2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/cpu.h>
20 #include <linux/cpuset.h>
21 #include <linux/mempolicy.h>
22 #include <linux/ctype.h>
23 #include <linux/debugobjects.h>
24 #include <linux/kallsyms.h>
25 #include <linux/memory.h>
26 #include <linux/math64.h>
33 * The slab_lock protects operations on the object of a particular
34 * slab and its metadata in the page struct. If the slab lock
35 * has been taken then no allocations nor frees can be performed
36 * on the objects in the slab nor can the slab be added or removed
37 * from the partial or full lists since this would mean modifying
38 * the page_struct of the slab.
40 * The list_lock protects the partial and full list on each node and
41 * the partial slab counter. If taken then no new slabs may be added or
42 * removed from the lists nor make the number of partial slabs be modified.
43 * (Note that the total number of slabs is an atomic value that may be
44 * modified without taking the list lock).
46 * The list_lock is a centralized lock and thus we avoid taking it as
47 * much as possible. As long as SLUB does not have to handle partial
48 * slabs, operations can continue without any centralized lock. F.e.
49 * allocating a long series of objects that fill up slabs does not require
52 * The lock order is sometimes inverted when we are trying to get a slab
53 * off a list. We take the list_lock and then look for a page on the list
54 * to use. While we do that objects in the slabs may be freed. We can
55 * only operate on the slab if we have also taken the slab_lock. So we use
56 * a slab_trylock() on the slab. If trylock was successful then no frees
57 * can occur anymore and we can use the slab for allocations etc. If the
58 * slab_trylock() does not succeed then frees are in progress in the slab and
59 * we must stay away from it for a while since we may cause a bouncing
60 * cacheline if we try to acquire the lock. So go onto the next slab.
61 * If all pages are busy then we may allocate a new slab instead of reusing
62 * a partial slab. A new slab has noone operating on it and thus there is
63 * no danger of cacheline contention.
65 * Interrupts are disabled during allocation and deallocation in order to
66 * make the slab allocator safe to use in the context of an irq. In addition
67 * interrupts are disabled to ensure that the processor does not change
68 * while handling per_cpu slabs, due to kernel preemption.
70 * SLUB assigns one slab for allocation to each processor.
71 * Allocations only occur from these slabs called cpu slabs.
73 * Slabs with free elements are kept on a partial list and during regular
74 * operations no list for full slabs is used. If an object in a full slab is
75 * freed then the slab will show up again on the partial lists.
76 * We track full slabs for debugging purposes though because otherwise we
77 * cannot scan all objects.
79 * Slabs are freed when they become empty. Teardown and setup is
80 * minimal so we rely on the page allocators per cpu caches for
81 * fast frees and allocs.
83 * Overloading of page flags that are otherwise used for LRU management.
85 * PageActive The slab is frozen and exempt from list processing.
86 * This means that the slab is dedicated to a purpose
87 * such as satisfying allocations for a specific
88 * processor. Objects may be freed in the slab while
89 * it is frozen but slab_free will then skip the usual
90 * list operations. It is up to the processor holding
91 * the slab to integrate the slab into the slab lists
92 * when the slab is no longer needed.
94 * One use of this flag is to mark slabs that are
95 * used for allocations. Then such a slab becomes a cpu
96 * slab. The cpu slab may be equipped with an additional
97 * freelist that allows lockless access to
98 * free objects in addition to the regular freelist
99 * that requires the slab lock.
101 * PageError Slab requires special handling due to debug
102 * options set. This moves slab handling out of
103 * the fast path and disables lockless freelists.
106 #ifdef CONFIG_SLUB_DEBUG
113 * Issues still to be resolved:
115 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
117 * - Variable sizing of the per node arrays
120 /* Enable to test recovery from slab corruption on boot */
121 #undef SLUB_RESILIENCY_TEST
124 * Mininum number of partial slabs. These will be left on the partial
125 * lists even if they are empty. kmem_cache_shrink may reclaim them.
127 #define MIN_PARTIAL 5
130 * Maximum number of desirable partial slabs.
131 * The existence of more partial slabs makes kmem_cache_shrink
132 * sort the partial list by the number of objects in the.
134 #define MAX_PARTIAL 10
136 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
137 SLAB_POISON | SLAB_STORE_USER)
140 * Set of flags that will prevent slab merging
142 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
143 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
145 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
148 #ifndef ARCH_KMALLOC_MINALIGN
149 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
152 #ifndef ARCH_SLAB_MINALIGN
153 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
157 #define OO_MASK ((1 << OO_SHIFT) - 1)
158 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
160 /* Internal SLUB flags */
161 #define __OBJECT_POISON 0x80000000 /* Poison object */
162 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
164 static int kmem_size = sizeof(struct kmem_cache);
167 static struct notifier_block slab_notifier;
171 DOWN, /* No slab functionality available */
172 PARTIAL, /* kmem_cache_open() works but kmalloc does not */
173 UP, /* Everything works but does not show up in sysfs */
177 /* A list of all slab caches on the system */
178 static DECLARE_RWSEM(slub_lock);
179 static LIST_HEAD(slab_caches);
182 * Tracking user of a slab.
185 unsigned long addr; /* Called from address */
186 int cpu; /* Was running on cpu */
187 int pid; /* Pid context */
188 unsigned long when; /* When did the operation occur */
191 enum track_item { TRACK_ALLOC, TRACK_FREE };
193 #ifdef CONFIG_SLUB_DEBUG
194 static int sysfs_slab_add(struct kmem_cache *);
195 static int sysfs_slab_alias(struct kmem_cache *, const char *);
196 static void sysfs_slab_remove(struct kmem_cache *);
199 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
200 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
202 static inline void sysfs_slab_remove(struct kmem_cache *s)
209 static inline void stat(struct kmem_cache_cpu *c, enum stat_item si)
211 #ifdef CONFIG_SLUB_STATS
216 /********************************************************************
217 * Core slab cache functions
218 *******************************************************************/
220 int slab_is_available(void)
222 return slab_state >= UP;
225 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
228 return s->node[node];
230 return &s->local_node;
234 static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
237 return s->cpu_slab[cpu];
243 /* Verify that a pointer has an address that is valid within a slab page */
244 static inline int check_valid_pointer(struct kmem_cache *s,
245 struct page *page, const void *object)
252 base = page_address(page);
253 if (object < base || object >= base + page->objects * s->size ||
254 (object - base) % s->size) {
262 * Slow version of get and set free pointer.
264 * This version requires touching the cache lines of kmem_cache which
265 * we avoid to do in the fast alloc free paths. There we obtain the offset
266 * from the page struct.
268 static inline void *get_freepointer(struct kmem_cache *s, void *object)
270 return *(void **)(object + s->offset);
273 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
275 *(void **)(object + s->offset) = fp;
278 /* Loop over all objects in a slab */
279 #define for_each_object(__p, __s, __addr, __objects) \
280 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284 #define for_each_free_object(__p, __s, __free) \
285 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
287 /* Determine object index from a given position */
288 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
290 return (p - addr) / s->size;
293 static inline struct kmem_cache_order_objects oo_make(int order,
296 struct kmem_cache_order_objects x = {
297 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
303 static inline int oo_order(struct kmem_cache_order_objects x)
305 return x.x >> OO_SHIFT;
308 static inline int oo_objects(struct kmem_cache_order_objects x)
310 return x.x & OO_MASK;
313 #ifdef CONFIG_SLUB_DEBUG
317 #ifdef CONFIG_SLUB_DEBUG_ON
318 static int slub_debug = DEBUG_DEFAULT_FLAGS;
320 static int slub_debug;
323 static char *slub_debug_slabs;
328 static void print_section(char *text, u8 *addr, unsigned int length)
336 for (i = 0; i < length; i++) {
338 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
341 printk(KERN_CONT " %02x", addr[i]);
343 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
345 printk(KERN_CONT " %s\n", ascii);
352 printk(KERN_CONT " ");
356 printk(KERN_CONT " %s\n", ascii);
360 static struct track *get_track(struct kmem_cache *s, void *object,
361 enum track_item alloc)
366 p = object + s->offset + sizeof(void *);
368 p = object + s->inuse;
373 static void set_track(struct kmem_cache *s, void *object,
374 enum track_item alloc, unsigned long addr)
379 p = object + s->offset + sizeof(void *);
381 p = object + s->inuse;
386 p->cpu = smp_processor_id();
387 p->pid = current->pid;
390 memset(p, 0, sizeof(struct track));
393 static void init_tracking(struct kmem_cache *s, void *object)
395 if (!(s->flags & SLAB_STORE_USER))
398 set_track(s, object, TRACK_FREE, 0UL);
399 set_track(s, object, TRACK_ALLOC, 0UL);
402 static void print_track(const char *s, struct track *t)
407 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
408 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
411 static void print_tracking(struct kmem_cache *s, void *object)
413 if (!(s->flags & SLAB_STORE_USER))
416 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
417 print_track("Freed", get_track(s, object, TRACK_FREE));
420 static void print_page_info(struct page *page)
422 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
423 page, page->objects, page->inuse, page->freelist, page->flags);
427 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
433 vsnprintf(buf, sizeof(buf), fmt, args);
435 printk(KERN_ERR "========================================"
436 "=====================================\n");
437 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
438 printk(KERN_ERR "----------------------------------------"
439 "-------------------------------------\n\n");
442 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
448 vsnprintf(buf, sizeof(buf), fmt, args);
450 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
453 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
455 unsigned int off; /* Offset of last byte */
456 u8 *addr = page_address(page);
458 print_tracking(s, p);
460 print_page_info(page);
462 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
463 p, p - addr, get_freepointer(s, p));
466 print_section("Bytes b4", p - 16, 16);
468 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
470 if (s->flags & SLAB_RED_ZONE)
471 print_section("Redzone", p + s->objsize,
472 s->inuse - s->objsize);
475 off = s->offset + sizeof(void *);
479 if (s->flags & SLAB_STORE_USER)
480 off += 2 * sizeof(struct track);
483 /* Beginning of the filler is the free pointer */
484 print_section("Padding", p + off, s->size - off);
489 static void object_err(struct kmem_cache *s, struct page *page,
490 u8 *object, char *reason)
492 slab_bug(s, "%s", reason);
493 print_trailer(s, page, object);
496 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
502 vsnprintf(buf, sizeof(buf), fmt, args);
504 slab_bug(s, "%s", buf);
505 print_page_info(page);
509 static void init_object(struct kmem_cache *s, void *object, int active)
513 if (s->flags & __OBJECT_POISON) {
514 memset(p, POISON_FREE, s->objsize - 1);
515 p[s->objsize - 1] = POISON_END;
518 if (s->flags & SLAB_RED_ZONE)
519 memset(p + s->objsize,
520 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
521 s->inuse - s->objsize);
524 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
527 if (*start != (u8)value)
535 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
536 void *from, void *to)
538 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
539 memset(from, data, to - from);
542 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
543 u8 *object, char *what,
544 u8 *start, unsigned int value, unsigned int bytes)
549 fault = check_bytes(start, value, bytes);
554 while (end > fault && end[-1] == value)
557 slab_bug(s, "%s overwritten", what);
558 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
559 fault, end - 1, fault[0], value);
560 print_trailer(s, page, object);
562 restore_bytes(s, what, value, fault, end);
570 * Bytes of the object to be managed.
571 * If the freepointer may overlay the object then the free
572 * pointer is the first word of the object.
574 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
577 * object + s->objsize
578 * Padding to reach word boundary. This is also used for Redzoning.
579 * Padding is extended by another word if Redzoning is enabled and
582 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
583 * 0xcc (RED_ACTIVE) for objects in use.
586 * Meta data starts here.
588 * A. Free pointer (if we cannot overwrite object on free)
589 * B. Tracking data for SLAB_STORE_USER
590 * C. Padding to reach required alignment boundary or at mininum
591 * one word if debugging is on to be able to detect writes
592 * before the word boundary.
594 * Padding is done using 0x5a (POISON_INUSE)
597 * Nothing is used beyond s->size.
599 * If slabcaches are merged then the objsize and inuse boundaries are mostly
600 * ignored. And therefore no slab options that rely on these boundaries
601 * may be used with merged slabcaches.
604 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
606 unsigned long off = s->inuse; /* The end of info */
609 /* Freepointer is placed after the object. */
610 off += sizeof(void *);
612 if (s->flags & SLAB_STORE_USER)
613 /* We also have user information there */
614 off += 2 * sizeof(struct track);
619 return check_bytes_and_report(s, page, p, "Object padding",
620 p + off, POISON_INUSE, s->size - off);
623 /* Check the pad bytes at the end of a slab page */
624 static int slab_pad_check(struct kmem_cache *s, struct page *page)
632 if (!(s->flags & SLAB_POISON))
635 start = page_address(page);
636 length = (PAGE_SIZE << compound_order(page));
637 end = start + length;
638 remainder = length % s->size;
642 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
645 while (end > fault && end[-1] == POISON_INUSE)
648 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
649 print_section("Padding", end - remainder, remainder);
651 restore_bytes(s, "slab padding", POISON_INUSE, start, end);
655 static int check_object(struct kmem_cache *s, struct page *page,
656 void *object, int active)
659 u8 *endobject = object + s->objsize;
661 if (s->flags & SLAB_RED_ZONE) {
663 active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
665 if (!check_bytes_and_report(s, page, object, "Redzone",
666 endobject, red, s->inuse - s->objsize))
669 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
670 check_bytes_and_report(s, page, p, "Alignment padding",
671 endobject, POISON_INUSE, s->inuse - s->objsize);
675 if (s->flags & SLAB_POISON) {
676 if (!active && (s->flags & __OBJECT_POISON) &&
677 (!check_bytes_and_report(s, page, p, "Poison", p,
678 POISON_FREE, s->objsize - 1) ||
679 !check_bytes_and_report(s, page, p, "Poison",
680 p + s->objsize - 1, POISON_END, 1)))
683 * check_pad_bytes cleans up on its own.
685 check_pad_bytes(s, page, p);
688 if (!s->offset && active)
690 * Object and freepointer overlap. Cannot check
691 * freepointer while object is allocated.
695 /* Check free pointer validity */
696 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
697 object_err(s, page, p, "Freepointer corrupt");
699 * No choice but to zap it and thus lose the remainder
700 * of the free objects in this slab. May cause
701 * another error because the object count is now wrong.
703 set_freepointer(s, p, NULL);
709 static int check_slab(struct kmem_cache *s, struct page *page)
713 VM_BUG_ON(!irqs_disabled());
715 if (!PageSlab(page)) {
716 slab_err(s, page, "Not a valid slab page");
720 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
721 if (page->objects > maxobj) {
722 slab_err(s, page, "objects %u > max %u",
723 s->name, page->objects, maxobj);
726 if (page->inuse > page->objects) {
727 slab_err(s, page, "inuse %u > max %u",
728 s->name, page->inuse, page->objects);
731 /* Slab_pad_check fixes things up after itself */
732 slab_pad_check(s, page);
737 * Determine if a certain object on a page is on the freelist. Must hold the
738 * slab lock to guarantee that the chains are in a consistent state.
740 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
743 void *fp = page->freelist;
745 unsigned long max_objects;
747 while (fp && nr <= page->objects) {
750 if (!check_valid_pointer(s, page, fp)) {
752 object_err(s, page, object,
753 "Freechain corrupt");
754 set_freepointer(s, object, NULL);
757 slab_err(s, page, "Freepointer corrupt");
758 page->freelist = NULL;
759 page->inuse = page->objects;
760 slab_fix(s, "Freelist cleared");
766 fp = get_freepointer(s, object);
770 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
771 if (max_objects > MAX_OBJS_PER_PAGE)
772 max_objects = MAX_OBJS_PER_PAGE;
774 if (page->objects != max_objects) {
775 slab_err(s, page, "Wrong number of objects. Found %d but "
776 "should be %d", page->objects, max_objects);
777 page->objects = max_objects;
778 slab_fix(s, "Number of objects adjusted.");
780 if (page->inuse != page->objects - nr) {
781 slab_err(s, page, "Wrong object count. Counter is %d but "
782 "counted were %d", page->inuse, page->objects - nr);
783 page->inuse = page->objects - nr;
784 slab_fix(s, "Object count adjusted.");
786 return search == NULL;
789 static void trace(struct kmem_cache *s, struct page *page, void *object,
792 if (s->flags & SLAB_TRACE) {
793 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
795 alloc ? "alloc" : "free",
800 print_section("Object", (void *)object, s->objsize);
807 * Tracking of fully allocated slabs for debugging purposes.
809 static void add_full(struct kmem_cache_node *n, struct page *page)
811 spin_lock(&n->list_lock);
812 list_add(&page->lru, &n->full);
813 spin_unlock(&n->list_lock);
816 static void remove_full(struct kmem_cache *s, struct page *page)
818 struct kmem_cache_node *n;
820 if (!(s->flags & SLAB_STORE_USER))
823 n = get_node(s, page_to_nid(page));
825 spin_lock(&n->list_lock);
826 list_del(&page->lru);
827 spin_unlock(&n->list_lock);
830 /* Tracking of the number of slabs for debugging purposes */
831 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
833 struct kmem_cache_node *n = get_node(s, node);
835 return atomic_long_read(&n->nr_slabs);
838 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
840 struct kmem_cache_node *n = get_node(s, node);
843 * May be called early in order to allocate a slab for the
844 * kmem_cache_node structure. Solve the chicken-egg
845 * dilemma by deferring the increment of the count during
846 * bootstrap (see early_kmem_cache_node_alloc).
848 if (!NUMA_BUILD || n) {
849 atomic_long_inc(&n->nr_slabs);
850 atomic_long_add(objects, &n->total_objects);
853 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
855 struct kmem_cache_node *n = get_node(s, node);
857 atomic_long_dec(&n->nr_slabs);
858 atomic_long_sub(objects, &n->total_objects);
861 /* Object debug checks for alloc/free paths */
862 static void setup_object_debug(struct kmem_cache *s, struct page *page,
865 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
868 init_object(s, object, 0);
869 init_tracking(s, object);
872 static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
873 void *object, unsigned long addr)
875 if (!check_slab(s, page))
878 if (!on_freelist(s, page, object)) {
879 object_err(s, page, object, "Object already allocated");
883 if (!check_valid_pointer(s, page, object)) {
884 object_err(s, page, object, "Freelist Pointer check fails");
888 if (!check_object(s, page, object, 0))
891 /* Success perform special debug activities for allocs */
892 if (s->flags & SLAB_STORE_USER)
893 set_track(s, object, TRACK_ALLOC, addr);
894 trace(s, page, object, 1);
895 init_object(s, object, 1);
899 if (PageSlab(page)) {
901 * If this is a slab page then lets do the best we can
902 * to avoid issues in the future. Marking all objects
903 * as used avoids touching the remaining objects.
905 slab_fix(s, "Marking all objects used");
906 page->inuse = page->objects;
907 page->freelist = NULL;
912 static int free_debug_processing(struct kmem_cache *s, struct page *page,
913 void *object, unsigned long addr)
915 if (!check_slab(s, page))
918 if (!check_valid_pointer(s, page, object)) {
919 slab_err(s, page, "Invalid object pointer 0x%p", object);
923 if (on_freelist(s, page, object)) {
924 object_err(s, page, object, "Object already free");
928 if (!check_object(s, page, object, 1))
931 if (unlikely(s != page->slab)) {
932 if (!PageSlab(page)) {
933 slab_err(s, page, "Attempt to free object(0x%p) "
934 "outside of slab", object);
935 } else if (!page->slab) {
937 "SLUB <none>: no slab for object 0x%p.\n",
941 object_err(s, page, object,
942 "page slab pointer corrupt.");
946 /* Special debug activities for freeing objects */
947 if (!PageSlubFrozen(page) && !page->freelist)
948 remove_full(s, page);
949 if (s->flags & SLAB_STORE_USER)
950 set_track(s, object, TRACK_FREE, addr);
951 trace(s, page, object, 0);
952 init_object(s, object, 0);
956 slab_fix(s, "Object at 0x%p not freed", object);
960 static int __init setup_slub_debug(char *str)
962 slub_debug = DEBUG_DEFAULT_FLAGS;
963 if (*str++ != '=' || !*str)
965 * No options specified. Switch on full debugging.
971 * No options but restriction on slabs. This means full
972 * debugging for slabs matching a pattern.
979 * Switch off all debugging measures.
984 * Determine which debug features should be switched on
986 for (; *str && *str != ','; str++) {
987 switch (tolower(*str)) {
989 slub_debug |= SLAB_DEBUG_FREE;
992 slub_debug |= SLAB_RED_ZONE;
995 slub_debug |= SLAB_POISON;
998 slub_debug |= SLAB_STORE_USER;
1001 slub_debug |= SLAB_TRACE;
1004 printk(KERN_ERR "slub_debug option '%c' "
1005 "unknown. skipped\n", *str);
1011 slub_debug_slabs = str + 1;
1016 __setup("slub_debug", setup_slub_debug);
1018 static unsigned long kmem_cache_flags(unsigned long objsize,
1019 unsigned long flags, const char *name,
1020 void (*ctor)(void *))
1023 * Enable debugging if selected on the kernel commandline.
1025 if (slub_debug && (!slub_debug_slabs ||
1026 strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)) == 0))
1027 flags |= slub_debug;
1032 static inline void setup_object_debug(struct kmem_cache *s,
1033 struct page *page, void *object) {}
1035 static inline int alloc_debug_processing(struct kmem_cache *s,
1036 struct page *page, void *object, unsigned long addr) { return 0; }
1038 static inline int free_debug_processing(struct kmem_cache *s,
1039 struct page *page, void *object, unsigned long addr) { return 0; }
1041 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1043 static inline int check_object(struct kmem_cache *s, struct page *page,
1044 void *object, int active) { return 1; }
1045 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1046 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1047 unsigned long flags, const char *name,
1048 void (*ctor)(void *))
1052 #define slub_debug 0
1054 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1056 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1058 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1063 * Slab allocation and freeing
1065 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1066 struct kmem_cache_order_objects oo)
1068 int order = oo_order(oo);
1071 return alloc_pages(flags, order);
1073 return alloc_pages_node(node, flags, order);
1076 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1079 struct kmem_cache_order_objects oo = s->oo;
1081 flags |= s->allocflags;
1083 page = alloc_slab_page(flags | __GFP_NOWARN | __GFP_NORETRY, node,
1085 if (unlikely(!page)) {
1088 * Allocation may have failed due to fragmentation.
1089 * Try a lower order alloc if possible
1091 page = alloc_slab_page(flags, node, oo);
1095 stat(get_cpu_slab(s, raw_smp_processor_id()), ORDER_FALLBACK);
1097 page->objects = oo_objects(oo);
1098 mod_zone_page_state(page_zone(page),
1099 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1100 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1106 static void setup_object(struct kmem_cache *s, struct page *page,
1109 setup_object_debug(s, page, object);
1110 if (unlikely(s->ctor))
1114 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1121 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1123 page = allocate_slab(s,
1124 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1128 inc_slabs_node(s, page_to_nid(page), page->objects);
1130 page->flags |= 1 << PG_slab;
1131 if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1132 SLAB_STORE_USER | SLAB_TRACE))
1133 __SetPageSlubDebug(page);
1135 start = page_address(page);
1137 if (unlikely(s->flags & SLAB_POISON))
1138 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1141 for_each_object(p, s, start, page->objects) {
1142 setup_object(s, page, last);
1143 set_freepointer(s, last, p);
1146 setup_object(s, page, last);
1147 set_freepointer(s, last, NULL);
1149 page->freelist = start;
1155 static void __free_slab(struct kmem_cache *s, struct page *page)
1157 int order = compound_order(page);
1158 int pages = 1 << order;
1160 if (unlikely(SLABDEBUG && PageSlubDebug(page))) {
1163 slab_pad_check(s, page);
1164 for_each_object(p, s, page_address(page),
1166 check_object(s, page, p, 0);
1167 __ClearPageSlubDebug(page);
1170 mod_zone_page_state(page_zone(page),
1171 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1172 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1175 __ClearPageSlab(page);
1176 reset_page_mapcount(page);
1177 __free_pages(page, order);
1180 static void rcu_free_slab(struct rcu_head *h)
1184 page = container_of((struct list_head *)h, struct page, lru);
1185 __free_slab(page->slab, page);
1188 static void free_slab(struct kmem_cache *s, struct page *page)
1190 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1192 * RCU free overloads the RCU head over the LRU
1194 struct rcu_head *head = (void *)&page->lru;
1196 call_rcu(head, rcu_free_slab);
1198 __free_slab(s, page);
1201 static void discard_slab(struct kmem_cache *s, struct page *page)
1203 dec_slabs_node(s, page_to_nid(page), page->objects);
1208 * Per slab locking using the pagelock
1210 static __always_inline void slab_lock(struct page *page)
1212 bit_spin_lock(PG_locked, &page->flags);
1215 static __always_inline void slab_unlock(struct page *page)
1217 __bit_spin_unlock(PG_locked, &page->flags);
1220 static __always_inline int slab_trylock(struct page *page)
1224 rc = bit_spin_trylock(PG_locked, &page->flags);
1229 * Management of partially allocated slabs
1231 static void add_partial(struct kmem_cache_node *n,
1232 struct page *page, int tail)
1234 spin_lock(&n->list_lock);
1237 list_add_tail(&page->lru, &n->partial);
1239 list_add(&page->lru, &n->partial);
1240 spin_unlock(&n->list_lock);
1243 static void remove_partial(struct kmem_cache *s, struct page *page)
1245 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1247 spin_lock(&n->list_lock);
1248 list_del(&page->lru);
1250 spin_unlock(&n->list_lock);
1254 * Lock slab and remove from the partial list.
1256 * Must hold list_lock.
1258 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1261 if (slab_trylock(page)) {
1262 list_del(&page->lru);
1264 __SetPageSlubFrozen(page);
1271 * Try to allocate a partial slab from a specific node.
1273 static struct page *get_partial_node(struct kmem_cache_node *n)
1278 * Racy check. If we mistakenly see no partial slabs then we
1279 * just allocate an empty slab. If we mistakenly try to get a
1280 * partial slab and there is none available then get_partials()
1283 if (!n || !n->nr_partial)
1286 spin_lock(&n->list_lock);
1287 list_for_each_entry(page, &n->partial, lru)
1288 if (lock_and_freeze_slab(n, page))
1292 spin_unlock(&n->list_lock);
1297 * Get a page from somewhere. Search in increasing NUMA distances.
1299 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1302 struct zonelist *zonelist;
1305 enum zone_type high_zoneidx = gfp_zone(flags);
1309 * The defrag ratio allows a configuration of the tradeoffs between
1310 * inter node defragmentation and node local allocations. A lower
1311 * defrag_ratio increases the tendency to do local allocations
1312 * instead of attempting to obtain partial slabs from other nodes.
1314 * If the defrag_ratio is set to 0 then kmalloc() always
1315 * returns node local objects. If the ratio is higher then kmalloc()
1316 * may return off node objects because partial slabs are obtained
1317 * from other nodes and filled up.
1319 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1320 * defrag_ratio = 1000) then every (well almost) allocation will
1321 * first attempt to defrag slab caches on other nodes. This means
1322 * scanning over all nodes to look for partial slabs which may be
1323 * expensive if we do it every time we are trying to find a slab
1324 * with available objects.
1326 if (!s->remote_node_defrag_ratio ||
1327 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1330 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1331 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1332 struct kmem_cache_node *n;
1334 n = get_node(s, zone_to_nid(zone));
1336 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1337 n->nr_partial > n->min_partial) {
1338 page = get_partial_node(n);
1348 * Get a partial page, lock it and return it.
1350 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1353 int searchnode = (node == -1) ? numa_node_id() : node;
1355 page = get_partial_node(get_node(s, searchnode));
1356 if (page || (flags & __GFP_THISNODE))
1359 return get_any_partial(s, flags);
1363 * Move a page back to the lists.
1365 * Must be called with the slab lock held.
1367 * On exit the slab lock will have been dropped.
1369 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1371 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1372 struct kmem_cache_cpu *c = get_cpu_slab(s, smp_processor_id());
1374 __ClearPageSlubFrozen(page);
1377 if (page->freelist) {
1378 add_partial(n, page, tail);
1379 stat(c, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1381 stat(c, DEACTIVATE_FULL);
1382 if (SLABDEBUG && PageSlubDebug(page) &&
1383 (s->flags & SLAB_STORE_USER))
1388 stat(c, DEACTIVATE_EMPTY);
1389 if (n->nr_partial < n->min_partial) {
1391 * Adding an empty slab to the partial slabs in order
1392 * to avoid page allocator overhead. This slab needs
1393 * to come after the other slabs with objects in
1394 * so that the others get filled first. That way the
1395 * size of the partial list stays small.
1397 * kmem_cache_shrink can reclaim any empty slabs from
1400 add_partial(n, page, 1);
1404 stat(get_cpu_slab(s, raw_smp_processor_id()), FREE_SLAB);
1405 discard_slab(s, page);
1411 * Remove the cpu slab
1413 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1415 struct page *page = c->page;
1419 stat(c, DEACTIVATE_REMOTE_FREES);
1421 * Merge cpu freelist into slab freelist. Typically we get here
1422 * because both freelists are empty. So this is unlikely
1425 while (unlikely(c->freelist)) {
1428 tail = 0; /* Hot objects. Put the slab first */
1430 /* Retrieve object from cpu_freelist */
1431 object = c->freelist;
1432 c->freelist = c->freelist[c->offset];
1434 /* And put onto the regular freelist */
1435 object[c->offset] = page->freelist;
1436 page->freelist = object;
1440 unfreeze_slab(s, page, tail);
1443 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1445 stat(c, CPUSLAB_FLUSH);
1447 deactivate_slab(s, c);
1453 * Called from IPI handler with interrupts disabled.
1455 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1457 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1459 if (likely(c && c->page))
1463 static void flush_cpu_slab(void *d)
1465 struct kmem_cache *s = d;
1467 __flush_cpu_slab(s, smp_processor_id());
1470 static void flush_all(struct kmem_cache *s)
1472 on_each_cpu(flush_cpu_slab, s, 1);
1476 * Check if the objects in a per cpu structure fit numa
1477 * locality expectations.
1479 static inline int node_match(struct kmem_cache_cpu *c, int node)
1482 if (node != -1 && c->node != node)
1489 * Slow path. The lockless freelist is empty or we need to perform
1492 * Interrupts are disabled.
1494 * Processing is still very fast if new objects have been freed to the
1495 * regular freelist. In that case we simply take over the regular freelist
1496 * as the lockless freelist and zap the regular freelist.
1498 * If that is not working then we fall back to the partial lists. We take the
1499 * first element of the freelist as the object to allocate now and move the
1500 * rest of the freelist to the lockless freelist.
1502 * And if we were unable to get a new slab from the partial slab lists then
1503 * we need to allocate a new slab. This is the slowest path since it involves
1504 * a call to the page allocator and the setup of a new slab.
1506 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1507 unsigned long addr, struct kmem_cache_cpu *c)
1512 /* We handle __GFP_ZERO in the caller */
1513 gfpflags &= ~__GFP_ZERO;
1519 if (unlikely(!node_match(c, node)))
1522 stat(c, ALLOC_REFILL);
1525 object = c->page->freelist;
1526 if (unlikely(!object))
1528 if (unlikely(SLABDEBUG && PageSlubDebug(c->page)))
1531 c->freelist = object[c->offset];
1532 c->page->inuse = c->page->objects;
1533 c->page->freelist = NULL;
1534 c->node = page_to_nid(c->page);
1536 slab_unlock(c->page);
1537 stat(c, ALLOC_SLOWPATH);
1541 deactivate_slab(s, c);
1544 new = get_partial(s, gfpflags, node);
1547 stat(c, ALLOC_FROM_PARTIAL);
1551 if (gfpflags & __GFP_WAIT)
1554 new = new_slab(s, gfpflags, node);
1556 if (gfpflags & __GFP_WAIT)
1557 local_irq_disable();
1560 c = get_cpu_slab(s, smp_processor_id());
1561 stat(c, ALLOC_SLAB);
1565 __SetPageSlubFrozen(new);
1571 if (!alloc_debug_processing(s, c->page, object, addr))
1575 c->page->freelist = object[c->offset];
1581 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1582 * have the fastpath folded into their functions. So no function call
1583 * overhead for requests that can be satisfied on the fastpath.
1585 * The fastpath works by first checking if the lockless freelist can be used.
1586 * If not then __slab_alloc is called for slow processing.
1588 * Otherwise we can simply pick the next object from the lockless free list.
1590 static __always_inline void *slab_alloc(struct kmem_cache *s,
1591 gfp_t gfpflags, int node, unsigned long addr)
1594 struct kmem_cache_cpu *c;
1595 unsigned long flags;
1596 unsigned int objsize;
1598 might_sleep_if(gfpflags & __GFP_WAIT);
1599 local_irq_save(flags);
1600 c = get_cpu_slab(s, smp_processor_id());
1601 objsize = c->objsize;
1602 if (unlikely(!c->freelist || !node_match(c, node)))
1604 object = __slab_alloc(s, gfpflags, node, addr, c);
1607 object = c->freelist;
1608 c->freelist = object[c->offset];
1609 stat(c, ALLOC_FASTPATH);
1611 local_irq_restore(flags);
1613 if (unlikely((gfpflags & __GFP_ZERO) && object))
1614 memset(object, 0, objsize);
1619 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1621 return slab_alloc(s, gfpflags, -1, _RET_IP_);
1623 EXPORT_SYMBOL(kmem_cache_alloc);
1626 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1628 return slab_alloc(s, gfpflags, node, _RET_IP_);
1630 EXPORT_SYMBOL(kmem_cache_alloc_node);
1634 * Slow patch handling. This may still be called frequently since objects
1635 * have a longer lifetime than the cpu slabs in most processing loads.
1637 * So we still attempt to reduce cache line usage. Just take the slab
1638 * lock and free the item. If there is no additional partial page
1639 * handling required then we can return immediately.
1641 static void __slab_free(struct kmem_cache *s, struct page *page,
1642 void *x, unsigned long addr, unsigned int offset)
1645 void **object = (void *)x;
1646 struct kmem_cache_cpu *c;
1648 c = get_cpu_slab(s, raw_smp_processor_id());
1649 stat(c, FREE_SLOWPATH);
1652 if (unlikely(SLABDEBUG && PageSlubDebug(page)))
1656 prior = object[offset] = page->freelist;
1657 page->freelist = object;
1660 if (unlikely(PageSlubFrozen(page))) {
1661 stat(c, FREE_FROZEN);
1665 if (unlikely(!page->inuse))
1669 * Objects left in the slab. If it was not on the partial list before
1672 if (unlikely(!prior)) {
1673 add_partial(get_node(s, page_to_nid(page)), page, 1);
1674 stat(c, FREE_ADD_PARTIAL);
1684 * Slab still on the partial list.
1686 remove_partial(s, page);
1687 stat(c, FREE_REMOVE_PARTIAL);
1691 discard_slab(s, page);
1695 if (!free_debug_processing(s, page, x, addr))
1701 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1702 * can perform fastpath freeing without additional function calls.
1704 * The fastpath is only possible if we are freeing to the current cpu slab
1705 * of this processor. This typically the case if we have just allocated
1708 * If fastpath is not possible then fall back to __slab_free where we deal
1709 * with all sorts of special processing.
1711 static __always_inline void slab_free(struct kmem_cache *s,
1712 struct page *page, void *x, unsigned long addr)
1714 void **object = (void *)x;
1715 struct kmem_cache_cpu *c;
1716 unsigned long flags;
1718 local_irq_save(flags);
1719 c = get_cpu_slab(s, smp_processor_id());
1720 debug_check_no_locks_freed(object, c->objsize);
1721 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1722 debug_check_no_obj_freed(object, s->objsize);
1723 if (likely(page == c->page && c->node >= 0)) {
1724 object[c->offset] = c->freelist;
1725 c->freelist = object;
1726 stat(c, FREE_FASTPATH);
1728 __slab_free(s, page, x, addr, c->offset);
1730 local_irq_restore(flags);
1733 void kmem_cache_free(struct kmem_cache *s, void *x)
1737 page = virt_to_head_page(x);
1739 slab_free(s, page, x, _RET_IP_);
1741 EXPORT_SYMBOL(kmem_cache_free);
1743 /* Figure out on which slab page the object resides */
1744 static struct page *get_object_page(const void *x)
1746 struct page *page = virt_to_head_page(x);
1748 if (!PageSlab(page))
1755 * Object placement in a slab is made very easy because we always start at
1756 * offset 0. If we tune the size of the object to the alignment then we can
1757 * get the required alignment by putting one properly sized object after
1760 * Notice that the allocation order determines the sizes of the per cpu
1761 * caches. Each processor has always one slab available for allocations.
1762 * Increasing the allocation order reduces the number of times that slabs
1763 * must be moved on and off the partial lists and is therefore a factor in
1768 * Mininum / Maximum order of slab pages. This influences locking overhead
1769 * and slab fragmentation. A higher order reduces the number of partial slabs
1770 * and increases the number of allocations possible without having to
1771 * take the list_lock.
1773 static int slub_min_order;
1774 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1775 static int slub_min_objects;
1778 * Merge control. If this is set then no merging of slab caches will occur.
1779 * (Could be removed. This was introduced to pacify the merge skeptics.)
1781 static int slub_nomerge;
1784 * Calculate the order of allocation given an slab object size.
1786 * The order of allocation has significant impact on performance and other
1787 * system components. Generally order 0 allocations should be preferred since
1788 * order 0 does not cause fragmentation in the page allocator. Larger objects
1789 * be problematic to put into order 0 slabs because there may be too much
1790 * unused space left. We go to a higher order if more than 1/16th of the slab
1793 * In order to reach satisfactory performance we must ensure that a minimum
1794 * number of objects is in one slab. Otherwise we may generate too much
1795 * activity on the partial lists which requires taking the list_lock. This is
1796 * less a concern for large slabs though which are rarely used.
1798 * slub_max_order specifies the order where we begin to stop considering the
1799 * number of objects in a slab as critical. If we reach slub_max_order then
1800 * we try to keep the page order as low as possible. So we accept more waste
1801 * of space in favor of a small page order.
1803 * Higher order allocations also allow the placement of more objects in a
1804 * slab and thereby reduce object handling overhead. If the user has
1805 * requested a higher mininum order then we start with that one instead of
1806 * the smallest order which will fit the object.
1808 static inline int slab_order(int size, int min_objects,
1809 int max_order, int fract_leftover)
1813 int min_order = slub_min_order;
1815 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1816 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1818 for (order = max(min_order,
1819 fls(min_objects * size - 1) - PAGE_SHIFT);
1820 order <= max_order; order++) {
1822 unsigned long slab_size = PAGE_SIZE << order;
1824 if (slab_size < min_objects * size)
1827 rem = slab_size % size;
1829 if (rem <= slab_size / fract_leftover)
1837 static inline int calculate_order(int size)
1844 * Attempt to find best configuration for a slab. This
1845 * works by first attempting to generate a layout with
1846 * the best configuration and backing off gradually.
1848 * First we reduce the acceptable waste in a slab. Then
1849 * we reduce the minimum objects required in a slab.
1851 min_objects = slub_min_objects;
1853 min_objects = 4 * (fls(nr_cpu_ids) + 1);
1854 while (min_objects > 1) {
1856 while (fraction >= 4) {
1857 order = slab_order(size, min_objects,
1858 slub_max_order, fraction);
1859 if (order <= slub_max_order)
1867 * We were unable to place multiple objects in a slab. Now
1868 * lets see if we can place a single object there.
1870 order = slab_order(size, 1, slub_max_order, 1);
1871 if (order <= slub_max_order)
1875 * Doh this slab cannot be placed using slub_max_order.
1877 order = slab_order(size, 1, MAX_ORDER, 1);
1878 if (order <= MAX_ORDER)
1884 * Figure out what the alignment of the objects will be.
1886 static unsigned long calculate_alignment(unsigned long flags,
1887 unsigned long align, unsigned long size)
1890 * If the user wants hardware cache aligned objects then follow that
1891 * suggestion if the object is sufficiently large.
1893 * The hardware cache alignment cannot override the specified
1894 * alignment though. If that is greater then use it.
1896 if (flags & SLAB_HWCACHE_ALIGN) {
1897 unsigned long ralign = cache_line_size();
1898 while (size <= ralign / 2)
1900 align = max(align, ralign);
1903 if (align < ARCH_SLAB_MINALIGN)
1904 align = ARCH_SLAB_MINALIGN;
1906 return ALIGN(align, sizeof(void *));
1909 static void init_kmem_cache_cpu(struct kmem_cache *s,
1910 struct kmem_cache_cpu *c)
1915 c->offset = s->offset / sizeof(void *);
1916 c->objsize = s->objsize;
1917 #ifdef CONFIG_SLUB_STATS
1918 memset(c->stat, 0, NR_SLUB_STAT_ITEMS * sizeof(unsigned));
1923 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
1928 * The larger the object size is, the more pages we want on the partial
1929 * list to avoid pounding the page allocator excessively.
1931 n->min_partial = ilog2(s->size);
1932 if (n->min_partial < MIN_PARTIAL)
1933 n->min_partial = MIN_PARTIAL;
1934 else if (n->min_partial > MAX_PARTIAL)
1935 n->min_partial = MAX_PARTIAL;
1937 spin_lock_init(&n->list_lock);
1938 INIT_LIST_HEAD(&n->partial);
1939 #ifdef CONFIG_SLUB_DEBUG
1940 atomic_long_set(&n->nr_slabs, 0);
1941 atomic_long_set(&n->total_objects, 0);
1942 INIT_LIST_HEAD(&n->full);
1948 * Per cpu array for per cpu structures.
1950 * The per cpu array places all kmem_cache_cpu structures from one processor
1951 * close together meaning that it becomes possible that multiple per cpu
1952 * structures are contained in one cacheline. This may be particularly
1953 * beneficial for the kmalloc caches.
1955 * A desktop system typically has around 60-80 slabs. With 100 here we are
1956 * likely able to get per cpu structures for all caches from the array defined
1957 * here. We must be able to cover all kmalloc caches during bootstrap.
1959 * If the per cpu array is exhausted then fall back to kmalloc
1960 * of individual cachelines. No sharing is possible then.
1962 #define NR_KMEM_CACHE_CPU 100
1964 static DEFINE_PER_CPU(struct kmem_cache_cpu,
1965 kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1967 static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1968 static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1970 static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1971 int cpu, gfp_t flags)
1973 struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1976 per_cpu(kmem_cache_cpu_free, cpu) =
1977 (void *)c->freelist;
1979 /* Table overflow: So allocate ourselves */
1981 ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1982 flags, cpu_to_node(cpu));
1987 init_kmem_cache_cpu(s, c);
1991 static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1993 if (c < per_cpu(kmem_cache_cpu, cpu) ||
1994 c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1998 c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1999 per_cpu(kmem_cache_cpu_free, cpu) = c;
2002 static void free_kmem_cache_cpus(struct kmem_cache *s)
2006 for_each_online_cpu(cpu) {
2007 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2010 s->cpu_slab[cpu] = NULL;
2011 free_kmem_cache_cpu(c, cpu);
2016 static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2020 for_each_online_cpu(cpu) {
2021 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
2026 c = alloc_kmem_cache_cpu(s, cpu, flags);
2028 free_kmem_cache_cpus(s);
2031 s->cpu_slab[cpu] = c;
2037 * Initialize the per cpu array.
2039 static void init_alloc_cpu_cpu(int cpu)
2043 if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
2046 for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
2047 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
2049 cpu_set(cpu, kmem_cach_cpu_free_init_once);
2052 static void __init init_alloc_cpu(void)
2056 for_each_online_cpu(cpu)
2057 init_alloc_cpu_cpu(cpu);
2061 static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
2062 static inline void init_alloc_cpu(void) {}
2064 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
2066 init_kmem_cache_cpu(s, &s->cpu_slab);
2073 * No kmalloc_node yet so do it by hand. We know that this is the first
2074 * slab on the node for this slabcache. There are no concurrent accesses
2077 * Note that this function only works on the kmalloc_node_cache
2078 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2079 * memory on a fresh node that has no slab structures yet.
2081 static void early_kmem_cache_node_alloc(gfp_t gfpflags, int node)
2084 struct kmem_cache_node *n;
2085 unsigned long flags;
2087 BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2089 page = new_slab(kmalloc_caches, gfpflags, node);
2092 if (page_to_nid(page) != node) {
2093 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2095 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2096 "in order to be able to continue\n");
2101 page->freelist = get_freepointer(kmalloc_caches, n);
2103 kmalloc_caches->node[node] = n;
2104 #ifdef CONFIG_SLUB_DEBUG
2105 init_object(kmalloc_caches, n, 1);
2106 init_tracking(kmalloc_caches, n);
2108 init_kmem_cache_node(n, kmalloc_caches);
2109 inc_slabs_node(kmalloc_caches, node, page->objects);
2112 * lockdep requires consistent irq usage for each lock
2113 * so even though there cannot be a race this early in
2114 * the boot sequence, we still disable irqs.
2116 local_irq_save(flags);
2117 add_partial(n, page, 0);
2118 local_irq_restore(flags);
2121 static void free_kmem_cache_nodes(struct kmem_cache *s)
2125 for_each_node_state(node, N_NORMAL_MEMORY) {
2126 struct kmem_cache_node *n = s->node[node];
2127 if (n && n != &s->local_node)
2128 kmem_cache_free(kmalloc_caches, n);
2129 s->node[node] = NULL;
2133 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2138 if (slab_state >= UP)
2139 local_node = page_to_nid(virt_to_page(s));
2143 for_each_node_state(node, N_NORMAL_MEMORY) {
2144 struct kmem_cache_node *n;
2146 if (local_node == node)
2149 if (slab_state == DOWN) {
2150 early_kmem_cache_node_alloc(gfpflags, node);
2153 n = kmem_cache_alloc_node(kmalloc_caches,
2157 free_kmem_cache_nodes(s);
2163 init_kmem_cache_node(n, s);
2168 static void free_kmem_cache_nodes(struct kmem_cache *s)
2172 static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2174 init_kmem_cache_node(&s->local_node, s);
2180 * calculate_sizes() determines the order and the distribution of data within
2183 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2185 unsigned long flags = s->flags;
2186 unsigned long size = s->objsize;
2187 unsigned long align = s->align;
2191 * Round up object size to the next word boundary. We can only
2192 * place the free pointer at word boundaries and this determines
2193 * the possible location of the free pointer.
2195 size = ALIGN(size, sizeof(void *));
2197 #ifdef CONFIG_SLUB_DEBUG
2199 * Determine if we can poison the object itself. If the user of
2200 * the slab may touch the object after free or before allocation
2201 * then we should never poison the object itself.
2203 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2205 s->flags |= __OBJECT_POISON;
2207 s->flags &= ~__OBJECT_POISON;
2211 * If we are Redzoning then check if there is some space between the
2212 * end of the object and the free pointer. If not then add an
2213 * additional word to have some bytes to store Redzone information.
2215 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2216 size += sizeof(void *);
2220 * With that we have determined the number of bytes in actual use
2221 * by the object. This is the potential offset to the free pointer.
2225 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2228 * Relocate free pointer after the object if it is not
2229 * permitted to overwrite the first word of the object on
2232 * This is the case if we do RCU, have a constructor or
2233 * destructor or are poisoning the objects.
2236 size += sizeof(void *);
2239 #ifdef CONFIG_SLUB_DEBUG
2240 if (flags & SLAB_STORE_USER)
2242 * Need to store information about allocs and frees after
2245 size += 2 * sizeof(struct track);
2247 if (flags & SLAB_RED_ZONE)
2249 * Add some empty padding so that we can catch
2250 * overwrites from earlier objects rather than let
2251 * tracking information or the free pointer be
2252 * corrupted if an user writes before the start
2255 size += sizeof(void *);
2259 * Determine the alignment based on various parameters that the
2260 * user specified and the dynamic determination of cache line size
2263 align = calculate_alignment(flags, align, s->objsize);
2266 * SLUB stores one object immediately after another beginning from
2267 * offset 0. In order to align the objects we have to simply size
2268 * each object to conform to the alignment.
2270 size = ALIGN(size, align);
2272 if (forced_order >= 0)
2273 order = forced_order;
2275 order = calculate_order(size);
2282 s->allocflags |= __GFP_COMP;
2284 if (s->flags & SLAB_CACHE_DMA)
2285 s->allocflags |= SLUB_DMA;
2287 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2288 s->allocflags |= __GFP_RECLAIMABLE;
2291 * Determine the number of objects per slab
2293 s->oo = oo_make(order, size);
2294 s->min = oo_make(get_order(size), size);
2295 if (oo_objects(s->oo) > oo_objects(s->max))
2298 return !!oo_objects(s->oo);
2302 static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2303 const char *name, size_t size,
2304 size_t align, unsigned long flags,
2305 void (*ctor)(void *))
2307 memset(s, 0, kmem_size);
2312 s->flags = kmem_cache_flags(size, flags, name, ctor);
2314 if (!calculate_sizes(s, -1))
2319 s->remote_node_defrag_ratio = 1000;
2321 if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2324 if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2326 free_kmem_cache_nodes(s);
2328 if (flags & SLAB_PANIC)
2329 panic("Cannot create slab %s size=%lu realsize=%u "
2330 "order=%u offset=%u flags=%lx\n",
2331 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2337 * Check if a given pointer is valid
2339 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2343 page = get_object_page(object);
2345 if (!page || s != page->slab)
2346 /* No slab or wrong slab */
2349 if (!check_valid_pointer(s, page, object))
2353 * We could also check if the object is on the slabs freelist.
2354 * But this would be too expensive and it seems that the main
2355 * purpose of kmem_ptr_valid() is to check if the object belongs
2356 * to a certain slab.
2360 EXPORT_SYMBOL(kmem_ptr_validate);
2363 * Determine the size of a slab object
2365 unsigned int kmem_cache_size(struct kmem_cache *s)
2369 EXPORT_SYMBOL(kmem_cache_size);
2371 const char *kmem_cache_name(struct kmem_cache *s)
2375 EXPORT_SYMBOL(kmem_cache_name);
2377 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2380 #ifdef CONFIG_SLUB_DEBUG
2381 void *addr = page_address(page);
2383 DECLARE_BITMAP(map, page->objects);
2385 bitmap_zero(map, page->objects);
2386 slab_err(s, page, "%s", text);
2388 for_each_free_object(p, s, page->freelist)
2389 set_bit(slab_index(p, s, addr), map);
2391 for_each_object(p, s, addr, page->objects) {
2393 if (!test_bit(slab_index(p, s, addr), map)) {
2394 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2396 print_tracking(s, p);
2404 * Attempt to free all partial slabs on a node.
2406 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2408 unsigned long flags;
2409 struct page *page, *h;
2411 spin_lock_irqsave(&n->list_lock, flags);
2412 list_for_each_entry_safe(page, h, &n->partial, lru) {
2414 list_del(&page->lru);
2415 discard_slab(s, page);
2418 list_slab_objects(s, page,
2419 "Objects remaining on kmem_cache_close()");
2422 spin_unlock_irqrestore(&n->list_lock, flags);
2426 * Release all resources used by a slab cache.
2428 static inline int kmem_cache_close(struct kmem_cache *s)
2434 /* Attempt to free all objects */
2435 free_kmem_cache_cpus(s);
2436 for_each_node_state(node, N_NORMAL_MEMORY) {
2437 struct kmem_cache_node *n = get_node(s, node);
2440 if (n->nr_partial || slabs_node(s, node))
2443 free_kmem_cache_nodes(s);
2448 * Close a cache and release the kmem_cache structure
2449 * (must be used for caches created using kmem_cache_create)
2451 void kmem_cache_destroy(struct kmem_cache *s)
2453 down_write(&slub_lock);
2457 up_write(&slub_lock);
2458 if (kmem_cache_close(s)) {
2459 printk(KERN_ERR "SLUB %s: %s called for cache that "
2460 "still has objects.\n", s->name, __func__);
2463 sysfs_slab_remove(s);
2465 up_write(&slub_lock);
2467 EXPORT_SYMBOL(kmem_cache_destroy);
2469 /********************************************************************
2471 *******************************************************************/
2473 struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
2474 EXPORT_SYMBOL(kmalloc_caches);
2476 static int __init setup_slub_min_order(char *str)
2478 get_option(&str, &slub_min_order);
2483 __setup("slub_min_order=", setup_slub_min_order);
2485 static int __init setup_slub_max_order(char *str)
2487 get_option(&str, &slub_max_order);
2492 __setup("slub_max_order=", setup_slub_max_order);
2494 static int __init setup_slub_min_objects(char *str)
2496 get_option(&str, &slub_min_objects);
2501 __setup("slub_min_objects=", setup_slub_min_objects);
2503 static int __init setup_slub_nomerge(char *str)
2509 __setup("slub_nomerge", setup_slub_nomerge);
2511 static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2512 const char *name, int size, gfp_t gfp_flags)
2514 unsigned int flags = 0;
2516 if (gfp_flags & SLUB_DMA)
2517 flags = SLAB_CACHE_DMA;
2519 down_write(&slub_lock);
2520 if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2524 list_add(&s->list, &slab_caches);
2525 up_write(&slub_lock);
2526 if (sysfs_slab_add(s))
2531 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2534 #ifdef CONFIG_ZONE_DMA
2535 static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
2537 static void sysfs_add_func(struct work_struct *w)
2539 struct kmem_cache *s;
2541 down_write(&slub_lock);
2542 list_for_each_entry(s, &slab_caches, list) {
2543 if (s->flags & __SYSFS_ADD_DEFERRED) {
2544 s->flags &= ~__SYSFS_ADD_DEFERRED;
2548 up_write(&slub_lock);
2551 static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2553 static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2555 struct kmem_cache *s;
2559 s = kmalloc_caches_dma[index];
2563 /* Dynamically create dma cache */
2564 if (flags & __GFP_WAIT)
2565 down_write(&slub_lock);
2567 if (!down_write_trylock(&slub_lock))
2571 if (kmalloc_caches_dma[index])
2574 realsize = kmalloc_caches[index].objsize;
2575 text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d",
2576 (unsigned int)realsize);
2577 s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2579 if (!s || !text || !kmem_cache_open(s, flags, text,
2580 realsize, ARCH_KMALLOC_MINALIGN,
2581 SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2587 list_add(&s->list, &slab_caches);
2588 kmalloc_caches_dma[index] = s;
2590 schedule_work(&sysfs_add_work);
2593 up_write(&slub_lock);
2595 return kmalloc_caches_dma[index];
2600 * Conversion table for small slabs sizes / 8 to the index in the
2601 * kmalloc array. This is necessary for slabs < 192 since we have non power
2602 * of two cache sizes there. The size of larger slabs can be determined using
2605 static s8 size_index[24] = {
2632 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2638 return ZERO_SIZE_PTR;
2640 index = size_index[(size - 1) / 8];
2642 index = fls(size - 1);
2644 #ifdef CONFIG_ZONE_DMA
2645 if (unlikely((flags & SLUB_DMA)))
2646 return dma_kmalloc_cache(index, flags);
2649 return &kmalloc_caches[index];
2652 void *__kmalloc(size_t size, gfp_t flags)
2654 struct kmem_cache *s;
2656 if (unlikely(size > PAGE_SIZE))
2657 return kmalloc_large(size, flags);
2659 s = get_slab(size, flags);
2661 if (unlikely(ZERO_OR_NULL_PTR(s)))
2664 return slab_alloc(s, flags, -1, _RET_IP_);
2666 EXPORT_SYMBOL(__kmalloc);
2668 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2670 struct page *page = alloc_pages_node(node, flags | __GFP_COMP,
2674 return page_address(page);
2680 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2682 struct kmem_cache *s;
2684 if (unlikely(size > PAGE_SIZE))
2685 return kmalloc_large_node(size, flags, node);
2687 s = get_slab(size, flags);
2689 if (unlikely(ZERO_OR_NULL_PTR(s)))
2692 return slab_alloc(s, flags, node, _RET_IP_);
2694 EXPORT_SYMBOL(__kmalloc_node);
2697 size_t ksize(const void *object)
2700 struct kmem_cache *s;
2702 if (unlikely(object == ZERO_SIZE_PTR))
2705 page = virt_to_head_page(object);
2707 if (unlikely(!PageSlab(page))) {
2708 WARN_ON(!PageCompound(page));
2709 return PAGE_SIZE << compound_order(page);
2713 #ifdef CONFIG_SLUB_DEBUG
2715 * Debugging requires use of the padding between object
2716 * and whatever may come after it.
2718 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2723 * If we have the need to store the freelist pointer
2724 * back there or track user information then we can
2725 * only use the space before that information.
2727 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2730 * Else we can use all the padding etc for the allocation
2735 void kfree(const void *x)
2738 void *object = (void *)x;
2740 if (unlikely(ZERO_OR_NULL_PTR(x)))
2743 page = virt_to_head_page(x);
2744 if (unlikely(!PageSlab(page))) {
2745 BUG_ON(!PageCompound(page));
2749 slab_free(page->slab, page, object, _RET_IP_);
2751 EXPORT_SYMBOL(kfree);
2754 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2755 * the remaining slabs by the number of items in use. The slabs with the
2756 * most items in use come first. New allocations will then fill those up
2757 * and thus they can be removed from the partial lists.
2759 * The slabs with the least items are placed last. This results in them
2760 * being allocated from last increasing the chance that the last objects
2761 * are freed in them.
2763 int kmem_cache_shrink(struct kmem_cache *s)
2767 struct kmem_cache_node *n;
2770 int objects = oo_objects(s->max);
2771 struct list_head *slabs_by_inuse =
2772 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2773 unsigned long flags;
2775 if (!slabs_by_inuse)
2779 for_each_node_state(node, N_NORMAL_MEMORY) {
2780 n = get_node(s, node);
2785 for (i = 0; i < objects; i++)
2786 INIT_LIST_HEAD(slabs_by_inuse + i);
2788 spin_lock_irqsave(&n->list_lock, flags);
2791 * Build lists indexed by the items in use in each slab.
2793 * Note that concurrent frees may occur while we hold the
2794 * list_lock. page->inuse here is the upper limit.
2796 list_for_each_entry_safe(page, t, &n->partial, lru) {
2797 if (!page->inuse && slab_trylock(page)) {
2799 * Must hold slab lock here because slab_free
2800 * may have freed the last object and be
2801 * waiting to release the slab.
2803 list_del(&page->lru);
2806 discard_slab(s, page);
2808 list_move(&page->lru,
2809 slabs_by_inuse + page->inuse);
2814 * Rebuild the partial list with the slabs filled up most
2815 * first and the least used slabs at the end.
2817 for (i = objects - 1; i >= 0; i--)
2818 list_splice(slabs_by_inuse + i, n->partial.prev);
2820 spin_unlock_irqrestore(&n->list_lock, flags);
2823 kfree(slabs_by_inuse);
2826 EXPORT_SYMBOL(kmem_cache_shrink);
2828 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2829 static int slab_mem_going_offline_callback(void *arg)
2831 struct kmem_cache *s;
2833 down_read(&slub_lock);
2834 list_for_each_entry(s, &slab_caches, list)
2835 kmem_cache_shrink(s);
2836 up_read(&slub_lock);
2841 static void slab_mem_offline_callback(void *arg)
2843 struct kmem_cache_node *n;
2844 struct kmem_cache *s;
2845 struct memory_notify *marg = arg;
2848 offline_node = marg->status_change_nid;
2851 * If the node still has available memory. we need kmem_cache_node
2854 if (offline_node < 0)
2857 down_read(&slub_lock);
2858 list_for_each_entry(s, &slab_caches, list) {
2859 n = get_node(s, offline_node);
2862 * if n->nr_slabs > 0, slabs still exist on the node
2863 * that is going down. We were unable to free them,
2864 * and offline_pages() function shoudn't call this
2865 * callback. So, we must fail.
2867 BUG_ON(slabs_node(s, offline_node));
2869 s->node[offline_node] = NULL;
2870 kmem_cache_free(kmalloc_caches, n);
2873 up_read(&slub_lock);
2876 static int slab_mem_going_online_callback(void *arg)
2878 struct kmem_cache_node *n;
2879 struct kmem_cache *s;
2880 struct memory_notify *marg = arg;
2881 int nid = marg->status_change_nid;
2885 * If the node's memory is already available, then kmem_cache_node is
2886 * already created. Nothing to do.
2892 * We are bringing a node online. No memory is available yet. We must
2893 * allocate a kmem_cache_node structure in order to bring the node
2896 down_read(&slub_lock);
2897 list_for_each_entry(s, &slab_caches, list) {
2899 * XXX: kmem_cache_alloc_node will fallback to other nodes
2900 * since memory is not yet available from the node that
2903 n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2908 init_kmem_cache_node(n, s);
2912 up_read(&slub_lock);
2916 static int slab_memory_callback(struct notifier_block *self,
2917 unsigned long action, void *arg)
2922 case MEM_GOING_ONLINE:
2923 ret = slab_mem_going_online_callback(arg);
2925 case MEM_GOING_OFFLINE:
2926 ret = slab_mem_going_offline_callback(arg);
2929 case MEM_CANCEL_ONLINE:
2930 slab_mem_offline_callback(arg);
2933 case MEM_CANCEL_OFFLINE:
2937 ret = notifier_from_errno(ret);
2943 #endif /* CONFIG_MEMORY_HOTPLUG */
2945 /********************************************************************
2946 * Basic setup of slabs
2947 *******************************************************************/
2949 void __init kmem_cache_init(void)
2958 * Must first have the slab cache available for the allocations of the
2959 * struct kmem_cache_node's. There is special bootstrap code in
2960 * kmem_cache_open for slab_state == DOWN.
2962 create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2963 sizeof(struct kmem_cache_node), GFP_KERNEL);
2964 kmalloc_caches[0].refcount = -1;
2967 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
2970 /* Able to allocate the per node structures */
2971 slab_state = PARTIAL;
2973 /* Caches that are not of the two-to-the-power-of size */
2974 if (KMALLOC_MIN_SIZE <= 64) {
2975 create_kmalloc_cache(&kmalloc_caches[1],
2976 "kmalloc-96", 96, GFP_KERNEL);
2978 create_kmalloc_cache(&kmalloc_caches[2],
2979 "kmalloc-192", 192, GFP_KERNEL);
2983 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
2984 create_kmalloc_cache(&kmalloc_caches[i],
2985 "kmalloc", 1 << i, GFP_KERNEL);
2991 * Patch up the size_index table if we have strange large alignment
2992 * requirements for the kmalloc array. This is only the case for
2993 * MIPS it seems. The standard arches will not generate any code here.
2995 * Largest permitted alignment is 256 bytes due to the way we
2996 * handle the index determination for the smaller caches.
2998 * Make sure that nothing crazy happens if someone starts tinkering
2999 * around with ARCH_KMALLOC_MINALIGN
3001 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3002 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3004 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
3005 size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
3007 if (KMALLOC_MIN_SIZE == 128) {
3009 * The 192 byte sized cache is not used if the alignment
3010 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3013 for (i = 128 + 8; i <= 192; i += 8)
3014 size_index[(i - 1) / 8] = 8;
3019 /* Provide the correct kmalloc names now that the caches are up */
3020 for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
3021 kmalloc_caches[i]. name =
3022 kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
3025 register_cpu_notifier(&slab_notifier);
3026 kmem_size = offsetof(struct kmem_cache, cpu_slab) +
3027 nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
3029 kmem_size = sizeof(struct kmem_cache);
3033 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3034 " CPUs=%d, Nodes=%d\n",
3035 caches, cache_line_size(),
3036 slub_min_order, slub_max_order, slub_min_objects,
3037 nr_cpu_ids, nr_node_ids);
3041 * Find a mergeable slab cache
3043 static int slab_unmergeable(struct kmem_cache *s)
3045 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3052 * We may have set a slab to be unmergeable during bootstrap.
3054 if (s->refcount < 0)
3060 static struct kmem_cache *find_mergeable(size_t size,
3061 size_t align, unsigned long flags, const char *name,
3062 void (*ctor)(void *))
3064 struct kmem_cache *s;
3066 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3072 size = ALIGN(size, sizeof(void *));
3073 align = calculate_alignment(flags, align, size);
3074 size = ALIGN(size, align);
3075 flags = kmem_cache_flags(size, flags, name, NULL);
3077 list_for_each_entry(s, &slab_caches, list) {
3078 if (slab_unmergeable(s))
3084 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3087 * Check if alignment is compatible.
3088 * Courtesy of Adrian Drzewiecki
3090 if ((s->size & ~(align - 1)) != s->size)
3093 if (s->size - size >= sizeof(void *))
3101 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3102 size_t align, unsigned long flags, void (*ctor)(void *))
3104 struct kmem_cache *s;
3106 down_write(&slub_lock);
3107 s = find_mergeable(size, align, flags, name, ctor);
3113 * Adjust the object sizes so that we clear
3114 * the complete object on kzalloc.
3116 s->objsize = max(s->objsize, (int)size);
3119 * And then we need to update the object size in the
3120 * per cpu structures
3122 for_each_online_cpu(cpu)
3123 get_cpu_slab(s, cpu)->objsize = s->objsize;
3125 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3126 up_write(&slub_lock);
3128 if (sysfs_slab_alias(s, name)) {
3129 down_write(&slub_lock);
3131 up_write(&slub_lock);
3137 s = kmalloc(kmem_size, GFP_KERNEL);
3139 if (kmem_cache_open(s, GFP_KERNEL, name,
3140 size, align, flags, ctor)) {
3141 list_add(&s->list, &slab_caches);
3142 up_write(&slub_lock);
3143 if (sysfs_slab_add(s)) {
3144 down_write(&slub_lock);
3146 up_write(&slub_lock);
3154 up_write(&slub_lock);
3157 if (flags & SLAB_PANIC)
3158 panic("Cannot create slabcache %s\n", name);
3163 EXPORT_SYMBOL(kmem_cache_create);
3167 * Use the cpu notifier to insure that the cpu slabs are flushed when
3170 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3171 unsigned long action, void *hcpu)
3173 long cpu = (long)hcpu;
3174 struct kmem_cache *s;
3175 unsigned long flags;
3178 case CPU_UP_PREPARE:
3179 case CPU_UP_PREPARE_FROZEN:
3180 init_alloc_cpu_cpu(cpu);
3181 down_read(&slub_lock);
3182 list_for_each_entry(s, &slab_caches, list)
3183 s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3185 up_read(&slub_lock);
3188 case CPU_UP_CANCELED:
3189 case CPU_UP_CANCELED_FROZEN:
3191 case CPU_DEAD_FROZEN:
3192 down_read(&slub_lock);
3193 list_for_each_entry(s, &slab_caches, list) {
3194 struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3196 local_irq_save(flags);
3197 __flush_cpu_slab(s, cpu);
3198 local_irq_restore(flags);
3199 free_kmem_cache_cpu(c, cpu);
3200 s->cpu_slab[cpu] = NULL;
3202 up_read(&slub_lock);
3210 static struct notifier_block __cpuinitdata slab_notifier = {
3211 .notifier_call = slab_cpuup_callback
3216 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3218 struct kmem_cache *s;
3220 if (unlikely(size > PAGE_SIZE))
3221 return kmalloc_large(size, gfpflags);
3223 s = get_slab(size, gfpflags);
3225 if (unlikely(ZERO_OR_NULL_PTR(s)))
3228 return slab_alloc(s, gfpflags, -1, caller);
3231 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3232 int node, unsigned long caller)
3234 struct kmem_cache *s;
3236 if (unlikely(size > PAGE_SIZE))
3237 return kmalloc_large_node(size, gfpflags, node);
3239 s = get_slab(size, gfpflags);
3241 if (unlikely(ZERO_OR_NULL_PTR(s)))
3244 return slab_alloc(s, gfpflags, node, caller);
3247 #ifdef CONFIG_SLUB_DEBUG
3248 static unsigned long count_partial(struct kmem_cache_node *n,
3249 int (*get_count)(struct page *))
3251 unsigned long flags;
3252 unsigned long x = 0;
3255 spin_lock_irqsave(&n->list_lock, flags);
3256 list_for_each_entry(page, &n->partial, lru)
3257 x += get_count(page);
3258 spin_unlock_irqrestore(&n->list_lock, flags);
3262 static int count_inuse(struct page *page)
3267 static int count_total(struct page *page)
3269 return page->objects;
3272 static int count_free(struct page *page)
3274 return page->objects - page->inuse;
3277 static int validate_slab(struct kmem_cache *s, struct page *page,
3281 void *addr = page_address(page);
3283 if (!check_slab(s, page) ||
3284 !on_freelist(s, page, NULL))
3287 /* Now we know that a valid freelist exists */
3288 bitmap_zero(map, page->objects);
3290 for_each_free_object(p, s, page->freelist) {
3291 set_bit(slab_index(p, s, addr), map);
3292 if (!check_object(s, page, p, 0))
3296 for_each_object(p, s, addr, page->objects)
3297 if (!test_bit(slab_index(p, s, addr), map))
3298 if (!check_object(s, page, p, 1))
3303 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3306 if (slab_trylock(page)) {
3307 validate_slab(s, page, map);
3310 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3313 if (s->flags & DEBUG_DEFAULT_FLAGS) {
3314 if (!PageSlubDebug(page))
3315 printk(KERN_ERR "SLUB %s: SlubDebug not set "
3316 "on slab 0x%p\n", s->name, page);
3318 if (PageSlubDebug(page))
3319 printk(KERN_ERR "SLUB %s: SlubDebug set on "
3320 "slab 0x%p\n", s->name, page);
3324 static int validate_slab_node(struct kmem_cache *s,
3325 struct kmem_cache_node *n, unsigned long *map)
3327 unsigned long count = 0;
3329 unsigned long flags;
3331 spin_lock_irqsave(&n->list_lock, flags);
3333 list_for_each_entry(page, &n->partial, lru) {
3334 validate_slab_slab(s, page, map);
3337 if (count != n->nr_partial)
3338 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3339 "counter=%ld\n", s->name, count, n->nr_partial);
3341 if (!(s->flags & SLAB_STORE_USER))
3344 list_for_each_entry(page, &n->full, lru) {
3345 validate_slab_slab(s, page, map);
3348 if (count != atomic_long_read(&n->nr_slabs))
3349 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3350 "counter=%ld\n", s->name, count,
3351 atomic_long_read(&n->nr_slabs));
3354 spin_unlock_irqrestore(&n->list_lock, flags);
3358 static long validate_slab_cache(struct kmem_cache *s)
3361 unsigned long count = 0;
3362 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3363 sizeof(unsigned long), GFP_KERNEL);
3369 for_each_node_state(node, N_NORMAL_MEMORY) {
3370 struct kmem_cache_node *n = get_node(s, node);
3372 count += validate_slab_node(s, n, map);
3378 #ifdef SLUB_RESILIENCY_TEST
3379 static void resiliency_test(void)
3383 printk(KERN_ERR "SLUB resiliency testing\n");
3384 printk(KERN_ERR "-----------------------\n");
3385 printk(KERN_ERR "A. Corruption after allocation\n");
3387 p = kzalloc(16, GFP_KERNEL);
3389 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3390 " 0x12->0x%p\n\n", p + 16);
3392 validate_slab_cache(kmalloc_caches + 4);
3394 /* Hmmm... The next two are dangerous */
3395 p = kzalloc(32, GFP_KERNEL);
3396 p[32 + sizeof(void *)] = 0x34;
3397 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3398 " 0x34 -> -0x%p\n", p);
3400 "If allocated object is overwritten then not detectable\n\n");
3402 validate_slab_cache(kmalloc_caches + 5);
3403 p = kzalloc(64, GFP_KERNEL);
3404 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3406 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3409 "If allocated object is overwritten then not detectable\n\n");
3410 validate_slab_cache(kmalloc_caches + 6);
3412 printk(KERN_ERR "\nB. Corruption after free\n");
3413 p = kzalloc(128, GFP_KERNEL);
3416 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3417 validate_slab_cache(kmalloc_caches + 7);
3419 p = kzalloc(256, GFP_KERNEL);
3422 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3424 validate_slab_cache(kmalloc_caches + 8);
3426 p = kzalloc(512, GFP_KERNEL);
3429 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3430 validate_slab_cache(kmalloc_caches + 9);
3433 static void resiliency_test(void) {};
3437 * Generate lists of code addresses where slabcache objects are allocated
3442 unsigned long count;
3455 unsigned long count;
3456 struct location *loc;
3459 static void free_loc_track(struct loc_track *t)
3462 free_pages((unsigned long)t->loc,
3463 get_order(sizeof(struct location) * t->max));
3466 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3471 order = get_order(sizeof(struct location) * max);
3473 l = (void *)__get_free_pages(flags, order);
3478 memcpy(l, t->loc, sizeof(struct location) * t->count);
3486 static int add_location(struct loc_track *t, struct kmem_cache *s,
3487 const struct track *track)
3489 long start, end, pos;
3491 unsigned long caddr;
3492 unsigned long age = jiffies - track->when;
3498 pos = start + (end - start + 1) / 2;
3501 * There is nothing at "end". If we end up there
3502 * we need to add something to before end.