mm: reuse unused swap entry if necessary
[sfrench/cifs-2.6.git] / mm / swapfile.c
1 /*
2  *  linux/mm/swapfile.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *  Swap reorganised 29.12.95, Stephen Tweedie
6  */
7
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
32
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
37
38 static DEFINE_SPINLOCK(swap_lock);
39 static unsigned int nr_swapfiles;
40 long nr_swap_pages;
41 long total_swap_pages;
42 static int swap_overflow;
43 static int least_priority;
44
45 static const char Bad_file[] = "Bad swap file entry ";
46 static const char Unused_file[] = "Unused swap file entry ";
47 static const char Bad_offset[] = "Bad swap offset entry ";
48 static const char Unused_offset[] = "Unused swap offset entry ";
49
50 static struct swap_list_t swap_list = {-1, -1};
51
52 static struct swap_info_struct swap_info[MAX_SWAPFILES];
53
54 static DEFINE_MUTEX(swapon_mutex);
55
56 /* For reference count accounting in swap_map */
57 /* enum for swap_map[] handling. internal use only */
58 enum {
59         SWAP_MAP = 0,   /* ops for reference from swap users */
60         SWAP_CACHE,     /* ops for reference from swap cache */
61 };
62
63 static inline int swap_count(unsigned short ent)
64 {
65         return ent & SWAP_COUNT_MASK;
66 }
67
68 static inline bool swap_has_cache(unsigned short ent)
69 {
70         return !!(ent & SWAP_HAS_CACHE);
71 }
72
73 static inline unsigned short encode_swapmap(int count, bool has_cache)
74 {
75         unsigned short ret = count;
76
77         if (has_cache)
78                 return SWAP_HAS_CACHE | ret;
79         return ret;
80 }
81
82 /* returnes 1 if swap entry is freed */
83 static int
84 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
85 {
86         int type = si - swap_info;
87         swp_entry_t entry = swp_entry(type, offset);
88         struct page *page;
89         int ret = 0;
90
91         page = find_get_page(&swapper_space, entry.val);
92         if (!page)
93                 return 0;
94         /*
95          * This function is called from scan_swap_map() and it's called
96          * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
97          * We have to use trylock for avoiding deadlock. This is a special
98          * case and you should use try_to_free_swap() with explicit lock_page()
99          * in usual operations.
100          */
101         if (trylock_page(page)) {
102                 ret = try_to_free_swap(page);
103                 unlock_page(page);
104         }
105         page_cache_release(page);
106         return ret;
107 }
108
109 /*
110  * We need this because the bdev->unplug_fn can sleep and we cannot
111  * hold swap_lock while calling the unplug_fn. And swap_lock
112  * cannot be turned into a mutex.
113  */
114 static DECLARE_RWSEM(swap_unplug_sem);
115
116 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
117 {
118         swp_entry_t entry;
119
120         down_read(&swap_unplug_sem);
121         entry.val = page_private(page);
122         if (PageSwapCache(page)) {
123                 struct block_device *bdev = swap_info[swp_type(entry)].bdev;
124                 struct backing_dev_info *bdi;
125
126                 /*
127                  * If the page is removed from swapcache from under us (with a
128                  * racy try_to_unuse/swapoff) we need an additional reference
129                  * count to avoid reading garbage from page_private(page) above.
130                  * If the WARN_ON triggers during a swapoff it maybe the race
131                  * condition and it's harmless. However if it triggers without
132                  * swapoff it signals a problem.
133                  */
134                 WARN_ON(page_count(page) <= 1);
135
136                 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
137                 blk_run_backing_dev(bdi, page);
138         }
139         up_read(&swap_unplug_sem);
140 }
141
142 /*
143  * swapon tell device that all the old swap contents can be discarded,
144  * to allow the swap device to optimize its wear-levelling.
145  */
146 static int discard_swap(struct swap_info_struct *si)
147 {
148         struct swap_extent *se;
149         int err = 0;
150
151         list_for_each_entry(se, &si->extent_list, list) {
152                 sector_t start_block = se->start_block << (PAGE_SHIFT - 9);
153                 sector_t nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
154
155                 if (se->start_page == 0) {
156                         /* Do not discard the swap header page! */
157                         start_block += 1 << (PAGE_SHIFT - 9);
158                         nr_blocks -= 1 << (PAGE_SHIFT - 9);
159                         if (!nr_blocks)
160                                 continue;
161                 }
162
163                 err = blkdev_issue_discard(si->bdev, start_block,
164                                                 nr_blocks, GFP_KERNEL);
165                 if (err)
166                         break;
167
168                 cond_resched();
169         }
170         return err;             /* That will often be -EOPNOTSUPP */
171 }
172
173 /*
174  * swap allocation tell device that a cluster of swap can now be discarded,
175  * to allow the swap device to optimize its wear-levelling.
176  */
177 static void discard_swap_cluster(struct swap_info_struct *si,
178                                  pgoff_t start_page, pgoff_t nr_pages)
179 {
180         struct swap_extent *se = si->curr_swap_extent;
181         int found_extent = 0;
182
183         while (nr_pages) {
184                 struct list_head *lh;
185
186                 if (se->start_page <= start_page &&
187                     start_page < se->start_page + se->nr_pages) {
188                         pgoff_t offset = start_page - se->start_page;
189                         sector_t start_block = se->start_block + offset;
190                         sector_t nr_blocks = se->nr_pages - offset;
191
192                         if (nr_blocks > nr_pages)
193                                 nr_blocks = nr_pages;
194                         start_page += nr_blocks;
195                         nr_pages -= nr_blocks;
196
197                         if (!found_extent++)
198                                 si->curr_swap_extent = se;
199
200                         start_block <<= PAGE_SHIFT - 9;
201                         nr_blocks <<= PAGE_SHIFT - 9;
202                         if (blkdev_issue_discard(si->bdev, start_block,
203                                                         nr_blocks, GFP_NOIO))
204                                 break;
205                 }
206
207                 lh = se->list.next;
208                 if (lh == &si->extent_list)
209                         lh = lh->next;
210                 se = list_entry(lh, struct swap_extent, list);
211         }
212 }
213
214 static int wait_for_discard(void *word)
215 {
216         schedule();
217         return 0;
218 }
219
220 #define SWAPFILE_CLUSTER        256
221 #define LATENCY_LIMIT           256
222
223 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
224                                           int cache)
225 {
226         unsigned long offset;
227         unsigned long scan_base;
228         unsigned long last_in_cluster = 0;
229         int latency_ration = LATENCY_LIMIT;
230         int found_free_cluster = 0;
231
232         /*
233          * We try to cluster swap pages by allocating them sequentially
234          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
235          * way, however, we resort to first-free allocation, starting
236          * a new cluster.  This prevents us from scattering swap pages
237          * all over the entire swap partition, so that we reduce
238          * overall disk seek times between swap pages.  -- sct
239          * But we do now try to find an empty cluster.  -Andrea
240          * And we let swap pages go all over an SSD partition.  Hugh
241          */
242
243         si->flags += SWP_SCANNING;
244         scan_base = offset = si->cluster_next;
245
246         if (unlikely(!si->cluster_nr--)) {
247                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
248                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
249                         goto checks;
250                 }
251                 if (si->flags & SWP_DISCARDABLE) {
252                         /*
253                          * Start range check on racing allocations, in case
254                          * they overlap the cluster we eventually decide on
255                          * (we scan without swap_lock to allow preemption).
256                          * It's hardly conceivable that cluster_nr could be
257                          * wrapped during our scan, but don't depend on it.
258                          */
259                         if (si->lowest_alloc)
260                                 goto checks;
261                         si->lowest_alloc = si->max;
262                         si->highest_alloc = 0;
263                 }
264                 spin_unlock(&swap_lock);
265
266                 /*
267                  * If seek is expensive, start searching for new cluster from
268                  * start of partition, to minimize the span of allocated swap.
269                  * But if seek is cheap, search from our current position, so
270                  * that swap is allocated from all over the partition: if the
271                  * Flash Translation Layer only remaps within limited zones,
272                  * we don't want to wear out the first zone too quickly.
273                  */
274                 if (!(si->flags & SWP_SOLIDSTATE))
275                         scan_base = offset = si->lowest_bit;
276                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
277
278                 /* Locate the first empty (unaligned) cluster */
279                 for (; last_in_cluster <= si->highest_bit; offset++) {
280                         if (si->swap_map[offset])
281                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
282                         else if (offset == last_in_cluster) {
283                                 spin_lock(&swap_lock);
284                                 offset -= SWAPFILE_CLUSTER - 1;
285                                 si->cluster_next = offset;
286                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
287                                 found_free_cluster = 1;
288                                 goto checks;
289                         }
290                         if (unlikely(--latency_ration < 0)) {
291                                 cond_resched();
292                                 latency_ration = LATENCY_LIMIT;
293                         }
294                 }
295
296                 offset = si->lowest_bit;
297                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
298
299                 /* Locate the first empty (unaligned) cluster */
300                 for (; last_in_cluster < scan_base; offset++) {
301                         if (si->swap_map[offset])
302                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
303                         else if (offset == last_in_cluster) {
304                                 spin_lock(&swap_lock);
305                                 offset -= SWAPFILE_CLUSTER - 1;
306                                 si->cluster_next = offset;
307                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
308                                 found_free_cluster = 1;
309                                 goto checks;
310                         }
311                         if (unlikely(--latency_ration < 0)) {
312                                 cond_resched();
313                                 latency_ration = LATENCY_LIMIT;
314                         }
315                 }
316
317                 offset = scan_base;
318                 spin_lock(&swap_lock);
319                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
320                 si->lowest_alloc = 0;
321         }
322
323 checks:
324         if (!(si->flags & SWP_WRITEOK))
325                 goto no_page;
326         if (!si->highest_bit)
327                 goto no_page;
328         if (offset > si->highest_bit)
329                 scan_base = offset = si->lowest_bit;
330
331         /* reuse swap entry of cache-only swap if not busy. */
332         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
333                 int swap_was_freed;
334                 spin_unlock(&swap_lock);
335                 swap_was_freed = __try_to_reclaim_swap(si, offset);
336                 spin_lock(&swap_lock);
337                 /* entry was freed successfully, try to use this again */
338                 if (swap_was_freed)
339                         goto checks;
340                 goto scan; /* check next one */
341         }
342
343         if (si->swap_map[offset])
344                 goto scan;
345
346         if (offset == si->lowest_bit)
347                 si->lowest_bit++;
348         if (offset == si->highest_bit)
349                 si->highest_bit--;
350         si->inuse_pages++;
351         if (si->inuse_pages == si->pages) {
352                 si->lowest_bit = si->max;
353                 si->highest_bit = 0;
354         }
355         if (cache == SWAP_CACHE) /* at usual swap-out via vmscan.c */
356                 si->swap_map[offset] = encode_swapmap(0, true);
357         else /* at suspend */
358                 si->swap_map[offset] = encode_swapmap(1, false);
359         si->cluster_next = offset + 1;
360         si->flags -= SWP_SCANNING;
361
362         if (si->lowest_alloc) {
363                 /*
364                  * Only set when SWP_DISCARDABLE, and there's a scan
365                  * for a free cluster in progress or just completed.
366                  */
367                 if (found_free_cluster) {
368                         /*
369                          * To optimize wear-levelling, discard the
370                          * old data of the cluster, taking care not to
371                          * discard any of its pages that have already
372                          * been allocated by racing tasks (offset has
373                          * already stepped over any at the beginning).
374                          */
375                         if (offset < si->highest_alloc &&
376                             si->lowest_alloc <= last_in_cluster)
377                                 last_in_cluster = si->lowest_alloc - 1;
378                         si->flags |= SWP_DISCARDING;
379                         spin_unlock(&swap_lock);
380
381                         if (offset < last_in_cluster)
382                                 discard_swap_cluster(si, offset,
383                                         last_in_cluster - offset + 1);
384
385                         spin_lock(&swap_lock);
386                         si->lowest_alloc = 0;
387                         si->flags &= ~SWP_DISCARDING;
388
389                         smp_mb();       /* wake_up_bit advises this */
390                         wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
391
392                 } else if (si->flags & SWP_DISCARDING) {
393                         /*
394                          * Delay using pages allocated by racing tasks
395                          * until the whole discard has been issued. We
396                          * could defer that delay until swap_writepage,
397                          * but it's easier to keep this self-contained.
398                          */
399                         spin_unlock(&swap_lock);
400                         wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
401                                 wait_for_discard, TASK_UNINTERRUPTIBLE);
402                         spin_lock(&swap_lock);
403                 } else {
404                         /*
405                          * Note pages allocated by racing tasks while
406                          * scan for a free cluster is in progress, so
407                          * that its final discard can exclude them.
408                          */
409                         if (offset < si->lowest_alloc)
410                                 si->lowest_alloc = offset;
411                         if (offset > si->highest_alloc)
412                                 si->highest_alloc = offset;
413                 }
414         }
415         return offset;
416
417 scan:
418         spin_unlock(&swap_lock);
419         while (++offset <= si->highest_bit) {
420                 if (!si->swap_map[offset]) {
421                         spin_lock(&swap_lock);
422                         goto checks;
423                 }
424                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
425                         spin_lock(&swap_lock);
426                         goto checks;
427                 }
428                 if (unlikely(--latency_ration < 0)) {
429                         cond_resched();
430                         latency_ration = LATENCY_LIMIT;
431                 }
432         }
433         offset = si->lowest_bit;
434         while (++offset < scan_base) {
435                 if (!si->swap_map[offset]) {
436                         spin_lock(&swap_lock);
437                         goto checks;
438                 }
439                 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
440                         spin_lock(&swap_lock);
441                         goto checks;
442                 }
443                 if (unlikely(--latency_ration < 0)) {
444                         cond_resched();
445                         latency_ration = LATENCY_LIMIT;
446                 }
447         }
448         spin_lock(&swap_lock);
449
450 no_page:
451         si->flags -= SWP_SCANNING;
452         return 0;
453 }
454
455 swp_entry_t get_swap_page(void)
456 {
457         struct swap_info_struct *si;
458         pgoff_t offset;
459         int type, next;
460         int wrapped = 0;
461
462         spin_lock(&swap_lock);
463         if (nr_swap_pages <= 0)
464                 goto noswap;
465         nr_swap_pages--;
466
467         for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
468                 si = swap_info + type;
469                 next = si->next;
470                 if (next < 0 ||
471                     (!wrapped && si->prio != swap_info[next].prio)) {
472                         next = swap_list.head;
473                         wrapped++;
474                 }
475
476                 if (!si->highest_bit)
477                         continue;
478                 if (!(si->flags & SWP_WRITEOK))
479                         continue;
480
481                 swap_list.next = next;
482                 /* This is called for allocating swap entry for cache */
483                 offset = scan_swap_map(si, SWAP_CACHE);
484                 if (offset) {
485                         spin_unlock(&swap_lock);
486                         return swp_entry(type, offset);
487                 }
488                 next = swap_list.next;
489         }
490
491         nr_swap_pages++;
492 noswap:
493         spin_unlock(&swap_lock);
494         return (swp_entry_t) {0};
495 }
496
497 /* The only caller of this function is now susupend routine */
498 swp_entry_t get_swap_page_of_type(int type)
499 {
500         struct swap_info_struct *si;
501         pgoff_t offset;
502
503         spin_lock(&swap_lock);
504         si = swap_info + type;
505         if (si->flags & SWP_WRITEOK) {
506                 nr_swap_pages--;
507                 /* This is called for allocating swap entry, not cache */
508                 offset = scan_swap_map(si, SWAP_MAP);
509                 if (offset) {
510                         spin_unlock(&swap_lock);
511                         return swp_entry(type, offset);
512                 }
513                 nr_swap_pages++;
514         }
515         spin_unlock(&swap_lock);
516         return (swp_entry_t) {0};
517 }
518
519 static struct swap_info_struct * swap_info_get(swp_entry_t entry)
520 {
521         struct swap_info_struct * p;
522         unsigned long offset, type;
523
524         if (!entry.val)
525                 goto out;
526         type = swp_type(entry);
527         if (type >= nr_swapfiles)
528                 goto bad_nofile;
529         p = & swap_info[type];
530         if (!(p->flags & SWP_USED))
531                 goto bad_device;
532         offset = swp_offset(entry);
533         if (offset >= p->max)
534                 goto bad_offset;
535         if (!p->swap_map[offset])
536                 goto bad_free;
537         spin_lock(&swap_lock);
538         return p;
539
540 bad_free:
541         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
542         goto out;
543 bad_offset:
544         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
545         goto out;
546 bad_device:
547         printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
548         goto out;
549 bad_nofile:
550         printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
551 out:
552         return NULL;
553 }
554
555 static int swap_entry_free(struct swap_info_struct *p,
556                            swp_entry_t ent, int cache)
557 {
558         unsigned long offset = swp_offset(ent);
559         int count = swap_count(p->swap_map[offset]);
560         bool has_cache;
561
562         has_cache = swap_has_cache(p->swap_map[offset]);
563
564         if (cache == SWAP_MAP) { /* dropping usage count of swap */
565                 if (count < SWAP_MAP_MAX) {
566                         count--;
567                         p->swap_map[offset] = encode_swapmap(count, has_cache);
568                 }
569         } else { /* dropping swap cache flag */
570                 VM_BUG_ON(!has_cache);
571                 p->swap_map[offset] = encode_swapmap(count, false);
572
573         }
574         /* return code. */
575         count = p->swap_map[offset];
576         /* free if no reference */
577         if (!count) {
578                 if (offset < p->lowest_bit)
579                         p->lowest_bit = offset;
580                 if (offset > p->highest_bit)
581                         p->highest_bit = offset;
582                 if (p->prio > swap_info[swap_list.next].prio)
583                         swap_list.next = p - swap_info;
584                 nr_swap_pages++;
585                 p->inuse_pages--;
586                 mem_cgroup_uncharge_swap(ent);
587         }
588         return count;
589 }
590
591 /*
592  * Caller has made sure that the swapdevice corresponding to entry
593  * is still around or has not been recycled.
594  */
595 void swap_free(swp_entry_t entry)
596 {
597         struct swap_info_struct * p;
598
599         p = swap_info_get(entry);
600         if (p) {
601                 swap_entry_free(p, entry, SWAP_MAP);
602                 spin_unlock(&swap_lock);
603         }
604 }
605
606 /*
607  * Called after dropping swapcache to decrease refcnt to swap entries.
608  */
609 void swapcache_free(swp_entry_t entry, struct page *page)
610 {
611         struct swap_info_struct *p;
612
613         if (page)
614                 mem_cgroup_uncharge_swapcache(page, entry);
615         p = swap_info_get(entry);
616         if (p) {
617                 swap_entry_free(p, entry, SWAP_CACHE);
618                 spin_unlock(&swap_lock);
619         }
620         return;
621 }
622
623 /*
624  * How many references to page are currently swapped out?
625  */
626 static inline int page_swapcount(struct page *page)
627 {
628         int count = 0;
629         struct swap_info_struct *p;
630         swp_entry_t entry;
631
632         entry.val = page_private(page);
633         p = swap_info_get(entry);
634         if (p) {
635                 count = swap_count(p->swap_map[swp_offset(entry)]);
636                 spin_unlock(&swap_lock);
637         }
638         return count;
639 }
640
641 /*
642  * We can write to an anon page without COW if there are no other references
643  * to it.  And as a side-effect, free up its swap: because the old content
644  * on disk will never be read, and seeking back there to write new content
645  * later would only waste time away from clustering.
646  */
647 int reuse_swap_page(struct page *page)
648 {
649         int count;
650
651         VM_BUG_ON(!PageLocked(page));
652         count = page_mapcount(page);
653         if (count <= 1 && PageSwapCache(page)) {
654                 count += page_swapcount(page);
655                 if (count == 1 && !PageWriteback(page)) {
656                         delete_from_swap_cache(page);
657                         SetPageDirty(page);
658                 }
659         }
660         return count == 1;
661 }
662
663 /*
664  * If swap is getting full, or if there are no more mappings of this page,
665  * then try_to_free_swap is called to free its swap space.
666  */
667 int try_to_free_swap(struct page *page)
668 {
669         VM_BUG_ON(!PageLocked(page));
670
671         if (!PageSwapCache(page))
672                 return 0;
673         if (PageWriteback(page))
674                 return 0;
675         if (page_swapcount(page))
676                 return 0;
677
678         delete_from_swap_cache(page);
679         SetPageDirty(page);
680         return 1;
681 }
682
683 /*
684  * Free the swap entry like above, but also try to
685  * free the page cache entry if it is the last user.
686  */
687 int free_swap_and_cache(swp_entry_t entry)
688 {
689         struct swap_info_struct *p;
690         struct page *page = NULL;
691
692         if (is_migration_entry(entry))
693                 return 1;
694
695         p = swap_info_get(entry);
696         if (p) {
697                 if (swap_entry_free(p, entry, SWAP_MAP) == SWAP_HAS_CACHE) {
698                         page = find_get_page(&swapper_space, entry.val);
699                         if (page && !trylock_page(page)) {
700                                 page_cache_release(page);
701                                 page = NULL;
702                         }
703                 }
704                 spin_unlock(&swap_lock);
705         }
706         if (page) {
707                 /*
708                  * Not mapped elsewhere, or swap space full? Free it!
709                  * Also recheck PageSwapCache now page is locked (above).
710                  */
711                 if (PageSwapCache(page) && !PageWriteback(page) &&
712                                 (!page_mapped(page) || vm_swap_full())) {
713                         delete_from_swap_cache(page);
714                         SetPageDirty(page);
715                 }
716                 unlock_page(page);
717                 page_cache_release(page);
718         }
719         return p != NULL;
720 }
721
722 #ifdef CONFIG_HIBERNATION
723 /*
724  * Find the swap type that corresponds to given device (if any).
725  *
726  * @offset - number of the PAGE_SIZE-sized block of the device, starting
727  * from 0, in which the swap header is expected to be located.
728  *
729  * This is needed for the suspend to disk (aka swsusp).
730  */
731 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
732 {
733         struct block_device *bdev = NULL;
734         int i;
735
736         if (device)
737                 bdev = bdget(device);
738
739         spin_lock(&swap_lock);
740         for (i = 0; i < nr_swapfiles; i++) {
741                 struct swap_info_struct *sis = swap_info + i;
742
743                 if (!(sis->flags & SWP_WRITEOK))
744                         continue;
745
746                 if (!bdev) {
747                         if (bdev_p)
748                                 *bdev_p = bdget(sis->bdev->bd_dev);
749
750                         spin_unlock(&swap_lock);
751                         return i;
752                 }
753                 if (bdev == sis->bdev) {
754                         struct swap_extent *se;
755
756                         se = list_entry(sis->extent_list.next,
757                                         struct swap_extent, list);
758                         if (se->start_block == offset) {
759                                 if (bdev_p)
760                                         *bdev_p = bdget(sis->bdev->bd_dev);
761
762                                 spin_unlock(&swap_lock);
763                                 bdput(bdev);
764                                 return i;
765                         }
766                 }
767         }
768         spin_unlock(&swap_lock);
769         if (bdev)
770                 bdput(bdev);
771
772         return -ENODEV;
773 }
774
775 /*
776  * Return either the total number of swap pages of given type, or the number
777  * of free pages of that type (depending on @free)
778  *
779  * This is needed for software suspend
780  */
781 unsigned int count_swap_pages(int type, int free)
782 {
783         unsigned int n = 0;
784
785         if (type < nr_swapfiles) {
786                 spin_lock(&swap_lock);
787                 if (swap_info[type].flags & SWP_WRITEOK) {
788                         n = swap_info[type].pages;
789                         if (free)
790                                 n -= swap_info[type].inuse_pages;
791                 }
792                 spin_unlock(&swap_lock);
793         }
794         return n;
795 }
796 #endif
797
798 /*
799  * No need to decide whether this PTE shares the swap entry with others,
800  * just let do_wp_page work it out if a write is requested later - to
801  * force COW, vm_page_prot omits write permission from any private vma.
802  */
803 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
804                 unsigned long addr, swp_entry_t entry, struct page *page)
805 {
806         struct mem_cgroup *ptr = NULL;
807         spinlock_t *ptl;
808         pte_t *pte;
809         int ret = 1;
810
811         if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
812                 ret = -ENOMEM;
813                 goto out_nolock;
814         }
815
816         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
817         if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
818                 if (ret > 0)
819                         mem_cgroup_cancel_charge_swapin(ptr);
820                 ret = 0;
821                 goto out;
822         }
823
824         inc_mm_counter(vma->vm_mm, anon_rss);
825         get_page(page);
826         set_pte_at(vma->vm_mm, addr, pte,
827                    pte_mkold(mk_pte(page, vma->vm_page_prot)));
828         page_add_anon_rmap(page, vma, addr);
829         mem_cgroup_commit_charge_swapin(page, ptr);
830         swap_free(entry);
831         /*
832          * Move the page to the active list so it is not
833          * immediately swapped out again after swapon.
834          */
835         activate_page(page);
836 out:
837         pte_unmap_unlock(pte, ptl);
838 out_nolock:
839         return ret;
840 }
841
842 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
843                                 unsigned long addr, unsigned long end,
844                                 swp_entry_t entry, struct page *page)
845 {
846         pte_t swp_pte = swp_entry_to_pte(entry);
847         pte_t *pte;
848         int ret = 0;
849
850         /*
851          * We don't actually need pte lock while scanning for swp_pte: since
852          * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
853          * page table while we're scanning; though it could get zapped, and on
854          * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
855          * of unmatched parts which look like swp_pte, so unuse_pte must
856          * recheck under pte lock.  Scanning without pte lock lets it be
857          * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
858          */
859         pte = pte_offset_map(pmd, addr);
860         do {
861                 /*
862                  * swapoff spends a _lot_ of time in this loop!
863                  * Test inline before going to call unuse_pte.
864                  */
865                 if (unlikely(pte_same(*pte, swp_pte))) {
866                         pte_unmap(pte);
867                         ret = unuse_pte(vma, pmd, addr, entry, page);
868                         if (ret)
869                                 goto out;
870                         pte = pte_offset_map(pmd, addr);
871                 }
872         } while (pte++, addr += PAGE_SIZE, addr != end);
873         pte_unmap(pte - 1);
874 out:
875         return ret;
876 }
877
878 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
879                                 unsigned long addr, unsigned long end,
880                                 swp_entry_t entry, struct page *page)
881 {
882         pmd_t *pmd;
883         unsigned long next;
884         int ret;
885
886         pmd = pmd_offset(pud, addr);
887         do {
888                 next = pmd_addr_end(addr, end);
889                 if (pmd_none_or_clear_bad(pmd))
890                         continue;
891                 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
892                 if (ret)
893                         return ret;
894         } while (pmd++, addr = next, addr != end);
895         return 0;
896 }
897
898 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
899                                 unsigned long addr, unsigned long end,
900                                 swp_entry_t entry, struct page *page)
901 {
902         pud_t *pud;
903         unsigned long next;
904         int ret;
905
906         pud = pud_offset(pgd, addr);
907         do {
908                 next = pud_addr_end(addr, end);
909                 if (pud_none_or_clear_bad(pud))
910                         continue;
911                 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
912                 if (ret)
913                         return ret;
914         } while (pud++, addr = next, addr != end);
915         return 0;
916 }
917
918 static int unuse_vma(struct vm_area_struct *vma,
919                                 swp_entry_t entry, struct page *page)
920 {
921         pgd_t *pgd;
922         unsigned long addr, end, next;
923         int ret;
924
925         if (page->mapping) {
926                 addr = page_address_in_vma(page, vma);
927                 if (addr == -EFAULT)
928                         return 0;
929                 else
930                         end = addr + PAGE_SIZE;
931         } else {
932                 addr = vma->vm_start;
933                 end = vma->vm_end;
934         }
935
936         pgd = pgd_offset(vma->vm_mm, addr);
937         do {
938                 next = pgd_addr_end(addr, end);
939                 if (pgd_none_or_clear_bad(pgd))
940                         continue;
941                 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
942                 if (ret)
943                         return ret;
944         } while (pgd++, addr = next, addr != end);
945         return 0;
946 }
947
948 static int unuse_mm(struct mm_struct *mm,
949                                 swp_entry_t entry, struct page *page)
950 {
951         struct vm_area_struct *vma;
952         int ret = 0;
953
954         if (!down_read_trylock(&mm->mmap_sem)) {
955                 /*
956                  * Activate page so shrink_inactive_list is unlikely to unmap
957                  * its ptes while lock is dropped, so swapoff can make progress.
958                  */
959                 activate_page(page);
960                 unlock_page(page);
961                 down_read(&mm->mmap_sem);
962                 lock_page(page);
963         }
964         for (vma = mm->mmap; vma; vma = vma->vm_next) {
965                 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
966                         break;
967         }
968         up_read(&mm->mmap_sem);
969         return (ret < 0)? ret: 0;
970 }
971
972 /*
973  * Scan swap_map from current position to next entry still in use.
974  * Recycle to start on reaching the end, returning 0 when empty.
975  */
976 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
977                                         unsigned int prev)
978 {
979         unsigned int max = si->max;
980         unsigned int i = prev;
981         int count;
982
983         /*
984          * No need for swap_lock here: we're just looking
985          * for whether an entry is in use, not modifying it; false
986          * hits are okay, and sys_swapoff() has already prevented new
987          * allocations from this area (while holding swap_lock).
988          */
989         for (;;) {
990                 if (++i >= max) {
991                         if (!prev) {
992                                 i = 0;
993                                 break;
994                         }
995                         /*
996                          * No entries in use at top of swap_map,
997                          * loop back to start and recheck there.
998                          */
999                         max = prev + 1;
1000                         prev = 0;
1001                         i = 1;
1002                 }
1003                 count = si->swap_map[i];
1004                 if (count && swap_count(count) != SWAP_MAP_BAD)
1005                         break;
1006         }
1007         return i;
1008 }
1009
1010 /*
1011  * We completely avoid races by reading each swap page in advance,
1012  * and then search for the process using it.  All the necessary
1013  * page table adjustments can then be made atomically.
1014  */
1015 static int try_to_unuse(unsigned int type)
1016 {
1017         struct swap_info_struct * si = &swap_info[type];
1018         struct mm_struct *start_mm;
1019         unsigned short *swap_map;
1020         unsigned short swcount;
1021         struct page *page;
1022         swp_entry_t entry;
1023         unsigned int i = 0;
1024         int retval = 0;
1025         int reset_overflow = 0;
1026         int shmem;
1027
1028         /*
1029          * When searching mms for an entry, a good strategy is to
1030          * start at the first mm we freed the previous entry from
1031          * (though actually we don't notice whether we or coincidence
1032          * freed the entry).  Initialize this start_mm with a hold.
1033          *
1034          * A simpler strategy would be to start at the last mm we
1035          * freed the previous entry from; but that would take less
1036          * advantage of mmlist ordering, which clusters forked mms
1037          * together, child after parent.  If we race with dup_mmap(), we
1038          * prefer to resolve parent before child, lest we miss entries
1039          * duplicated after we scanned child: using last mm would invert
1040          * that.  Though it's only a serious concern when an overflowed
1041          * swap count is reset from SWAP_MAP_MAX, preventing a rescan.
1042          */
1043         start_mm = &init_mm;
1044         atomic_inc(&init_mm.mm_users);
1045
1046         /*
1047          * Keep on scanning until all entries have gone.  Usually,
1048          * one pass through swap_map is enough, but not necessarily:
1049          * there are races when an instance of an entry might be missed.
1050          */
1051         while ((i = find_next_to_unuse(si, i)) != 0) {
1052                 if (signal_pending(current)) {
1053                         retval = -EINTR;
1054                         break;
1055                 }
1056
1057                 /*
1058                  * Get a page for the entry, using the existing swap
1059                  * cache page if there is one.  Otherwise, get a clean
1060                  * page and read the swap into it.
1061                  */
1062                 swap_map = &si->swap_map[i];
1063                 entry = swp_entry(type, i);
1064                 page = read_swap_cache_async(entry,
1065                                         GFP_HIGHUSER_MOVABLE, NULL, 0);
1066                 if (!page) {
1067                         /*
1068                          * Either swap_duplicate() failed because entry
1069                          * has been freed independently, and will not be
1070                          * reused since sys_swapoff() already disabled
1071                          * allocation from here, or alloc_page() failed.
1072                          */
1073                         if (!*swap_map)
1074                                 continue;
1075                         retval = -ENOMEM;
1076                         break;
1077                 }
1078
1079                 /*
1080                  * Don't hold on to start_mm if it looks like exiting.
1081                  */
1082                 if (atomic_read(&start_mm->mm_users) == 1) {
1083                         mmput(start_mm);
1084                         start_mm = &init_mm;
1085                         atomic_inc(&init_mm.mm_users);
1086                 }
1087
1088                 /*
1089                  * Wait for and lock page.  When do_swap_page races with
1090                  * try_to_unuse, do_swap_page can handle the fault much
1091                  * faster than try_to_unuse can locate the entry.  This
1092                  * apparently redundant "wait_on_page_locked" lets try_to_unuse
1093                  * defer to do_swap_page in such a case - in some tests,
1094                  * do_swap_page and try_to_unuse repeatedly compete.
1095                  */
1096                 wait_on_page_locked(page);
1097                 wait_on_page_writeback(page);
1098                 lock_page(page);
1099                 wait_on_page_writeback(page);
1100
1101                 /*
1102                  * Remove all references to entry.
1103                  * Whenever we reach init_mm, there's no address space
1104                  * to search, but use it as a reminder to search shmem.
1105                  */
1106                 shmem = 0;
1107                 swcount = *swap_map;
1108                 if (swap_count(swcount)) {
1109                         if (start_mm == &init_mm)
1110                                 shmem = shmem_unuse(entry, page);
1111                         else
1112                                 retval = unuse_mm(start_mm, entry, page);
1113                 }
1114                 if (swap_count(*swap_map)) {
1115                         int set_start_mm = (*swap_map >= swcount);
1116                         struct list_head *p = &start_mm->mmlist;
1117                         struct mm_struct *new_start_mm = start_mm;
1118                         struct mm_struct *prev_mm = start_mm;
1119                         struct mm_struct *mm;
1120
1121                         atomic_inc(&new_start_mm->mm_users);
1122                         atomic_inc(&prev_mm->mm_users);
1123                         spin_lock(&mmlist_lock);
1124                         while (swap_count(*swap_map) && !retval && !shmem &&
1125                                         (p = p->next) != &start_mm->mmlist) {
1126                                 mm = list_entry(p, struct mm_struct, mmlist);
1127                                 if (!atomic_inc_not_zero(&mm->mm_users))
1128                                         continue;
1129                                 spin_unlock(&mmlist_lock);
1130                                 mmput(prev_mm);
1131                                 prev_mm = mm;
1132
1133                                 cond_resched();
1134
1135                                 swcount = *swap_map;
1136                                 if (!swap_count(swcount)) /* any usage ? */
1137                                         ;
1138                                 else if (mm == &init_mm) {
1139                                         set_start_mm = 1;
1140                                         shmem = shmem_unuse(entry, page);
1141                                 } else
1142                                         retval = unuse_mm(mm, entry, page);
1143
1144                                 if (set_start_mm &&
1145                                     swap_count(*swap_map) < swcount) {
1146                                         mmput(new_start_mm);
1147                                         atomic_inc(&mm->mm_users);
1148                                         new_start_mm = mm;
1149                                         set_start_mm = 0;
1150                                 }
1151                                 spin_lock(&mmlist_lock);
1152                         }
1153                         spin_unlock(&mmlist_lock);
1154                         mmput(prev_mm);
1155                         mmput(start_mm);
1156                         start_mm = new_start_mm;
1157                 }
1158                 if (shmem) {
1159                         /* page has already been unlocked and released */
1160                         if (shmem > 0)
1161                                 continue;
1162                         retval = shmem;
1163                         break;
1164                 }
1165                 if (retval) {
1166                         unlock_page(page);
1167                         page_cache_release(page);
1168                         break;
1169                 }
1170
1171                 /*
1172                  * How could swap count reach 0x7ffe ?
1173                  * There's no way to repeat a swap page within an mm
1174                  * (except in shmem, where it's the shared object which takes
1175                  * the reference count)?
1176                  * We believe SWAP_MAP_MAX cannot occur.(if occur, unsigned
1177                  * short is too small....)
1178                  * If that's wrong, then we should worry more about
1179                  * exit_mmap() and do_munmap() cases described above:
1180                  * we might be resetting SWAP_MAP_MAX too early here.
1181                  * We know "Undead"s can happen, they're okay, so don't
1182                  * report them; but do report if we reset SWAP_MAP_MAX.
1183                  */
1184                 /* We might release the lock_page() in unuse_mm(). */
1185                 if (!PageSwapCache(page) || page_private(page) != entry.val)
1186                         goto retry;
1187
1188                 if (swap_count(*swap_map) == SWAP_MAP_MAX) {
1189                         spin_lock(&swap_lock);
1190                         *swap_map = encode_swapmap(0, true);
1191                         spin_unlock(&swap_lock);
1192                         reset_overflow = 1;
1193                 }
1194
1195                 /*
1196                  * If a reference remains (rare), we would like to leave
1197                  * the page in the swap cache; but try_to_unmap could
1198                  * then re-duplicate the entry once we drop page lock,
1199                  * so we might loop indefinitely; also, that page could
1200                  * not be swapped out to other storage meanwhile.  So:
1201                  * delete from cache even if there's another reference,
1202                  * after ensuring that the data has been saved to disk -
1203                  * since if the reference remains (rarer), it will be
1204                  * read from disk into another page.  Splitting into two
1205                  * pages would be incorrect if swap supported "shared
1206                  * private" pages, but they are handled by tmpfs files.
1207                  */
1208                 if (swap_count(*swap_map) &&
1209                      PageDirty(page) && PageSwapCache(page)) {
1210                         struct writeback_control wbc = {
1211                                 .sync_mode = WB_SYNC_NONE,
1212                         };
1213
1214                         swap_writepage(page, &wbc);
1215                         lock_page(page);
1216                         wait_on_page_writeback(page);
1217                 }
1218
1219                 /*
1220                  * It is conceivable that a racing task removed this page from
1221                  * swap cache just before we acquired the page lock at the top,
1222                  * or while we dropped it in unuse_mm().  The page might even
1223                  * be back in swap cache on another swap area: that we must not
1224                  * delete, since it may not have been written out to swap yet.
1225                  */
1226                 if (PageSwapCache(page) &&
1227                     likely(page_private(page) == entry.val))
1228                         delete_from_swap_cache(page);
1229
1230                 /*
1231                  * So we could skip searching mms once swap count went
1232                  * to 1, we did not mark any present ptes as dirty: must
1233                  * mark page dirty so shrink_page_list will preserve it.
1234                  */
1235                 SetPageDirty(page);
1236 retry:
1237                 unlock_page(page);
1238                 page_cache_release(page);
1239
1240                 /*
1241                  * Make sure that we aren't completely killing
1242                  * interactive performance.
1243                  */
1244                 cond_resched();
1245         }
1246
1247         mmput(start_mm);
1248         if (reset_overflow) {
1249                 printk(KERN_WARNING "swapoff: cleared swap entry overflow\n");
1250                 swap_overflow = 0;
1251         }
1252         return retval;
1253 }
1254
1255 /*
1256  * After a successful try_to_unuse, if no swap is now in use, we know
1257  * we can empty the mmlist.  swap_lock must be held on entry and exit.
1258  * Note that mmlist_lock nests inside swap_lock, and an mm must be
1259  * added to the mmlist just after page_duplicate - before would be racy.
1260  */
1261 static void drain_mmlist(void)
1262 {
1263         struct list_head *p, *next;
1264         unsigned int i;
1265
1266         for (i = 0; i < nr_swapfiles; i++)
1267                 if (swap_info[i].inuse_pages)
1268                         return;
1269         spin_lock(&mmlist_lock);
1270         list_for_each_safe(p, next, &init_mm.mmlist)
1271                 list_del_init(p);
1272         spin_unlock(&mmlist_lock);
1273 }
1274
1275 /*
1276  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1277  * corresponds to page offset `offset'.
1278  */
1279 sector_t map_swap_page(struct swap_info_struct *sis, pgoff_t offset)
1280 {
1281         struct swap_extent *se = sis->curr_swap_extent;
1282         struct swap_extent *start_se = se;
1283
1284         for ( ; ; ) {
1285                 struct list_head *lh;
1286
1287                 if (se->start_page <= offset &&
1288                                 offset < (se->start_page + se->nr_pages)) {
1289                         return se->start_block + (offset - se->start_page);
1290                 }
1291                 lh = se->list.next;
1292                 if (lh == &sis->extent_list)
1293                         lh = lh->next;
1294                 se = list_entry(lh, struct swap_extent, list);
1295                 sis->curr_swap_extent = se;
1296                 BUG_ON(se == start_se);         /* It *must* be present */
1297         }
1298 }
1299
1300 #ifdef CONFIG_HIBERNATION
1301 /*
1302  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1303  * corresponding to given index in swap_info (swap type).
1304  */
1305 sector_t swapdev_block(int swap_type, pgoff_t offset)
1306 {
1307         struct swap_info_struct *sis;
1308
1309         if (swap_type >= nr_swapfiles)
1310                 return 0;
1311
1312         sis = swap_info + swap_type;
1313         return (sis->flags & SWP_WRITEOK) ? map_swap_page(sis, offset) : 0;
1314 }
1315 #endif /* CONFIG_HIBERNATION */
1316
1317 /*
1318  * Free all of a swapdev's extent information
1319  */
1320 static void destroy_swap_extents(struct swap_info_struct *sis)
1321 {
1322         while (!list_empty(&sis->extent_list)) {
1323                 struct swap_extent *se;
1324
1325                 se = list_entry(sis->extent_list.next,
1326                                 struct swap_extent, list);
1327                 list_del(&se->list);
1328                 kfree(se);
1329         }
1330 }
1331
1332 /*
1333  * Add a block range (and the corresponding page range) into this swapdev's
1334  * extent list.  The extent list is kept sorted in page order.
1335  *
1336  * This function rather assumes that it is called in ascending page order.
1337  */
1338 static int
1339 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1340                 unsigned long nr_pages, sector_t start_block)
1341 {
1342         struct swap_extent *se;
1343         struct swap_extent *new_se;
1344         struct list_head *lh;
1345
1346         lh = sis->extent_list.prev;     /* The highest page extent */
1347         if (lh != &sis->extent_list) {
1348                 se = list_entry(lh, struct swap_extent, list);
1349                 BUG_ON(se->start_page + se->nr_pages != start_page);
1350                 if (se->start_block + se->nr_pages == start_block) {
1351                         /* Merge it */
1352                         se->nr_pages += nr_pages;
1353                         return 0;
1354                 }
1355         }
1356
1357         /*
1358          * No merge.  Insert a new extent, preserving ordering.
1359          */
1360         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1361         if (new_se == NULL)
1362                 return -ENOMEM;
1363         new_se->start_page = start_page;
1364         new_se->nr_pages = nr_pages;
1365         new_se->start_block = start_block;
1366
1367         list_add_tail(&new_se->list, &sis->extent_list);
1368         return 1;
1369 }
1370
1371 /*
1372  * A `swap extent' is a simple thing which maps a contiguous range of pages
1373  * onto a contiguous range of disk blocks.  An ordered list of swap extents
1374  * is built at swapon time and is then used at swap_writepage/swap_readpage
1375  * time for locating where on disk a page belongs.
1376  *
1377  * If the swapfile is an S_ISBLK block device, a single extent is installed.
1378  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1379  * swap files identically.
1380  *
1381  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1382  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
1383  * swapfiles are handled *identically* after swapon time.
1384  *
1385  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1386  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
1387  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1388  * requirements, they are simply tossed out - we will never use those blocks
1389  * for swapping.
1390  *
1391  * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon.  This
1392  * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1393  * which will scribble on the fs.
1394  *
1395  * The amount of disk space which a single swap extent represents varies.
1396  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
1397  * extents in the list.  To avoid much list walking, we cache the previous
1398  * search location in `curr_swap_extent', and start new searches from there.
1399  * This is extremely effective.  The average number of iterations in
1400  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
1401  */
1402 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1403 {
1404         struct inode *inode;
1405         unsigned blocks_per_page;
1406         unsigned long page_no;
1407         unsigned blkbits;
1408         sector_t probe_block;
1409         sector_t last_block;
1410         sector_t lowest_block = -1;
1411         sector_t highest_block = 0;
1412         int nr_extents = 0;
1413         int ret;
1414
1415         inode = sis->swap_file->f_mapping->host;
1416         if (S_ISBLK(inode->i_mode)) {
1417                 ret = add_swap_extent(sis, 0, sis->max, 0);
1418                 *span = sis->pages;
1419                 goto done;
1420         }
1421
1422         blkbits = inode->i_blkbits;
1423         blocks_per_page = PAGE_SIZE >> blkbits;
1424
1425         /*
1426          * Map all the blocks into the extent list.  This code doesn't try
1427          * to be very smart.
1428          */
1429         probe_block = 0;
1430         page_no = 0;
1431         last_block = i_size_read(inode) >> blkbits;
1432         while ((probe_block + blocks_per_page) <= last_block &&
1433                         page_no < sis->max) {
1434                 unsigned block_in_page;
1435                 sector_t first_block;
1436
1437                 first_block = bmap(inode, probe_block);
1438                 if (first_block == 0)
1439                         goto bad_bmap;
1440
1441                 /*
1442                  * It must be PAGE_SIZE aligned on-disk
1443                  */
1444                 if (first_block & (blocks_per_page - 1)) {
1445                         probe_block++;
1446                         goto reprobe;
1447                 }
1448
1449                 for (block_in_page = 1; block_in_page < blocks_per_page;
1450                                         block_in_page++) {
1451                         sector_t block;
1452
1453                         block = bmap(inode, probe_block + block_in_page);
1454                         if (block == 0)
1455                                 goto bad_bmap;
1456                         if (block != first_block + block_in_page) {
1457                                 /* Discontiguity */
1458                                 probe_block++;
1459                                 goto reprobe;
1460                         }
1461                 }
1462
1463                 first_block >>= (PAGE_SHIFT - blkbits);
1464                 if (page_no) {  /* exclude the header page */
1465                         if (first_block < lowest_block)
1466                                 lowest_block = first_block;
1467                         if (first_block > highest_block)
1468                                 highest_block = first_block;
1469                 }
1470
1471                 /*
1472                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1473                  */
1474                 ret = add_swap_extent(sis, page_no, 1, first_block);
1475                 if (ret < 0)
1476                         goto out;
1477                 nr_extents += ret;
1478                 page_no++;
1479                 probe_block += blocks_per_page;
1480 reprobe:
1481                 continue;
1482         }
1483         ret = nr_extents;
1484         *span = 1 + highest_block - lowest_block;
1485         if (page_no == 0)
1486                 page_no = 1;    /* force Empty message */
1487         sis->max = page_no;
1488         sis->pages = page_no - 1;
1489         sis->highest_bit = page_no - 1;
1490 done:
1491         sis->curr_swap_extent = list_entry(sis->extent_list.prev,
1492                                         struct swap_extent, list);
1493         goto out;
1494 bad_bmap:
1495         printk(KERN_ERR "swapon: swapfile has holes\n");
1496         ret = -EINVAL;
1497 out:
1498         return ret;
1499 }
1500
1501 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1502 {
1503         struct swap_info_struct * p = NULL;
1504         unsigned short *swap_map;
1505         struct file *swap_file, *victim;
1506         struct address_space *mapping;
1507         struct inode *inode;
1508         char * pathname;
1509         int i, type, prev;
1510         int err;
1511
1512         if (!capable(CAP_SYS_ADMIN))
1513                 return -EPERM;
1514
1515         pathname = getname(specialfile);
1516         err = PTR_ERR(pathname);
1517         if (IS_ERR(pathname))
1518                 goto out;
1519
1520         victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1521         putname(pathname);
1522         err = PTR_ERR(victim);
1523         if (IS_ERR(victim))
1524                 goto out;
1525
1526         mapping = victim->f_mapping;
1527         prev = -1;
1528         spin_lock(&swap_lock);
1529         for (type = swap_list.head; type >= 0; type = swap_info[type].next) {
1530                 p = swap_info + type;
1531                 if (p->flags & SWP_WRITEOK) {
1532                         if (p->swap_file->f_mapping == mapping)
1533                                 break;
1534                 }
1535                 prev = type;
1536         }
1537         if (type < 0) {
1538                 err = -EINVAL;
1539                 spin_unlock(&swap_lock);
1540                 goto out_dput;
1541         }
1542         if (!security_vm_enough_memory(p->pages))
1543                 vm_unacct_memory(p->pages);
1544         else {
1545                 err = -ENOMEM;
1546                 spin_unlock(&swap_lock);
1547                 goto out_dput;
1548         }
1549         if (prev < 0) {
1550                 swap_list.head = p->next;
1551         } else {
1552                 swap_info[prev].next = p->next;
1553         }
1554         if (type == swap_list.next) {
1555                 /* just pick something that's safe... */
1556                 swap_list.next = swap_list.head;
1557         }
1558         if (p->prio < 0) {
1559                 for (i = p->next; i >= 0; i = swap_info[i].next)
1560                         swap_info[i].prio = p->prio--;
1561                 least_priority++;
1562         }
1563         nr_swap_pages -= p->pages;
1564         total_swap_pages -= p->pages;
1565         p->flags &= ~SWP_WRITEOK;
1566         spin_unlock(&swap_lock);
1567
1568         current->flags |= PF_SWAPOFF;
1569         err = try_to_unuse(type);
1570         current->flags &= ~PF_SWAPOFF;
1571
1572         if (err) {
1573                 /* re-insert swap space back into swap_list */
1574                 spin_lock(&swap_lock);
1575                 if (p->prio < 0)
1576                         p->prio = --least_priority;
1577                 prev = -1;
1578                 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1579                         if (p->prio >= swap_info[i].prio)
1580                                 break;
1581                         prev = i;
1582                 }
1583                 p->next = i;
1584                 if (prev < 0)
1585                         swap_list.head = swap_list.next = p - swap_info;
1586                 else
1587                         swap_info[prev].next = p - swap_info;
1588                 nr_swap_pages += p->pages;
1589                 total_swap_pages += p->pages;
1590                 p->flags |= SWP_WRITEOK;
1591                 spin_unlock(&swap_lock);
1592                 goto out_dput;
1593         }
1594
1595         /* wait for any unplug function to finish */
1596         down_write(&swap_unplug_sem);
1597         up_write(&swap_unplug_sem);
1598
1599         destroy_swap_extents(p);
1600         mutex_lock(&swapon_mutex);
1601         spin_lock(&swap_lock);
1602         drain_mmlist();
1603
1604         /* wait for anyone still in scan_swap_map */
1605         p->highest_bit = 0;             /* cuts scans short */
1606         while (p->flags >= SWP_SCANNING) {
1607                 spin_unlock(&swap_lock);
1608                 schedule_timeout_uninterruptible(1);
1609                 spin_lock(&swap_lock);
1610         }
1611
1612         swap_file = p->swap_file;
1613         p->swap_file = NULL;
1614         p->max = 0;
1615         swap_map = p->swap_map;
1616         p->swap_map = NULL;
1617         p->flags = 0;
1618         spin_unlock(&swap_lock);
1619         mutex_unlock(&swapon_mutex);
1620         vfree(swap_map);
1621         /* Destroy swap account informatin */
1622         swap_cgroup_swapoff(type);
1623
1624         inode = mapping->host;
1625         if (S_ISBLK(inode->i_mode)) {
1626                 struct block_device *bdev = I_BDEV(inode);
1627                 set_blocksize(bdev, p->old_block_size);
1628                 bd_release(bdev);
1629         } else {
1630                 mutex_lock(&inode->i_mutex);
1631                 inode->i_flags &= ~S_SWAPFILE;
1632                 mutex_unlock(&inode->i_mutex);
1633         }
1634         filp_close(swap_file, NULL);
1635         err = 0;
1636
1637 out_dput:
1638         filp_close(victim, NULL);
1639 out:
1640         return err;
1641 }
1642
1643 #ifdef CONFIG_PROC_FS
1644 /* iterator */
1645 static void *swap_start(struct seq_file *swap, loff_t *pos)
1646 {
1647         struct swap_info_struct *ptr = swap_info;
1648         int i;
1649         loff_t l = *pos;
1650
1651         mutex_lock(&swapon_mutex);
1652
1653         if (!l)
1654                 return SEQ_START_TOKEN;
1655
1656         for (i = 0; i < nr_swapfiles; i++, ptr++) {
1657                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1658                         continue;
1659                 if (!--l)
1660                         return ptr;
1661         }
1662
1663         return NULL;
1664 }
1665
1666 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1667 {
1668         struct swap_info_struct *ptr;
1669         struct swap_info_struct *endptr = swap_info + nr_swapfiles;
1670
1671         if (v == SEQ_START_TOKEN)
1672                 ptr = swap_info;
1673         else {
1674                 ptr = v;
1675                 ptr++;
1676         }
1677
1678         for (; ptr < endptr; ptr++) {
1679                 if (!(ptr->flags & SWP_USED) || !ptr->swap_map)
1680                         continue;
1681                 ++*pos;
1682                 return ptr;
1683         }
1684
1685         return NULL;
1686 }
1687
1688 static void swap_stop(struct seq_file *swap, void *v)
1689 {
1690         mutex_unlock(&swapon_mutex);
1691 }
1692
1693 static int swap_show(struct seq_file *swap, void *v)
1694 {
1695         struct swap_info_struct *ptr = v;
1696         struct file *file;
1697         int len;
1698
1699         if (ptr == SEQ_START_TOKEN) {
1700                 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1701                 return 0;
1702         }
1703
1704         file = ptr->swap_file;
1705         len = seq_path(swap, &file->f_path, " \t\n\\");
1706         seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1707                         len < 40 ? 40 - len : 1, " ",
1708                         S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1709                                 "partition" : "file\t",
1710                         ptr->pages << (PAGE_SHIFT - 10),
1711                         ptr->inuse_pages << (PAGE_SHIFT - 10),
1712                         ptr->prio);
1713         return 0;
1714 }
1715
1716 static const struct seq_operations swaps_op = {
1717         .start =        swap_start,
1718         .next =         swap_next,
1719         .stop =         swap_stop,
1720         .show =         swap_show
1721 };
1722
1723 static int swaps_open(struct inode *inode, struct file *file)
1724 {
1725         return seq_open(file, &swaps_op);
1726 }
1727
1728 static const struct file_operations proc_swaps_operations = {
1729         .open           = swaps_open,
1730         .read           = seq_read,
1731         .llseek         = seq_lseek,
1732         .release        = seq_release,
1733 };
1734
1735 static int __init procswaps_init(void)
1736 {
1737         proc_create("swaps", 0, NULL, &proc_swaps_operations);
1738         return 0;
1739 }
1740 __initcall(procswaps_init);
1741 #endif /* CONFIG_PROC_FS */
1742
1743 #ifdef MAX_SWAPFILES_CHECK
1744 static int __init max_swapfiles_check(void)
1745 {
1746         MAX_SWAPFILES_CHECK();
1747         return 0;
1748 }
1749 late_initcall(max_swapfiles_check);
1750 #endif
1751
1752 /*
1753  * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1754  *
1755  * The swapon system call
1756  */
1757 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1758 {
1759         struct swap_info_struct * p;
1760         char *name = NULL;
1761         struct block_device *bdev = NULL;
1762         struct file *swap_file = NULL;
1763         struct address_space *mapping;
1764         unsigned int type;
1765         int i, prev;
1766         int error;
1767         union swap_header *swap_header = NULL;
1768         unsigned int nr_good_pages = 0;
1769         int nr_extents = 0;
1770         sector_t span;
1771         unsigned long maxpages = 1;
1772         unsigned long swapfilepages;
1773         unsigned short *swap_map = NULL;
1774         struct page *page = NULL;
1775         struct inode *inode = NULL;
1776         int did_down = 0;
1777
1778         if (!capable(CAP_SYS_ADMIN))
1779                 return -EPERM;
1780         spin_lock(&swap_lock);
1781         p = swap_info;
1782         for (type = 0 ; type < nr_swapfiles ; type++,p++)
1783                 if (!(p->flags & SWP_USED))
1784                         break;
1785         error = -EPERM;
1786         if (type >= MAX_SWAPFILES) {
1787                 spin_unlock(&swap_lock);
1788                 goto out;
1789         }
1790         if (type >= nr_swapfiles)
1791                 nr_swapfiles = type+1;
1792         memset(p, 0, sizeof(*p));
1793         INIT_LIST_HEAD(&p->extent_list);
1794         p->flags = SWP_USED;
1795         p->next = -1;
1796         spin_unlock(&swap_lock);
1797         name = getname(specialfile);
1798         error = PTR_ERR(name);
1799         if (IS_ERR(name)) {
1800                 name = NULL;
1801                 goto bad_swap_2;
1802         }
1803         swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1804         error = PTR_ERR(swap_file);
1805         if (IS_ERR(swap_file)) {
1806                 swap_file = NULL;
1807                 goto bad_swap_2;
1808         }
1809
1810         p->swap_file = swap_file;
1811         mapping = swap_file->f_mapping;
1812         inode = mapping->host;
1813
1814         error = -EBUSY;
1815         for (i = 0; i < nr_swapfiles; i++) {
1816                 struct swap_info_struct *q = &swap_info[i];
1817
1818                 if (i == type || !q->swap_file)
1819                         continue;
1820                 if (mapping == q->swap_file->f_mapping)
1821                         goto bad_swap;
1822         }
1823
1824         error = -EINVAL;
1825         if (S_ISBLK(inode->i_mode)) {
1826                 bdev = I_BDEV(inode);
1827                 error = bd_claim(bdev, sys_swapon);
1828                 if (error < 0) {
1829                         bdev = NULL;
1830                         error = -EINVAL;
1831                         goto bad_swap;
1832                 }
1833                 p->old_block_size = block_size(bdev);
1834                 error = set_blocksize(bdev, PAGE_SIZE);
1835                 if (error < 0)
1836                         goto bad_swap;
1837                 p->bdev = bdev;
1838         } else if (S_ISREG(inode->i_mode)) {
1839                 p->bdev = inode->i_sb->s_bdev;
1840                 mutex_lock(&inode->i_mutex);
1841                 did_down = 1;
1842                 if (IS_SWAPFILE(inode)) {
1843                         error = -EBUSY;
1844                         goto bad_swap;
1845                 }
1846         } else {
1847                 goto bad_swap;
1848         }
1849
1850         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1851
1852         /*
1853          * Read the swap header.
1854          */
1855         if (!mapping->a_ops->readpage) {
1856                 error = -EINVAL;
1857                 goto bad_swap;
1858         }
1859         page = read_mapping_page(mapping, 0, swap_file);
1860         if (IS_ERR(page)) {
1861                 error = PTR_ERR(page);
1862                 goto bad_swap;
1863         }
1864         swap_header = kmap(page);
1865
1866         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1867                 printk(KERN_ERR "Unable to find swap-space signature\n");
1868                 error = -EINVAL;
1869                 goto bad_swap;
1870         }
1871
1872         /* swap partition endianess hack... */
1873         if (swab32(swap_header->info.version) == 1) {
1874                 swab32s(&swap_header->info.version);
1875                 swab32s(&swap_header->info.last_page);
1876                 swab32s(&swap_header->info.nr_badpages);
1877                 for (i = 0; i < swap_header->info.nr_badpages; i++)
1878                         swab32s(&swap_header->info.badpages[i]);
1879         }
1880         /* Check the swap header's sub-version */
1881         if (swap_header->info.version != 1) {
1882                 printk(KERN_WARNING
1883                        "Unable to handle swap header version %d\n",
1884                        swap_header->info.version);
1885                 error = -EINVAL;
1886                 goto bad_swap;
1887         }
1888
1889         p->lowest_bit  = 1;
1890         p->cluster_next = 1;
1891
1892         /*
1893          * Find out how many pages are allowed for a single swap
1894          * device. There are two limiting factors: 1) the number of
1895          * bits for the swap offset in the swp_entry_t type and
1896          * 2) the number of bits in the a swap pte as defined by
1897          * the different architectures. In order to find the
1898          * largest possible bit mask a swap entry with swap type 0
1899          * and swap offset ~0UL is created, encoded to a swap pte,
1900          * decoded to a swp_entry_t again and finally the swap
1901          * offset is extracted. This will mask all the bits from
1902          * the initial ~0UL mask that can't be encoded in either
1903          * the swp_entry_t or the architecture definition of a
1904          * swap pte.
1905          */
1906         maxpages = swp_offset(pte_to_swp_entry(
1907                         swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1908         if (maxpages > swap_header->info.last_page)
1909                 maxpages = swap_header->info.last_page;
1910         p->highest_bit = maxpages - 1;
1911
1912         error = -EINVAL;
1913         if (!maxpages)
1914                 goto bad_swap;
1915         if (swapfilepages && maxpages > swapfilepages) {
1916                 printk(KERN_WARNING
1917                        "Swap area shorter than signature indicates\n");
1918                 goto bad_swap;
1919         }
1920         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1921                 goto bad_swap;
1922         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1923                 goto bad_swap;
1924
1925         /* OK, set up the swap map and apply the bad block list */
1926         swap_map = vmalloc(maxpages * sizeof(short));
1927         if (!swap_map) {
1928                 error = -ENOMEM;
1929                 goto bad_swap;
1930         }
1931
1932         memset(swap_map, 0, maxpages * sizeof(short));
1933         for (i = 0; i < swap_header->info.nr_badpages; i++) {
1934                 int page_nr = swap_header->info.badpages[i];
1935                 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1936                         error = -EINVAL;
1937                         goto bad_swap;
1938                 }
1939                 swap_map[page_nr] = SWAP_MAP_BAD;
1940         }
1941
1942         error = swap_cgroup_swapon(type, maxpages);
1943         if (error)
1944                 goto bad_swap;
1945
1946         nr_good_pages = swap_header->info.last_page -
1947                         swap_header->info.nr_badpages -
1948                         1 /* header page */;
1949
1950         if (nr_good_pages) {
1951                 swap_map[0] = SWAP_MAP_BAD;
1952                 p->max = maxpages;
1953                 p->pages = nr_good_pages;
1954                 nr_extents = setup_swap_extents(p, &span);
1955                 if (nr_extents < 0) {
1956                         error = nr_extents;
1957                         goto bad_swap;
1958                 }
1959                 nr_good_pages = p->pages;
1960         }
1961         if (!nr_good_pages) {
1962                 printk(KERN_WARNING "Empty swap-file\n");
1963                 error = -EINVAL;
1964                 goto bad_swap;
1965         }
1966
1967         if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1968                 p->flags |= SWP_SOLIDSTATE;
1969                 p->cluster_next = 1 + (random32() % p->highest_bit);
1970         }
1971         if (discard_swap(p) == 0)
1972                 p->flags |= SWP_DISCARDABLE;
1973
1974         mutex_lock(&swapon_mutex);
1975         spin_lock(&swap_lock);
1976         if (swap_flags & SWAP_FLAG_PREFER)
1977                 p->prio =
1978                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1979         else
1980                 p->prio = --least_priority;
1981         p->swap_map = swap_map;
1982         p->flags |= SWP_WRITEOK;
1983         nr_swap_pages += nr_good_pages;
1984         total_swap_pages += nr_good_pages;
1985
1986         printk(KERN_INFO "Adding %uk swap on %s.  "
1987                         "Priority:%d extents:%d across:%lluk %s%s\n",
1988                 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1989                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
1990                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1991                 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1992
1993         /* insert swap space into swap_list: */
1994         prev = -1;
1995         for (i = swap_list.head; i >= 0; i = swap_info[i].next) {
1996                 if (p->prio >= swap_info[i].prio) {
1997                         break;
1998                 }
1999                 prev = i;
2000         }
2001         p->next = i;
2002         if (prev < 0) {
2003                 swap_list.head = swap_list.next = p - swap_info;
2004         } else {
2005                 swap_info[prev].next = p - swap_info;
2006         }
2007         spin_unlock(&swap_lock);
2008         mutex_unlock(&swapon_mutex);
2009         error = 0;
2010         goto out;
2011 bad_swap:
2012         if (bdev) {
2013                 set_blocksize(bdev, p->old_block_size);
2014                 bd_release(bdev);
2015         }
2016         destroy_swap_extents(p);
2017         swap_cgroup_swapoff(type);
2018 bad_swap_2:
2019         spin_lock(&swap_lock);
2020         p->swap_file = NULL;
2021         p->flags = 0;
2022         spin_unlock(&swap_lock);
2023         vfree(swap_map);
2024         if (swap_file)
2025                 filp_close(swap_file, NULL);
2026 out:
2027         if (page && !IS_ERR(page)) {
2028                 kunmap(page);
2029                 page_cache_release(page);
2030         }
2031         if (name)
2032                 putname(name);
2033         if (did_down) {
2034                 if (!error)
2035                         inode->i_flags |= S_SWAPFILE;
2036                 mutex_unlock(&inode->i_mutex);
2037         }
2038         return error;
2039 }
2040
2041 void si_swapinfo(struct sysinfo *val)
2042 {
2043         unsigned int i;
2044         unsigned long nr_to_be_unused = 0;
2045
2046         spin_lock(&swap_lock);
2047         for (i = 0; i < nr_swapfiles; i++) {
2048                 if (!(swap_info[i].flags & SWP_USED) ||
2049                      (swap_info[i].flags & SWP_WRITEOK))
2050                         continue;
2051                 nr_to_be_unused += swap_info[i].inuse_pages;
2052         }
2053         val->freeswap = nr_swap_pages + nr_to_be_unused;
2054         val->totalswap = total_swap_pages + nr_to_be_unused;
2055         spin_unlock(&swap_lock);
2056 }
2057
2058 /*
2059  * Verify that a swap entry is valid and increment its swap map count.
2060  *
2061  * Note: if swap_map[] reaches SWAP_MAP_MAX the entries are treated as
2062  * "permanent", but will be reclaimed by the next swapoff.
2063  * Returns error code in following case.
2064  * - success -> 0
2065  * - swp_entry is invalid -> EINVAL
2066  * - swp_entry is migration entry -> EINVAL
2067  * - swap-cache reference is requested but there is already one. -> EEXIST
2068  * - swap-cache reference is requested but the entry is not used. -> ENOENT
2069  */
2070 static int __swap_duplicate(swp_entry_t entry, bool cache)
2071 {
2072         struct swap_info_struct * p;
2073         unsigned long offset, type;
2074         int result = -EINVAL;
2075         int count;
2076         bool has_cache;
2077
2078         if (is_migration_entry(entry))
2079                 return -EINVAL;
2080
2081         type = swp_type(entry);
2082         if (type >= nr_swapfiles)
2083                 goto bad_file;
2084         p = type + swap_info;
2085         offset = swp_offset(entry);
2086
2087         spin_lock(&swap_lock);
2088
2089         if (unlikely(offset >= p->max))
2090                 goto unlock_out;
2091
2092         count = swap_count(p->swap_map[offset]);
2093         has_cache = swap_has_cache(p->swap_map[offset]);
2094
2095         if (cache == SWAP_CACHE) { /* called for swapcache/swapin-readahead */
2096
2097                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2098                 if (!has_cache && count) {
2099                         p->swap_map[offset] = encode_swapmap(count, true);
2100                         result = 0;
2101                 } else if (has_cache) /* someone added cache */
2102                         result = -EEXIST;
2103                 else if (!count) /* no users */
2104                         result = -ENOENT;
2105
2106         } else if (count || has_cache) {
2107                 if (count < SWAP_MAP_MAX - 1) {
2108                         p->swap_map[offset] = encode_swapmap(count + 1,
2109                                                              has_cache);
2110                         result = 0;
2111                 } else if (count <= SWAP_MAP_MAX) {
2112                         if (swap_overflow++ < 5)
2113                                 printk(KERN_WARNING
2114                                        "swap_dup: swap entry overflow\n");
2115                         p->swap_map[offset] = encode_swapmap(SWAP_MAP_MAX,
2116                                                               has_cache);
2117                         result = 0;
2118                 }
2119         } else
2120                 result = -ENOENT; /* unused swap entry */
2121 unlock_out:
2122         spin_unlock(&swap_lock);
2123 out:
2124         return result;
2125
2126 bad_file:
2127         printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2128         goto out;
2129 }
2130 /*
2131  * increase reference count of swap entry by 1.
2132  */
2133 void swap_duplicate(swp_entry_t entry)
2134 {
2135         __swap_duplicate(entry, SWAP_MAP);
2136 }
2137
2138 /*
2139  * @entry: swap entry for which we allocate swap cache.
2140  *
2141  * Called when allocating swap cache for exising swap entry,
2142  * This can return error codes. Returns 0 at success.
2143  * -EBUSY means there is a swap cache.
2144  * Note: return code is different from swap_duplicate().
2145  */
2146 int swapcache_prepare(swp_entry_t entry)
2147 {
2148         return __swap_duplicate(entry, SWAP_CACHE);
2149 }
2150
2151
2152 struct swap_info_struct *
2153 get_swap_info_struct(unsigned type)
2154 {
2155         return &swap_info[type];
2156 }
2157
2158 /*
2159  * swap_lock prevents swap_map being freed. Don't grab an extra
2160  * reference on the swaphandle, it doesn't matter if it becomes unused.
2161  */
2162 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2163 {
2164         struct swap_info_struct *si;
2165         int our_page_cluster = page_cluster;
2166         pgoff_t target, toff;
2167         pgoff_t base, end;
2168         int nr_pages = 0;
2169
2170         if (!our_page_cluster)  /* no readahead */
2171                 return 0;
2172
2173         si = &swap_info[swp_type(entry)];
2174         target = swp_offset(entry);
2175         base = (target >> our_page_cluster) << our_page_cluster;
2176         end = base + (1 << our_page_cluster);
2177         if (!base)              /* first page is swap header */
2178                 base++;
2179
2180         spin_lock(&swap_lock);
2181         if (end > si->max)      /* don't go beyond end of map */
2182                 end = si->max;
2183
2184         /* Count contiguous allocated slots above our target */
2185         for (toff = target; ++toff < end; nr_pages++) {
2186                 /* Don't read in free or bad pages */
2187                 if (!si->swap_map[toff])
2188                         break;
2189                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2190                         break;
2191         }
2192         /* Count contiguous allocated slots below our target */
2193         for (toff = target; --toff >= base; nr_pages++) {
2194                 /* Don't read in free or bad pages */
2195                 if (!si->swap_map[toff])
2196                         break;
2197                 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2198                         break;
2199         }
2200         spin_unlock(&swap_lock);
2201
2202         /*
2203          * Indicate starting offset, and return number of pages to get:
2204          * if only 1, say 0, since there's then no readahead to be done.
2205          */
2206         *offset = ++toff;
2207         return nr_pages? ++nr_pages: 0;
2208 }