;
2617                 /*
2618                  * Write swap_info[type] before nr_swapfiles, in case a
2619                  * racing procfs swap_start() or swap_next() is reading them.
2620                  * (We never shrink nr_swapfiles, we never free this entry.)
2621                  */
2622                 smp_wmb();
2623                 nr_swapfiles++;
2624         } else {
2625                 kfree(p);
2626                 p = swap_info[type];
2627                 /*
2628                  * Do not memset this entry: a racing procfs swap_next()
2629                  * would be relying on p->type to remain valid.
2630                  */
2631         }
2632         INIT_LIST_HEAD(&p->first_swap_extent.list);
2633         plist_node_init(&p->list, 0);
2634         plist_node_init(&p->avail_list, 0);
2635         p->flags = SWP_USED;
2636         spin_unlock(&swap_lock);
2637         spin_lock_init(&p->lock);
2638
2639         return p;
2640 }
2641
2642 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2643 {
2644         int error;
2645
2646         if (S_ISBLK(inode->i_mode)) {
2647                 p->bdev = bdgrab(I_BDEV(inode));
2648                 error = blkdev_get(p->bdev,
2649                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2650                 if (error < 0) {
2651                         p->bdev = NULL;
2652                         return error;
2653                 }
2654                 p->old_block_size = block_size(p->bdev);
2655                 error = set_blocksize(p->bdev, PAGE_SIZE);
2656                 if (error < 0)
2657                         return error;
2658                 p->flags |= SWP_BLKDEV;
2659         } else if (S_ISREG(inode->i_mode)) {
2660                 p->bdev = inode->i_sb->s_bdev;
2661                 inode_lock(inode);
2662                 if (IS_SWAPFILE(inode))
2663                         return -EBUSY;
2664         } else
2665                 return -EINVAL;
2666
2667         return 0;
2668 }
2669
2670 static unsigned long read_swap_header(struct swap_info_struct *p,
2671                                         union swap_header *swap_header,
2672                                         struct inode *inode)
2673 {
2674         int i;
2675         unsigned long maxpages;
2676         unsigned long swapfilepages;
2677         unsigned long last_page;
2678
2679         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2680                 pr_err("Unable to find swap-space signature\n");
2681                 return 0;
2682         }
2683
2684         /* swap partition endianess hack... */
2685         if (swab32(swap_header->info.version) == 1) {
2686                 swab32s(&swap_header->info.version);
2687                 swab32s(&swap_header->info.last_page);
2688                 swab32s(&swap_header->info.nr_badpages);
2689                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2690                         return 0;
2691                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2692                         swab32s(&swap_header->info.badpages[i]);
2693         }
2694         /* Check the swap header's sub-version */
2695         if (swap_header->info.version != 1) {
2696                 pr_warn("Unable to handle swap header version %d\n",
2697                         swap_header->info.version);
2698                 return 0;
2699         }
2700
2701         p->lowest_bit  = 1;
2702         p->cluster_next = 1;
2703         p->cluster_nr = 0;
2704
2705         /*
2706          * Find out how many pages are allowed for a single swap
2707          * device. There are two limiting factors: 1) the number
2708          * of bits for the swap offset in the swp_entry_t type, and
2709          * 2) the number of bits in the swap pte as defined by the
2710          * different architectures. In order to find the
2711          * largest possible bit mask, a swap entry with swap type 0
2712          * and swap offset ~0UL is created, encoded to a swap pte,
2713          * decoded to a swp_entry_t again, and finally the swap
2714          * offset is extracted. This will mask all the bits from
2715          * the initial ~0UL mask that can't be encoded in either
2716          * the swp_entry_t or the architecture definition of a
2717          * swap pte.
2718          */
2719         maxpages = swp_offset(pte_to_swp_entry(
2720                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2721         last_page = swap_header->info.last_page;
2722         if (last_page > maxpages) {
2723                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2724                         maxpages << (PAGE_SHIFT - 10),
2725                         last_page << (PAGE_SHIFT - 10));
2726         }
2727         if (maxpages > last_page) {
2728                 maxpages = last_page + 1;
2729                 /* p->max is an unsigned int: don't overflow it */
2730                 if ((unsigned int)maxpages == 0)
2731                         maxpages = UINT_MAX;
2732         }
2733         p->highest_bit = maxpages - 1;
2734
2735         if (!maxpages)
2736                 return 0;
2737         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2738         if (swapfilepages && maxpages > swapfilepages) {
2739                 pr_warn("Swap area shorter than signature indicates\n");
2740                 return 0;
2741         }
2742         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2743                 return 0;
2744         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2745                 return 0;
2746
2747         return maxpages;
2748 }
2749
2750 #define SWAP_CLUSTER_INFO_COLS                                          \
2751         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2752 #define SWAP_CLUSTER_SPACE_COLS                                         \
2753         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2754 #define SWAP_CLUSTER_COLS                                               \
2755         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2756
2757 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2758                                         union swap_header *swap_header,
2759                                         unsigned char *swap_map,
2760                                         struct swap_cluster_info *cluster_info,
2761                                         unsigned long maxpages,
2762                                         sector_t *span)
2763 {
2764         unsigned int j, k;
2765         unsigned int nr_good_pages;
2766         int nr_extents;
2767         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2768         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2769         unsigned long i, idx;
2770
2771         nr_good_pages = maxpages - 1;   /* omit header page */
2772
2773         cluster_list_init(&p->free_clusters);
2774         cluster_list_init(&p->discard_clusters);
2775
2776         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2777                 unsigned int page_nr = swap_header->info.badpages[i];
2778                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2779                         return -EINVAL;
2780                 if (page_nr < maxpages) {
2781                         swap_map[page_nr] = SWAP_MAP_BAD;
2782                         nr_good_pages--;
2783                         /*
2784                          * Haven't marked the cluster free yet, no list
2785                          * operation involved
2786                          */
2787                         inc_cluster_info_page(p, cluster_info, page_nr);
2788                 }
2789         }
2790
2791         /* Haven't marked the cluster free yet, no list operation involved */
2792         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2793                 inc_cluster_info_page(p, cluster_info, i);
2794
2795         if (nr_good_pages) {
2796                 swap_map[0] = SWAP_MAP_BAD;
2797                 /*
2798                  * Not mark the cluster free yet, no list
2799                  * operation involved
2800                  */
2801                 inc_cluster_info_page(p, cluster_info, 0);
2802                 p->max = maxpages;
2803                 p->pages = nr_good_pages;
2804                 nr_extents = setup_swap_extents(p, span);
2805                 if (nr_extents < 0)
2806                         return nr_extents;
2807                 nr_good_pages = p->pages;
2808         }
2809         if (!nr_good_pages) {
2810                 pr_warn("Empty swap-file\n");
2811                 return -EINVAL;
2812         }
2813
2814         if (!cluster_info)
2815                 return nr_extents;
2816
2817
2818         /*
2819          * Reduce false cache line sharing between cluster_info and
2820          * sharing same address space.
2821          */
2822         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2823                 j = (k + col) % SWAP_CLUSTER_COLS;
2824                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2825                         idx = i * SWAP_CLUSTER_COLS + j;
2826                         if (idx >= nr_clusters)
2827                                 continue;
2828                         if (cluster_count(&cluster_info[idx]))
2829                                 continue;
2830                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2831                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2832                                               idx);
2833                 }
2834         }
2835         return nr_extents;
2836 }
2837
2838 /*
2839  * Helper to sys_swapon determining if a given swap
2840  * backing device queue supports DISCARD operations.
2841  */
2842 static bool swap_discardable(struct swap_info_struct *si)
2843 {
2844         struct request_queue *q = bdev_get_queue(si->bdev);
2845
2846         if (!q || !blk_queue_discard(q))
2847                 return false;
2848
2849         return true;
2850 }
2851
2852 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2853 {
2854         struct swap_info_struct *p;
2855         struct filename *name;
2856         struct file *swap_file = NULL;
2857         struct address_space *mapping;
2858         int prio;
2859         int error;
2860         union swap_header *swap_header;
2861         int nr_extents;
2862         sector_t span;
2863         unsigned long maxpages;
2864         unsigned char *swap_map = NULL;
2865         struct swap_cluster_info *cluster_info = NULL;
2866         unsigned long *frontswap_map = NULL;
2867         struct page *page = NULL;
2868         struct inode *inode = NULL;
2869
2870         if (swap_flags & ~SWAP_FLAGS_VALID)
2871                 return -EINVAL;
2872
2873         if (!capable(CAP_SYS_ADMIN))
2874                 return -EPERM;
2875
2876         p = alloc_swap_info();
2877         if (IS_ERR(p))
2878                 return PTR_ERR(p);
2879
2880         INIT_WORK(&p->discard_work, swap_discard_work);
2881
2882         name = getname(specialfile);
2883         if (IS_ERR(name)) {
2884                 error = PTR_ERR(name);
2885                 name = NULL;
2886                 goto bad_swap;
2887         }
2888         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
2889         if (IS_ERR(swap_file)) {
2890                 error = PTR_ERR(swap_file);
2891                 swap_file = NULL;
2892                 goto bad_swap;
2893         }
2894
2895         p->swap_file = swap_file;
2896         mapping = swap_file->f_mapping;
2897         inode = mapping->host;
2898
2899         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
2900         error = claim_swapfile(p, inode);
2901         if (unlikely(error))
2902                 goto bad_swap;
2903
2904         /*
2905          * Read the swap header.
2906          */
2907         if (!mapping->a_ops->readpage) {
2908                 error = -EINVAL;
2909                 goto bad_swap;
2910         }
2911         page = read_mapping_page(mapping, 0, swap_file);
2912         if (IS_ERR(page)) {
2913                 error = PTR_ERR(page);
2914                 goto bad_swap;
2915         }
2916         swap_header = kmap(page);
2917
2918         maxpages = read_swap_header(p, swap_header, inode);
2919         if (unlikely(!maxpages)) {
2920                 error = -EINVAL;
2921                 goto bad_swap;
2922         }
2923
2924         /* OK, set up the swap map and apply the bad block list */
2925         swap_map = vzalloc(maxpages);
2926         if (!swap_map) {
2927                 error = -ENOMEM;
2928                 goto bad_swap;
2929         }
2930
2931         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
2932                 p->flags |= SWP_STABLE_WRITES;
2933
2934         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2935                 int cpu;
2936                 unsigned long ci, nr_cluster;
2937
2938                 p->flags |= SWP_SOLIDSTATE;
2939                 /*
2940                  * select a random position to start with to help wear leveling
2941                  * SSD
2942                  */
2943                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
2944                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2945
2946                 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
2947                                         GFP_KERNEL);
2948                 if (!cluster_info) {
2949                         error = -ENOMEM;
2950                         goto bad_swap;
2951                 }
2952
2953                 for (ci = 0; ci < nr_cluster; ci++)
2954                         spin_lock_init(&((cluster_info + ci)->lock));
2955
2956                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
2957                 if (!p->percpu_cluster) {
2958                         error = -ENOMEM;
2959                         goto bad_swap;
2960                 }
2961                 for_each_possible_cpu(cpu) {
2962                         struct percpu_cluster *cluster;
2963                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
2964                         cluster_set_null(&cluster->index);
2965                 }
2966         }
2967
2968         error = swap_cgroup_swapon(p->type, maxpages);
2969         if (error)
2970                 goto bad_swap;
2971
2972         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2973                 cluster_info, maxpages, &span);
2974         if (unlikely(nr_extents < 0)) {
2975                 error = nr_extents;
2976                 goto bad_swap;
2977         }
2978         /* frontswap enabled? set up bit-per-page map for frontswap */
2979         if (IS_ENABLED(CONFIG_FRONTSWAP))
2980                 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
2981                                          GFP_KERNEL);
2982
2983         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
2984                 /*
2985                  * When discard is enabled for swap with no particular
2986                  * policy flagged, we set all swap discard flags here in
2987                  * order to sustain backward compatibility with older
2988                  * swapon(8) releases.
2989                  */
2990                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
2991                              SWP_PAGE_DISCARD);
2992
2993                 /*
2994                  * By flagging sys_swapon, a sysadmin can tell us to
2995                  * either do single-time area discards only, or to just
2996                  * perform discards for released swap page-clusters.
2997                  * Now it's time to adjust the p->flags accordingly.
2998                  */
2999                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3000                         p->flags &= ~SWP_PAGE_DISCARD;
3001                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3002                         p->flags &= ~SWP_AREA_DISCARD;
3003
3004                 /* issue a swapon-time discard if it's still required */
3005                 if (p->flags & SWP_AREA_DISCARD) {
3006                         int err = discard_swap(p);
3007                         if (unlikely(err))
3008                                 pr_err("swapon: discard_swap(%p): %d\n",
3009                                         p, err);
3010                 }
3011         }
3012
3013         error = init_swap_address_space(p->type, maxpages);
3014         if (error)
3015                 goto bad_swap;
3016
3017         mutex_lock(&swapon_mutex);
3018         prio = -1;
3019         if (swap_flags & SWAP_FLAG_PREFER)
3020                 prio =
3021                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3022         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3023
3024         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3025                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3026                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3027                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3028                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3029                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3030                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3031                 (frontswap_map) ? "FS" : "");
3032
3033         mutex_unlock(&swapon_mutex);
3034         atomic_inc(&proc_poll_event);
3035         wake_up_interruptible(&proc_poll_wait);
3036
3037         if (S_ISREG(inode->i_mode))
3038                 inode->i_flags |= S_SWAPFILE;
3039         error = 0;
3040         goto out;
3041 bad_swap:
3042         free_percpu(p->percpu_cluster);
3043         p->percpu_cluster = NULL;
3044         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3045                 set_blocksize(p->bdev, p->old_block_size);
3046                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3047         }
3048         destroy_swap_extents(p);
3049         swap_cgroup_swapoff(p->type);
3050         spin_lock(&swap_lock);
3051         p->swap_file = NULL;
3052         p->flags = 0;
3053         spin_unlock(&swap_lock);
3054         vfree(swap_map);
3055         vfree(cluster_info);
3056         if (swap_file) {
3057                 if (inode && S_ISREG(inode->i_mode)) {
3058                         inode_unlock(inode);
3059                         inode = NULL;
3060                 }
3061                 filp_close(swap_file, NULL);
3062         }
3063 out:
3064         if (page && !IS_ERR(page)) {
3065                 kunmap(page);
3066                 put_page(page);
3067         }
3068         if (name)
3069                 putname(name);
3070         if (inode && S_ISREG(inode->i_mode))
3071                 inode_unlock(inode);
3072         if (!error)
3073                 enable_swap_slots_cache();
3074         return error;
3075 }
3076
3077 void si_swapinfo(struct sysinfo *val)
3078 {
3079         unsigned int type;
3080         unsigned long nr_to_be_unused = 0;
3081
3082         spin_lock(&swap_lock);
3083         for (type = 0; type < nr_swapfiles; type++) {
3084                 struct swap_info_struct *si = swap_info[type];
3085
3086                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3087                         nr_to_be_unused += si->inuse_pages;
3088         }
3089         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3090         val->totalswap = total_swap_pages + nr_to_be_unused;
3091         spin_unlock(&swap_lock);
3092 }
3093
3094 /*
3095  * Verify that a swap entry is valid and increment its swap map count.
3096  *
3097  * Returns error code in following case.
3098  * - success -> 0
3099  * - swp_entry is invalid -> EINVAL
3100  * - swp_entry is migration entry -> EINVAL
3101  * - swap-cache reference is requested but there is already one. -> EEXIST
3102  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3103  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3104  */
3105 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3106 {
3107         struct swap_info_struct *p;
3108         struct swap_cluster_info *ci;
3109         unsigned long offset, type;
3110         unsigned char count;
3111         unsigned char has_cache;
3112         int err = -EINVAL;
3113
3114         if (non_swap_entry(entry))
3115                 goto out;
3116
3117         type = swp_type(entry);
3118         if (type >= nr_swapfiles)
3119                 goto bad_file;
3120         p = swap_info[type];
3121         offset = swp_offset(entry);
3122         if (unlikely(offset >= p->max))
3123                 goto out;
3124
3125         ci = lock_cluster_or_swap_info(p, offset);
3126
3127         count = p->swap_map[offset];
3128
3129         /*
3130          * swapin_readahead() doesn't check if a swap entry is valid, so the
3131          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3132          */
3133         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3134                 err = -ENOENT;
3135                 goto unlock_out;
3136         }
3137
3138         has_cache = count & SWAP_HAS_CACHE;
3139         count &= ~SWAP_HAS_CACHE;
3140         err = 0;
3141
3142         if (usage == SWAP_HAS_CACHE) {
3143
3144                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3145                 if (!has_cache && count)
3146                         has_cache = SWAP_HAS_CACHE;
3147                 else if (has_cache)             /* someone else added cache */
3148                         err = -EEXIST;
3149                 else                            /* no users remaining */
3150                         err = -ENOENT;
3151
3152         } else if (count || has_cache) {
3153
3154                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3155                         count += usage;
3156                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3157                         err = -EINVAL;
3158                 else if (swap_count_continued(p, offset, count))
3159                         count = COUNT_CONTINUED;
3160                 else
3161                         err = -ENOMEM;
3162         } else
3163                 err = -ENOENT;                  /* unused swap entry */
3164
3165         p->swap_map[offset] = count | has_cache;
3166
3167 unlock_out:
3168         unlock_cluster_or_swap_info(p, ci);
3169 out:
3170         return err;
3171
3172 bad_file:
3173         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3174         goto out;
3175 }
3176
3177 /*
3178  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3179  * (in which case its reference count is never incremented).
3180  */
3181 void swap_shmem_alloc(swp_entry_t entry)
3182 {
3183         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3184 }
3185
3186 /*
3187  * Increase reference count of swap entry by 1.
3188  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3189  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3190  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3191  * might occur if a page table entry has got corrupted.
3192  */
3193 int swap_duplicate(swp_entry_t entry)
3194 {
3195         int err = 0;
3196
3197         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3198                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3199         return err;
3200 }
3201
3202 /*
3203  * @entry: swap entry for which we allocate swap cache.
3204  *
3205  * Called when allocating swap cache for existing swap entry,
3206  * This can return error codes. Returns 0 at success.
3207  * -EBUSY means there is a swap cache.
3208  * Note: return code is different from swap_duplicate().
3209  */
3210 int swapcache_prepare(swp_entry_t entry)
3211 {
3212         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3213 }
3214
3215 struct swap_info_struct *page_swap_info(struct page *page)
3216 {
3217         swp_entry_t swap = { .val = page_private(page) };
3218         return swap_info[swp_type(swap)];
3219 }
3220
3221 /*
3222  * out-of-line __page_file_ methods to avoid include hell.
3223  */
3224 struct address_space *__page_file_mapping(struct page *page)
3225 {
3226         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3227         return page_swap_info(page)->swap_file->f_mapping;
3228 }
3229 EXPORT_SYMBOL_GPL(__page_file_mapping);
3230
3231 pgoff_t __page_file_index(struct page *page)
3232 {
3233         swp_entry_t swap = { .val = page_private(page) };
3234         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3235         return swp_offset(swap);
3236 }
3237 EXPORT_SYMBOL_GPL(__page_file_index);
3238
3239 /*
3240  * add_swap_count_continuation - called when a swap count is duplicated
3241  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3242  * page of the original vmalloc'ed swap_map, to hold the continuation count
3243  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3244  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3245  *
3246  * These continuation pages are seldom referenced: the common paths all work
3247  * on the original swap_map, only referring to a continuation page when the
3248  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3249  *
3250  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3251  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3252  * can be called after dropping locks.
3253  */
3254 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3255 {
3256         struct swap_info_struct *si;
3257         struct swap_cluster_info *ci;
3258         struct page *head;
3259         struct page *page;
3260         struct page *list_page;
3261         pgoff_t offset;
3262         unsigned char count;
3263
3264         /*
3265          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3266          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3267          */
3268         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3269
3270         si = swap_info_get(entry);
3271         if (!si) {
3272                 /*
3273                  * An acceptable race has occurred since the failing
3274                  * __swap_duplicate(): the swap entry has been freed,
3275                  * perhaps even the whole swap_map cleared for swapoff.
3276                  */
3277                 goto outer;
3278         }
3279
3280         offset = swp_offset(entry);
3281
3282         ci = lock_cluster(si, offset);
3283
3284         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3285
3286         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3287                 /*
3288                  * The higher the swap count, the more likely it is that tasks
3289                  * will race to add swap count continuation: we need to avoid
3290                  * over-provisioning.
3291                  */
3292                 goto out;
3293         }
3294
3295         if (!page) {
3296                 unlock_cluster(ci);
3297                 spin_unlock(&si->lock);
3298                 return -ENOMEM;
3299         }
3300
3301         /*
3302          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3303          * no architecture is using highmem pages for kernel page tables: so it
3304          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3305          */
3306         head = vmalloc_to_page(si->swap_map + offset);
3307         offset &= ~PAGE_MASK;
3308
3309         /*
3310          * Page allocation does not initialize the page's lru field,
3311          * but it does always reset its private field.
3312          */
3313         if (!page_private(head)) {
3314                 BUG_ON(count & COUNT_CONTINUED);
3315                 INIT_LIST_HEAD(&head->lru);
3316                 set_page_private(head, SWP_CONTINUED);
3317                 si->flags |= SWP_CONTINUED;
3318         }
3319
3320         list_for_each_entry(list_page, &head->lru, lru) {
3321                 unsigned char *map;
3322
3323                 /*
3324                  * If the previous map said no continuation, but we've found
3325                  * a continuation page, free our allocation and use this one.
3326                  */
3327                 if (!(count & COUNT_CONTINUED))
3328                         goto out;
3329
3330                 map = kmap_atomic(list_page) + offset;
3331                 count = *map;
3332                 kunmap_atomic(map);
3333
3334                 /*
3335                  * If this continuation count now has some space in it,
3336                  * free our allocation and use this one.
3337                  */
3338                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3339                         goto out;
3340         }
3341
3342         list_add_tail(&page->lru, &head->lru);
3343         page = NULL;                    /* now it's attached, don't free it */
3344 out:
3345         unlock_cluster(ci);
3346         spin_unlock(&si->lock);
3347 outer:
3348         if (page)
3349                 __free_page(page);
3350         return 0;
3351 }
3352
3353 /*
3354  * swap_count_continued - when the original swap_map count is incremented
3355  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3356  * into, carry if so, or else fail until a new continuation page is allocated;
3357  * when the original swap_map count is decremented from 0 with continuation,
3358  * borrow from the continuation and report whether it still holds more.
3359  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3360  * lock.
3361  */
3362 static bool swap_count_continued(struct swap_info_struct *si,
3363                                  pgoff_t offset, unsigned char count)
3364 {
3365         struct page *head;
3366         struct page *page;
3367         unsigned char *map;
3368
3369         head = vmalloc_to_page(si->swap_map + offset);
3370         if (page_private(head) != SWP_CONTINUED) {
3371                 BUG_ON(count & COUNT_CONTINUED);
3372                 return false;           /* need to add count continuation */
3373         }
3374
3375         offset &= ~PAGE_MASK;
3376         page = list_entry(head->lru.next, struct page, lru);
3377         map = kmap_atomic(page) + offset;
3378
3379         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3380                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3381
3382         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3383                 /*
3384                  * Think of how you add 1 to 999
3385                  */
3386                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3387                         kunmap_atomic(map);
3388                         page = list_entry(page->lru.next, struct page, lru);
3389                         BUG_ON(page == head);
3390                         map = kmap_atomic(page) + offset;
3391                 }
3392                 if (*map == SWAP_CONT_MAX) {
3393                         kunmap_atomic(map);
3394                         page = list_entry(page->lru.next, struct page, lru);
3395                         if (page == head)
3396                                 return false;   /* add count continuation */
3397                         map = kmap_atomic(page) + offset;
3398 init_map:               *map = 0;               /* we didn't zero the page */
3399                 }
3400                 *map += 1;
3401                 kunmap_atomic(map);
3402                 page = list_entry(page->lru.prev, struct page, lru);
3403                 while (page != head) {
3404                         map = kmap_atomic(page) + offset;
3405                         *map = COUNT_CONTINUED;
3406                         kunmap_atomic(map);
3407                         page = list_entry(page->lru.prev, struct page, lru);
3408                 }
3409                 return true;                    /* incremented */
3410
3411         } else {                                /* decrementing */
3412                 /*
3413                  * Think of how you subtract 1 from 1000
3414                  */
3415                 BUG_ON(count != COUNT_CONTINUED);
3416                 while (*map == COUNT_CONTINUED) {
3417                         kunmap_atomic(map);
3418                         page = list_entry(page->lru.next, struct page, lru);
3419                         BUG_ON(page == head);
3420                         map = kmap_atomic(page) + offset;
3421                 }
3422                 BUG_ON(*map == 0);
3423                 *map -= 1;
3424                 if (*map == 0)
3425                         count = 0;
3426                 kunmap_atomic(map);
3427                 page = list_entry(page->lru.prev, struct page, lru);
3428                 while (page != head) {
3429                         map = kmap_atomic(page) + offset;
3430                         *map = SWAP_CONT_MAX | count;
3431                         count = COUNT_CONTINUED;
3432                         kunmap_atomic(map);
3433                         page = list_entry(page->lru.prev, struct page, lru);
3434                 }
3435                 return count == COUNT_CONTINUED;
3436         }
3437 }
3438
3439 /*
3440  * free_swap_count_continuations - swapoff free all the continuation pages
3441  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3442  */
3443 static void free_swap_count_continuations(struct swap_info_struct *si)
3444 {
3445         pgoff_t offset;
3446
3447         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3448                 struct page *head;
3449                 head = vmalloc_to_page(si->swap_map + offset);
3450                 if (page_private(head)) {
3451                         struct page *page, *next;
3452
3453                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3454                                 list_del(&page->lru);
3455                                 __free_page(page);
3456                         }
3457                 }
3458         }
3459 }