71383625a582c47dd87281655329b6eeada87121
[sfrench/cifs-2.6.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48                                  unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56  * Some modules use swappable objects and may try to swap them out under
57  * memory pressure (via the shrinker). Before doing so, they may wish to
58  * check to see if any swap space is available.
59  */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71  * all active swap_info_structs
72  * protected with swap_lock, and ordered by priority.
73  */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77  * all available (active, not full) swap_info_structs
78  * protected with swap_avail_lock, ordered by priority.
79  * This is used by get_swap_page() instead of swap_active_head
80  * because swap_active_head includes all swap_info_structs,
81  * but get_swap_page() doesn't need to look at full ones.
82  * This uses its own lock instead of swap_lock because when a
83  * swap_info_struct changes between not-full/full, it needs to
84  * add/remove itself to/from this list, but the swap_info_struct->lock
85  * is held and the locking order requires swap_lock to be taken
86  * before any swap_info_struct->lock.
87  */
88 static struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static struct swap_info_struct *swap_type_to_swap_info(int type)
102 {
103         if (type >= READ_ONCE(nr_swapfiles))
104                 return NULL;
105
106         smp_rmb();      /* Pairs with smp_wmb in alloc_swap_info. */
107         return READ_ONCE(swap_info[type]);
108 }
109
110 static inline unsigned char swap_count(unsigned char ent)
111 {
112         return ent & ~SWAP_HAS_CACHE;   /* may include COUNT_CONTINUED flag */
113 }
114
115 /* Reclaim the swap entry anyway if possible */
116 #define TTRS_ANYWAY             0x1
117 /*
118  * Reclaim the swap entry if there are no more mappings of the
119  * corresponding page
120  */
121 #define TTRS_UNMAPPED           0x2
122 /* Reclaim the swap entry if swap is getting full*/
123 #define TTRS_FULL               0x4
124
125 /* returns 1 if swap entry is freed */
126 static int __try_to_reclaim_swap(struct swap_info_struct *si,
127                                  unsigned long offset, unsigned long flags)
128 {
129         swp_entry_t entry = swp_entry(si->type, offset);
130         struct page *page;
131         int ret = 0;
132
133         page = find_get_page(swap_address_space(entry), offset);
134         if (!page)
135                 return 0;
136         /*
137          * When this function is called from scan_swap_map_slots() and it's
138          * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
139          * here. We have to use trylock for avoiding deadlock. This is a special
140          * case and you should use try_to_free_swap() with explicit lock_page()
141          * in usual operations.
142          */
143         if (trylock_page(page)) {
144                 if ((flags & TTRS_ANYWAY) ||
145                     ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
146                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
147                         ret = try_to_free_swap(page);
148                 unlock_page(page);
149         }
150         put_page(page);
151         return ret;
152 }
153
154 /*
155  * swapon tell device that all the old swap contents can be discarded,
156  * to allow the swap device to optimize its wear-levelling.
157  */
158 static int discard_swap(struct swap_info_struct *si)
159 {
160         struct swap_extent *se;
161         sector_t start_block;
162         sector_t nr_blocks;
163         int err = 0;
164
165         /* Do not discard the swap header page! */
166         se = &si->first_swap_extent;
167         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
168         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
169         if (nr_blocks) {
170                 err = blkdev_issue_discard(si->bdev, start_block,
171                                 nr_blocks, GFP_KERNEL, 0);
172                 if (err)
173                         return err;
174                 cond_resched();
175         }
176
177         list_for_each_entry(se, &si->first_swap_extent.list, list) {
178                 start_block = se->start_block << (PAGE_SHIFT - 9);
179                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
180
181                 err = blkdev_issue_discard(si->bdev, start_block,
182                                 nr_blocks, GFP_KERNEL, 0);
183                 if (err)
184                         break;
185
186                 cond_resched();
187         }
188         return err;             /* That will often be -EOPNOTSUPP */
189 }
190
191 /*
192  * swap allocation tell device that a cluster of swap can now be discarded,
193  * to allow the swap device to optimize its wear-levelling.
194  */
195 static void discard_swap_cluster(struct swap_info_struct *si,
196                                  pgoff_t start_page, pgoff_t nr_pages)
197 {
198         struct swap_extent *se = si->curr_swap_extent;
199         int found_extent = 0;
200
201         while (nr_pages) {
202                 if (se->start_page <= start_page &&
203                     start_page < se->start_page + se->nr_pages) {
204                         pgoff_t offset = start_page - se->start_page;
205                         sector_t start_block = se->start_block + offset;
206                         sector_t nr_blocks = se->nr_pages - offset;
207
208                         if (nr_blocks > nr_pages)
209                                 nr_blocks = nr_pages;
210                         start_page += nr_blocks;
211                         nr_pages -= nr_blocks;
212
213                         if (!found_extent++)
214                                 si->curr_swap_extent = se;
215
216                         start_block <<= PAGE_SHIFT - 9;
217                         nr_blocks <<= PAGE_SHIFT - 9;
218                         if (blkdev_issue_discard(si->bdev, start_block,
219                                     nr_blocks, GFP_NOIO, 0))
220                                 break;
221                 }
222
223                 se = list_next_entry(se, list);
224         }
225 }
226
227 #ifdef CONFIG_THP_SWAP
228 #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
229
230 #define swap_entry_size(size)   (size)
231 #else
232 #define SWAPFILE_CLUSTER        256
233
234 /*
235  * Define swap_entry_size() as constant to let compiler to optimize
236  * out some code if !CONFIG_THP_SWAP
237  */
238 #define swap_entry_size(size)   1
239 #endif
240 #define LATENCY_LIMIT           256
241
242 static inline void cluster_set_flag(struct swap_cluster_info *info,
243         unsigned int flag)
244 {
245         info->flags = flag;
246 }
247
248 static inline unsigned int cluster_count(struct swap_cluster_info *info)
249 {
250         return info->data;
251 }
252
253 static inline void cluster_set_count(struct swap_cluster_info *info,
254                                      unsigned int c)
255 {
256         info->data = c;
257 }
258
259 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
260                                          unsigned int c, unsigned int f)
261 {
262         info->flags = f;
263         info->data = c;
264 }
265
266 static inline unsigned int cluster_next(struct swap_cluster_info *info)
267 {
268         return info->data;
269 }
270
271 static inline void cluster_set_next(struct swap_cluster_info *info,
272                                     unsigned int n)
273 {
274         info->data = n;
275 }
276
277 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
278                                          unsigned int n, unsigned int f)
279 {
280         info->flags = f;
281         info->data = n;
282 }
283
284 static inline bool cluster_is_free(struct swap_cluster_info *info)
285 {
286         return info->flags & CLUSTER_FLAG_FREE;
287 }
288
289 static inline bool cluster_is_null(struct swap_cluster_info *info)
290 {
291         return info->flags & CLUSTER_FLAG_NEXT_NULL;
292 }
293
294 static inline void cluster_set_null(struct swap_cluster_info *info)
295 {
296         info->flags = CLUSTER_FLAG_NEXT_NULL;
297         info->data = 0;
298 }
299
300 static inline bool cluster_is_huge(struct swap_cluster_info *info)
301 {
302         if (IS_ENABLED(CONFIG_THP_SWAP))
303                 return info->flags & CLUSTER_FLAG_HUGE;
304         return false;
305 }
306
307 static inline void cluster_clear_huge(struct swap_cluster_info *info)
308 {
309         info->flags &= ~CLUSTER_FLAG_HUGE;
310 }
311
312 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
313                                                      unsigned long offset)
314 {
315         struct swap_cluster_info *ci;
316
317         ci = si->cluster_info;
318         if (ci) {
319                 ci += offset / SWAPFILE_CLUSTER;
320                 spin_lock(&ci->lock);
321         }
322         return ci;
323 }
324
325 static inline void unlock_cluster(struct swap_cluster_info *ci)
326 {
327         if (ci)
328                 spin_unlock(&ci->lock);
329 }
330
331 /*
332  * Determine the locking method in use for this device.  Return
333  * swap_cluster_info if SSD-style cluster-based locking is in place.
334  */
335 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
336                 struct swap_info_struct *si, unsigned long offset)
337 {
338         struct swap_cluster_info *ci;
339
340         /* Try to use fine-grained SSD-style locking if available: */
341         ci = lock_cluster(si, offset);
342         /* Otherwise, fall back to traditional, coarse locking: */
343         if (!ci)
344                 spin_lock(&si->lock);
345
346         return ci;
347 }
348
349 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
350                                                struct swap_cluster_info *ci)
351 {
352         if (ci)
353                 unlock_cluster(ci);
354         else
355                 spin_unlock(&si->lock);
356 }
357
358 static inline bool cluster_list_empty(struct swap_cluster_list *list)
359 {
360         return cluster_is_null(&list->head);
361 }
362
363 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
364 {
365         return cluster_next(&list->head);
366 }
367
368 static void cluster_list_init(struct swap_cluster_list *list)
369 {
370         cluster_set_null(&list->head);
371         cluster_set_null(&list->tail);
372 }
373
374 static void cluster_list_add_tail(struct swap_cluster_list *list,
375                                   struct swap_cluster_info *ci,
376                                   unsigned int idx)
377 {
378         if (cluster_list_empty(list)) {
379                 cluster_set_next_flag(&list->head, idx, 0);
380                 cluster_set_next_flag(&list->tail, idx, 0);
381         } else {
382                 struct swap_cluster_info *ci_tail;
383                 unsigned int tail = cluster_next(&list->tail);
384
385                 /*
386                  * Nested cluster lock, but both cluster locks are
387                  * only acquired when we held swap_info_struct->lock
388                  */
389                 ci_tail = ci + tail;
390                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
391                 cluster_set_next(ci_tail, idx);
392                 spin_unlock(&ci_tail->lock);
393                 cluster_set_next_flag(&list->tail, idx, 0);
394         }
395 }
396
397 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
398                                            struct swap_cluster_info *ci)
399 {
400         unsigned int idx;
401
402         idx = cluster_next(&list->head);
403         if (cluster_next(&list->tail) == idx) {
404                 cluster_set_null(&list->head);
405                 cluster_set_null(&list->tail);
406         } else
407                 cluster_set_next_flag(&list->head,
408                                       cluster_next(&ci[idx]), 0);
409
410         return idx;
411 }
412
413 /* Add a cluster to discard list and schedule it to do discard */
414 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
415                 unsigned int idx)
416 {
417         /*
418          * If scan_swap_map() can't find a free cluster, it will check
419          * si->swap_map directly. To make sure the discarding cluster isn't
420          * taken by scan_swap_map(), mark the swap entries bad (occupied). It
421          * will be cleared after discard
422          */
423         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
424                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
425
426         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
427
428         schedule_work(&si->discard_work);
429 }
430
431 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
432 {
433         struct swap_cluster_info *ci = si->cluster_info;
434
435         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
436         cluster_list_add_tail(&si->free_clusters, ci, idx);
437 }
438
439 /*
440  * Doing discard actually. After a cluster discard is finished, the cluster
441  * will be added to free cluster list. caller should hold si->lock.
442 */
443 static void swap_do_scheduled_discard(struct swap_info_struct *si)
444 {
445         struct swap_cluster_info *info, *ci;
446         unsigned int idx;
447
448         info = si->cluster_info;
449
450         while (!cluster_list_empty(&si->discard_clusters)) {
451                 idx = cluster_list_del_first(&si->discard_clusters, info);
452                 spin_unlock(&si->lock);
453
454                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
455                                 SWAPFILE_CLUSTER);
456
457                 spin_lock(&si->lock);
458                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
459                 __free_cluster(si, idx);
460                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
461                                 0, SWAPFILE_CLUSTER);
462                 unlock_cluster(ci);
463         }
464 }
465
466 static void swap_discard_work(struct work_struct *work)
467 {
468         struct swap_info_struct *si;
469
470         si = container_of(work, struct swap_info_struct, discard_work);
471
472         spin_lock(&si->lock);
473         swap_do_scheduled_discard(si);
474         spin_unlock(&si->lock);
475 }
476
477 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
478 {
479         struct swap_cluster_info *ci = si->cluster_info;
480
481         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
482         cluster_list_del_first(&si->free_clusters, ci);
483         cluster_set_count_flag(ci + idx, 0, 0);
484 }
485
486 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
487 {
488         struct swap_cluster_info *ci = si->cluster_info + idx;
489
490         VM_BUG_ON(cluster_count(ci) != 0);
491         /*
492          * If the swap is discardable, prepare discard the cluster
493          * instead of free it immediately. The cluster will be freed
494          * after discard.
495          */
496         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
497             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
498                 swap_cluster_schedule_discard(si, idx);
499                 return;
500         }
501
502         __free_cluster(si, idx);
503 }
504
505 /*
506  * The cluster corresponding to page_nr will be used. The cluster will be
507  * removed from free cluster list and its usage counter will be increased.
508  */
509 static void inc_cluster_info_page(struct swap_info_struct *p,
510         struct swap_cluster_info *cluster_info, unsigned long page_nr)
511 {
512         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
513
514         if (!cluster_info)
515                 return;
516         if (cluster_is_free(&cluster_info[idx]))
517                 alloc_cluster(p, idx);
518
519         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
520         cluster_set_count(&cluster_info[idx],
521                 cluster_count(&cluster_info[idx]) + 1);
522 }
523
524 /*
525  * The cluster corresponding to page_nr decreases one usage. If the usage
526  * counter becomes 0, which means no page in the cluster is in using, we can
527  * optionally discard the cluster and add it to free cluster list.
528  */
529 static void dec_cluster_info_page(struct swap_info_struct *p,
530         struct swap_cluster_info *cluster_info, unsigned long page_nr)
531 {
532         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
533
534         if (!cluster_info)
535                 return;
536
537         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
538         cluster_set_count(&cluster_info[idx],
539                 cluster_count(&cluster_info[idx]) - 1);
540
541         if (cluster_count(&cluster_info[idx]) == 0)
542                 free_cluster(p, idx);
543 }
544
545 /*
546  * It's possible scan_swap_map() uses a free cluster in the middle of free
547  * cluster list. Avoiding such abuse to avoid list corruption.
548  */
549 static bool
550 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
551         unsigned long offset)
552 {
553         struct percpu_cluster *percpu_cluster;
554         bool conflict;
555
556         offset /= SWAPFILE_CLUSTER;
557         conflict = !cluster_list_empty(&si->free_clusters) &&
558                 offset != cluster_list_first(&si->free_clusters) &&
559                 cluster_is_free(&si->cluster_info[offset]);
560
561         if (!conflict)
562                 return false;
563
564         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
565         cluster_set_null(&percpu_cluster->index);
566         return true;
567 }
568
569 /*
570  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
571  * might involve allocating a new cluster for current CPU too.
572  */
573 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
574         unsigned long *offset, unsigned long *scan_base)
575 {
576         struct percpu_cluster *cluster;
577         struct swap_cluster_info *ci;
578         bool found_free;
579         unsigned long tmp, max;
580
581 new_cluster:
582         cluster = this_cpu_ptr(si->percpu_cluster);
583         if (cluster_is_null(&cluster->index)) {
584                 if (!cluster_list_empty(&si->free_clusters)) {
585                         cluster->index = si->free_clusters.head;
586                         cluster->next = cluster_next(&cluster->index) *
587                                         SWAPFILE_CLUSTER;
588                 } else if (!cluster_list_empty(&si->discard_clusters)) {
589                         /*
590                          * we don't have free cluster but have some clusters in
591                          * discarding, do discard now and reclaim them
592                          */
593                         swap_do_scheduled_discard(si);
594                         *scan_base = *offset = si->cluster_next;
595                         goto new_cluster;
596                 } else
597                         return false;
598         }
599
600         found_free = false;
601
602         /*
603          * Other CPUs can use our cluster if they can't find a free cluster,
604          * check if there is still free entry in the cluster
605          */
606         tmp = cluster->next;
607         max = min_t(unsigned long, si->max,
608                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
609         if (tmp >= max) {
610                 cluster_set_null(&cluster->index);
611                 goto new_cluster;
612         }
613         ci = lock_cluster(si, tmp);
614         while (tmp < max) {
615                 if (!si->swap_map[tmp]) {
616                         found_free = true;
617                         break;
618                 }
619                 tmp++;
620         }
621         unlock_cluster(ci);
622         if (!found_free) {
623                 cluster_set_null(&cluster->index);
624                 goto new_cluster;
625         }
626         cluster->next = tmp + 1;
627         *offset = tmp;
628         *scan_base = tmp;
629         return found_free;
630 }
631
632 static void __del_from_avail_list(struct swap_info_struct *p)
633 {
634         int nid;
635
636         for_each_node(nid)
637                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
638 }
639
640 static void del_from_avail_list(struct swap_info_struct *p)
641 {
642         spin_lock(&swap_avail_lock);
643         __del_from_avail_list(p);
644         spin_unlock(&swap_avail_lock);
645 }
646
647 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
648                              unsigned int nr_entries)
649 {
650         unsigned int end = offset + nr_entries - 1;
651
652         if (offset == si->lowest_bit)
653                 si->lowest_bit += nr_entries;
654         if (end == si->highest_bit)
655                 si->highest_bit -= nr_entries;
656         si->inuse_pages += nr_entries;
657         if (si->inuse_pages == si->pages) {
658                 si->lowest_bit = si->max;
659                 si->highest_bit = 0;
660                 del_from_avail_list(si);
661         }
662 }
663
664 static void add_to_avail_list(struct swap_info_struct *p)
665 {
666         int nid;
667
668         spin_lock(&swap_avail_lock);
669         for_each_node(nid) {
670                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
671                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
672         }
673         spin_unlock(&swap_avail_lock);
674 }
675
676 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
677                             unsigned int nr_entries)
678 {
679         unsigned long end = offset + nr_entries - 1;
680         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
681
682         if (offset < si->lowest_bit)
683                 si->lowest_bit = offset;
684         if (end > si->highest_bit) {
685                 bool was_full = !si->highest_bit;
686
687                 si->highest_bit = end;
688                 if (was_full && (si->flags & SWP_WRITEOK))
689                         add_to_avail_list(si);
690         }
691         atomic_long_add(nr_entries, &nr_swap_pages);
692         si->inuse_pages -= nr_entries;
693         if (si->flags & SWP_BLKDEV)
694                 swap_slot_free_notify =
695                         si->bdev->bd_disk->fops->swap_slot_free_notify;
696         else
697                 swap_slot_free_notify = NULL;
698         while (offset <= end) {
699                 frontswap_invalidate_page(si->type, offset);
700                 if (swap_slot_free_notify)
701                         swap_slot_free_notify(si->bdev, offset);
702                 offset++;
703         }
704 }
705
706 static int scan_swap_map_slots(struct swap_info_struct *si,
707                                unsigned char usage, int nr,
708                                swp_entry_t slots[])
709 {
710         struct swap_cluster_info *ci;
711         unsigned long offset;
712         unsigned long scan_base;
713         unsigned long last_in_cluster = 0;
714         int latency_ration = LATENCY_LIMIT;
715         int n_ret = 0;
716
717         if (nr > SWAP_BATCH)
718                 nr = SWAP_BATCH;
719
720         /*
721          * We try to cluster swap pages by allocating them sequentially
722          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
723          * way, however, we resort to first-free allocation, starting
724          * a new cluster.  This prevents us from scattering swap pages
725          * all over the entire swap partition, so that we reduce
726          * overall disk seek times between swap pages.  -- sct
727          * But we do now try to find an empty cluster.  -Andrea
728          * And we let swap pages go all over an SSD partition.  Hugh
729          */
730
731         si->flags += SWP_SCANNING;
732         scan_base = offset = si->cluster_next;
733
734         /* SSD algorithm */
735         if (si->cluster_info) {
736                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
737                         goto checks;
738                 else
739                         goto scan;
740         }
741
742         if (unlikely(!si->cluster_nr--)) {
743                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
744                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
745                         goto checks;
746                 }
747
748                 spin_unlock(&si->lock);
749
750                 /*
751                  * If seek is expensive, start searching for new cluster from
752                  * start of partition, to minimize the span of allocated swap.
753                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
754                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
755                  */
756                 scan_base = offset = si->lowest_bit;
757                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
758
759                 /* Locate the first empty (unaligned) cluster */
760                 for (; last_in_cluster <= si->highest_bit; offset++) {
761                         if (si->swap_map[offset])
762                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
763                         else if (offset == last_in_cluster) {
764                                 spin_lock(&si->lock);
765                                 offset -= SWAPFILE_CLUSTER - 1;
766                                 si->cluster_next = offset;
767                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
768                                 goto checks;
769                         }
770                         if (unlikely(--latency_ration < 0)) {
771                                 cond_resched();
772                                 latency_ration = LATENCY_LIMIT;
773                         }
774                 }
775
776                 offset = scan_base;
777                 spin_lock(&si->lock);
778                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
779         }
780
781 checks:
782         if (si->cluster_info) {
783                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
784                 /* take a break if we already got some slots */
785                         if (n_ret)
786                                 goto done;
787                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
788                                                         &scan_base))
789                                 goto scan;
790                 }
791         }
792         if (!(si->flags & SWP_WRITEOK))
793                 goto no_page;
794         if (!si->highest_bit)
795                 goto no_page;
796         if (offset > si->highest_bit)
797                 scan_base = offset = si->lowest_bit;
798
799         ci = lock_cluster(si, offset);
800         /* reuse swap entry of cache-only swap if not busy. */
801         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
802                 int swap_was_freed;
803                 unlock_cluster(ci);
804                 spin_unlock(&si->lock);
805                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
806                 spin_lock(&si->lock);
807                 /* entry was freed successfully, try to use this again */
808                 if (swap_was_freed)
809                         goto checks;
810                 goto scan; /* check next one */
811         }
812
813         if (si->swap_map[offset]) {
814                 unlock_cluster(ci);
815                 if (!n_ret)
816                         goto scan;
817                 else
818                         goto done;
819         }
820         si->swap_map[offset] = usage;
821         inc_cluster_info_page(si, si->cluster_info, offset);
822         unlock_cluster(ci);
823
824         swap_range_alloc(si, offset, 1);
825         si->cluster_next = offset + 1;
826         slots[n_ret++] = swp_entry(si->type, offset);
827
828         /* got enough slots or reach max slots? */
829         if ((n_ret == nr) || (offset >= si->highest_bit))
830                 goto done;
831
832         /* search for next available slot */
833
834         /* time to take a break? */
835         if (unlikely(--latency_ration < 0)) {
836                 if (n_ret)
837                         goto done;
838                 spin_unlock(&si->lock);
839                 cond_resched();
840                 spin_lock(&si->lock);
841                 latency_ration = LATENCY_LIMIT;
842         }
843
844         /* try to get more slots in cluster */
845         if (si->cluster_info) {
846                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
847                         goto checks;
848                 else
849                         goto done;
850         }
851         /* non-ssd case */
852         ++offset;
853
854         /* non-ssd case, still more slots in cluster? */
855         if (si->cluster_nr && !si->swap_map[offset]) {
856                 --si->cluster_nr;
857                 goto checks;
858         }
859
860 done:
861         si->flags -= SWP_SCANNING;
862         return n_ret;
863
864 scan:
865         spin_unlock(&si->lock);
866         while (++offset <= si->highest_bit) {
867                 if (!si->swap_map[offset]) {
868                         spin_lock(&si->lock);
869                         goto checks;
870                 }
871                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
872                         spin_lock(&si->lock);
873                         goto checks;
874                 }
875                 if (unlikely(--latency_ration < 0)) {
876                         cond_resched();
877                         latency_ration = LATENCY_LIMIT;
878                 }
879         }
880         offset = si->lowest_bit;
881         while (offset < scan_base) {
882                 if (!si->swap_map[offset]) {
883                         spin_lock(&si->lock);
884                         goto checks;
885                 }
886                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
887                         spin_lock(&si->lock);
888                         goto checks;
889                 }
890                 if (unlikely(--latency_ration < 0)) {
891                         cond_resched();
892                         latency_ration = LATENCY_LIMIT;
893                 }
894                 offset++;
895         }
896         spin_lock(&si->lock);
897
898 no_page:
899         si->flags -= SWP_SCANNING;
900         return n_ret;
901 }
902
903 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
904 {
905         unsigned long idx;
906         struct swap_cluster_info *ci;
907         unsigned long offset, i;
908         unsigned char *map;
909
910         /*
911          * Should not even be attempting cluster allocations when huge
912          * page swap is disabled.  Warn and fail the allocation.
913          */
914         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
915                 VM_WARN_ON_ONCE(1);
916                 return 0;
917         }
918
919         if (cluster_list_empty(&si->free_clusters))
920                 return 0;
921
922         idx = cluster_list_first(&si->free_clusters);
923         offset = idx * SWAPFILE_CLUSTER;
924         ci = lock_cluster(si, offset);
925         alloc_cluster(si, idx);
926         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
927
928         map = si->swap_map + offset;
929         for (i = 0; i < SWAPFILE_CLUSTER; i++)
930                 map[i] = SWAP_HAS_CACHE;
931         unlock_cluster(ci);
932         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
933         *slot = swp_entry(si->type, offset);
934
935         return 1;
936 }
937
938 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
939 {
940         unsigned long offset = idx * SWAPFILE_CLUSTER;
941         struct swap_cluster_info *ci;
942
943         ci = lock_cluster(si, offset);
944         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
945         cluster_set_count_flag(ci, 0, 0);
946         free_cluster(si, idx);
947         unlock_cluster(ci);
948         swap_range_free(si, offset, SWAPFILE_CLUSTER);
949 }
950
951 static unsigned long scan_swap_map(struct swap_info_struct *si,
952                                    unsigned char usage)
953 {
954         swp_entry_t entry;
955         int n_ret;
956
957         n_ret = scan_swap_map_slots(si, usage, 1, &entry);
958
959         if (n_ret)
960                 return swp_offset(entry);
961         else
962                 return 0;
963
964 }
965
966 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
967 {
968         unsigned long size = swap_entry_size(entry_size);
969         struct swap_info_struct *si, *next;
970         long avail_pgs;
971         int n_ret = 0;
972         int node;
973
974         /* Only single cluster request supported */
975         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
976
977         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
978         if (avail_pgs <= 0)
979                 goto noswap;
980
981         if (n_goal > SWAP_BATCH)
982                 n_goal = SWAP_BATCH;
983
984         if (n_goal > avail_pgs)
985                 n_goal = avail_pgs;
986
987         atomic_long_sub(n_goal * size, &nr_swap_pages);
988
989         spin_lock(&swap_avail_lock);
990
991 start_over:
992         node = numa_node_id();
993         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
994                 /* requeue si to after same-priority siblings */
995                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
996                 spin_unlock(&swap_avail_lock);
997                 spin_lock(&si->lock);
998                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
999                         spin_lock(&swap_avail_lock);
1000                         if (plist_node_empty(&si->avail_lists[node])) {
1001                                 spin_unlock(&si->lock);
1002                                 goto nextsi;
1003                         }
1004                         WARN(!si->highest_bit,
1005                              "swap_info %d in list but !highest_bit\n",
1006                              si->type);
1007                         WARN(!(si->flags & SWP_WRITEOK),
1008                              "swap_info %d in list but !SWP_WRITEOK\n",
1009                              si->type);
1010                         __del_from_avail_list(si);
1011                         spin_unlock(&si->lock);
1012                         goto nextsi;
1013                 }
1014                 if (size == SWAPFILE_CLUSTER) {
1015                         if (!(si->flags & SWP_FS))
1016                                 n_ret = swap_alloc_cluster(si, swp_entries);
1017                 } else
1018                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1019                                                     n_goal, swp_entries);
1020                 spin_unlock(&si->lock);
1021                 if (n_ret || size == SWAPFILE_CLUSTER)
1022                         goto check_out;
1023                 pr_debug("scan_swap_map of si %d failed to find offset\n",
1024                         si->type);
1025
1026                 spin_lock(&swap_avail_lock);
1027 nextsi:
1028                 /*
1029                  * if we got here, it's likely that si was almost full before,
1030                  * and since scan_swap_map() can drop the si->lock, multiple
1031                  * callers probably all tried to get a page from the same si
1032                  * and it filled up before we could get one; or, the si filled
1033                  * up between us dropping swap_avail_lock and taking si->lock.
1034                  * Since we dropped the swap_avail_lock, the swap_avail_head
1035                  * list may have been modified; so if next is still in the
1036                  * swap_avail_head list then try it, otherwise start over
1037                  * if we have not gotten any slots.
1038                  */
1039                 if (plist_node_empty(&next->avail_lists[node]))
1040                         goto start_over;
1041         }
1042
1043         spin_unlock(&swap_avail_lock);
1044
1045 check_out:
1046         if (n_ret < n_goal)
1047                 atomic_long_add((long)(n_goal - n_ret) * size,
1048                                 &nr_swap_pages);
1049 noswap:
1050         return n_ret;
1051 }
1052
1053 /* The only caller of this function is now suspend routine */
1054 swp_entry_t get_swap_page_of_type(int type)
1055 {
1056         struct swap_info_struct *si = swap_type_to_swap_info(type);
1057         pgoff_t offset;
1058
1059         if (!si)
1060                 goto fail;
1061
1062         spin_lock(&si->lock);
1063         if (si->flags & SWP_WRITEOK) {
1064                 atomic_long_dec(&nr_swap_pages);
1065                 /* This is called for allocating swap entry, not cache */
1066                 offset = scan_swap_map(si, 1);
1067                 if (offset) {
1068                         spin_unlock(&si->lock);
1069                         return swp_entry(type, offset);
1070                 }
1071                 atomic_long_inc(&nr_swap_pages);
1072         }
1073         spin_unlock(&si->lock);
1074 fail:
1075         return (swp_entry_t) {0};
1076 }
1077
1078 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1079 {
1080         struct swap_info_struct *p;
1081         unsigned long offset, type;
1082
1083         if (!entry.val)
1084                 goto out;
1085         type = swp_type(entry);
1086         p = swap_type_to_swap_info(type);
1087         if (!p)
1088                 goto bad_nofile;
1089         if (!(p->flags & SWP_USED))
1090                 goto bad_device;
1091         offset = swp_offset(entry);
1092         if (offset >= p->max)
1093                 goto bad_offset;
1094         return p;
1095
1096 bad_offset:
1097         pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1098         goto out;
1099 bad_device:
1100         pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1101         goto out;
1102 bad_nofile:
1103         pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1104 out:
1105         return NULL;
1106 }
1107
1108 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1109 {
1110         struct swap_info_struct *p;
1111
1112         p = __swap_info_get(entry);
1113         if (!p)
1114                 goto out;
1115         if (!p->swap_map[swp_offset(entry)])
1116                 goto bad_free;
1117         return p;
1118
1119 bad_free:
1120         pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1121         goto out;
1122 out:
1123         return NULL;
1124 }
1125
1126 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1127 {
1128         struct swap_info_struct *p;
1129
1130         p = _swap_info_get(entry);
1131         if (p)
1132                 spin_lock(&p->lock);
1133         return p;
1134 }
1135
1136 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1137                                         struct swap_info_struct *q)
1138 {
1139         struct swap_info_struct *p;
1140
1141         p = _swap_info_get(entry);
1142
1143         if (p != q) {
1144                 if (q != NULL)
1145                         spin_unlock(&q->lock);
1146                 if (p != NULL)
1147                         spin_lock(&p->lock);
1148         }
1149         return p;
1150 }
1151
1152 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1153                                               unsigned long offset,
1154                                               unsigned char usage)
1155 {
1156         unsigned char count;
1157         unsigned char has_cache;
1158
1159         count = p->swap_map[offset];
1160
1161         has_cache = count & SWAP_HAS_CACHE;
1162         count &= ~SWAP_HAS_CACHE;
1163
1164         if (usage == SWAP_HAS_CACHE) {
1165                 VM_BUG_ON(!has_cache);
1166                 has_cache = 0;
1167         } else if (count == SWAP_MAP_SHMEM) {
1168                 /*
1169                  * Or we could insist on shmem.c using a special
1170                  * swap_shmem_free() and free_shmem_swap_and_cache()...
1171                  */
1172                 count = 0;
1173         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1174                 if (count == COUNT_CONTINUED) {
1175                         if (swap_count_continued(p, offset, count))
1176                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1177                         else
1178                                 count = SWAP_MAP_MAX;
1179                 } else
1180                         count--;
1181         }
1182
1183         usage = count | has_cache;
1184         p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1185
1186         return usage;
1187 }
1188
1189 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1190                                        swp_entry_t entry, unsigned char usage)
1191 {
1192         struct swap_cluster_info *ci;
1193         unsigned long offset = swp_offset(entry);
1194
1195         ci = lock_cluster_or_swap_info(p, offset);
1196         usage = __swap_entry_free_locked(p, offset, usage);
1197         unlock_cluster_or_swap_info(p, ci);
1198         if (!usage)
1199                 free_swap_slot(entry);
1200
1201         return usage;
1202 }
1203
1204 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1205 {
1206         struct swap_cluster_info *ci;
1207         unsigned long offset = swp_offset(entry);
1208         unsigned char count;
1209
1210         ci = lock_cluster(p, offset);
1211         count = p->swap_map[offset];
1212         VM_BUG_ON(count != SWAP_HAS_CACHE);
1213         p->swap_map[offset] = 0;
1214         dec_cluster_info_page(p, p->cluster_info, offset);
1215         unlock_cluster(ci);
1216
1217         mem_cgroup_uncharge_swap(entry, 1);
1218         swap_range_free(p, offset, 1);
1219 }
1220
1221 /*
1222  * Caller has made sure that the swap device corresponding to entry
1223  * is still around or has not been recycled.
1224  */
1225 void swap_free(swp_entry_t entry)
1226 {
1227         struct swap_info_struct *p;
1228
1229         p = _swap_info_get(entry);
1230         if (p)
1231                 __swap_entry_free(p, entry, 1);
1232 }
1233
1234 /*
1235  * Called after dropping swapcache to decrease refcnt to swap entries.
1236  */
1237 void put_swap_page(struct page *page, swp_entry_t entry)
1238 {
1239         unsigned long offset = swp_offset(entry);
1240         unsigned long idx = offset / SWAPFILE_CLUSTER;
1241         struct swap_cluster_info *ci;
1242         struct swap_info_struct *si;
1243         unsigned char *map;
1244         unsigned int i, free_entries = 0;
1245         unsigned char val;
1246         int size = swap_entry_size(hpage_nr_pages(page));
1247
1248         si = _swap_info_get(entry);
1249         if (!si)
1250                 return;
1251
1252         ci = lock_cluster_or_swap_info(si, offset);
1253         if (size == SWAPFILE_CLUSTER) {
1254                 VM_BUG_ON(!cluster_is_huge(ci));
1255                 map = si->swap_map + offset;
1256                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1257                         val = map[i];
1258                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1259                         if (val == SWAP_HAS_CACHE)
1260                                 free_entries++;
1261                 }
1262                 cluster_clear_huge(ci);
1263                 if (free_entries == SWAPFILE_CLUSTER) {
1264                         unlock_cluster_or_swap_info(si, ci);
1265                         spin_lock(&si->lock);
1266                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1267                         swap_free_cluster(si, idx);
1268                         spin_unlock(&si->lock);
1269                         return;
1270                 }
1271         }
1272         for (i = 0; i < size; i++, entry.val++) {
1273                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1274                         unlock_cluster_or_swap_info(si, ci);
1275                         free_swap_slot(entry);
1276                         if (i == size - 1)
1277                                 return;
1278                         lock_cluster_or_swap_info(si, offset);
1279                 }
1280         }
1281         unlock_cluster_or_swap_info(si, ci);
1282 }
1283
1284 #ifdef CONFIG_THP_SWAP
1285 int split_swap_cluster(swp_entry_t entry)
1286 {
1287         struct swap_info_struct *si;
1288         struct swap_cluster_info *ci;
1289         unsigned long offset = swp_offset(entry);
1290
1291         si = _swap_info_get(entry);
1292         if (!si)
1293                 return -EBUSY;
1294         ci = lock_cluster(si, offset);
1295         cluster_clear_huge(ci);
1296         unlock_cluster(ci);
1297         return 0;
1298 }
1299 #endif
1300
1301 static int swp_entry_cmp(const void *ent1, const void *ent2)
1302 {
1303         const swp_entry_t *e1 = ent1, *e2 = ent2;
1304
1305         return (int)swp_type(*e1) - (int)swp_type(*e2);
1306 }
1307
1308 void swapcache_free_entries(swp_entry_t *entries, int n)
1309 {
1310         struct swap_info_struct *p, *prev;
1311         int i;
1312
1313         if (n <= 0)
1314                 return;
1315
1316         prev = NULL;
1317         p = NULL;
1318
1319         /*
1320          * Sort swap entries by swap device, so each lock is only taken once.
1321          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1322          * so low that it isn't necessary to optimize further.
1323          */
1324         if (nr_swapfiles > 1)
1325                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1326         for (i = 0; i < n; ++i) {
1327                 p = swap_info_get_cont(entries[i], prev);
1328                 if (p)
1329                         swap_entry_free(p, entries[i]);
1330                 prev = p;
1331         }
1332         if (p)
1333                 spin_unlock(&p->lock);
1334 }
1335
1336 /*
1337  * How many references to page are currently swapped out?
1338  * This does not give an exact answer when swap count is continued,
1339  * but does include the high COUNT_CONTINUED flag to allow for that.
1340  */
1341 int page_swapcount(struct page *page)
1342 {
1343         int count = 0;
1344         struct swap_info_struct *p;
1345         struct swap_cluster_info *ci;
1346         swp_entry_t entry;
1347         unsigned long offset;
1348
1349         entry.val = page_private(page);
1350         p = _swap_info_get(entry);
1351         if (p) {
1352                 offset = swp_offset(entry);
1353                 ci = lock_cluster_or_swap_info(p, offset);
1354                 count = swap_count(p->swap_map[offset]);
1355                 unlock_cluster_or_swap_info(p, ci);
1356         }
1357         return count;
1358 }
1359
1360 int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1361 {
1362         pgoff_t offset = swp_offset(entry);
1363
1364         return swap_count(si->swap_map[offset]);
1365 }
1366
1367 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1368 {
1369         int count = 0;
1370         pgoff_t offset = swp_offset(entry);
1371         struct swap_cluster_info *ci;
1372
1373         ci = lock_cluster_or_swap_info(si, offset);
1374         count = swap_count(si->swap_map[offset]);
1375         unlock_cluster_or_swap_info(si, ci);
1376         return count;
1377 }
1378
1379 /*
1380  * How many references to @entry are currently swapped out?
1381  * This does not give an exact answer when swap count is continued,
1382  * but does include the high COUNT_CONTINUED flag to allow for that.
1383  */
1384 int __swp_swapcount(swp_entry_t entry)
1385 {
1386         int count = 0;
1387         struct swap_info_struct *si;
1388
1389         si = __swap_info_get(entry);
1390         if (si)
1391                 count = swap_swapcount(si, entry);
1392         return count;
1393 }
1394
1395 /*
1396  * How many references to @entry are currently swapped out?
1397  * This considers COUNT_CONTINUED so it returns exact answer.
1398  */
1399 int swp_swapcount(swp_entry_t entry)
1400 {
1401         int count, tmp_count, n;
1402         struct swap_info_struct *p;
1403         struct swap_cluster_info *ci;
1404         struct page *page;
1405         pgoff_t offset;
1406         unsigned char *map;
1407
1408         p = _swap_info_get(entry);
1409         if (!p)
1410                 return 0;
1411
1412         offset = swp_offset(entry);
1413
1414         ci = lock_cluster_or_swap_info(p, offset);
1415
1416         count = swap_count(p->swap_map[offset]);
1417         if (!(count & COUNT_CONTINUED))
1418                 goto out;
1419
1420         count &= ~COUNT_CONTINUED;
1421         n = SWAP_MAP_MAX + 1;
1422
1423         page = vmalloc_to_page(p->swap_map + offset);
1424         offset &= ~PAGE_MASK;
1425         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1426
1427         do {
1428                 page = list_next_entry(page, lru);
1429                 map = kmap_atomic(page);
1430                 tmp_count = map[offset];
1431                 kunmap_atomic(map);
1432
1433                 count += (tmp_count & ~COUNT_CONTINUED) * n;
1434                 n *= (SWAP_CONT_MAX + 1);
1435         } while (tmp_count & COUNT_CONTINUED);
1436 out:
1437         unlock_cluster_or_swap_info(p, ci);
1438         return count;
1439 }
1440
1441 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1442                                          swp_entry_t entry)
1443 {
1444         struct swap_cluster_info *ci;
1445         unsigned char *map = si->swap_map;
1446         unsigned long roffset = swp_offset(entry);
1447         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1448         int i;
1449         bool ret = false;
1450
1451         ci = lock_cluster_or_swap_info(si, offset);
1452         if (!ci || !cluster_is_huge(ci)) {
1453                 if (swap_count(map[roffset]))
1454                         ret = true;
1455                 goto unlock_out;
1456         }
1457         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1458                 if (swap_count(map[offset + i])) {
1459                         ret = true;
1460                         break;
1461                 }
1462         }
1463 unlock_out:
1464         unlock_cluster_or_swap_info(si, ci);
1465         return ret;
1466 }
1467
1468 static bool page_swapped(struct page *page)
1469 {
1470         swp_entry_t entry;
1471         struct swap_info_struct *si;
1472
1473         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1474                 return page_swapcount(page) != 0;
1475
1476         page = compound_head(page);
1477         entry.val = page_private(page);
1478         si = _swap_info_get(entry);
1479         if (si)
1480                 return swap_page_trans_huge_swapped(si, entry);
1481         return false;
1482 }
1483
1484 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1485                                          int *total_swapcount)
1486 {
1487         int i, map_swapcount, _total_mapcount, _total_swapcount;
1488         unsigned long offset = 0;
1489         struct swap_info_struct *si;
1490         struct swap_cluster_info *ci = NULL;
1491         unsigned char *map = NULL;
1492         int mapcount, swapcount = 0;
1493
1494         /* hugetlbfs shouldn't call it */
1495         VM_BUG_ON_PAGE(PageHuge(page), page);
1496
1497         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1498                 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1499                 if (PageSwapCache(page))
1500                         swapcount = page_swapcount(page);
1501                 if (total_swapcount)
1502                         *total_swapcount = swapcount;
1503                 return mapcount + swapcount;
1504         }
1505
1506         page = compound_head(page);
1507
1508         _total_mapcount = _total_swapcount = map_swapcount = 0;
1509         if (PageSwapCache(page)) {
1510                 swp_entry_t entry;
1511
1512                 entry.val = page_private(page);
1513                 si = _swap_info_get(entry);
1514                 if (si) {
1515                         map = si->swap_map;
1516                         offset = swp_offset(entry);
1517                 }
1518         }
1519         if (map)
1520                 ci = lock_cluster(si, offset);
1521         for (i = 0; i < HPAGE_PMD_NR; i++) {
1522                 mapcount = atomic_read(&page[i]._mapcount) + 1;
1523                 _total_mapcount += mapcount;
1524                 if (map) {
1525                         swapcount = swap_count(map[offset + i]);
1526                         _total_swapcount += swapcount;
1527                 }
1528                 map_swapcount = max(map_swapcount, mapcount + swapcount);
1529         }
1530         unlock_cluster(ci);
1531         if (PageDoubleMap(page)) {
1532                 map_swapcount -= 1;
1533                 _total_mapcount -= HPAGE_PMD_NR;
1534         }
1535         mapcount = compound_mapcount(page);
1536         map_swapcount += mapcount;
1537         _total_mapcount += mapcount;
1538         if (total_mapcount)
1539                 *total_mapcount = _total_mapcount;
1540         if (total_swapcount)
1541                 *total_swapcount = _total_swapcount;
1542
1543         return map_swapcount;
1544 }
1545
1546 /*
1547  * We can write to an anon page without COW if there are no other references
1548  * to it.  And as a side-effect, free up its swap: because the old content
1549  * on disk will never be read, and seeking back there to write new content
1550  * later would only waste time away from clustering.
1551  *
1552  * NOTE: total_map_swapcount should not be relied upon by the caller if
1553  * reuse_swap_page() returns false, but it may be always overwritten
1554  * (see the other implementation for CONFIG_SWAP=n).
1555  */
1556 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1557 {
1558         int count, total_mapcount, total_swapcount;
1559
1560         VM_BUG_ON_PAGE(!PageLocked(page), page);
1561         if (unlikely(PageKsm(page)))
1562                 return false;
1563         count = page_trans_huge_map_swapcount(page, &total_mapcount,
1564                                               &total_swapcount);
1565         if (total_map_swapcount)
1566                 *total_map_swapcount = total_mapcount + total_swapcount;
1567         if (count == 1 && PageSwapCache(page) &&
1568             (likely(!PageTransCompound(page)) ||
1569              /* The remaining swap count will be freed soon */
1570              total_swapcount == page_swapcount(page))) {
1571                 if (!PageWriteback(page)) {
1572                         page = compound_head(page);
1573                         delete_from_swap_cache(page);
1574                         SetPageDirty(page);
1575                 } else {
1576                         swp_entry_t entry;
1577                         struct swap_info_struct *p;
1578
1579                         entry.val = page_private(page);
1580                         p = swap_info_get(entry);
1581                         if (p->flags & SWP_STABLE_WRITES) {
1582                                 spin_unlock(&p->lock);
1583                                 return false;
1584                         }
1585                         spin_unlock(&p->lock);
1586                 }
1587         }
1588
1589         return count <= 1;
1590 }
1591
1592 /*
1593  * If swap is getting full, or if there are no more mappings of this page,
1594  * then try_to_free_swap is called to free its swap space.
1595  */
1596 int try_to_free_swap(struct page *page)
1597 {
1598         VM_BUG_ON_PAGE(!PageLocked(page), page);
1599
1600         if (!PageSwapCache(page))
1601                 return 0;
1602         if (PageWriteback(page))
1603                 return 0;
1604         if (page_swapped(page))
1605                 return 0;
1606
1607         /*
1608          * Once hibernation has begun to create its image of memory,
1609          * there's a danger that one of the calls to try_to_free_swap()
1610          * - most probably a call from __try_to_reclaim_swap() while
1611          * hibernation is allocating its own swap pages for the image,
1612          * but conceivably even a call from memory reclaim - will free
1613          * the swap from a page which has already been recorded in the
1614          * image as a clean swapcache page, and then reuse its swap for
1615          * another page of the image.  On waking from hibernation, the
1616          * original page might be freed under memory pressure, then
1617          * later read back in from swap, now with the wrong data.
1618          *
1619          * Hibernation suspends storage while it is writing the image
1620          * to disk so check that here.
1621          */
1622         if (pm_suspended_storage())
1623                 return 0;
1624
1625         page = compound_head(page);
1626         delete_from_swap_cache(page);
1627         SetPageDirty(page);
1628         return 1;
1629 }
1630
1631 /*
1632  * Free the swap entry like above, but also try to
1633  * free the page cache entry if it is the last user.
1634  */
1635 int free_swap_and_cache(swp_entry_t entry)
1636 {
1637         struct swap_info_struct *p;
1638         unsigned char count;
1639
1640         if (non_swap_entry(entry))
1641                 return 1;
1642
1643         p = _swap_info_get(entry);
1644         if (p) {
1645                 count = __swap_entry_free(p, entry, 1);
1646                 if (count == SWAP_HAS_CACHE &&
1647                     !swap_page_trans_huge_swapped(p, entry))
1648                         __try_to_reclaim_swap(p, swp_offset(entry),
1649                                               TTRS_UNMAPPED | TTRS_FULL);
1650         }
1651         return p != NULL;
1652 }
1653
1654 #ifdef CONFIG_HIBERNATION
1655 /*
1656  * Find the swap type that corresponds to given device (if any).
1657  *
1658  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1659  * from 0, in which the swap header is expected to be located.
1660  *
1661  * This is needed for the suspend to disk (aka swsusp).
1662  */
1663 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1664 {
1665         struct block_device *bdev = NULL;
1666         int type;
1667
1668         if (device)
1669                 bdev = bdget(device);
1670
1671         spin_lock(&swap_lock);
1672         for (type = 0; type < nr_swapfiles; type++) {
1673                 struct swap_info_struct *sis = swap_info[type];
1674
1675                 if (!(sis->flags & SWP_WRITEOK))
1676                         continue;
1677
1678                 if (!bdev) {
1679                         if (bdev_p)
1680                                 *bdev_p = bdgrab(sis->bdev);
1681
1682                         spin_unlock(&swap_lock);
1683                         return type;
1684                 }
1685                 if (bdev == sis->bdev) {
1686                         struct swap_extent *se = &sis->first_swap_extent;
1687
1688                         if (se->start_block == offset) {
1689                                 if (bdev_p)
1690                                         *bdev_p = bdgrab(sis->bdev);
1691
1692                                 spin_unlock(&swap_lock);
1693                                 bdput(bdev);
1694                                 return type;
1695                         }
1696                 }
1697         }
1698         spin_unlock(&swap_lock);
1699         if (bdev)
1700                 bdput(bdev);
1701
1702         return -ENODEV;
1703 }
1704
1705 /*
1706  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1707  * corresponding to given index in swap_info (swap type).
1708  */
1709 sector_t swapdev_block(int type, pgoff_t offset)
1710 {
1711         struct block_device *bdev;
1712         struct swap_info_struct *si = swap_type_to_swap_info(type);
1713
1714         if (!si || !(si->flags & SWP_WRITEOK))
1715                 return 0;
1716         return map_swap_entry(swp_entry(type, offset), &bdev);
1717 }
1718
1719 /*
1720  * Return either the total number of swap pages of given type, or the number
1721  * of free pages of that type (depending on @free)
1722  *
1723  * This is needed for software suspend
1724  */
1725 unsigned int count_swap_pages(int type, int free)
1726 {
1727         unsigned int n = 0;
1728
1729         spin_lock(&swap_lock);
1730         if ((unsigned int)type < nr_swapfiles) {
1731                 struct swap_info_struct *sis = swap_info[type];
1732
1733                 spin_lock(&sis->lock);
1734                 if (sis->flags & SWP_WRITEOK) {
1735                         n = sis->pages;
1736                         if (free)
1737                                 n -= sis->inuse_pages;
1738                 }
1739                 spin_unlock(&sis->lock);
1740         }
1741         spin_unlock(&swap_lock);
1742         return n;
1743 }
1744 #endif /* CONFIG_HIBERNATION */
1745
1746 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1747 {
1748         return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1749 }
1750
1751 /*
1752  * No need to decide whether this PTE shares the swap entry with others,
1753  * just let do_wp_page work it out if a write is requested later - to
1754  * force COW, vm_page_prot omits write permission from any private vma.
1755  */
1756 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1757                 unsigned long addr, swp_entry_t entry, struct page *page)
1758 {
1759         struct page *swapcache;
1760         struct mem_cgroup *memcg;
1761         spinlock_t *ptl;
1762         pte_t *pte;
1763         int ret = 1;
1764
1765         swapcache = page;
1766         page = ksm_might_need_to_copy(page, vma, addr);
1767         if (unlikely(!page))
1768                 return -ENOMEM;
1769
1770         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1771                                 &memcg, false)) {
1772                 ret = -ENOMEM;
1773                 goto out_nolock;
1774         }
1775
1776         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1777         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1778                 mem_cgroup_cancel_charge(page, memcg, false);
1779                 ret = 0;
1780                 goto out;
1781         }
1782
1783         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1784         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1785         get_page(page);
1786         set_pte_at(vma->vm_mm, addr, pte,
1787                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
1788         if (page == swapcache) {
1789                 page_add_anon_rmap(page, vma, addr, false);
1790                 mem_cgroup_commit_charge(page, memcg, true, false);
1791         } else { /* ksm created a completely new copy */
1792                 page_add_new_anon_rmap(page, vma, addr, false);
1793                 mem_cgroup_commit_charge(page, memcg, false, false);
1794                 lru_cache_add_active_or_unevictable(page, vma);
1795         }
1796         swap_free(entry);
1797         /*
1798          * Move the page to the active list so it is not
1799          * immediately swapped out again after swapon.
1800          */
1801         activate_page(page);
1802 out:
1803         pte_unmap_unlock(pte, ptl);
1804 out_nolock:
1805         if (page != swapcache) {
1806                 unlock_page(page);
1807                 put_page(page);
1808         }
1809         return ret;
1810 }
1811
1812 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1813                         unsigned long addr, unsigned long end,
1814                         unsigned int type, bool frontswap,
1815                         unsigned long *fs_pages_to_unuse)
1816 {
1817         struct page *page;
1818         swp_entry_t entry;
1819         pte_t *pte;
1820         struct swap_info_struct *si;
1821         unsigned long offset;
1822         int ret = 0;
1823         volatile unsigned char *swap_map;
1824
1825         si = swap_info[type];
1826         pte = pte_offset_map(pmd, addr);
1827         do {
1828                 struct vm_fault vmf;
1829
1830                 if (!is_swap_pte(*pte))
1831                         continue;
1832
1833                 entry = pte_to_swp_entry(*pte);
1834                 if (swp_type(entry) != type)
1835                         continue;
1836
1837                 offset = swp_offset(entry);
1838                 if (frontswap && !frontswap_test(si, offset))
1839                         continue;
1840
1841                 pte_unmap(pte);
1842                 swap_map = &si->swap_map[offset];
1843                 vmf.vma = vma;
1844                 vmf.address = addr;
1845                 vmf.pmd = pmd;
1846                 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, &vmf);
1847                 if (!page) {
1848                         if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1849                                 goto try_next;
1850                         return -ENOMEM;
1851                 }
1852
1853                 lock_page(page);
1854                 wait_on_page_writeback(page);
1855                 ret = unuse_pte(vma, pmd, addr, entry, page);
1856                 if (ret < 0) {
1857                         unlock_page(page);
1858                         put_page(page);
1859                         goto out;
1860                 }
1861
1862                 try_to_free_swap(page);
1863                 unlock_page(page);
1864                 put_page(page);
1865
1866                 if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
1867                         ret = FRONTSWAP_PAGES_UNUSED;
1868                         goto out;
1869                 }
1870 try_next:
1871                 pte = pte_offset_map(pmd, addr);
1872         } while (pte++, addr += PAGE_SIZE, addr != end);
1873         pte_unmap(pte - 1);
1874
1875         ret = 0;
1876 out:
1877         return ret;
1878 }
1879
1880 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1881                                 unsigned long addr, unsigned long end,
1882                                 unsigned int type, bool frontswap,
1883                                 unsigned long *fs_pages_to_unuse)
1884 {
1885         pmd_t *pmd;
1886         unsigned long next;
1887         int ret;
1888
1889         pmd = pmd_offset(pud, addr);
1890         do {
1891                 cond_resched();
1892                 next = pmd_addr_end(addr, end);
1893                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1894                         continue;
1895                 ret = unuse_pte_range(vma, pmd, addr, next, type,
1896                                       frontswap, fs_pages_to_unuse);
1897                 if (ret)
1898                         return ret;
1899         } while (pmd++, addr = next, addr != end);
1900         return 0;
1901 }
1902
1903 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1904                                 unsigned long addr, unsigned long end,
1905                                 unsigned int type, bool frontswap,
1906                                 unsigned long *fs_pages_to_unuse)
1907 {
1908         pud_t *pud;
1909         unsigned long next;
1910         int ret;
1911
1912         pud = pud_offset(p4d, addr);
1913         do {
1914                 next = pud_addr_end(addr, end);
1915                 if (pud_none_or_clear_bad(pud))
1916                         continue;
1917                 ret = unuse_pmd_range(vma, pud, addr, next, type,
1918                                       frontswap, fs_pages_to_unuse);
1919                 if (ret)
1920                         return ret;
1921         } while (pud++, addr = next, addr != end);
1922         return 0;
1923 }
1924
1925 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1926                                 unsigned long addr, unsigned long end,
1927                                 unsigned int type, bool frontswap,
1928                                 unsigned long *fs_pages_to_unuse)
1929 {
1930         p4d_t *p4d;
1931         unsigned long next;
1932         int ret;
1933
1934         p4d = p4d_offset(pgd, addr);
1935         do {
1936                 next = p4d_addr_end(addr, end);
1937                 if (p4d_none_or_clear_bad(p4d))
1938                         continue;
1939                 ret = unuse_pud_range(vma, p4d, addr, next, type,
1940                                       frontswap, fs_pages_to_unuse);
1941                 if (ret)
1942                         return ret;
1943         } while (p4d++, addr = next, addr != end);
1944         return 0;
1945 }
1946
1947 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
1948                      bool frontswap, unsigned long *fs_pages_to_unuse)
1949 {
1950         pgd_t *pgd;
1951         unsigned long addr, end, next;
1952         int ret;
1953
1954         addr = vma->vm_start;
1955         end = vma->vm_end;
1956
1957         pgd = pgd_offset(vma->vm_mm, addr);
1958         do {
1959                 next = pgd_addr_end(addr, end);
1960                 if (pgd_none_or_clear_bad(pgd))
1961                         continue;
1962                 ret = unuse_p4d_range(vma, pgd, addr, next, type,
1963                                       frontswap, fs_pages_to_unuse);
1964                 if (ret)
1965                         return ret;
1966         } while (pgd++, addr = next, addr != end);
1967         return 0;
1968 }
1969
1970 static int unuse_mm(struct mm_struct *mm, unsigned int type,
1971                     bool frontswap, unsigned long *fs_pages_to_unuse)
1972 {
1973         struct vm_area_struct *vma;
1974         int ret = 0;
1975
1976         down_read(&mm->mmap_sem);
1977         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1978                 if (vma->anon_vma) {
1979                         ret = unuse_vma(vma, type, frontswap,
1980                                         fs_pages_to_unuse);
1981                         if (ret)
1982                                 break;
1983                 }
1984                 cond_resched();
1985         }
1986         up_read(&mm->mmap_sem);
1987         return ret;
1988 }
1989
1990 /*
1991  * Scan swap_map (or frontswap_map if frontswap parameter is true)
1992  * from current position to next entry still in use. Return 0
1993  * if there are no inuse entries after prev till end of the map.
1994  */
1995 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1996                                         unsigned int prev, bool frontswap)
1997 {
1998         unsigned int i;
1999         unsigned char count;
2000
2001         /*
2002          * No need for swap_lock here: we're just looking
2003          * for whether an entry is in use, not modifying it; false
2004          * hits are okay, and sys_swapoff() has already prevented new
2005          * allocations from this area (while holding swap_lock).
2006          */
2007         for (i = prev + 1; i < si->max; i++) {
2008                 count = READ_ONCE(si->swap_map[i]);
2009                 if (count && swap_count(count) != SWAP_MAP_BAD)
2010                         if (!frontswap || frontswap_test(si, i))
2011                                 break;
2012                 if ((i % LATENCY_LIMIT) == 0)
2013                         cond_resched();
2014         }
2015
2016         if (i == si->max)
2017                 i = 0;
2018
2019         return i;
2020 }
2021
2022 /*
2023  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2024  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2025  */
2026 int try_to_unuse(unsigned int type, bool frontswap,
2027                  unsigned long pages_to_unuse)
2028 {
2029         struct mm_struct *prev_mm;
2030         struct mm_struct *mm;
2031         struct list_head *p;
2032         int retval = 0;
2033         struct swap_info_struct *si = swap_info[type];
2034         struct page *page;
2035         swp_entry_t entry;
2036         unsigned int i;
2037
2038         if (!si->inuse_pages)
2039                 return 0;
2040
2041         if (!frontswap)
2042                 pages_to_unuse = 0;
2043
2044 retry:
2045         retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2046         if (retval)
2047                 goto out;
2048
2049         prev_mm = &init_mm;
2050         mmget(prev_mm);
2051
2052         spin_lock(&mmlist_lock);
2053         p = &init_mm.mmlist;
2054         while (si->inuse_pages &&
2055                !signal_pending(current) &&
2056                (p = p->next) != &init_mm.mmlist) {
2057
2058                 mm = list_entry(p, struct mm_struct, mmlist);
2059                 if (!mmget_not_zero(mm))
2060                         continue;
2061                 spin_unlock(&mmlist_lock);
2062                 mmput(prev_mm);
2063                 prev_mm = mm;
2064                 retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2065
2066                 if (retval) {
2067                         mmput(prev_mm);
2068                         goto out;
2069                 }
2070
2071                 /*
2072                  * Make sure that we aren't completely killing
2073                  * interactive performance.
2074                  */
2075                 cond_resched();
2076                 spin_lock(&mmlist_lock);
2077         }
2078         spin_unlock(&mmlist_lock);
2079
2080         mmput(prev_mm);
2081
2082         i = 0;
2083         while (si->inuse_pages &&
2084                !signal_pending(current) &&
2085                (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2086
2087                 entry = swp_entry(type, i);
2088                 page = find_get_page(swap_address_space(entry), i);
2089                 if (!page)
2090                         continue;
2091
2092                 /*
2093                  * It is conceivable that a racing task removed this page from
2094                  * swap cache just before we acquired the page lock. The page
2095                  * might even be back in swap cache on another swap area. But
2096                  * that is okay, try_to_free_swap() only removes stale pages.
2097                  */
2098                 lock_page(page);
2099                 wait_on_page_writeback(page);
2100                 try_to_free_swap(page);
2101                 unlock_page(page);
2102                 put_page(page);
2103
2104                 /*
2105                  * For frontswap, we just need to unuse pages_to_unuse, if
2106                  * it was specified. Need not check frontswap again here as
2107                  * we already zeroed out pages_to_unuse if not frontswap.
2108                  */
2109                 if (pages_to_unuse && --pages_to_unuse == 0)
2110                         goto out;
2111         }
2112
2113         /*
2114          * Lets check again to see if there are still swap entries in the map.
2115          * If yes, we would need to do retry the unuse logic again.
2116          * Under global memory pressure, swap entries can be reinserted back
2117          * into process space after the mmlist loop above passes over them.
2118          *
2119          * Limit the number of retries? No: when shmem_unuse()'s igrab() fails,
2120          * a shmem inode using swap is being evicted; and when mmget_not_zero()
2121          * above fails, that mm is likely to be freeing swap from exit_mmap().
2122          * Both proceed at their own independent pace: we could move them to
2123          * separate lists, and wait for those lists to be emptied; but it's
2124          * easier and more robust (though cpu-intensive) just to keep retrying.
2125          */
2126         if (si->inuse_pages) {
2127                 if (!signal_pending(current))
2128                         goto retry;
2129                 retval = -EINTR;
2130         }
2131 out:
2132         return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2133 }
2134
2135 /*
2136  * After a successful try_to_unuse, if no swap is now in use, we know
2137  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2138  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2139  * added to the mmlist just after page_duplicate - before would be racy.
2140  */
2141 static void drain_mmlist(void)
2142 {
2143         struct list_head *p, *next;
2144         unsigned int type;
2145
2146         for (type = 0; type < nr_swapfiles; type++)
2147                 if (swap_info[type]->inuse_pages)
2148                         return;
2149         spin_lock(&mmlist_lock);
2150         list_for_each_safe(p, next, &init_mm.mmlist)
2151                 list_del_init(p);
2152         spin_unlock(&mmlist_lock);
2153 }
2154
2155 /*
2156  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2157  * corresponds to page offset for the specified swap entry.
2158  * Note that the type of this function is sector_t, but it returns page offset
2159  * into the bdev, not sector offset.
2160  */
2161 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2162 {
2163         struct swap_info_struct *sis;
2164         struct swap_extent *start_se;
2165         struct swap_extent *se;
2166         pgoff_t offset;
2167
2168         sis = swp_swap_info(entry);
2169         *bdev = sis->bdev;
2170
2171         offset = swp_offset(entry);
2172         start_se = sis->curr_swap_extent;
2173         se = start_se;
2174
2175         for ( ; ; ) {
2176                 if (se->start_page <= offset &&
2177                                 offset < (se->start_page + se->nr_pages)) {
2178                         return se->start_block + (offset - se->start_page);
2179                 }
2180                 se = list_next_entry(se, list);
2181                 sis->curr_swap_extent = se;
2182                 BUG_ON(se == start_se);         /* It *must* be present */
2183         }
2184 }
2185
2186 /*
2187  * Returns the page offset into bdev for the specified page's swap entry.
2188  */
2189 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2190 {
2191         swp_entry_t entry;
2192         entry.val = page_private(page);
2193         return map_swap_entry(entry, bdev);
2194 }
2195
2196 /*
2197  * Free all of a swapdev's extent information
2198  */
2199 static void destroy_swap_extents(struct swap_info_struct *sis)
2200 {
2201         while (!list_empty(&sis->first_swap_extent.list)) {
2202                 struct swap_extent *se;
2203
2204                 se = list_first_entry(&sis->first_swap_extent.list,
2205                                 struct swap_extent, list);
2206                 list_del(&se->list);
2207                 kfree(se);
2208         }
2209
2210         if (sis->flags & SWP_ACTIVATED) {
2211                 struct file *swap_file = sis->swap_file;
2212                 struct address_space *mapping = swap_file->f_mapping;
2213
2214                 sis->flags &= ~SWP_ACTIVATED;
2215                 if (mapping->a_ops->swap_deactivate)
2216                         mapping->a_ops->swap_deactivate(swap_file);
2217         }
2218 }
2219
2220 /*
2221  * Add a block range (and the corresponding page range) into this swapdev's
2222  * extent list.  The extent list is kept sorted in page order.
2223  *
2224  * This function rather assumes that it is called in ascending page order.
2225  */
2226 int
2227 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2228                 unsigned long nr_pages, sector_t start_block)
2229 {
2230         struct swap_extent *se;
2231         struct swap_extent *new_se;
2232         struct list_head *lh;
2233
2234         if (start_page == 0) {
2235                 se = &sis->first_swap_extent;
2236                 sis->curr_swap_extent = se;
2237                 se->start_page = 0;
2238                 se->nr_pages = nr_pages;
2239                 se->start_block = start_block;
2240                 return 1;
2241         } else {
2242                 lh = sis->first_swap_extent.list.prev;  /* Highest extent */
2243                 se = list_entry(lh, struct swap_extent, list);
2244                 BUG_ON(se->start_page + se->nr_pages != start_page);
2245                 if (se->start_block + se->nr_pages == start_block) {
2246                         /* Merge it */
2247                         se->nr_pages += nr_pages;
2248                         return 0;
2249                 }
2250         }
2251
2252         /*
2253          * No merge.  Insert a new extent, preserving ordering.
2254          */
2255         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2256         if (new_se == NULL)
2257                 return -ENOMEM;
2258         new_se->start_page = start_page;
2259         new_se->nr_pages = nr_pages;
2260         new_se->start_block = start_block;
2261
2262         list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2263         return 1;
2264 }
2265 EXPORT_SYMBOL_GPL(add_swap_extent);
2266
2267 /*
2268  * A `swap extent' is a simple thing which maps a contiguous range of pages
2269  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2270  * is built at swapon time and is then used at swap_writepage/swap_readpage
2271  * time for locating where on disk a page belongs.
2272  *
2273  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2274  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2275  * swap files identically.
2276  *
2277  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2278  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2279  * swapfiles are handled *identically* after swapon time.
2280  *
2281  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2282  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2283  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2284  * requirements, they are simply tossed out - we will never use those blocks
2285  * for swapping.
2286  *
2287  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
2288  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2289  * which will scribble on the fs.
2290  *
2291  * The amount of disk space which a single swap extent represents varies.
2292  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2293  * extents in the list.  To avoid much list walking, we cache the previous
2294  * search location in `curr_swap_extent', and start new searches from there.
2295  * This is extremely effective.  The average number of iterations in
2296  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2297  */
2298 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2299 {
2300         struct file *swap_file = sis->swap_file;
2301         struct address_space *mapping = swap_file->f_mapping;
2302         struct inode *inode = mapping->host;
2303         int ret;
2304
2305         if (S_ISBLK(inode->i_mode)) {
2306                 ret = add_swap_extent(sis, 0, sis->max, 0);
2307                 *span = sis->pages;
2308                 return ret;
2309         }
2310
2311         if (mapping->a_ops->swap_activate) {
2312                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2313                 if (ret >= 0)
2314                         sis->flags |= SWP_ACTIVATED;
2315                 if (!ret) {
2316                         sis->flags |= SWP_FS;
2317                         ret = add_swap_extent(sis, 0, sis->max, 0);
2318                         *span = sis->pages;
2319                 }
2320                 return ret;
2321         }
2322
2323         return generic_swapfile_activate(sis, swap_file, span);
2324 }
2325
2326 static int swap_node(struct swap_info_struct *p)
2327 {
2328         struct block_device *bdev;
2329
2330         if (p->bdev)
2331                 bdev = p->bdev;
2332         else
2333                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2334
2335         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2336 }
2337
2338 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2339                                 unsigned char *swap_map,
2340                                 struct swap_cluster_info *cluster_info)
2341 {
2342         int i;
2343
2344         if (prio >= 0)
2345                 p->prio = prio;
2346         else
2347                 p->prio = --least_priority;
2348         /*
2349          * the plist prio is negated because plist ordering is
2350          * low-to-high, while swap ordering is high-to-low
2351          */
2352         p->list.prio = -p->prio;
2353         for_each_node(i) {
2354                 if (p->prio >= 0)
2355                         p->avail_lists[i].prio = -p->prio;
2356                 else {
2357                         if (swap_node(p) == i)
2358                                 p->avail_lists[i].prio = 1;
2359                         else
2360                                 p->avail_lists[i].prio = -p->prio;
2361                 }
2362         }
2363         p->swap_map = swap_map;
2364         p->cluster_info = cluster_info;
2365         p->flags |= SWP_WRITEOK;
2366         atomic_long_add(p->pages, &nr_swap_pages);
2367         total_swap_pages += p->pages;
2368
2369         assert_spin_locked(&swap_lock);
2370         /*
2371          * both lists are plists, and thus priority ordered.
2372          * swap_active_head needs to be priority ordered for swapoff(),
2373          * which on removal of any swap_info_struct with an auto-assigned
2374          * (i.e. negative) priority increments the auto-assigned priority
2375          * of any lower-priority swap_info_structs.
2376          * swap_avail_head needs to be priority ordered for get_swap_page(),
2377          * which allocates swap pages from the highest available priority
2378          * swap_info_struct.
2379          */
2380         plist_add(&p->list, &swap_active_head);
2381         add_to_avail_list(p);
2382 }
2383
2384 static void enable_swap_info(struct swap_info_struct *p, int prio,
2385                                 unsigned char *swap_map,
2386                                 struct swap_cluster_info *cluster_info,
2387                                 unsigned long *frontswap_map)
2388 {
2389         frontswap_init(p->type, frontswap_map);
2390         spin_lock(&swap_lock);
2391         spin_lock(&p->lock);
2392          _enable_swap_info(p, prio, swap_map, cluster_info);
2393         spin_unlock(&p->lock);
2394         spin_unlock(&swap_lock);
2395 }
2396
2397 static void reinsert_swap_info(struct swap_info_struct *p)
2398 {
2399         spin_lock(&swap_lock);
2400         spin_lock(&p->lock);
2401         _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2402         spin_unlock(&p->lock);
2403         spin_unlock(&swap_lock);
2404 }
2405
2406 bool has_usable_swap(void)
2407 {
2408         bool ret = true;
2409
2410         spin_lock(&swap_lock);
2411         if (plist_head_empty(&swap_active_head))
2412                 ret = false;
2413         spin_unlock(&swap_lock);
2414         return ret;
2415 }
2416
2417 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2418 {
2419         struct swap_info_struct *p = NULL;
2420         unsigned char *swap_map;
2421         struct swap_cluster_info *cluster_info;
2422         unsigned long *frontswap_map;
2423         struct file *swap_file, *victim;
2424         struct address_space *mapping;
2425         struct inode *inode;
2426         struct filename *pathname;
2427         int err, found = 0;
2428         unsigned int old_block_size;
2429
2430         if (!capable(CAP_SYS_ADMIN))
2431                 return -EPERM;
2432
2433         BUG_ON(!current->mm);
2434
2435         pathname = getname(specialfile);
2436         if (IS_ERR(pathname))
2437                 return PTR_ERR(pathname);
2438
2439         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2440         err = PTR_ERR(victim);
2441         if (IS_ERR(victim))
2442                 goto out;
2443
2444         mapping = victim->f_mapping;
2445         spin_lock(&swap_lock);
2446         plist_for_each_entry(p, &swap_active_head, list) {
2447                 if (p->flags & SWP_WRITEOK) {
2448                         if (p->swap_file->f_mapping == mapping) {
2449                                 found = 1;
2450                                 break;
2451                         }
2452                 }
2453         }
2454         if (!found) {
2455                 err = -EINVAL;
2456                 spin_unlock(&swap_lock);
2457                 goto out_dput;
2458         }
2459         if (!security_vm_enough_memory_mm(current->mm, p->pages))
2460                 vm_unacct_memory(p->pages);
2461         else {
2462                 err = -ENOMEM;
2463                 spin_unlock(&swap_lock);
2464                 goto out_dput;
2465         }
2466         del_from_avail_list(p);
2467         spin_lock(&p->lock);
2468         if (p->prio < 0) {
2469                 struct swap_info_struct *si = p;
2470                 int nid;
2471
2472                 plist_for_each_entry_continue(si, &swap_active_head, list) {
2473                         si->prio++;
2474                         si->list.prio--;
2475                         for_each_node(nid) {
2476                                 if (si->avail_lists[nid].prio != 1)
2477                                         si->avail_lists[nid].prio--;
2478                         }
2479                 }
2480                 least_priority++;
2481         }
2482         plist_del(&p->list, &swap_active_head);
2483         atomic_long_sub(p->pages, &nr_swap_pages);
2484         total_swap_pages -= p->pages;
2485         p->flags &= ~SWP_WRITEOK;
2486         spin_unlock(&p->lock);
2487         spin_unlock(&swap_lock);
2488
2489         disable_swap_slots_cache_lock();
2490
2491         set_current_oom_origin();
2492         err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2493         clear_current_oom_origin();
2494
2495         if (err) {
2496                 /* re-insert swap space back into swap_list */
2497                 reinsert_swap_info(p);
2498                 reenable_swap_slots_cache_unlock();
2499                 goto out_dput;
2500         }
2501
2502         reenable_swap_slots_cache_unlock();
2503
2504         flush_work(&p->discard_work);
2505
2506         destroy_swap_extents(p);
2507         if (p->flags & SWP_CONTINUED)
2508                 free_swap_count_continuations(p);
2509
2510         if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2511                 atomic_dec(&nr_rotate_swap);
2512
2513         mutex_lock(&swapon_mutex);
2514         spin_lock(&swap_lock);
2515         spin_lock(&p->lock);
2516         drain_mmlist();
2517
2518         /* wait for anyone still in scan_swap_map */
2519         p->highest_bit = 0;             /* cuts scans short */
2520         while (p->flags >= SWP_SCANNING) {
2521                 spin_unlock(&p->lock);
2522                 spin_unlock(&swap_lock);
2523                 schedule_timeout_uninterruptible(1);
2524                 spin_lock(&swap_lock);
2525                 spin_lock(&p->lock);
2526         }
2527
2528         swap_file = p->swap_file;
2529         old_block_size = p->old_block_size;
2530         p->swap_file = NULL;
2531         p->max = 0;
2532         swap_map = p->swap_map;
2533         p->swap_map = NULL;
2534         cluster_info = p->cluster_info;
2535         p->cluster_info = NULL;
2536         frontswap_map = frontswap_map_get(p);
2537         spin_unlock(&p->lock);
2538         spin_unlock(&swap_lock);
2539         frontswap_invalidate_area(p->type);
2540         frontswap_map_set(p, NULL);
2541         mutex_unlock(&swapon_mutex);
2542         free_percpu(p->percpu_cluster);
2543         p->percpu_cluster = NULL;
2544         vfree(swap_map);
2545         kvfree(cluster_info);
2546         kvfree(frontswap_map);
2547         /* Destroy swap account information */
2548         swap_cgroup_swapoff(p->type);
2549         exit_swap_address_space(p->type);
2550
2551         inode = mapping->host;
2552         if (S_ISBLK(inode->i_mode)) {
2553                 struct block_device *bdev = I_BDEV(inode);
2554                 set_blocksize(bdev, old_block_size);
2555                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2556         } else {
2557                 inode_lock(inode);
2558                 inode->i_flags &= ~S_SWAPFILE;
2559                 inode_unlock(inode);
2560         }
2561         filp_close(swap_file, NULL);
2562
2563         /*
2564          * Clear the SWP_USED flag after all resources are freed so that swapon
2565          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2566          * not hold p->lock after we cleared its SWP_WRITEOK.
2567          */
2568         spin_lock(&swap_lock);
2569         p->flags = 0;
2570         spin_unlock(&swap_lock);
2571
2572         err = 0;
2573         atomic_inc(&proc_poll_event);
2574         wake_up_interruptible(&proc_poll_wait);
2575
2576 out_dput:
2577         filp_close(victim, NULL);
2578 out:
2579         putname(pathname);
2580         return err;
2581 }
2582
2583 #ifdef CONFIG_PROC_FS
2584 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2585 {
2586         struct seq_file *seq = file->private_data;
2587
2588         poll_wait(file, &proc_poll_wait, wait);
2589
2590         if (seq->poll_event != atomic_read(&proc_poll_event)) {
2591                 seq->poll_event = atomic_read(&proc_poll_event);
2592                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2593         }
2594
2595         return EPOLLIN | EPOLLRDNORM;
2596 }
2597
2598 /* iterator */
2599 static void *swap_start(struct seq_file *swap, loff_t *pos)
2600 {
2601         struct swap_info_struct *si;
2602         int type;
2603         loff_t l = *pos;
2604
2605         mutex_lock(&swapon_mutex);
2606
2607         if (!l)
2608                 return SEQ_START_TOKEN;
2609
2610         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2611                 if (!(si->flags & SWP_USED) || !si->swap_map)
2612                         continue;
2613                 if (!--l)
2614                         return si;
2615         }
2616
2617         return NULL;
2618 }
2619
2620 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2621 {
2622         struct swap_info_struct *si = v;
2623         int type;
2624
2625         if (v == SEQ_START_TOKEN)
2626                 type = 0;
2627         else
2628                 type = si->type + 1;
2629
2630         for (; (si = swap_type_to_swap_info(type)); type++) {
2631                 if (!(si->flags & SWP_USED) || !si->swap_map)
2632                         continue;
2633                 ++*pos;
2634                 return si;
2635         }
2636
2637         return NULL;
2638 }
2639
2640 static void swap_stop(struct seq_file *swap, void *v)
2641 {
2642         mutex_unlock(&swapon_mutex);
2643 }
2644
2645 static int swap_show(struct seq_file *swap, void *v)
2646 {
2647         struct swap_info_struct *si = v;
2648         struct file *file;
2649         int len;
2650
2651         if (si == SEQ_START_TOKEN) {
2652                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2653                 return 0;
2654         }
2655
2656         file = si->swap_file;
2657         len = seq_file_path(swap, file, " \t\n\\");
2658         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2659                         len < 40 ? 40 - len : 1, " ",
2660                         S_ISBLK(file_inode(file)->i_mode) ?
2661                                 "partition" : "file\t",
2662                         si->pages << (PAGE_SHIFT - 10),
2663                         si->inuse_pages << (PAGE_SHIFT - 10),
2664                         si->prio);
2665         return 0;
2666 }
2667
2668 static const struct seq_operations swaps_op = {
2669         .start =        swap_start,
2670         .next =         swap_next,
2671         .stop =         swap_stop,
2672         .show =         swap_show
2673 };
2674
2675 static int swaps_open(struct inode *inode, struct file *file)
2676 {
2677         struct seq_file *seq;
2678         int ret;
2679
2680         ret = seq_open(file, &swaps_op);
2681         if (ret)
2682                 return ret;
2683
2684         seq = file->private_data;
2685         seq->poll_event = atomic_read(&proc_poll_event);
2686         return 0;
2687 }
2688
2689 static const struct file_operations proc_swaps_operations = {
2690         .open           = swaps_open,
2691         .read           = seq_read,
2692         .llseek         = seq_lseek,
2693         .release        = seq_release,
2694         .poll           = swaps_poll,
2695 };
2696
2697 static int __init procswaps_init(void)
2698 {
2699         proc_create("swaps", 0, NULL, &proc_swaps_operations);
2700         return 0;
2701 }
2702 __initcall(procswaps_init);
2703 #endif /* CONFIG_PROC_FS */
2704
2705 #ifdef MAX_SWAPFILES_CHECK
2706 static int __init max_swapfiles_check(void)
2707 {
2708         MAX_SWAPFILES_CHECK();
2709         return 0;
2710 }
2711 late_initcall(max_swapfiles_check);
2712 #endif
2713
2714 static struct swap_info_struct *alloc_swap_info(void)
2715 {
2716         struct swap_info_struct *p;
2717         unsigned int type;
2718         int i;
2719
2720         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2721         if (!p)
2722                 return ERR_PTR(-ENOMEM);
2723
2724         spin_lock(&swap_lock);
2725         for (type = 0; type < nr_swapfiles; type++) {
2726                 if (!(swap_info[type]->flags & SWP_USED))
2727                         break;
2728         }
2729         if (type >= MAX_SWAPFILES) {
2730                 spin_unlock(&swap_lock);
2731                 kvfree(p);
2732                 return ERR_PTR(-EPERM);
2733         }
2734         if (type >= nr_swapfiles) {
2735                 p->type = type;
2736                 WRITE_ONCE(swap_info[type], p);
2737                 /*
2738                  * Write swap_info[type] before nr_swapfiles, in case a
2739                  * racing procfs swap_start() or swap_next() is reading them.
2740                  * (We never shrink nr_swapfiles, we never free this entry.)
2741                  */
2742                 smp_wmb();
2743                 WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2744         } else {
2745                 kvfree(p);
2746                 p = swap_info[type];
2747                 /*
2748                  * Do not memset this entry: a racing procfs swap_next()
2749                  * would be relying on p->type to remain valid.
2750                  */
2751         }
2752         INIT_LIST_HEAD(&p->first_swap_extent.list);
2753         plist_node_init(&p->list, 0);
2754         for_each_node(i)
2755                 plist_node_init(&p->avail_lists[i], 0);
2756         p->flags = SWP_USED;
2757         spin_unlock(&swap_lock);
2758         spin_lock_init(&p->lock);
2759         spin_lock_init(&p->cont_lock);
2760
2761         return p;
2762 }
2763
2764 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2765 {
2766         int error;
2767
2768         if (S_ISBLK(inode->i_mode)) {
2769                 p->bdev = bdgrab(I_BDEV(inode));
2770                 error = blkdev_get(p->bdev,
2771                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2772                 if (error < 0) {
2773                         p->bdev = NULL;
2774                         return error;
2775                 }
2776                 p->old_block_size = block_size(p->bdev);
2777                 error = set_blocksize(p->bdev, PAGE_SIZE);
2778                 if (error < 0)
2779                         return error;
2780                 p->flags |= SWP_BLKDEV;
2781         } else if (S_ISREG(inode->i_mode)) {
2782                 p->bdev = inode->i_sb->s_bdev;
2783                 inode_lock(inode);
2784                 if (IS_SWAPFILE(inode))
2785                         return -EBUSY;
2786         } else
2787                 return -EINVAL;
2788
2789         return 0;
2790 }
2791
2792
2793 /*
2794  * Find out how many pages are allowed for a single swap device. There
2795  * are two limiting factors:
2796  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2797  * 2) the number of bits in the swap pte, as defined by the different
2798  * architectures.
2799  *
2800  * In order to find the largest possible bit mask, a swap entry with
2801  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2802  * decoded to a swp_entry_t again, and finally the swap offset is
2803  * extracted.
2804  *
2805  * This will mask all the bits from the initial ~0UL mask that can't
2806  * be encoded in either the swp_entry_t or the architecture definition
2807  * of a swap pte.
2808  */
2809 unsigned long generic_max_swapfile_size(void)
2810 {
2811         return swp_offset(pte_to_swp_entry(
2812                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2813 }
2814
2815 /* Can be overridden by an architecture for additional checks. */
2816 __weak unsigned long max_swapfile_size(void)
2817 {
2818         return generic_max_swapfile_size();
2819 }
2820
2821 static unsigned long read_swap_header(struct swap_info_struct *p,
2822                                         union swap_header *swap_header,
2823                                         struct inode *inode)
2824 {
2825         int i;
2826         unsigned long maxpages;
2827         unsigned long swapfilepages;
2828         unsigned long last_page;
2829
2830         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2831                 pr_err("Unable to find swap-space signature\n");
2832                 return 0;
2833         }
2834
2835         /* swap partition endianess hack... */
2836         if (swab32(swap_header->info.version) == 1) {
2837                 swab32s(&swap_header->info.version);
2838                 swab32s(&swap_header->info.last_page);
2839                 swab32s(&swap_header->info.nr_badpages);
2840                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2841                         return 0;
2842                 for (i = 0; i < swap_header->info.nr_badpages; i++)
2843                         swab32s(&swap_header->info.badpages[i]);
2844         }
2845         /* Check the swap header's sub-version */
2846         if (swap_header->info.version != 1) {
2847                 pr_warn("Unable to handle swap header version %d\n",
2848                         swap_header->info.version);
2849                 return 0;
2850         }
2851
2852         p->lowest_bit  = 1;
2853         p->cluster_next = 1;
2854         p->cluster_nr = 0;
2855
2856         maxpages = max_swapfile_size();
2857         last_page = swap_header->info.last_page;
2858         if (!last_page) {
2859                 pr_warn("Empty swap-file\n");
2860                 return 0;
2861         }
2862         if (last_page > maxpages) {
2863                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2864                         maxpages << (PAGE_SHIFT - 10),
2865                         last_page << (PAGE_SHIFT - 10));
2866         }
2867         if (maxpages > last_page) {
2868                 maxpages = last_page + 1;
2869                 /* p->max is an unsigned int: don't overflow it */
2870                 if ((unsigned int)maxpages == 0)
2871                         maxpages = UINT_MAX;
2872         }
2873         p->highest_bit = maxpages - 1;
2874
2875         if (!maxpages)
2876                 return 0;
2877         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2878         if (swapfilepages && maxpages > swapfilepages) {
2879                 pr_warn("Swap area shorter than signature indicates\n");
2880                 return 0;
2881         }
2882         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2883                 return 0;
2884         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2885                 return 0;
2886
2887         return maxpages;
2888 }
2889
2890 #define SWAP_CLUSTER_INFO_COLS                                          \
2891         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2892 #define SWAP_CLUSTER_SPACE_COLS                                         \
2893         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2894 #define SWAP_CLUSTER_COLS                                               \
2895         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2896
2897 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2898                                         union swap_header *swap_header,
2899                                         unsigned char *swap_map,
2900                                         struct swap_cluster_info *cluster_info,
2901                                         unsigned long maxpages,
2902                                         sector_t *span)
2903 {
2904         unsigned int j, k;
2905         unsigned int nr_good_pages;
2906         int nr_extents;
2907         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2908         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
2909         unsigned long i, idx;
2910
2911         nr_good_pages = maxpages - 1;   /* omit header page */
2912
2913         cluster_list_init(&p->free_clusters);
2914         cluster_list_init(&p->discard_clusters);
2915
2916         for (i = 0; i < swap_header->info.nr_badpages; i++) {
2917                 unsigned int page_nr = swap_header->info.badpages[i];
2918                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
2919                         return -EINVAL;
2920                 if (page_nr < maxpages) {
2921                         swap_map[page_nr] = SWAP_MAP_BAD;
2922                         nr_good_pages--;
2923                         /*
2924                          * Haven't marked the cluster free yet, no list
2925                          * operation involved
2926                          */
2927                         inc_cluster_info_page(p, cluster_info, page_nr);
2928                 }
2929         }
2930
2931         /* Haven't marked the cluster free yet, no list operation involved */
2932         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
2933                 inc_cluster_info_page(p, cluster_info, i);
2934
2935         if (nr_good_pages) {
2936                 swap_map[0] = SWAP_MAP_BAD;
2937                 /*
2938                  * Not mark the cluster free yet, no list
2939                  * operation involved
2940                  */
2941                 inc_cluster_info_page(p, cluster_info, 0);
2942                 p->max = maxpages;
2943                 p->pages = nr_good_pages;
2944                 nr_extents = setup_swap_extents(p, span);
2945                 if (nr_extents < 0)
2946                         return nr_extents;
2947                 nr_good_pages = p->pages;
2948         }
2949         if (!nr_good_pages) {
2950                 pr_warn("Empty swap-file\n");
2951                 return -EINVAL;
2952         }
2953
2954         if (!cluster_info)
2955                 return nr_extents;
2956
2957
2958         /*
2959          * Reduce false cache line sharing between cluster_info and
2960          * sharing same address space.
2961          */
2962         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
2963                 j = (k + col) % SWAP_CLUSTER_COLS;
2964                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
2965                         idx = i * SWAP_CLUSTER_COLS + j;
2966                         if (idx >= nr_clusters)
2967                                 continue;
2968                         if (cluster_count(&cluster_info[idx]))
2969                                 continue;
2970                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
2971                         cluster_list_add_tail(&p->free_clusters, cluster_info,
2972                                               idx);
2973                 }
2974         }
2975         return nr_extents;
2976 }
2977
2978 /*
2979  * Helper to sys_swapon determining if a given swap
2980  * backing device queue supports DISCARD operations.
2981  */
2982 static bool swap_discardable(struct swap_info_struct *si)
2983 {
2984         struct request_queue *q = bdev_get_queue(si->bdev);
2985
2986         if (!q || !blk_queue_discard(q))
2987                 return false;
2988
2989         return true;
2990 }
2991
2992 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
2993 {
2994         struct swap_info_struct *p;
2995         struct filename *name;
2996         struct file *swap_file = NULL;
2997         struct address_space *mapping;
2998         int prio;
2999         int error;
3000         union swap_header *swap_header;
3001         int nr_extents;
3002         sector_t span;
3003         unsigned long maxpages;
3004         unsigned char *swap_map = NULL;
3005         struct swap_cluster_info *cluster_info = NULL;
3006         unsigned long *frontswap_map = NULL;
3007         struct page *page = NULL;
3008         struct inode *inode = NULL;
3009         bool inced_nr_rotate_swap = false;
3010
3011         if (swap_flags & ~SWAP_FLAGS_VALID)
3012                 return -EINVAL;
3013
3014         if (!capable(CAP_SYS_ADMIN))
3015                 return -EPERM;
3016
3017         if (!swap_avail_heads)
3018                 return -ENOMEM;
3019
3020         p = alloc_swap_info();
3021         if (IS_ERR(p))
3022                 return PTR_ERR(p);
3023
3024         INIT_WORK(&p->discard_work, swap_discard_work);
3025
3026         name = getname(specialfile);
3027         if (IS_ERR(name)) {
3028                 error = PTR_ERR(name);
3029                 name = NULL;
3030                 goto bad_swap;
3031         }
3032         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3033         if (IS_ERR(swap_file)) {
3034                 error = PTR_ERR(swap_file);
3035                 swap_file = NULL;
3036                 goto bad_swap;
3037         }
3038
3039         p->swap_file = swap_file;
3040         mapping = swap_file->f_mapping;
3041         inode = mapping->host;
3042
3043         /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3044         error = claim_swapfile(p, inode);
3045         if (unlikely(error))
3046                 goto bad_swap;
3047
3048         /*
3049          * Read the swap header.
3050          */
3051         if (!mapping->a_ops->readpage) {
3052                 error = -EINVAL;
3053                 goto bad_swap;
3054         }
3055         page = read_mapping_page(mapping, 0, swap_file);
3056         if (IS_ERR(page)) {
3057                 error = PTR_ERR(page);
3058                 goto bad_swap;
3059         }
3060         swap_header = kmap(page);
3061
3062         maxpages = read_swap_header(p, swap_header, inode);
3063         if (unlikely(!maxpages)) {
3064                 error = -EINVAL;
3065                 goto bad_swap;
3066         }
3067
3068         /* OK, set up the swap map and apply the bad block list */
3069         swap_map = vzalloc(maxpages);
3070         if (!swap_map) {
3071                 error = -ENOMEM;
3072                 goto bad_swap;
3073         }
3074
3075         if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3076                 p->flags |= SWP_STABLE_WRITES;
3077
3078         if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3079                 p->flags |= SWP_SYNCHRONOUS_IO;
3080
3081         if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3082                 int cpu;
3083                 unsigned long ci, nr_cluster;
3084
3085                 p->flags |= SWP_SOLIDSTATE;
3086                 /*
3087                  * select a random position to start with to help wear leveling
3088                  * SSD
3089                  */
3090                 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3091                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3092
3093                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3094                                         GFP_KERNEL);
3095                 if (!cluster_info) {
3096                         error = -ENOMEM;
3097                         goto bad_swap;
3098                 }
3099
3100                 for (ci = 0; ci < nr_cluster; ci++)
3101                         spin_lock_init(&((cluster_info + ci)->lock));
3102
3103                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3104                 if (!p->percpu_cluster) {
3105                         error = -ENOMEM;
3106                         goto bad_swap;
3107                 }
3108                 for_each_possible_cpu(cpu) {
3109                         struct percpu_cluster *cluster;
3110                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3111                         cluster_set_null(&cluster->index);
3112                 }
3113         } else {
3114                 atomic_inc(&nr_rotate_swap);
3115                 inced_nr_rotate_swap = true;
3116         }
3117
3118         error = swap_cgroup_swapon(p->type, maxpages);
3119         if (error)
3120                 goto bad_swap;
3121
3122         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3123                 cluster_info, maxpages, &span);
3124         if (unlikely(nr_extents < 0)) {
3125                 error = nr_extents;
3126                 goto bad_swap;
3127         }
3128         /* frontswap enabled? set up bit-per-page map for frontswap */
3129         if (IS_ENABLED(CONFIG_FRONTSWAP))
3130                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3131                                          sizeof(long),
3132                                          GFP_KERNEL);
3133
3134         if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3135                 /*
3136                  * When discard is enabled for swap with no particular
3137                  * policy flagged, we set all swap discard flags here in
3138                  * order to sustain backward compatibility with older
3139                  * swapon(8) releases.
3140                  */
3141                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3142                              SWP_PAGE_DISCARD);
3143
3144                 /*
3145                  * By flagging sys_swapon, a sysadmin can tell us to
3146                  * either do single-time area discards only, or to just
3147                  * perform discards for released swap page-clusters.
3148                  * Now it's time to adjust the p->flags accordingly.
3149                  */
3150                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3151                         p->flags &= ~SWP_PAGE_DISCARD;
3152                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3153                         p->flags &= ~SWP_AREA_DISCARD;
3154
3155                 /* issue a swapon-time discard if it's still required */
3156                 if (p->flags & SWP_AREA_DISCARD) {
3157                         int err = discard_swap(p);
3158                         if (unlikely(err))
3159                                 pr_err("swapon: discard_swap(%p): %d\n",
3160                                         p, err);
3161                 }
3162         }
3163
3164         error = init_swap_address_space(p->type, maxpages);
3165         if (error)
3166                 goto bad_swap;
3167
3168         mutex_lock(&swapon_mutex);
3169         prio = -1;
3170         if (swap_flags & SWAP_FLAG_PREFER)
3171                 prio =
3172                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3173         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3174
3175         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3176                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3177                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3178                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3179                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3180                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3181                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3182                 (frontswap_map) ? "FS" : "");
3183
3184         mutex_unlock(&swapon_mutex);
3185         atomic_inc(&proc_poll_event);
3186         wake_up_interruptible(&proc_poll_wait);
3187
3188         if (S_ISREG(inode->i_mode))
3189                 inode->i_flags |= S_SWAPFILE;
3190         error = 0;
3191         goto out;
3192 bad_swap:
3193         free_percpu(p->percpu_cluster);
3194         p->percpu_cluster = NULL;
3195         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3196                 set_blocksize(p->bdev, p->old_block_size);
3197                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3198         }
3199         destroy_swap_extents(p);
3200         swap_cgroup_swapoff(p->type);
3201         spin_lock(&swap_lock);
3202         p->swap_file = NULL;
3203         p->flags = 0;
3204         spin_unlock(&swap_lock);
3205         vfree(swap_map);
3206         kvfree(cluster_info);
3207         kvfree(frontswap_map);
3208         if (inced_nr_rotate_swap)
3209                 atomic_dec(&nr_rotate_swap);
3210         if (swap_file) {
3211                 if (inode && S_ISREG(inode->i_mode)) {
3212                         inode_unlock(inode);
3213                         inode = NULL;
3214                 }
3215                 filp_close(swap_file, NULL);
3216         }
3217 out:
3218         if (page && !IS_ERR(page)) {
3219                 kunmap(page);
3220                 put_page(page);
3221         }
3222         if (name)
3223                 putname(name);
3224         if (inode && S_ISREG(inode->i_mode))
3225                 inode_unlock(inode);
3226         if (!error)
3227                 enable_swap_slots_cache();
3228         return error;
3229 }
3230
3231 void si_swapinfo(struct sysinfo *val)
3232 {
3233         unsigned int type;
3234         unsigned long nr_to_be_unused = 0;
3235
3236         spin_lock(&swap_lock);
3237         for (type = 0; type < nr_swapfiles; type++) {
3238                 struct swap_info_struct *si = swap_info[type];
3239
3240                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3241                         nr_to_be_unused += si->inuse_pages;
3242         }
3243         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3244         val->totalswap = total_swap_pages + nr_to_be_unused;
3245         spin_unlock(&swap_lock);
3246 }
3247
3248 /*
3249  * Verify that a swap entry is valid and increment its swap map count.
3250  *
3251  * Returns error code in following case.
3252  * - success -> 0
3253  * - swp_entry is invalid -> EINVAL
3254  * - swp_entry is migration entry -> EINVAL
3255  * - swap-cache reference is requested but there is already one. -> EEXIST
3256  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3257  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3258  */
3259 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3260 {
3261         struct swap_info_struct *p;
3262         struct swap_cluster_info *ci;
3263         unsigned long offset;
3264         unsigned char count;
3265         unsigned char has_cache;
3266         int err = -EINVAL;
3267
3268         if (non_swap_entry(entry))
3269                 goto out;
3270
3271         p = swp_swap_info(entry);
3272         if (!p)
3273                 goto bad_file;
3274
3275         offset = swp_offset(entry);
3276         if (unlikely(offset >= p->max))
3277                 goto out;
3278
3279         ci = lock_cluster_or_swap_info(p, offset);
3280
3281         count = p->swap_map[offset];
3282
3283         /*
3284          * swapin_readahead() doesn't check if a swap entry is valid, so the
3285          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3286          */
3287         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3288                 err = -ENOENT;
3289                 goto unlock_out;
3290         }
3291
3292         has_cache = count & SWAP_HAS_CACHE;
3293         count &= ~SWAP_HAS_CACHE;
3294         err = 0;
3295
3296         if (usage == SWAP_HAS_CACHE) {
3297
3298                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3299                 if (!has_cache && count)
3300                         has_cache = SWAP_HAS_CACHE;
3301                 else if (has_cache)             /* someone else added cache */
3302                         err = -EEXIST;
3303                 else                            /* no users remaining */
3304                         err = -ENOENT;
3305
3306         } else if (count || has_cache) {
3307
3308                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3309                         count += usage;
3310                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3311                         err = -EINVAL;
3312                 else if (swap_count_continued(p, offset, count))
3313                         count = COUNT_CONTINUED;
3314                 else
3315                         err = -ENOMEM;
3316         } else
3317                 err = -ENOENT;                  /* unused swap entry */
3318
3319         p->swap_map[offset] = count | has_cache;
3320
3321 unlock_out:
3322         unlock_cluster_or_swap_info(p, ci);
3323 out:
3324         return err;
3325
3326 bad_file:
3327         pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3328         goto out;
3329 }
3330
3331 /*
3332  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3333  * (in which case its reference count is never incremented).
3334  */
3335 void swap_shmem_alloc(swp_entry_t entry)
3336 {
3337         __swap_duplicate(entry, SWAP_MAP_SHMEM);
3338 }
3339
3340 /*
3341  * Increase reference count of swap entry by 1.
3342  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3343  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3344  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3345  * might occur if a page table entry has got corrupted.
3346  */
3347 int swap_duplicate(swp_entry_t entry)
3348 {
3349         int err = 0;
3350
3351         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3352                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3353         return err;
3354 }
3355
3356 /*
3357  * @entry: swap entry for which we allocate swap cache.
3358  *
3359  * Called when allocating swap cache for existing swap entry,
3360  * This can return error codes. Returns 0 at success.
3361  * -EBUSY means there is a swap cache.
3362  * Note: return code is different from swap_duplicate().
3363  */
3364 int swapcache_prepare(swp_entry_t entry)
3365 {
3366         return __swap_duplicate(entry, SWAP_HAS_CACHE);
3367 }
3368
3369 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3370 {
3371         return swap_type_to_swap_info(swp_type(entry));
3372 }
3373
3374 struct swap_info_struct *page_swap_info(struct page *page)
3375 {
3376         swp_entry_t entry = { .val = page_private(page) };
3377         return swp_swap_info(entry);
3378 }
3379
3380 /*
3381  * out-of-line __page_file_ methods to avoid include hell.
3382  */
3383 struct address_space *__page_file_mapping(struct page *page)
3384 {
3385         return page_swap_info(page)->swap_file->f_mapping;
3386 }
3387 EXPORT_SYMBOL_GPL(__page_file_mapping);
3388
3389 pgoff_t __page_file_index(struct page *page)
3390 {
3391         swp_entry_t swap = { .val = page_private(page) };
3392         return swp_offset(swap);
3393 }
3394 EXPORT_SYMBOL_GPL(__page_file_index);
3395
3396 /*
3397  * add_swap_count_continuation - called when a swap count is duplicated
3398  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3399  * page of the original vmalloc'ed swap_map, to hold the continuation count
3400  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3401  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3402  *
3403  * These continuation pages are seldom referenced: the common paths all work
3404  * on the original swap_map, only referring to a continuation page when the
3405  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3406  *
3407  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3408  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3409  * can be called after dropping locks.
3410  */
3411 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3412 {
3413         struct swap_info_struct *si;
3414         struct swap_cluster_info *ci;
3415         struct page *head;
3416         struct page *page;
3417         struct page *list_page;
3418         pgoff_t offset;
3419         unsigned char count;
3420
3421         /*
3422          * When debugging, it's easier to use __GFP_ZERO here; but it's better
3423          * for latency not to zero a page while GFP_ATOMIC and holding locks.
3424          */
3425         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3426
3427         si = swap_info_get(entry);
3428         if (!si) {
3429                 /*
3430                  * An acceptable race has occurred since the failing
3431                  * __swap_duplicate(): the swap entry has been freed,
3432                  * perhaps even the whole swap_map cleared for swapoff.
3433                  */
3434                 goto outer;
3435         }
3436
3437         offset = swp_offset(entry);
3438
3439         ci = lock_cluster(si, offset);
3440
3441         count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3442
3443         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3444                 /*
3445                  * The higher the swap count, the more likely it is that tasks
3446                  * will race to add swap count continuation: we need to avoid
3447                  * over-provisioning.
3448                  */
3449                 goto out;
3450         }
3451
3452         if (!page) {
3453                 unlock_cluster(ci);
3454                 spin_unlock(&si->lock);
3455                 return -ENOMEM;
3456         }
3457
3458         /*
3459          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3460          * no architecture is using highmem pages for kernel page tables: so it
3461          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3462          */
3463         head = vmalloc_to_page(si->swap_map + offset);
3464         offset &= ~PAGE_MASK;
3465
3466         spin_lock(&si->cont_lock);
3467         /*
3468          * Page allocation does not initialize the page's lru field,
3469          * but it does always reset its private field.
3470          */
3471         if (!page_private(head)) {
3472                 BUG_ON(count & COUNT_CONTINUED);
3473                 INIT_LIST_HEAD(&head->lru);
3474                 set_page_private(head, SWP_CONTINUED);
3475                 si->flags |= SWP_CONTINUED;
3476         }
3477
3478         list_for_each_entry(list_page, &head->lru, lru) {
3479                 unsigned char *map;
3480
3481                 /*
3482                  * If the previous map said no continuation, but we've found
3483                  * a continuation page, free our allocation and use this one.
3484                  */
3485                 if (!(count & COUNT_CONTINUED))
3486                         goto out_unlock_cont;
3487
3488                 map = kmap_atomic(list_page) + offset;
3489                 count = *map;
3490                 kunmap_atomic(map);
3491
3492                 /*
3493                  * If this continuation count now has some space in it,
3494                  * free our allocation and use this one.
3495                  */
3496                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3497                         goto out_unlock_cont;
3498         }
3499
3500         list_add_tail(&page->lru, &head->lru);
3501         page = NULL;                    /* now it's attached, don't free it */
3502 out_unlock_cont:
3503         spin_unlock(&si->cont_lock);
3504 out:
3505         unlock_cluster(ci);
3506         spin_unlock(&si->lock);
3507 outer:
3508         if (page)
3509                 __free_page(page);
3510         return 0;
3511 }
3512
3513 /*
3514  * swap_count_continued - when the original swap_map count is incremented
3515  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3516  * into, carry if so, or else fail until a new continuation page is allocated;
3517  * when the original swap_map count is decremented from 0 with continuation,
3518  * borrow from the continuation and report whether it still holds more.
3519  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3520  * lock.
3521  */
3522 static bool swap_count_continued(struct swap_info_struct *si,
3523                                  pgoff_t offset, unsigned char count)
3524 {
3525         struct page *head;
3526         struct page *page;
3527         unsigned char *map;
3528         bool ret;
3529
3530         head = vmalloc_to_page(si->swap_map + offset);
3531         if (page_private(head) != SWP_CONTINUED) {
3532                 BUG_ON(count & COUNT_CONTINUED);
3533                 return false;           /* need to add count continuation */
3534         }
3535
3536         spin_lock(&si->cont_lock);
3537         offset &= ~PAGE_MASK;
3538         page = list_entry(head->lru.next, struct page, lru);
3539         map = kmap_atomic(page) + offset;
3540
3541         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
3542                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
3543
3544         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3545                 /*
3546                  * Think of how you add 1 to 999
3547                  */
3548                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3549                         kunmap_atomic(map);
3550                         page = list_entry(page->lru.next, struct page, lru);
3551                         BUG_ON(page == head);
3552                         map = kmap_atomic(page) + offset;
3553                 }
3554                 if (*map == SWAP_CONT_MAX) {
3555                         kunmap_atomic(map);
3556                         page = list_entry(page->lru.next, struct page, lru);
3557                         if (page == head) {
3558                                 ret = false;    /* add count continuation */
3559                                 goto out;
3560                         }
3561                         map = kmap_atomic(page) + offset;
3562 init_map:               *map = 0;               /* we didn't zero the page */
3563                 }
3564                 *map += 1;
3565                 kunmap_atomic(map);
3566                 page = list_entry(page->lru.prev, struct page, lru);
3567                 while (page != head) {
3568                         map = kmap_atomic(page) + offset;
3569                         *map = COUNT_CONTINUED;
3570                         kunmap_atomic(map);
3571                         page = list_entry(page->lru.prev, struct page, lru);
3572                 }
3573                 ret = true;                     /* incremented */
3574
3575         } else {                                /* decrementing */
3576                 /*
3577                  * Think of how you subtract 1 from 1000
3578                  */
3579                 BUG_ON(count != COUNT_CONTINUED);
3580                 while (*map == COUNT_CONTINUED) {
3581                         kunmap_atomic(map);
3582                         page = list_entry(page->lru.next, struct page, lru);
3583                         BUG_ON(page == head);
3584                         map = kmap_atomic(page) + offset;
3585                 }
3586                 BUG_ON(*map == 0);
3587                 *map -= 1;
3588                 if (*map == 0)
3589                         count = 0;
3590                 kunmap_atomic(map);
3591                 page = list_entry(page->lru.prev, struct page, lru);
3592                 while (page != head) {
3593                         map = kmap_atomic(page) + offset;
3594                         *map = SWAP_CONT_MAX | count;
3595                         count = COUNT_CONTINUED;
3596                         kunmap_atomic(map);
3597                         page = list_entry(page->lru.prev, struct page, lru);
3598                 }
3599                 ret = count == COUNT_CONTINUED;
3600         }
3601 out:
3602         spin_unlock(&si->cont_lock);
3603         return ret;
3604 }
3605
3606 /*
3607  * free_swap_count_continuations - swapoff free all the continuation pages
3608  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3609  */
3610 static void free_swap_count_continuations(struct swap_info_struct *si)
3611 {
3612         pgoff_t offset;
3613
3614         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3615                 struct page *head;
3616                 head = vmalloc_to_page(si->swap_map + offset);
3617                 if (page_private(head)) {
3618                         struct page *page, *next;
3619
3620                         list_for_each_entry_safe(page, next, &head->lru, lru) {
3621                                 list_del(&page->lru);
3622                                 __free_page(page);
3623                         }
3624                 }
3625         }
3626 }
3627
3628 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
3629 void mem_cgroup_throttle_swaprate(struct mem_cgroup *memcg, int node,
3630                                   gfp_t gfp_mask)
3631 {
3632         struct swap_info_struct *si, *next;
3633         if (!(gfp_mask & __GFP_IO) || !memcg)
3634                 return;
3635
3636         if (!blk_cgroup_congested())
3637                 return;
3638
3639         /*
3640          * We've already scheduled a throttle, avoid taking the global swap
3641          * lock.
3642          */
3643         if (current->throttle_queue)
3644                 return;
3645
3646         spin_lock(&swap_avail_lock);
3647         plist_for_each_entry_safe(si, next, &swap_avail_heads[node],
3648                                   avail_lists[node]) {
3649                 if (si->bdev) {
3650                         blkcg_schedule_throttle(bdev_get_queue(si->bdev),
3651                                                 true);
3652                         break;
3653                 }
3654         }
3655         spin_unlock(&swap_avail_lock);
3656 }
3657 #endif
3658
3659 static int __init swapfile_init(void)
3660 {
3661         int nid;
3662
3663         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3664                                          GFP_KERNEL);
3665         if (!swap_avail_heads) {
3666                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3667                 return -ENOMEM;
3668         }
3669
3670         for_each_node(nid)
3671                 plist_head_init(&swap_avail_heads[nid]);
3672
3673         return 0;
3674 }
3675 subsys_initcall(swapfile_init);