Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[sfrench/cifs-2.6.git] / mm / nommu.c
1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmacache.h>
22 #include <linux/mman.h>
23 #include <linux/swap.h>
24 #include <linux/file.h>
25 #include <linux/highmem.h>
26 #include <linux/pagemap.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/blkdev.h>
30 #include <linux/backing-dev.h>
31 #include <linux/compiler.h>
32 #include <linux/mount.h>
33 #include <linux/personality.h>
34 #include <linux/security.h>
35 #include <linux/syscalls.h>
36 #include <linux/audit.h>
37 #include <linux/printk.h>
38
39 #include <linux/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 void *high_memory;
46 EXPORT_SYMBOL(high_memory);
47 struct page *mem_map;
48 unsigned long max_mapnr;
49 EXPORT_SYMBOL(max_mapnr);
50 unsigned long highest_memmap_pfn;
51 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
52 int heap_stack_gap = 0;
53
54 atomic_long_t mmap_pages_allocated;
55
56 EXPORT_SYMBOL(mem_map);
57
58 /* list of mapped, potentially shareable regions */
59 static struct kmem_cache *vm_region_jar;
60 struct rb_root nommu_region_tree = RB_ROOT;
61 DECLARE_RWSEM(nommu_region_sem);
62
63 const struct vm_operations_struct generic_file_vm_ops = {
64 };
65
66 /*
67  * Return the total memory allocated for this pointer, not
68  * just what the caller asked for.
69  *
70  * Doesn't have to be accurate, i.e. may have races.
71  */
72 unsigned int kobjsize(const void *objp)
73 {
74         struct page *page;
75
76         /*
77          * If the object we have should not have ksize performed on it,
78          * return size of 0
79          */
80         if (!objp || !virt_addr_valid(objp))
81                 return 0;
82
83         page = virt_to_head_page(objp);
84
85         /*
86          * If the allocator sets PageSlab, we know the pointer came from
87          * kmalloc().
88          */
89         if (PageSlab(page))
90                 return ksize(objp);
91
92         /*
93          * If it's not a compound page, see if we have a matching VMA
94          * region. This test is intentionally done in reverse order,
95          * so if there's no VMA, we still fall through and hand back
96          * PAGE_SIZE for 0-order pages.
97          */
98         if (!PageCompound(page)) {
99                 struct vm_area_struct *vma;
100
101                 vma = find_vma(current->mm, (unsigned long)objp);
102                 if (vma)
103                         return vma->vm_end - vma->vm_start;
104         }
105
106         /*
107          * The ksize() function is only guaranteed to work for pointers
108          * returned by kmalloc(). So handle arbitrary pointers here.
109          */
110         return PAGE_SIZE << compound_order(page);
111 }
112
113 static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
114                       unsigned long start, unsigned long nr_pages,
115                       unsigned int foll_flags, struct page **pages,
116                       struct vm_area_struct **vmas, int *nonblocking)
117 {
118         struct vm_area_struct *vma;
119         unsigned long vm_flags;
120         int i;
121
122         /* calculate required read or write permissions.
123          * If FOLL_FORCE is set, we only require the "MAY" flags.
124          */
125         vm_flags  = (foll_flags & FOLL_WRITE) ?
126                         (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
127         vm_flags &= (foll_flags & FOLL_FORCE) ?
128                         (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
129
130         for (i = 0; i < nr_pages; i++) {
131                 vma = find_vma(mm, start);
132                 if (!vma)
133                         goto finish_or_fault;
134
135                 /* protect what we can, including chardevs */
136                 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
137                     !(vm_flags & vma->vm_flags))
138                         goto finish_or_fault;
139
140                 if (pages) {
141                         pages[i] = virt_to_page(start);
142                         if (pages[i])
143                                 get_page(pages[i]);
144                 }
145                 if (vmas)
146                         vmas[i] = vma;
147                 start = (start + PAGE_SIZE) & PAGE_MASK;
148         }
149
150         return i;
151
152 finish_or_fault:
153         return i ? : -EFAULT;
154 }
155
156 /*
157  * get a list of pages in an address range belonging to the specified process
158  * and indicate the VMA that covers each page
159  * - this is potentially dodgy as we may end incrementing the page count of a
160  *   slab page or a secondary page from a compound page
161  * - don't permit access to VMAs that don't support it, such as I/O mappings
162  */
163 long get_user_pages(unsigned long start, unsigned long nr_pages,
164                     unsigned int gup_flags, struct page **pages,
165                     struct vm_area_struct **vmas)
166 {
167         return __get_user_pages(current, current->mm, start, nr_pages,
168                                 gup_flags, pages, vmas, NULL);
169 }
170 EXPORT_SYMBOL(get_user_pages);
171
172 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
173                             unsigned int gup_flags, struct page **pages,
174                             int *locked)
175 {
176         return get_user_pages(start, nr_pages, gup_flags, pages, NULL);
177 }
178 EXPORT_SYMBOL(get_user_pages_locked);
179
180 static long __get_user_pages_unlocked(struct task_struct *tsk,
181                         struct mm_struct *mm, unsigned long start,
182                         unsigned long nr_pages, struct page **pages,
183                         unsigned int gup_flags)
184 {
185         long ret;
186         down_read(&mm->mmap_sem);
187         ret = __get_user_pages(tsk, mm, start, nr_pages, gup_flags, pages,
188                                 NULL, NULL);
189         up_read(&mm->mmap_sem);
190         return ret;
191 }
192
193 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
194                              struct page **pages, unsigned int gup_flags)
195 {
196         return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
197                                          pages, gup_flags);
198 }
199 EXPORT_SYMBOL(get_user_pages_unlocked);
200
201 /**
202  * follow_pfn - look up PFN at a user virtual address
203  * @vma: memory mapping
204  * @address: user virtual address
205  * @pfn: location to store found PFN
206  *
207  * Only IO mappings and raw PFN mappings are allowed.
208  *
209  * Returns zero and the pfn at @pfn on success, -ve otherwise.
210  */
211 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
212         unsigned long *pfn)
213 {
214         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
215                 return -EINVAL;
216
217         *pfn = address >> PAGE_SHIFT;
218         return 0;
219 }
220 EXPORT_SYMBOL(follow_pfn);
221
222 LIST_HEAD(vmap_area_list);
223
224 void vfree(const void *addr)
225 {
226         kfree(addr);
227 }
228 EXPORT_SYMBOL(vfree);
229
230 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
231 {
232         /*
233          *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
234          * returns only a logical address.
235          */
236         return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
237 }
238 EXPORT_SYMBOL(__vmalloc);
239
240 void *__vmalloc_node_flags(unsigned long size, int node, gfp_t flags)
241 {
242         return __vmalloc(size, flags, PAGE_KERNEL);
243 }
244
245 void *vmalloc_user(unsigned long size)
246 {
247         void *ret;
248
249         ret = __vmalloc(size, GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL);
250         if (ret) {
251                 struct vm_area_struct *vma;
252
253                 down_write(&current->mm->mmap_sem);
254                 vma = find_vma(current->mm, (unsigned long)ret);
255                 if (vma)
256                         vma->vm_flags |= VM_USERMAP;
257                 up_write(&current->mm->mmap_sem);
258         }
259
260         return ret;
261 }
262 EXPORT_SYMBOL(vmalloc_user);
263
264 struct page *vmalloc_to_page(const void *addr)
265 {
266         return virt_to_page(addr);
267 }
268 EXPORT_SYMBOL(vmalloc_to_page);
269
270 unsigned long vmalloc_to_pfn(const void *addr)
271 {
272         return page_to_pfn(virt_to_page(addr));
273 }
274 EXPORT_SYMBOL(vmalloc_to_pfn);
275
276 long vread(char *buf, char *addr, unsigned long count)
277 {
278         /* Don't allow overflow */
279         if ((unsigned long) buf + count < count)
280                 count = -(unsigned long) buf;
281
282         memcpy(buf, addr, count);
283         return count;
284 }
285
286 long vwrite(char *buf, char *addr, unsigned long count)
287 {
288         /* Don't allow overflow */
289         if ((unsigned long) addr + count < count)
290                 count = -(unsigned long) addr;
291
292         memcpy(addr, buf, count);
293         return count;
294 }
295
296 /*
297  *      vmalloc  -  allocate virtually contiguous memory
298  *
299  *      @size:          allocation size
300  *
301  *      Allocate enough pages to cover @size from the page level
302  *      allocator and map them into contiguous kernel virtual space.
303  *
304  *      For tight control over page level allocator and protection flags
305  *      use __vmalloc() instead.
306  */
307 void *vmalloc(unsigned long size)
308 {
309        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
310 }
311 EXPORT_SYMBOL(vmalloc);
312
313 /*
314  *      vzalloc - allocate virtually contiguous memory with zero fill
315  *
316  *      @size:          allocation size
317  *
318  *      Allocate enough pages to cover @size from the page level
319  *      allocator and map them into contiguous kernel virtual space.
320  *      The memory allocated is set to zero.
321  *
322  *      For tight control over page level allocator and protection flags
323  *      use __vmalloc() instead.
324  */
325 void *vzalloc(unsigned long size)
326 {
327         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
328                         PAGE_KERNEL);
329 }
330 EXPORT_SYMBOL(vzalloc);
331
332 /**
333  * vmalloc_node - allocate memory on a specific node
334  * @size:       allocation size
335  * @node:       numa node
336  *
337  * Allocate enough pages to cover @size from the page level
338  * allocator and map them into contiguous kernel virtual space.
339  *
340  * For tight control over page level allocator and protection flags
341  * use __vmalloc() instead.
342  */
343 void *vmalloc_node(unsigned long size, int node)
344 {
345         return vmalloc(size);
346 }
347 EXPORT_SYMBOL(vmalloc_node);
348
349 /**
350  * vzalloc_node - allocate memory on a specific node with zero fill
351  * @size:       allocation size
352  * @node:       numa node
353  *
354  * Allocate enough pages to cover @size from the page level
355  * allocator and map them into contiguous kernel virtual space.
356  * The memory allocated is set to zero.
357  *
358  * For tight control over page level allocator and protection flags
359  * use __vmalloc() instead.
360  */
361 void *vzalloc_node(unsigned long size, int node)
362 {
363         return vzalloc(size);
364 }
365 EXPORT_SYMBOL(vzalloc_node);
366
367 #ifndef PAGE_KERNEL_EXEC
368 # define PAGE_KERNEL_EXEC PAGE_KERNEL
369 #endif
370
371 /**
372  *      vmalloc_exec  -  allocate virtually contiguous, executable memory
373  *      @size:          allocation size
374  *
375  *      Kernel-internal function to allocate enough pages to cover @size
376  *      the page level allocator and map them into contiguous and
377  *      executable kernel virtual space.
378  *
379  *      For tight control over page level allocator and protection flags
380  *      use __vmalloc() instead.
381  */
382
383 void *vmalloc_exec(unsigned long size)
384 {
385         return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
386 }
387
388 /**
389  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
390  *      @size:          allocation size
391  *
392  *      Allocate enough 32bit PA addressable pages to cover @size from the
393  *      page level allocator and map them into contiguous kernel virtual space.
394  */
395 void *vmalloc_32(unsigned long size)
396 {
397         return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
398 }
399 EXPORT_SYMBOL(vmalloc_32);
400
401 /**
402  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
403  *      @size:          allocation size
404  *
405  * The resulting memory area is 32bit addressable and zeroed so it can be
406  * mapped to userspace without leaking data.
407  *
408  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
409  * remap_vmalloc_range() are permissible.
410  */
411 void *vmalloc_32_user(unsigned long size)
412 {
413         /*
414          * We'll have to sort out the ZONE_DMA bits for 64-bit,
415          * but for now this can simply use vmalloc_user() directly.
416          */
417         return vmalloc_user(size);
418 }
419 EXPORT_SYMBOL(vmalloc_32_user);
420
421 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
422 {
423         BUG();
424         return NULL;
425 }
426 EXPORT_SYMBOL(vmap);
427
428 void vunmap(const void *addr)
429 {
430         BUG();
431 }
432 EXPORT_SYMBOL(vunmap);
433
434 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
435 {
436         BUG();
437         return NULL;
438 }
439 EXPORT_SYMBOL(vm_map_ram);
440
441 void vm_unmap_ram(const void *mem, unsigned int count)
442 {
443         BUG();
444 }
445 EXPORT_SYMBOL(vm_unmap_ram);
446
447 void vm_unmap_aliases(void)
448 {
449 }
450 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
451
452 /*
453  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
454  * have one.
455  */
456 void __weak vmalloc_sync_all(void)
457 {
458 }
459
460 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
461 {
462         BUG();
463         return NULL;
464 }
465 EXPORT_SYMBOL_GPL(alloc_vm_area);
466
467 void free_vm_area(struct vm_struct *area)
468 {
469         BUG();
470 }
471 EXPORT_SYMBOL_GPL(free_vm_area);
472
473 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
474                    struct page *page)
475 {
476         return -EINVAL;
477 }
478 EXPORT_SYMBOL(vm_insert_page);
479
480 /*
481  *  sys_brk() for the most part doesn't need the global kernel
482  *  lock, except when an application is doing something nasty
483  *  like trying to un-brk an area that has already been mapped
484  *  to a regular file.  in this case, the unmapping will need
485  *  to invoke file system routines that need the global lock.
486  */
487 SYSCALL_DEFINE1(brk, unsigned long, brk)
488 {
489         struct mm_struct *mm = current->mm;
490
491         if (brk < mm->start_brk || brk > mm->context.end_brk)
492                 return mm->brk;
493
494         if (mm->brk == brk)
495                 return mm->brk;
496
497         /*
498          * Always allow shrinking brk
499          */
500         if (brk <= mm->brk) {
501                 mm->brk = brk;
502                 return brk;
503         }
504
505         /*
506          * Ok, looks good - let it rip.
507          */
508         flush_icache_range(mm->brk, brk);
509         return mm->brk = brk;
510 }
511
512 /*
513  * initialise the percpu counter for VM and region record slabs
514  */
515 void __init mmap_init(void)
516 {
517         int ret;
518
519         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
520         VM_BUG_ON(ret);
521         vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC|SLAB_ACCOUNT);
522 }
523
524 /*
525  * validate the region tree
526  * - the caller must hold the region lock
527  */
528 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
529 static noinline void validate_nommu_regions(void)
530 {
531         struct vm_region *region, *last;
532         struct rb_node *p, *lastp;
533
534         lastp = rb_first(&nommu_region_tree);
535         if (!lastp)
536                 return;
537
538         last = rb_entry(lastp, struct vm_region, vm_rb);
539         BUG_ON(last->vm_end <= last->vm_start);
540         BUG_ON(last->vm_top < last->vm_end);
541
542         while ((p = rb_next(lastp))) {
543                 region = rb_entry(p, struct vm_region, vm_rb);
544                 last = rb_entry(lastp, struct vm_region, vm_rb);
545
546                 BUG_ON(region->vm_end <= region->vm_start);
547                 BUG_ON(region->vm_top < region->vm_end);
548                 BUG_ON(region->vm_start < last->vm_top);
549
550                 lastp = p;
551         }
552 }
553 #else
554 static void validate_nommu_regions(void)
555 {
556 }
557 #endif
558
559 /*
560  * add a region into the global tree
561  */
562 static void add_nommu_region(struct vm_region *region)
563 {
564         struct vm_region *pregion;
565         struct rb_node **p, *parent;
566
567         validate_nommu_regions();
568
569         parent = NULL;
570         p = &nommu_region_tree.rb_node;
571         while (*p) {
572                 parent = *p;
573                 pregion = rb_entry(parent, struct vm_region, vm_rb);
574                 if (region->vm_start < pregion->vm_start)
575                         p = &(*p)->rb_left;
576                 else if (region->vm_start > pregion->vm_start)
577                         p = &(*p)->rb_right;
578                 else if (pregion == region)
579                         return;
580                 else
581                         BUG();
582         }
583
584         rb_link_node(&region->vm_rb, parent, p);
585         rb_insert_color(&region->vm_rb, &nommu_region_tree);
586
587         validate_nommu_regions();
588 }
589
590 /*
591  * delete a region from the global tree
592  */
593 static void delete_nommu_region(struct vm_region *region)
594 {
595         BUG_ON(!nommu_region_tree.rb_node);
596
597         validate_nommu_regions();
598         rb_erase(&region->vm_rb, &nommu_region_tree);
599         validate_nommu_regions();
600 }
601
602 /*
603  * free a contiguous series of pages
604  */
605 static void free_page_series(unsigned long from, unsigned long to)
606 {
607         for (; from < to; from += PAGE_SIZE) {
608                 struct page *page = virt_to_page(from);
609
610                 atomic_long_dec(&mmap_pages_allocated);
611                 put_page(page);
612         }
613 }
614
615 /*
616  * release a reference to a region
617  * - the caller must hold the region semaphore for writing, which this releases
618  * - the region may not have been added to the tree yet, in which case vm_top
619  *   will equal vm_start
620  */
621 static void __put_nommu_region(struct vm_region *region)
622         __releases(nommu_region_sem)
623 {
624         BUG_ON(!nommu_region_tree.rb_node);
625
626         if (--region->vm_usage == 0) {
627                 if (region->vm_top > region->vm_start)
628                         delete_nommu_region(region);
629                 up_write(&nommu_region_sem);
630
631                 if (region->vm_file)
632                         fput(region->vm_file);
633
634                 /* IO memory and memory shared directly out of the pagecache
635                  * from ramfs/tmpfs mustn't be released here */
636                 if (region->vm_flags & VM_MAPPED_COPY)
637                         free_page_series(region->vm_start, region->vm_top);
638                 kmem_cache_free(vm_region_jar, region);
639         } else {
640                 up_write(&nommu_region_sem);
641         }
642 }
643
644 /*
645  * release a reference to a region
646  */
647 static void put_nommu_region(struct vm_region *region)
648 {
649         down_write(&nommu_region_sem);
650         __put_nommu_region(region);
651 }
652
653 /*
654  * add a VMA into a process's mm_struct in the appropriate place in the list
655  * and tree and add to the address space's page tree also if not an anonymous
656  * page
657  * - should be called with mm->mmap_sem held writelocked
658  */
659 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
660 {
661         struct vm_area_struct *pvma, *prev;
662         struct address_space *mapping;
663         struct rb_node **p, *parent, *rb_prev;
664
665         BUG_ON(!vma->vm_region);
666
667         mm->map_count++;
668         vma->vm_mm = mm;
669
670         /* add the VMA to the mapping */
671         if (vma->vm_file) {
672                 mapping = vma->vm_file->f_mapping;
673
674                 i_mmap_lock_write(mapping);
675                 flush_dcache_mmap_lock(mapping);
676                 vma_interval_tree_insert(vma, &mapping->i_mmap);
677                 flush_dcache_mmap_unlock(mapping);
678                 i_mmap_unlock_write(mapping);
679         }
680
681         /* add the VMA to the tree */
682         parent = rb_prev = NULL;
683         p = &mm->mm_rb.rb_node;
684         while (*p) {
685                 parent = *p;
686                 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
687
688                 /* sort by: start addr, end addr, VMA struct addr in that order
689                  * (the latter is necessary as we may get identical VMAs) */
690                 if (vma->vm_start < pvma->vm_start)
691                         p = &(*p)->rb_left;
692                 else if (vma->vm_start > pvma->vm_start) {
693                         rb_prev = parent;
694                         p = &(*p)->rb_right;
695                 } else if (vma->vm_end < pvma->vm_end)
696                         p = &(*p)->rb_left;
697                 else if (vma->vm_end > pvma->vm_end) {
698                         rb_prev = parent;
699                         p = &(*p)->rb_right;
700                 } else if (vma < pvma)
701                         p = &(*p)->rb_left;
702                 else if (vma > pvma) {
703                         rb_prev = parent;
704                         p = &(*p)->rb_right;
705                 } else
706                         BUG();
707         }
708
709         rb_link_node(&vma->vm_rb, parent, p);
710         rb_insert_color(&vma->vm_rb, &mm->mm_rb);
711
712         /* add VMA to the VMA list also */
713         prev = NULL;
714         if (rb_prev)
715                 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
716
717         __vma_link_list(mm, vma, prev, parent);
718 }
719
720 /*
721  * delete a VMA from its owning mm_struct and address space
722  */
723 static void delete_vma_from_mm(struct vm_area_struct *vma)
724 {
725         int i;
726         struct address_space *mapping;
727         struct mm_struct *mm = vma->vm_mm;
728         struct task_struct *curr = current;
729
730         mm->map_count--;
731         for (i = 0; i < VMACACHE_SIZE; i++) {
732                 /* if the vma is cached, invalidate the entire cache */
733                 if (curr->vmacache.vmas[i] == vma) {
734                         vmacache_invalidate(mm);
735                         break;
736                 }
737         }
738
739         /* remove the VMA from the mapping */
740         if (vma->vm_file) {
741                 mapping = vma->vm_file->f_mapping;
742
743                 i_mmap_lock_write(mapping);
744                 flush_dcache_mmap_lock(mapping);
745                 vma_interval_tree_remove(vma, &mapping->i_mmap);
746                 flush_dcache_mmap_unlock(mapping);
747                 i_mmap_unlock_write(mapping);
748         }
749
750         /* remove from the MM's tree and list */
751         rb_erase(&vma->vm_rb, &mm->mm_rb);
752
753         if (vma->vm_prev)
754                 vma->vm_prev->vm_next = vma->vm_next;
755         else
756                 mm->mmap = vma->vm_next;
757
758         if (vma->vm_next)
759                 vma->vm_next->vm_prev = vma->vm_prev;
760 }
761
762 /*
763  * destroy a VMA record
764  */
765 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
766 {
767         if (vma->vm_ops && vma->vm_ops->close)
768                 vma->vm_ops->close(vma);
769         if (vma->vm_file)
770                 fput(vma->vm_file);
771         put_nommu_region(vma->vm_region);
772         kmem_cache_free(vm_area_cachep, vma);
773 }
774
775 /*
776  * look up the first VMA in which addr resides, NULL if none
777  * - should be called with mm->mmap_sem at least held readlocked
778  */
779 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
780 {
781         struct vm_area_struct *vma;
782
783         /* check the cache first */
784         vma = vmacache_find(mm, addr);
785         if (likely(vma))
786                 return vma;
787
788         /* trawl the list (there may be multiple mappings in which addr
789          * resides) */
790         for (vma = mm->mmap; vma; vma = vma->vm_next) {
791                 if (vma->vm_start > addr)
792                         return NULL;
793                 if (vma->vm_end > addr) {
794                         vmacache_update(addr, vma);
795                         return vma;
796                 }
797         }
798
799         return NULL;
800 }
801 EXPORT_SYMBOL(find_vma);
802
803 /*
804  * find a VMA
805  * - we don't extend stack VMAs under NOMMU conditions
806  */
807 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
808 {
809         return find_vma(mm, addr);
810 }
811
812 /*
813  * expand a stack to a given address
814  * - not supported under NOMMU conditions
815  */
816 int expand_stack(struct vm_area_struct *vma, unsigned long address)
817 {
818         return -ENOMEM;
819 }
820
821 /*
822  * look up the first VMA exactly that exactly matches addr
823  * - should be called with mm->mmap_sem at least held readlocked
824  */
825 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
826                                              unsigned long addr,
827                                              unsigned long len)
828 {
829         struct vm_area_struct *vma;
830         unsigned long end = addr + len;
831
832         /* check the cache first */
833         vma = vmacache_find_exact(mm, addr, end);
834         if (vma)
835                 return vma;
836
837         /* trawl the list (there may be multiple mappings in which addr
838          * resides) */
839         for (vma = mm->mmap; vma; vma = vma->vm_next) {
840                 if (vma->vm_start < addr)
841                         continue;
842                 if (vma->vm_start > addr)
843                         return NULL;
844                 if (vma->vm_end == end) {
845                         vmacache_update(addr, vma);
846                         return vma;
847                 }
848         }
849
850         return NULL;
851 }
852
853 /*
854  * determine whether a mapping should be permitted and, if so, what sort of
855  * mapping we're capable of supporting
856  */
857 static int validate_mmap_request(struct file *file,
858                                  unsigned long addr,
859                                  unsigned long len,
860                                  unsigned long prot,
861                                  unsigned long flags,
862                                  unsigned long pgoff,
863                                  unsigned long *_capabilities)
864 {
865         unsigned long capabilities, rlen;
866         int ret;
867
868         /* do the simple checks first */
869         if (flags & MAP_FIXED)
870                 return -EINVAL;
871
872         if ((flags & MAP_TYPE) != MAP_PRIVATE &&
873             (flags & MAP_TYPE) != MAP_SHARED)
874                 return -EINVAL;
875
876         if (!len)
877                 return -EINVAL;
878
879         /* Careful about overflows.. */
880         rlen = PAGE_ALIGN(len);
881         if (!rlen || rlen > TASK_SIZE)
882                 return -ENOMEM;
883
884         /* offset overflow? */
885         if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
886                 return -EOVERFLOW;
887
888         if (file) {
889                 /* files must support mmap */
890                 if (!file->f_op->mmap)
891                         return -ENODEV;
892
893                 /* work out if what we've got could possibly be shared
894                  * - we support chardevs that provide their own "memory"
895                  * - we support files/blockdevs that are memory backed
896                  */
897                 if (file->f_op->mmap_capabilities) {
898                         capabilities = file->f_op->mmap_capabilities(file);
899                 } else {
900                         /* no explicit capabilities set, so assume some
901                          * defaults */
902                         switch (file_inode(file)->i_mode & S_IFMT) {
903                         case S_IFREG:
904                         case S_IFBLK:
905                                 capabilities = NOMMU_MAP_COPY;
906                                 break;
907
908                         case S_IFCHR:
909                                 capabilities =
910                                         NOMMU_MAP_DIRECT |
911                                         NOMMU_MAP_READ |
912                                         NOMMU_MAP_WRITE;
913                                 break;
914
915                         default:
916                                 return -EINVAL;
917                         }
918                 }
919
920                 /* eliminate any capabilities that we can't support on this
921                  * device */
922                 if (!file->f_op->get_unmapped_area)
923                         capabilities &= ~NOMMU_MAP_DIRECT;
924                 if (!(file->f_mode & FMODE_CAN_READ))
925                         capabilities &= ~NOMMU_MAP_COPY;
926
927                 /* The file shall have been opened with read permission. */
928                 if (!(file->f_mode & FMODE_READ))
929                         return -EACCES;
930
931                 if (flags & MAP_SHARED) {
932                         /* do checks for writing, appending and locking */
933                         if ((prot & PROT_WRITE) &&
934                             !(file->f_mode & FMODE_WRITE))
935                                 return -EACCES;
936
937                         if (IS_APPEND(file_inode(file)) &&
938                             (file->f_mode & FMODE_WRITE))
939                                 return -EACCES;
940
941                         if (locks_verify_locked(file))
942                                 return -EAGAIN;
943
944                         if (!(capabilities & NOMMU_MAP_DIRECT))
945                                 return -ENODEV;
946
947                         /* we mustn't privatise shared mappings */
948                         capabilities &= ~NOMMU_MAP_COPY;
949                 } else {
950                         /* we're going to read the file into private memory we
951                          * allocate */
952                         if (!(capabilities & NOMMU_MAP_COPY))
953                                 return -ENODEV;
954
955                         /* we don't permit a private writable mapping to be
956                          * shared with the backing device */
957                         if (prot & PROT_WRITE)
958                                 capabilities &= ~NOMMU_MAP_DIRECT;
959                 }
960
961                 if (capabilities & NOMMU_MAP_DIRECT) {
962                         if (((prot & PROT_READ)  && !(capabilities & NOMMU_MAP_READ))  ||
963                             ((prot & PROT_WRITE) && !(capabilities & NOMMU_MAP_WRITE)) ||
964                             ((prot & PROT_EXEC)  && !(capabilities & NOMMU_MAP_EXEC))
965                             ) {
966                                 capabilities &= ~NOMMU_MAP_DIRECT;
967                                 if (flags & MAP_SHARED) {
968                                         pr_warn("MAP_SHARED not completely supported on !MMU\n");
969                                         return -EINVAL;
970                                 }
971                         }
972                 }
973
974                 /* handle executable mappings and implied executable
975                  * mappings */
976                 if (path_noexec(&file->f_path)) {
977                         if (prot & PROT_EXEC)
978                                 return -EPERM;
979                 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
980                         /* handle implication of PROT_EXEC by PROT_READ */
981                         if (current->personality & READ_IMPLIES_EXEC) {
982                                 if (capabilities & NOMMU_MAP_EXEC)
983                                         prot |= PROT_EXEC;
984                         }
985                 } else if ((prot & PROT_READ) &&
986                          (prot & PROT_EXEC) &&
987                          !(capabilities & NOMMU_MAP_EXEC)
988                          ) {
989                         /* backing file is not executable, try to copy */
990                         capabilities &= ~NOMMU_MAP_DIRECT;
991                 }
992         } else {
993                 /* anonymous mappings are always memory backed and can be
994                  * privately mapped
995                  */
996                 capabilities = NOMMU_MAP_COPY;
997
998                 /* handle PROT_EXEC implication by PROT_READ */
999                 if ((prot & PROT_READ) &&
1000                     (current->personality & READ_IMPLIES_EXEC))
1001                         prot |= PROT_EXEC;
1002         }
1003
1004         /* allow the security API to have its say */
1005         ret = security_mmap_addr(addr);
1006         if (ret < 0)
1007                 return ret;
1008
1009         /* looks okay */
1010         *_capabilities = capabilities;
1011         return 0;
1012 }
1013
1014 /*
1015  * we've determined that we can make the mapping, now translate what we
1016  * now know into VMA flags
1017  */
1018 static unsigned long determine_vm_flags(struct file *file,
1019                                         unsigned long prot,
1020                                         unsigned long flags,
1021                                         unsigned long capabilities)
1022 {
1023         unsigned long vm_flags;
1024
1025         vm_flags = calc_vm_prot_bits(prot, 0) | calc_vm_flag_bits(flags);
1026         /* vm_flags |= mm->def_flags; */
1027
1028         if (!(capabilities & NOMMU_MAP_DIRECT)) {
1029                 /* attempt to share read-only copies of mapped file chunks */
1030                 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1031                 if (file && !(prot & PROT_WRITE))
1032                         vm_flags |= VM_MAYSHARE;
1033         } else {
1034                 /* overlay a shareable mapping on the backing device or inode
1035                  * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1036                  * romfs/cramfs */
1037                 vm_flags |= VM_MAYSHARE | (capabilities & NOMMU_VMFLAGS);
1038                 if (flags & MAP_SHARED)
1039                         vm_flags |= VM_SHARED;
1040         }
1041
1042         /* refuse to let anyone share private mappings with this process if
1043          * it's being traced - otherwise breakpoints set in it may interfere
1044          * with another untraced process
1045          */
1046         if ((flags & MAP_PRIVATE) && current->ptrace)
1047                 vm_flags &= ~VM_MAYSHARE;
1048
1049         return vm_flags;
1050 }
1051
1052 /*
1053  * set up a shared mapping on a file (the driver or filesystem provides and
1054  * pins the storage)
1055  */
1056 static int do_mmap_shared_file(struct vm_area_struct *vma)
1057 {
1058         int ret;
1059
1060         ret = call_mmap(vma->vm_file, vma);
1061         if (ret == 0) {
1062                 vma->vm_region->vm_top = vma->vm_region->vm_end;
1063                 return 0;
1064         }
1065         if (ret != -ENOSYS)
1066                 return ret;
1067
1068         /* getting -ENOSYS indicates that direct mmap isn't possible (as
1069          * opposed to tried but failed) so we can only give a suitable error as
1070          * it's not possible to make a private copy if MAP_SHARED was given */
1071         return -ENODEV;
1072 }
1073
1074 /*
1075  * set up a private mapping or an anonymous shared mapping
1076  */
1077 static int do_mmap_private(struct vm_area_struct *vma,
1078                            struct vm_region *region,
1079                            unsigned long len,
1080                            unsigned long capabilities)
1081 {
1082         unsigned long total, point;
1083         void *base;
1084         int ret, order;
1085
1086         /* invoke the file's mapping function so that it can keep track of
1087          * shared mappings on devices or memory
1088          * - VM_MAYSHARE will be set if it may attempt to share
1089          */
1090         if (capabilities & NOMMU_MAP_DIRECT) {
1091                 ret = call_mmap(vma->vm_file, vma);
1092                 if (ret == 0) {
1093                         /* shouldn't return success if we're not sharing */
1094                         BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1095                         vma->vm_region->vm_top = vma->vm_region->vm_end;
1096                         return 0;
1097                 }
1098                 if (ret != -ENOSYS)
1099                         return ret;
1100
1101                 /* getting an ENOSYS error indicates that direct mmap isn't
1102                  * possible (as opposed to tried but failed) so we'll try to
1103                  * make a private copy of the data and map that instead */
1104         }
1105
1106
1107         /* allocate some memory to hold the mapping
1108          * - note that this may not return a page-aligned address if the object
1109          *   we're allocating is smaller than a page
1110          */
1111         order = get_order(len);
1112         total = 1 << order;
1113         point = len >> PAGE_SHIFT;
1114
1115         /* we don't want to allocate a power-of-2 sized page set */
1116         if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages)
1117                 total = point;
1118
1119         base = alloc_pages_exact(total << PAGE_SHIFT, GFP_KERNEL);
1120         if (!base)
1121                 goto enomem;
1122
1123         atomic_long_add(total, &mmap_pages_allocated);
1124
1125         region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1126         region->vm_start = (unsigned long) base;
1127         region->vm_end   = region->vm_start + len;
1128         region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1129
1130         vma->vm_start = region->vm_start;
1131         vma->vm_end   = region->vm_start + len;
1132
1133         if (vma->vm_file) {
1134                 /* read the contents of a file into the copy */
1135                 loff_t fpos;
1136
1137                 fpos = vma->vm_pgoff;
1138                 fpos <<= PAGE_SHIFT;
1139
1140                 ret = kernel_read(vma->vm_file, base, len, &fpos);
1141                 if (ret < 0)
1142                         goto error_free;
1143
1144                 /* clear the last little bit */
1145                 if (ret < len)
1146                         memset(base + ret, 0, len - ret);
1147
1148         }
1149
1150         return 0;
1151
1152 error_free:
1153         free_page_series(region->vm_start, region->vm_top);
1154         region->vm_start = vma->vm_start = 0;
1155         region->vm_end   = vma->vm_end = 0;
1156         region->vm_top   = 0;
1157         return ret;
1158
1159 enomem:
1160         pr_err("Allocation of length %lu from process %d (%s) failed\n",
1161                len, current->pid, current->comm);
1162         show_free_areas(0, NULL);
1163         return -ENOMEM;
1164 }
1165
1166 /*
1167  * handle mapping creation for uClinux
1168  */
1169 unsigned long do_mmap(struct file *file,
1170                         unsigned long addr,
1171                         unsigned long len,
1172                         unsigned long prot,
1173                         unsigned long flags,
1174                         vm_flags_t vm_flags,
1175                         unsigned long pgoff,
1176                         unsigned long *populate,
1177                         struct list_head *uf)
1178 {
1179         struct vm_area_struct *vma;
1180         struct vm_region *region;
1181         struct rb_node *rb;
1182         unsigned long capabilities, result;
1183         int ret;
1184
1185         *populate = 0;
1186
1187         /* decide whether we should attempt the mapping, and if so what sort of
1188          * mapping */
1189         ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1190                                     &capabilities);
1191         if (ret < 0)
1192                 return ret;
1193
1194         /* we ignore the address hint */
1195         addr = 0;
1196         len = PAGE_ALIGN(len);
1197
1198         /* we've determined that we can make the mapping, now translate what we
1199          * now know into VMA flags */
1200         vm_flags |= determine_vm_flags(file, prot, flags, capabilities);
1201
1202         /* we're going to need to record the mapping */
1203         region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1204         if (!region)
1205                 goto error_getting_region;
1206
1207         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1208         if (!vma)
1209                 goto error_getting_vma;
1210
1211         region->vm_usage = 1;
1212         region->vm_flags = vm_flags;
1213         region->vm_pgoff = pgoff;
1214
1215         INIT_LIST_HEAD(&vma->anon_vma_chain);
1216         vma->vm_flags = vm_flags;
1217         vma->vm_pgoff = pgoff;
1218
1219         if (file) {
1220                 region->vm_file = get_file(file);
1221                 vma->vm_file = get_file(file);
1222         }
1223
1224         down_write(&nommu_region_sem);
1225
1226         /* if we want to share, we need to check for regions created by other
1227          * mmap() calls that overlap with our proposed mapping
1228          * - we can only share with a superset match on most regular files
1229          * - shared mappings on character devices and memory backed files are
1230          *   permitted to overlap inexactly as far as we are concerned for in
1231          *   these cases, sharing is handled in the driver or filesystem rather
1232          *   than here
1233          */
1234         if (vm_flags & VM_MAYSHARE) {
1235                 struct vm_region *pregion;
1236                 unsigned long pglen, rpglen, pgend, rpgend, start;
1237
1238                 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1239                 pgend = pgoff + pglen;
1240
1241                 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1242                         pregion = rb_entry(rb, struct vm_region, vm_rb);
1243
1244                         if (!(pregion->vm_flags & VM_MAYSHARE))
1245                                 continue;
1246
1247                         /* search for overlapping mappings on the same file */
1248                         if (file_inode(pregion->vm_file) !=
1249                             file_inode(file))
1250                                 continue;
1251
1252                         if (pregion->vm_pgoff >= pgend)
1253                                 continue;
1254
1255                         rpglen = pregion->vm_end - pregion->vm_start;
1256                         rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1257                         rpgend = pregion->vm_pgoff + rpglen;
1258                         if (pgoff >= rpgend)
1259                                 continue;
1260
1261                         /* handle inexactly overlapping matches between
1262                          * mappings */
1263                         if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1264                             !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1265                                 /* new mapping is not a subset of the region */
1266                                 if (!(capabilities & NOMMU_MAP_DIRECT))
1267                                         goto sharing_violation;
1268                                 continue;
1269                         }
1270
1271                         /* we've found a region we can share */
1272                         pregion->vm_usage++;
1273                         vma->vm_region = pregion;
1274                         start = pregion->vm_start;
1275                         start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1276                         vma->vm_start = start;
1277                         vma->vm_end = start + len;
1278
1279                         if (pregion->vm_flags & VM_MAPPED_COPY)
1280                                 vma->vm_flags |= VM_MAPPED_COPY;
1281                         else {
1282                                 ret = do_mmap_shared_file(vma);
1283                                 if (ret < 0) {
1284                                         vma->vm_region = NULL;
1285                                         vma->vm_start = 0;
1286                                         vma->vm_end = 0;
1287                                         pregion->vm_usage--;
1288                                         pregion = NULL;
1289                                         goto error_just_free;
1290                                 }
1291                         }
1292                         fput(region->vm_file);
1293                         kmem_cache_free(vm_region_jar, region);
1294                         region = pregion;
1295                         result = start;
1296                         goto share;
1297                 }
1298
1299                 /* obtain the address at which to make a shared mapping
1300                  * - this is the hook for quasi-memory character devices to
1301                  *   tell us the location of a shared mapping
1302                  */
1303                 if (capabilities & NOMMU_MAP_DIRECT) {
1304                         addr = file->f_op->get_unmapped_area(file, addr, len,
1305                                                              pgoff, flags);
1306                         if (IS_ERR_VALUE(addr)) {
1307                                 ret = addr;
1308                                 if (ret != -ENOSYS)
1309                                         goto error_just_free;
1310
1311                                 /* the driver refused to tell us where to site
1312                                  * the mapping so we'll have to attempt to copy
1313                                  * it */
1314                                 ret = -ENODEV;
1315                                 if (!(capabilities & NOMMU_MAP_COPY))
1316                                         goto error_just_free;
1317
1318                                 capabilities &= ~NOMMU_MAP_DIRECT;
1319                         } else {
1320                                 vma->vm_start = region->vm_start = addr;
1321                                 vma->vm_end = region->vm_end = addr + len;
1322                         }
1323                 }
1324         }
1325
1326         vma->vm_region = region;
1327
1328         /* set up the mapping
1329          * - the region is filled in if NOMMU_MAP_DIRECT is still set
1330          */
1331         if (file && vma->vm_flags & VM_SHARED)
1332                 ret = do_mmap_shared_file(vma);
1333         else
1334                 ret = do_mmap_private(vma, region, len, capabilities);
1335         if (ret < 0)
1336                 goto error_just_free;
1337         add_nommu_region(region);
1338
1339         /* clear anonymous mappings that don't ask for uninitialized data */
1340         if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1341                 memset((void *)region->vm_start, 0,
1342                        region->vm_end - region->vm_start);
1343
1344         /* okay... we have a mapping; now we have to register it */
1345         result = vma->vm_start;
1346
1347         current->mm->total_vm += len >> PAGE_SHIFT;
1348
1349 share:
1350         add_vma_to_mm(current->mm, vma);
1351
1352         /* we flush the region from the icache only when the first executable
1353          * mapping of it is made  */
1354         if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1355                 flush_icache_range(region->vm_start, region->vm_end);
1356                 region->vm_icache_flushed = true;
1357         }
1358
1359         up_write(&nommu_region_sem);
1360
1361         return result;
1362
1363 error_just_free:
1364         up_write(&nommu_region_sem);
1365 error:
1366         if (region->vm_file)
1367                 fput(region->vm_file);
1368         kmem_cache_free(vm_region_jar, region);
1369         if (vma->vm_file)
1370                 fput(vma->vm_file);
1371         kmem_cache_free(vm_area_cachep, vma);
1372         return ret;
1373
1374 sharing_violation:
1375         up_write(&nommu_region_sem);
1376         pr_warn("Attempt to share mismatched mappings\n");
1377         ret = -EINVAL;
1378         goto error;
1379
1380 error_getting_vma:
1381         kmem_cache_free(vm_region_jar, region);
1382         pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1383                         len, current->pid);
1384         show_free_areas(0, NULL);
1385         return -ENOMEM;
1386
1387 error_getting_region:
1388         pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1389                         len, current->pid);
1390         show_free_areas(0, NULL);
1391         return -ENOMEM;
1392 }
1393
1394 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1395                               unsigned long prot, unsigned long flags,
1396                               unsigned long fd, unsigned long pgoff)
1397 {
1398         struct file *file = NULL;
1399         unsigned long retval = -EBADF;
1400
1401         audit_mmap_fd(fd, flags);
1402         if (!(flags & MAP_ANONYMOUS)) {
1403                 file = fget(fd);
1404                 if (!file)
1405                         goto out;
1406         }
1407
1408         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1409
1410         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1411
1412         if (file)
1413                 fput(file);
1414 out:
1415         return retval;
1416 }
1417
1418 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1419                 unsigned long, prot, unsigned long, flags,
1420                 unsigned long, fd, unsigned long, pgoff)
1421 {
1422         return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1423 }
1424
1425 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1426 struct mmap_arg_struct {
1427         unsigned long addr;
1428         unsigned long len;
1429         unsigned long prot;
1430         unsigned long flags;
1431         unsigned long fd;
1432         unsigned long offset;
1433 };
1434
1435 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1436 {
1437         struct mmap_arg_struct a;
1438
1439         if (copy_from_user(&a, arg, sizeof(a)))
1440                 return -EFAULT;
1441         if (offset_in_page(a.offset))
1442                 return -EINVAL;
1443
1444         return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1445                                a.offset >> PAGE_SHIFT);
1446 }
1447 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1448
1449 /*
1450  * split a vma into two pieces at address 'addr', a new vma is allocated either
1451  * for the first part or the tail.
1452  */
1453 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1454               unsigned long addr, int new_below)
1455 {
1456         struct vm_area_struct *new;
1457         struct vm_region *region;
1458         unsigned long npages;
1459
1460         /* we're only permitted to split anonymous regions (these should have
1461          * only a single usage on the region) */
1462         if (vma->vm_file)
1463                 return -ENOMEM;
1464
1465         if (mm->map_count >= sysctl_max_map_count)
1466                 return -ENOMEM;
1467
1468         region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1469         if (!region)
1470                 return -ENOMEM;
1471
1472         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1473         if (!new) {
1474                 kmem_cache_free(vm_region_jar, region);
1475                 return -ENOMEM;
1476         }
1477
1478         /* most fields are the same, copy all, and then fixup */
1479         *new = *vma;
1480         *region = *vma->vm_region;
1481         new->vm_region = region;
1482
1483         npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1484
1485         if (new_below) {
1486                 region->vm_top = region->vm_end = new->vm_end = addr;
1487         } else {
1488                 region->vm_start = new->vm_start = addr;
1489                 region->vm_pgoff = new->vm_pgoff += npages;
1490         }
1491
1492         if (new->vm_ops && new->vm_ops->open)
1493                 new->vm_ops->open(new);
1494
1495         delete_vma_from_mm(vma);
1496         down_write(&nommu_region_sem);
1497         delete_nommu_region(vma->vm_region);
1498         if (new_below) {
1499                 vma->vm_region->vm_start = vma->vm_start = addr;
1500                 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1501         } else {
1502                 vma->vm_region->vm_end = vma->vm_end = addr;
1503                 vma->vm_region->vm_top = addr;
1504         }
1505         add_nommu_region(vma->vm_region);
1506         add_nommu_region(new->vm_region);
1507         up_write(&nommu_region_sem);
1508         add_vma_to_mm(mm, vma);
1509         add_vma_to_mm(mm, new);
1510         return 0;
1511 }
1512
1513 /*
1514  * shrink a VMA by removing the specified chunk from either the beginning or
1515  * the end
1516  */
1517 static int shrink_vma(struct mm_struct *mm,
1518                       struct vm_area_struct *vma,
1519                       unsigned long from, unsigned long to)
1520 {
1521         struct vm_region *region;
1522
1523         /* adjust the VMA's pointers, which may reposition it in the MM's tree
1524          * and list */
1525         delete_vma_from_mm(vma);
1526         if (from > vma->vm_start)
1527                 vma->vm_end = from;
1528         else
1529                 vma->vm_start = to;
1530         add_vma_to_mm(mm, vma);
1531
1532         /* cut the backing region down to size */
1533         region = vma->vm_region;
1534         BUG_ON(region->vm_usage != 1);
1535
1536         down_write(&nommu_region_sem);
1537         delete_nommu_region(region);
1538         if (from > region->vm_start) {
1539                 to = region->vm_top;
1540                 region->vm_top = region->vm_end = from;
1541         } else {
1542                 region->vm_start = to;
1543         }
1544         add_nommu_region(region);
1545         up_write(&nommu_region_sem);
1546
1547         free_page_series(from, to);
1548         return 0;
1549 }
1550
1551 /*
1552  * release a mapping
1553  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1554  *   VMA, though it need not cover the whole VMA
1555  */
1556 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)
1557 {
1558         struct vm_area_struct *vma;
1559         unsigned long end;
1560         int ret;
1561
1562         len = PAGE_ALIGN(len);
1563         if (len == 0)
1564                 return -EINVAL;
1565
1566         end = start + len;
1567
1568         /* find the first potentially overlapping VMA */
1569         vma = find_vma(mm, start);
1570         if (!vma) {
1571                 static int limit;
1572                 if (limit < 5) {
1573                         pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1574                                         current->pid, current->comm,
1575                                         start, start + len - 1);
1576                         limit++;
1577                 }
1578                 return -EINVAL;
1579         }
1580
1581         /* we're allowed to split an anonymous VMA but not a file-backed one */
1582         if (vma->vm_file) {
1583                 do {
1584                         if (start > vma->vm_start)
1585                                 return -EINVAL;
1586                         if (end == vma->vm_end)
1587                                 goto erase_whole_vma;
1588                         vma = vma->vm_next;
1589                 } while (vma);
1590                 return -EINVAL;
1591         } else {
1592                 /* the chunk must be a subset of the VMA found */
1593                 if (start == vma->vm_start && end == vma->vm_end)
1594                         goto erase_whole_vma;
1595                 if (start < vma->vm_start || end > vma->vm_end)
1596                         return -EINVAL;
1597                 if (offset_in_page(start))
1598                         return -EINVAL;
1599                 if (end != vma->vm_end && offset_in_page(end))
1600                         return -EINVAL;
1601                 if (start != vma->vm_start && end != vma->vm_end) {
1602                         ret = split_vma(mm, vma, start, 1);
1603                         if (ret < 0)
1604                                 return ret;
1605                 }
1606                 return shrink_vma(mm, vma, start, end);
1607         }
1608
1609 erase_whole_vma:
1610         delete_vma_from_mm(vma);
1611         delete_vma(mm, vma);
1612         return 0;
1613 }
1614 EXPORT_SYMBOL(do_munmap);
1615
1616 int vm_munmap(unsigned long addr, size_t len)
1617 {
1618         struct mm_struct *mm = current->mm;
1619         int ret;
1620
1621         down_write(&mm->mmap_sem);
1622         ret = do_munmap(mm, addr, len, NULL);
1623         up_write(&mm->mmap_sem);
1624         return ret;
1625 }
1626 EXPORT_SYMBOL(vm_munmap);
1627
1628 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1629 {
1630         return vm_munmap(addr, len);
1631 }
1632
1633 /*
1634  * release all the mappings made in a process's VM space
1635  */
1636 void exit_mmap(struct mm_struct *mm)
1637 {
1638         struct vm_area_struct *vma;
1639
1640         if (!mm)
1641                 return;
1642
1643         mm->total_vm = 0;
1644
1645         while ((vma = mm->mmap)) {
1646                 mm->mmap = vma->vm_next;
1647                 delete_vma_from_mm(vma);
1648                 delete_vma(mm, vma);
1649                 cond_resched();
1650         }
1651 }
1652
1653 int vm_brk(unsigned long addr, unsigned long len)
1654 {
1655         return -ENOMEM;
1656 }
1657
1658 /*
1659  * expand (or shrink) an existing mapping, potentially moving it at the same
1660  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1661  *
1662  * under NOMMU conditions, we only permit changing a mapping's size, and only
1663  * as long as it stays within the region allocated by do_mmap_private() and the
1664  * block is not shareable
1665  *
1666  * MREMAP_FIXED is not supported under NOMMU conditions
1667  */
1668 static unsigned long do_mremap(unsigned long addr,
1669                         unsigned long old_len, unsigned long new_len,
1670                         unsigned long flags, unsigned long new_addr)
1671 {
1672         struct vm_area_struct *vma;
1673
1674         /* insanity checks first */
1675         old_len = PAGE_ALIGN(old_len);
1676         new_len = PAGE_ALIGN(new_len);
1677         if (old_len == 0 || new_len == 0)
1678                 return (unsigned long) -EINVAL;
1679
1680         if (offset_in_page(addr))
1681                 return -EINVAL;
1682
1683         if (flags & MREMAP_FIXED && new_addr != addr)
1684                 return (unsigned long) -EINVAL;
1685
1686         vma = find_vma_exact(current->mm, addr, old_len);
1687         if (!vma)
1688                 return (unsigned long) -EINVAL;
1689
1690         if (vma->vm_end != vma->vm_start + old_len)
1691                 return (unsigned long) -EFAULT;
1692
1693         if (vma->vm_flags & VM_MAYSHARE)
1694                 return (unsigned long) -EPERM;
1695
1696         if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1697                 return (unsigned long) -ENOMEM;
1698
1699         /* all checks complete - do it */
1700         vma->vm_end = vma->vm_start + new_len;
1701         return vma->vm_start;
1702 }
1703
1704 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1705                 unsigned long, new_len, unsigned long, flags,
1706                 unsigned long, new_addr)
1707 {
1708         unsigned long ret;
1709
1710         down_write(&current->mm->mmap_sem);
1711         ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1712         up_write(&current->mm->mmap_sem);
1713         return ret;
1714 }
1715
1716 struct page *follow_page_mask(struct vm_area_struct *vma,
1717                               unsigned long address, unsigned int flags,
1718                               unsigned int *page_mask)
1719 {
1720         *page_mask = 0;
1721         return NULL;
1722 }
1723
1724 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1725                 unsigned long pfn, unsigned long size, pgprot_t prot)
1726 {
1727         if (addr != (pfn << PAGE_SHIFT))
1728                 return -EINVAL;
1729
1730         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1731         return 0;
1732 }
1733 EXPORT_SYMBOL(remap_pfn_range);
1734
1735 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1736 {
1737         unsigned long pfn = start >> PAGE_SHIFT;
1738         unsigned long vm_len = vma->vm_end - vma->vm_start;
1739
1740         pfn += vma->vm_pgoff;
1741         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1742 }
1743 EXPORT_SYMBOL(vm_iomap_memory);
1744
1745 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1746                         unsigned long pgoff)
1747 {
1748         unsigned int size = vma->vm_end - vma->vm_start;
1749
1750         if (!(vma->vm_flags & VM_USERMAP))
1751                 return -EINVAL;
1752
1753         vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1754         vma->vm_end = vma->vm_start + size;
1755
1756         return 0;
1757 }
1758 EXPORT_SYMBOL(remap_vmalloc_range);
1759
1760 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1761         unsigned long len, unsigned long pgoff, unsigned long flags)
1762 {
1763         return -ENOMEM;
1764 }
1765
1766 int filemap_fault(struct vm_fault *vmf)
1767 {
1768         BUG();
1769         return 0;
1770 }
1771 EXPORT_SYMBOL(filemap_fault);
1772
1773 void filemap_map_pages(struct vm_fault *vmf,
1774                 pgoff_t start_pgoff, pgoff_t end_pgoff)
1775 {
1776         BUG();
1777 }
1778 EXPORT_SYMBOL(filemap_map_pages);
1779
1780 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1781                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
1782 {
1783         struct vm_area_struct *vma;
1784         int write = gup_flags & FOLL_WRITE;
1785
1786         down_read(&mm->mmap_sem);
1787
1788         /* the access must start within one of the target process's mappings */
1789         vma = find_vma(mm, addr);
1790         if (vma) {
1791                 /* don't overrun this mapping */
1792                 if (addr + len >= vma->vm_end)
1793                         len = vma->vm_end - addr;
1794
1795                 /* only read or write mappings where it is permitted */
1796                 if (write && vma->vm_flags & VM_MAYWRITE)
1797                         copy_to_user_page(vma, NULL, addr,
1798                                          (void *) addr, buf, len);
1799                 else if (!write && vma->vm_flags & VM_MAYREAD)
1800                         copy_from_user_page(vma, NULL, addr,
1801                                             buf, (void *) addr, len);
1802                 else
1803                         len = 0;
1804         } else {
1805                 len = 0;
1806         }
1807
1808         up_read(&mm->mmap_sem);
1809
1810         return len;
1811 }
1812
1813 /**
1814  * access_remote_vm - access another process' address space
1815  * @mm:         the mm_struct of the target address space
1816  * @addr:       start address to access
1817  * @buf:        source or destination buffer
1818  * @len:        number of bytes to transfer
1819  * @gup_flags:  flags modifying lookup behaviour
1820  *
1821  * The caller must hold a reference on @mm.
1822  */
1823 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1824                 void *buf, int len, unsigned int gup_flags)
1825 {
1826         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
1827 }
1828
1829 /*
1830  * Access another process' address space.
1831  * - source/target buffer must be kernel space
1832  */
1833 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1834                 unsigned int gup_flags)
1835 {
1836         struct mm_struct *mm;
1837
1838         if (addr + len < addr)
1839                 return 0;
1840
1841         mm = get_task_mm(tsk);
1842         if (!mm)
1843                 return 0;
1844
1845         len = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
1846
1847         mmput(mm);
1848         return len;
1849 }
1850 EXPORT_SYMBOL_GPL(access_process_vm);
1851
1852 /**
1853  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
1854  * @inode: The inode to check
1855  * @size: The current filesize of the inode
1856  * @newsize: The proposed filesize of the inode
1857  *
1858  * Check the shared mappings on an inode on behalf of a shrinking truncate to
1859  * make sure that that any outstanding VMAs aren't broken and then shrink the
1860  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
1861  * automatically grant mappings that are too large.
1862  */
1863 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
1864                                 size_t newsize)
1865 {
1866         struct vm_area_struct *vma;
1867         struct vm_region *region;
1868         pgoff_t low, high;
1869         size_t r_size, r_top;
1870
1871         low = newsize >> PAGE_SHIFT;
1872         high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1873
1874         down_write(&nommu_region_sem);
1875         i_mmap_lock_read(inode->i_mapping);
1876
1877         /* search for VMAs that fall within the dead zone */
1878         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
1879                 /* found one - only interested if it's shared out of the page
1880                  * cache */
1881                 if (vma->vm_flags & VM_SHARED) {
1882                         i_mmap_unlock_read(inode->i_mapping);
1883                         up_write(&nommu_region_sem);
1884                         return -ETXTBSY; /* not quite true, but near enough */
1885                 }
1886         }
1887
1888         /* reduce any regions that overlap the dead zone - if in existence,
1889          * these will be pointed to by VMAs that don't overlap the dead zone
1890          *
1891          * we don't check for any regions that start beyond the EOF as there
1892          * shouldn't be any
1893          */
1894         vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
1895                 if (!(vma->vm_flags & VM_SHARED))
1896                         continue;
1897
1898                 region = vma->vm_region;
1899                 r_size = region->vm_top - region->vm_start;
1900                 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
1901
1902                 if (r_top > newsize) {
1903                         region->vm_top -= r_top - newsize;
1904                         if (region->vm_end > region->vm_top)
1905                                 region->vm_end = region->vm_top;
1906                 }
1907         }
1908
1909         i_mmap_unlock_read(inode->i_mapping);
1910         up_write(&nommu_region_sem);
1911         return 0;
1912 }
1913
1914 /*
1915  * Initialise sysctl_user_reserve_kbytes.
1916  *
1917  * This is intended to prevent a user from starting a single memory hogging
1918  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1919  * mode.
1920  *
1921  * The default value is min(3% of free memory, 128MB)
1922  * 128MB is enough to recover with sshd/login, bash, and top/kill.
1923  */
1924 static int __meminit init_user_reserve(void)
1925 {
1926         unsigned long free_kbytes;
1927
1928         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1929
1930         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
1931         return 0;
1932 }
1933 subsys_initcall(init_user_reserve);
1934
1935 /*
1936  * Initialise sysctl_admin_reserve_kbytes.
1937  *
1938  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1939  * to log in and kill a memory hogging process.
1940  *
1941  * Systems with more than 256MB will reserve 8MB, enough to recover
1942  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1943  * only reserve 3% of free pages by default.
1944  */
1945 static int __meminit init_admin_reserve(void)
1946 {
1947         unsigned long free_kbytes;
1948
1949         free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
1950
1951         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
1952         return 0;
1953 }
1954 subsys_initcall(init_admin_reserve);