2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
109 * Array of node states.
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
119 [N_MEMORY] = { { [0] = 1UL } },
120 [N_CPU] = { { [0] = 1UL } },
123 EXPORT_SYMBOL(node_states);
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
143 static inline int get_pcppage_migratetype(struct page *page)
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150 page->index = migratetype;
153 #ifdef CONFIG_PM_SLEEP
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
163 static gfp_t saved_gfp_mask;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&pm_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&pm_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
194 static void __free_pages_ok(struct page *page, unsigned int order);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
208 #ifdef CONFIG_ZONE_DMA
211 #ifdef CONFIG_ZONE_DMA32
214 #ifdef CONFIG_HIGHMEM
220 EXPORT_SYMBOL(totalram_pages);
222 static char * const zone_names[MAX_NR_ZONES] = {
223 #ifdef CONFIG_ZONE_DMA
226 #ifdef CONFIG_ZONE_DMA32
230 #ifdef CONFIG_HIGHMEM
234 #ifdef CONFIG_ZONE_DEVICE
239 char * const migratetype_names[MIGRATE_TYPES] = {
247 #ifdef CONFIG_MEMORY_ISOLATION
252 compound_page_dtor * const compound_page_dtors[] = {
255 #ifdef CONFIG_HUGETLB_PAGE
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 int min_free_kbytes = 1024;
264 int user_min_free_kbytes = -1;
265 int watermark_scale_factor = 10;
267 static unsigned long __meminitdata nr_kernel_pages;
268 static unsigned long __meminitdata nr_all_pages;
269 static unsigned long __meminitdata dma_reserve;
271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __initdata required_kernelcore;
275 static unsigned long __initdata required_movablecore;
276 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
277 static bool mirrored_kernelcore;
279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281 EXPORT_SYMBOL(movable_zone);
282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
285 int nr_node_ids __read_mostly = MAX_NUMNODES;
286 int nr_online_nodes __read_mostly = 1;
287 EXPORT_SYMBOL(nr_node_ids);
288 EXPORT_SYMBOL(nr_online_nodes);
291 int page_group_by_mobility_disabled __read_mostly;
293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
296 * Determine how many pages need to be initialized durig early boot
297 * (non-deferred initialization).
298 * The value of first_deferred_pfn will be set later, once non-deferred pages
299 * are initialized, but for now set it ULONG_MAX.
301 static inline void reset_deferred_meminit(pg_data_t *pgdat)
303 phys_addr_t start_addr, end_addr;
304 unsigned long max_pgcnt;
305 unsigned long reserved;
308 * Initialise at least 2G of a node but also take into account that
309 * two large system hashes that can take up 1GB for 0.25TB/node.
311 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
312 (pgdat->node_spanned_pages >> 8));
315 * Compensate the all the memblock reservations (e.g. crash kernel)
316 * from the initial estimation to make sure we will initialize enough
319 start_addr = PFN_PHYS(pgdat->node_start_pfn);
320 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
321 reserved = memblock_reserved_memory_within(start_addr, end_addr);
322 max_pgcnt += PHYS_PFN(reserved);
324 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
325 pgdat->first_deferred_pfn = ULONG_MAX;
328 /* Returns true if the struct page for the pfn is uninitialised */
329 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
331 int nid = early_pfn_to_nid(pfn);
333 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
340 * Returns false when the remaining initialisation should be deferred until
341 * later in the boot cycle when it can be parallelised.
343 static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
347 /* Always populate low zones for address-contrained allocations */
348 if (zone_end < pgdat_end_pfn(pgdat))
351 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
352 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
353 pgdat->first_deferred_pfn = pfn;
360 static inline void reset_deferred_meminit(pg_data_t *pgdat)
364 static inline bool early_page_uninitialised(unsigned long pfn)
369 static inline bool update_defer_init(pg_data_t *pgdat,
370 unsigned long pfn, unsigned long zone_end,
371 unsigned long *nr_initialised)
377 /* Return a pointer to the bitmap storing bits affecting a block of pages */
378 static inline unsigned long *get_pageblock_bitmap(struct page *page,
381 #ifdef CONFIG_SPARSEMEM
382 return __pfn_to_section(pfn)->pageblock_flags;
384 return page_zone(page)->pageblock_flags;
385 #endif /* CONFIG_SPARSEMEM */
388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
390 #ifdef CONFIG_SPARSEMEM
391 pfn &= (PAGES_PER_SECTION-1);
392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
394 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
396 #endif /* CONFIG_SPARSEMEM */
400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401 * @page: The page within the block of interest
402 * @pfn: The target page frame number
403 * @end_bitidx: The last bit of interest to retrieve
404 * @mask: mask of bits that the caller is interested in
406 * Return: pageblock_bits flags
408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
410 unsigned long end_bitidx,
413 unsigned long *bitmap;
414 unsigned long bitidx, word_bitidx;
417 bitmap = get_pageblock_bitmap(page, pfn);
418 bitidx = pfn_to_bitidx(page, pfn);
419 word_bitidx = bitidx / BITS_PER_LONG;
420 bitidx &= (BITS_PER_LONG-1);
422 word = bitmap[word_bitidx];
423 bitidx += end_bitidx;
424 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
428 unsigned long end_bitidx,
431 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
436 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441 * @page: The page within the block of interest
442 * @flags: The flags to set
443 * @pfn: The target page frame number
444 * @end_bitidx: The last bit of interest
445 * @mask: mask of bits that the caller is interested in
447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
449 unsigned long end_bitidx,
452 unsigned long *bitmap;
453 unsigned long bitidx, word_bitidx;
454 unsigned long old_word, word;
456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
458 bitmap = get_pageblock_bitmap(page, pfn);
459 bitidx = pfn_to_bitidx(page, pfn);
460 word_bitidx = bitidx / BITS_PER_LONG;
461 bitidx &= (BITS_PER_LONG-1);
463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
465 bitidx += end_bitidx;
466 mask <<= (BITS_PER_LONG - bitidx - 1);
467 flags <<= (BITS_PER_LONG - bitidx - 1);
469 word = READ_ONCE(bitmap[word_bitidx]);
471 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
472 if (word == old_word)
478 void set_pageblock_migratetype(struct page *page, int migratetype)
480 if (unlikely(page_group_by_mobility_disabled &&
481 migratetype < MIGRATE_PCPTYPES))
482 migratetype = MIGRATE_UNMOVABLE;
484 set_pageblock_flags_group(page, (unsigned long)migratetype,
485 PB_migrate, PB_migrate_end);
488 #ifdef CONFIG_DEBUG_VM
489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
493 unsigned long pfn = page_to_pfn(page);
494 unsigned long sp, start_pfn;
497 seq = zone_span_seqbegin(zone);
498 start_pfn = zone->zone_start_pfn;
499 sp = zone->spanned_pages;
500 if (!zone_spans_pfn(zone, pfn))
502 } while (zone_span_seqretry(zone, seq));
505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 pfn, zone_to_nid(zone), zone->name,
507 start_pfn, start_pfn + sp);
512 static int page_is_consistent(struct zone *zone, struct page *page)
514 if (!pfn_valid_within(page_to_pfn(page)))
516 if (zone != page_zone(page))
522 * Temporary debugging check for pages not lying within a given zone.
524 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
526 if (page_outside_zone_boundaries(zone, page))
528 if (!page_is_consistent(zone, page))
534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
540 static void bad_page(struct page *page, const char *reason,
541 unsigned long bad_flags)
543 static unsigned long resume;
544 static unsigned long nr_shown;
545 static unsigned long nr_unshown;
548 * Allow a burst of 60 reports, then keep quiet for that minute;
549 * or allow a steady drip of one report per second.
551 if (nr_shown == 60) {
552 if (time_before(jiffies, resume)) {
558 "BUG: Bad page state: %lu messages suppressed\n",
565 resume = jiffies + 60 * HZ;
567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
568 current->comm, page_to_pfn(page));
569 __dump_page(page, reason);
570 bad_flags &= page->flags;
572 pr_alert("bad because of flags: %#lx(%pGp)\n",
573 bad_flags, &bad_flags);
574 dump_page_owner(page);
579 /* Leave bad fields for debug, except PageBuddy could make trouble */
580 page_mapcount_reset(page); /* remove PageBuddy */
581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
585 * Higher-order pages are called "compound pages". They are structured thusly:
587 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
592 * The first tail page's ->compound_dtor holds the offset in array of compound
593 * page destructors. See compound_page_dtors.
595 * The first tail page's ->compound_order holds the order of allocation.
596 * This usage means that zero-order pages may not be compound.
599 void free_compound_page(struct page *page)
601 __free_pages_ok(page, compound_order(page));
604 void prep_compound_page(struct page *page, unsigned int order)
607 int nr_pages = 1 << order;
609 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
610 set_compound_order(page, order);
612 for (i = 1; i < nr_pages; i++) {
613 struct page *p = page + i;
614 set_page_count(p, 0);
615 p->mapping = TAIL_MAPPING;
616 set_compound_head(p, page);
618 atomic_set(compound_mapcount_ptr(page), -1);
621 #ifdef CONFIG_DEBUG_PAGEALLOC
622 unsigned int _debug_guardpage_minorder;
623 bool _debug_pagealloc_enabled __read_mostly
624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
625 EXPORT_SYMBOL(_debug_pagealloc_enabled);
626 bool _debug_guardpage_enabled __read_mostly;
628 static int __init early_debug_pagealloc(char *buf)
632 return kstrtobool(buf, &_debug_pagealloc_enabled);
634 early_param("debug_pagealloc", early_debug_pagealloc);
636 static bool need_debug_guardpage(void)
638 /* If we don't use debug_pagealloc, we don't need guard page */
639 if (!debug_pagealloc_enabled())
642 if (!debug_guardpage_minorder())
648 static void init_debug_guardpage(void)
650 if (!debug_pagealloc_enabled())
653 if (!debug_guardpage_minorder())
656 _debug_guardpage_enabled = true;
659 struct page_ext_operations debug_guardpage_ops = {
660 .need = need_debug_guardpage,
661 .init = init_debug_guardpage,
664 static int __init debug_guardpage_minorder_setup(char *buf)
668 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
669 pr_err("Bad debug_guardpage_minorder value\n");
672 _debug_guardpage_minorder = res;
673 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
678 static inline bool set_page_guard(struct zone *zone, struct page *page,
679 unsigned int order, int migratetype)
681 struct page_ext *page_ext;
683 if (!debug_guardpage_enabled())
686 if (order >= debug_guardpage_minorder())
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
693 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695 INIT_LIST_HEAD(&page->lru);
696 set_page_private(page, order);
697 /* Guard pages are not available for any usage */
698 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype)
706 struct page_ext *page_ext;
708 if (!debug_guardpage_enabled())
711 page_ext = lookup_page_ext(page);
712 if (unlikely(!page_ext))
715 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
717 set_page_private(page, 0);
718 if (!is_migrate_isolate(migratetype))
719 __mod_zone_freepage_state(zone, (1 << order), migratetype);
722 struct page_ext_operations debug_guardpage_ops;
723 static inline bool set_page_guard(struct zone *zone, struct page *page,
724 unsigned int order, int migratetype) { return false; }
725 static inline void clear_page_guard(struct zone *zone, struct page *page,
726 unsigned int order, int migratetype) {}
729 static inline void set_page_order(struct page *page, unsigned int order)
731 set_page_private(page, order);
732 __SetPageBuddy(page);
735 static inline void rmv_page_order(struct page *page)
737 __ClearPageBuddy(page);
738 set_page_private(page, 0);
742 * This function checks whether a page is free && is the buddy
743 * we can do coalesce a page and its buddy if
744 * (a) the buddy is not in a hole (check before calling!) &&
745 * (b) the buddy is in the buddy system &&
746 * (c) a page and its buddy have the same order &&
747 * (d) a page and its buddy are in the same zone.
749 * For recording whether a page is in the buddy system, we set ->_mapcount
750 * PAGE_BUDDY_MAPCOUNT_VALUE.
751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
752 * serialized by zone->lock.
754 * For recording page's order, we use page_private(page).
756 static inline int page_is_buddy(struct page *page, struct page *buddy,
759 if (page_is_guard(buddy) && page_order(buddy) == order) {
760 if (page_zone_id(page) != page_zone_id(buddy))
763 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768 if (PageBuddy(buddy) && page_order(buddy) == order) {
770 * zone check is done late to avoid uselessly
771 * calculating zone/node ids for pages that could
774 if (page_zone_id(page) != page_zone_id(buddy))
777 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
785 * Freeing function for a buddy system allocator.
787 * The concept of a buddy system is to maintain direct-mapped table
788 * (containing bit values) for memory blocks of various "orders".
789 * The bottom level table contains the map for the smallest allocatable
790 * units of memory (here, pages), and each level above it describes
791 * pairs of units from the levels below, hence, "buddies".
792 * At a high level, all that happens here is marking the table entry
793 * at the bottom level available, and propagating the changes upward
794 * as necessary, plus some accounting needed to play nicely with other
795 * parts of the VM system.
796 * At each level, we keep a list of pages, which are heads of continuous
797 * free pages of length of (1 << order) and marked with _mapcount
798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
800 * So when we are allocating or freeing one, we can derive the state of the
801 * other. That is, if we allocate a small block, and both were
802 * free, the remainder of the region must be split into blocks.
803 * If a block is freed, and its buddy is also free, then this
804 * triggers coalescing into a block of larger size.
809 static inline void __free_one_page(struct page *page,
811 struct zone *zone, unsigned int order,
814 unsigned long combined_pfn;
815 unsigned long uninitialized_var(buddy_pfn);
817 unsigned int max_order;
819 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
821 VM_BUG_ON(!zone_is_initialized(zone));
822 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
824 VM_BUG_ON(migratetype == -1);
825 if (likely(!is_migrate_isolate(migratetype)))
826 __mod_zone_freepage_state(zone, 1 << order, migratetype);
828 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
829 VM_BUG_ON_PAGE(bad_range(zone, page), page);
832 while (order < max_order - 1) {
833 buddy_pfn = __find_buddy_pfn(pfn, order);
834 buddy = page + (buddy_pfn - pfn);
836 if (!pfn_valid_within(buddy_pfn))
838 if (!page_is_buddy(page, buddy, order))
841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
842 * merge with it and move up one order.
844 if (page_is_guard(buddy)) {
845 clear_page_guard(zone, buddy, order, migratetype);
847 list_del(&buddy->lru);
848 zone->free_area[order].nr_free--;
849 rmv_page_order(buddy);
851 combined_pfn = buddy_pfn & pfn;
852 page = page + (combined_pfn - pfn);
856 if (max_order < MAX_ORDER) {
857 /* If we are here, it means order is >= pageblock_order.
858 * We want to prevent merge between freepages on isolate
859 * pageblock and normal pageblock. Without this, pageblock
860 * isolation could cause incorrect freepage or CMA accounting.
862 * We don't want to hit this code for the more frequent
865 if (unlikely(has_isolate_pageblock(zone))) {
868 buddy_pfn = __find_buddy_pfn(pfn, order);
869 buddy = page + (buddy_pfn - pfn);
870 buddy_mt = get_pageblock_migratetype(buddy);
872 if (migratetype != buddy_mt
873 && (is_migrate_isolate(migratetype) ||
874 is_migrate_isolate(buddy_mt)))
878 goto continue_merging;
882 set_page_order(page, order);
885 * If this is not the largest possible page, check if the buddy
886 * of the next-highest order is free. If it is, it's possible
887 * that pages are being freed that will coalesce soon. In case,
888 * that is happening, add the free page to the tail of the list
889 * so it's less likely to be used soon and more likely to be merged
890 * as a higher order page
892 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
893 struct page *higher_page, *higher_buddy;
894 combined_pfn = buddy_pfn & pfn;
895 higher_page = page + (combined_pfn - pfn);
896 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
897 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
898 if (pfn_valid_within(buddy_pfn) &&
899 page_is_buddy(higher_page, higher_buddy, order + 1)) {
900 list_add_tail(&page->lru,
901 &zone->free_area[order].free_list[migratetype]);
906 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
908 zone->free_area[order].nr_free++;
912 * A bad page could be due to a number of fields. Instead of multiple branches,
913 * try and check multiple fields with one check. The caller must do a detailed
914 * check if necessary.
916 static inline bool page_expected_state(struct page *page,
917 unsigned long check_flags)
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
922 if (unlikely((unsigned long)page->mapping |
923 page_ref_count(page) |
925 (unsigned long)page->mem_cgroup |
927 (page->flags & check_flags)))
933 static void free_pages_check_bad(struct page *page)
935 const char *bad_reason;
936 unsigned long bad_flags;
941 if (unlikely(atomic_read(&page->_mapcount) != -1))
942 bad_reason = "nonzero mapcount";
943 if (unlikely(page->mapping != NULL))
944 bad_reason = "non-NULL mapping";
945 if (unlikely(page_ref_count(page) != 0))
946 bad_reason = "nonzero _refcount";
947 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
948 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
952 if (unlikely(page->mem_cgroup))
953 bad_reason = "page still charged to cgroup";
955 bad_page(page, bad_reason, bad_flags);
958 static inline int free_pages_check(struct page *page)
960 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
963 /* Something has gone sideways, find it */
964 free_pages_check_bad(page);
968 static int free_tail_pages_check(struct page *head_page, struct page *page)
973 * We rely page->lru.next never has bit 0 set, unless the page
974 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
976 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
978 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
982 switch (page - head_page) {
984 /* the first tail page: ->mapping is compound_mapcount() */
985 if (unlikely(compound_mapcount(page))) {
986 bad_page(page, "nonzero compound_mapcount", 0);
992 * the second tail page: ->mapping is
993 * page_deferred_list().next -- ignore value.
997 if (page->mapping != TAIL_MAPPING) {
998 bad_page(page, "corrupted mapping in tail page", 0);
1003 if (unlikely(!PageTail(page))) {
1004 bad_page(page, "PageTail not set", 0);
1007 if (unlikely(compound_head(page) != head_page)) {
1008 bad_page(page, "compound_head not consistent", 0);
1013 page->mapping = NULL;
1014 clear_compound_head(page);
1018 static __always_inline bool free_pages_prepare(struct page *page,
1019 unsigned int order, bool check_free)
1023 VM_BUG_ON_PAGE(PageTail(page), page);
1025 trace_mm_page_free(page, order);
1028 * Check tail pages before head page information is cleared to
1029 * avoid checking PageCompound for order-0 pages.
1031 if (unlikely(order)) {
1032 bool compound = PageCompound(page);
1035 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1038 ClearPageDoubleMap(page);
1039 for (i = 1; i < (1 << order); i++) {
1041 bad += free_tail_pages_check(page, page + i);
1042 if (unlikely(free_pages_check(page + i))) {
1046 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1049 if (PageMappingFlags(page))
1050 page->mapping = NULL;
1051 if (memcg_kmem_enabled() && PageKmemcg(page))
1052 memcg_kmem_uncharge(page, order);
1054 bad += free_pages_check(page);
1058 page_cpupid_reset_last(page);
1059 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1060 reset_page_owner(page, order);
1062 if (!PageHighMem(page)) {
1063 debug_check_no_locks_freed(page_address(page),
1064 PAGE_SIZE << order);
1065 debug_check_no_obj_freed(page_address(page),
1066 PAGE_SIZE << order);
1068 arch_free_page(page, order);
1069 kernel_poison_pages(page, 1 << order, 0);
1070 kernel_map_pages(page, 1 << order, 0);
1071 kasan_free_pages(page, order);
1076 #ifdef CONFIG_DEBUG_VM
1077 static inline bool free_pcp_prepare(struct page *page)
1079 return free_pages_prepare(page, 0, true);
1082 static inline bool bulkfree_pcp_prepare(struct page *page)
1087 static bool free_pcp_prepare(struct page *page)
1089 return free_pages_prepare(page, 0, false);
1092 static bool bulkfree_pcp_prepare(struct page *page)
1094 return free_pages_check(page);
1096 #endif /* CONFIG_DEBUG_VM */
1099 * Frees a number of pages from the PCP lists
1100 * Assumes all pages on list are in same zone, and of same order.
1101 * count is the number of pages to free.
1103 * If the zone was previously in an "all pages pinned" state then look to
1104 * see if this freeing clears that state.
1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107 * pinned" detection logic.
1109 static void free_pcppages_bulk(struct zone *zone, int count,
1110 struct per_cpu_pages *pcp)
1112 int migratetype = 0;
1114 bool isolated_pageblocks;
1116 spin_lock(&zone->lock);
1117 isolated_pageblocks = has_isolate_pageblock(zone);
1121 struct list_head *list;
1124 * Remove pages from lists in a round-robin fashion. A
1125 * batch_free count is maintained that is incremented when an
1126 * empty list is encountered. This is so more pages are freed
1127 * off fuller lists instead of spinning excessively around empty
1132 if (++migratetype == MIGRATE_PCPTYPES)
1134 list = &pcp->lists[migratetype];
1135 } while (list_empty(list));
1137 /* This is the only non-empty list. Free them all. */
1138 if (batch_free == MIGRATE_PCPTYPES)
1142 int mt; /* migratetype of the to-be-freed page */
1144 page = list_last_entry(list, struct page, lru);
1145 /* must delete as __free_one_page list manipulates */
1146 list_del(&page->lru);
1148 mt = get_pcppage_migratetype(page);
1149 /* MIGRATE_ISOLATE page should not go to pcplists */
1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1151 /* Pageblock could have been isolated meanwhile */
1152 if (unlikely(isolated_pageblocks))
1153 mt = get_pageblock_migratetype(page);
1155 if (bulkfree_pcp_prepare(page))
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1160 } while (--count && --batch_free && !list_empty(list));
1162 spin_unlock(&zone->lock);
1165 static void free_one_page(struct zone *zone,
1166 struct page *page, unsigned long pfn,
1170 spin_lock(&zone->lock);
1171 if (unlikely(has_isolate_pageblock(zone) ||
1172 is_migrate_isolate(migratetype))) {
1173 migratetype = get_pfnblock_migratetype(page, pfn);
1175 __free_one_page(page, pfn, zone, order, migratetype);
1176 spin_unlock(&zone->lock);
1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1180 unsigned long zone, int nid)
1182 mm_zero_struct_page(page);
1183 set_page_links(page, zone, nid, pfn);
1184 init_page_count(page);
1185 page_mapcount_reset(page);
1186 page_cpupid_reset_last(page);
1188 INIT_LIST_HEAD(&page->lru);
1189 #ifdef WANT_PAGE_VIRTUAL
1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 if (!is_highmem_idx(zone))
1192 set_page_address(page, __va(pfn << PAGE_SHIFT));
1196 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1199 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1203 static void __meminit init_reserved_page(unsigned long pfn)
1208 if (!early_page_uninitialised(pfn))
1211 nid = early_pfn_to_nid(pfn);
1212 pgdat = NODE_DATA(nid);
1214 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1215 struct zone *zone = &pgdat->node_zones[zid];
1217 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1220 __init_single_pfn(pfn, zid, nid);
1223 static inline void init_reserved_page(unsigned long pfn)
1226 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1229 * Initialised pages do not have PageReserved set. This function is
1230 * called for each range allocated by the bootmem allocator and
1231 * marks the pages PageReserved. The remaining valid pages are later
1232 * sent to the buddy page allocator.
1234 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1236 unsigned long start_pfn = PFN_DOWN(start);
1237 unsigned long end_pfn = PFN_UP(end);
1239 for (; start_pfn < end_pfn; start_pfn++) {
1240 if (pfn_valid(start_pfn)) {
1241 struct page *page = pfn_to_page(start_pfn);
1243 init_reserved_page(start_pfn);
1245 /* Avoid false-positive PageTail() */
1246 INIT_LIST_HEAD(&page->lru);
1248 SetPageReserved(page);
1253 static void __free_pages_ok(struct page *page, unsigned int order)
1255 unsigned long flags;
1257 unsigned long pfn = page_to_pfn(page);
1259 if (!free_pages_prepare(page, order, true))
1262 migratetype = get_pfnblock_migratetype(page, pfn);
1263 local_irq_save(flags);
1264 __count_vm_events(PGFREE, 1 << order);
1265 free_one_page(page_zone(page), page, pfn, order, migratetype);
1266 local_irq_restore(flags);
1269 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1271 unsigned int nr_pages = 1 << order;
1272 struct page *p = page;
1276 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1278 __ClearPageReserved(p);
1279 set_page_count(p, 0);
1281 __ClearPageReserved(p);
1282 set_page_count(p, 0);
1284 page_zone(page)->managed_pages += nr_pages;
1285 set_page_refcounted(page);
1286 __free_pages(page, order);
1289 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1290 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1292 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1294 int __meminit early_pfn_to_nid(unsigned long pfn)
1296 static DEFINE_SPINLOCK(early_pfn_lock);
1299 spin_lock(&early_pfn_lock);
1300 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1302 nid = first_online_node;
1303 spin_unlock(&early_pfn_lock);
1309 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1310 static inline bool __meminit __maybe_unused
1311 meminit_pfn_in_nid(unsigned long pfn, int node,
1312 struct mminit_pfnnid_cache *state)
1316 nid = __early_pfn_to_nid(pfn, state);
1317 if (nid >= 0 && nid != node)
1322 /* Only safe to use early in boot when initialisation is single-threaded */
1323 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1325 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1330 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1334 static inline bool __meminit __maybe_unused
1335 meminit_pfn_in_nid(unsigned long pfn, int node,
1336 struct mminit_pfnnid_cache *state)
1343 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1346 if (early_page_uninitialised(pfn))
1348 return __free_pages_boot_core(page, order);
1352 * Check that the whole (or subset of) a pageblock given by the interval of
1353 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1354 * with the migration of free compaction scanner. The scanners then need to
1355 * use only pfn_valid_within() check for arches that allow holes within
1358 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1360 * It's possible on some configurations to have a setup like node0 node1 node0
1361 * i.e. it's possible that all pages within a zones range of pages do not
1362 * belong to a single zone. We assume that a border between node0 and node1
1363 * can occur within a single pageblock, but not a node0 node1 node0
1364 * interleaving within a single pageblock. It is therefore sufficient to check
1365 * the first and last page of a pageblock and avoid checking each individual
1366 * page in a pageblock.
1368 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1369 unsigned long end_pfn, struct zone *zone)
1371 struct page *start_page;
1372 struct page *end_page;
1374 /* end_pfn is one past the range we are checking */
1377 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1380 start_page = pfn_to_online_page(start_pfn);
1384 if (page_zone(start_page) != zone)
1387 end_page = pfn_to_page(end_pfn);
1389 /* This gives a shorter code than deriving page_zone(end_page) */
1390 if (page_zone_id(start_page) != page_zone_id(end_page))
1396 void set_zone_contiguous(struct zone *zone)
1398 unsigned long block_start_pfn = zone->zone_start_pfn;
1399 unsigned long block_end_pfn;
1401 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1402 for (; block_start_pfn < zone_end_pfn(zone);
1403 block_start_pfn = block_end_pfn,
1404 block_end_pfn += pageblock_nr_pages) {
1406 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1408 if (!__pageblock_pfn_to_page(block_start_pfn,
1409 block_end_pfn, zone))
1413 /* We confirm that there is no hole */
1414 zone->contiguous = true;
1417 void clear_zone_contiguous(struct zone *zone)
1419 zone->contiguous = false;
1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1423 static void __init deferred_free_range(unsigned long pfn,
1424 unsigned long nr_pages)
1432 page = pfn_to_page(pfn);
1434 /* Free a large naturally-aligned chunk if possible */
1435 if (nr_pages == pageblock_nr_pages &&
1436 (pfn & (pageblock_nr_pages - 1)) == 0) {
1437 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1438 __free_pages_boot_core(page, pageblock_order);
1442 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1443 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1444 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1445 __free_pages_boot_core(page, 0);
1449 /* Completion tracking for deferred_init_memmap() threads */
1450 static atomic_t pgdat_init_n_undone __initdata;
1451 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1453 static inline void __init pgdat_init_report_one_done(void)
1455 if (atomic_dec_and_test(&pgdat_init_n_undone))
1456 complete(&pgdat_init_all_done_comp);
1460 * Helper for deferred_init_range, free the given range, reset the counters, and
1461 * return number of pages freed.
1463 static inline unsigned long __init __def_free(unsigned long *nr_free,
1464 unsigned long *free_base_pfn,
1467 unsigned long nr = *nr_free;
1469 deferred_free_range(*free_base_pfn, nr);
1477 static unsigned long __init deferred_init_range(int nid, int zid,
1478 unsigned long start_pfn,
1479 unsigned long end_pfn)
1481 struct mminit_pfnnid_cache nid_init_state = { };
1482 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1483 unsigned long free_base_pfn = 0;
1484 unsigned long nr_pages = 0;
1485 unsigned long nr_free = 0;
1486 struct page *page = NULL;
1490 * First we check if pfn is valid on architectures where it is possible
1491 * to have holes within pageblock_nr_pages. On systems where it is not
1492 * possible, this function is optimized out.
1494 * Then, we check if a current large page is valid by only checking the
1495 * validity of the head pfn.
1497 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1498 * within a node: a pfn is between start and end of a node, but does not
1499 * belong to this memory node.
1501 * Finally, we minimize pfn page lookups and scheduler checks by
1502 * performing it only once every pageblock_nr_pages.
1504 * We do it in two loops: first we initialize struct page, than free to
1505 * buddy allocator, becuse while we are freeing pages we can access
1506 * pages that are ahead (computing buddy page in __free_one_page()).
1508 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1509 if (!pfn_valid_within(pfn))
1511 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1512 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1513 if (page && (pfn & nr_pgmask))
1516 page = pfn_to_page(pfn);
1517 __init_single_page(page, pfn, zid, nid);
1524 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1525 if (!pfn_valid_within(pfn)) {
1526 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1527 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1528 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1529 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1530 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1531 } else if (page && (pfn & nr_pgmask)) {
1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1536 page = pfn_to_page(pfn);
1537 free_base_pfn = pfn;
1542 /* Free the last block of pages to allocator */
1543 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1548 /* Initialise remaining memory on a node */
1549 static int __init deferred_init_memmap(void *data)
1551 pg_data_t *pgdat = data;
1552 int nid = pgdat->node_id;
1553 unsigned long start = jiffies;
1554 unsigned long nr_pages = 0;
1555 unsigned long spfn, epfn;
1556 phys_addr_t spa, epa;
1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1563 if (first_init_pfn == ULONG_MAX) {
1564 pgdat_init_report_one_done();
1568 /* Bind memory initialisation thread to a local node if possible */
1569 if (!cpumask_empty(cpumask))
1570 set_cpus_allowed_ptr(current, cpumask);
1572 /* Sanity check boundaries */
1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1575 pgdat->first_deferred_pfn = ULONG_MAX;
1577 /* Only the highest zone is deferred so find it */
1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 zone = pgdat->node_zones + zid;
1580 if (first_init_pfn < zone_end_pfn(zone))
1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1585 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1586 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1587 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1588 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1591 /* Sanity check that the next zone really is unpopulated */
1592 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1594 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1595 jiffies_to_msecs(jiffies - start));
1597 pgdat_init_report_one_done();
1600 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1602 void __init page_alloc_init_late(void)
1606 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1609 /* There will be num_node_state(N_MEMORY) threads */
1610 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1611 for_each_node_state(nid, N_MEMORY) {
1612 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1615 /* Block until all are initialised */
1616 wait_for_completion(&pgdat_init_all_done_comp);
1618 /* Reinit limits that are based on free pages after the kernel is up */
1619 files_maxfiles_init();
1621 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1622 /* Discard memblock private memory */
1626 for_each_populated_zone(zone)
1627 set_zone_contiguous(zone);
1631 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1632 void __init init_cma_reserved_pageblock(struct page *page)
1634 unsigned i = pageblock_nr_pages;
1635 struct page *p = page;
1638 __ClearPageReserved(p);
1639 set_page_count(p, 0);
1642 set_pageblock_migratetype(page, MIGRATE_CMA);
1644 if (pageblock_order >= MAX_ORDER) {
1645 i = pageblock_nr_pages;
1648 set_page_refcounted(p);
1649 __free_pages(p, MAX_ORDER - 1);
1650 p += MAX_ORDER_NR_PAGES;
1651 } while (i -= MAX_ORDER_NR_PAGES);
1653 set_page_refcounted(page);
1654 __free_pages(page, pageblock_order);
1657 adjust_managed_page_count(page, pageblock_nr_pages);
1662 * The order of subdivision here is critical for the IO subsystem.
1663 * Please do not alter this order without good reasons and regression
1664 * testing. Specifically, as large blocks of memory are subdivided,
1665 * the order in which smaller blocks are delivered depends on the order
1666 * they're subdivided in this function. This is the primary factor
1667 * influencing the order in which pages are delivered to the IO
1668 * subsystem according to empirical testing, and this is also justified
1669 * by considering the behavior of a buddy system containing a single
1670 * large block of memory acted on by a series of small allocations.
1671 * This behavior is a critical factor in sglist merging's success.
1675 static inline void expand(struct zone *zone, struct page *page,
1676 int low, int high, struct free_area *area,
1679 unsigned long size = 1 << high;
1681 while (high > low) {
1685 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1688 * Mark as guard pages (or page), that will allow to
1689 * merge back to allocator when buddy will be freed.
1690 * Corresponding page table entries will not be touched,
1691 * pages will stay not present in virtual address space
1693 if (set_page_guard(zone, &page[size], high, migratetype))
1696 list_add(&page[size].lru, &area->free_list[migratetype]);
1698 set_page_order(&page[size], high);
1702 static void check_new_page_bad(struct page *page)
1704 const char *bad_reason = NULL;
1705 unsigned long bad_flags = 0;
1707 if (unlikely(atomic_read(&page->_mapcount) != -1))
1708 bad_reason = "nonzero mapcount";
1709 if (unlikely(page->mapping != NULL))
1710 bad_reason = "non-NULL mapping";
1711 if (unlikely(page_ref_count(page) != 0))
1712 bad_reason = "nonzero _count";
1713 if (unlikely(page->flags & __PG_HWPOISON)) {
1714 bad_reason = "HWPoisoned (hardware-corrupted)";
1715 bad_flags = __PG_HWPOISON;
1716 /* Don't complain about hwpoisoned pages */
1717 page_mapcount_reset(page); /* remove PageBuddy */
1720 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1721 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1722 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1725 if (unlikely(page->mem_cgroup))
1726 bad_reason = "page still charged to cgroup";
1728 bad_page(page, bad_reason, bad_flags);
1732 * This page is about to be returned from the page allocator
1734 static inline int check_new_page(struct page *page)
1736 if (likely(page_expected_state(page,
1737 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1740 check_new_page_bad(page);
1744 static inline bool free_pages_prezeroed(void)
1746 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1747 page_poisoning_enabled();
1750 #ifdef CONFIG_DEBUG_VM
1751 static bool check_pcp_refill(struct page *page)
1756 static bool check_new_pcp(struct page *page)
1758 return check_new_page(page);
1761 static bool check_pcp_refill(struct page *page)
1763 return check_new_page(page);
1765 static bool check_new_pcp(struct page *page)
1769 #endif /* CONFIG_DEBUG_VM */
1771 static bool check_new_pages(struct page *page, unsigned int order)
1774 for (i = 0; i < (1 << order); i++) {
1775 struct page *p = page + i;
1777 if (unlikely(check_new_page(p)))
1784 inline void post_alloc_hook(struct page *page, unsigned int order,
1787 set_page_private(page, 0);
1788 set_page_refcounted(page);
1790 arch_alloc_page(page, order);
1791 kernel_map_pages(page, 1 << order, 1);
1792 kernel_poison_pages(page, 1 << order, 1);
1793 kasan_alloc_pages(page, order);
1794 set_page_owner(page, order, gfp_flags);
1797 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1798 unsigned int alloc_flags)
1802 post_alloc_hook(page, order, gfp_flags);
1804 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1805 for (i = 0; i < (1 << order); i++)
1806 clear_highpage(page + i);
1808 if (order && (gfp_flags & __GFP_COMP))
1809 prep_compound_page(page, order);
1812 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1813 * allocate the page. The expectation is that the caller is taking
1814 * steps that will free more memory. The caller should avoid the page
1815 * being used for !PFMEMALLOC purposes.
1817 if (alloc_flags & ALLOC_NO_WATERMARKS)
1818 set_page_pfmemalloc(page);
1820 clear_page_pfmemalloc(page);
1824 * Go through the free lists for the given migratetype and remove
1825 * the smallest available page from the freelists
1827 static __always_inline
1828 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1831 unsigned int current_order;
1832 struct free_area *area;
1835 /* Find a page of the appropriate size in the preferred list */
1836 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1837 area = &(zone->free_area[current_order]);
1838 page = list_first_entry_or_null(&area->free_list[migratetype],
1842 list_del(&page->lru);
1843 rmv_page_order(page);
1845 expand(zone, page, order, current_order, area, migratetype);
1846 set_pcppage_migratetype(page, migratetype);
1855 * This array describes the order lists are fallen back to when
1856 * the free lists for the desirable migrate type are depleted
1858 static int fallbacks[MIGRATE_TYPES][4] = {
1859 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1860 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1861 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1863 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1865 #ifdef CONFIG_MEMORY_ISOLATION
1866 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1871 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1874 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1877 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1878 unsigned int order) { return NULL; }
1882 * Move the free pages in a range to the free lists of the requested type.
1883 * Note that start_page and end_pages are not aligned on a pageblock
1884 * boundary. If alignment is required, use move_freepages_block()
1886 static int move_freepages(struct zone *zone,
1887 struct page *start_page, struct page *end_page,
1888 int migratetype, int *num_movable)
1892 int pages_moved = 0;
1894 #ifndef CONFIG_HOLES_IN_ZONE
1896 * page_zone is not safe to call in this context when
1897 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1898 * anyway as we check zone boundaries in move_freepages_block().
1899 * Remove at a later date when no bug reports exist related to
1900 * grouping pages by mobility
1902 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1908 for (page = start_page; page <= end_page;) {
1909 if (!pfn_valid_within(page_to_pfn(page))) {
1914 /* Make sure we are not inadvertently changing nodes */
1915 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1917 if (!PageBuddy(page)) {
1919 * We assume that pages that could be isolated for
1920 * migration are movable. But we don't actually try
1921 * isolating, as that would be expensive.
1924 (PageLRU(page) || __PageMovable(page)))
1931 order = page_order(page);
1932 list_move(&page->lru,
1933 &zone->free_area[order].free_list[migratetype]);
1935 pages_moved += 1 << order;
1941 int move_freepages_block(struct zone *zone, struct page *page,
1942 int migratetype, int *num_movable)
1944 unsigned long start_pfn, end_pfn;
1945 struct page *start_page, *end_page;
1947 start_pfn = page_to_pfn(page);
1948 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1949 start_page = pfn_to_page(start_pfn);
1950 end_page = start_page + pageblock_nr_pages - 1;
1951 end_pfn = start_pfn + pageblock_nr_pages - 1;
1953 /* Do not cross zone boundaries */
1954 if (!zone_spans_pfn(zone, start_pfn))
1956 if (!zone_spans_pfn(zone, end_pfn))
1959 return move_freepages(zone, start_page, end_page, migratetype,
1963 static void change_pageblock_range(struct page *pageblock_page,
1964 int start_order, int migratetype)
1966 int nr_pageblocks = 1 << (start_order - pageblock_order);
1968 while (nr_pageblocks--) {
1969 set_pageblock_migratetype(pageblock_page, migratetype);
1970 pageblock_page += pageblock_nr_pages;
1975 * When we are falling back to another migratetype during allocation, try to
1976 * steal extra free pages from the same pageblocks to satisfy further
1977 * allocations, instead of polluting multiple pageblocks.
1979 * If we are stealing a relatively large buddy page, it is likely there will
1980 * be more free pages in the pageblock, so try to steal them all. For
1981 * reclaimable and unmovable allocations, we steal regardless of page size,
1982 * as fragmentation caused by those allocations polluting movable pageblocks
1983 * is worse than movable allocations stealing from unmovable and reclaimable
1986 static bool can_steal_fallback(unsigned int order, int start_mt)
1989 * Leaving this order check is intended, although there is
1990 * relaxed order check in next check. The reason is that
1991 * we can actually steal whole pageblock if this condition met,
1992 * but, below check doesn't guarantee it and that is just heuristic
1993 * so could be changed anytime.
1995 if (order >= pageblock_order)
1998 if (order >= pageblock_order / 2 ||
1999 start_mt == MIGRATE_RECLAIMABLE ||
2000 start_mt == MIGRATE_UNMOVABLE ||
2001 page_group_by_mobility_disabled)
2008 * This function implements actual steal behaviour. If order is large enough,
2009 * we can steal whole pageblock. If not, we first move freepages in this
2010 * pageblock to our migratetype and determine how many already-allocated pages
2011 * are there in the pageblock with a compatible migratetype. If at least half
2012 * of pages are free or compatible, we can change migratetype of the pageblock
2013 * itself, so pages freed in the future will be put on the correct free list.
2015 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2016 int start_type, bool whole_block)
2018 unsigned int current_order = page_order(page);
2019 struct free_area *area;
2020 int free_pages, movable_pages, alike_pages;
2023 old_block_type = get_pageblock_migratetype(page);
2026 * This can happen due to races and we want to prevent broken
2027 * highatomic accounting.
2029 if (is_migrate_highatomic(old_block_type))
2032 /* Take ownership for orders >= pageblock_order */
2033 if (current_order >= pageblock_order) {
2034 change_pageblock_range(page, current_order, start_type);
2038 /* We are not allowed to try stealing from the whole block */
2042 free_pages = move_freepages_block(zone, page, start_type,
2045 * Determine how many pages are compatible with our allocation.
2046 * For movable allocation, it's the number of movable pages which
2047 * we just obtained. For other types it's a bit more tricky.
2049 if (start_type == MIGRATE_MOVABLE) {
2050 alike_pages = movable_pages;
2053 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2054 * to MOVABLE pageblock, consider all non-movable pages as
2055 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2056 * vice versa, be conservative since we can't distinguish the
2057 * exact migratetype of non-movable pages.
2059 if (old_block_type == MIGRATE_MOVABLE)
2060 alike_pages = pageblock_nr_pages
2061 - (free_pages + movable_pages);
2066 /* moving whole block can fail due to zone boundary conditions */
2071 * If a sufficient number of pages in the block are either free or of
2072 * comparable migratability as our allocation, claim the whole block.
2074 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2075 page_group_by_mobility_disabled)
2076 set_pageblock_migratetype(page, start_type);
2081 area = &zone->free_area[current_order];
2082 list_move(&page->lru, &area->free_list[start_type]);
2086 * Check whether there is a suitable fallback freepage with requested order.
2087 * If only_stealable is true, this function returns fallback_mt only if
2088 * we can steal other freepages all together. This would help to reduce
2089 * fragmentation due to mixed migratetype pages in one pageblock.
2091 int find_suitable_fallback(struct free_area *area, unsigned int order,
2092 int migratetype, bool only_stealable, bool *can_steal)
2097 if (area->nr_free == 0)
2102 fallback_mt = fallbacks[migratetype][i];
2103 if (fallback_mt == MIGRATE_TYPES)
2106 if (list_empty(&area->free_list[fallback_mt]))
2109 if (can_steal_fallback(order, migratetype))
2112 if (!only_stealable)
2123 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2124 * there are no empty page blocks that contain a page with a suitable order
2126 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2127 unsigned int alloc_order)
2130 unsigned long max_managed, flags;
2133 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2134 * Check is race-prone but harmless.
2136 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2137 if (zone->nr_reserved_highatomic >= max_managed)
2140 spin_lock_irqsave(&zone->lock, flags);
2142 /* Recheck the nr_reserved_highatomic limit under the lock */
2143 if (zone->nr_reserved_highatomic >= max_managed)
2147 mt = get_pageblock_migratetype(page);
2148 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2149 && !is_migrate_cma(mt)) {
2150 zone->nr_reserved_highatomic += pageblock_nr_pages;
2151 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2152 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2156 spin_unlock_irqrestore(&zone->lock, flags);
2160 * Used when an allocation is about to fail under memory pressure. This
2161 * potentially hurts the reliability of high-order allocations when under
2162 * intense memory pressure but failed atomic allocations should be easier
2163 * to recover from than an OOM.
2165 * If @force is true, try to unreserve a pageblock even though highatomic
2166 * pageblock is exhausted.
2168 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2171 struct zonelist *zonelist = ac->zonelist;
2172 unsigned long flags;
2179 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2182 * Preserve at least one pageblock unless memory pressure
2185 if (!force && zone->nr_reserved_highatomic <=
2189 spin_lock_irqsave(&zone->lock, flags);
2190 for (order = 0; order < MAX_ORDER; order++) {
2191 struct free_area *area = &(zone->free_area[order]);
2193 page = list_first_entry_or_null(
2194 &area->free_list[MIGRATE_HIGHATOMIC],
2200 * In page freeing path, migratetype change is racy so
2201 * we can counter several free pages in a pageblock
2202 * in this loop althoug we changed the pageblock type
2203 * from highatomic to ac->migratetype. So we should
2204 * adjust the count once.
2206 if (is_migrate_highatomic_page(page)) {
2208 * It should never happen but changes to
2209 * locking could inadvertently allow a per-cpu
2210 * drain to add pages to MIGRATE_HIGHATOMIC
2211 * while unreserving so be safe and watch for
2214 zone->nr_reserved_highatomic -= min(
2216 zone->nr_reserved_highatomic);
2220 * Convert to ac->migratetype and avoid the normal
2221 * pageblock stealing heuristics. Minimally, the caller
2222 * is doing the work and needs the pages. More
2223 * importantly, if the block was always converted to
2224 * MIGRATE_UNMOVABLE or another type then the number
2225 * of pageblocks that cannot be completely freed
2228 set_pageblock_migratetype(page, ac->migratetype);
2229 ret = move_freepages_block(zone, page, ac->migratetype,
2232 spin_unlock_irqrestore(&zone->lock, flags);
2236 spin_unlock_irqrestore(&zone->lock, flags);
2243 * Try finding a free buddy page on the fallback list and put it on the free
2244 * list of requested migratetype, possibly along with other pages from the same
2245 * block, depending on fragmentation avoidance heuristics. Returns true if
2246 * fallback was found so that __rmqueue_smallest() can grab it.
2248 * The use of signed ints for order and current_order is a deliberate
2249 * deviation from the rest of this file, to make the for loop
2250 * condition simpler.
2252 static __always_inline bool
2253 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2255 struct free_area *area;
2262 * Find the largest available free page in the other list. This roughly
2263 * approximates finding the pageblock with the most free pages, which
2264 * would be too costly to do exactly.
2266 for (current_order = MAX_ORDER - 1; current_order >= order;
2268 area = &(zone->free_area[current_order]);
2269 fallback_mt = find_suitable_fallback(area, current_order,
2270 start_migratetype, false, &can_steal);
2271 if (fallback_mt == -1)
2275 * We cannot steal all free pages from the pageblock and the
2276 * requested migratetype is movable. In that case it's better to
2277 * steal and split the smallest available page instead of the
2278 * largest available page, because even if the next movable
2279 * allocation falls back into a different pageblock than this
2280 * one, it won't cause permanent fragmentation.
2282 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2283 && current_order > order)
2292 for (current_order = order; current_order < MAX_ORDER;
2294 area = &(zone->free_area[current_order]);
2295 fallback_mt = find_suitable_fallback(area, current_order,
2296 start_migratetype, false, &can_steal);
2297 if (fallback_mt != -1)
2302 * This should not happen - we already found a suitable fallback
2303 * when looking for the largest page.
2305 VM_BUG_ON(current_order == MAX_ORDER);
2308 page = list_first_entry(&area->free_list[fallback_mt],
2311 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2313 trace_mm_page_alloc_extfrag(page, order, current_order,
2314 start_migratetype, fallback_mt);
2321 * Do the hard work of removing an element from the buddy allocator.
2322 * Call me with the zone->lock already held.
2324 static __always_inline struct page *
2325 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2330 page = __rmqueue_smallest(zone, order, migratetype);
2331 if (unlikely(!page)) {
2332 if (migratetype == MIGRATE_MOVABLE)
2333 page = __rmqueue_cma_fallback(zone, order);
2335 if (!page && __rmqueue_fallback(zone, order, migratetype))
2339 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2344 * Obtain a specified number of elements from the buddy allocator, all under
2345 * a single hold of the lock, for efficiency. Add them to the supplied list.
2346 * Returns the number of new pages which were placed at *list.
2348 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2349 unsigned long count, struct list_head *list,
2354 spin_lock(&zone->lock);
2355 for (i = 0; i < count; ++i) {
2356 struct page *page = __rmqueue(zone, order, migratetype);
2357 if (unlikely(page == NULL))
2360 if (unlikely(check_pcp_refill(page)))
2364 * Split buddy pages returned by expand() are received here in
2365 * physical page order. The page is added to the tail of
2366 * caller's list. From the callers perspective, the linked list
2367 * is ordered by page number under some conditions. This is
2368 * useful for IO devices that can forward direction from the
2369 * head, thus also in the physical page order. This is useful
2370 * for IO devices that can merge IO requests if the physical
2371 * pages are ordered properly.
2373 list_add_tail(&page->lru, list);
2375 if (is_migrate_cma(get_pcppage_migratetype(page)))
2376 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2381 * i pages were removed from the buddy list even if some leak due
2382 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2383 * on i. Do not confuse with 'alloced' which is the number of
2384 * pages added to the pcp list.
2386 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2387 spin_unlock(&zone->lock);
2393 * Called from the vmstat counter updater to drain pagesets of this
2394 * currently executing processor on remote nodes after they have
2397 * Note that this function must be called with the thread pinned to
2398 * a single processor.
2400 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2402 unsigned long flags;
2403 int to_drain, batch;
2405 local_irq_save(flags);
2406 batch = READ_ONCE(pcp->batch);
2407 to_drain = min(pcp->count, batch);
2409 free_pcppages_bulk(zone, to_drain, pcp);
2410 pcp->count -= to_drain;
2412 local_irq_restore(flags);
2417 * Drain pcplists of the indicated processor and zone.
2419 * The processor must either be the current processor and the
2420 * thread pinned to the current processor or a processor that
2423 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2425 unsigned long flags;
2426 struct per_cpu_pageset *pset;
2427 struct per_cpu_pages *pcp;
2429 local_irq_save(flags);
2430 pset = per_cpu_ptr(zone->pageset, cpu);
2434 free_pcppages_bulk(zone, pcp->count, pcp);
2437 local_irq_restore(flags);
2441 * Drain pcplists of all zones on the indicated processor.
2443 * The processor must either be the current processor and the
2444 * thread pinned to the current processor or a processor that
2447 static void drain_pages(unsigned int cpu)
2451 for_each_populated_zone(zone) {
2452 drain_pages_zone(cpu, zone);
2457 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2459 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2460 * the single zone's pages.
2462 void drain_local_pages(struct zone *zone)
2464 int cpu = smp_processor_id();
2467 drain_pages_zone(cpu, zone);
2472 static void drain_local_pages_wq(struct work_struct *work)
2475 * drain_all_pages doesn't use proper cpu hotplug protection so
2476 * we can race with cpu offline when the WQ can move this from
2477 * a cpu pinned worker to an unbound one. We can operate on a different
2478 * cpu which is allright but we also have to make sure to not move to
2482 drain_local_pages(NULL);
2487 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2489 * When zone parameter is non-NULL, spill just the single zone's pages.
2491 * Note that this can be extremely slow as the draining happens in a workqueue.
2493 void drain_all_pages(struct zone *zone)
2498 * Allocate in the BSS so we wont require allocation in
2499 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2501 static cpumask_t cpus_with_pcps;
2504 * Make sure nobody triggers this path before mm_percpu_wq is fully
2507 if (WARN_ON_ONCE(!mm_percpu_wq))
2510 /* Workqueues cannot recurse */
2511 if (current->flags & PF_WQ_WORKER)
2515 * Do not drain if one is already in progress unless it's specific to
2516 * a zone. Such callers are primarily CMA and memory hotplug and need
2517 * the drain to be complete when the call returns.
2519 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2522 mutex_lock(&pcpu_drain_mutex);
2526 * We don't care about racing with CPU hotplug event
2527 * as offline notification will cause the notified
2528 * cpu to drain that CPU pcps and on_each_cpu_mask
2529 * disables preemption as part of its processing
2531 for_each_online_cpu(cpu) {
2532 struct per_cpu_pageset *pcp;
2534 bool has_pcps = false;
2537 pcp = per_cpu_ptr(zone->pageset, cpu);
2541 for_each_populated_zone(z) {
2542 pcp = per_cpu_ptr(z->pageset, cpu);
2543 if (pcp->pcp.count) {
2551 cpumask_set_cpu(cpu, &cpus_with_pcps);
2553 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2556 for_each_cpu(cpu, &cpus_with_pcps) {
2557 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2558 INIT_WORK(work, drain_local_pages_wq);
2559 queue_work_on(cpu, mm_percpu_wq, work);
2561 for_each_cpu(cpu, &cpus_with_pcps)
2562 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2564 mutex_unlock(&pcpu_drain_mutex);
2567 #ifdef CONFIG_HIBERNATION
2570 * Touch the watchdog for every WD_PAGE_COUNT pages.
2572 #define WD_PAGE_COUNT (128*1024)
2574 void mark_free_pages(struct zone *zone)
2576 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2577 unsigned long flags;
2578 unsigned int order, t;
2581 if (zone_is_empty(zone))
2584 spin_lock_irqsave(&zone->lock, flags);
2586 max_zone_pfn = zone_end_pfn(zone);
2587 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2588 if (pfn_valid(pfn)) {
2589 page = pfn_to_page(pfn);
2591 if (!--page_count) {
2592 touch_nmi_watchdog();
2593 page_count = WD_PAGE_COUNT;
2596 if (page_zone(page) != zone)
2599 if (!swsusp_page_is_forbidden(page))
2600 swsusp_unset_page_free(page);
2603 for_each_migratetype_order(order, t) {
2604 list_for_each_entry(page,
2605 &zone->free_area[order].free_list[t], lru) {
2608 pfn = page_to_pfn(page);
2609 for (i = 0; i < (1UL << order); i++) {
2610 if (!--page_count) {
2611 touch_nmi_watchdog();
2612 page_count = WD_PAGE_COUNT;
2614 swsusp_set_page_free(pfn_to_page(pfn + i));
2618 spin_unlock_irqrestore(&zone->lock, flags);
2620 #endif /* CONFIG_PM */
2622 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2626 if (!free_pcp_prepare(page))
2629 migratetype = get_pfnblock_migratetype(page, pfn);
2630 set_pcppage_migratetype(page, migratetype);
2634 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2636 struct zone *zone = page_zone(page);
2637 struct per_cpu_pages *pcp;
2640 migratetype = get_pcppage_migratetype(page);
2641 __count_vm_event(PGFREE);
2644 * We only track unmovable, reclaimable and movable on pcp lists.
2645 * Free ISOLATE pages back to the allocator because they are being
2646 * offlined but treat HIGHATOMIC as movable pages so we can get those
2647 * areas back if necessary. Otherwise, we may have to free
2648 * excessively into the page allocator
2650 if (migratetype >= MIGRATE_PCPTYPES) {
2651 if (unlikely(is_migrate_isolate(migratetype))) {
2652 free_one_page(zone, page, pfn, 0, migratetype);
2655 migratetype = MIGRATE_MOVABLE;
2658 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2659 list_add(&page->lru, &pcp->lists[migratetype]);
2661 if (pcp->count >= pcp->high) {
2662 unsigned long batch = READ_ONCE(pcp->batch);
2663 free_pcppages_bulk(zone, batch, pcp);
2664 pcp->count -= batch;
2669 * Free a 0-order page
2671 void free_unref_page(struct page *page)
2673 unsigned long flags;
2674 unsigned long pfn = page_to_pfn(page);
2676 if (!free_unref_page_prepare(page, pfn))
2679 local_irq_save(flags);
2680 free_unref_page_commit(page, pfn);
2681 local_irq_restore(flags);
2685 * Free a list of 0-order pages
2687 void free_unref_page_list(struct list_head *list)
2689 struct page *page, *next;
2690 unsigned long flags, pfn;
2692 /* Prepare pages for freeing */
2693 list_for_each_entry_safe(page, next, list, lru) {
2694 pfn = page_to_pfn(page);
2695 if (!free_unref_page_prepare(page, pfn))
2696 list_del(&page->lru);
2697 set_page_private(page, pfn);
2700 local_irq_save(flags);
2701 list_for_each_entry_safe(page, next, list, lru) {
2702 unsigned long pfn = page_private(page);
2704 set_page_private(page, 0);
2705 trace_mm_page_free_batched(page);
2706 free_unref_page_commit(page, pfn);
2708 local_irq_restore(flags);
2712 * split_page takes a non-compound higher-order page, and splits it into
2713 * n (1<<order) sub-pages: page[0..n]
2714 * Each sub-page must be freed individually.
2716 * Note: this is probably too low level an operation for use in drivers.
2717 * Please consult with lkml before using this in your driver.
2719 void split_page(struct page *page, unsigned int order)
2723 VM_BUG_ON_PAGE(PageCompound(page), page);
2724 VM_BUG_ON_PAGE(!page_count(page), page);
2726 for (i = 1; i < (1 << order); i++)
2727 set_page_refcounted(page + i);
2728 split_page_owner(page, order);
2730 EXPORT_SYMBOL_GPL(split_page);
2732 int __isolate_free_page(struct page *page, unsigned int order)
2734 unsigned long watermark;
2738 BUG_ON(!PageBuddy(page));
2740 zone = page_zone(page);
2741 mt = get_pageblock_migratetype(page);
2743 if (!is_migrate_isolate(mt)) {
2745 * Obey watermarks as if the page was being allocated. We can
2746 * emulate a high-order watermark check with a raised order-0
2747 * watermark, because we already know our high-order page
2750 watermark = min_wmark_pages(zone) + (1UL << order);
2751 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2754 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2757 /* Remove page from free list */
2758 list_del(&page->lru);
2759 zone->free_area[order].nr_free--;
2760 rmv_page_order(page);
2763 * Set the pageblock if the isolated page is at least half of a
2766 if (order >= pageblock_order - 1) {
2767 struct page *endpage = page + (1 << order) - 1;
2768 for (; page < endpage; page += pageblock_nr_pages) {
2769 int mt = get_pageblock_migratetype(page);
2770 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2771 && !is_migrate_highatomic(mt))
2772 set_pageblock_migratetype(page,
2778 return 1UL << order;
2782 * Update NUMA hit/miss statistics
2784 * Must be called with interrupts disabled.
2786 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2789 enum numa_stat_item local_stat = NUMA_LOCAL;
2791 /* skip numa counters update if numa stats is disabled */
2792 if (!static_branch_likely(&vm_numa_stat_key))
2795 if (z->node != numa_node_id())
2796 local_stat = NUMA_OTHER;
2798 if (z->node == preferred_zone->node)
2799 __inc_numa_state(z, NUMA_HIT);
2801 __inc_numa_state(z, NUMA_MISS);
2802 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2804 __inc_numa_state(z, local_stat);
2808 /* Remove page from the per-cpu list, caller must protect the list */
2809 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2810 struct per_cpu_pages *pcp,
2811 struct list_head *list)
2816 if (list_empty(list)) {
2817 pcp->count += rmqueue_bulk(zone, 0,
2820 if (unlikely(list_empty(list)))
2824 page = list_first_entry(list, struct page, lru);
2825 list_del(&page->lru);
2827 } while (check_new_pcp(page));
2832 /* Lock and remove page from the per-cpu list */
2833 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2834 struct zone *zone, unsigned int order,
2835 gfp_t gfp_flags, int migratetype)
2837 struct per_cpu_pages *pcp;
2838 struct list_head *list;
2840 unsigned long flags;
2842 local_irq_save(flags);
2843 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2844 list = &pcp->lists[migratetype];
2845 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2847 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2848 zone_statistics(preferred_zone, zone);
2850 local_irq_restore(flags);
2855 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2858 struct page *rmqueue(struct zone *preferred_zone,
2859 struct zone *zone, unsigned int order,
2860 gfp_t gfp_flags, unsigned int alloc_flags,
2863 unsigned long flags;
2866 if (likely(order == 0)) {
2867 page = rmqueue_pcplist(preferred_zone, zone, order,
2868 gfp_flags, migratetype);
2873 * We most definitely don't want callers attempting to
2874 * allocate greater than order-1 page units with __GFP_NOFAIL.
2876 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2877 spin_lock_irqsave(&zone->lock, flags);
2881 if (alloc_flags & ALLOC_HARDER) {
2882 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2884 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2887 page = __rmqueue(zone, order, migratetype);
2888 } while (page && check_new_pages(page, order));
2889 spin_unlock(&zone->lock);
2892 __mod_zone_freepage_state(zone, -(1 << order),
2893 get_pcppage_migratetype(page));
2895 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2896 zone_statistics(preferred_zone, zone);
2897 local_irq_restore(flags);
2900 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2904 local_irq_restore(flags);
2908 #ifdef CONFIG_FAIL_PAGE_ALLOC
2911 struct fault_attr attr;
2913 bool ignore_gfp_highmem;
2914 bool ignore_gfp_reclaim;
2916 } fail_page_alloc = {
2917 .attr = FAULT_ATTR_INITIALIZER,
2918 .ignore_gfp_reclaim = true,
2919 .ignore_gfp_highmem = true,
2923 static int __init setup_fail_page_alloc(char *str)
2925 return setup_fault_attr(&fail_page_alloc.attr, str);
2927 __setup("fail_page_alloc=", setup_fail_page_alloc);
2929 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2931 if (order < fail_page_alloc.min_order)
2933 if (gfp_mask & __GFP_NOFAIL)
2935 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2937 if (fail_page_alloc.ignore_gfp_reclaim &&
2938 (gfp_mask & __GFP_DIRECT_RECLAIM))
2941 return should_fail(&fail_page_alloc.attr, 1 << order);
2944 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2946 static int __init fail_page_alloc_debugfs(void)
2948 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2951 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2952 &fail_page_alloc.attr);
2954 return PTR_ERR(dir);
2956 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2957 &fail_page_alloc.ignore_gfp_reclaim))
2959 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2960 &fail_page_alloc.ignore_gfp_highmem))
2962 if (!debugfs_create_u32("min-order", mode, dir,
2963 &fail_page_alloc.min_order))
2968 debugfs_remove_recursive(dir);
2973 late_initcall(fail_page_alloc_debugfs);
2975 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2977 #else /* CONFIG_FAIL_PAGE_ALLOC */
2979 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2984 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2987 * Return true if free base pages are above 'mark'. For high-order checks it
2988 * will return true of the order-0 watermark is reached and there is at least
2989 * one free page of a suitable size. Checking now avoids taking the zone lock
2990 * to check in the allocation paths if no pages are free.
2992 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2993 int classzone_idx, unsigned int alloc_flags,
2998 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3000 /* free_pages may go negative - that's OK */
3001 free_pages -= (1 << order) - 1;
3003 if (alloc_flags & ALLOC_HIGH)
3007 * If the caller does not have rights to ALLOC_HARDER then subtract
3008 * the high-atomic reserves. This will over-estimate the size of the
3009 * atomic reserve but it avoids a search.
3011 if (likely(!alloc_harder)) {
3012 free_pages -= z->nr_reserved_highatomic;
3015 * OOM victims can try even harder than normal ALLOC_HARDER
3016 * users on the grounds that it's definitely going to be in
3017 * the exit path shortly and free memory. Any allocation it
3018 * makes during the free path will be small and short-lived.
3020 if (alloc_flags & ALLOC_OOM)
3028 /* If allocation can't use CMA areas don't use free CMA pages */
3029 if (!(alloc_flags & ALLOC_CMA))
3030 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3034 * Check watermarks for an order-0 allocation request. If these
3035 * are not met, then a high-order request also cannot go ahead
3036 * even if a suitable page happened to be free.
3038 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3041 /* If this is an order-0 request then the watermark is fine */
3045 /* For a high-order request, check at least one suitable page is free */
3046 for (o = order; o < MAX_ORDER; o++) {
3047 struct free_area *area = &z->free_area[o];
3053 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3054 if (!list_empty(&area->free_list[mt]))
3059 if ((alloc_flags & ALLOC_CMA) &&
3060 !list_empty(&area->free_list[MIGRATE_CMA])) {
3065 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3071 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3072 int classzone_idx, unsigned int alloc_flags)
3074 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3075 zone_page_state(z, NR_FREE_PAGES));
3078 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3079 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3081 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3085 /* If allocation can't use CMA areas don't use free CMA pages */
3086 if (!(alloc_flags & ALLOC_CMA))
3087 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3091 * Fast check for order-0 only. If this fails then the reserves
3092 * need to be calculated. There is a corner case where the check
3093 * passes but only the high-order atomic reserve are free. If
3094 * the caller is !atomic then it'll uselessly search the free
3095 * list. That corner case is then slower but it is harmless.
3097 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3100 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3104 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3105 unsigned long mark, int classzone_idx)
3107 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3109 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3110 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3112 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3117 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3119 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3122 #else /* CONFIG_NUMA */
3123 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3127 #endif /* CONFIG_NUMA */
3130 * get_page_from_freelist goes through the zonelist trying to allocate
3133 static struct page *
3134 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3135 const struct alloc_context *ac)
3137 struct zoneref *z = ac->preferred_zoneref;
3139 struct pglist_data *last_pgdat_dirty_limit = NULL;
3142 * Scan zonelist, looking for a zone with enough free.
3143 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3145 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3150 if (cpusets_enabled() &&
3151 (alloc_flags & ALLOC_CPUSET) &&
3152 !__cpuset_zone_allowed(zone, gfp_mask))
3155 * When allocating a page cache page for writing, we
3156 * want to get it from a node that is within its dirty
3157 * limit, such that no single node holds more than its
3158 * proportional share of globally allowed dirty pages.
3159 * The dirty limits take into account the node's
3160 * lowmem reserves and high watermark so that kswapd
3161 * should be able to balance it without having to
3162 * write pages from its LRU list.
3164 * XXX: For now, allow allocations to potentially
3165 * exceed the per-node dirty limit in the slowpath
3166 * (spread_dirty_pages unset) before going into reclaim,
3167 * which is important when on a NUMA setup the allowed
3168 * nodes are together not big enough to reach the
3169 * global limit. The proper fix for these situations
3170 * will require awareness of nodes in the
3171 * dirty-throttling and the flusher threads.
3173 if (ac->spread_dirty_pages) {
3174 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3177 if (!node_dirty_ok(zone->zone_pgdat)) {
3178 last_pgdat_dirty_limit = zone->zone_pgdat;
3183 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3184 if (!zone_watermark_fast(zone, order, mark,
3185 ac_classzone_idx(ac), alloc_flags)) {
3188 /* Checked here to keep the fast path fast */
3189 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3190 if (alloc_flags & ALLOC_NO_WATERMARKS)
3193 if (node_reclaim_mode == 0 ||
3194 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3197 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3199 case NODE_RECLAIM_NOSCAN:
3202 case NODE_RECLAIM_FULL:
3203 /* scanned but unreclaimable */
3206 /* did we reclaim enough */
3207 if (zone_watermark_ok(zone, order, mark,
3208 ac_classzone_idx(ac), alloc_flags))
3216 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3217 gfp_mask, alloc_flags, ac->migratetype);
3219 prep_new_page(page, order, gfp_mask, alloc_flags);
3222 * If this is a high-order atomic allocation then check
3223 * if the pageblock should be reserved for the future
3225 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3226 reserve_highatomic_pageblock(page, zone, order);
3236 * Large machines with many possible nodes should not always dump per-node
3237 * meminfo in irq context.
3239 static inline bool should_suppress_show_mem(void)
3244 ret = in_interrupt();
3249 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3251 unsigned int filter = SHOW_MEM_FILTER_NODES;
3252 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3254 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3258 * This documents exceptions given to allocations in certain
3259 * contexts that are allowed to allocate outside current's set
3262 if (!(gfp_mask & __GFP_NOMEMALLOC))
3263 if (tsk_is_oom_victim(current) ||
3264 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3265 filter &= ~SHOW_MEM_FILTER_NODES;
3266 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3267 filter &= ~SHOW_MEM_FILTER_NODES;
3269 show_mem(filter, nodemask);
3272 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3274 struct va_format vaf;
3276 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3277 DEFAULT_RATELIMIT_BURST);
3279 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3282 pr_warn("%s: ", current->comm);
3284 va_start(args, fmt);
3287 pr_cont("%pV", &vaf);
3290 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3292 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3294 pr_cont("(null)\n");
3296 cpuset_print_current_mems_allowed();
3299 warn_alloc_show_mem(gfp_mask, nodemask);
3302 static inline struct page *
3303 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3304 unsigned int alloc_flags,
3305 const struct alloc_context *ac)
3309 page = get_page_from_freelist(gfp_mask, order,
3310 alloc_flags|ALLOC_CPUSET, ac);
3312 * fallback to ignore cpuset restriction if our nodes
3316 page = get_page_from_freelist(gfp_mask, order,
3322 static inline struct page *
3323 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3324 const struct alloc_context *ac, unsigned long *did_some_progress)
3326 struct oom_control oc = {
3327 .zonelist = ac->zonelist,
3328 .nodemask = ac->nodemask,
3330 .gfp_mask = gfp_mask,
3335 *did_some_progress = 0;
3338 * Acquire the oom lock. If that fails, somebody else is
3339 * making progress for us.
3341 if (!mutex_trylock(&oom_lock)) {
3342 *did_some_progress = 1;
3343 schedule_timeout_uninterruptible(1);
3348 * Go through the zonelist yet one more time, keep very high watermark
3349 * here, this is only to catch a parallel oom killing, we must fail if
3350 * we're still under heavy pressure. But make sure that this reclaim
3351 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3352 * allocation which will never fail due to oom_lock already held.
3354 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3355 ~__GFP_DIRECT_RECLAIM, order,
3356 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3360 /* Coredumps can quickly deplete all memory reserves */
3361 if (current->flags & PF_DUMPCORE)
3363 /* The OOM killer will not help higher order allocs */
3364 if (order > PAGE_ALLOC_COSTLY_ORDER)
3367 * We have already exhausted all our reclaim opportunities without any
3368 * success so it is time to admit defeat. We will skip the OOM killer
3369 * because it is very likely that the caller has a more reasonable
3370 * fallback than shooting a random task.
3372 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3374 /* The OOM killer does not needlessly kill tasks for lowmem */
3375 if (ac->high_zoneidx < ZONE_NORMAL)
3377 if (pm_suspended_storage())
3380 * XXX: GFP_NOFS allocations should rather fail than rely on
3381 * other request to make a forward progress.
3382 * We are in an unfortunate situation where out_of_memory cannot
3383 * do much for this context but let's try it to at least get
3384 * access to memory reserved if the current task is killed (see
3385 * out_of_memory). Once filesystems are ready to handle allocation
3386 * failures more gracefully we should just bail out here.
3389 /* The OOM killer may not free memory on a specific node */
3390 if (gfp_mask & __GFP_THISNODE)
3393 /* Exhausted what can be done so it's blamo time */
3394 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3395 *did_some_progress = 1;
3398 * Help non-failing allocations by giving them access to memory
3401 if (gfp_mask & __GFP_NOFAIL)
3402 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3403 ALLOC_NO_WATERMARKS, ac);
3406 mutex_unlock(&oom_lock);
3411 * Maximum number of compaction retries wit a progress before OOM
3412 * killer is consider as the only way to move forward.
3414 #define MAX_COMPACT_RETRIES 16
3416 #ifdef CONFIG_COMPACTION
3417 /* Try memory compaction for high-order allocations before reclaim */
3418 static struct page *
3419 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3420 unsigned int alloc_flags, const struct alloc_context *ac,
3421 enum compact_priority prio, enum compact_result *compact_result)
3424 unsigned int noreclaim_flag;
3429 noreclaim_flag = memalloc_noreclaim_save();
3430 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3432 memalloc_noreclaim_restore(noreclaim_flag);
3434 if (*compact_result <= COMPACT_INACTIVE)
3438 * At least in one zone compaction wasn't deferred or skipped, so let's
3439 * count a compaction stall
3441 count_vm_event(COMPACTSTALL);
3443 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3446 struct zone *zone = page_zone(page);
3448 zone->compact_blockskip_flush = false;
3449 compaction_defer_reset(zone, order, true);
3450 count_vm_event(COMPACTSUCCESS);
3455 * It's bad if compaction run occurs and fails. The most likely reason
3456 * is that pages exist, but not enough to satisfy watermarks.
3458 count_vm_event(COMPACTFAIL);
3466 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3467 enum compact_result compact_result,
3468 enum compact_priority *compact_priority,
3469 int *compaction_retries)
3471 int max_retries = MAX_COMPACT_RETRIES;
3474 int retries = *compaction_retries;
3475 enum compact_priority priority = *compact_priority;
3480 if (compaction_made_progress(compact_result))
3481 (*compaction_retries)++;
3484 * compaction considers all the zone as desperately out of memory
3485 * so it doesn't really make much sense to retry except when the
3486 * failure could be caused by insufficient priority
3488 if (compaction_failed(compact_result))
3489 goto check_priority;
3492 * make sure the compaction wasn't deferred or didn't bail out early
3493 * due to locks contention before we declare that we should give up.
3494 * But do not retry if the given zonelist is not suitable for
3497 if (compaction_withdrawn(compact_result)) {
3498 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3503 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3504 * costly ones because they are de facto nofail and invoke OOM
3505 * killer to move on while costly can fail and users are ready
3506 * to cope with that. 1/4 retries is rather arbitrary but we
3507 * would need much more detailed feedback from compaction to
3508 * make a better decision.
3510 if (order > PAGE_ALLOC_COSTLY_ORDER)
3512 if (*compaction_retries <= max_retries) {
3518 * Make sure there are attempts at the highest priority if we exhausted
3519 * all retries or failed at the lower priorities.
3522 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3523 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3525 if (*compact_priority > min_priority) {
3526 (*compact_priority)--;
3527 *compaction_retries = 0;
3531 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3535 static inline struct page *
3536 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3537 unsigned int alloc_flags, const struct alloc_context *ac,
3538 enum compact_priority prio, enum compact_result *compact_result)
3540 *compact_result = COMPACT_SKIPPED;
3545 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3546 enum compact_result compact_result,
3547 enum compact_priority *compact_priority,
3548 int *compaction_retries)
3553 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3557 * There are setups with compaction disabled which would prefer to loop
3558 * inside the allocator rather than hit the oom killer prematurely.
3559 * Let's give them a good hope and keep retrying while the order-0
3560 * watermarks are OK.
3562 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3564 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3565 ac_classzone_idx(ac), alloc_flags))
3570 #endif /* CONFIG_COMPACTION */
3572 #ifdef CONFIG_LOCKDEP
3573 struct lockdep_map __fs_reclaim_map =
3574 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3576 static bool __need_fs_reclaim(gfp_t gfp_mask)
3578 gfp_mask = current_gfp_context(gfp_mask);
3580 /* no reclaim without waiting on it */
3581 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3584 /* this guy won't enter reclaim */
3585 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3588 /* We're only interested __GFP_FS allocations for now */
3589 if (!(gfp_mask & __GFP_FS))
3592 if (gfp_mask & __GFP_NOLOCKDEP)
3598 void fs_reclaim_acquire(gfp_t gfp_mask)
3600 if (__need_fs_reclaim(gfp_mask))
3601 lock_map_acquire(&__fs_reclaim_map);
3603 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3605 void fs_reclaim_release(gfp_t gfp_mask)
3607 if (__need_fs_reclaim(gfp_mask))
3608 lock_map_release(&__fs_reclaim_map);
3610 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3613 /* Perform direct synchronous page reclaim */
3615 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3616 const struct alloc_context *ac)
3618 struct reclaim_state reclaim_state;
3620 unsigned int noreclaim_flag;
3624 /* We now go into synchronous reclaim */
3625 cpuset_memory_pressure_bump();
3626 noreclaim_flag = memalloc_noreclaim_save();
3627 fs_reclaim_acquire(gfp_mask);
3628 reclaim_state.reclaimed_slab = 0;
3629 current->reclaim_state = &reclaim_state;
3631 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3634 current->reclaim_state = NULL;
3635 fs_reclaim_release(gfp_mask);
3636 memalloc_noreclaim_restore(noreclaim_flag);
3643 /* The really slow allocator path where we enter direct reclaim */
3644 static inline struct page *
3645 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3646 unsigned int alloc_flags, const struct alloc_context *ac,
3647 unsigned long *did_some_progress)
3649 struct page *page = NULL;
3650 bool drained = false;
3652 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3653 if (unlikely(!(*did_some_progress)))
3657 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3660 * If an allocation failed after direct reclaim, it could be because
3661 * pages are pinned on the per-cpu lists or in high alloc reserves.
3662 * Shrink them them and try again
3664 if (!page && !drained) {
3665 unreserve_highatomic_pageblock(ac, false);
3666 drain_all_pages(NULL);
3674 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3678 pg_data_t *last_pgdat = NULL;
3680 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3681 ac->high_zoneidx, ac->nodemask) {
3682 if (last_pgdat != zone->zone_pgdat)
3683 wakeup_kswapd(zone, order, ac->high_zoneidx);
3684 last_pgdat = zone->zone_pgdat;
3688 static inline unsigned int
3689 gfp_to_alloc_flags(gfp_t gfp_mask)
3691 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3693 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3694 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3697 * The caller may dip into page reserves a bit more if the caller
3698 * cannot run direct reclaim, or if the caller has realtime scheduling
3699 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3700 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3702 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3704 if (gfp_mask & __GFP_ATOMIC) {
3706 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3707 * if it can't schedule.
3709 if (!(gfp_mask & __GFP_NOMEMALLOC))
3710 alloc_flags |= ALLOC_HARDER;
3712 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3713 * comment for __cpuset_node_allowed().
3715 alloc_flags &= ~ALLOC_CPUSET;
3716 } else if (unlikely(rt_task(current)) && !in_interrupt())
3717 alloc_flags |= ALLOC_HARDER;
3720 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3721 alloc_flags |= ALLOC_CMA;
3726 static bool oom_reserves_allowed(struct task_struct *tsk)
3728 if (!tsk_is_oom_victim(tsk))
3732 * !MMU doesn't have oom reaper so give access to memory reserves
3733 * only to the thread with TIF_MEMDIE set
3735 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3742 * Distinguish requests which really need access to full memory
3743 * reserves from oom victims which can live with a portion of it
3745 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3747 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3749 if (gfp_mask & __GFP_MEMALLOC)
3750 return ALLOC_NO_WATERMARKS;
3751 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3752 return ALLOC_NO_WATERMARKS;
3753 if (!in_interrupt()) {
3754 if (current->flags & PF_MEMALLOC)
3755 return ALLOC_NO_WATERMARKS;
3756 else if (oom_reserves_allowed(current))
3763 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3765 return !!__gfp_pfmemalloc_flags(gfp_mask);
3769 * Checks whether it makes sense to retry the reclaim to make a forward progress
3770 * for the given allocation request.
3772 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3773 * without success, or when we couldn't even meet the watermark if we
3774 * reclaimed all remaining pages on the LRU lists.
3776 * Returns true if a retry is viable or false to enter the oom path.
3779 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3780 struct alloc_context *ac, int alloc_flags,
3781 bool did_some_progress, int *no_progress_loops)
3787 * Costly allocations might have made a progress but this doesn't mean
3788 * their order will become available due to high fragmentation so
3789 * always increment the no progress counter for them
3791 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3792 *no_progress_loops = 0;
3794 (*no_progress_loops)++;
3797 * Make sure we converge to OOM if we cannot make any progress
3798 * several times in the row.
3800 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3801 /* Before OOM, exhaust highatomic_reserve */
3802 return unreserve_highatomic_pageblock(ac, true);
3806 * Keep reclaiming pages while there is a chance this will lead
3807 * somewhere. If none of the target zones can satisfy our allocation
3808 * request even if all reclaimable pages are considered then we are
3809 * screwed and have to go OOM.
3811 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3813 unsigned long available;
3814 unsigned long reclaimable;
3815 unsigned long min_wmark = min_wmark_pages(zone);
3818 available = reclaimable = zone_reclaimable_pages(zone);
3819 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3822 * Would the allocation succeed if we reclaimed all
3823 * reclaimable pages?
3825 wmark = __zone_watermark_ok(zone, order, min_wmark,
3826 ac_classzone_idx(ac), alloc_flags, available);
3827 trace_reclaim_retry_zone(z, order, reclaimable,
3828 available, min_wmark, *no_progress_loops, wmark);
3831 * If we didn't make any progress and have a lot of
3832 * dirty + writeback pages then we should wait for
3833 * an IO to complete to slow down the reclaim and
3834 * prevent from pre mature OOM
3836 if (!did_some_progress) {
3837 unsigned long write_pending;
3839 write_pending = zone_page_state_snapshot(zone,
3840 NR_ZONE_WRITE_PENDING);
3842 if (2 * write_pending > reclaimable) {
3843 congestion_wait(BLK_RW_ASYNC, HZ/10);
3849 * Memory allocation/reclaim might be called from a WQ
3850 * context and the current implementation of the WQ
3851 * concurrency control doesn't recognize that
3852 * a particular WQ is congested if the worker thread is
3853 * looping without ever sleeping. Therefore we have to
3854 * do a short sleep here rather than calling
3857 if (current->flags & PF_WQ_WORKER)
3858 schedule_timeout_uninterruptible(1);
3870 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3873 * It's possible that cpuset's mems_allowed and the nodemask from
3874 * mempolicy don't intersect. This should be normally dealt with by
3875 * policy_nodemask(), but it's possible to race with cpuset update in
3876 * such a way the check therein was true, and then it became false
3877 * before we got our cpuset_mems_cookie here.
3878 * This assumes that for all allocations, ac->nodemask can come only
3879 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3880 * when it does not intersect with the cpuset restrictions) or the
3881 * caller can deal with a violated nodemask.
3883 if (cpusets_enabled() && ac->nodemask &&
3884 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3885 ac->nodemask = NULL;
3890 * When updating a task's mems_allowed or mempolicy nodemask, it is
3891 * possible to race with parallel threads in such a way that our
3892 * allocation can fail while the mask is being updated. If we are about
3893 * to fail, check if the cpuset changed during allocation and if so,
3896 if (read_mems_allowed_retry(cpuset_mems_cookie))
3902 static inline struct page *
3903 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3904 struct alloc_context *ac)
3906 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3907 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3908 struct page *page = NULL;
3909 unsigned int alloc_flags;
3910 unsigned long did_some_progress;
3911 enum compact_priority compact_priority;
3912 enum compact_result compact_result;
3913 int compaction_retries;