Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / mm / page_io.c
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95, 
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
26
27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28                                 struct page *page, bio_end_io_t end_io)
29 {
30         struct bio *bio;
31
32         bio = bio_alloc(gfp_flags, 1);
33         if (bio) {
34                 bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35                 bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36                 bio->bi_end_io = end_io;
37
38                 bio_add_page(bio, page, PAGE_SIZE, 0);
39                 BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
40         }
41         return bio;
42 }
43
44 void end_swap_bio_write(struct bio *bio)
45 {
46         struct page *page = bio->bi_io_vec[0].bv_page;
47
48         if (bio->bi_status) {
49                 SetPageError(page);
50                 /*
51                  * We failed to write the page out to swap-space.
52                  * Re-dirty the page in order to avoid it being reclaimed.
53                  * Also print a dire warning that things will go BAD (tm)
54                  * very quickly.
55                  *
56                  * Also clear PG_reclaim to avoid rotate_reclaimable_page()
57                  */
58                 set_page_dirty(page);
59                 pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
60                          imajor(bio->bi_bdev->bd_inode),
61                          iminor(bio->bi_bdev->bd_inode),
62                          (unsigned long long)bio->bi_iter.bi_sector);
63                 ClearPageReclaim(page);
64         }
65         end_page_writeback(page);
66         bio_put(bio);
67 }
68
69 static void swap_slot_free_notify(struct page *page)
70 {
71         struct swap_info_struct *sis;
72         struct gendisk *disk;
73
74         /*
75          * There is no guarantee that the page is in swap cache - the software
76          * suspend code (at least) uses end_swap_bio_read() against a non-
77          * swapcache page.  So we must check PG_swapcache before proceeding with
78          * this optimization.
79          */
80         if (unlikely(!PageSwapCache(page)))
81                 return;
82
83         sis = page_swap_info(page);
84         if (!(sis->flags & SWP_BLKDEV))
85                 return;
86
87         /*
88          * The swap subsystem performs lazy swap slot freeing,
89          * expecting that the page will be swapped out again.
90          * So we can avoid an unnecessary write if the page
91          * isn't redirtied.
92          * This is good for real swap storage because we can
93          * reduce unnecessary I/O and enhance wear-leveling
94          * if an SSD is used as the as swap device.
95          * But if in-memory swap device (eg zram) is used,
96          * this causes a duplicated copy between uncompressed
97          * data in VM-owned memory and compressed data in
98          * zram-owned memory.  So let's free zram-owned memory
99          * and make the VM-owned decompressed page *dirty*,
100          * so the page should be swapped out somewhere again if
101          * we again wish to reclaim it.
102          */
103         disk = sis->bdev->bd_disk;
104         if (disk->fops->swap_slot_free_notify) {
105                 swp_entry_t entry;
106                 unsigned long offset;
107
108                 entry.val = page_private(page);
109                 offset = swp_offset(entry);
110
111                 SetPageDirty(page);
112                 disk->fops->swap_slot_free_notify(sis->bdev,
113                                 offset);
114         }
115 }
116
117 static void end_swap_bio_read(struct bio *bio)
118 {
119         struct page *page = bio->bi_io_vec[0].bv_page;
120         struct task_struct *waiter = bio->bi_private;
121
122         if (bio->bi_status) {
123                 SetPageError(page);
124                 ClearPageUptodate(page);
125                 pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
126                          imajor(bio->bi_bdev->bd_inode),
127                          iminor(bio->bi_bdev->bd_inode),
128                          (unsigned long long)bio->bi_iter.bi_sector);
129                 goto out;
130         }
131
132         SetPageUptodate(page);
133         swap_slot_free_notify(page);
134 out:
135         unlock_page(page);
136         WRITE_ONCE(bio->bi_private, NULL);
137         bio_put(bio);
138         wake_up_process(waiter);
139 }
140
141 int generic_swapfile_activate(struct swap_info_struct *sis,
142                                 struct file *swap_file,
143                                 sector_t *span)
144 {
145         struct address_space *mapping = swap_file->f_mapping;
146         struct inode *inode = mapping->host;
147         unsigned blocks_per_page;
148         unsigned long page_no;
149         unsigned blkbits;
150         sector_t probe_block;
151         sector_t last_block;
152         sector_t lowest_block = -1;
153         sector_t highest_block = 0;
154         int nr_extents = 0;
155         int ret;
156
157         blkbits = inode->i_blkbits;
158         blocks_per_page = PAGE_SIZE >> blkbits;
159
160         /*
161          * Map all the blocks into the extent list.  This code doesn't try
162          * to be very smart.
163          */
164         probe_block = 0;
165         page_no = 0;
166         last_block = i_size_read(inode) >> blkbits;
167         while ((probe_block + blocks_per_page) <= last_block &&
168                         page_no < sis->max) {
169                 unsigned block_in_page;
170                 sector_t first_block;
171
172                 cond_resched();
173
174                 first_block = bmap(inode, probe_block);
175                 if (first_block == 0)
176                         goto bad_bmap;
177
178                 /*
179                  * It must be PAGE_SIZE aligned on-disk
180                  */
181                 if (first_block & (blocks_per_page - 1)) {
182                         probe_block++;
183                         goto reprobe;
184                 }
185
186                 for (block_in_page = 1; block_in_page < blocks_per_page;
187                                         block_in_page++) {
188                         sector_t block;
189
190                         block = bmap(inode, probe_block + block_in_page);
191                         if (block == 0)
192                                 goto bad_bmap;
193                         if (block != first_block + block_in_page) {
194                                 /* Discontiguity */
195                                 probe_block++;
196                                 goto reprobe;
197                         }
198                 }
199
200                 first_block >>= (PAGE_SHIFT - blkbits);
201                 if (page_no) {  /* exclude the header page */
202                         if (first_block < lowest_block)
203                                 lowest_block = first_block;
204                         if (first_block > highest_block)
205                                 highest_block = first_block;
206                 }
207
208                 /*
209                  * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
210                  */
211                 ret = add_swap_extent(sis, page_no, 1, first_block);
212                 if (ret < 0)
213                         goto out;
214                 nr_extents += ret;
215                 page_no++;
216                 probe_block += blocks_per_page;
217 reprobe:
218                 continue;
219         }
220         ret = nr_extents;
221         *span = 1 + highest_block - lowest_block;
222         if (page_no == 0)
223                 page_no = 1;    /* force Empty message */
224         sis->max = page_no;
225         sis->pages = page_no - 1;
226         sis->highest_bit = page_no - 1;
227 out:
228         return ret;
229 bad_bmap:
230         pr_err("swapon: swapfile has holes\n");
231         ret = -EINVAL;
232         goto out;
233 }
234
235 /*
236  * We may have stale swap cache pages in memory: notice
237  * them here and get rid of the unnecessary final write.
238  */
239 int swap_writepage(struct page *page, struct writeback_control *wbc)
240 {
241         int ret = 0;
242
243         if (try_to_free_swap(page)) {
244                 unlock_page(page);
245                 goto out;
246         }
247         if (frontswap_store(page) == 0) {
248                 set_page_writeback(page);
249                 unlock_page(page);
250                 end_page_writeback(page);
251                 goto out;
252         }
253         ret = __swap_writepage(page, wbc, end_swap_bio_write);
254 out:
255         return ret;
256 }
257
258 static sector_t swap_page_sector(struct page *page)
259 {
260         return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
261 }
262
263 int __swap_writepage(struct page *page, struct writeback_control *wbc,
264                 bio_end_io_t end_write_func)
265 {
266         struct bio *bio;
267         int ret;
268         struct swap_info_struct *sis = page_swap_info(page);
269
270         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
271         if (sis->flags & SWP_FILE) {
272                 struct kiocb kiocb;
273                 struct file *swap_file = sis->swap_file;
274                 struct address_space *mapping = swap_file->f_mapping;
275                 struct bio_vec bv = {
276                         .bv_page = page,
277                         .bv_len  = PAGE_SIZE,
278                         .bv_offset = 0
279                 };
280                 struct iov_iter from;
281
282                 iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
283                 init_sync_kiocb(&kiocb, swap_file);
284                 kiocb.ki_pos = page_file_offset(page);
285
286                 set_page_writeback(page);
287                 unlock_page(page);
288                 ret = mapping->a_ops->direct_IO(&kiocb, &from);
289                 if (ret == PAGE_SIZE) {
290                         count_vm_event(PSWPOUT);
291                         ret = 0;
292                 } else {
293                         /*
294                          * In the case of swap-over-nfs, this can be a
295                          * temporary failure if the system has limited
296                          * memory for allocating transmit buffers.
297                          * Mark the page dirty and avoid
298                          * rotate_reclaimable_page but rate-limit the
299                          * messages but do not flag PageError like
300                          * the normal direct-to-bio case as it could
301                          * be temporary.
302                          */
303                         set_page_dirty(page);
304                         ClearPageReclaim(page);
305                         pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
306                                            page_file_offset(page));
307                 }
308                 end_page_writeback(page);
309                 return ret;
310         }
311
312         ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
313         if (!ret) {
314                 count_vm_event(PSWPOUT);
315                 return 0;
316         }
317
318         ret = 0;
319         bio = get_swap_bio(GFP_NOIO, page, end_write_func);
320         if (bio == NULL) {
321                 set_page_dirty(page);
322                 unlock_page(page);
323                 ret = -ENOMEM;
324                 goto out;
325         }
326         bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
327         count_vm_event(PSWPOUT);
328         set_page_writeback(page);
329         unlock_page(page);
330         submit_bio(bio);
331 out:
332         return ret;
333 }
334
335 int swap_readpage(struct page *page, bool do_poll)
336 {
337         struct bio *bio;
338         int ret = 0;
339         struct swap_info_struct *sis = page_swap_info(page);
340         blk_qc_t qc;
341         struct block_device *bdev;
342
343         VM_BUG_ON_PAGE(!PageSwapCache(page), page);
344         VM_BUG_ON_PAGE(!PageLocked(page), page);
345         VM_BUG_ON_PAGE(PageUptodate(page), page);
346         if (frontswap_load(page) == 0) {
347                 SetPageUptodate(page);
348                 unlock_page(page);
349                 goto out;
350         }
351
352         if (sis->flags & SWP_FILE) {
353                 struct file *swap_file = sis->swap_file;
354                 struct address_space *mapping = swap_file->f_mapping;
355
356                 ret = mapping->a_ops->readpage(swap_file, page);
357                 if (!ret)
358                         count_vm_event(PSWPIN);
359                 return ret;
360         }
361
362         ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
363         if (!ret) {
364                 if (trylock_page(page)) {
365                         swap_slot_free_notify(page);
366                         unlock_page(page);
367                 }
368
369                 count_vm_event(PSWPIN);
370                 return 0;
371         }
372
373         ret = 0;
374         bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
375         if (bio == NULL) {
376                 unlock_page(page);
377                 ret = -ENOMEM;
378                 goto out;
379         }
380         bdev = bio->bi_bdev;
381         bio->bi_private = current;
382         bio_set_op_attrs(bio, REQ_OP_READ, 0);
383         count_vm_event(PSWPIN);
384         bio_get(bio);
385         qc = submit_bio(bio);
386         while (do_poll) {
387                 set_current_state(TASK_UNINTERRUPTIBLE);
388                 if (!READ_ONCE(bio->bi_private))
389                         break;
390
391                 if (!blk_mq_poll(bdev_get_queue(bdev), qc))
392                         break;
393         }
394         __set_current_state(TASK_RUNNING);
395         bio_put(bio);
396
397 out:
398         return ret;
399 }
400
401 int swap_set_page_dirty(struct page *page)
402 {
403         struct swap_info_struct *sis = page_swap_info(page);
404
405         if (sis->flags & SWP_FILE) {
406                 struct address_space *mapping = sis->swap_file->f_mapping;
407
408                 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
409                 return mapping->a_ops->set_page_dirty(page);
410         } else {
411                 return __set_page_dirty_no_writeback(page);
412         }
413 }