a06f23731d3f96db3a2b134d0d62b3c78dcef00c
[sfrench/cifs-2.6.git] / mm / shmem.c
1 /*
2  * Resizable virtual memory filesystem for Linux.
3  *
4  * Copyright (C) 2000 Linus Torvalds.
5  *               2000 Transmeta Corp.
6  *               2000-2001 Christoph Rohland
7  *               2000-2001 SAP AG
8  *               2002 Red Hat Inc.
9  * Copyright (C) 2002-2011 Hugh Dickins.
10  * Copyright (C) 2011 Google Inc.
11  * Copyright (C) 2002-2005 VERITAS Software Corporation.
12  * Copyright (C) 2004 Andi Kleen, SuSE Labs
13  *
14  * Extended attribute support for tmpfs:
15  * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16  * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17  *
18  * tiny-shmem:
19  * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20  *
21  * This file is released under the GPL.
22  */
23
24 #include <linux/fs.h>
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
31 #include <linux/mm.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37
38 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
39
40 static struct vfsmount *shm_mnt;
41
42 #ifdef CONFIG_SHMEM
43 /*
44  * This virtual memory filesystem is heavily based on the ramfs. It
45  * extends ramfs by the ability to use swap and honor resource limits
46  * which makes it a completely usable filesystem.
47  */
48
49 #include <linux/xattr.h>
50 #include <linux/exportfs.h>
51 #include <linux/posix_acl.h>
52 #include <linux/posix_acl_xattr.h>
53 #include <linux/mman.h>
54 #include <linux/string.h>
55 #include <linux/slab.h>
56 #include <linux/backing-dev.h>
57 #include <linux/shmem_fs.h>
58 #include <linux/writeback.h>
59 #include <linux/blkdev.h>
60 #include <linux/pagevec.h>
61 #include <linux/percpu_counter.h>
62 #include <linux/falloc.h>
63 #include <linux/splice.h>
64 #include <linux/security.h>
65 #include <linux/swapops.h>
66 #include <linux/mempolicy.h>
67 #include <linux/namei.h>
68 #include <linux/ctype.h>
69 #include <linux/migrate.h>
70 #include <linux/highmem.h>
71 #include <linux/seq_file.h>
72 #include <linux/magic.h>
73 #include <linux/syscalls.h>
74 #include <linux/fcntl.h>
75 #include <uapi/linux/memfd.h>
76 #include <linux/userfaultfd_k.h>
77 #include <linux/rmap.h>
78 #include <linux/uuid.h>
79
80 #include <linux/uaccess.h>
81 #include <asm/pgtable.h>
82
83 #include "internal.h"
84
85 #define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
86 #define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
87
88 /* Pretend that each entry is of this size in directory's i_size */
89 #define BOGO_DIRENT_SIZE 20
90
91 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
92 #define SHORT_SYMLINK_LEN 128
93
94 /*
95  * shmem_fallocate communicates with shmem_fault or shmem_writepage via
96  * inode->i_private (with i_mutex making sure that it has only one user at
97  * a time): we would prefer not to enlarge the shmem inode just for that.
98  */
99 struct shmem_falloc {
100         wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
101         pgoff_t start;          /* start of range currently being fallocated */
102         pgoff_t next;           /* the next page offset to be fallocated */
103         pgoff_t nr_falloced;    /* how many new pages have been fallocated */
104         pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
105 };
106
107 #ifdef CONFIG_TMPFS
108 static unsigned long shmem_default_max_blocks(void)
109 {
110         return totalram_pages / 2;
111 }
112
113 static unsigned long shmem_default_max_inodes(void)
114 {
115         return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
116 }
117 #endif
118
119 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
120 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
121                                 struct shmem_inode_info *info, pgoff_t index);
122 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
123                 struct page **pagep, enum sgp_type sgp,
124                 gfp_t gfp, struct vm_area_struct *vma,
125                 struct vm_fault *vmf, int *fault_type);
126
127 int shmem_getpage(struct inode *inode, pgoff_t index,
128                 struct page **pagep, enum sgp_type sgp)
129 {
130         return shmem_getpage_gfp(inode, index, pagep, sgp,
131                 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
132 }
133
134 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
135 {
136         return sb->s_fs_info;
137 }
138
139 /*
140  * shmem_file_setup pre-accounts the whole fixed size of a VM object,
141  * for shared memory and for shared anonymous (/dev/zero) mappings
142  * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
143  * consistent with the pre-accounting of private mappings ...
144  */
145 static inline int shmem_acct_size(unsigned long flags, loff_t size)
146 {
147         return (flags & VM_NORESERVE) ?
148                 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
149 }
150
151 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
152 {
153         if (!(flags & VM_NORESERVE))
154                 vm_unacct_memory(VM_ACCT(size));
155 }
156
157 static inline int shmem_reacct_size(unsigned long flags,
158                 loff_t oldsize, loff_t newsize)
159 {
160         if (!(flags & VM_NORESERVE)) {
161                 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
162                         return security_vm_enough_memory_mm(current->mm,
163                                         VM_ACCT(newsize) - VM_ACCT(oldsize));
164                 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
165                         vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
166         }
167         return 0;
168 }
169
170 /*
171  * ... whereas tmpfs objects are accounted incrementally as
172  * pages are allocated, in order to allow large sparse files.
173  * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
174  * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
175  */
176 static inline int shmem_acct_block(unsigned long flags, long pages)
177 {
178         if (!(flags & VM_NORESERVE))
179                 return 0;
180
181         return security_vm_enough_memory_mm(current->mm,
182                         pages * VM_ACCT(PAGE_SIZE));
183 }
184
185 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
186 {
187         if (flags & VM_NORESERVE)
188                 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
189 }
190
191 static const struct super_operations shmem_ops;
192 static const struct address_space_operations shmem_aops;
193 static const struct file_operations shmem_file_operations;
194 static const struct inode_operations shmem_inode_operations;
195 static const struct inode_operations shmem_dir_inode_operations;
196 static const struct inode_operations shmem_special_inode_operations;
197 static const struct vm_operations_struct shmem_vm_ops;
198 static struct file_system_type shmem_fs_type;
199
200 bool vma_is_shmem(struct vm_area_struct *vma)
201 {
202         return vma->vm_ops == &shmem_vm_ops;
203 }
204
205 static LIST_HEAD(shmem_swaplist);
206 static DEFINE_MUTEX(shmem_swaplist_mutex);
207
208 static int shmem_reserve_inode(struct super_block *sb)
209 {
210         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
211         if (sbinfo->max_inodes) {
212                 spin_lock(&sbinfo->stat_lock);
213                 if (!sbinfo->free_inodes) {
214                         spin_unlock(&sbinfo->stat_lock);
215                         return -ENOSPC;
216                 }
217                 sbinfo->free_inodes--;
218                 spin_unlock(&sbinfo->stat_lock);
219         }
220         return 0;
221 }
222
223 static void shmem_free_inode(struct super_block *sb)
224 {
225         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
226         if (sbinfo->max_inodes) {
227                 spin_lock(&sbinfo->stat_lock);
228                 sbinfo->free_inodes++;
229                 spin_unlock(&sbinfo->stat_lock);
230         }
231 }
232
233 /**
234  * shmem_recalc_inode - recalculate the block usage of an inode
235  * @inode: inode to recalc
236  *
237  * We have to calculate the free blocks since the mm can drop
238  * undirtied hole pages behind our back.
239  *
240  * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
241  * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
242  *
243  * It has to be called with the spinlock held.
244  */
245 static void shmem_recalc_inode(struct inode *inode)
246 {
247         struct shmem_inode_info *info = SHMEM_I(inode);
248         long freed;
249
250         freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
251         if (freed > 0) {
252                 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
253                 if (sbinfo->max_blocks)
254                         percpu_counter_add(&sbinfo->used_blocks, -freed);
255                 info->alloced -= freed;
256                 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
257                 shmem_unacct_blocks(info->flags, freed);
258         }
259 }
260
261 bool shmem_charge(struct inode *inode, long pages)
262 {
263         struct shmem_inode_info *info = SHMEM_I(inode);
264         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
265         unsigned long flags;
266
267         if (shmem_acct_block(info->flags, pages))
268                 return false;
269         spin_lock_irqsave(&info->lock, flags);
270         info->alloced += pages;
271         inode->i_blocks += pages * BLOCKS_PER_PAGE;
272         shmem_recalc_inode(inode);
273         spin_unlock_irqrestore(&info->lock, flags);
274         inode->i_mapping->nrpages += pages;
275
276         if (!sbinfo->max_blocks)
277                 return true;
278         if (percpu_counter_compare(&sbinfo->used_blocks,
279                                 sbinfo->max_blocks - pages) > 0) {
280                 inode->i_mapping->nrpages -= pages;
281                 spin_lock_irqsave(&info->lock, flags);
282                 info->alloced -= pages;
283                 shmem_recalc_inode(inode);
284                 spin_unlock_irqrestore(&info->lock, flags);
285                 shmem_unacct_blocks(info->flags, pages);
286                 return false;
287         }
288         percpu_counter_add(&sbinfo->used_blocks, pages);
289         return true;
290 }
291
292 void shmem_uncharge(struct inode *inode, long pages)
293 {
294         struct shmem_inode_info *info = SHMEM_I(inode);
295         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
296         unsigned long flags;
297
298         spin_lock_irqsave(&info->lock, flags);
299         info->alloced -= pages;
300         inode->i_blocks -= pages * BLOCKS_PER_PAGE;
301         shmem_recalc_inode(inode);
302         spin_unlock_irqrestore(&info->lock, flags);
303
304         if (sbinfo->max_blocks)
305                 percpu_counter_sub(&sbinfo->used_blocks, pages);
306         shmem_unacct_blocks(info->flags, pages);
307 }
308
309 /*
310  * Replace item expected in radix tree by a new item, while holding tree lock.
311  */
312 static int shmem_radix_tree_replace(struct address_space *mapping,
313                         pgoff_t index, void *expected, void *replacement)
314 {
315         struct radix_tree_node *node;
316         void **pslot;
317         void *item;
318
319         VM_BUG_ON(!expected);
320         VM_BUG_ON(!replacement);
321         item = __radix_tree_lookup(&mapping->page_tree, index, &node, &pslot);
322         if (!item)
323                 return -ENOENT;
324         if (item != expected)
325                 return -ENOENT;
326         __radix_tree_replace(&mapping->page_tree, node, pslot,
327                              replacement, NULL, NULL);
328         return 0;
329 }
330
331 /*
332  * Sometimes, before we decide whether to proceed or to fail, we must check
333  * that an entry was not already brought back from swap by a racing thread.
334  *
335  * Checking page is not enough: by the time a SwapCache page is locked, it
336  * might be reused, and again be SwapCache, using the same swap as before.
337  */
338 static bool shmem_confirm_swap(struct address_space *mapping,
339                                pgoff_t index, swp_entry_t swap)
340 {
341         void *item;
342
343         rcu_read_lock();
344         item = radix_tree_lookup(&mapping->page_tree, index);
345         rcu_read_unlock();
346         return item == swp_to_radix_entry(swap);
347 }
348
349 /*
350  * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
351  *
352  * SHMEM_HUGE_NEVER:
353  *      disables huge pages for the mount;
354  * SHMEM_HUGE_ALWAYS:
355  *      enables huge pages for the mount;
356  * SHMEM_HUGE_WITHIN_SIZE:
357  *      only allocate huge pages if the page will be fully within i_size,
358  *      also respect fadvise()/madvise() hints;
359  * SHMEM_HUGE_ADVISE:
360  *      only allocate huge pages if requested with fadvise()/madvise();
361  */
362
363 #define SHMEM_HUGE_NEVER        0
364 #define SHMEM_HUGE_ALWAYS       1
365 #define SHMEM_HUGE_WITHIN_SIZE  2
366 #define SHMEM_HUGE_ADVISE       3
367
368 /*
369  * Special values.
370  * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
371  *
372  * SHMEM_HUGE_DENY:
373  *      disables huge on shm_mnt and all mounts, for emergency use;
374  * SHMEM_HUGE_FORCE:
375  *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
376  *
377  */
378 #define SHMEM_HUGE_DENY         (-1)
379 #define SHMEM_HUGE_FORCE        (-2)
380
381 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
382 /* ifdef here to avoid bloating shmem.o when not necessary */
383
384 int shmem_huge __read_mostly;
385
386 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
387 static int shmem_parse_huge(const char *str)
388 {
389         if (!strcmp(str, "never"))
390                 return SHMEM_HUGE_NEVER;
391         if (!strcmp(str, "always"))
392                 return SHMEM_HUGE_ALWAYS;
393         if (!strcmp(str, "within_size"))
394                 return SHMEM_HUGE_WITHIN_SIZE;
395         if (!strcmp(str, "advise"))
396                 return SHMEM_HUGE_ADVISE;
397         if (!strcmp(str, "deny"))
398                 return SHMEM_HUGE_DENY;
399         if (!strcmp(str, "force"))
400                 return SHMEM_HUGE_FORCE;
401         return -EINVAL;
402 }
403
404 static const char *shmem_format_huge(int huge)
405 {
406         switch (huge) {
407         case SHMEM_HUGE_NEVER:
408                 return "never";
409         case SHMEM_HUGE_ALWAYS:
410                 return "always";
411         case SHMEM_HUGE_WITHIN_SIZE:
412                 return "within_size";
413         case SHMEM_HUGE_ADVISE:
414                 return "advise";
415         case SHMEM_HUGE_DENY:
416                 return "deny";
417         case SHMEM_HUGE_FORCE:
418                 return "force";
419         default:
420                 VM_BUG_ON(1);
421                 return "bad_val";
422         }
423 }
424 #endif
425
426 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
427                 struct shrink_control *sc, unsigned long nr_to_split)
428 {
429         LIST_HEAD(list), *pos, *next;
430         LIST_HEAD(to_remove);
431         struct inode *inode;
432         struct shmem_inode_info *info;
433         struct page *page;
434         unsigned long batch = sc ? sc->nr_to_scan : 128;
435         int removed = 0, split = 0;
436
437         if (list_empty(&sbinfo->shrinklist))
438                 return SHRINK_STOP;
439
440         spin_lock(&sbinfo->shrinklist_lock);
441         list_for_each_safe(pos, next, &sbinfo->shrinklist) {
442                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
443
444                 /* pin the inode */
445                 inode = igrab(&info->vfs_inode);
446
447                 /* inode is about to be evicted */
448                 if (!inode) {
449                         list_del_init(&info->shrinklist);
450                         removed++;
451                         goto next;
452                 }
453
454                 /* Check if there's anything to gain */
455                 if (round_up(inode->i_size, PAGE_SIZE) ==
456                                 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
457                         list_move(&info->shrinklist, &to_remove);
458                         removed++;
459                         goto next;
460                 }
461
462                 list_move(&info->shrinklist, &list);
463 next:
464                 if (!--batch)
465                         break;
466         }
467         spin_unlock(&sbinfo->shrinklist_lock);
468
469         list_for_each_safe(pos, next, &to_remove) {
470                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
471                 inode = &info->vfs_inode;
472                 list_del_init(&info->shrinklist);
473                 iput(inode);
474         }
475
476         list_for_each_safe(pos, next, &list) {
477                 int ret;
478
479                 info = list_entry(pos, struct shmem_inode_info, shrinklist);
480                 inode = &info->vfs_inode;
481
482                 if (nr_to_split && split >= nr_to_split) {
483                         iput(inode);
484                         continue;
485                 }
486
487                 page = find_lock_page(inode->i_mapping,
488                                 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
489                 if (!page)
490                         goto drop;
491
492                 if (!PageTransHuge(page)) {
493                         unlock_page(page);
494                         put_page(page);
495                         goto drop;
496                 }
497
498                 ret = split_huge_page(page);
499                 unlock_page(page);
500                 put_page(page);
501
502                 if (ret) {
503                         /* split failed: leave it on the list */
504                         iput(inode);
505                         continue;
506                 }
507
508                 split++;
509 drop:
510                 list_del_init(&info->shrinklist);
511                 removed++;
512                 iput(inode);
513         }
514
515         spin_lock(&sbinfo->shrinklist_lock);
516         list_splice_tail(&list, &sbinfo->shrinklist);
517         sbinfo->shrinklist_len -= removed;
518         spin_unlock(&sbinfo->shrinklist_lock);
519
520         return split;
521 }
522
523 static long shmem_unused_huge_scan(struct super_block *sb,
524                 struct shrink_control *sc)
525 {
526         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
527
528         if (!READ_ONCE(sbinfo->shrinklist_len))
529                 return SHRINK_STOP;
530
531         return shmem_unused_huge_shrink(sbinfo, sc, 0);
532 }
533
534 static long shmem_unused_huge_count(struct super_block *sb,
535                 struct shrink_control *sc)
536 {
537         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
538         return READ_ONCE(sbinfo->shrinklist_len);
539 }
540 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
541
542 #define shmem_huge SHMEM_HUGE_DENY
543
544 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
545                 struct shrink_control *sc, unsigned long nr_to_split)
546 {
547         return 0;
548 }
549 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
550
551 /*
552  * Like add_to_page_cache_locked, but error if expected item has gone.
553  */
554 static int shmem_add_to_page_cache(struct page *page,
555                                    struct address_space *mapping,
556                                    pgoff_t index, void *expected)
557 {
558         int error, nr = hpage_nr_pages(page);
559
560         VM_BUG_ON_PAGE(PageTail(page), page);
561         VM_BUG_ON_PAGE(index != round_down(index, nr), page);
562         VM_BUG_ON_PAGE(!PageLocked(page), page);
563         VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
564         VM_BUG_ON(expected && PageTransHuge(page));
565
566         page_ref_add(page, nr);
567         page->mapping = mapping;
568         page->index = index;
569
570         spin_lock_irq(&mapping->tree_lock);
571         if (PageTransHuge(page)) {
572                 void __rcu **results;
573                 pgoff_t idx;
574                 int i;
575
576                 error = 0;
577                 if (radix_tree_gang_lookup_slot(&mapping->page_tree,
578                                         &results, &idx, index, 1) &&
579                                 idx < index + HPAGE_PMD_NR) {
580                         error = -EEXIST;
581                 }
582
583                 if (!error) {
584                         for (i = 0; i < HPAGE_PMD_NR; i++) {
585                                 error = radix_tree_insert(&mapping->page_tree,
586                                                 index + i, page + i);
587                                 VM_BUG_ON(error);
588                         }
589                         count_vm_event(THP_FILE_ALLOC);
590                 }
591         } else if (!expected) {
592                 error = radix_tree_insert(&mapping->page_tree, index, page);
593         } else {
594                 error = shmem_radix_tree_replace(mapping, index, expected,
595                                                                  page);
596         }
597
598         if (!error) {
599                 mapping->nrpages += nr;
600                 if (PageTransHuge(page))
601                         __inc_node_page_state(page, NR_SHMEM_THPS);
602                 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
603                 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
604                 spin_unlock_irq(&mapping->tree_lock);
605         } else {
606                 page->mapping = NULL;
607                 spin_unlock_irq(&mapping->tree_lock);
608                 page_ref_sub(page, nr);
609         }
610         return error;
611 }
612
613 /*
614  * Like delete_from_page_cache, but substitutes swap for page.
615  */
616 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
617 {
618         struct address_space *mapping = page->mapping;
619         int error;
620
621         VM_BUG_ON_PAGE(PageCompound(page), page);
622
623         spin_lock_irq(&mapping->tree_lock);
624         error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
625         page->mapping = NULL;
626         mapping->nrpages--;
627         __dec_node_page_state(page, NR_FILE_PAGES);
628         __dec_node_page_state(page, NR_SHMEM);
629         spin_unlock_irq(&mapping->tree_lock);
630         put_page(page);
631         BUG_ON(error);
632 }
633
634 /*
635  * Remove swap entry from radix tree, free the swap and its page cache.
636  */
637 static int shmem_free_swap(struct address_space *mapping,
638                            pgoff_t index, void *radswap)
639 {
640         void *old;
641
642         spin_lock_irq(&mapping->tree_lock);
643         old = radix_tree_delete_item(&mapping->page_tree, index, radswap);
644         spin_unlock_irq(&mapping->tree_lock);
645         if (old != radswap)
646                 return -ENOENT;
647         free_swap_and_cache(radix_to_swp_entry(radswap));
648         return 0;
649 }
650
651 /*
652  * Determine (in bytes) how many of the shmem object's pages mapped by the
653  * given offsets are swapped out.
654  *
655  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
656  * as long as the inode doesn't go away and racy results are not a problem.
657  */
658 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
659                                                 pgoff_t start, pgoff_t end)
660 {
661         struct radix_tree_iter iter;
662         void **slot;
663         struct page *page;
664         unsigned long swapped = 0;
665
666         rcu_read_lock();
667
668         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
669                 if (iter.index >= end)
670                         break;
671
672                 page = radix_tree_deref_slot(slot);
673
674                 if (radix_tree_deref_retry(page)) {
675                         slot = radix_tree_iter_retry(&iter);
676                         continue;
677                 }
678
679                 if (radix_tree_exceptional_entry(page))
680                         swapped++;
681
682                 if (need_resched()) {
683                         slot = radix_tree_iter_resume(slot, &iter);
684                         cond_resched_rcu();
685                 }
686         }
687
688         rcu_read_unlock();
689
690         return swapped << PAGE_SHIFT;
691 }
692
693 /*
694  * Determine (in bytes) how many of the shmem object's pages mapped by the
695  * given vma is swapped out.
696  *
697  * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
698  * as long as the inode doesn't go away and racy results are not a problem.
699  */
700 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
701 {
702         struct inode *inode = file_inode(vma->vm_file);
703         struct shmem_inode_info *info = SHMEM_I(inode);
704         struct address_space *mapping = inode->i_mapping;
705         unsigned long swapped;
706
707         /* Be careful as we don't hold info->lock */
708         swapped = READ_ONCE(info->swapped);
709
710         /*
711          * The easier cases are when the shmem object has nothing in swap, or
712          * the vma maps it whole. Then we can simply use the stats that we
713          * already track.
714          */
715         if (!swapped)
716                 return 0;
717
718         if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
719                 return swapped << PAGE_SHIFT;
720
721         /* Here comes the more involved part */
722         return shmem_partial_swap_usage(mapping,
723                         linear_page_index(vma, vma->vm_start),
724                         linear_page_index(vma, vma->vm_end));
725 }
726
727 /*
728  * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
729  */
730 void shmem_unlock_mapping(struct address_space *mapping)
731 {
732         struct pagevec pvec;
733         pgoff_t indices[PAGEVEC_SIZE];
734         pgoff_t index = 0;
735
736         pagevec_init(&pvec, 0);
737         /*
738          * Minor point, but we might as well stop if someone else SHM_LOCKs it.
739          */
740         while (!mapping_unevictable(mapping)) {
741                 /*
742                  * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
743                  * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
744                  */
745                 pvec.nr = find_get_entries(mapping, index,
746                                            PAGEVEC_SIZE, pvec.pages, indices);
747                 if (!pvec.nr)
748                         break;
749                 index = indices[pvec.nr - 1] + 1;
750                 pagevec_remove_exceptionals(&pvec);
751                 check_move_unevictable_pages(pvec.pages, pvec.nr);
752                 pagevec_release(&pvec);
753                 cond_resched();
754         }
755 }
756
757 /*
758  * Remove range of pages and swap entries from radix tree, and free them.
759  * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
760  */
761 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
762                                                                  bool unfalloc)
763 {
764         struct address_space *mapping = inode->i_mapping;
765         struct shmem_inode_info *info = SHMEM_I(inode);
766         pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
767         pgoff_t end = (lend + 1) >> PAGE_SHIFT;
768         unsigned int partial_start = lstart & (PAGE_SIZE - 1);
769         unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
770         struct pagevec pvec;
771         pgoff_t indices[PAGEVEC_SIZE];
772         long nr_swaps_freed = 0;
773         pgoff_t index;
774         int i;
775
776         if (lend == -1)
777                 end = -1;       /* unsigned, so actually very big */
778
779         pagevec_init(&pvec, 0);
780         index = start;
781         while (index < end) {
782                 pvec.nr = find_get_entries(mapping, index,
783                         min(end - index, (pgoff_t)PAGEVEC_SIZE),
784                         pvec.pages, indices);
785                 if (!pvec.nr)
786                         break;
787                 for (i = 0; i < pagevec_count(&pvec); i++) {
788                         struct page *page = pvec.pages[i];
789
790                         index = indices[i];
791                         if (index >= end)
792                                 break;
793
794                         if (radix_tree_exceptional_entry(page)) {
795                                 if (unfalloc)
796                                         continue;
797                                 nr_swaps_freed += !shmem_free_swap(mapping,
798                                                                 index, page);
799                                 continue;
800                         }
801
802                         VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
803
804                         if (!trylock_page(page))
805                                 continue;
806
807                         if (PageTransTail(page)) {
808                                 /* Middle of THP: zero out the page */
809                                 clear_highpage(page);
810                                 unlock_page(page);
811                                 continue;
812                         } else if (PageTransHuge(page)) {
813                                 if (index == round_down(end, HPAGE_PMD_NR)) {
814                                         /*
815                                          * Range ends in the middle of THP:
816                                          * zero out the page
817                                          */
818                                         clear_highpage(page);
819                                         unlock_page(page);
820                                         continue;
821                                 }
822                                 index += HPAGE_PMD_NR - 1;
823                                 i += HPAGE_PMD_NR - 1;
824                         }
825
826                         if (!unfalloc || !PageUptodate(page)) {
827                                 VM_BUG_ON_PAGE(PageTail(page), page);
828                                 if (page_mapping(page) == mapping) {
829                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
830                                         truncate_inode_page(mapping, page);
831                                 }
832                         }
833                         unlock_page(page);
834                 }
835                 pagevec_remove_exceptionals(&pvec);
836                 pagevec_release(&pvec);
837                 cond_resched();
838                 index++;
839         }
840
841         if (partial_start) {
842                 struct page *page = NULL;
843                 shmem_getpage(inode, start - 1, &page, SGP_READ);
844                 if (page) {
845                         unsigned int top = PAGE_SIZE;
846                         if (start > end) {
847                                 top = partial_end;
848                                 partial_end = 0;
849                         }
850                         zero_user_segment(page, partial_start, top);
851                         set_page_dirty(page);
852                         unlock_page(page);
853                         put_page(page);
854                 }
855         }
856         if (partial_end) {
857                 struct page *page = NULL;
858                 shmem_getpage(inode, end, &page, SGP_READ);
859                 if (page) {
860                         zero_user_segment(page, 0, partial_end);
861                         set_page_dirty(page);
862                         unlock_page(page);
863                         put_page(page);
864                 }
865         }
866         if (start >= end)
867                 return;
868
869         index = start;
870         while (index < end) {
871                 cond_resched();
872
873                 pvec.nr = find_get_entries(mapping, index,
874                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
875                                 pvec.pages, indices);
876                 if (!pvec.nr) {
877                         /* If all gone or hole-punch or unfalloc, we're done */
878                         if (index == start || end != -1)
879                                 break;
880                         /* But if truncating, restart to make sure all gone */
881                         index = start;
882                         continue;
883                 }
884                 for (i = 0; i < pagevec_count(&pvec); i++) {
885                         struct page *page = pvec.pages[i];
886
887                         index = indices[i];
888                         if (index >= end)
889                                 break;
890
891                         if (radix_tree_exceptional_entry(page)) {
892                                 if (unfalloc)
893                                         continue;
894                                 if (shmem_free_swap(mapping, index, page)) {
895                                         /* Swap was replaced by page: retry */
896                                         index--;
897                                         break;
898                                 }
899                                 nr_swaps_freed++;
900                                 continue;
901                         }
902
903                         lock_page(page);
904
905                         if (PageTransTail(page)) {
906                                 /* Middle of THP: zero out the page */
907                                 clear_highpage(page);
908                                 unlock_page(page);
909                                 /*
910                                  * Partial thp truncate due 'start' in middle
911                                  * of THP: don't need to look on these pages
912                                  * again on !pvec.nr restart.
913                                  */
914                                 if (index != round_down(end, HPAGE_PMD_NR))
915                                         start++;
916                                 continue;
917                         } else if (PageTransHuge(page)) {
918                                 if (index == round_down(end, HPAGE_PMD_NR)) {
919                                         /*
920                                          * Range ends in the middle of THP:
921                                          * zero out the page
922                                          */
923                                         clear_highpage(page);
924                                         unlock_page(page);
925                                         continue;
926                                 }
927                                 index += HPAGE_PMD_NR - 1;
928                                 i += HPAGE_PMD_NR - 1;
929                         }
930
931                         if (!unfalloc || !PageUptodate(page)) {
932                                 VM_BUG_ON_PAGE(PageTail(page), page);
933                                 if (page_mapping(page) == mapping) {
934                                         VM_BUG_ON_PAGE(PageWriteback(page), page);
935                                         truncate_inode_page(mapping, page);
936                                 } else {
937                                         /* Page was replaced by swap: retry */
938                                         unlock_page(page);
939                                         index--;
940                                         break;
941                                 }
942                         }
943                         unlock_page(page);
944                 }
945                 pagevec_remove_exceptionals(&pvec);
946                 pagevec_release(&pvec);
947                 index++;
948         }
949
950         spin_lock_irq(&info->lock);
951         info->swapped -= nr_swaps_freed;
952         shmem_recalc_inode(inode);
953         spin_unlock_irq(&info->lock);
954 }
955
956 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
957 {
958         shmem_undo_range(inode, lstart, lend, false);
959         inode->i_ctime = inode->i_mtime = current_time(inode);
960 }
961 EXPORT_SYMBOL_GPL(shmem_truncate_range);
962
963 static int shmem_getattr(const struct path *path, struct kstat *stat,
964                          u32 request_mask, unsigned int query_flags)
965 {
966         struct inode *inode = path->dentry->d_inode;
967         struct shmem_inode_info *info = SHMEM_I(inode);
968
969         if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
970                 spin_lock_irq(&info->lock);
971                 shmem_recalc_inode(inode);
972                 spin_unlock_irq(&info->lock);
973         }
974         generic_fillattr(inode, stat);
975         return 0;
976 }
977
978 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
979 {
980         struct inode *inode = d_inode(dentry);
981         struct shmem_inode_info *info = SHMEM_I(inode);
982         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
983         int error;
984
985         error = setattr_prepare(dentry, attr);
986         if (error)
987                 return error;
988
989         if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
990                 loff_t oldsize = inode->i_size;
991                 loff_t newsize = attr->ia_size;
992
993                 /* protected by i_mutex */
994                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
995                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
996                         return -EPERM;
997
998                 if (newsize != oldsize) {
999                         error = shmem_reacct_size(SHMEM_I(inode)->flags,
1000                                         oldsize, newsize);
1001                         if (error)
1002                                 return error;
1003                         i_size_write(inode, newsize);
1004                         inode->i_ctime = inode->i_mtime = current_time(inode);
1005                 }
1006                 if (newsize <= oldsize) {
1007                         loff_t holebegin = round_up(newsize, PAGE_SIZE);
1008                         if (oldsize > holebegin)
1009                                 unmap_mapping_range(inode->i_mapping,
1010                                                         holebegin, 0, 1);
1011                         if (info->alloced)
1012                                 shmem_truncate_range(inode,
1013                                                         newsize, (loff_t)-1);
1014                         /* unmap again to remove racily COWed private pages */
1015                         if (oldsize > holebegin)
1016                                 unmap_mapping_range(inode->i_mapping,
1017                                                         holebegin, 0, 1);
1018
1019                         /*
1020                          * Part of the huge page can be beyond i_size: subject
1021                          * to shrink under memory pressure.
1022                          */
1023                         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1024                                 spin_lock(&sbinfo->shrinklist_lock);
1025                                 if (list_empty(&info->shrinklist)) {
1026                                         list_add_tail(&info->shrinklist,
1027                                                         &sbinfo->shrinklist);
1028                                         sbinfo->shrinklist_len++;
1029                                 }
1030                                 spin_unlock(&sbinfo->shrinklist_lock);
1031                         }
1032                 }
1033         }
1034
1035         setattr_copy(inode, attr);
1036         if (attr->ia_valid & ATTR_MODE)
1037                 error = posix_acl_chmod(inode, inode->i_mode);
1038         return error;
1039 }
1040
1041 static void shmem_evict_inode(struct inode *inode)
1042 {
1043         struct shmem_inode_info *info = SHMEM_I(inode);
1044         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1045
1046         if (inode->i_mapping->a_ops == &shmem_aops) {
1047                 shmem_unacct_size(info->flags, inode->i_size);
1048                 inode->i_size = 0;
1049                 shmem_truncate_range(inode, 0, (loff_t)-1);
1050                 if (!list_empty(&info->shrinklist)) {
1051                         spin_lock(&sbinfo->shrinklist_lock);
1052                         if (!list_empty(&info->shrinklist)) {
1053                                 list_del_init(&info->shrinklist);
1054                                 sbinfo->shrinklist_len--;
1055                         }
1056                         spin_unlock(&sbinfo->shrinklist_lock);
1057                 }
1058                 if (!list_empty(&info->swaplist)) {
1059                         mutex_lock(&shmem_swaplist_mutex);
1060                         list_del_init(&info->swaplist);
1061                         mutex_unlock(&shmem_swaplist_mutex);
1062                 }
1063         }
1064
1065         simple_xattrs_free(&info->xattrs);
1066         WARN_ON(inode->i_blocks);
1067         shmem_free_inode(inode->i_sb);
1068         clear_inode(inode);
1069 }
1070
1071 static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1072 {
1073         struct radix_tree_iter iter;
1074         void **slot;
1075         unsigned long found = -1;
1076         unsigned int checked = 0;
1077
1078         rcu_read_lock();
1079         radix_tree_for_each_slot(slot, root, &iter, 0) {
1080                 if (*slot == item) {
1081                         found = iter.index;
1082                         break;
1083                 }
1084                 checked++;
1085                 if ((checked % 4096) != 0)
1086                         continue;
1087                 slot = radix_tree_iter_resume(slot, &iter);
1088                 cond_resched_rcu();
1089         }
1090
1091         rcu_read_unlock();
1092         return found;
1093 }
1094
1095 /*
1096  * If swap found in inode, free it and move page from swapcache to filecache.
1097  */
1098 static int shmem_unuse_inode(struct shmem_inode_info *info,
1099                              swp_entry_t swap, struct page **pagep)
1100 {
1101         struct address_space *mapping = info->vfs_inode.i_mapping;
1102         void *radswap;
1103         pgoff_t index;
1104         gfp_t gfp;
1105         int error = 0;
1106
1107         radswap = swp_to_radix_entry(swap);
1108         index = find_swap_entry(&mapping->page_tree, radswap);
1109         if (index == -1)
1110                 return -EAGAIN; /* tell shmem_unuse we found nothing */
1111
1112         /*
1113          * Move _head_ to start search for next from here.
1114          * But be careful: shmem_evict_inode checks list_empty without taking
1115          * mutex, and there's an instant in list_move_tail when info->swaplist
1116          * would appear empty, if it were the only one on shmem_swaplist.
1117          */
1118         if (shmem_swaplist.next != &info->swaplist)
1119                 list_move_tail(&shmem_swaplist, &info->swaplist);
1120
1121         gfp = mapping_gfp_mask(mapping);
1122         if (shmem_should_replace_page(*pagep, gfp)) {
1123                 mutex_unlock(&shmem_swaplist_mutex);
1124                 error = shmem_replace_page(pagep, gfp, info, index);
1125                 mutex_lock(&shmem_swaplist_mutex);
1126                 /*
1127                  * We needed to drop mutex to make that restrictive page
1128                  * allocation, but the inode might have been freed while we
1129                  * dropped it: although a racing shmem_evict_inode() cannot
1130                  * complete without emptying the radix_tree, our page lock
1131                  * on this swapcache page is not enough to prevent that -
1132                  * free_swap_and_cache() of our swap entry will only
1133                  * trylock_page(), removing swap from radix_tree whatever.
1134                  *
1135                  * We must not proceed to shmem_add_to_page_cache() if the
1136                  * inode has been freed, but of course we cannot rely on
1137                  * inode or mapping or info to check that.  However, we can
1138                  * safely check if our swap entry is still in use (and here
1139                  * it can't have got reused for another page): if it's still
1140                  * in use, then the inode cannot have been freed yet, and we
1141                  * can safely proceed (if it's no longer in use, that tells
1142                  * nothing about the inode, but we don't need to unuse swap).
1143                  */
1144                 if (!page_swapcount(*pagep))
1145                         error = -ENOENT;
1146         }
1147
1148         /*
1149          * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1150          * but also to hold up shmem_evict_inode(): so inode cannot be freed
1151          * beneath us (pagelock doesn't help until the page is in pagecache).
1152          */
1153         if (!error)
1154                 error = shmem_add_to_page_cache(*pagep, mapping, index,
1155                                                 radswap);
1156         if (error != -ENOMEM) {
1157                 /*
1158                  * Truncation and eviction use free_swap_and_cache(), which
1159                  * only does trylock page: if we raced, best clean up here.
1160                  */
1161                 delete_from_swap_cache(*pagep);
1162                 set_page_dirty(*pagep);
1163                 if (!error) {
1164                         spin_lock_irq(&info->lock);
1165                         info->swapped--;
1166                         spin_unlock_irq(&info->lock);
1167                         swap_free(swap);
1168                 }
1169         }
1170         return error;
1171 }
1172
1173 /*
1174  * Search through swapped inodes to find and replace swap by page.
1175  */
1176 int shmem_unuse(swp_entry_t swap, struct page *page)
1177 {
1178         struct list_head *this, *next;
1179         struct shmem_inode_info *info;
1180         struct mem_cgroup *memcg;
1181         int error = 0;
1182
1183         /*
1184          * There's a faint possibility that swap page was replaced before
1185          * caller locked it: caller will come back later with the right page.
1186          */
1187         if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1188                 goto out;
1189
1190         /*
1191          * Charge page using GFP_KERNEL while we can wait, before taking
1192          * the shmem_swaplist_mutex which might hold up shmem_writepage().
1193          * Charged back to the user (not to caller) when swap account is used.
1194          */
1195         error = mem_cgroup_try_charge(page, current->mm, GFP_KERNEL, &memcg,
1196                         false);
1197         if (error)
1198                 goto out;
1199         /* No radix_tree_preload: swap entry keeps a place for page in tree */
1200         error = -EAGAIN;
1201
1202         mutex_lock(&shmem_swaplist_mutex);
1203         list_for_each_safe(this, next, &shmem_swaplist) {
1204                 info = list_entry(this, struct shmem_inode_info, swaplist);
1205                 if (info->swapped)
1206                         error = shmem_unuse_inode(info, swap, &page);
1207                 else
1208                         list_del_init(&info->swaplist);
1209                 cond_resched();
1210                 if (error != -EAGAIN)
1211                         break;
1212                 /* found nothing in this: move on to search the next */
1213         }
1214         mutex_unlock(&shmem_swaplist_mutex);
1215
1216         if (error) {
1217                 if (error != -ENOMEM)
1218                         error = 0;
1219                 mem_cgroup_cancel_charge(page, memcg, false);
1220         } else
1221                 mem_cgroup_commit_charge(page, memcg, true, false);
1222 out:
1223         unlock_page(page);
1224         put_page(page);
1225         return error;
1226 }
1227
1228 /*
1229  * Move the page from the page cache to the swap cache.
1230  */
1231 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1232 {
1233         struct shmem_inode_info *info;
1234         struct address_space *mapping;
1235         struct inode *inode;
1236         swp_entry_t swap;
1237         pgoff_t index;
1238
1239         VM_BUG_ON_PAGE(PageCompound(page), page);
1240         BUG_ON(!PageLocked(page));
1241         mapping = page->mapping;
1242         index = page->index;
1243         inode = mapping->host;
1244         info = SHMEM_I(inode);
1245         if (info->flags & VM_LOCKED)
1246                 goto redirty;
1247         if (!total_swap_pages)
1248                 goto redirty;
1249
1250         /*
1251          * Our capabilities prevent regular writeback or sync from ever calling
1252          * shmem_writepage; but a stacking filesystem might use ->writepage of
1253          * its underlying filesystem, in which case tmpfs should write out to
1254          * swap only in response to memory pressure, and not for the writeback
1255          * threads or sync.
1256          */
1257         if (!wbc->for_reclaim) {
1258                 WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1259                 goto redirty;
1260         }
1261
1262         /*
1263          * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1264          * value into swapfile.c, the only way we can correctly account for a
1265          * fallocated page arriving here is now to initialize it and write it.
1266          *
1267          * That's okay for a page already fallocated earlier, but if we have
1268          * not yet completed the fallocation, then (a) we want to keep track
1269          * of this page in case we have to undo it, and (b) it may not be a
1270          * good idea to continue anyway, once we're pushing into swap.  So
1271          * reactivate the page, and let shmem_fallocate() quit when too many.
1272          */
1273         if (!PageUptodate(page)) {
1274                 if (inode->i_private) {
1275                         struct shmem_falloc *shmem_falloc;
1276                         spin_lock(&inode->i_lock);
1277                         shmem_falloc = inode->i_private;
1278                         if (shmem_falloc &&
1279                             !shmem_falloc->waitq &&
1280                             index >= shmem_falloc->start &&
1281                             index < shmem_falloc->next)
1282                                 shmem_falloc->nr_unswapped++;
1283                         else
1284                                 shmem_falloc = NULL;
1285                         spin_unlock(&inode->i_lock);
1286                         if (shmem_falloc)
1287                                 goto redirty;
1288                 }
1289                 clear_highpage(page);
1290                 flush_dcache_page(page);
1291                 SetPageUptodate(page);
1292         }
1293
1294         swap = get_swap_page(page);
1295         if (!swap.val)
1296                 goto redirty;
1297
1298         if (mem_cgroup_try_charge_swap(page, swap))
1299                 goto free_swap;
1300
1301         /*
1302          * Add inode to shmem_unuse()'s list of swapped-out inodes,
1303          * if it's not already there.  Do it now before the page is
1304          * moved to swap cache, when its pagelock no longer protects
1305          * the inode from eviction.  But don't unlock the mutex until
1306          * we've incremented swapped, because shmem_unuse_inode() will
1307          * prune a !swapped inode from the swaplist under this mutex.
1308          */
1309         mutex_lock(&shmem_swaplist_mutex);
1310         if (list_empty(&info->swaplist))
1311                 list_add_tail(&info->swaplist, &shmem_swaplist);
1312
1313         if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1314                 spin_lock_irq(&info->lock);
1315                 shmem_recalc_inode(inode);
1316                 info->swapped++;
1317                 spin_unlock_irq(&info->lock);
1318
1319                 swap_shmem_alloc(swap);
1320                 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1321
1322                 mutex_unlock(&shmem_swaplist_mutex);
1323                 BUG_ON(page_mapped(page));
1324                 swap_writepage(page, wbc);
1325                 return 0;
1326         }
1327
1328         mutex_unlock(&shmem_swaplist_mutex);
1329 free_swap:
1330         put_swap_page(page, swap);
1331 redirty:
1332         set_page_dirty(page);
1333         if (wbc->for_reclaim)
1334                 return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1335         unlock_page(page);
1336         return 0;
1337 }
1338
1339 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1340 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1341 {
1342         char buffer[64];
1343
1344         if (!mpol || mpol->mode == MPOL_DEFAULT)
1345                 return;         /* show nothing */
1346
1347         mpol_to_str(buffer, sizeof(buffer), mpol);
1348
1349         seq_printf(seq, ",mpol=%s", buffer);
1350 }
1351
1352 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1353 {
1354         struct mempolicy *mpol = NULL;
1355         if (sbinfo->mpol) {
1356                 spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1357                 mpol = sbinfo->mpol;
1358                 mpol_get(mpol);
1359                 spin_unlock(&sbinfo->stat_lock);
1360         }
1361         return mpol;
1362 }
1363 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1364 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1365 {
1366 }
1367 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1368 {
1369         return NULL;
1370 }
1371 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1372 #ifndef CONFIG_NUMA
1373 #define vm_policy vm_private_data
1374 #endif
1375
1376 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1377                 struct shmem_inode_info *info, pgoff_t index)
1378 {
1379         /* Create a pseudo vma that just contains the policy */
1380         vma->vm_start = 0;
1381         /* Bias interleave by inode number to distribute better across nodes */
1382         vma->vm_pgoff = index + info->vfs_inode.i_ino;
1383         vma->vm_ops = NULL;
1384         vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1385 }
1386
1387 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1388 {
1389         /* Drop reference taken by mpol_shared_policy_lookup() */
1390         mpol_cond_put(vma->vm_policy);
1391 }
1392
1393 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1394                         struct shmem_inode_info *info, pgoff_t index)
1395 {
1396         struct vm_area_struct pvma;
1397         struct page *page;
1398
1399         shmem_pseudo_vma_init(&pvma, info, index);
1400         page = swapin_readahead(swap, gfp, &pvma, 0);
1401         shmem_pseudo_vma_destroy(&pvma);
1402
1403         return page;
1404 }
1405
1406 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1407                 struct shmem_inode_info *info, pgoff_t index)
1408 {
1409         struct vm_area_struct pvma;
1410         struct inode *inode = &info->vfs_inode;
1411         struct address_space *mapping = inode->i_mapping;
1412         pgoff_t idx, hindex;
1413         void __rcu **results;
1414         struct page *page;
1415
1416         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1417                 return NULL;
1418
1419         hindex = round_down(index, HPAGE_PMD_NR);
1420         rcu_read_lock();
1421         if (radix_tree_gang_lookup_slot(&mapping->page_tree, &results, &idx,
1422                                 hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1423                 rcu_read_unlock();
1424                 return NULL;
1425         }
1426         rcu_read_unlock();
1427
1428         shmem_pseudo_vma_init(&pvma, info, hindex);
1429         page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1430                         HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1431         shmem_pseudo_vma_destroy(&pvma);
1432         if (page)
1433                 prep_transhuge_page(page);
1434         return page;
1435 }
1436
1437 static struct page *shmem_alloc_page(gfp_t gfp,
1438                         struct shmem_inode_info *info, pgoff_t index)
1439 {
1440         struct vm_area_struct pvma;
1441         struct page *page;
1442
1443         shmem_pseudo_vma_init(&pvma, info, index);
1444         page = alloc_page_vma(gfp, &pvma, 0);
1445         shmem_pseudo_vma_destroy(&pvma);
1446
1447         return page;
1448 }
1449
1450 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1451                 struct shmem_inode_info *info, struct shmem_sb_info *sbinfo,
1452                 pgoff_t index, bool huge)
1453 {
1454         struct page *page;
1455         int nr;
1456         int err = -ENOSPC;
1457
1458         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1459                 huge = false;
1460         nr = huge ? HPAGE_PMD_NR : 1;
1461
1462         if (shmem_acct_block(info->flags, nr))
1463                 goto failed;
1464         if (sbinfo->max_blocks) {
1465                 if (percpu_counter_compare(&sbinfo->used_blocks,
1466                                         sbinfo->max_blocks - nr) > 0)
1467                         goto unacct;
1468                 percpu_counter_add(&sbinfo->used_blocks, nr);
1469         }
1470
1471         if (huge)
1472                 page = shmem_alloc_hugepage(gfp, info, index);
1473         else
1474                 page = shmem_alloc_page(gfp, info, index);
1475         if (page) {
1476                 __SetPageLocked(page);
1477                 __SetPageSwapBacked(page);
1478                 return page;
1479         }
1480
1481         err = -ENOMEM;
1482         if (sbinfo->max_blocks)
1483                 percpu_counter_add(&sbinfo->used_blocks, -nr);
1484 unacct:
1485         shmem_unacct_blocks(info->flags, nr);
1486 failed:
1487         return ERR_PTR(err);
1488 }
1489
1490 /*
1491  * When a page is moved from swapcache to shmem filecache (either by the
1492  * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1493  * shmem_unuse_inode()), it may have been read in earlier from swap, in
1494  * ignorance of the mapping it belongs to.  If that mapping has special
1495  * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1496  * we may need to copy to a suitable page before moving to filecache.
1497  *
1498  * In a future release, this may well be extended to respect cpuset and
1499  * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1500  * but for now it is a simple matter of zone.
1501  */
1502 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1503 {
1504         return page_zonenum(page) > gfp_zone(gfp);
1505 }
1506
1507 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1508                                 struct shmem_inode_info *info, pgoff_t index)
1509 {
1510         struct page *oldpage, *newpage;
1511         struct address_space *swap_mapping;
1512         pgoff_t swap_index;
1513         int error;
1514
1515         oldpage = *pagep;
1516         swap_index = page_private(oldpage);
1517         swap_mapping = page_mapping(oldpage);
1518
1519         /*
1520          * We have arrived here because our zones are constrained, so don't
1521          * limit chance of success by further cpuset and node constraints.
1522          */
1523         gfp &= ~GFP_CONSTRAINT_MASK;
1524         newpage = shmem_alloc_page(gfp, info, index);
1525         if (!newpage)
1526                 return -ENOMEM;
1527
1528         get_page(newpage);
1529         copy_highpage(newpage, oldpage);
1530         flush_dcache_page(newpage);
1531
1532         __SetPageLocked(newpage);
1533         __SetPageSwapBacked(newpage);
1534         SetPageUptodate(newpage);
1535         set_page_private(newpage, swap_index);
1536         SetPageSwapCache(newpage);
1537
1538         /*
1539          * Our caller will very soon move newpage out of swapcache, but it's
1540          * a nice clean interface for us to replace oldpage by newpage there.
1541          */
1542         spin_lock_irq(&swap_mapping->tree_lock);
1543         error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1544                                                                    newpage);
1545         if (!error) {
1546                 __inc_node_page_state(newpage, NR_FILE_PAGES);
1547                 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1548         }
1549         spin_unlock_irq(&swap_mapping->tree_lock);
1550
1551         if (unlikely(error)) {
1552                 /*
1553                  * Is this possible?  I think not, now that our callers check
1554                  * both PageSwapCache and page_private after getting page lock;
1555                  * but be defensive.  Reverse old to newpage for clear and free.
1556                  */
1557                 oldpage = newpage;
1558         } else {
1559                 mem_cgroup_migrate(oldpage, newpage);
1560                 lru_cache_add_anon(newpage);
1561                 *pagep = newpage;
1562         }
1563
1564         ClearPageSwapCache(oldpage);
1565         set_page_private(oldpage, 0);
1566
1567         unlock_page(oldpage);
1568         put_page(oldpage);
1569         put_page(oldpage);
1570         return error;
1571 }
1572
1573 /*
1574  * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1575  *
1576  * If we allocate a new one we do not mark it dirty. That's up to the
1577  * vm. If we swap it in we mark it dirty since we also free the swap
1578  * entry since a page cannot live in both the swap and page cache.
1579  *
1580  * fault_mm and fault_type are only supplied by shmem_fault:
1581  * otherwise they are NULL.
1582  */
1583 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1584         struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1585         struct vm_area_struct *vma, struct vm_fault *vmf, int *fault_type)
1586 {
1587         struct address_space *mapping = inode->i_mapping;
1588         struct shmem_inode_info *info = SHMEM_I(inode);
1589         struct shmem_sb_info *sbinfo;
1590         struct mm_struct *charge_mm;
1591         struct mem_cgroup *memcg;
1592         struct page *page;
1593         swp_entry_t swap;
1594         enum sgp_type sgp_huge = sgp;
1595         pgoff_t hindex = index;
1596         int error;
1597         int once = 0;
1598         int alloced = 0;
1599
1600         if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1601                 return -EFBIG;
1602         if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1603                 sgp = SGP_CACHE;
1604 repeat:
1605         swap.val = 0;
1606         page = find_lock_entry(mapping, index);
1607         if (radix_tree_exceptional_entry(page)) {
1608                 swap = radix_to_swp_entry(page);
1609                 page = NULL;
1610         }
1611
1612         if (sgp <= SGP_CACHE &&
1613             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1614                 error = -EINVAL;
1615                 goto unlock;
1616         }
1617
1618         if (page && sgp == SGP_WRITE)
1619                 mark_page_accessed(page);
1620
1621         /* fallocated page? */
1622         if (page && !PageUptodate(page)) {
1623                 if (sgp != SGP_READ)
1624                         goto clear;
1625                 unlock_page(page);
1626                 put_page(page);
1627                 page = NULL;
1628         }
1629         if (page || (sgp == SGP_READ && !swap.val)) {
1630                 *pagep = page;
1631                 return 0;
1632         }
1633
1634         /*
1635          * Fast cache lookup did not find it:
1636          * bring it back from swap or allocate.
1637          */
1638         sbinfo = SHMEM_SB(inode->i_sb);
1639         charge_mm = vma ? vma->vm_mm : current->mm;
1640
1641         if (swap.val) {
1642                 /* Look it up and read it in.. */
1643                 page = lookup_swap_cache(swap);
1644                 if (!page) {
1645                         /* Or update major stats only when swapin succeeds?? */
1646                         if (fault_type) {
1647                                 *fault_type |= VM_FAULT_MAJOR;
1648                                 count_vm_event(PGMAJFAULT);
1649                                 mem_cgroup_count_vm_event(charge_mm,
1650                                                           PGMAJFAULT);
1651                         }
1652                         /* Here we actually start the io */
1653                         page = shmem_swapin(swap, gfp, info, index);
1654                         if (!page) {
1655                                 error = -ENOMEM;
1656                                 goto failed;
1657                         }
1658                 }
1659
1660                 /* We have to do this with page locked to prevent races */
1661                 lock_page(page);
1662                 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1663                     !shmem_confirm_swap(mapping, index, swap)) {
1664                         error = -EEXIST;        /* try again */
1665                         goto unlock;
1666                 }
1667                 if (!PageUptodate(page)) {
1668                         error = -EIO;
1669                         goto failed;
1670                 }
1671                 wait_on_page_writeback(page);
1672
1673                 if (shmem_should_replace_page(page, gfp)) {
1674                         error = shmem_replace_page(&page, gfp, info, index);
1675                         if (error)
1676                                 goto failed;
1677                 }
1678
1679                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1680                                 false);
1681                 if (!error) {
1682                         error = shmem_add_to_page_cache(page, mapping, index,
1683                                                 swp_to_radix_entry(swap));
1684                         /*
1685                          * We already confirmed swap under page lock, and make
1686                          * no memory allocation here, so usually no possibility
1687                          * of error; but free_swap_and_cache() only trylocks a
1688                          * page, so it is just possible that the entry has been
1689                          * truncated or holepunched since swap was confirmed.
1690                          * shmem_undo_range() will have done some of the
1691                          * unaccounting, now delete_from_swap_cache() will do
1692                          * the rest.
1693                          * Reset swap.val? No, leave it so "failed" goes back to
1694                          * "repeat": reading a hole and writing should succeed.
1695                          */
1696                         if (error) {
1697                                 mem_cgroup_cancel_charge(page, memcg, false);
1698                                 delete_from_swap_cache(page);
1699                         }
1700                 }
1701                 if (error)
1702                         goto failed;
1703
1704                 mem_cgroup_commit_charge(page, memcg, true, false);
1705
1706                 spin_lock_irq(&info->lock);
1707                 info->swapped--;
1708                 shmem_recalc_inode(inode);
1709                 spin_unlock_irq(&info->lock);
1710
1711                 if (sgp == SGP_WRITE)
1712                         mark_page_accessed(page);
1713
1714                 delete_from_swap_cache(page);
1715                 set_page_dirty(page);
1716                 swap_free(swap);
1717
1718         } else {
1719                 if (vma && userfaultfd_missing(vma)) {
1720                         *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1721                         return 0;
1722                 }
1723
1724                 /* shmem_symlink() */
1725                 if (mapping->a_ops != &shmem_aops)
1726                         goto alloc_nohuge;
1727                 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1728                         goto alloc_nohuge;
1729                 if (shmem_huge == SHMEM_HUGE_FORCE)
1730                         goto alloc_huge;
1731                 switch (sbinfo->huge) {
1732                         loff_t i_size;
1733                         pgoff_t off;
1734                 case SHMEM_HUGE_NEVER:
1735                         goto alloc_nohuge;
1736                 case SHMEM_HUGE_WITHIN_SIZE:
1737                         off = round_up(index, HPAGE_PMD_NR);
1738                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
1739                         if (i_size >= HPAGE_PMD_SIZE &&
1740                                         i_size >> PAGE_SHIFT >= off)
1741                                 goto alloc_huge;
1742                         /* fallthrough */
1743                 case SHMEM_HUGE_ADVISE:
1744                         if (sgp_huge == SGP_HUGE)
1745                                 goto alloc_huge;
1746                         /* TODO: implement fadvise() hints */
1747                         goto alloc_nohuge;
1748                 }
1749
1750 alloc_huge:
1751                 page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1752                                 index, true);
1753                 if (IS_ERR(page)) {
1754 alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, info, sbinfo,
1755                                         index, false);
1756                 }
1757                 if (IS_ERR(page)) {
1758                         int retry = 5;
1759                         error = PTR_ERR(page);
1760                         page = NULL;
1761                         if (error != -ENOSPC)
1762                                 goto failed;
1763                         /*
1764                          * Try to reclaim some spece by splitting a huge page
1765                          * beyond i_size on the filesystem.
1766                          */
1767                         while (retry--) {
1768                                 int ret;
1769                                 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1770                                 if (ret == SHRINK_STOP)
1771                                         break;
1772                                 if (ret)
1773                                         goto alloc_nohuge;
1774                         }
1775                         goto failed;
1776                 }
1777
1778                 if (PageTransHuge(page))
1779                         hindex = round_down(index, HPAGE_PMD_NR);
1780                 else
1781                         hindex = index;
1782
1783                 if (sgp == SGP_WRITE)
1784                         __SetPageReferenced(page);
1785
1786                 error = mem_cgroup_try_charge(page, charge_mm, gfp, &memcg,
1787                                 PageTransHuge(page));
1788                 if (error)
1789                         goto unacct;
1790                 error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1791                                 compound_order(page));
1792                 if (!error) {
1793                         error = shmem_add_to_page_cache(page, mapping, hindex,
1794                                                         NULL);
1795                         radix_tree_preload_end();
1796                 }
1797                 if (error) {
1798                         mem_cgroup_cancel_charge(page, memcg,
1799                                         PageTransHuge(page));
1800                         goto unacct;
1801                 }
1802                 mem_cgroup_commit_charge(page, memcg, false,
1803                                 PageTransHuge(page));
1804                 lru_cache_add_anon(page);
1805
1806                 spin_lock_irq(&info->lock);
1807                 info->alloced += 1 << compound_order(page);
1808                 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1809                 shmem_recalc_inode(inode);
1810                 spin_unlock_irq(&info->lock);
1811                 alloced = true;
1812
1813                 if (PageTransHuge(page) &&
1814                                 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1815                                 hindex + HPAGE_PMD_NR - 1) {
1816                         /*
1817                          * Part of the huge page is beyond i_size: subject
1818                          * to shrink under memory pressure.
1819                          */
1820                         spin_lock(&sbinfo->shrinklist_lock);
1821                         if (list_empty(&info->shrinklist)) {
1822                                 list_add_tail(&info->shrinklist,
1823                                                 &sbinfo->shrinklist);
1824                                 sbinfo->shrinklist_len++;
1825                         }
1826                         spin_unlock(&sbinfo->shrinklist_lock);
1827                 }
1828
1829                 /*
1830                  * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1831                  */
1832                 if (sgp == SGP_FALLOC)
1833                         sgp = SGP_WRITE;
1834 clear:
1835                 /*
1836                  * Let SGP_WRITE caller clear ends if write does not fill page;
1837                  * but SGP_FALLOC on a page fallocated earlier must initialize
1838                  * it now, lest undo on failure cancel our earlier guarantee.
1839                  */
1840                 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1841                         struct page *head = compound_head(page);
1842                         int i;
1843
1844                         for (i = 0; i < (1 << compound_order(head)); i++) {
1845                                 clear_highpage(head + i);
1846                                 flush_dcache_page(head + i);
1847                         }
1848                         SetPageUptodate(head);
1849                 }
1850         }
1851
1852         /* Perhaps the file has been truncated since we checked */
1853         if (sgp <= SGP_CACHE &&
1854             ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1855                 if (alloced) {
1856                         ClearPageDirty(page);
1857                         delete_from_page_cache(page);
1858                         spin_lock_irq(&info->lock);
1859                         shmem_recalc_inode(inode);
1860                         spin_unlock_irq(&info->lock);
1861                 }
1862                 error = -EINVAL;
1863                 goto unlock;
1864         }
1865         *pagep = page + index - hindex;
1866         return 0;
1867
1868         /*
1869          * Error recovery.
1870          */
1871 unacct:
1872         if (sbinfo->max_blocks)
1873                 percpu_counter_sub(&sbinfo->used_blocks,
1874                                 1 << compound_order(page));
1875         shmem_unacct_blocks(info->flags, 1 << compound_order(page));
1876
1877         if (PageTransHuge(page)) {
1878                 unlock_page(page);
1879                 put_page(page);
1880                 goto alloc_nohuge;
1881         }
1882 failed:
1883         if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1884                 error = -EEXIST;
1885 unlock:
1886         if (page) {
1887                 unlock_page(page);
1888                 put_page(page);
1889         }
1890         if (error == -ENOSPC && !once++) {
1891                 spin_lock_irq(&info->lock);
1892                 shmem_recalc_inode(inode);
1893                 spin_unlock_irq(&info->lock);
1894                 goto repeat;
1895         }
1896         if (error == -EEXIST)   /* from above or from radix_tree_insert */
1897                 goto repeat;
1898         return error;
1899 }
1900
1901 /*
1902  * This is like autoremove_wake_function, but it removes the wait queue
1903  * entry unconditionally - even if something else had already woken the
1904  * target.
1905  */
1906 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1907 {
1908         int ret = default_wake_function(wait, mode, sync, key);
1909         list_del_init(&wait->entry);
1910         return ret;
1911 }
1912
1913 static int shmem_fault(struct vm_fault *vmf)
1914 {
1915         struct vm_area_struct *vma = vmf->vma;
1916         struct inode *inode = file_inode(vma->vm_file);
1917         gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1918         enum sgp_type sgp;
1919         int error;
1920         int ret = VM_FAULT_LOCKED;
1921
1922         /*
1923          * Trinity finds that probing a hole which tmpfs is punching can
1924          * prevent the hole-punch from ever completing: which in turn
1925          * locks writers out with its hold on i_mutex.  So refrain from
1926          * faulting pages into the hole while it's being punched.  Although
1927          * shmem_undo_range() does remove the additions, it may be unable to
1928          * keep up, as each new page needs its own unmap_mapping_range() call,
1929          * and the i_mmap tree grows ever slower to scan if new vmas are added.
1930          *
1931          * It does not matter if we sometimes reach this check just before the
1932          * hole-punch begins, so that one fault then races with the punch:
1933          * we just need to make racing faults a rare case.
1934          *
1935          * The implementation below would be much simpler if we just used a
1936          * standard mutex or completion: but we cannot take i_mutex in fault,
1937          * and bloating every shmem inode for this unlikely case would be sad.
1938          */
1939         if (unlikely(inode->i_private)) {
1940                 struct shmem_falloc *shmem_falloc;
1941
1942                 spin_lock(&inode->i_lock);
1943                 shmem_falloc = inode->i_private;
1944                 if (shmem_falloc &&
1945                     shmem_falloc->waitq &&
1946                     vmf->pgoff >= shmem_falloc->start &&
1947                     vmf->pgoff < shmem_falloc->next) {
1948                         wait_queue_head_t *shmem_falloc_waitq;
1949                         DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1950
1951                         ret = VM_FAULT_NOPAGE;
1952                         if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1953                            !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1954                                 /* It's polite to up mmap_sem if we can */
1955                                 up_read(&vma->vm_mm->mmap_sem);
1956                                 ret = VM_FAULT_RETRY;
1957                         }
1958
1959                         shmem_falloc_waitq = shmem_falloc->waitq;
1960                         prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1961                                         TASK_UNINTERRUPTIBLE);
1962                         spin_unlock(&inode->i_lock);
1963                         schedule();
1964
1965                         /*
1966                          * shmem_falloc_waitq points into the shmem_fallocate()
1967                          * stack of the hole-punching task: shmem_falloc_waitq
1968                          * is usually invalid by the time we reach here, but
1969                          * finish_wait() does not dereference it in that case;
1970                          * though i_lock needed lest racing with wake_up_all().
1971                          */
1972                         spin_lock(&inode->i_lock);
1973                         finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
1974                         spin_unlock(&inode->i_lock);
1975                         return ret;
1976                 }
1977                 spin_unlock(&inode->i_lock);
1978         }
1979
1980         sgp = SGP_CACHE;
1981         if (vma->vm_flags & VM_HUGEPAGE)
1982                 sgp = SGP_HUGE;
1983         else if (vma->vm_flags & VM_NOHUGEPAGE)
1984                 sgp = SGP_NOHUGE;
1985
1986         error = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
1987                                   gfp, vma, vmf, &ret);
1988         if (error)
1989                 return ((error == -ENOMEM) ? VM_FAULT_OOM : VM_FAULT_SIGBUS);
1990         return ret;
1991 }
1992
1993 unsigned long shmem_get_unmapped_area(struct file *file,
1994                                       unsigned long uaddr, unsigned long len,
1995                                       unsigned long pgoff, unsigned long flags)
1996 {
1997         unsigned long (*get_area)(struct file *,
1998                 unsigned long, unsigned long, unsigned long, unsigned long);
1999         unsigned long addr;
2000         unsigned long offset;
2001         unsigned long inflated_len;
2002         unsigned long inflated_addr;
2003         unsigned long inflated_offset;
2004
2005         if (len > TASK_SIZE)
2006                 return -ENOMEM;
2007
2008         get_area = current->mm->get_unmapped_area;
2009         addr = get_area(file, uaddr, len, pgoff, flags);
2010
2011         if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2012                 return addr;
2013         if (IS_ERR_VALUE(addr))
2014                 return addr;
2015         if (addr & ~PAGE_MASK)
2016                 return addr;
2017         if (addr > TASK_SIZE - len)
2018                 return addr;
2019
2020         if (shmem_huge == SHMEM_HUGE_DENY)
2021                 return addr;
2022         if (len < HPAGE_PMD_SIZE)
2023                 return addr;
2024         if (flags & MAP_FIXED)
2025                 return addr;
2026         /*
2027          * Our priority is to support MAP_SHARED mapped hugely;
2028          * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2029          * But if caller specified an address hint, respect that as before.
2030          */
2031         if (uaddr)
2032                 return addr;
2033
2034         if (shmem_huge != SHMEM_HUGE_FORCE) {
2035                 struct super_block *sb;
2036
2037                 if (file) {
2038                         VM_BUG_ON(file->f_op != &shmem_file_operations);
2039                         sb = file_inode(file)->i_sb;
2040                 } else {
2041                         /*
2042                          * Called directly from mm/mmap.c, or drivers/char/mem.c
2043                          * for "/dev/zero", to create a shared anonymous object.
2044                          */
2045                         if (IS_ERR(shm_mnt))
2046                                 return addr;
2047                         sb = shm_mnt->mnt_sb;
2048                 }
2049                 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2050                         return addr;
2051         }
2052
2053         offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2054         if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2055                 return addr;
2056         if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2057                 return addr;
2058
2059         inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2060         if (inflated_len > TASK_SIZE)
2061                 return addr;
2062         if (inflated_len < len)
2063                 return addr;
2064
2065         inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2066         if (IS_ERR_VALUE(inflated_addr))
2067                 return addr;
2068         if (inflated_addr & ~PAGE_MASK)
2069                 return addr;
2070
2071         inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2072         inflated_addr += offset - inflated_offset;
2073         if (inflated_offset > offset)
2074                 inflated_addr += HPAGE_PMD_SIZE;
2075
2076         if (inflated_addr > TASK_SIZE - len)
2077                 return addr;
2078         return inflated_addr;
2079 }
2080
2081 #ifdef CONFIG_NUMA
2082 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2083 {
2084         struct inode *inode = file_inode(vma->vm_file);
2085         return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2086 }
2087
2088 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2089                                           unsigned long addr)
2090 {
2091         struct inode *inode = file_inode(vma->vm_file);
2092         pgoff_t index;
2093
2094         index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2095         return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2096 }
2097 #endif
2098
2099 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2100 {
2101         struct inode *inode = file_inode(file);
2102         struct shmem_inode_info *info = SHMEM_I(inode);
2103         int retval = -ENOMEM;
2104
2105         spin_lock_irq(&info->lock);
2106         if (lock && !(info->flags & VM_LOCKED)) {
2107                 if (!user_shm_lock(inode->i_size, user))
2108                         goto out_nomem;
2109                 info->flags |= VM_LOCKED;
2110                 mapping_set_unevictable(file->f_mapping);
2111         }
2112         if (!lock && (info->flags & VM_LOCKED) && user) {
2113                 user_shm_unlock(inode->i_size, user);
2114                 info->flags &= ~VM_LOCKED;
2115                 mapping_clear_unevictable(file->f_mapping);
2116         }
2117         retval = 0;
2118
2119 out_nomem:
2120         spin_unlock_irq(&info->lock);
2121         return retval;
2122 }
2123
2124 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2125 {
2126         file_accessed(file);
2127         vma->vm_ops = &shmem_vm_ops;
2128         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2129                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2130                         (vma->vm_end & HPAGE_PMD_MASK)) {
2131                 khugepaged_enter(vma, vma->vm_flags);
2132         }
2133         return 0;
2134 }
2135
2136 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2137                                      umode_t mode, dev_t dev, unsigned long flags)
2138 {
2139         struct inode *inode;
2140         struct shmem_inode_info *info;
2141         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2142
2143         if (shmem_reserve_inode(sb))
2144                 return NULL;
2145
2146         inode = new_inode(sb);
2147         if (inode) {
2148                 inode->i_ino = get_next_ino();
2149                 inode_init_owner(inode, dir, mode);
2150                 inode->i_blocks = 0;
2151                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2152                 inode->i_generation = get_seconds();
2153                 info = SHMEM_I(inode);
2154                 memset(info, 0, (char *)inode - (char *)info);
2155                 spin_lock_init(&info->lock);
2156                 info->seals = F_SEAL_SEAL;
2157                 info->flags = flags & VM_NORESERVE;
2158                 INIT_LIST_HEAD(&info->shrinklist);
2159                 INIT_LIST_HEAD(&info->swaplist);
2160                 simple_xattrs_init(&info->xattrs);
2161                 cache_no_acl(inode);
2162
2163                 switch (mode & S_IFMT) {
2164                 default:
2165                         inode->i_op = &shmem_special_inode_operations;
2166                         init_special_inode(inode, mode, dev);
2167                         break;
2168                 case S_IFREG:
2169                         inode->i_mapping->a_ops = &shmem_aops;
2170                         inode->i_op = &shmem_inode_operations;
2171                         inode->i_fop = &shmem_file_operations;
2172                         mpol_shared_policy_init(&info->policy,
2173                                                  shmem_get_sbmpol(sbinfo));
2174                         break;
2175                 case S_IFDIR:
2176                         inc_nlink(inode);
2177                         /* Some things misbehave if size == 0 on a directory */
2178                         inode->i_size = 2 * BOGO_DIRENT_SIZE;
2179                         inode->i_op = &shmem_dir_inode_operations;
2180                         inode->i_fop = &simple_dir_operations;
2181                         break;
2182                 case S_IFLNK:
2183                         /*
2184                          * Must not load anything in the rbtree,
2185                          * mpol_free_shared_policy will not be called.
2186                          */
2187                         mpol_shared_policy_init(&info->policy, NULL);
2188                         break;
2189                 }
2190         } else
2191                 shmem_free_inode(sb);
2192         return inode;
2193 }
2194
2195 bool shmem_mapping(struct address_space *mapping)
2196 {
2197         return mapping->a_ops == &shmem_aops;
2198 }
2199
2200 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2201                            pmd_t *dst_pmd,
2202                            struct vm_area_struct *dst_vma,
2203                            unsigned long dst_addr,
2204                            unsigned long src_addr,
2205                            struct page **pagep)
2206 {
2207         struct inode *inode = file_inode(dst_vma->vm_file);
2208         struct shmem_inode_info *info = SHMEM_I(inode);
2209         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2210         struct address_space *mapping = inode->i_mapping;
2211         gfp_t gfp = mapping_gfp_mask(mapping);
2212         pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2213         struct mem_cgroup *memcg;
2214         spinlock_t *ptl;
2215         void *page_kaddr;
2216         struct page *page;
2217         pte_t _dst_pte, *dst_pte;
2218         int ret;
2219
2220         ret = -ENOMEM;
2221         if (shmem_acct_block(info->flags, 1))
2222                 goto out;
2223         if (sbinfo->max_blocks) {
2224                 if (percpu_counter_compare(&sbinfo->used_blocks,
2225                                            sbinfo->max_blocks) >= 0)
2226                         goto out_unacct_blocks;
2227                 percpu_counter_inc(&sbinfo->used_blocks);
2228         }
2229
2230         if (!*pagep) {
2231                 page = shmem_alloc_page(gfp, info, pgoff);
2232                 if (!page)
2233                         goto out_dec_used_blocks;
2234
2235                 page_kaddr = kmap_atomic(page);
2236                 ret = copy_from_user(page_kaddr, (const void __user *)src_addr,
2237                                      PAGE_SIZE);
2238                 kunmap_atomic(page_kaddr);
2239
2240                 /* fallback to copy_from_user outside mmap_sem */
2241                 if (unlikely(ret)) {
2242                         *pagep = page;
2243                         if (sbinfo->max_blocks)
2244                                 percpu_counter_add(&sbinfo->used_blocks, -1);
2245                         shmem_unacct_blocks(info->flags, 1);
2246                         /* don't free the page */
2247                         return -EFAULT;
2248                 }
2249         } else {
2250                 page = *pagep;
2251                 *pagep = NULL;
2252         }
2253
2254         VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2255         __SetPageLocked(page);
2256         __SetPageSwapBacked(page);
2257         __SetPageUptodate(page);
2258
2259         ret = mem_cgroup_try_charge(page, dst_mm, gfp, &memcg, false);
2260         if (ret)
2261                 goto out_release;
2262
2263         ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2264         if (!ret) {
2265                 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2266                 radix_tree_preload_end();
2267         }
2268         if (ret)
2269                 goto out_release_uncharge;
2270
2271         mem_cgroup_commit_charge(page, memcg, false, false);
2272
2273         _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2274         if (dst_vma->vm_flags & VM_WRITE)
2275                 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2276
2277         ret = -EEXIST;
2278         dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2279         if (!pte_none(*dst_pte))
2280                 goto out_release_uncharge_unlock;
2281
2282         lru_cache_add_anon(page);
2283
2284         spin_lock(&info->lock);
2285         info->alloced++;
2286         inode->i_blocks += BLOCKS_PER_PAGE;
2287         shmem_recalc_inode(inode);
2288         spin_unlock(&info->lock);
2289
2290         inc_mm_counter(dst_mm, mm_counter_file(page));
2291         page_add_file_rmap(page, false);
2292         set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2293
2294         /* No need to invalidate - it was non-present before */
2295         update_mmu_cache(dst_vma, dst_addr, dst_pte);
2296         unlock_page(page);
2297         pte_unmap_unlock(dst_pte, ptl);
2298         ret = 0;
2299 out:
2300         return ret;
2301 out_release_uncharge_unlock:
2302         pte_unmap_unlock(dst_pte, ptl);
2303 out_release_uncharge:
2304         mem_cgroup_cancel_charge(page, memcg, false);
2305 out_release:
2306         unlock_page(page);
2307         put_page(page);
2308 out_dec_used_blocks:
2309         if (sbinfo->max_blocks)
2310                 percpu_counter_add(&sbinfo->used_blocks, -1);
2311 out_unacct_blocks:
2312         shmem_unacct_blocks(info->flags, 1);
2313         goto out;
2314 }
2315
2316 #ifdef CONFIG_TMPFS
2317 static const struct inode_operations shmem_symlink_inode_operations;
2318 static const struct inode_operations shmem_short_symlink_operations;
2319
2320 #ifdef CONFIG_TMPFS_XATTR
2321 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2322 #else
2323 #define shmem_initxattrs NULL
2324 #endif
2325
2326 static int
2327 shmem_write_begin(struct file *file, struct address_space *mapping,
2328                         loff_t pos, unsigned len, unsigned flags,
2329                         struct page **pagep, void **fsdata)
2330 {
2331         struct inode *inode = mapping->host;
2332         struct shmem_inode_info *info = SHMEM_I(inode);
2333         pgoff_t index = pos >> PAGE_SHIFT;
2334
2335         /* i_mutex is held by caller */
2336         if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2337                 if (info->seals & F_SEAL_WRITE)
2338                         return -EPERM;
2339                 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2340                         return -EPERM;
2341         }
2342
2343         return shmem_getpage(inode, index, pagep, SGP_WRITE);
2344 }
2345
2346 static int
2347 shmem_write_end(struct file *file, struct address_space *mapping,
2348                         loff_t pos, unsigned len, unsigned copied,
2349                         struct page *page, void *fsdata)
2350 {
2351         struct inode *inode = mapping->host;
2352
2353         if (pos + copied > inode->i_size)
2354                 i_size_write(inode, pos + copied);
2355
2356         if (!PageUptodate(page)) {
2357                 struct page *head = compound_head(page);
2358                 if (PageTransCompound(page)) {
2359                         int i;
2360
2361                         for (i = 0; i < HPAGE_PMD_NR; i++) {
2362                                 if (head + i == page)
2363                                         continue;
2364                                 clear_highpage(head + i);
2365                                 flush_dcache_page(head + i);
2366                         }
2367                 }
2368                 if (copied < PAGE_SIZE) {
2369                         unsigned from = pos & (PAGE_SIZE - 1);
2370                         zero_user_segments(page, 0, from,
2371                                         from + copied, PAGE_SIZE);
2372                 }
2373                 SetPageUptodate(head);
2374         }
2375         set_page_dirty(page);
2376         unlock_page(page);
2377         put_page(page);
2378
2379         return copied;
2380 }
2381
2382 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2383 {
2384         struct file *file = iocb->ki_filp;
2385         struct inode *inode = file_inode(file);
2386         struct address_space *mapping = inode->i_mapping;
2387         pgoff_t index;
2388         unsigned long offset;
2389         enum sgp_type sgp = SGP_READ;
2390         int error = 0;
2391         ssize_t retval = 0;
2392         loff_t *ppos = &iocb->ki_pos;
2393
2394         /*
2395          * Might this read be for a stacking filesystem?  Then when reading
2396          * holes of a sparse file, we actually need to allocate those pages,
2397          * and even mark them dirty, so it cannot exceed the max_blocks limit.
2398          */
2399         if (!iter_is_iovec(to))
2400                 sgp = SGP_CACHE;
2401
2402         index = *ppos >> PAGE_SHIFT;
2403         offset = *ppos & ~PAGE_MASK;
2404
2405         for (;;) {
2406                 struct page *page = NULL;
2407                 pgoff_t end_index;
2408                 unsigned long nr, ret;
2409                 loff_t i_size = i_size_read(inode);
2410
2411                 end_index = i_size >> PAGE_SHIFT;
2412                 if (index > end_index)
2413                         break;
2414                 if (index == end_index) {
2415                         nr = i_size & ~PAGE_MASK;
2416                         if (nr <= offset)
2417                                 break;
2418                 }
2419
2420                 error = shmem_getpage(inode, index, &page, sgp);
2421                 if (error) {
2422                         if (error == -EINVAL)
2423                                 error = 0;
2424                         break;
2425                 }
2426                 if (page) {
2427                         if (sgp == SGP_CACHE)
2428                                 set_page_dirty(page);
2429                         unlock_page(page);
2430                 }
2431
2432                 /*
2433                  * We must evaluate after, since reads (unlike writes)
2434                  * are called without i_mutex protection against truncate
2435                  */
2436                 nr = PAGE_SIZE;
2437                 i_size = i_size_read(inode);
2438                 end_index = i_size >> PAGE_SHIFT;
2439                 if (index == end_index) {
2440                         nr = i_size & ~PAGE_MASK;
2441                         if (nr <= offset) {
2442                                 if (page)
2443                                         put_page(page);
2444                                 break;
2445                         }
2446                 }
2447                 nr -= offset;
2448
2449                 if (page) {
2450                         /*
2451                          * If users can be writing to this page using arbitrary
2452                          * virtual addresses, take care about potential aliasing
2453                          * before reading the page on the kernel side.
2454                          */
2455                         if (mapping_writably_mapped(mapping))
2456                                 flush_dcache_page(page);
2457                         /*
2458                          * Mark the page accessed if we read the beginning.
2459                          */
2460                         if (!offset)
2461                                 mark_page_accessed(page);
2462                 } else {
2463                         page = ZERO_PAGE(0);
2464                         get_page(page);
2465                 }
2466
2467                 /*
2468                  * Ok, we have the page, and it's up-to-date, so
2469                  * now we can copy it to user space...
2470                  */
2471                 ret = copy_page_to_iter(page, offset, nr, to);
2472                 retval += ret;
2473                 offset += ret;
2474                 index += offset >> PAGE_SHIFT;
2475                 offset &= ~PAGE_MASK;
2476
2477                 put_page(page);
2478                 if (!iov_iter_count(to))
2479                         break;
2480                 if (ret < nr) {
2481                         error = -EFAULT;
2482                         break;
2483                 }
2484                 cond_resched();
2485         }
2486
2487         *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2488         file_accessed(file);
2489         return retval ? retval : error;
2490 }
2491
2492 /*
2493  * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2494  */
2495 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2496                                     pgoff_t index, pgoff_t end, int whence)
2497 {
2498         struct page *page;
2499         struct pagevec pvec;
2500         pgoff_t indices[PAGEVEC_SIZE];
2501         bool done = false;
2502         int i;
2503
2504         pagevec_init(&pvec, 0);
2505         pvec.nr = 1;            /* start small: we may be there already */
2506         while (!done) {
2507                 pvec.nr = find_get_entries(mapping, index,
2508                                         pvec.nr, pvec.pages, indices);
2509                 if (!pvec.nr) {
2510                         if (whence == SEEK_DATA)
2511                                 index = end;
2512                         break;
2513                 }
2514                 for (i = 0; i < pvec.nr; i++, index++) {
2515                         if (index < indices[i]) {
2516                                 if (whence == SEEK_HOLE) {
2517                                         done = true;
2518                                         break;
2519                                 }
2520                                 index = indices[i];
2521                         }
2522                         page = pvec.pages[i];
2523                         if (page && !radix_tree_exceptional_entry(page)) {
2524                                 if (!PageUptodate(page))
2525                                         page = NULL;
2526                         }
2527                         if (index >= end ||
2528                             (page && whence == SEEK_DATA) ||
2529                             (!page && whence == SEEK_HOLE)) {
2530                                 done = true;
2531                                 break;
2532                         }
2533                 }
2534                 pagevec_remove_exceptionals(&pvec);
2535                 pagevec_release(&pvec);
2536                 pvec.nr = PAGEVEC_SIZE;
2537                 cond_resched();
2538         }
2539         return index;
2540 }
2541
2542 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2543 {
2544         struct address_space *mapping = file->f_mapping;
2545         struct inode *inode = mapping->host;
2546         pgoff_t start, end;
2547         loff_t new_offset;
2548
2549         if (whence != SEEK_DATA && whence != SEEK_HOLE)
2550                 return generic_file_llseek_size(file, offset, whence,
2551                                         MAX_LFS_FILESIZE, i_size_read(inode));
2552         inode_lock(inode);
2553         /* We're holding i_mutex so we can access i_size directly */
2554
2555         if (offset < 0)
2556                 offset = -EINVAL;
2557         else if (offset >= inode->i_size)
2558                 offset = -ENXIO;
2559         else {
2560                 start = offset >> PAGE_SHIFT;
2561                 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2562                 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2563                 new_offset <<= PAGE_SHIFT;
2564                 if (new_offset > offset) {
2565                         if (new_offset < inode->i_size)
2566                                 offset = new_offset;
2567                         else if (whence == SEEK_DATA)
2568                                 offset = -ENXIO;
2569                         else
2570                                 offset = inode->i_size;
2571                 }
2572         }
2573
2574         if (offset >= 0)
2575                 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2576         inode_unlock(inode);
2577         return offset;
2578 }
2579
2580 /*
2581  * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2582  * so reuse a tag which we firmly believe is never set or cleared on shmem.
2583  */
2584 #define SHMEM_TAG_PINNED        PAGECACHE_TAG_TOWRITE
2585 #define LAST_SCAN               4       /* about 150ms max */
2586
2587 static void shmem_tag_pins(struct address_space *mapping)
2588 {
2589         struct radix_tree_iter iter;
2590         void **slot;
2591         pgoff_t start;
2592         struct page *page;
2593
2594         lru_add_drain();
2595         start = 0;
2596         rcu_read_lock();
2597
2598         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
2599                 page = radix_tree_deref_slot(slot);
2600                 if (!page || radix_tree_exception(page)) {
2601                         if (radix_tree_deref_retry(page)) {
2602                                 slot = radix_tree_iter_retry(&iter);
2603                                 continue;
2604                         }
2605                 } else if (page_count(page) - page_mapcount(page) > 1) {
2606                         spin_lock_irq(&mapping->tree_lock);
2607                         radix_tree_tag_set(&mapping->page_tree, iter.index,
2608                                            SHMEM_TAG_PINNED);
2609                         spin_unlock_irq(&mapping->tree_lock);
2610                 }
2611
2612                 if (need_resched()) {
2613                         slot = radix_tree_iter_resume(slot, &iter);
2614                         cond_resched_rcu();
2615                 }
2616         }
2617         rcu_read_unlock();
2618 }
2619
2620 /*
2621  * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2622  * via get_user_pages(), drivers might have some pending I/O without any active
2623  * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2624  * and see whether it has an elevated ref-count. If so, we tag them and wait for
2625  * them to be dropped.
2626  * The caller must guarantee that no new user will acquire writable references
2627  * to those pages to avoid races.
2628  */
2629 static int shmem_wait_for_pins(struct address_space *mapping)
2630 {
2631         struct radix_tree_iter iter;
2632         void **slot;
2633         pgoff_t start;
2634         struct page *page;
2635         int error, scan;
2636
2637         shmem_tag_pins(mapping);
2638
2639         error = 0;
2640         for (scan = 0; scan <= LAST_SCAN; scan++) {
2641                 if (!radix_tree_tagged(&mapping->page_tree, SHMEM_TAG_PINNED))
2642                         break;
2643
2644                 if (!scan)
2645                         lru_add_drain_all();
2646                 else if (schedule_timeout_killable((HZ << scan) / 200))
2647                         scan = LAST_SCAN;
2648
2649                 start = 0;
2650                 rcu_read_lock();
2651                 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter,
2652                                            start, SHMEM_TAG_PINNED) {
2653
2654                         page = radix_tree_deref_slot(slot);
2655                         if (radix_tree_exception(page)) {
2656                                 if (radix_tree_deref_retry(page)) {
2657                                         slot = radix_tree_iter_retry(&iter);
2658                                         continue;
2659                                 }
2660
2661                                 page = NULL;
2662                         }
2663
2664                         if (page &&
2665                             page_count(page) - page_mapcount(page) != 1) {
2666                                 if (scan < LAST_SCAN)
2667                                         goto continue_resched;
2668
2669                                 /*
2670                                  * On the last scan, we clean up all those tags
2671                                  * we inserted; but make a note that we still
2672                                  * found pages pinned.
2673                                  */
2674                                 error = -EBUSY;
2675                         }
2676
2677                         spin_lock_irq(&mapping->tree_lock);
2678                         radix_tree_tag_clear(&mapping->page_tree,
2679                                              iter.index, SHMEM_TAG_PINNED);
2680                         spin_unlock_irq(&mapping->tree_lock);
2681 continue_resched:
2682                         if (need_resched()) {
2683                                 slot = radix_tree_iter_resume(slot, &iter);
2684                                 cond_resched_rcu();
2685                         }
2686                 }
2687                 rcu_read_unlock();
2688         }
2689
2690         return error;
2691 }
2692
2693 #define F_ALL_SEALS (F_SEAL_SEAL | \
2694                      F_SEAL_SHRINK | \
2695                      F_SEAL_GROW | \
2696                      F_SEAL_WRITE)
2697
2698 int shmem_add_seals(struct file *file, unsigned int seals)
2699 {
2700         struct inode *inode = file_inode(file);
2701         struct shmem_inode_info *info = SHMEM_I(inode);
2702         int error;
2703
2704         /*
2705          * SEALING
2706          * Sealing allows multiple parties to share a shmem-file but restrict
2707          * access to a specific subset of file operations. Seals can only be
2708          * added, but never removed. This way, mutually untrusted parties can
2709          * share common memory regions with a well-defined policy. A malicious
2710          * peer can thus never perform unwanted operations on a shared object.
2711          *
2712          * Seals are only supported on special shmem-files and always affect
2713          * the whole underlying inode. Once a seal is set, it may prevent some
2714          * kinds of access to the file. Currently, the following seals are
2715          * defined:
2716          *   SEAL_SEAL: Prevent further seals from being set on this file
2717          *   SEAL_SHRINK: Prevent the file from shrinking
2718          *   SEAL_GROW: Prevent the file from growing
2719          *   SEAL_WRITE: Prevent write access to the file
2720          *
2721          * As we don't require any trust relationship between two parties, we
2722          * must prevent seals from being removed. Therefore, sealing a file
2723          * only adds a given set of seals to the file, it never touches
2724          * existing seals. Furthermore, the "setting seals"-operation can be
2725          * sealed itself, which basically prevents any further seal from being
2726          * added.
2727          *
2728          * Semantics of sealing are only defined on volatile files. Only
2729          * anonymous shmem files support sealing. More importantly, seals are
2730          * never written to disk. Therefore, there's no plan to support it on
2731          * other file types.
2732          */
2733
2734         if (file->f_op != &shmem_file_operations)
2735                 return -EINVAL;
2736         if (!(file->f_mode & FMODE_WRITE))
2737                 return -EPERM;
2738         if (seals & ~(unsigned int)F_ALL_SEALS)
2739                 return -EINVAL;
2740
2741         inode_lock(inode);
2742
2743         if (info->seals & F_SEAL_SEAL) {
2744                 error = -EPERM;
2745                 goto unlock;
2746         }
2747
2748         if ((seals & F_SEAL_WRITE) && !(info->seals & F_SEAL_WRITE)) {
2749                 error = mapping_deny_writable(file->f_mapping);
2750                 if (error)
2751                         goto unlock;
2752
2753                 error = shmem_wait_for_pins(file->f_mapping);
2754                 if (error) {
2755                         mapping_allow_writable(file->f_mapping);
2756                         goto unlock;
2757                 }
2758         }
2759
2760         info->seals |= seals;
2761         error = 0;
2762
2763 unlock:
2764         inode_unlock(inode);
2765         return error;
2766 }
2767 EXPORT_SYMBOL_GPL(shmem_add_seals);
2768
2769 int shmem_get_seals(struct file *file)
2770 {
2771         if (file->f_op != &shmem_file_operations)
2772                 return -EINVAL;
2773
2774         return SHMEM_I(file_inode(file))->seals;
2775 }
2776 EXPORT_SYMBOL_GPL(shmem_get_seals);
2777
2778 long shmem_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2779 {
2780         long error;
2781
2782         switch (cmd) {
2783         case F_ADD_SEALS:
2784                 /* disallow upper 32bit */
2785                 if (arg > UINT_MAX)
2786                         return -EINVAL;
2787
2788                 error = shmem_add_seals(file, arg);
2789                 break;
2790         case F_GET_SEALS:
2791                 error = shmem_get_seals(file);
2792                 break;
2793         default:
2794                 error = -EINVAL;
2795                 break;
2796         }
2797
2798         return error;
2799 }
2800
2801 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2802                                                          loff_t len)
2803 {
2804         struct inode *inode = file_inode(file);
2805         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2806         struct shmem_inode_info *info = SHMEM_I(inode);
2807         struct shmem_falloc shmem_falloc;
2808         pgoff_t start, index, end;
2809         int error;
2810
2811         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2812                 return -EOPNOTSUPP;
2813
2814         inode_lock(inode);
2815
2816         if (mode & FALLOC_FL_PUNCH_HOLE) {
2817                 struct address_space *mapping = file->f_mapping;
2818                 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2819                 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2820                 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2821
2822                 /* protected by i_mutex */
2823                 if (info->seals & F_SEAL_WRITE) {
2824                         error = -EPERM;
2825                         goto out;
2826                 }
2827
2828                 shmem_falloc.waitq = &shmem_falloc_waitq;
2829                 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2830                 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2831                 spin_lock(&inode->i_lock);
2832                 inode->i_private = &shmem_falloc;
2833                 spin_unlock(&inode->i_lock);
2834
2835                 if ((u64)unmap_end > (u64)unmap_start)
2836                         unmap_mapping_range(mapping, unmap_start,
2837                                             1 + unmap_end - unmap_start, 0);
2838                 shmem_truncate_range(inode, offset, offset + len - 1);
2839                 /* No need to unmap again: hole-punching leaves COWed pages */
2840
2841                 spin_lock(&inode->i_lock);
2842                 inode->i_private = NULL;
2843                 wake_up_all(&shmem_falloc_waitq);
2844                 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2845                 spin_unlock(&inode->i_lock);
2846                 error = 0;
2847                 goto out;
2848         }
2849
2850         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2851         error = inode_newsize_ok(inode, offset + len);
2852         if (error)
2853                 goto out;
2854
2855         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2856                 error = -EPERM;
2857                 goto out;
2858         }
2859
2860         start = offset >> PAGE_SHIFT;
2861         end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2862         /* Try to avoid a swapstorm if len is impossible to satisfy */
2863         if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2864                 error = -ENOSPC;
2865                 goto out;
2866         }
2867
2868         shmem_falloc.waitq = NULL;
2869         shmem_falloc.start = start;
2870         shmem_falloc.next  = start;
2871         shmem_falloc.nr_falloced = 0;
2872         shmem_falloc.nr_unswapped = 0;
2873         spin_lock(&inode->i_lock);
2874         inode->i_private = &shmem_falloc;
2875         spin_unlock(&inode->i_lock);
2876
2877         for (index = start; index < end; index++) {
2878                 struct page *page;
2879
2880                 /*
2881                  * Good, the fallocate(2) manpage permits EINTR: we may have
2882                  * been interrupted because we are using up too much memory.
2883                  */
2884                 if (signal_pending(current))
2885                         error = -EINTR;
2886                 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2887                         error = -ENOMEM;
2888                 else
2889                         error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2890                 if (error) {
2891                         /* Remove the !PageUptodate pages we added */
2892                         if (index > start) {
2893                                 shmem_undo_range(inode,
2894                                     (loff_t)start << PAGE_SHIFT,
2895                                     ((loff_t)index << PAGE_SHIFT) - 1, true);
2896                         }
2897                         goto undone;
2898                 }
2899
2900                 /*
2901                  * Inform shmem_writepage() how far we have reached.
2902                  * No need for lock or barrier: we have the page lock.
2903                  */
2904                 shmem_falloc.next++;
2905                 if (!PageUptodate(page))
2906                         shmem_falloc.nr_falloced++;
2907
2908                 /*
2909                  * If !PageUptodate, leave it that way so that freeable pages
2910                  * can be recognized if we need to rollback on error later.
2911                  * But set_page_dirty so that memory pressure will swap rather
2912                  * than free the pages we are allocating (and SGP_CACHE pages
2913                  * might still be clean: we now need to mark those dirty too).
2914                  */
2915                 set_page_dirty(page);
2916                 unlock_page(page);
2917                 put_page(page);
2918                 cond_resched();
2919         }
2920
2921         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2922                 i_size_write(inode, offset + len);
2923         inode->i_ctime = current_time(inode);
2924 undone:
2925         spin_lock(&inode->i_lock);
2926         inode->i_private = NULL;
2927         spin_unlock(&inode->i_lock);
2928 out:
2929         inode_unlock(inode);
2930         return error;
2931 }
2932
2933 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2934 {
2935         struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2936
2937         buf->f_type = TMPFS_MAGIC;
2938         buf->f_bsize = PAGE_SIZE;
2939         buf->f_namelen = NAME_MAX;
2940         if (sbinfo->max_blocks) {
2941                 buf->f_blocks = sbinfo->max_blocks;
2942                 buf->f_bavail =
2943                 buf->f_bfree  = sbinfo->max_blocks -
2944                                 percpu_counter_sum(&sbinfo->used_blocks);
2945         }
2946         if (sbinfo->max_inodes) {
2947                 buf->f_files = sbinfo->max_inodes;
2948                 buf->f_ffree = sbinfo->free_inodes;
2949         }
2950         /* else leave those fields 0 like simple_statfs */
2951         return 0;
2952 }
2953
2954 /*
2955  * File creation. Allocate an inode, and we're done..
2956  */
2957 static int
2958 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2959 {
2960         struct inode *inode;
2961         int error = -ENOSPC;
2962
2963         inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2964         if (inode) {
2965                 error = simple_acl_create(dir, inode);
2966                 if (error)
2967                         goto out_iput;
2968                 error = security_inode_init_security(inode, dir,
2969                                                      &dentry->d_name,
2970                                                      shmem_initxattrs, NULL);
2971                 if (error && error != -EOPNOTSUPP)
2972                         goto out_iput;
2973
2974                 error = 0;
2975                 dir->i_size += BOGO_DIRENT_SIZE;
2976                 dir->i_ctime = dir->i_mtime = current_time(dir);
2977                 d_instantiate(dentry, inode);
2978                 dget(dentry); /* Extra count - pin the dentry in core */
2979         }
2980         return error;
2981 out_iput:
2982         iput(inode);
2983         return error;
2984 }
2985
2986 static int
2987 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2988 {
2989         struct inode *inode;
2990         int error = -ENOSPC;
2991
2992         inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2993         if (inode) {
2994                 error = security_inode_init_security(inode, dir,
2995                                                      NULL,
2996                                                      shmem_initxattrs, NULL);
2997                 if (error && error != -EOPNOTSUPP)
2998                         goto out_iput;
2999                 error = simple_acl_create(dir, inode);
3000                 if (error)
3001                         goto out_iput;
3002                 d_tmpfile(dentry, inode);
3003         }
3004         return error;
3005 out_iput:
3006         iput(inode);
3007         return error;
3008 }
3009
3010 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3011 {
3012         int error;
3013
3014         if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
3015                 return error;
3016         inc_nlink(dir);
3017         return 0;
3018 }
3019
3020 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
3021                 bool excl)
3022 {
3023         return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
3024 }
3025
3026 /*
3027  * Link a file..
3028  */
3029 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3030 {
3031         struct inode *inode = d_inode(old_dentry);
3032         int ret;
3033
3034         /*
3035          * No ordinary (disk based) filesystem counts links as inodes;
3036          * but each new link needs a new dentry, pinning lowmem, and
3037          * tmpfs dentries cannot be pruned until they are unlinked.
3038          */
3039         ret = shmem_reserve_inode(inode->i_sb);
3040         if (ret)
3041                 goto out;
3042
3043         dir->i_size += BOGO_DIRENT_SIZE;
3044         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3045         inc_nlink(inode);
3046         ihold(inode);   /* New dentry reference */
3047         dget(dentry);           /* Extra pinning count for the created dentry */
3048         d_instantiate(dentry, inode);
3049 out:
3050         return ret;
3051 }
3052
3053 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3054 {
3055         struct inode *inode = d_inode(dentry);
3056
3057         if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3058                 shmem_free_inode(inode->i_sb);
3059
3060         dir->i_size -= BOGO_DIRENT_SIZE;
3061         inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3062         drop_nlink(inode);
3063         dput(dentry);   /* Undo the count from "create" - this does all the work */
3064         return 0;
3065 }
3066
3067 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3068 {
3069         if (!simple_empty(dentry))
3070                 return -ENOTEMPTY;
3071
3072         drop_nlink(d_inode(dentry));
3073         drop_nlink(dir);
3074         return shmem_unlink(dir, dentry);
3075 }
3076
3077 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
3078 {
3079         bool old_is_dir = d_is_dir(old_dentry);
3080         bool new_is_dir = d_is_dir(new_dentry);
3081
3082         if (old_dir != new_dir && old_is_dir != new_is_dir) {
3083                 if (old_is_dir) {
3084                         drop_nlink(old_dir);
3085                         inc_nlink(new_dir);
3086                 } else {
3087                         drop_nlink(new_dir);
3088                         inc_nlink(old_dir);
3089                 }
3090         }
3091         old_dir->i_ctime = old_dir->i_mtime =
3092         new_dir->i_ctime = new_dir->i_mtime =
3093         d_inode(old_dentry)->i_ctime =
3094         d_inode(new_dentry)->i_ctime = current_time(old_dir);
3095
3096         return 0;
3097 }
3098
3099 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
3100 {
3101         struct dentry *whiteout;
3102         int error;
3103
3104         whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3105         if (!whiteout)
3106                 return -ENOMEM;
3107
3108         error = shmem_mknod(old_dir, whiteout,
3109                             S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3110         dput(whiteout);
3111         if (error)
3112                 return error;
3113
3114         /*
3115          * Cheat and hash the whiteout while the old dentry is still in
3116          * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3117          *
3118          * d_lookup() will consistently find one of them at this point,
3119          * not sure which one, but that isn't even important.
3120          */
3121         d_rehash(whiteout);
3122         return 0;
3123 }
3124
3125 /*
3126  * The VFS layer already does all the dentry stuff for rename,
3127  * we just have to decrement the usage count for the target if
3128  * it exists so that the VFS layer correctly free's it when it
3129  * gets overwritten.
3130  */
3131 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3132 {
3133         struct inode *inode = d_inode(old_dentry);
3134         int they_are_dirs = S_ISDIR(inode->i_mode);
3135
3136         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3137                 return -EINVAL;
3138
3139         if (flags & RENAME_EXCHANGE)
3140                 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3141
3142         if (!simple_empty(new_dentry))
3143                 return -ENOTEMPTY;
3144
3145         if (flags & RENAME_WHITEOUT) {
3146                 int error;
3147
3148                 error = shmem_whiteout(old_dir, old_dentry);
3149                 if (error)
3150                         return error;
3151         }
3152
3153         if (d_really_is_positive(new_dentry)) {
3154                 (void) shmem_unlink(new_dir, new_dentry);
3155                 if (they_are_dirs) {
3156                         drop_nlink(d_inode(new_dentry));
3157                         drop_nlink(old_dir);
3158                 }
3159         } else if (they_are_dirs) {
3160                 drop_nlink(old_dir);
3161                 inc_nlink(new_dir);
3162         }
3163
3164         old_dir->i_size -= BOGO_DIRENT_SIZE;
3165         new_dir->i_size += BOGO_DIRENT_SIZE;
3166         old_dir->i_ctime = old_dir->i_mtime =
3167         new_dir->i_ctime = new_dir->i_mtime =
3168         inode->i_ctime = current_time(old_dir);
3169         return 0;
3170 }
3171
3172 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3173 {
3174         int error;
3175         int len;
3176         struct inode *inode;
3177         struct page *page;
3178         struct shmem_inode_info *info;
3179
3180         len = strlen(symname) + 1;
3181         if (len > PAGE_SIZE)
3182                 return -ENAMETOOLONG;
3183
3184         inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0, VM_NORESERVE);
3185         if (!inode)
3186                 return -ENOSPC;
3187
3188         error = security_inode_init_security(inode, dir, &dentry->d_name,
3189                                              shmem_initxattrs, NULL);
3190         if (error) {
3191                 if (error != -EOPNOTSUPP) {
3192                         iput(inode);
3193                         return error;
3194                 }
3195                 error = 0;
3196         }
3197
3198         info = SHMEM_I(inode);
3199         inode->i_size = len-1;
3200         if (len <= SHORT_SYMLINK_LEN) {
3201                 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3202                 if (!inode->i_link) {
3203                         iput(inode);
3204                         return -ENOMEM;
3205                 }
3206                 inode->i_op = &shmem_short_symlink_operations;
3207         } else {
3208                 inode_nohighmem(inode);
3209                 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3210                 if (error) {
3211                         iput(inode);
3212                         return error;
3213                 }
3214                 inode->i_mapping->a_ops = &shmem_aops;
3215                 inode->i_op = &shmem_symlink_inode_operations;
3216                 memcpy(page_address(page), symname, len);
3217                 SetPageUptodate(page);
3218                 set_page_dirty(page);
3219                 unlock_page(page);
3220                 put_page(page);
3221         }
3222         dir->i_size += BOGO_DIRENT_SIZE;
3223         dir->i_ctime = dir->i_mtime = current_time(dir);
3224         d_instantiate(dentry, inode);
3225         dget(dentry);
3226         return 0;
3227 }
3228
3229 static void shmem_put_link(void *arg)
3230 {
3231         mark_page_accessed(arg);
3232         put_page(arg);
3233 }
3234
3235 static const char *shmem_get_link(struct dentry *dentry,
3236                                   struct inode *inode,
3237                                   struct delayed_call *done)
3238 {
3239         struct page *page = NULL;
3240         int error;
3241         if (!dentry) {
3242                 page = find_get_page(inode->i_mapping, 0);
3243                 if (!page)
3244                         return ERR_PTR(-ECHILD);
3245                 if (!PageUptodate(page)) {
3246                         put_page(page);
3247                         return ERR_PTR(-ECHILD);
3248                 }
3249         } else {
3250                 error = shmem_getpage(inode, 0, &page, SGP_READ);
3251                 if (error)
3252                         return ERR_PTR(error);
3253                 unlock_page(page);
3254         }
3255         set_delayed_call(done, shmem_put_link, page);
3256         return page_address(page);
3257 }
3258
3259 #ifdef CONFIG_TMPFS_XATTR
3260 /*
3261  * Superblocks without xattr inode operations may get some security.* xattr
3262  * support from the LSM "for free". As soon as we have any other xattrs
3263  * like ACLs, we also need to implement the security.* handlers at
3264  * filesystem level, though.
3265  */
3266
3267 /*
3268  * Callback for security_inode_init_security() for acquiring xattrs.
3269  */
3270 static int shmem_initxattrs(struct inode *inode,
3271                             const struct xattr *xattr_array,
3272                             void *fs_info)
3273 {
3274         struct shmem_inode_info *info = SHMEM_I(inode);
3275         const struct xattr *xattr;
3276         struct simple_xattr *new_xattr;
3277         size_t len;
3278
3279         for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3280                 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3281                 if (!new_xattr)
3282                         return -ENOMEM;
3283
3284                 len = strlen(xattr->name) + 1;
3285                 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3286                                           GFP_KERNEL);
3287                 if (!new_xattr->name) {
3288                         kfree(new_xattr);
3289                         return -ENOMEM;
3290                 }
3291
3292                 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3293                        XATTR_SECURITY_PREFIX_LEN);
3294                 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3295                        xattr->name, len);
3296
3297                 simple_xattr_list_add(&info->xattrs, new_xattr);
3298         }
3299
3300         return 0;
3301 }
3302
3303 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3304                                    struct dentry *unused, struct inode *inode,
3305                                    const char *name, void *buffer, size_t size)
3306 {
3307         struct shmem_inode_info *info = SHMEM_I(inode);
3308
3309         name = xattr_full_name(handler, name);
3310         return simple_xattr_get(&info->xattrs, name, buffer, size);
3311 }
3312
3313 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3314                                    struct dentry *unused, struct inode *inode,
3315                                    const char *name, const void *value,
3316                                    size_t size, int flags)
3317 {
3318         struct shmem_inode_info *info = SHMEM_I(inode);
3319
3320         name = xattr_full_name(handler, name);
3321         return simple_xattr_set(&info->xattrs, name, value, size, flags);
3322 }
3323
3324 static const struct xattr_handler shmem_security_xattr_handler = {
3325         .prefix = XATTR_SECURITY_PREFIX,
3326         .get = shmem_xattr_handler_get,
3327         .set = shmem_xattr_handler_set,
3328 };
3329
3330 static const struct xattr_handler shmem_trusted_xattr_handler = {
3331         .prefix = XATTR_TRUSTED_PREFIX,
3332         .get = shmem_xattr_handler_get,
3333         .set = shmem_xattr_handler_set,
3334 };
3335
3336 static const struct xattr_handler *shmem_xattr_handlers[] = {
3337 #ifdef CONFIG_TMPFS_POSIX_ACL
3338         &posix_acl_access_xattr_handler,
3339         &posix_acl_default_xattr_handler,
3340 #endif
3341         &shmem_security_xattr_handler,
3342         &shmem_trusted_xattr_handler,
3343         NULL
3344 };
3345
3346 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3347 {
3348         struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3349         return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3350 }
3351 #endif /* CONFIG_TMPFS_XATTR */
3352
3353 static const struct inode_operations shmem_short_symlink_operations = {
3354         .get_link       = simple_get_link,
3355 #ifdef CONFIG_TMPFS_XATTR
3356         .listxattr      = shmem_listxattr,
3357 #endif
3358 };
3359
3360 static const struct inode_operations shmem_symlink_inode_operations = {
3361         .get_link       = shmem_get_link,
3362 #ifdef CONFIG_TMPFS_XATTR
3363         .listxattr      = shmem_listxattr,
3364 #endif
3365 };
3366
3367 static struct dentry *shmem_get_parent(struct dentry *child)
3368 {
3369         return ERR_PTR(-ESTALE);
3370 }
3371
3372 static int shmem_match(struct inode *ino, void *vfh)
3373 {
3374         __u32 *fh = vfh;
3375         __u64 inum = fh[2];
3376         inum = (inum << 32) | fh[1];
3377         return ino->i_ino == inum && fh[0] == ino->i_generation;
3378 }
3379
3380 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3381                 struct fid *fid, int fh_len, int fh_type)
3382 {
3383         struct inode *inode;
3384         struct dentry *dentry = NULL;
3385         u64 inum;
3386
3387         if (fh_len < 3)
3388                 return NULL;
3389
3390         inum = fid->raw[2];
3391         inum = (inum << 32) | fid->raw[1];
3392
3393         inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3394                         shmem_match, fid->raw);
3395         if (inode) {
3396                 dentry = d_find_alias(inode);
3397                 iput(inode);
3398         }
3399
3400         return dentry;
3401 }
3402
3403 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3404                                 struct inode *parent)
3405 {
3406         if (*len < 3) {
3407                 *len = 3;
3408                 return FILEID_INVALID;
3409         }
3410
3411         if (inode_unhashed(inode)) {
3412                 /* Unfortunately insert_inode_hash is not idempotent,
3413                  * so as we hash inodes here rather than at creation
3414                  * time, we need a lock to ensure we only try
3415                  * to do it once
3416                  */
3417                 static DEFINE_SPINLOCK(lock);
3418                 spin_lock(&lock);
3419                 if (inode_unhashed(inode))
3420                         __insert_inode_hash(inode,
3421                                             inode->i_ino + inode->i_generation);
3422                 spin_unlock(&lock);
3423         }
3424
3425         fh[0] = inode->i_generation;
3426         fh[1] = inode->i_ino;
3427         fh[2] = ((__u64)inode->i_ino) >> 32;
3428
3429         *len = 3;
3430         return 1;
3431 }
3432
3433 static const struct export_operations shmem_export_ops = {
3434         .get_parent     = shmem_get_parent,
3435         .encode_fh      = shmem_encode_fh,
3436         .fh_to_dentry   = shmem_fh_to_dentry,
3437 };
3438
3439 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3440                                bool remount)
3441 {
3442         char *this_char, *value, *rest;
3443         struct mempolicy *mpol = NULL;
3444         uid_t uid;
3445         gid_t gid;
3446
3447         while (options != NULL) {
3448                 this_char = options;
3449                 for (;;) {
3450                         /*
3451                          * NUL-terminate this option: unfortunately,
3452                          * mount options form a comma-separated list,
3453                          * but mpol's nodelist may also contain commas.
3454                          */
3455                         options = strchr(options, ',');
3456                         if (options == NULL)
3457                                 break;
3458                         options++;
3459                         if (!isdigit(*options)) {
3460                                 options[-1] = '\0';
3461                                 break;
3462                         }
3463                 }
3464                 if (!*this_char)
3465                         continue;
3466                 if ((value = strchr(this_char,'=')) != NULL) {
3467                         *value++ = 0;
3468                 } else {
3469                         pr_err("tmpfs: No value for mount option '%s'\n",
3470                                this_char);
3471                         goto error;
3472                 }
3473
3474                 if (!strcmp(this_char,"size")) {
3475                         unsigned long long size;
3476                         size = memparse(value,&rest);
3477                         if (*rest == '%') {
3478                                 size <<= PAGE_SHIFT;
3479                                 size *= totalram_pages;
3480                                 do_div(size, 100);
3481                                 rest++;
3482                         }
3483                         if (*rest)
3484                                 goto bad_val;
3485                         sbinfo->max_blocks =
3486                                 DIV_ROUND_UP(size, PAGE_SIZE);
3487                 } else if (!strcmp(this_char,"nr_blocks")) {
3488                         sbinfo->max_blocks = memparse(value, &rest);
3489                         if (*rest)
3490                                 goto bad_val;
3491                 } else if (!strcmp(this_char,"nr_inodes")) {
3492                         sbinfo->max_inodes = memparse(value, &rest);
3493                         if (*rest)
3494                                 goto bad_val;
3495                 } else if (!strcmp(this_char,"mode")) {
3496                         if (remount)
3497                                 continue;
3498                         sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3499                         if (*rest)
3500                                 goto bad_val;
3501                 } else if (!strcmp(this_char,"uid")) {
3502                         if (remount)
3503                                 continue;
3504                         uid = simple_strtoul(value, &rest, 0);
3505                         if (*rest)
3506                                 goto bad_val;
3507                         sbinfo->uid = make_kuid(current_user_ns(), uid);
3508                         if (!uid_valid(sbinfo->uid))
3509                                 goto bad_val;
3510                 } else if (!strcmp(this_char,"gid")) {
3511                         if (remount)
3512                                 continue;
3513                         gid = simple_strtoul(value, &rest, 0);
3514                         if (*rest)
3515                                 goto bad_val;
3516                         sbinfo->gid = make_kgid(current_user_ns(), gid);
3517                         if (!gid_valid(sbinfo->gid))
3518                                 goto bad_val;
3519 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3520                 } else if (!strcmp(this_char, "huge")) {
3521                         int huge;
3522                         huge = shmem_parse_huge(value);
3523                         if (huge < 0)
3524                                 goto bad_val;
3525                         if (!has_transparent_hugepage() &&
3526                                         huge != SHMEM_HUGE_NEVER)
3527                                 goto bad_val;
3528                         sbinfo->huge = huge;
3529 #endif
3530 #ifdef CONFIG_NUMA
3531                 } else if (!strcmp(this_char,"mpol")) {
3532                         mpol_put(mpol);
3533                         mpol = NULL;
3534                         if (mpol_parse_str(value, &mpol))
3535                                 goto bad_val;
3536 #endif
3537                 } else {
3538                         pr_err("tmpfs: Bad mount option %s\n", this_char);
3539                         goto error;
3540                 }
3541         }
3542         sbinfo->mpol = mpol;
3543         return 0;
3544
3545 bad_val:
3546         pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3547                value, this_char);
3548 error:
3549         mpol_put(mpol);
3550         return 1;
3551
3552 }
3553
3554 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3555 {
3556         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3557         struct shmem_sb_info config = *sbinfo;
3558         unsigned long inodes;
3559         int error = -EINVAL;
3560
3561         config.mpol = NULL;
3562         if (shmem_parse_options(data, &config, true))
3563                 return error;
3564
3565         spin_lock(&sbinfo->stat_lock);
3566         inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3567         if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3568                 goto out;
3569         if (config.max_inodes < inodes)
3570                 goto out;
3571         /*
3572          * Those tests disallow limited->unlimited while any are in use;
3573          * but we must separately disallow unlimited->limited, because
3574          * in that case we have no record of how much is already in use.
3575          */
3576         if (config.max_blocks && !sbinfo->max_blocks)
3577                 goto out;
3578         if (config.max_inodes && !sbinfo->max_inodes)
3579                 goto out;
3580
3581         error = 0;
3582         sbinfo->huge = config.huge;
3583         sbinfo->max_blocks  = config.max_blocks;
3584         sbinfo->max_inodes  = config.max_inodes;
3585         sbinfo->free_inodes = config.max_inodes - inodes;
3586
3587         /*
3588          * Preserve previous mempolicy unless mpol remount option was specified.
3589          */
3590         if (config.mpol) {
3591                 mpol_put(sbinfo->mpol);
3592                 sbinfo->mpol = config.mpol;     /* transfers initial ref */
3593         }
3594 out:
3595         spin_unlock(&sbinfo->stat_lock);
3596         return error;
3597 }
3598
3599 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3600 {
3601         struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3602
3603         if (sbinfo->max_blocks != shmem_default_max_blocks())
3604                 seq_printf(seq, ",size=%luk",
3605                         sbinfo->max_blocks << (PAGE_SHIFT - 10));
3606         if (sbinfo->max_inodes != shmem_default_max_inodes())
3607                 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3608         if (sbinfo->mode != (S_IRWXUGO | S_ISVTX))
3609                 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3610         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3611                 seq_printf(seq, ",uid=%u",
3612                                 from_kuid_munged(&init_user_ns, sbinfo->uid));
3613         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3614                 seq_printf(seq, ",gid=%u",
3615                                 from_kgid_munged(&init_user_ns, sbinfo->gid));
3616 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3617         /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3618         if (sbinfo->huge)
3619                 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3620 #endif
3621         shmem_show_mpol(seq, sbinfo->mpol);
3622         return 0;
3623 }
3624
3625 #define MFD_NAME_PREFIX "memfd:"
3626 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3627 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3628
3629 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING)
3630
3631 SYSCALL_DEFINE2(memfd_create,
3632                 const char __user *, uname,
3633                 unsigned int, flags)
3634 {
3635         struct shmem_inode_info *info;
3636         struct file *file;
3637         int fd, error;
3638         char *name;
3639         long len;
3640
3641         if (flags & ~(unsigned int)MFD_ALL_FLAGS)
3642                 return -EINVAL;
3643
3644         /* length includes terminating zero */
3645         len = strnlen_user(uname, MFD_NAME_MAX_LEN + 1);
3646         if (len <= 0)
3647                 return -EFAULT;
3648         if (len > MFD_NAME_MAX_LEN + 1)
3649                 return -EINVAL;
3650
3651         name = kmalloc(len + MFD_NAME_PREFIX_LEN, GFP_TEMPORARY);
3652         if (!name)
3653                 return -ENOMEM;
3654
3655         strcpy(name, MFD_NAME_PREFIX);
3656         if (copy_from_user(&name[MFD_NAME_PREFIX_LEN], uname, len)) {
3657                 error = -EFAULT;
3658                 goto err_name;
3659         }
3660
3661         /* terminating-zero may have changed after strnlen_user() returned */
3662         if (name[len + MFD_NAME_PREFIX_LEN - 1]) {
3663                 error = -EFAULT;
3664                 goto err_name;
3665         }
3666
3667         fd = get_unused_fd_flags((flags & MFD_CLOEXEC) ? O_CLOEXEC : 0);
3668         if (fd < 0) {
3669                 error = fd;
3670                 goto err_name;
3671         }
3672
3673         file = shmem_file_setup(name, 0, VM_NORESERVE);
3674         if (IS_ERR(file)) {
3675                 error = PTR_ERR(file);
3676                 goto err_fd;
3677         }
3678         info = SHMEM_I(file_inode(file));
3679         file->f_mode |= FMODE_LSEEK | FMODE_PREAD | FMODE_PWRITE;
3680         file->f_flags |= O_RDWR | O_LARGEFILE;
3681         if (flags & MFD_ALLOW_SEALING)
3682                 info->seals &= ~F_SEAL_SEAL;
3683
3684         fd_install(fd, file);
3685         kfree(name);
3686         return fd;
3687
3688 err_fd:
3689         put_unused_fd(fd);
3690 err_name:
3691         kfree(name);
3692         return error;
3693 }
3694
3695 #endif /* CONFIG_TMPFS */
3696
3697 static void shmem_put_super(struct super_block *sb)
3698 {
3699         struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3700
3701         percpu_counter_destroy(&sbinfo->used_blocks);
3702         mpol_put(sbinfo->mpol);
3703         kfree(sbinfo);
3704         sb->s_fs_info = NULL;
3705 }
3706
3707 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3708 {
3709         struct inode *inode;
3710         struct shmem_sb_info *sbinfo;
3711         int err = -ENOMEM;
3712
3713         /* Round up to L1_CACHE_BYTES to resist false sharing */
3714         sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3715                                 L1_CACHE_BYTES), GFP_KERNEL);
3716         if (!sbinfo)
3717                 return -ENOMEM;
3718
3719         sbinfo->mode = S_IRWXUGO | S_ISVTX;
3720         sbinfo->uid = current_fsuid();
3721         sbinfo->gid = current_fsgid();
3722         sb->s_fs_info = sbinfo;
3723
3724 #ifdef CONFIG_TMPFS
3725         /*
3726          * Per default we only allow half of the physical ram per
3727          * tmpfs instance, limiting inodes to one per page of lowmem;
3728          * but the internal instance is left unlimited.
3729          */
3730         if (!(sb->s_flags & MS_KERNMOUNT)) {
3731                 sbinfo->max_blocks = shmem_default_max_blocks();
3732                 sbinfo->max_inodes = shmem_default_max_inodes();
3733                 if (shmem_parse_options(data, sbinfo, false)) {
3734                         err = -EINVAL;
3735                         goto failed;
3736                 }
3737         } else {
3738                 sb->s_flags |= MS_NOUSER;
3739         }
3740         sb->s_export_op = &shmem_export_ops;
3741         sb->s_flags |= MS_NOSEC;
3742 #else
3743         sb->s_flags |= MS_NOUSER;
3744 #endif
3745
3746         spin_lock_init(&sbinfo->stat_lock);
3747         if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3748                 goto failed;
3749         sbinfo->free_inodes = sbinfo->max_inodes;
3750         spin_lock_init(&sbinfo->shrinklist_lock);
3751         INIT_LIST_HEAD(&sbinfo->shrinklist);
3752
3753         sb->s_maxbytes = MAX_LFS_FILESIZE;
3754         sb->s_blocksize = PAGE_SIZE;
3755         sb->s_blocksize_bits = PAGE_SHIFT;
3756         sb->s_magic = TMPFS_MAGIC;
3757         sb->s_op = &shmem_ops;
3758         sb->s_time_gran = 1;
3759 #ifdef CONFIG_TMPFS_XATTR
3760         sb->s_xattr = shmem_xattr_handlers;
3761 #endif
3762 #ifdef CONFIG_TMPFS_POSIX_ACL
3763         sb->s_flags |= MS_POSIXACL;
3764 #endif
3765         uuid_gen(&sb->s_uuid);
3766
3767         inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3768         if (!inode)
3769                 goto failed;
3770         inode->i_uid = sbinfo->uid;
3771         inode->i_gid = sbinfo->gid;
3772         sb->s_root = d_make_root(inode);
3773         if (!sb->s_root)
3774                 goto failed;
3775         return 0;
3776
3777 failed:
3778         shmem_put_super(sb);
3779         return err;
3780 }
3781
3782 static struct kmem_cache *shmem_inode_cachep;
3783
3784 static struct inode *shmem_alloc_inode(struct super_block *sb)
3785 {
3786         struct shmem_inode_info *info;
3787         info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3788         if (!info)
3789                 return NULL;
3790         return &info->vfs_inode;
3791 }
3792
3793 static void shmem_destroy_callback(struct rcu_head *head)
3794 {
3795         struct inode *inode = container_of(head, struct inode, i_rcu);
3796         if (S_ISLNK(inode->i_mode))
3797                 kfree(inode->i_link);
3798         kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3799 }
3800
3801 static void shmem_destroy_inode(struct inode *inode)
3802 {
3803         if (S_ISREG(inode->i_mode))
3804                 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3805         call_rcu(&inode->i_rcu, shmem_destroy_callback);
3806 }
3807
3808 static void shmem_init_inode(void *foo)
3809 {
3810         struct shmem_inode_info *info = foo;
3811         inode_init_once(&info->vfs_inode);
3812 }
3813
3814 static int shmem_init_inodecache(void)
3815 {
3816         shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3817                                 sizeof(struct shmem_inode_info),
3818                                 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3819         return 0;
3820 }
3821
3822 static void shmem_destroy_inodecache(void)
3823 {
3824         kmem_cache_destroy(shmem_inode_cachep);
3825 }
3826
3827 static const struct address_space_operations shmem_aops = {
3828         .writepage      = shmem_writepage,
3829         .set_page_dirty = __set_page_dirty_no_writeback,
3830 #ifdef CONFIG_TMPFS
3831         .write_begin    = shmem_write_begin,
3832         .write_end      = shmem_write_end,
3833 #endif
3834 #ifdef CONFIG_MIGRATION
3835         .migratepage    = migrate_page,
3836 #endif
3837         .error_remove_page = generic_error_remove_page,
3838 };
3839
3840 static const struct file_operations shmem_file_operations = {
3841         .mmap           = shmem_mmap,
3842         .get_unmapped_area = shmem_get_unmapped_area,
3843 #ifdef CONFIG_TMPFS
3844         .llseek         = shmem_file_llseek,
3845         .read_iter      = shmem_file_read_iter,
3846         .write_iter     = generic_file_write_iter,
3847         .fsync          = noop_fsync,
3848         .splice_read    = generic_file_splice_read,
3849         .splice_write   = iter_file_splice_write,
3850         .fallocate      = shmem_fallocate,
3851 #endif
3852 };
3853
3854 static const struct inode_operations shmem_inode_operations = {
3855         .getattr        = shmem_getattr,
3856         .setattr        = shmem_setattr,
3857 #ifdef CONFIG_TMPFS_XATTR
3858         .listxattr      = shmem_listxattr,
3859         .set_acl        = simple_set_acl,
3860 #endif
3861 };
3862
3863 static const struct inode_operations shmem_dir_inode_operations = {
3864 #ifdef CONFIG_TMPFS
3865         .create         = shmem_create,
3866         .lookup         = simple_lookup,
3867         .link           = shmem_link,
3868         .unlink         = shmem_unlink,
3869         .symlink        = shmem_symlink,
3870         .mkdir          = shmem_mkdir,
3871         .rmdir          = shmem_rmdir,
3872         .mknod          = shmem_mknod,
3873         .rename         = shmem_rename2,
3874         .tmpfile        = shmem_tmpfile,
3875 #endif
3876 #ifdef CONFIG_TMPFS_XATTR
3877         .listxattr      = shmem_listxattr,
3878 #endif
3879 #ifdef CONFIG_TMPFS_POSIX_ACL
3880         .setattr        = shmem_setattr,
3881         .set_acl        = simple_set_acl,
3882 #endif
3883 };
3884
3885 static const struct inode_operations shmem_special_inode_operations = {
3886 #ifdef CONFIG_TMPFS_XATTR
3887         .listxattr      = shmem_listxattr,
3888 #endif
3889 #ifdef CONFIG_TMPFS_POSIX_ACL
3890         .setattr        = shmem_setattr,
3891         .set_acl        = simple_set_acl,
3892 #endif
3893 };
3894
3895 static const struct super_operations shmem_ops = {
3896         .alloc_inode    = shmem_alloc_inode,
3897         .destroy_inode  = shmem_destroy_inode,
3898 #ifdef CONFIG_TMPFS
3899         .statfs         = shmem_statfs,
3900         .remount_fs     = shmem_remount_fs,
3901         .show_options   = shmem_show_options,
3902 #endif
3903         .evict_inode    = shmem_evict_inode,
3904         .drop_inode     = generic_delete_inode,
3905         .put_super      = shmem_put_super,
3906 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3907         .nr_cached_objects      = shmem_unused_huge_count,
3908         .free_cached_objects    = shmem_unused_huge_scan,
3909 #endif
3910 };
3911
3912 static const struct vm_operations_struct shmem_vm_ops = {
3913         .fault          = shmem_fault,
3914         .map_pages      = filemap_map_pages,
3915 #ifdef CONFIG_NUMA
3916         .set_policy     = shmem_set_policy,
3917         .get_policy     = shmem_get_policy,
3918 #endif
3919 };
3920
3921 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3922         int flags, const char *dev_name, void *data)
3923 {
3924         return mount_nodev(fs_type, flags, data, shmem_fill_super);
3925 }
3926
3927 static struct file_system_type shmem_fs_type = {
3928         .owner          = THIS_MODULE,
3929         .name           = "tmpfs",
3930         .mount          = shmem_mount,
3931         .kill_sb        = kill_litter_super,
3932         .fs_flags       = FS_USERNS_MOUNT,
3933 };
3934
3935 int __init shmem_init(void)
3936 {
3937         int error;
3938
3939         /* If rootfs called this, don't re-init */
3940         if (shmem_inode_cachep)
3941                 return 0;
3942
3943         error = shmem_init_inodecache();
3944         if (error)
3945                 goto out3;
3946
3947         error = register_filesystem(&shmem_fs_type);
3948         if (error) {
3949                 pr_err("Could not register tmpfs\n");
3950                 goto out2;
3951         }
3952
3953         shm_mnt = kern_mount(&shmem_fs_type);
3954         if (IS_ERR(shm_mnt)) {
3955                 error = PTR_ERR(shm_mnt);
3956                 pr_err("Could not kern_mount tmpfs\n");
3957                 goto out1;
3958         }
3959
3960 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3961         if (has_transparent_hugepage() && shmem_huge < SHMEM_HUGE_DENY)
3962                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3963         else
3964                 shmem_huge = 0; /* just in case it was patched */
3965 #endif
3966         return 0;
3967
3968 out1:
3969         unregister_filesystem(&shmem_fs_type);
3970 out2:
3971         shmem_destroy_inodecache();
3972 out3:
3973         shm_mnt = ERR_PTR(error);
3974         return error;
3975 }
3976
3977 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3978 static ssize_t shmem_enabled_show(struct kobject *kobj,
3979                 struct kobj_attribute *attr, char *buf)
3980 {
3981         int values[] = {
3982                 SHMEM_HUGE_ALWAYS,
3983                 SHMEM_HUGE_WITHIN_SIZE,
3984                 SHMEM_HUGE_ADVISE,
3985                 SHMEM_HUGE_NEVER,
3986                 SHMEM_HUGE_DENY,
3987                 SHMEM_HUGE_FORCE,
3988         };
3989         int i, count;
3990
3991         for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3992                 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3993
3994                 count += sprintf(buf + count, fmt,
3995                                 shmem_format_huge(values[i]));
3996         }
3997         buf[count - 1] = '\n';
3998         return count;
3999 }
4000
4001 static ssize_t shmem_enabled_store(struct kobject *kobj,
4002                 struct kobj_attribute *attr, const char *buf, size_t count)
4003 {
4004         char tmp[16];
4005         int huge;
4006
4007         if (count + 1 > sizeof(tmp))
4008                 return -EINVAL;
4009         memcpy(tmp, buf, count);
4010         tmp[count] = '\0';
4011         if (count && tmp[count - 1] == '\n')
4012                 tmp[count - 1] = '\0';
4013
4014         huge = shmem_parse_huge(tmp);
4015         if (huge == -EINVAL)
4016                 return -EINVAL;
4017         if (!has_transparent_hugepage() &&
4018                         huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4019                 return -EINVAL;
4020
4021         shmem_huge = huge;
4022         if (shmem_huge < SHMEM_HUGE_DENY)
4023                 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4024         return count;
4025 }
4026
4027 struct kobj_attribute shmem_enabled_attr =
4028         __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
4029 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4030
4031 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4032 bool shmem_huge_enabled(struct vm_area_struct *vma)
4033 {
4034         struct inode *inode = file_inode(vma->vm_file);
4035         struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
4036         loff_t i_size;
4037         pgoff_t off;
4038
4039         if (shmem_huge == SHMEM_HUGE_FORCE)
4040                 return true;
4041         if (shmem_huge == SHMEM_HUGE_DENY)
4042                 return false;
4043         switch (sbinfo->huge) {
4044                 case SHMEM_HUGE_NEVER:
4045                         return false;
4046                 case SHMEM_HUGE_ALWAYS:
4047                         return true;
4048                 case SHMEM_HUGE_WITHIN_SIZE:
4049                         off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
4050                         i_size = round_up(i_size_read(inode), PAGE_SIZE);
4051                         if (i_size >= HPAGE_PMD_SIZE &&
4052                                         i_size >> PAGE_SHIFT >= off)
4053                                 return true;
4054                 case SHMEM_HUGE_ADVISE:
4055                         /* TODO: implement fadvise() hints */
4056                         return (vma->vm_flags & VM_HUGEPAGE);
4057                 default:
4058                         VM_BUG_ON(1);
4059                         return false;
4060         }
4061 }
4062 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4063
4064 #else /* !CONFIG_SHMEM */
4065
4066 /*
4067  * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4068  *
4069  * This is intended for small system where the benefits of the full
4070  * shmem code (swap-backed and resource-limited) are outweighed by
4071  * their complexity. On systems without swap this code should be
4072  * effectively equivalent, but much lighter weight.
4073  */
4074
4075 static struct file_system_type shmem_fs_type = {
4076         .name           = "tmpfs",
4077         .mount          = ramfs_mount,
4078         .kill_sb        = kill_litter_super,
4079         .fs_flags       = FS_USERNS_MOUNT,
4080 };
4081
4082 int __init shmem_init(void)
4083 {
4084         BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4085
4086         shm_mnt = kern_mount(&shmem_fs_type);
4087         BUG_ON(IS_ERR(shm_mnt));
4088
4089         return 0;
4090 }
4091
4092 int shmem_unuse(swp_entry_t swap, struct page *page)
4093 {
4094         return 0;
4095 }
4096
4097 int shmem_lock(struct file *file, int lock, struct user_struct *user)
4098 {
4099         return 0;
4100 }
4101
4102 void shmem_unlock_mapping(struct address_space *mapping)
4103 {
4104 }
4105
4106 #ifdef CONFIG_MMU
4107 unsigned long shmem_get_unmapped_area(struct file *file,
4108                                       unsigned long addr, unsigned long len,
4109                                       unsigned long pgoff, unsigned long flags)
4110 {
4111         return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4112 }
4113 #endif
4114
4115 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4116 {
4117         truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4118 }
4119 EXPORT_SYMBOL_GPL(shmem_truncate_range);
4120
4121 #define shmem_vm_ops                            generic_file_vm_ops
4122 #define shmem_file_operations                   ramfs_file_operations
4123 #define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
4124 #define shmem_acct_size(flags, size)            0
4125 #define shmem_unacct_size(flags, size)          do {} while (0)
4126
4127 #endif /* CONFIG_SHMEM */
4128
4129 /* common code */
4130
4131 static const struct dentry_operations anon_ops = {
4132         .d_dname = simple_dname
4133 };
4134
4135 static struct file *__shmem_file_setup(const char *name, loff_t size,
4136                                        unsigned long flags, unsigned int i_flags)
4137 {
4138         struct file *res;
4139         struct inode *inode;
4140         struct path path;
4141         struct super_block *sb;
4142         struct qstr this;
4143
4144         if (IS_ERR(shm_mnt))
4145                 return ERR_CAST(shm_mnt);
4146
4147         if (size < 0 || size > MAX_LFS_FILESIZE)
4148                 return ERR_PTR(-EINVAL);
4149
4150         if (shmem_acct_size(flags, size))
4151                 return ERR_PTR(-ENOMEM);
4152
4153         res = ERR_PTR(-ENOMEM);
4154         this.name = name;
4155         this.len = strlen(name);
4156         this.hash = 0; /* will go */
4157         sb = shm_mnt->mnt_sb;
4158         path.mnt = mntget(shm_mnt);
4159         path.dentry = d_alloc_pseudo(sb, &this);
4160         if (!path.dentry)
4161                 goto put_memory;
4162         d_set_d_op(path.dentry, &anon_ops);
4163
4164         res = ERR_PTR(-ENOSPC);
4165         inode = shmem_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0, flags);
4166         if (!inode)
4167                 goto put_memory;
4168
4169         inode->i_flags |= i_flags;
4170         d_instantiate(path.dentry, inode);
4171         inode->i_size = size;
4172         clear_nlink(inode);     /* It is unlinked */
4173         res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4174         if (IS_ERR(res))
4175                 goto put_path;
4176
4177         res = alloc_file(&path, FMODE_WRITE | FMODE_READ,
4178                   &shmem_file_operations);
4179         if (IS_ERR(res))
4180                 goto put_path;
4181
4182         return res;
4183
4184 put_memory:
4185         shmem_unacct_size(flags, size);
4186 put_path:
4187         path_put(&path);
4188         return res;
4189 }
4190
4191 /**
4192  * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4193  *      kernel internal.  There will be NO LSM permission checks against the
4194  *      underlying inode.  So users of this interface must do LSM checks at a
4195  *      higher layer.  The users are the big_key and shm implementations.  LSM
4196  *      checks are provided at the key or shm level rather than the inode.
4197  * @name: name for dentry (to be seen in /proc/<pid>/maps
4198  * @size: size to be set for the file
4199  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4200  */
4201 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4202 {
4203         return __shmem_file_setup(name, size, flags, S_PRIVATE);
4204 }
4205
4206 /**
4207  * shmem_file_setup - get an unlinked file living in tmpfs
4208  * @name: name for dentry (to be seen in /proc/<pid>/maps
4209  * @size: size to be set for the file
4210  * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4211  */
4212 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4213 {
4214         return __shmem_file_setup(name, size, flags, 0);
4215 }
4216 EXPORT_SYMBOL_GPL(shmem_file_setup);
4217
4218 /**
4219  * shmem_zero_setup - setup a shared anonymous mapping
4220  * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4221  */
4222 int shmem_zero_setup(struct vm_area_struct *vma)
4223 {
4224         struct file *file;
4225         loff_t size = vma->vm_end - vma->vm_start;
4226
4227         /*
4228          * Cloning a new file under mmap_sem leads to a lock ordering conflict
4229          * between XFS directory reading and selinux: since this file is only
4230          * accessible to the user through its mapping, use S_PRIVATE flag to
4231          * bypass file security, in the same way as shmem_kernel_file_setup().
4232          */
4233         file = __shmem_file_setup("dev/zero", size, vma->vm_flags, S_PRIVATE);
4234         if (IS_ERR(file))
4235                 return PTR_ERR(file);
4236
4237         if (vma->vm_file)
4238                 fput(vma->vm_file);
4239         vma->vm_file = file;
4240         vma->vm_ops = &shmem_vm_ops;
4241
4242         if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4243                         ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4244                         (vma->vm_end & HPAGE_PMD_MASK)) {
4245                 khugepaged_enter(vma, vma->vm_flags);
4246         }
4247
4248         return 0;
4249 }
4250
4251 /**
4252  * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4253  * @mapping:    the page's address_space
4254  * @index:      the page index
4255  * @gfp:        the page allocator flags to use if allocating
4256  *
4257  * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4258  * with any new page allocations done using the specified allocation flags.
4259  * But read_cache_page_gfp() uses the ->readpage() method: which does not
4260  * suit tmpfs, since it may have pages in swapcache, and needs to find those
4261  * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4262  *
4263  * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4264  * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4265  */
4266 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4267                                          pgoff_t index, gfp_t gfp)
4268 {
4269 #ifdef CONFIG_SHMEM
4270         struct inode *inode = mapping->host;
4271         struct page *page;
4272         int error;
4273
4274         BUG_ON(mapping->a_ops != &shmem_aops);
4275         error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4276                                   gfp, NULL, NULL, NULL);
4277         if (error)
4278                 page = ERR_PTR(error);
4279         else
4280                 unlock_page(page);
4281         return page;
4282 #else
4283         /*
4284          * The tiny !SHMEM case uses ramfs without swap
4285          */
4286         return read_cache_page_gfp(mapping, index, gfp);
4287 #endif
4288 }
4289 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);