Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[sfrench/cifs-2.6.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/vmacache.h>
14 #include <linux/shm.h>
15 #include <linux/mman.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/syscalls.h>
19 #include <linux/capability.h>
20 #include <linux/init.h>
21 #include <linux/file.h>
22 #include <linux/fs.h>
23 #include <linux/personality.h>
24 #include <linux/security.h>
25 #include <linux/hugetlb.h>
26 #include <linux/profile.h>
27 #include <linux/export.h>
28 #include <linux/mount.h>
29 #include <linux/mempolicy.h>
30 #include <linux/rmap.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/perf_event.h>
33 #include <linux/audit.h>
34 #include <linux/khugepaged.h>
35 #include <linux/uprobes.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/notifier.h>
39 #include <linux/memory.h>
40
41 #include <asm/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <asm/tlb.h>
44 #include <asm/mmu_context.h>
45
46 #include "internal.h"
47
48 #ifndef arch_mmap_check
49 #define arch_mmap_check(addr, len, flags)       (0)
50 #endif
51
52 #ifndef arch_rebalance_pgtables
53 #define arch_rebalance_pgtables(addr, len)              (addr)
54 #endif
55
56 static void unmap_region(struct mm_struct *mm,
57                 struct vm_area_struct *vma, struct vm_area_struct *prev,
58                 unsigned long start, unsigned long end);
59
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type     prot
65  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
66  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
67  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
68  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
69  *              
70  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82         return __pgprot(pgprot_val(protection_map[vm_flags &
83                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 unsigned long sysctl_overcommit_kbytes __read_mostly;
91 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
92 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
93 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
94 /*
95  * Make sure vm_committed_as in one cacheline and not cacheline shared with
96  * other variables. It can be updated by several CPUs frequently.
97  */
98 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
99
100 /*
101  * The global memory commitment made in the system can be a metric
102  * that can be used to drive ballooning decisions when Linux is hosted
103  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
104  * balancing memory across competing virtual machines that are hosted.
105  * Several metrics drive this policy engine including the guest reported
106  * memory commitment.
107  */
108 unsigned long vm_memory_committed(void)
109 {
110         return percpu_counter_read_positive(&vm_committed_as);
111 }
112 EXPORT_SYMBOL_GPL(vm_memory_committed);
113
114 /*
115  * Check that a process has enough memory to allocate a new virtual
116  * mapping. 0 means there is enough memory for the allocation to
117  * succeed and -ENOMEM implies there is not.
118  *
119  * We currently support three overcommit policies, which are set via the
120  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
121  *
122  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
123  * Additional code 2002 Jul 20 by Robert Love.
124  *
125  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
126  *
127  * Note this is a helper function intended to be used by LSMs which
128  * wish to use this logic.
129  */
130 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
131 {
132         unsigned long free, allowed, reserve;
133
134         vm_acct_memory(pages);
135
136         /*
137          * Sometimes we want to use more memory than we have
138          */
139         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
140                 return 0;
141
142         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
143                 free = global_page_state(NR_FREE_PAGES);
144                 free += global_page_state(NR_FILE_PAGES);
145
146                 /*
147                  * shmem pages shouldn't be counted as free in this
148                  * case, they can't be purged, only swapped out, and
149                  * that won't affect the overall amount of available
150                  * memory in the system.
151                  */
152                 free -= global_page_state(NR_SHMEM);
153
154                 free += get_nr_swap_pages();
155
156                 /*
157                  * Any slabs which are created with the
158                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
159                  * which are reclaimable, under pressure.  The dentry
160                  * cache and most inode caches should fall into this
161                  */
162                 free += global_page_state(NR_SLAB_RECLAIMABLE);
163
164                 /*
165                  * Leave reserved pages. The pages are not for anonymous pages.
166                  */
167                 if (free <= totalreserve_pages)
168                         goto error;
169                 else
170                         free -= totalreserve_pages;
171
172                 /*
173                  * Reserve some for root
174                  */
175                 if (!cap_sys_admin)
176                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
177
178                 if (free > pages)
179                         return 0;
180
181                 goto error;
182         }
183
184         allowed = vm_commit_limit();
185         /*
186          * Reserve some for root
187          */
188         if (!cap_sys_admin)
189                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
190
191         /*
192          * Don't let a single process grow so big a user can't recover
193          */
194         if (mm) {
195                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196                 allowed -= min(mm->total_vm / 32, reserve);
197         }
198
199         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200                 return 0;
201 error:
202         vm_unacct_memory(pages);
203
204         return -ENOMEM;
205 }
206
207 /*
208  * Requires inode->i_mapping->i_mmap_mutex
209  */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211                 struct file *file, struct address_space *mapping)
212 {
213         if (vma->vm_flags & VM_DENYWRITE)
214                 atomic_inc(&file_inode(file)->i_writecount);
215         if (vma->vm_flags & VM_SHARED)
216                 mapping->i_mmap_writable--;
217
218         flush_dcache_mmap_lock(mapping);
219         if (unlikely(vma->vm_flags & VM_NONLINEAR))
220                 list_del_init(&vma->shared.nonlinear);
221         else
222                 vma_interval_tree_remove(vma, &mapping->i_mmap);
223         flush_dcache_mmap_unlock(mapping);
224 }
225
226 /*
227  * Unlink a file-based vm structure from its interval tree, to hide
228  * vma from rmap and vmtruncate before freeing its page tables.
229  */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232         struct file *file = vma->vm_file;
233
234         if (file) {
235                 struct address_space *mapping = file->f_mapping;
236                 mutex_lock(&mapping->i_mmap_mutex);
237                 __remove_shared_vm_struct(vma, file, mapping);
238                 mutex_unlock(&mapping->i_mmap_mutex);
239         }
240 }
241
242 /*
243  * Close a vm structure and free it, returning the next.
244  */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247         struct vm_area_struct *next = vma->vm_next;
248
249         might_sleep();
250         if (vma->vm_ops && vma->vm_ops->close)
251                 vma->vm_ops->close(vma);
252         if (vma->vm_file)
253                 fput(vma->vm_file);
254         mpol_put(vma_policy(vma));
255         kmem_cache_free(vm_area_cachep, vma);
256         return next;
257 }
258
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263         unsigned long rlim, retval;
264         unsigned long newbrk, oldbrk;
265         struct mm_struct *mm = current->mm;
266         unsigned long min_brk;
267         bool populate;
268
269         down_write(&mm->mmap_sem);
270
271 #ifdef CONFIG_COMPAT_BRK
272         /*
273          * CONFIG_COMPAT_BRK can still be overridden by setting
274          * randomize_va_space to 2, which will still cause mm->start_brk
275          * to be arbitrarily shifted
276          */
277         if (current->brk_randomized)
278                 min_brk = mm->start_brk;
279         else
280                 min_brk = mm->end_data;
281 #else
282         min_brk = mm->start_brk;
283 #endif
284         if (brk < min_brk)
285                 goto out;
286
287         /*
288          * Check against rlimit here. If this check is done later after the test
289          * of oldbrk with newbrk then it can escape the test and let the data
290          * segment grow beyond its set limit the in case where the limit is
291          * not page aligned -Ram Gupta
292          */
293         rlim = rlimit(RLIMIT_DATA);
294         if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295                         (mm->end_data - mm->start_data) > rlim)
296                 goto out;
297
298         newbrk = PAGE_ALIGN(brk);
299         oldbrk = PAGE_ALIGN(mm->brk);
300         if (oldbrk == newbrk)
301                 goto set_brk;
302
303         /* Always allow shrinking brk. */
304         if (brk <= mm->brk) {
305                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306                         goto set_brk;
307                 goto out;
308         }
309
310         /* Check against existing mmap mappings. */
311         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312                 goto out;
313
314         /* Ok, looks good - let it rip. */
315         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316                 goto out;
317
318 set_brk:
319         mm->brk = brk;
320         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321         up_write(&mm->mmap_sem);
322         if (populate)
323                 mm_populate(oldbrk, newbrk - oldbrk);
324         return brk;
325
326 out:
327         retval = mm->brk;
328         up_write(&mm->mmap_sem);
329         return retval;
330 }
331
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334         unsigned long max, subtree_gap;
335         max = vma->vm_start;
336         if (vma->vm_prev)
337                 max -= vma->vm_prev->vm_end;
338         if (vma->vm_rb.rb_left) {
339                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341                 if (subtree_gap > max)
342                         max = subtree_gap;
343         }
344         if (vma->vm_rb.rb_right) {
345                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347                 if (subtree_gap > max)
348                         max = subtree_gap;
349         }
350         return max;
351 }
352
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356         int i = 0, j, bug = 0;
357         struct rb_node *nd, *pn = NULL;
358         unsigned long prev = 0, pend = 0;
359
360         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361                 struct vm_area_struct *vma;
362                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363                 if (vma->vm_start < prev) {
364                         printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365                         bug = 1;
366                 }
367                 if (vma->vm_start < pend) {
368                         printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369                         bug = 1;
370                 }
371                 if (vma->vm_start > vma->vm_end) {
372                         printk("vm_end %lx < vm_start %lx\n",
373                                 vma->vm_end, vma->vm_start);
374                         bug = 1;
375                 }
376                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377                         printk("free gap %lx, correct %lx\n",
378                                vma->rb_subtree_gap,
379                                vma_compute_subtree_gap(vma));
380                         bug = 1;
381                 }
382                 i++;
383                 pn = nd;
384                 prev = vma->vm_start;
385                 pend = vma->vm_end;
386         }
387         j = 0;
388         for (nd = pn; nd; nd = rb_prev(nd))
389                 j++;
390         if (i != j) {
391                 printk("backwards %d, forwards %d\n", j, i);
392                 bug = 1;
393         }
394         return bug ? -1 : i;
395 }
396
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399         struct rb_node *nd;
400
401         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402                 struct vm_area_struct *vma;
403                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404                 BUG_ON(vma != ignore &&
405                        vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406         }
407 }
408
409 static void validate_mm(struct mm_struct *mm)
410 {
411         int bug = 0;
412         int i = 0;
413         unsigned long highest_address = 0;
414         struct vm_area_struct *vma = mm->mmap;
415         while (vma) {
416                 struct anon_vma_chain *avc;
417                 vma_lock_anon_vma(vma);
418                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419                         anon_vma_interval_tree_verify(avc);
420                 vma_unlock_anon_vma(vma);
421                 highest_address = vma->vm_end;
422                 vma = vma->vm_next;
423                 i++;
424         }
425         if (i != mm->map_count) {
426                 printk("map_count %d vm_next %d\n", mm->map_count, i);
427                 bug = 1;
428         }
429         if (highest_address != mm->highest_vm_end) {
430                 printk("mm->highest_vm_end %lx, found %lx\n",
431                        mm->highest_vm_end, highest_address);
432                 bug = 1;
433         }
434         i = browse_rb(&mm->mm_rb);
435         if (i != mm->map_count) {
436                 printk("map_count %d rb %d\n", mm->map_count, i);
437                 bug = 1;
438         }
439         BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449 /*
450  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451  * vma->vm_prev->vm_end values changed, without modifying the vma's position
452  * in the rbtree.
453  */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456         /*
457          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458          * function that does exacltly what we want.
459          */
460         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464                                  struct rb_root *root)
465 {
466         /* All rb_subtree_gap values must be consistent prior to insertion */
467         validate_mm_rb(root, NULL);
468
469         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474         /*
475          * All rb_subtree_gap values must be consistent prior to erase,
476          * with the possible exception of the vma being erased.
477          */
478         validate_mm_rb(root, vma);
479
480         /*
481          * Note rb_erase_augmented is a fairly large inline function,
482          * so make sure we instantiate it only once with our desired
483          * augmented rbtree callbacks.
484          */
485         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487
488 /*
489  * vma has some anon_vma assigned, and is already inserted on that
490  * anon_vma's interval trees.
491  *
492  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493  * vma must be removed from the anon_vma's interval trees using
494  * anon_vma_interval_tree_pre_update_vma().
495  *
496  * After the update, the vma will be reinserted using
497  * anon_vma_interval_tree_post_update_vma().
498  *
499  * The entire update must be protected by exclusive mmap_sem and by
500  * the root anon_vma's mutex.
501  */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505         struct anon_vma_chain *avc;
506
507         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514         struct anon_vma_chain *avc;
515
516         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521                 unsigned long end, struct vm_area_struct **pprev,
522                 struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526         __rb_link = &mm->mm_rb.rb_node;
527         rb_prev = __rb_parent = NULL;
528
529         while (*__rb_link) {
530                 struct vm_area_struct *vma_tmp;
531
532                 __rb_parent = *__rb_link;
533                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535                 if (vma_tmp->vm_end > addr) {
536                         /* Fail if an existing vma overlaps the area */
537                         if (vma_tmp->vm_start < end)
538                                 return -ENOMEM;
539                         __rb_link = &__rb_parent->rb_left;
540                 } else {
541                         rb_prev = __rb_parent;
542                         __rb_link = &__rb_parent->rb_right;
543                 }
544         }
545
546         *pprev = NULL;
547         if (rb_prev)
548                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549         *rb_link = __rb_link;
550         *rb_parent = __rb_parent;
551         return 0;
552 }
553
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555                 unsigned long addr, unsigned long end)
556 {
557         unsigned long nr_pages = 0;
558         struct vm_area_struct *vma;
559
560         /* Find first overlaping mapping */
561         vma = find_vma_intersection(mm, addr, end);
562         if (!vma)
563                 return 0;
564
565         nr_pages = (min(end, vma->vm_end) -
566                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568         /* Iterate over the rest of the overlaps */
569         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570                 unsigned long overlap_len;
571
572                 if (vma->vm_start > end)
573                         break;
574
575                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576                 nr_pages += overlap_len >> PAGE_SHIFT;
577         }
578
579         return nr_pages;
580 }
581
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583                 struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585         /* Update tracking information for the gap following the new vma. */
586         if (vma->vm_next)
587                 vma_gap_update(vma->vm_next);
588         else
589                 mm->highest_vm_end = vma->vm_end;
590
591         /*
592          * vma->vm_prev wasn't known when we followed the rbtree to find the
593          * correct insertion point for that vma. As a result, we could not
594          * update the vma vm_rb parents rb_subtree_gap values on the way down.
595          * So, we first insert the vma with a zero rb_subtree_gap value
596          * (to be consistent with what we did on the way down), and then
597          * immediately update the gap to the correct value. Finally we
598          * rebalance the rbtree after all augmented values have been set.
599          */
600         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601         vma->rb_subtree_gap = 0;
602         vma_gap_update(vma);
603         vma_rb_insert(vma, &mm->mm_rb);
604 }
605
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608         struct file *file;
609
610         file = vma->vm_file;
611         if (file) {
612                 struct address_space *mapping = file->f_mapping;
613
614                 if (vma->vm_flags & VM_DENYWRITE)
615                         atomic_dec(&file_inode(file)->i_writecount);
616                 if (vma->vm_flags & VM_SHARED)
617                         mapping->i_mmap_writable++;
618
619                 flush_dcache_mmap_lock(mapping);
620                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622                 else
623                         vma_interval_tree_insert(vma, &mapping->i_mmap);
624                 flush_dcache_mmap_unlock(mapping);
625         }
626 }
627
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630         struct vm_area_struct *prev, struct rb_node **rb_link,
631         struct rb_node *rb_parent)
632 {
633         __vma_link_list(mm, vma, prev, rb_parent);
634         __vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638                         struct vm_area_struct *prev, struct rb_node **rb_link,
639                         struct rb_node *rb_parent)
640 {
641         struct address_space *mapping = NULL;
642
643         if (vma->vm_file)
644                 mapping = vma->vm_file->f_mapping;
645
646         if (mapping)
647                 mutex_lock(&mapping->i_mmap_mutex);
648
649         __vma_link(mm, vma, prev, rb_link, rb_parent);
650         __vma_link_file(vma);
651
652         if (mapping)
653                 mutex_unlock(&mapping->i_mmap_mutex);
654
655         mm->map_count++;
656         validate_mm(mm);
657 }
658
659 /*
660  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661  * mm's list and rbtree.  It has already been inserted into the interval tree.
662  */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665         struct vm_area_struct *prev;
666         struct rb_node **rb_link, *rb_parent;
667
668         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669                            &prev, &rb_link, &rb_parent))
670                 BUG();
671         __vma_link(mm, vma, prev, rb_link, rb_parent);
672         mm->map_count++;
673 }
674
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677                 struct vm_area_struct *prev)
678 {
679         struct vm_area_struct *next;
680
681         vma_rb_erase(vma, &mm->mm_rb);
682         prev->vm_next = next = vma->vm_next;
683         if (next)
684                 next->vm_prev = prev;
685
686         /* Kill the cache */
687         vmacache_invalidate(mm);
688 }
689
690 /*
691  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
692  * is already present in an i_mmap tree without adjusting the tree.
693  * The following helper function should be used when such adjustments
694  * are necessary.  The "insert" vma (if any) is to be inserted
695  * before we drop the necessary locks.
696  */
697 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
698         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
699 {
700         struct mm_struct *mm = vma->vm_mm;
701         struct vm_area_struct *next = vma->vm_next;
702         struct vm_area_struct *importer = NULL;
703         struct address_space *mapping = NULL;
704         struct rb_root *root = NULL;
705         struct anon_vma *anon_vma = NULL;
706         struct file *file = vma->vm_file;
707         bool start_changed = false, end_changed = false;
708         long adjust_next = 0;
709         int remove_next = 0;
710
711         if (next && !insert) {
712                 struct vm_area_struct *exporter = NULL;
713
714                 if (end >= next->vm_end) {
715                         /*
716                          * vma expands, overlapping all the next, and
717                          * perhaps the one after too (mprotect case 6).
718                          */
719 again:                  remove_next = 1 + (end > next->vm_end);
720                         end = next->vm_end;
721                         exporter = next;
722                         importer = vma;
723                 } else if (end > next->vm_start) {
724                         /*
725                          * vma expands, overlapping part of the next:
726                          * mprotect case 5 shifting the boundary up.
727                          */
728                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
729                         exporter = next;
730                         importer = vma;
731                 } else if (end < vma->vm_end) {
732                         /*
733                          * vma shrinks, and !insert tells it's not
734                          * split_vma inserting another: so it must be
735                          * mprotect case 4 shifting the boundary down.
736                          */
737                         adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
738                         exporter = vma;
739                         importer = next;
740                 }
741
742                 /*
743                  * Easily overlooked: when mprotect shifts the boundary,
744                  * make sure the expanding vma has anon_vma set if the
745                  * shrinking vma had, to cover any anon pages imported.
746                  */
747                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
748                         if (anon_vma_clone(importer, exporter))
749                                 return -ENOMEM;
750                         importer->anon_vma = exporter->anon_vma;
751                 }
752         }
753
754         if (file) {
755                 mapping = file->f_mapping;
756                 if (!(vma->vm_flags & VM_NONLINEAR)) {
757                         root = &mapping->i_mmap;
758                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
759
760                         if (adjust_next)
761                                 uprobe_munmap(next, next->vm_start,
762                                                         next->vm_end);
763                 }
764
765                 mutex_lock(&mapping->i_mmap_mutex);
766                 if (insert) {
767                         /*
768                          * Put into interval tree now, so instantiated pages
769                          * are visible to arm/parisc __flush_dcache_page
770                          * throughout; but we cannot insert into address
771                          * space until vma start or end is updated.
772                          */
773                         __vma_link_file(insert);
774                 }
775         }
776
777         vma_adjust_trans_huge(vma, start, end, adjust_next);
778
779         anon_vma = vma->anon_vma;
780         if (!anon_vma && adjust_next)
781                 anon_vma = next->anon_vma;
782         if (anon_vma) {
783                 VM_BUG_ON(adjust_next && next->anon_vma &&
784                           anon_vma != next->anon_vma);
785                 anon_vma_lock_write(anon_vma);
786                 anon_vma_interval_tree_pre_update_vma(vma);
787                 if (adjust_next)
788                         anon_vma_interval_tree_pre_update_vma(next);
789         }
790
791         if (root) {
792                 flush_dcache_mmap_lock(mapping);
793                 vma_interval_tree_remove(vma, root);
794                 if (adjust_next)
795                         vma_interval_tree_remove(next, root);
796         }
797
798         if (start != vma->vm_start) {
799                 vma->vm_start = start;
800                 start_changed = true;
801         }
802         if (end != vma->vm_end) {
803                 vma->vm_end = end;
804                 end_changed = true;
805         }
806         vma->vm_pgoff = pgoff;
807         if (adjust_next) {
808                 next->vm_start += adjust_next << PAGE_SHIFT;
809                 next->vm_pgoff += adjust_next;
810         }
811
812         if (root) {
813                 if (adjust_next)
814                         vma_interval_tree_insert(next, root);
815                 vma_interval_tree_insert(vma, root);
816                 flush_dcache_mmap_unlock(mapping);
817         }
818
819         if (remove_next) {
820                 /*
821                  * vma_merge has merged next into vma, and needs
822                  * us to remove next before dropping the locks.
823                  */
824                 __vma_unlink(mm, next, vma);
825                 if (file)
826                         __remove_shared_vm_struct(next, file, mapping);
827         } else if (insert) {
828                 /*
829                  * split_vma has split insert from vma, and needs
830                  * us to insert it before dropping the locks
831                  * (it may either follow vma or precede it).
832                  */
833                 __insert_vm_struct(mm, insert);
834         } else {
835                 if (start_changed)
836                         vma_gap_update(vma);
837                 if (end_changed) {
838                         if (!next)
839                                 mm->highest_vm_end = end;
840                         else if (!adjust_next)
841                                 vma_gap_update(next);
842                 }
843         }
844
845         if (anon_vma) {
846                 anon_vma_interval_tree_post_update_vma(vma);
847                 if (adjust_next)
848                         anon_vma_interval_tree_post_update_vma(next);
849                 anon_vma_unlock_write(anon_vma);
850         }
851         if (mapping)
852                 mutex_unlock(&mapping->i_mmap_mutex);
853
854         if (root) {
855                 uprobe_mmap(vma);
856
857                 if (adjust_next)
858                         uprobe_mmap(next);
859         }
860
861         if (remove_next) {
862                 if (file) {
863                         uprobe_munmap(next, next->vm_start, next->vm_end);
864                         fput(file);
865                 }
866                 if (next->anon_vma)
867                         anon_vma_merge(vma, next);
868                 mm->map_count--;
869                 mpol_put(vma_policy(next));
870                 kmem_cache_free(vm_area_cachep, next);
871                 /*
872                  * In mprotect's case 6 (see comments on vma_merge),
873                  * we must remove another next too. It would clutter
874                  * up the code too much to do both in one go.
875                  */
876                 next = vma->vm_next;
877                 if (remove_next == 2)
878                         goto again;
879                 else if (next)
880                         vma_gap_update(next);
881                 else
882                         mm->highest_vm_end = end;
883         }
884         if (insert && file)
885                 uprobe_mmap(insert);
886
887         validate_mm(mm);
888
889         return 0;
890 }
891
892 /*
893  * If the vma has a ->close operation then the driver probably needs to release
894  * per-vma resources, so we don't attempt to merge those.
895  */
896 static inline int is_mergeable_vma(struct vm_area_struct *vma,
897                         struct file *file, unsigned long vm_flags)
898 {
899         /*
900          * VM_SOFTDIRTY should not prevent from VMA merging, if we
901          * match the flags but dirty bit -- the caller should mark
902          * merged VMA as dirty. If dirty bit won't be excluded from
903          * comparison, we increase pressue on the memory system forcing
904          * the kernel to generate new VMAs when old one could be
905          * extended instead.
906          */
907         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
908                 return 0;
909         if (vma->vm_file != file)
910                 return 0;
911         if (vma->vm_ops && vma->vm_ops->close)
912                 return 0;
913         return 1;
914 }
915
916 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
917                                         struct anon_vma *anon_vma2,
918                                         struct vm_area_struct *vma)
919 {
920         /*
921          * The list_is_singular() test is to avoid merging VMA cloned from
922          * parents. This can improve scalability caused by anon_vma lock.
923          */
924         if ((!anon_vma1 || !anon_vma2) && (!vma ||
925                 list_is_singular(&vma->anon_vma_chain)))
926                 return 1;
927         return anon_vma1 == anon_vma2;
928 }
929
930 /*
931  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
932  * in front of (at a lower virtual address and file offset than) the vma.
933  *
934  * We cannot merge two vmas if they have differently assigned (non-NULL)
935  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
936  *
937  * We don't check here for the merged mmap wrapping around the end of pagecache
938  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
939  * wrap, nor mmaps which cover the final page at index -1UL.
940  */
941 static int
942 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
943         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
944 {
945         if (is_mergeable_vma(vma, file, vm_flags) &&
946             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
947                 if (vma->vm_pgoff == vm_pgoff)
948                         return 1;
949         }
950         return 0;
951 }
952
953 /*
954  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
955  * beyond (at a higher virtual address and file offset than) the vma.
956  *
957  * We cannot merge two vmas if they have differently assigned (non-NULL)
958  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
959  */
960 static int
961 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
962         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
963 {
964         if (is_mergeable_vma(vma, file, vm_flags) &&
965             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
966                 pgoff_t vm_pglen;
967                 vm_pglen = vma_pages(vma);
968                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
969                         return 1;
970         }
971         return 0;
972 }
973
974 /*
975  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
976  * whether that can be merged with its predecessor or its successor.
977  * Or both (it neatly fills a hole).
978  *
979  * In most cases - when called for mmap, brk or mremap - [addr,end) is
980  * certain not to be mapped by the time vma_merge is called; but when
981  * called for mprotect, it is certain to be already mapped (either at
982  * an offset within prev, or at the start of next), and the flags of
983  * this area are about to be changed to vm_flags - and the no-change
984  * case has already been eliminated.
985  *
986  * The following mprotect cases have to be considered, where AAAA is
987  * the area passed down from mprotect_fixup, never extending beyond one
988  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
989  *
990  *     AAAA             AAAA                AAAA          AAAA
991  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
992  *    cannot merge    might become    might become    might become
993  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
994  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
995  *    mremap move:                                    PPPPNNNNNNNN 8
996  *        AAAA
997  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
998  *    might become    case 1 below    case 2 below    case 3 below
999  *
1000  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1001  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1002  */
1003 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1004                         struct vm_area_struct *prev, unsigned long addr,
1005                         unsigned long end, unsigned long vm_flags,
1006                         struct anon_vma *anon_vma, struct file *file,
1007                         pgoff_t pgoff, struct mempolicy *policy)
1008 {
1009         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1010         struct vm_area_struct *area, *next;
1011         int err;
1012
1013         /*
1014          * We later require that vma->vm_flags == vm_flags,
1015          * so this tests vma->vm_flags & VM_SPECIAL, too.
1016          */
1017         if (vm_flags & VM_SPECIAL)
1018                 return NULL;
1019
1020         if (prev)
1021                 next = prev->vm_next;
1022         else
1023                 next = mm->mmap;
1024         area = next;
1025         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1026                 next = next->vm_next;
1027
1028         /*
1029          * Can it merge with the predecessor?
1030          */
1031         if (prev && prev->vm_end == addr &&
1032                         mpol_equal(vma_policy(prev), policy) &&
1033                         can_vma_merge_after(prev, vm_flags,
1034                                                 anon_vma, file, pgoff)) {
1035                 /*
1036                  * OK, it can.  Can we now merge in the successor as well?
1037                  */
1038                 if (next && end == next->vm_start &&
1039                                 mpol_equal(policy, vma_policy(next)) &&
1040                                 can_vma_merge_before(next, vm_flags,
1041                                         anon_vma, file, pgoff+pglen) &&
1042                                 is_mergeable_anon_vma(prev->anon_vma,
1043                                                       next->anon_vma, NULL)) {
1044                                                         /* cases 1, 6 */
1045                         err = vma_adjust(prev, prev->vm_start,
1046                                 next->vm_end, prev->vm_pgoff, NULL);
1047                 } else                                  /* cases 2, 5, 7 */
1048                         err = vma_adjust(prev, prev->vm_start,
1049                                 end, prev->vm_pgoff, NULL);
1050                 if (err)
1051                         return NULL;
1052                 khugepaged_enter_vma_merge(prev);
1053                 return prev;
1054         }
1055
1056         /*
1057          * Can this new request be merged in front of next?
1058          */
1059         if (next && end == next->vm_start &&
1060                         mpol_equal(policy, vma_policy(next)) &&
1061                         can_vma_merge_before(next, vm_flags,
1062                                         anon_vma, file, pgoff+pglen)) {
1063                 if (prev && addr < prev->vm_end)        /* case 4 */
1064                         err = vma_adjust(prev, prev->vm_start,
1065                                 addr, prev->vm_pgoff, NULL);
1066                 else                                    /* cases 3, 8 */
1067                         err = vma_adjust(area, addr, next->vm_end,
1068                                 next->vm_pgoff - pglen, NULL);
1069                 if (err)
1070                         return NULL;
1071                 khugepaged_enter_vma_merge(area);
1072                 return area;
1073         }
1074
1075         return NULL;
1076 }
1077
1078 /*
1079  * Rough compatbility check to quickly see if it's even worth looking
1080  * at sharing an anon_vma.
1081  *
1082  * They need to have the same vm_file, and the flags can only differ
1083  * in things that mprotect may change.
1084  *
1085  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086  * we can merge the two vma's. For example, we refuse to merge a vma if
1087  * there is a vm_ops->close() function, because that indicates that the
1088  * driver is doing some kind of reference counting. But that doesn't
1089  * really matter for the anon_vma sharing case.
1090  */
1091 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092 {
1093         return a->vm_end == b->vm_start &&
1094                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1095                 a->vm_file == b->vm_file &&
1096                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1097                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1098 }
1099
1100 /*
1101  * Do some basic sanity checking to see if we can re-use the anon_vma
1102  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103  * the same as 'old', the other will be the new one that is trying
1104  * to share the anon_vma.
1105  *
1106  * NOTE! This runs with mm_sem held for reading, so it is possible that
1107  * the anon_vma of 'old' is concurrently in the process of being set up
1108  * by another page fault trying to merge _that_. But that's ok: if it
1109  * is being set up, that automatically means that it will be a singleton
1110  * acceptable for merging, so we can do all of this optimistically. But
1111  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1112  *
1113  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115  * is to return an anon_vma that is "complex" due to having gone through
1116  * a fork).
1117  *
1118  * We also make sure that the two vma's are compatible (adjacent,
1119  * and with the same memory policies). That's all stable, even with just
1120  * a read lock on the mm_sem.
1121  */
1122 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123 {
1124         if (anon_vma_compatible(a, b)) {
1125                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1126
1127                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1128                         return anon_vma;
1129         }
1130         return NULL;
1131 }
1132
1133 /*
1134  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135  * neighbouring vmas for a suitable anon_vma, before it goes off
1136  * to allocate a new anon_vma.  It checks because a repetitive
1137  * sequence of mprotects and faults may otherwise lead to distinct
1138  * anon_vmas being allocated, preventing vma merge in subsequent
1139  * mprotect.
1140  */
1141 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142 {
1143         struct anon_vma *anon_vma;
1144         struct vm_area_struct *near;
1145
1146         near = vma->vm_next;
1147         if (!near)
1148                 goto try_prev;
1149
1150         anon_vma = reusable_anon_vma(near, vma, near);
1151         if (anon_vma)
1152                 return anon_vma;
1153 try_prev:
1154         near = vma->vm_prev;
1155         if (!near)
1156                 goto none;
1157
1158         anon_vma = reusable_anon_vma(near, near, vma);
1159         if (anon_vma)
1160                 return anon_vma;
1161 none:
1162         /*
1163          * There's no absolute need to look only at touching neighbours:
1164          * we could search further afield for "compatible" anon_vmas.
1165          * But it would probably just be a waste of time searching,
1166          * or lead to too many vmas hanging off the same anon_vma.
1167          * We're trying to allow mprotect remerging later on,
1168          * not trying to minimize memory used for anon_vmas.
1169          */
1170         return NULL;
1171 }
1172
1173 #ifdef CONFIG_PROC_FS
1174 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1175                                                 struct file *file, long pages)
1176 {
1177         const unsigned long stack_flags
1178                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1179
1180         mm->total_vm += pages;
1181
1182         if (file) {
1183                 mm->shared_vm += pages;
1184                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1185                         mm->exec_vm += pages;
1186         } else if (flags & stack_flags)
1187                 mm->stack_vm += pages;
1188 }
1189 #endif /* CONFIG_PROC_FS */
1190
1191 /*
1192  * If a hint addr is less than mmap_min_addr change hint to be as
1193  * low as possible but still greater than mmap_min_addr
1194  */
1195 static inline unsigned long round_hint_to_min(unsigned long hint)
1196 {
1197         hint &= PAGE_MASK;
1198         if (((void *)hint != NULL) &&
1199             (hint < mmap_min_addr))
1200                 return PAGE_ALIGN(mmap_min_addr);
1201         return hint;
1202 }
1203
1204 static inline int mlock_future_check(struct mm_struct *mm,
1205                                      unsigned long flags,
1206                                      unsigned long len)
1207 {
1208         unsigned long locked, lock_limit;
1209
1210         /*  mlock MCL_FUTURE? */
1211         if (flags & VM_LOCKED) {
1212                 locked = len >> PAGE_SHIFT;
1213                 locked += mm->locked_vm;
1214                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1215                 lock_limit >>= PAGE_SHIFT;
1216                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1217                         return -EAGAIN;
1218         }
1219         return 0;
1220 }
1221
1222 /*
1223  * The caller must hold down_write(&current->mm->mmap_sem).
1224  */
1225
1226 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1227                         unsigned long len, unsigned long prot,
1228                         unsigned long flags, unsigned long pgoff,
1229                         unsigned long *populate)
1230 {
1231         struct mm_struct * mm = current->mm;
1232         vm_flags_t vm_flags;
1233
1234         *populate = 0;
1235
1236         /*
1237          * Does the application expect PROT_READ to imply PROT_EXEC?
1238          *
1239          * (the exception is when the underlying filesystem is noexec
1240          *  mounted, in which case we dont add PROT_EXEC.)
1241          */
1242         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1243                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1244                         prot |= PROT_EXEC;
1245
1246         if (!len)
1247                 return -EINVAL;
1248
1249         if (!(flags & MAP_FIXED))
1250                 addr = round_hint_to_min(addr);
1251
1252         /* Careful about overflows.. */
1253         len = PAGE_ALIGN(len);
1254         if (!len)
1255                 return -ENOMEM;
1256
1257         /* offset overflow? */
1258         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1259                return -EOVERFLOW;
1260
1261         /* Too many mappings? */
1262         if (mm->map_count > sysctl_max_map_count)
1263                 return -ENOMEM;
1264
1265         /* Obtain the address to map to. we verify (or select) it and ensure
1266          * that it represents a valid section of the address space.
1267          */
1268         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1269         if (addr & ~PAGE_MASK)
1270                 return addr;
1271
1272         /* Do simple checking here so the lower-level routines won't have
1273          * to. we assume access permissions have been handled by the open
1274          * of the memory object, so we don't do any here.
1275          */
1276         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1277                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1278
1279         if (flags & MAP_LOCKED)
1280                 if (!can_do_mlock())
1281                         return -EPERM;
1282
1283         if (mlock_future_check(mm, vm_flags, len))
1284                 return -EAGAIN;
1285
1286         if (file) {
1287                 struct inode *inode = file_inode(file);
1288
1289                 switch (flags & MAP_TYPE) {
1290                 case MAP_SHARED:
1291                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1292                                 return -EACCES;
1293
1294                         /*
1295                          * Make sure we don't allow writing to an append-only
1296                          * file..
1297                          */
1298                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1299                                 return -EACCES;
1300
1301                         /*
1302                          * Make sure there are no mandatory locks on the file.
1303                          */
1304                         if (locks_verify_locked(file))
1305                                 return -EAGAIN;
1306
1307                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1308                         if (!(file->f_mode & FMODE_WRITE))
1309                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1310
1311                         /* fall through */
1312                 case MAP_PRIVATE:
1313                         if (!(file->f_mode & FMODE_READ))
1314                                 return -EACCES;
1315                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1316                                 if (vm_flags & VM_EXEC)
1317                                         return -EPERM;
1318                                 vm_flags &= ~VM_MAYEXEC;
1319                         }
1320
1321                         if (!file->f_op->mmap)
1322                                 return -ENODEV;
1323                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1324                                 return -EINVAL;
1325                         break;
1326
1327                 default:
1328                         return -EINVAL;
1329                 }
1330         } else {
1331                 switch (flags & MAP_TYPE) {
1332                 case MAP_SHARED:
1333                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1334                                 return -EINVAL;
1335                         /*
1336                          * Ignore pgoff.
1337                          */
1338                         pgoff = 0;
1339                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1340                         break;
1341                 case MAP_PRIVATE:
1342                         /*
1343                          * Set pgoff according to addr for anon_vma.
1344                          */
1345                         pgoff = addr >> PAGE_SHIFT;
1346                         break;
1347                 default:
1348                         return -EINVAL;
1349                 }
1350         }
1351
1352         /*
1353          * Set 'VM_NORESERVE' if we should not account for the
1354          * memory use of this mapping.
1355          */
1356         if (flags & MAP_NORESERVE) {
1357                 /* We honor MAP_NORESERVE if allowed to overcommit */
1358                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1359                         vm_flags |= VM_NORESERVE;
1360
1361                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1362                 if (file && is_file_hugepages(file))
1363                         vm_flags |= VM_NORESERVE;
1364         }
1365
1366         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1367         if (!IS_ERR_VALUE(addr) &&
1368             ((vm_flags & VM_LOCKED) ||
1369              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1370                 *populate = len;
1371         return addr;
1372 }
1373
1374 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1375                 unsigned long, prot, unsigned long, flags,
1376                 unsigned long, fd, unsigned long, pgoff)
1377 {
1378         struct file *file = NULL;
1379         unsigned long retval = -EBADF;
1380
1381         if (!(flags & MAP_ANONYMOUS)) {
1382                 audit_mmap_fd(fd, flags);
1383                 file = fget(fd);
1384                 if (!file)
1385                         goto out;
1386                 if (is_file_hugepages(file))
1387                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1388                 retval = -EINVAL;
1389                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1390                         goto out_fput;
1391         } else if (flags & MAP_HUGETLB) {
1392                 struct user_struct *user = NULL;
1393                 struct hstate *hs;
1394
1395                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1396                 if (!hs)
1397                         return -EINVAL;
1398
1399                 len = ALIGN(len, huge_page_size(hs));
1400                 /*
1401                  * VM_NORESERVE is used because the reservations will be
1402                  * taken when vm_ops->mmap() is called
1403                  * A dummy user value is used because we are not locking
1404                  * memory so no accounting is necessary
1405                  */
1406                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1407                                 VM_NORESERVE,
1408                                 &user, HUGETLB_ANONHUGE_INODE,
1409                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1410                 if (IS_ERR(file))
1411                         return PTR_ERR(file);
1412         }
1413
1414         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1415
1416         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1417 out_fput:
1418         if (file)
1419                 fput(file);
1420 out:
1421         return retval;
1422 }
1423
1424 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1425 struct mmap_arg_struct {
1426         unsigned long addr;
1427         unsigned long len;
1428         unsigned long prot;
1429         unsigned long flags;
1430         unsigned long fd;
1431         unsigned long offset;
1432 };
1433
1434 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435 {
1436         struct mmap_arg_struct a;
1437
1438         if (copy_from_user(&a, arg, sizeof(a)))
1439                 return -EFAULT;
1440         if (a.offset & ~PAGE_MASK)
1441                 return -EINVAL;
1442
1443         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444                               a.offset >> PAGE_SHIFT);
1445 }
1446 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447
1448 /*
1449  * Some shared mappigns will want the pages marked read-only
1450  * to track write events. If so, we'll downgrade vm_page_prot
1451  * to the private version (using protection_map[] without the
1452  * VM_SHARED bit).
1453  */
1454 int vma_wants_writenotify(struct vm_area_struct *vma)
1455 {
1456         vm_flags_t vm_flags = vma->vm_flags;
1457
1458         /* If it was private or non-writable, the write bit is already clear */
1459         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1460                 return 0;
1461
1462         /* The backer wishes to know when pages are first written to? */
1463         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1464                 return 1;
1465
1466         /* The open routine did something to the protections already? */
1467         if (pgprot_val(vma->vm_page_prot) !=
1468             pgprot_val(vm_get_page_prot(vm_flags)))
1469                 return 0;
1470
1471         /* Specialty mapping? */
1472         if (vm_flags & VM_PFNMAP)
1473                 return 0;
1474
1475         /* Can the mapping track the dirty pages? */
1476         return vma->vm_file && vma->vm_file->f_mapping &&
1477                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1478 }
1479
1480 /*
1481  * We account for memory if it's a private writeable mapping,
1482  * not hugepages and VM_NORESERVE wasn't set.
1483  */
1484 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1485 {
1486         /*
1487          * hugetlb has its own accounting separate from the core VM
1488          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1489          */
1490         if (file && is_file_hugepages(file))
1491                 return 0;
1492
1493         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1494 }
1495
1496 unsigned long mmap_region(struct file *file, unsigned long addr,
1497                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1498 {
1499         struct mm_struct *mm = current->mm;
1500         struct vm_area_struct *vma, *prev;
1501         int error;
1502         struct rb_node **rb_link, *rb_parent;
1503         unsigned long charged = 0;
1504
1505         /* Check against address space limit. */
1506         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1507                 unsigned long nr_pages;
1508
1509                 /*
1510                  * MAP_FIXED may remove pages of mappings that intersects with
1511                  * requested mapping. Account for the pages it would unmap.
1512                  */
1513                 if (!(vm_flags & MAP_FIXED))
1514                         return -ENOMEM;
1515
1516                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1517
1518                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1519                         return -ENOMEM;
1520         }
1521
1522         /* Clear old maps */
1523         error = -ENOMEM;
1524 munmap_back:
1525         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1526                 if (do_munmap(mm, addr, len))
1527                         return -ENOMEM;
1528                 goto munmap_back;
1529         }
1530
1531         /*
1532          * Private writable mapping: check memory availability
1533          */
1534         if (accountable_mapping(file, vm_flags)) {
1535                 charged = len >> PAGE_SHIFT;
1536                 if (security_vm_enough_memory_mm(mm, charged))
1537                         return -ENOMEM;
1538                 vm_flags |= VM_ACCOUNT;
1539         }
1540
1541         /*
1542          * Can we just expand an old mapping?
1543          */
1544         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1545         if (vma)
1546                 goto out;
1547
1548         /*
1549          * Determine the object being mapped and call the appropriate
1550          * specific mapper. the address has already been validated, but
1551          * not unmapped, but the maps are removed from the list.
1552          */
1553         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1554         if (!vma) {
1555                 error = -ENOMEM;
1556                 goto unacct_error;
1557         }
1558
1559         vma->vm_mm = mm;
1560         vma->vm_start = addr;
1561         vma->vm_end = addr + len;
1562         vma->vm_flags = vm_flags;
1563         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1564         vma->vm_pgoff = pgoff;
1565         INIT_LIST_HEAD(&vma->anon_vma_chain);
1566
1567         if (file) {
1568                 if (vm_flags & VM_DENYWRITE) {
1569                         error = deny_write_access(file);
1570                         if (error)
1571                                 goto free_vma;
1572                 }
1573                 vma->vm_file = get_file(file);
1574                 error = file->f_op->mmap(file, vma);
1575                 if (error)
1576                         goto unmap_and_free_vma;
1577
1578                 /* Can addr have changed??
1579                  *
1580                  * Answer: Yes, several device drivers can do it in their
1581                  *         f_op->mmap method. -DaveM
1582                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1583                  *      be updated for vma_link()
1584                  */
1585                 WARN_ON_ONCE(addr != vma->vm_start);
1586
1587                 addr = vma->vm_start;
1588                 vm_flags = vma->vm_flags;
1589         } else if (vm_flags & VM_SHARED) {
1590                 error = shmem_zero_setup(vma);
1591                 if (error)
1592                         goto free_vma;
1593         }
1594
1595         if (vma_wants_writenotify(vma)) {
1596                 pgprot_t pprot = vma->vm_page_prot;
1597
1598                 /* Can vma->vm_page_prot have changed??
1599                  *
1600                  * Answer: Yes, drivers may have changed it in their
1601                  *         f_op->mmap method.
1602                  *
1603                  * Ensures that vmas marked as uncached stay that way.
1604                  */
1605                 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1606                 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1607                         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1608         }
1609
1610         vma_link(mm, vma, prev, rb_link, rb_parent);
1611         /* Once vma denies write, undo our temporary denial count */
1612         if (vm_flags & VM_DENYWRITE)
1613                 allow_write_access(file);
1614         file = vma->vm_file;
1615 out:
1616         perf_event_mmap(vma);
1617
1618         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1619         if (vm_flags & VM_LOCKED) {
1620                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1621                                         vma == get_gate_vma(current->mm)))
1622                         mm->locked_vm += (len >> PAGE_SHIFT);
1623                 else
1624                         vma->vm_flags &= ~VM_LOCKED;
1625         }
1626
1627         if (file)
1628                 uprobe_mmap(vma);
1629
1630         /*
1631          * New (or expanded) vma always get soft dirty status.
1632          * Otherwise user-space soft-dirty page tracker won't
1633          * be able to distinguish situation when vma area unmapped,
1634          * then new mapped in-place (which must be aimed as
1635          * a completely new data area).
1636          */
1637         vma->vm_flags |= VM_SOFTDIRTY;
1638
1639         return addr;
1640
1641 unmap_and_free_vma:
1642         if (vm_flags & VM_DENYWRITE)
1643                 allow_write_access(file);
1644         vma->vm_file = NULL;
1645         fput(file);
1646
1647         /* Undo any partial mapping done by a device driver. */
1648         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1649         charged = 0;
1650 free_vma:
1651         kmem_cache_free(vm_area_cachep, vma);
1652 unacct_error:
1653         if (charged)
1654                 vm_unacct_memory(charged);
1655         return error;
1656 }
1657
1658 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1659 {
1660         /*
1661          * We implement the search by looking for an rbtree node that
1662          * immediately follows a suitable gap. That is,
1663          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1664          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1665          * - gap_end - gap_start >= length
1666          */
1667
1668         struct mm_struct *mm = current->mm;
1669         struct vm_area_struct *vma;
1670         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1671
1672         /* Adjust search length to account for worst case alignment overhead */
1673         length = info->length + info->align_mask;
1674         if (length < info->length)
1675                 return -ENOMEM;
1676
1677         /* Adjust search limits by the desired length */
1678         if (info->high_limit < length)
1679                 return -ENOMEM;
1680         high_limit = info->high_limit - length;
1681
1682         if (info->low_limit > high_limit)
1683                 return -ENOMEM;
1684         low_limit = info->low_limit + length;
1685
1686         /* Check if rbtree root looks promising */
1687         if (RB_EMPTY_ROOT(&mm->mm_rb))
1688                 goto check_highest;
1689         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1690         if (vma->rb_subtree_gap < length)
1691                 goto check_highest;
1692
1693         while (true) {
1694                 /* Visit left subtree if it looks promising */
1695                 gap_end = vma->vm_start;
1696                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1697                         struct vm_area_struct *left =
1698                                 rb_entry(vma->vm_rb.rb_left,
1699                                          struct vm_area_struct, vm_rb);
1700                         if (left->rb_subtree_gap >= length) {
1701                                 vma = left;
1702                                 continue;
1703                         }
1704                 }
1705
1706                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1707 check_current:
1708                 /* Check if current node has a suitable gap */
1709                 if (gap_start > high_limit)
1710                         return -ENOMEM;
1711                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1712                         goto found;
1713
1714                 /* Visit right subtree if it looks promising */
1715                 if (vma->vm_rb.rb_right) {
1716                         struct vm_area_struct *right =
1717                                 rb_entry(vma->vm_rb.rb_right,
1718                                          struct vm_area_struct, vm_rb);
1719                         if (right->rb_subtree_gap >= length) {
1720                                 vma = right;
1721                                 continue;
1722                         }
1723                 }
1724
1725                 /* Go back up the rbtree to find next candidate node */
1726                 while (true) {
1727                         struct rb_node *prev = &vma->vm_rb;
1728                         if (!rb_parent(prev))
1729                                 goto check_highest;
1730                         vma = rb_entry(rb_parent(prev),
1731                                        struct vm_area_struct, vm_rb);
1732                         if (prev == vma->vm_rb.rb_left) {
1733                                 gap_start = vma->vm_prev->vm_end;
1734                                 gap_end = vma->vm_start;
1735                                 goto check_current;
1736                         }
1737                 }
1738         }
1739
1740 check_highest:
1741         /* Check highest gap, which does not precede any rbtree node */
1742         gap_start = mm->highest_vm_end;
1743         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1744         if (gap_start > high_limit)
1745                 return -ENOMEM;
1746
1747 found:
1748         /* We found a suitable gap. Clip it with the original low_limit. */
1749         if (gap_start < info->low_limit)
1750                 gap_start = info->low_limit;
1751
1752         /* Adjust gap address to the desired alignment */
1753         gap_start += (info->align_offset - gap_start) & info->align_mask;
1754
1755         VM_BUG_ON(gap_start + info->length > info->high_limit);
1756         VM_BUG_ON(gap_start + info->length > gap_end);
1757         return gap_start;
1758 }
1759
1760 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1761 {
1762         struct mm_struct *mm = current->mm;
1763         struct vm_area_struct *vma;
1764         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1765
1766         /* Adjust search length to account for worst case alignment overhead */
1767         length = info->length + info->align_mask;
1768         if (length < info->length)
1769                 return -ENOMEM;
1770
1771         /*
1772          * Adjust search limits by the desired length.
1773          * See implementation comment at top of unmapped_area().
1774          */
1775         gap_end = info->high_limit;
1776         if (gap_end < length)
1777                 return -ENOMEM;
1778         high_limit = gap_end - length;
1779
1780         if (info->low_limit > high_limit)
1781                 return -ENOMEM;
1782         low_limit = info->low_limit + length;
1783
1784         /* Check highest gap, which does not precede any rbtree node */
1785         gap_start = mm->highest_vm_end;
1786         if (gap_start <= high_limit)
1787                 goto found_highest;
1788
1789         /* Check if rbtree root looks promising */
1790         if (RB_EMPTY_ROOT(&mm->mm_rb))
1791                 return -ENOMEM;
1792         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1793         if (vma->rb_subtree_gap < length)
1794                 return -ENOMEM;
1795
1796         while (true) {
1797                 /* Visit right subtree if it looks promising */
1798                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1799                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1800                         struct vm_area_struct *right =
1801                                 rb_entry(vma->vm_rb.rb_right,
1802                                          struct vm_area_struct, vm_rb);
1803                         if (right->rb_subtree_gap >= length) {
1804                                 vma = right;
1805                                 continue;
1806                         }
1807                 }
1808
1809 check_current:
1810                 /* Check if current node has a suitable gap */
1811                 gap_end = vma->vm_start;
1812                 if (gap_end < low_limit)
1813                         return -ENOMEM;
1814                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1815                         goto found;
1816
1817                 /* Visit left subtree if it looks promising */
1818                 if (vma->vm_rb.rb_left) {
1819                         struct vm_area_struct *left =
1820                                 rb_entry(vma->vm_rb.rb_left,
1821                                          struct vm_area_struct, vm_rb);
1822                         if (left->rb_subtree_gap >= length) {
1823                                 vma = left;
1824                                 continue;
1825                         }
1826                 }
1827
1828                 /* Go back up the rbtree to find next candidate node */
1829                 while (true) {
1830                         struct rb_node *prev = &vma->vm_rb;
1831                         if (!rb_parent(prev))
1832                                 return -ENOMEM;
1833                         vma = rb_entry(rb_parent(prev),
1834                                        struct vm_area_struct, vm_rb);
1835                         if (prev == vma->vm_rb.rb_right) {
1836                                 gap_start = vma->vm_prev ?
1837                                         vma->vm_prev->vm_end : 0;
1838                                 goto check_current;
1839                         }
1840                 }
1841         }
1842
1843 found:
1844         /* We found a suitable gap. Clip it with the original high_limit. */
1845         if (gap_end > info->high_limit)
1846                 gap_end = info->high_limit;
1847
1848 found_highest:
1849         /* Compute highest gap address at the desired alignment */
1850         gap_end -= info->length;
1851         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1852
1853         VM_BUG_ON(gap_end < info->low_limit);
1854         VM_BUG_ON(gap_end < gap_start);
1855         return gap_end;
1856 }
1857
1858 /* Get an address range which is currently unmapped.
1859  * For shmat() with addr=0.
1860  *
1861  * Ugly calling convention alert:
1862  * Return value with the low bits set means error value,
1863  * ie
1864  *      if (ret & ~PAGE_MASK)
1865  *              error = ret;
1866  *
1867  * This function "knows" that -ENOMEM has the bits set.
1868  */
1869 #ifndef HAVE_ARCH_UNMAPPED_AREA
1870 unsigned long
1871 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1872                 unsigned long len, unsigned long pgoff, unsigned long flags)
1873 {
1874         struct mm_struct *mm = current->mm;
1875         struct vm_area_struct *vma;
1876         struct vm_unmapped_area_info info;
1877
1878         if (len > TASK_SIZE - mmap_min_addr)
1879                 return -ENOMEM;
1880
1881         if (flags & MAP_FIXED)
1882                 return addr;
1883
1884         if (addr) {
1885                 addr = PAGE_ALIGN(addr);
1886                 vma = find_vma(mm, addr);
1887                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1888                     (!vma || addr + len <= vma->vm_start))
1889                         return addr;
1890         }
1891
1892         info.flags = 0;
1893         info.length = len;
1894         info.low_limit = mm->mmap_base;
1895         info.high_limit = TASK_SIZE;
1896         info.align_mask = 0;
1897         return vm_unmapped_area(&info);
1898 }
1899 #endif  
1900
1901 /*
1902  * This mmap-allocator allocates new areas top-down from below the
1903  * stack's low limit (the base):
1904  */
1905 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1906 unsigned long
1907 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1908                           const unsigned long len, const unsigned long pgoff,
1909                           const unsigned long flags)
1910 {
1911         struct vm_area_struct *vma;
1912         struct mm_struct *mm = current->mm;
1913         unsigned long addr = addr0;
1914         struct vm_unmapped_area_info info;
1915
1916         /* requested length too big for entire address space */
1917         if (len > TASK_SIZE - mmap_min_addr)
1918                 return -ENOMEM;
1919
1920         if (flags & MAP_FIXED)
1921                 return addr;
1922
1923         /* requesting a specific address */
1924         if (addr) {
1925                 addr = PAGE_ALIGN(addr);
1926                 vma = find_vma(mm, addr);
1927                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1928                                 (!vma || addr + len <= vma->vm_start))
1929                         return addr;
1930         }
1931
1932         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1933         info.length = len;
1934         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1935         info.high_limit = mm->mmap_base;
1936         info.align_mask = 0;
1937         addr = vm_unmapped_area(&info);
1938
1939         /*
1940          * A failed mmap() very likely causes application failure,
1941          * so fall back to the bottom-up function here. This scenario
1942          * can happen with large stack limits and large mmap()
1943          * allocations.
1944          */
1945         if (addr & ~PAGE_MASK) {
1946                 VM_BUG_ON(addr != -ENOMEM);
1947                 info.flags = 0;
1948                 info.low_limit = TASK_UNMAPPED_BASE;
1949                 info.high_limit = TASK_SIZE;
1950                 addr = vm_unmapped_area(&info);
1951         }
1952
1953         return addr;
1954 }
1955 #endif
1956
1957 unsigned long
1958 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1959                 unsigned long pgoff, unsigned long flags)
1960 {
1961         unsigned long (*get_area)(struct file *, unsigned long,
1962                                   unsigned long, unsigned long, unsigned long);
1963
1964         unsigned long error = arch_mmap_check(addr, len, flags);
1965         if (error)
1966                 return error;
1967
1968         /* Careful about overflows.. */
1969         if (len > TASK_SIZE)
1970                 return -ENOMEM;
1971
1972         get_area = current->mm->get_unmapped_area;
1973         if (file && file->f_op->get_unmapped_area)
1974                 get_area = file->f_op->get_unmapped_area;
1975         addr = get_area(file, addr, len, pgoff, flags);
1976         if (IS_ERR_VALUE(addr))
1977                 return addr;
1978
1979         if (addr > TASK_SIZE - len)
1980                 return -ENOMEM;
1981         if (addr & ~PAGE_MASK)
1982                 return -EINVAL;
1983
1984         addr = arch_rebalance_pgtables(addr, len);
1985         error = security_mmap_addr(addr);
1986         return error ? error : addr;
1987 }
1988
1989 EXPORT_SYMBOL(get_unmapped_area);
1990
1991 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1992 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1993 {
1994         struct rb_node *rb_node;
1995         struct vm_area_struct *vma;
1996
1997         /* Check the cache first. */
1998         vma = vmacache_find(mm, addr);
1999         if (likely(vma))
2000                 return vma;
2001
2002         rb_node = mm->mm_rb.rb_node;
2003         vma = NULL;
2004
2005         while (rb_node) {
2006                 struct vm_area_struct *tmp;
2007
2008                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2009
2010                 if (tmp->vm_end > addr) {
2011                         vma = tmp;
2012                         if (tmp->vm_start <= addr)
2013                                 break;
2014                         rb_node = rb_node->rb_left;
2015                 } else
2016                         rb_node = rb_node->rb_right;
2017         }
2018
2019         if (vma)
2020                 vmacache_update(addr, vma);
2021         return vma;
2022 }
2023
2024 EXPORT_SYMBOL(find_vma);
2025
2026 /*
2027  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2028  */
2029 struct vm_area_struct *
2030 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2031                         struct vm_area_struct **pprev)
2032 {
2033         struct vm_area_struct *vma;
2034
2035         vma = find_vma(mm, addr);
2036         if (vma) {
2037                 *pprev = vma->vm_prev;
2038         } else {
2039                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2040                 *pprev = NULL;
2041                 while (rb_node) {
2042                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2043                         rb_node = rb_node->rb_right;
2044                 }
2045         }
2046         return vma;
2047 }
2048
2049 /*
2050  * Verify that the stack growth is acceptable and
2051  * update accounting. This is shared with both the
2052  * grow-up and grow-down cases.
2053  */
2054 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2055 {
2056         struct mm_struct *mm = vma->vm_mm;
2057         struct rlimit *rlim = current->signal->rlim;
2058         unsigned long new_start;
2059
2060         /* address space limit tests */
2061         if (!may_expand_vm(mm, grow))
2062                 return -ENOMEM;
2063
2064         /* Stack limit test */
2065         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2066                 return -ENOMEM;
2067
2068         /* mlock limit tests */
2069         if (vma->vm_flags & VM_LOCKED) {
2070                 unsigned long locked;
2071                 unsigned long limit;
2072                 locked = mm->locked_vm + grow;
2073                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2074                 limit >>= PAGE_SHIFT;
2075                 if (locked > limit && !capable(CAP_IPC_LOCK))
2076                         return -ENOMEM;
2077         }
2078
2079         /* Check to ensure the stack will not grow into a hugetlb-only region */
2080         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2081                         vma->vm_end - size;
2082         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2083                 return -EFAULT;
2084
2085         /*
2086          * Overcommit..  This must be the final test, as it will
2087          * update security statistics.
2088          */
2089         if (security_vm_enough_memory_mm(mm, grow))
2090                 return -ENOMEM;
2091
2092         /* Ok, everything looks good - let it rip */
2093         if (vma->vm_flags & VM_LOCKED)
2094                 mm->locked_vm += grow;
2095         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2096         return 0;
2097 }
2098
2099 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2100 /*
2101  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2102  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2103  */
2104 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2105 {
2106         int error;
2107
2108         if (!(vma->vm_flags & VM_GROWSUP))
2109                 return -EFAULT;
2110
2111         /*
2112          * We must make sure the anon_vma is allocated
2113          * so that the anon_vma locking is not a noop.
2114          */
2115         if (unlikely(anon_vma_prepare(vma)))
2116                 return -ENOMEM;
2117         vma_lock_anon_vma(vma);
2118
2119         /*
2120          * vma->vm_start/vm_end cannot change under us because the caller
2121          * is required to hold the mmap_sem in read mode.  We need the
2122          * anon_vma lock to serialize against concurrent expand_stacks.
2123          * Also guard against wrapping around to address 0.
2124          */
2125         if (address < PAGE_ALIGN(address+4))
2126                 address = PAGE_ALIGN(address+4);
2127         else {
2128                 vma_unlock_anon_vma(vma);
2129                 return -ENOMEM;
2130         }
2131         error = 0;
2132
2133         /* Somebody else might have raced and expanded it already */
2134         if (address > vma->vm_end) {
2135                 unsigned long size, grow;
2136
2137                 size = address - vma->vm_start;
2138                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2139
2140                 error = -ENOMEM;
2141                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2142                         error = acct_stack_growth(vma, size, grow);
2143                         if (!error) {
2144                                 /*
2145                                  * vma_gap_update() doesn't support concurrent
2146                                  * updates, but we only hold a shared mmap_sem
2147                                  * lock here, so we need to protect against
2148                                  * concurrent vma expansions.
2149                                  * vma_lock_anon_vma() doesn't help here, as
2150                                  * we don't guarantee that all growable vmas
2151                                  * in a mm share the same root anon vma.
2152                                  * So, we reuse mm->page_table_lock to guard
2153                                  * against concurrent vma expansions.
2154                                  */
2155                                 spin_lock(&vma->vm_mm->page_table_lock);
2156                                 anon_vma_interval_tree_pre_update_vma(vma);
2157                                 vma->vm_end = address;
2158                                 anon_vma_interval_tree_post_update_vma(vma);
2159                                 if (vma->vm_next)
2160                                         vma_gap_update(vma->vm_next);
2161                                 else
2162                                         vma->vm_mm->highest_vm_end = address;
2163                                 spin_unlock(&vma->vm_mm->page_table_lock);
2164
2165                                 perf_event_mmap(vma);
2166                         }
2167                 }
2168         }
2169         vma_unlock_anon_vma(vma);
2170         khugepaged_enter_vma_merge(vma);
2171         validate_mm(vma->vm_mm);
2172         return error;
2173 }
2174 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2175
2176 /*
2177  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2178  */
2179 int expand_downwards(struct vm_area_struct *vma,
2180                                    unsigned long address)
2181 {
2182         int error;
2183
2184         /*
2185          * We must make sure the anon_vma is allocated
2186          * so that the anon_vma locking is not a noop.
2187          */
2188         if (unlikely(anon_vma_prepare(vma)))
2189                 return -ENOMEM;
2190
2191         address &= PAGE_MASK;
2192         error = security_mmap_addr(address);
2193         if (error)
2194                 return error;
2195
2196         vma_lock_anon_vma(vma);
2197
2198         /*
2199          * vma->vm_start/vm_end cannot change under us because the caller
2200          * is required to hold the mmap_sem in read mode.  We need the
2201          * anon_vma lock to serialize against concurrent expand_stacks.
2202          */
2203
2204         /* Somebody else might have raced and expanded it already */
2205         if (address < vma->vm_start) {
2206                 unsigned long size, grow;
2207
2208                 size = vma->vm_end - address;
2209                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2210
2211                 error = -ENOMEM;
2212                 if (grow <= vma->vm_pgoff) {
2213                         error = acct_stack_growth(vma, size, grow);
2214                         if (!error) {
2215                                 /*
2216                                  * vma_gap_update() doesn't support concurrent
2217                                  * updates, but we only hold a shared mmap_sem
2218                                  * lock here, so we need to protect against
2219                                  * concurrent vma expansions.
2220                                  * vma_lock_anon_vma() doesn't help here, as
2221                                  * we don't guarantee that all growable vmas
2222                                  * in a mm share the same root anon vma.
2223                                  * So, we reuse mm->page_table_lock to guard
2224                                  * against concurrent vma expansions.
2225                                  */
2226                                 spin_lock(&vma->vm_mm->page_table_lock);
2227                                 anon_vma_interval_tree_pre_update_vma(vma);
2228                                 vma->vm_start = address;
2229                                 vma->vm_pgoff -= grow;
2230                                 anon_vma_interval_tree_post_update_vma(vma);
2231                                 vma_gap_update(vma);
2232                                 spin_unlock(&vma->vm_mm->page_table_lock);
2233
2234                                 perf_event_mmap(vma);
2235                         }
2236                 }
2237         }
2238         vma_unlock_anon_vma(vma);
2239         khugepaged_enter_vma_merge(vma);
2240         validate_mm(vma->vm_mm);
2241         return error;
2242 }
2243
2244 /*
2245  * Note how expand_stack() refuses to expand the stack all the way to
2246  * abut the next virtual mapping, *unless* that mapping itself is also
2247  * a stack mapping. We want to leave room for a guard page, after all
2248  * (the guard page itself is not added here, that is done by the
2249  * actual page faulting logic)
2250  *
2251  * This matches the behavior of the guard page logic (see mm/memory.c:
2252  * check_stack_guard_page()), which only allows the guard page to be
2253  * removed under these circumstances.
2254  */
2255 #ifdef CONFIG_STACK_GROWSUP
2256 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2257 {
2258         struct vm_area_struct *next;
2259
2260         address &= PAGE_MASK;
2261         next = vma->vm_next;
2262         if (next && next->vm_start == address + PAGE_SIZE) {
2263                 if (!(next->vm_flags & VM_GROWSUP))
2264                         return -ENOMEM;
2265         }
2266         return expand_upwards(vma, address);
2267 }
2268
2269 struct vm_area_struct *
2270 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2271 {
2272         struct vm_area_struct *vma, *prev;
2273
2274         addr &= PAGE_MASK;
2275         vma = find_vma_prev(mm, addr, &prev);
2276         if (vma && (vma->vm_start <= addr))
2277                 return vma;
2278         if (!prev || expand_stack(prev, addr))
2279                 return NULL;
2280         if (prev->vm_flags & VM_LOCKED)
2281                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2282         return prev;
2283 }
2284 #else
2285 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286 {
2287         struct vm_area_struct *prev;
2288
2289         address &= PAGE_MASK;
2290         prev = vma->vm_prev;
2291         if (prev && prev->vm_end == address) {
2292                 if (!(prev->vm_flags & VM_GROWSDOWN))
2293                         return -ENOMEM;
2294         }
2295         return expand_downwards(vma, address);
2296 }
2297
2298 struct vm_area_struct *
2299 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2300 {
2301         struct vm_area_struct * vma;
2302         unsigned long start;
2303
2304         addr &= PAGE_MASK;
2305         vma = find_vma(mm,addr);
2306         if (!vma)
2307                 return NULL;
2308         if (vma->vm_start <= addr)
2309                 return vma;
2310         if (!(vma->vm_flags & VM_GROWSDOWN))
2311                 return NULL;
2312         start = vma->vm_start;
2313         if (expand_stack(vma, addr))
2314                 return NULL;
2315         if (vma->vm_flags & VM_LOCKED)
2316                 __mlock_vma_pages_range(vma, addr, start, NULL);
2317         return vma;
2318 }
2319 #endif
2320
2321 /*
2322  * Ok - we have the memory areas we should free on the vma list,
2323  * so release them, and do the vma updates.
2324  *
2325  * Called with the mm semaphore held.
2326  */
2327 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2328 {
2329         unsigned long nr_accounted = 0;
2330
2331         /* Update high watermark before we lower total_vm */
2332         update_hiwater_vm(mm);
2333         do {
2334                 long nrpages = vma_pages(vma);
2335
2336                 if (vma->vm_flags & VM_ACCOUNT)
2337                         nr_accounted += nrpages;
2338                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2339                 vma = remove_vma(vma);
2340         } while (vma);
2341         vm_unacct_memory(nr_accounted);
2342         validate_mm(mm);
2343 }
2344
2345 /*
2346  * Get rid of page table information in the indicated region.
2347  *
2348  * Called with the mm semaphore held.
2349  */
2350 static void unmap_region(struct mm_struct *mm,
2351                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2352                 unsigned long start, unsigned long end)
2353 {
2354         struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2355         struct mmu_gather tlb;
2356
2357         lru_add_drain();
2358         tlb_gather_mmu(&tlb, mm, start, end);
2359         update_hiwater_rss(mm);
2360         unmap_vmas(&tlb, vma, start, end);
2361         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2362                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2363         tlb_finish_mmu(&tlb, start, end);
2364 }
2365
2366 /*
2367  * Create a list of vma's touched by the unmap, removing them from the mm's
2368  * vma list as we go..
2369  */
2370 static void
2371 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2372         struct vm_area_struct *prev, unsigned long end)
2373 {
2374         struct vm_area_struct **insertion_point;
2375         struct vm_area_struct *tail_vma = NULL;
2376
2377         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2378         vma->vm_prev = NULL;
2379         do {
2380                 vma_rb_erase(vma, &mm->mm_rb);
2381                 mm->map_count--;
2382                 tail_vma = vma;
2383                 vma = vma->vm_next;
2384         } while (vma && vma->vm_start < end);
2385         *insertion_point = vma;
2386         if (vma) {
2387                 vma->vm_prev = prev;
2388                 vma_gap_update(vma);
2389         } else
2390                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2391         tail_vma->vm_next = NULL;
2392
2393         /* Kill the cache */
2394         vmacache_invalidate(mm);
2395 }
2396
2397 /*
2398  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2399  * munmap path where it doesn't make sense to fail.
2400  */
2401 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2402               unsigned long addr, int new_below)
2403 {
2404         struct vm_area_struct *new;
2405         int err = -ENOMEM;
2406
2407         if (is_vm_hugetlb_page(vma) && (addr &
2408                                         ~(huge_page_mask(hstate_vma(vma)))))
2409                 return -EINVAL;
2410
2411         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412         if (!new)
2413                 goto out_err;
2414
2415         /* most fields are the same, copy all, and then fixup */
2416         *new = *vma;
2417
2418         INIT_LIST_HEAD(&new->anon_vma_chain);
2419
2420         if (new_below)
2421                 new->vm_end = addr;
2422         else {
2423                 new->vm_start = addr;
2424                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2425         }
2426
2427         err = vma_dup_policy(vma, new);
2428         if (err)
2429                 goto out_free_vma;
2430
2431         if (anon_vma_clone(new, vma))
2432                 goto out_free_mpol;
2433
2434         if (new->vm_file)
2435                 get_file(new->vm_file);
2436
2437         if (new->vm_ops && new->vm_ops->open)
2438                 new->vm_ops->open(new);
2439
2440         if (new_below)
2441                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2442                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2443         else
2444                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2445
2446         /* Success. */
2447         if (!err)
2448                 return 0;
2449
2450         /* Clean everything up if vma_adjust failed. */
2451         if (new->vm_ops && new->vm_ops->close)
2452                 new->vm_ops->close(new);
2453         if (new->vm_file)
2454                 fput(new->vm_file);
2455         unlink_anon_vmas(new);
2456  out_free_mpol:
2457         mpol_put(vma_policy(new));
2458  out_free_vma:
2459         kmem_cache_free(vm_area_cachep, new);
2460  out_err:
2461         return err;
2462 }
2463
2464 /*
2465  * Split a vma into two pieces at address 'addr', a new vma is allocated
2466  * either for the first part or the tail.
2467  */
2468 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2469               unsigned long addr, int new_below)
2470 {
2471         if (mm->map_count >= sysctl_max_map_count)
2472                 return -ENOMEM;
2473
2474         return __split_vma(mm, vma, addr, new_below);
2475 }
2476
2477 /* Munmap is split into 2 main parts -- this part which finds
2478  * what needs doing, and the areas themselves, which do the
2479  * work.  This now handles partial unmappings.
2480  * Jeremy Fitzhardinge <jeremy@goop.org>
2481  */
2482 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2483 {
2484         unsigned long end;
2485         struct vm_area_struct *vma, *prev, *last;
2486
2487         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2488                 return -EINVAL;
2489
2490         if ((len = PAGE_ALIGN(len)) == 0)
2491                 return -EINVAL;
2492
2493         /* Find the first overlapping VMA */
2494         vma = find_vma(mm, start);
2495         if (!vma)
2496                 return 0;
2497         prev = vma->vm_prev;
2498         /* we have  start < vma->vm_end  */
2499
2500         /* if it doesn't overlap, we have nothing.. */
2501         end = start + len;
2502         if (vma->vm_start >= end)
2503                 return 0;
2504
2505         /*
2506          * If we need to split any vma, do it now to save pain later.
2507          *
2508          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2509          * unmapped vm_area_struct will remain in use: so lower split_vma
2510          * places tmp vma above, and higher split_vma places tmp vma below.
2511          */
2512         if (start > vma->vm_start) {
2513                 int error;
2514
2515                 /*
2516                  * Make sure that map_count on return from munmap() will
2517                  * not exceed its limit; but let map_count go just above
2518                  * its limit temporarily, to help free resources as expected.
2519                  */
2520                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2521                         return -ENOMEM;
2522
2523                 error = __split_vma(mm, vma, start, 0);
2524                 if (error)
2525                         return error;
2526                 prev = vma;
2527         }
2528
2529         /* Does it split the last one? */
2530         last = find_vma(mm, end);
2531         if (last && end > last->vm_start) {
2532                 int error = __split_vma(mm, last, end, 1);
2533                 if (error)
2534                         return error;
2535         }
2536         vma = prev? prev->vm_next: mm->mmap;
2537
2538         /*
2539          * unlock any mlock()ed ranges before detaching vmas
2540          */
2541         if (mm->locked_vm) {
2542                 struct vm_area_struct *tmp = vma;
2543                 while (tmp && tmp->vm_start < end) {
2544                         if (tmp->vm_flags & VM_LOCKED) {
2545                                 mm->locked_vm -= vma_pages(tmp);
2546                                 munlock_vma_pages_all(tmp);
2547                         }
2548                         tmp = tmp->vm_next;
2549                 }
2550         }
2551
2552         /*
2553          * Remove the vma's, and unmap the actual pages
2554          */
2555         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2556         unmap_region(mm, vma, prev, start, end);
2557
2558         /* Fix up all other VM information */
2559         remove_vma_list(mm, vma);
2560
2561         return 0;
2562 }
2563
2564 int vm_munmap(unsigned long start, size_t len)
2565 {
2566         int ret;
2567         struct mm_struct *mm = current->mm;
2568
2569         down_write(&mm->mmap_sem);
2570         ret = do_munmap(mm, start, len);
2571         up_write(&mm->mmap_sem);
2572         return ret;
2573 }
2574 EXPORT_SYMBOL(vm_munmap);
2575
2576 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2577 {
2578         profile_munmap(addr);
2579         return vm_munmap(addr, len);
2580 }
2581
2582 static inline void verify_mm_writelocked(struct mm_struct *mm)
2583 {
2584 #ifdef CONFIG_DEBUG_VM
2585         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2586                 WARN_ON(1);
2587                 up_read(&mm->mmap_sem);
2588         }
2589 #endif
2590 }
2591
2592 /*
2593  *  this is really a simplified "do_mmap".  it only handles
2594  *  anonymous maps.  eventually we may be able to do some
2595  *  brk-specific accounting here.
2596  */
2597 static unsigned long do_brk(unsigned long addr, unsigned long len)
2598 {
2599         struct mm_struct * mm = current->mm;
2600         struct vm_area_struct * vma, * prev;
2601         unsigned long flags;
2602         struct rb_node ** rb_link, * rb_parent;
2603         pgoff_t pgoff = addr >> PAGE_SHIFT;
2604         int error;
2605
2606         len = PAGE_ALIGN(len);
2607         if (!len)
2608                 return addr;
2609
2610         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2611
2612         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2613         if (error & ~PAGE_MASK)
2614                 return error;
2615
2616         error = mlock_future_check(mm, mm->def_flags, len);
2617         if (error)
2618                 return error;
2619
2620         /*
2621          * mm->mmap_sem is required to protect against another thread
2622          * changing the mappings in case we sleep.
2623          */
2624         verify_mm_writelocked(mm);
2625
2626         /*
2627          * Clear old maps.  this also does some error checking for us
2628          */
2629  munmap_back:
2630         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2631                 if (do_munmap(mm, addr, len))
2632                         return -ENOMEM;
2633                 goto munmap_back;
2634         }
2635
2636         /* Check against address space limits *after* clearing old maps... */
2637         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2638                 return -ENOMEM;
2639
2640         if (mm->map_count > sysctl_max_map_count)
2641                 return -ENOMEM;
2642
2643         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2644                 return -ENOMEM;
2645
2646         /* Can we just expand an old private anonymous mapping? */
2647         vma = vma_merge(mm, prev, addr, addr + len, flags,
2648                                         NULL, NULL, pgoff, NULL);
2649         if (vma)
2650                 goto out;
2651
2652         /*
2653          * create a vma struct for an anonymous mapping
2654          */
2655         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2656         if (!vma) {
2657                 vm_unacct_memory(len >> PAGE_SHIFT);
2658                 return -ENOMEM;
2659         }
2660
2661         INIT_LIST_HEAD(&vma->anon_vma_chain);
2662         vma->vm_mm = mm;
2663         vma->vm_start = addr;
2664         vma->vm_end = addr + len;
2665         vma->vm_pgoff = pgoff;
2666         vma->vm_flags = flags;
2667         vma->vm_page_prot = vm_get_page_prot(flags);
2668         vma_link(mm, vma, prev, rb_link, rb_parent);
2669 out:
2670         perf_event_mmap(vma);
2671         mm->total_vm += len >> PAGE_SHIFT;
2672         if (flags & VM_LOCKED)
2673                 mm->locked_vm += (len >> PAGE_SHIFT);
2674         vma->vm_flags |= VM_SOFTDIRTY;
2675         return addr;
2676 }
2677
2678 unsigned long vm_brk(unsigned long addr, unsigned long len)
2679 {
2680         struct mm_struct *mm = current->mm;
2681         unsigned long ret;
2682         bool populate;
2683
2684         down_write(&mm->mmap_sem);
2685         ret = do_brk(addr, len);
2686         populate = ((mm->def_flags & VM_LOCKED) != 0);
2687         up_write(&mm->mmap_sem);
2688         if (populate)
2689                 mm_populate(addr, len);
2690         return ret;
2691 }
2692 EXPORT_SYMBOL(vm_brk);
2693
2694 /* Release all mmaps. */
2695 void exit_mmap(struct mm_struct *mm)
2696 {
2697         struct mmu_gather tlb;
2698         struct vm_area_struct *vma;
2699         unsigned long nr_accounted = 0;
2700
2701         /* mm's last user has gone, and its about to be pulled down */
2702         mmu_notifier_release(mm);
2703
2704         if (mm->locked_vm) {
2705                 vma = mm->mmap;
2706                 while (vma) {
2707                         if (vma->vm_flags & VM_LOCKED)
2708                                 munlock_vma_pages_all(vma);
2709                         vma = vma->vm_next;
2710                 }
2711         }
2712
2713         arch_exit_mmap(mm);
2714
2715         vma = mm->mmap;
2716         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2717                 return;
2718
2719         lru_add_drain();
2720         flush_cache_mm(mm);
2721         tlb_gather_mmu(&tlb, mm, 0, -1);
2722         /* update_hiwater_rss(mm) here? but nobody should be looking */
2723         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2724         unmap_vmas(&tlb, vma, 0, -1);
2725
2726         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2727         tlb_finish_mmu(&tlb, 0, -1);
2728
2729         /*
2730          * Walk the list again, actually closing and freeing it,
2731          * with preemption enabled, without holding any MM locks.
2732          */
2733         while (vma) {
2734                 if (vma->vm_flags & VM_ACCOUNT)
2735                         nr_accounted += vma_pages(vma);
2736                 vma = remove_vma(vma);
2737         }
2738         vm_unacct_memory(nr_accounted);
2739
2740         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2741                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2742 }
2743
2744 /* Insert vm structure into process list sorted by address
2745  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2746  * then i_mmap_mutex is taken here.
2747  */
2748 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2749 {
2750         struct vm_area_struct *prev;
2751         struct rb_node **rb_link, *rb_parent;
2752
2753         /*
2754          * The vm_pgoff of a purely anonymous vma should be irrelevant
2755          * until its first write fault, when page's anon_vma and index
2756          * are set.  But now set the vm_pgoff it will almost certainly
2757          * end up with (unless mremap moves it elsewhere before that
2758          * first wfault), so /proc/pid/maps tells a consistent story.
2759          *
2760          * By setting it to reflect the virtual start address of the
2761          * vma, merges and splits can happen in a seamless way, just
2762          * using the existing file pgoff checks and manipulations.
2763          * Similarly in do_mmap_pgoff and in do_brk.
2764          */
2765         if (!vma->vm_file) {
2766                 BUG_ON(vma->anon_vma);
2767                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2768         }
2769         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2770                            &prev, &rb_link, &rb_parent))
2771                 return -ENOMEM;
2772         if ((vma->vm_flags & VM_ACCOUNT) &&
2773              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2774                 return -ENOMEM;
2775
2776         vma_link(mm, vma, prev, rb_link, rb_parent);
2777         return 0;
2778 }
2779
2780 /*
2781  * Copy the vma structure to a new location in the same mm,
2782  * prior to moving page table entries, to effect an mremap move.
2783  */
2784 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2785         unsigned long addr, unsigned long len, pgoff_t pgoff,
2786         bool *need_rmap_locks)
2787 {
2788         struct vm_area_struct *vma = *vmap;
2789         unsigned long vma_start = vma->vm_start;
2790         struct mm_struct *mm = vma->vm_mm;
2791         struct vm_area_struct *new_vma, *prev;
2792         struct rb_node **rb_link, *rb_parent;
2793         bool faulted_in_anon_vma = true;
2794
2795         /*
2796          * If anonymous vma has not yet been faulted, update new pgoff
2797          * to match new location, to increase its chance of merging.
2798          */
2799         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2800                 pgoff = addr >> PAGE_SHIFT;
2801                 faulted_in_anon_vma = false;
2802         }
2803
2804         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2805                 return NULL;    /* should never get here */
2806         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2807                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2808         if (new_vma) {
2809                 /*
2810                  * Source vma may have been merged into new_vma
2811                  */
2812                 if (unlikely(vma_start >= new_vma->vm_start &&
2813                              vma_start < new_vma->vm_end)) {
2814                         /*
2815                          * The only way we can get a vma_merge with
2816                          * self during an mremap is if the vma hasn't
2817                          * been faulted in yet and we were allowed to
2818                          * reset the dst vma->vm_pgoff to the
2819                          * destination address of the mremap to allow
2820                          * the merge to happen. mremap must change the
2821                          * vm_pgoff linearity between src and dst vmas
2822                          * (in turn preventing a vma_merge) to be
2823                          * safe. It is only safe to keep the vm_pgoff
2824                          * linear if there are no pages mapped yet.
2825                          */
2826                         VM_BUG_ON(faulted_in_anon_vma);
2827                         *vmap = vma = new_vma;
2828                 }
2829                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2830         } else {
2831                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2832                 if (new_vma) {
2833                         *new_vma = *vma;
2834                         new_vma->vm_start = addr;
2835                         new_vma->vm_end = addr + len;
2836                         new_vma->vm_pgoff = pgoff;
2837                         if (vma_dup_policy(vma, new_vma))
2838                                 goto out_free_vma;
2839                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2840                         if (anon_vma_clone(new_vma, vma))
2841                                 goto out_free_mempol;
2842                         if (new_vma->vm_file)
2843                                 get_file(new_vma->vm_file);
2844                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2845                                 new_vma->vm_ops->open(new_vma);
2846                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2847                         *need_rmap_locks = false;
2848                 }
2849         }
2850         return new_vma;
2851
2852  out_free_mempol:
2853         mpol_put(vma_policy(new_vma));
2854  out_free_vma:
2855         kmem_cache_free(vm_area_cachep, new_vma);
2856         return NULL;
2857 }
2858
2859 /*
2860  * Return true if the calling process may expand its vm space by the passed
2861  * number of pages
2862  */
2863 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2864 {
2865         unsigned long cur = mm->total_vm;       /* pages */
2866         unsigned long lim;
2867
2868         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2869
2870         if (cur + npages > lim)
2871                 return 0;
2872         return 1;
2873 }
2874
2875
2876 static int special_mapping_fault(struct vm_area_struct *vma,
2877                                 struct vm_fault *vmf)
2878 {
2879         pgoff_t pgoff;
2880         struct page **pages;
2881
2882         /*
2883          * special mappings have no vm_file, and in that case, the mm
2884          * uses vm_pgoff internally. So we have to subtract it from here.
2885          * We are allowed to do this because we are the mm; do not copy
2886          * this code into drivers!
2887          */
2888         pgoff = vmf->pgoff - vma->vm_pgoff;
2889
2890         for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2891                 pgoff--;
2892
2893         if (*pages) {
2894                 struct page *page = *pages;
2895                 get_page(page);
2896                 vmf->page = page;
2897                 return 0;
2898         }
2899
2900         return VM_FAULT_SIGBUS;
2901 }
2902
2903 /*
2904  * Having a close hook prevents vma merging regardless of flags.
2905  */
2906 static void special_mapping_close(struct vm_area_struct *vma)
2907 {
2908 }
2909
2910 static const struct vm_operations_struct special_mapping_vmops = {
2911         .close = special_mapping_close,
2912         .fault = special_mapping_fault,
2913 };
2914
2915 /*
2916  * Called with mm->mmap_sem held for writing.
2917  * Insert a new vma covering the given region, with the given flags.
2918  * Its pages are supplied by the given array of struct page *.
2919  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2920  * The region past the last page supplied will always produce SIGBUS.
2921  * The array pointer and the pages it points to are assumed to stay alive
2922  * for as long as this mapping might exist.
2923  */
2924 struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2925                             unsigned long addr, unsigned long len,
2926                             unsigned long vm_flags, struct page **pages)
2927 {
2928         int ret;
2929         struct vm_area_struct *vma;
2930
2931         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2932         if (unlikely(vma == NULL))
2933                 return ERR_PTR(-ENOMEM);
2934
2935         INIT_LIST_HEAD(&vma->anon_vma_chain);
2936         vma->vm_mm = mm;
2937         vma->vm_start = addr;
2938         vma->vm_end = addr + len;
2939
2940         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2941         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2942
2943         vma->vm_ops = &special_mapping_vmops;
2944         vma->vm_private_data = pages;
2945
2946         ret = insert_vm_struct(mm, vma);
2947         if (ret)
2948                 goto out;
2949
2950         mm->total_vm += len >> PAGE_SHIFT;
2951
2952         perf_event_mmap(vma);
2953
2954         return vma;
2955
2956 out:
2957         kmem_cache_free(vm_area_cachep, vma);
2958         return ERR_PTR(ret);
2959 }
2960
2961 int install_special_mapping(struct mm_struct *mm,
2962                             unsigned long addr, unsigned long len,
2963                             unsigned long vm_flags, struct page **pages)
2964 {
2965         struct vm_area_struct *vma = _install_special_mapping(mm,
2966                             addr, len, vm_flags, pages);
2967
2968         if (IS_ERR(vma))
2969                 return PTR_ERR(vma);
2970         return 0;
2971 }
2972
2973 static DEFINE_MUTEX(mm_all_locks_mutex);
2974
2975 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2976 {
2977         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2978                 /*
2979                  * The LSB of head.next can't change from under us
2980                  * because we hold the mm_all_locks_mutex.
2981                  */
2982                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2983                 /*
2984                  * We can safely modify head.next after taking the
2985                  * anon_vma->root->rwsem. If some other vma in this mm shares
2986                  * the same anon_vma we won't take it again.
2987                  *
2988                  * No need of atomic instructions here, head.next
2989                  * can't change from under us thanks to the
2990                  * anon_vma->root->rwsem.
2991                  */
2992                 if (__test_and_set_bit(0, (unsigned long *)
2993                                        &anon_vma->root->rb_root.rb_node))
2994                         BUG();
2995         }
2996 }
2997
2998 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2999 {
3000         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3001                 /*
3002                  * AS_MM_ALL_LOCKS can't change from under us because
3003                  * we hold the mm_all_locks_mutex.
3004                  *
3005                  * Operations on ->flags have to be atomic because
3006                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3007                  * mm_all_locks_mutex, there may be other cpus
3008                  * changing other bitflags in parallel to us.
3009                  */
3010                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3011                         BUG();
3012                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3013         }
3014 }
3015
3016 /*
3017  * This operation locks against the VM for all pte/vma/mm related
3018  * operations that could ever happen on a certain mm. This includes
3019  * vmtruncate, try_to_unmap, and all page faults.
3020  *
3021  * The caller must take the mmap_sem in write mode before calling
3022  * mm_take_all_locks(). The caller isn't allowed to release the
3023  * mmap_sem until mm_drop_all_locks() returns.
3024  *
3025  * mmap_sem in write mode is required in order to block all operations
3026  * that could modify pagetables and free pages without need of
3027  * altering the vma layout (for example populate_range() with
3028  * nonlinear vmas). It's also needed in write mode to avoid new
3029  * anon_vmas to be associated with existing vmas.
3030  *
3031  * A single task can't take more than one mm_take_all_locks() in a row
3032  * or it would deadlock.
3033  *
3034  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3035  * mapping->flags avoid to take the same lock twice, if more than one
3036  * vma in this mm is backed by the same anon_vma or address_space.
3037  *
3038  * We can take all the locks in random order because the VM code
3039  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3040  * takes more than one of them in a row. Secondly we're protected
3041  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3042  *
3043  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3044  * that may have to take thousand of locks.
3045  *
3046  * mm_take_all_locks() can fail if it's interrupted by signals.
3047  */
3048 int mm_take_all_locks(struct mm_struct *mm)
3049 {
3050         struct vm_area_struct *vma;
3051         struct anon_vma_chain *avc;
3052
3053         BUG_ON(down_read_trylock(&mm->mmap_sem));
3054
3055         mutex_lock(&mm_all_locks_mutex);
3056
3057         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3058                 if (signal_pending(current))
3059                         goto out_unlock;
3060                 if (vma->vm_file && vma->vm_file->f_mapping)
3061                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3062         }
3063
3064         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3065                 if (signal_pending(current))
3066                         goto out_unlock;
3067                 if (vma->anon_vma)
3068                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3069                                 vm_lock_anon_vma(mm, avc->anon_vma);
3070         }
3071
3072         return 0;
3073
3074 out_unlock:
3075         mm_drop_all_locks(mm);
3076         return -EINTR;
3077 }
3078
3079 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3080 {
3081         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3082                 /*
3083                  * The LSB of head.next can't change to 0 from under
3084                  * us because we hold the mm_all_locks_mutex.
3085                  *
3086                  * We must however clear the bitflag before unlocking
3087                  * the vma so the users using the anon_vma->rb_root will
3088                  * never see our bitflag.
3089                  *
3090                  * No need of atomic instructions here, head.next
3091                  * can't change from under us until we release the
3092                  * anon_vma->root->rwsem.
3093                  */
3094                 if (!__test_and_clear_bit(0, (unsigned long *)
3095                                           &anon_vma->root->rb_root.rb_node))
3096                         BUG();
3097                 anon_vma_unlock_write(anon_vma);
3098         }
3099 }
3100
3101 static void vm_unlock_mapping(struct address_space *mapping)
3102 {
3103         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3104                 /*
3105                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3106                  * because we hold the mm_all_locks_mutex.
3107                  */
3108                 mutex_unlock(&mapping->i_mmap_mutex);
3109                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3110                                         &mapping->flags))
3111                         BUG();
3112         }
3113 }
3114
3115 /*
3116  * The mmap_sem cannot be released by the caller until
3117  * mm_drop_all_locks() returns.
3118  */
3119 void mm_drop_all_locks(struct mm_struct *mm)
3120 {
3121         struct vm_area_struct *vma;
3122         struct anon_vma_chain *avc;
3123
3124         BUG_ON(down_read_trylock(&mm->mmap_sem));
3125         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3126
3127         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3128                 if (vma->anon_vma)
3129                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3130                                 vm_unlock_anon_vma(avc->anon_vma);
3131                 if (vma->vm_file && vma->vm_file->f_mapping)
3132                         vm_unlock_mapping(vma->vm_file->f_mapping);
3133         }
3134
3135         mutex_unlock(&mm_all_locks_mutex);
3136 }
3137
3138 /*
3139  * initialise the VMA slab
3140  */
3141 void __init mmap_init(void)
3142 {
3143         int ret;
3144
3145         ret = percpu_counter_init(&vm_committed_as, 0);
3146         VM_BUG_ON(ret);
3147 }
3148
3149 /*
3150  * Initialise sysctl_user_reserve_kbytes.
3151  *
3152  * This is intended to prevent a user from starting a single memory hogging
3153  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3154  * mode.
3155  *
3156  * The default value is min(3% of free memory, 128MB)
3157  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3158  */
3159 static int init_user_reserve(void)
3160 {
3161         unsigned long free_kbytes;
3162
3163         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3164
3165         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3166         return 0;
3167 }
3168 subsys_initcall(init_user_reserve);
3169
3170 /*
3171  * Initialise sysctl_admin_reserve_kbytes.
3172  *
3173  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3174  * to log in and kill a memory hogging process.
3175  *
3176  * Systems with more than 256MB will reserve 8MB, enough to recover
3177  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3178  * only reserve 3% of free pages by default.
3179  */
3180 static int init_admin_reserve(void)
3181 {
3182         unsigned long free_kbytes;
3183
3184         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3185
3186         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3187         return 0;
3188 }
3189 subsys_initcall(init_admin_reserve);
3190
3191 /*
3192  * Reinititalise user and admin reserves if memory is added or removed.
3193  *
3194  * The default user reserve max is 128MB, and the default max for the
3195  * admin reserve is 8MB. These are usually, but not always, enough to
3196  * enable recovery from a memory hogging process using login/sshd, a shell,
3197  * and tools like top. It may make sense to increase or even disable the
3198  * reserve depending on the existence of swap or variations in the recovery
3199  * tools. So, the admin may have changed them.
3200  *
3201  * If memory is added and the reserves have been eliminated or increased above
3202  * the default max, then we'll trust the admin.
3203  *
3204  * If memory is removed and there isn't enough free memory, then we
3205  * need to reset the reserves.
3206  *
3207  * Otherwise keep the reserve set by the admin.
3208  */
3209 static int reserve_mem_notifier(struct notifier_block *nb,
3210                              unsigned long action, void *data)
3211 {
3212         unsigned long tmp, free_kbytes;
3213
3214         switch (action) {
3215         case MEM_ONLINE:
3216                 /* Default max is 128MB. Leave alone if modified by operator. */
3217                 tmp = sysctl_user_reserve_kbytes;
3218                 if (0 < tmp && tmp < (1UL << 17))
3219                         init_user_reserve();
3220
3221                 /* Default max is 8MB.  Leave alone if modified by operator. */
3222                 tmp = sysctl_admin_reserve_kbytes;
3223                 if (0 < tmp && tmp < (1UL << 13))
3224                         init_admin_reserve();
3225
3226                 break;
3227         case MEM_OFFLINE:
3228                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3229
3230                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3231                         init_user_reserve();
3232                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3233                                 sysctl_user_reserve_kbytes);
3234                 }
3235
3236                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3237                         init_admin_reserve();
3238                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3239                                 sysctl_admin_reserve_kbytes);
3240                 }
3241                 break;
3242         default:
3243                 break;
3244         }
3245         return NOTIFY_OK;
3246 }
3247
3248 static struct notifier_block reserve_mem_nb = {
3249         .notifier_call = reserve_mem_notifier,
3250 };
3251
3252 static int __meminit init_reserve_notifier(void)
3253 {
3254         if (register_hotmemory_notifier(&reserve_mem_nb))
3255                 printk("Failed registering memory add/remove notifier for admin reserve");
3256
3257         return 0;
3258 }
3259 subsys_initcall(init_reserve_notifier);