Merge remote-tracking branches 'regulator/fix/max1586', 'regulator/fix/max77686'...
[sfrench/cifs-2.6.git] / mm / mmap.c
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code        <alan@lxorguk.ukuu.org.uk>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags)       (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len)              (addr)
58 #endif
59
60 static void unmap_region(struct mm_struct *mm,
61                 struct vm_area_struct *vma, struct vm_area_struct *prev,
62                 unsigned long start, unsigned long end);
63
64 /* description of effects of mapping type and prot in current implementation.
65  * this is due to the limited x86 page protection hardware.  The expected
66  * behavior is in parens:
67  *
68  * map_type     prot
69  *              PROT_NONE       PROT_READ       PROT_WRITE      PROT_EXEC
70  * MAP_SHARED   r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
71  *              w: (no) no      w: (no) no      w: (yes) yes    w: (no) no
72  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
73  *
74  * MAP_PRIVATE  r: (no) no      r: (yes) yes    r: (no) yes     r: (no) yes
75  *              w: (no) no      w: (no) no      w: (copy) copy  w: (no) no
76  *              x: (no) no      x: (no) yes     x: (no) yes     x: (yes) yes
77  *
78  */
79 pgprot_t protection_map[16] = {
80         __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81         __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86         return __pgprot(pgprot_val(protection_map[vm_flags &
87                                 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88                         pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91
92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
93 {
94         return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
95 }
96
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
98 void vma_set_page_prot(struct vm_area_struct *vma)
99 {
100         unsigned long vm_flags = vma->vm_flags;
101
102         vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
103         if (vma_wants_writenotify(vma)) {
104                 vm_flags &= ~VM_SHARED;
105                 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
106                                                      vm_flags);
107         }
108 }
109
110
111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly;
114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
117 /*
118  * Make sure vm_committed_as in one cacheline and not cacheline shared with
119  * other variables. It can be updated by several CPUs frequently.
120  */
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
122
123 /*
124  * The global memory commitment made in the system can be a metric
125  * that can be used to drive ballooning decisions when Linux is hosted
126  * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127  * balancing memory across competing virtual machines that are hosted.
128  * Several metrics drive this policy engine including the guest reported
129  * memory commitment.
130  */
131 unsigned long vm_memory_committed(void)
132 {
133         return percpu_counter_read_positive(&vm_committed_as);
134 }
135 EXPORT_SYMBOL_GPL(vm_memory_committed);
136
137 /*
138  * Check that a process has enough memory to allocate a new virtual
139  * mapping. 0 means there is enough memory for the allocation to
140  * succeed and -ENOMEM implies there is not.
141  *
142  * We currently support three overcommit policies, which are set via the
143  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
144  *
145  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146  * Additional code 2002 Jul 20 by Robert Love.
147  *
148  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
149  *
150  * Note this is a helper function intended to be used by LSMs which
151  * wish to use this logic.
152  */
153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
154 {
155         unsigned long free, allowed, reserve;
156
157         VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
158                         -(s64)vm_committed_as_batch * num_online_cpus(),
159                         "memory commitment underflow");
160
161         vm_acct_memory(pages);
162
163         /*
164          * Sometimes we want to use more memory than we have
165          */
166         if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
167                 return 0;
168
169         if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
170                 free = global_page_state(NR_FREE_PAGES);
171                 free += global_page_state(NR_FILE_PAGES);
172
173                 /*
174                  * shmem pages shouldn't be counted as free in this
175                  * case, they can't be purged, only swapped out, and
176                  * that won't affect the overall amount of available
177                  * memory in the system.
178                  */
179                 free -= global_page_state(NR_SHMEM);
180
181                 free += get_nr_swap_pages();
182
183                 /*
184                  * Any slabs which are created with the
185                  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186                  * which are reclaimable, under pressure.  The dentry
187                  * cache and most inode caches should fall into this
188                  */
189                 free += global_page_state(NR_SLAB_RECLAIMABLE);
190
191                 /*
192                  * Leave reserved pages. The pages are not for anonymous pages.
193                  */
194                 if (free <= totalreserve_pages)
195                         goto error;
196                 else
197                         free -= totalreserve_pages;
198
199                 /*
200                  * Reserve some for root
201                  */
202                 if (!cap_sys_admin)
203                         free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
204
205                 if (free > pages)
206                         return 0;
207
208                 goto error;
209         }
210
211         allowed = vm_commit_limit();
212         /*
213          * Reserve some for root
214          */
215         if (!cap_sys_admin)
216                 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217
218         /*
219          * Don't let a single process grow so big a user can't recover
220          */
221         if (mm) {
222                 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
223                 allowed -= min(mm->total_vm / 32, reserve);
224         }
225
226         if (percpu_counter_read_positive(&vm_committed_as) < allowed)
227                 return 0;
228 error:
229         vm_unacct_memory(pages);
230
231         return -ENOMEM;
232 }
233
234 /*
235  * Requires inode->i_mapping->i_mmap_mutex
236  */
237 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
238                 struct file *file, struct address_space *mapping)
239 {
240         if (vma->vm_flags & VM_DENYWRITE)
241                 atomic_inc(&file_inode(file)->i_writecount);
242         if (vma->vm_flags & VM_SHARED)
243                 mapping_unmap_writable(mapping);
244
245         flush_dcache_mmap_lock(mapping);
246         if (unlikely(vma->vm_flags & VM_NONLINEAR))
247                 list_del_init(&vma->shared.nonlinear);
248         else
249                 vma_interval_tree_remove(vma, &mapping->i_mmap);
250         flush_dcache_mmap_unlock(mapping);
251 }
252
253 /*
254  * Unlink a file-based vm structure from its interval tree, to hide
255  * vma from rmap and vmtruncate before freeing its page tables.
256  */
257 void unlink_file_vma(struct vm_area_struct *vma)
258 {
259         struct file *file = vma->vm_file;
260
261         if (file) {
262                 struct address_space *mapping = file->f_mapping;
263                 mutex_lock(&mapping->i_mmap_mutex);
264                 __remove_shared_vm_struct(vma, file, mapping);
265                 mutex_unlock(&mapping->i_mmap_mutex);
266         }
267 }
268
269 /*
270  * Close a vm structure and free it, returning the next.
271  */
272 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
273 {
274         struct vm_area_struct *next = vma->vm_next;
275
276         might_sleep();
277         if (vma->vm_ops && vma->vm_ops->close)
278                 vma->vm_ops->close(vma);
279         if (vma->vm_file)
280                 fput(vma->vm_file);
281         mpol_put(vma_policy(vma));
282         kmem_cache_free(vm_area_cachep, vma);
283         return next;
284 }
285
286 static unsigned long do_brk(unsigned long addr, unsigned long len);
287
288 SYSCALL_DEFINE1(brk, unsigned long, brk)
289 {
290         unsigned long retval;
291         unsigned long newbrk, oldbrk;
292         struct mm_struct *mm = current->mm;
293         unsigned long min_brk;
294         bool populate;
295
296         down_write(&mm->mmap_sem);
297
298 #ifdef CONFIG_COMPAT_BRK
299         /*
300          * CONFIG_COMPAT_BRK can still be overridden by setting
301          * randomize_va_space to 2, which will still cause mm->start_brk
302          * to be arbitrarily shifted
303          */
304         if (current->brk_randomized)
305                 min_brk = mm->start_brk;
306         else
307                 min_brk = mm->end_data;
308 #else
309         min_brk = mm->start_brk;
310 #endif
311         if (brk < min_brk)
312                 goto out;
313
314         /*
315          * Check against rlimit here. If this check is done later after the test
316          * of oldbrk with newbrk then it can escape the test and let the data
317          * segment grow beyond its set limit the in case where the limit is
318          * not page aligned -Ram Gupta
319          */
320         if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
321                               mm->end_data, mm->start_data))
322                 goto out;
323
324         newbrk = PAGE_ALIGN(brk);
325         oldbrk = PAGE_ALIGN(mm->brk);
326         if (oldbrk == newbrk)
327                 goto set_brk;
328
329         /* Always allow shrinking brk. */
330         if (brk <= mm->brk) {
331                 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
332                         goto set_brk;
333                 goto out;
334         }
335
336         /* Check against existing mmap mappings. */
337         if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
338                 goto out;
339
340         /* Ok, looks good - let it rip. */
341         if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
342                 goto out;
343
344 set_brk:
345         mm->brk = brk;
346         populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
347         up_write(&mm->mmap_sem);
348         if (populate)
349                 mm_populate(oldbrk, newbrk - oldbrk);
350         return brk;
351
352 out:
353         retval = mm->brk;
354         up_write(&mm->mmap_sem);
355         return retval;
356 }
357
358 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
359 {
360         unsigned long max, subtree_gap;
361         max = vma->vm_start;
362         if (vma->vm_prev)
363                 max -= vma->vm_prev->vm_end;
364         if (vma->vm_rb.rb_left) {
365                 subtree_gap = rb_entry(vma->vm_rb.rb_left,
366                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
367                 if (subtree_gap > max)
368                         max = subtree_gap;
369         }
370         if (vma->vm_rb.rb_right) {
371                 subtree_gap = rb_entry(vma->vm_rb.rb_right,
372                                 struct vm_area_struct, vm_rb)->rb_subtree_gap;
373                 if (subtree_gap > max)
374                         max = subtree_gap;
375         }
376         return max;
377 }
378
379 #ifdef CONFIG_DEBUG_VM_RB
380 static int browse_rb(struct rb_root *root)
381 {
382         int i = 0, j, bug = 0;
383         struct rb_node *nd, *pn = NULL;
384         unsigned long prev = 0, pend = 0;
385
386         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387                 struct vm_area_struct *vma;
388                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389                 if (vma->vm_start < prev) {
390                         pr_emerg("vm_start %lx < prev %lx\n",
391                                   vma->vm_start, prev);
392                         bug = 1;
393                 }
394                 if (vma->vm_start < pend) {
395                         pr_emerg("vm_start %lx < pend %lx\n",
396                                   vma->vm_start, pend);
397                         bug = 1;
398                 }
399                 if (vma->vm_start > vma->vm_end) {
400                         pr_emerg("vm_start %lx > vm_end %lx\n",
401                                   vma->vm_start, vma->vm_end);
402                         bug = 1;
403                 }
404                 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
405                         pr_emerg("free gap %lx, correct %lx\n",
406                                vma->rb_subtree_gap,
407                                vma_compute_subtree_gap(vma));
408                         bug = 1;
409                 }
410                 i++;
411                 pn = nd;
412                 prev = vma->vm_start;
413                 pend = vma->vm_end;
414         }
415         j = 0;
416         for (nd = pn; nd; nd = rb_prev(nd))
417                 j++;
418         if (i != j) {
419                 pr_emerg("backwards %d, forwards %d\n", j, i);
420                 bug = 1;
421         }
422         return bug ? -1 : i;
423 }
424
425 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
426 {
427         struct rb_node *nd;
428
429         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
430                 struct vm_area_struct *vma;
431                 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
432                 VM_BUG_ON_VMA(vma != ignore &&
433                         vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
434                         vma);
435         }
436 }
437
438 static void validate_mm(struct mm_struct *mm)
439 {
440         int bug = 0;
441         int i = 0;
442         unsigned long highest_address = 0;
443         struct vm_area_struct *vma = mm->mmap;
444
445         while (vma) {
446                 struct anon_vma_chain *avc;
447
448                 vma_lock_anon_vma(vma);
449                 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450                         anon_vma_interval_tree_verify(avc);
451                 vma_unlock_anon_vma(vma);
452                 highest_address = vma->vm_end;
453                 vma = vma->vm_next;
454                 i++;
455         }
456         if (i != mm->map_count) {
457                 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
458                 bug = 1;
459         }
460         if (highest_address != mm->highest_vm_end) {
461                 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
462                           mm->highest_vm_end, highest_address);
463                 bug = 1;
464         }
465         i = browse_rb(&mm->mm_rb);
466         if (i != mm->map_count) {
467                 if (i != -1)
468                         pr_emerg("map_count %d rb %d\n", mm->map_count, i);
469                 bug = 1;
470         }
471         VM_BUG_ON_MM(bug, mm);
472 }
473 #else
474 #define validate_mm_rb(root, ignore) do { } while (0)
475 #define validate_mm(mm) do { } while (0)
476 #endif
477
478 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
479                      unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
480
481 /*
482  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
483  * vma->vm_prev->vm_end values changed, without modifying the vma's position
484  * in the rbtree.
485  */
486 static void vma_gap_update(struct vm_area_struct *vma)
487 {
488         /*
489          * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
490          * function that does exacltly what we want.
491          */
492         vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
493 }
494
495 static inline void vma_rb_insert(struct vm_area_struct *vma,
496                                  struct rb_root *root)
497 {
498         /* All rb_subtree_gap values must be consistent prior to insertion */
499         validate_mm_rb(root, NULL);
500
501         rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
502 }
503
504 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
505 {
506         /*
507          * All rb_subtree_gap values must be consistent prior to erase,
508          * with the possible exception of the vma being erased.
509          */
510         validate_mm_rb(root, vma);
511
512         /*
513          * Note rb_erase_augmented is a fairly large inline function,
514          * so make sure we instantiate it only once with our desired
515          * augmented rbtree callbacks.
516          */
517         rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
518 }
519
520 /*
521  * vma has some anon_vma assigned, and is already inserted on that
522  * anon_vma's interval trees.
523  *
524  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
525  * vma must be removed from the anon_vma's interval trees using
526  * anon_vma_interval_tree_pre_update_vma().
527  *
528  * After the update, the vma will be reinserted using
529  * anon_vma_interval_tree_post_update_vma().
530  *
531  * The entire update must be protected by exclusive mmap_sem and by
532  * the root anon_vma's mutex.
533  */
534 static inline void
535 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
536 {
537         struct anon_vma_chain *avc;
538
539         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
540                 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
541 }
542
543 static inline void
544 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
545 {
546         struct anon_vma_chain *avc;
547
548         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
549                 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
550 }
551
552 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
553                 unsigned long end, struct vm_area_struct **pprev,
554                 struct rb_node ***rb_link, struct rb_node **rb_parent)
555 {
556         struct rb_node **__rb_link, *__rb_parent, *rb_prev;
557
558         __rb_link = &mm->mm_rb.rb_node;
559         rb_prev = __rb_parent = NULL;
560
561         while (*__rb_link) {
562                 struct vm_area_struct *vma_tmp;
563
564                 __rb_parent = *__rb_link;
565                 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
566
567                 if (vma_tmp->vm_end > addr) {
568                         /* Fail if an existing vma overlaps the area */
569                         if (vma_tmp->vm_start < end)
570                                 return -ENOMEM;
571                         __rb_link = &__rb_parent->rb_left;
572                 } else {
573                         rb_prev = __rb_parent;
574                         __rb_link = &__rb_parent->rb_right;
575                 }
576         }
577
578         *pprev = NULL;
579         if (rb_prev)
580                 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
581         *rb_link = __rb_link;
582         *rb_parent = __rb_parent;
583         return 0;
584 }
585
586 static unsigned long count_vma_pages_range(struct mm_struct *mm,
587                 unsigned long addr, unsigned long end)
588 {
589         unsigned long nr_pages = 0;
590         struct vm_area_struct *vma;
591
592         /* Find first overlaping mapping */
593         vma = find_vma_intersection(mm, addr, end);
594         if (!vma)
595                 return 0;
596
597         nr_pages = (min(end, vma->vm_end) -
598                 max(addr, vma->vm_start)) >> PAGE_SHIFT;
599
600         /* Iterate over the rest of the overlaps */
601         for (vma = vma->vm_next; vma; vma = vma->vm_next) {
602                 unsigned long overlap_len;
603
604                 if (vma->vm_start > end)
605                         break;
606
607                 overlap_len = min(end, vma->vm_end) - vma->vm_start;
608                 nr_pages += overlap_len >> PAGE_SHIFT;
609         }
610
611         return nr_pages;
612 }
613
614 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
615                 struct rb_node **rb_link, struct rb_node *rb_parent)
616 {
617         /* Update tracking information for the gap following the new vma. */
618         if (vma->vm_next)
619                 vma_gap_update(vma->vm_next);
620         else
621                 mm->highest_vm_end = vma->vm_end;
622
623         /*
624          * vma->vm_prev wasn't known when we followed the rbtree to find the
625          * correct insertion point for that vma. As a result, we could not
626          * update the vma vm_rb parents rb_subtree_gap values on the way down.
627          * So, we first insert the vma with a zero rb_subtree_gap value
628          * (to be consistent with what we did on the way down), and then
629          * immediately update the gap to the correct value. Finally we
630          * rebalance the rbtree after all augmented values have been set.
631          */
632         rb_link_node(&vma->vm_rb, rb_parent, rb_link);
633         vma->rb_subtree_gap = 0;
634         vma_gap_update(vma);
635         vma_rb_insert(vma, &mm->mm_rb);
636 }
637
638 static void __vma_link_file(struct vm_area_struct *vma)
639 {
640         struct file *file;
641
642         file = vma->vm_file;
643         if (file) {
644                 struct address_space *mapping = file->f_mapping;
645
646                 if (vma->vm_flags & VM_DENYWRITE)
647                         atomic_dec(&file_inode(file)->i_writecount);
648                 if (vma->vm_flags & VM_SHARED)
649                         atomic_inc(&mapping->i_mmap_writable);
650
651                 flush_dcache_mmap_lock(mapping);
652                 if (unlikely(vma->vm_flags & VM_NONLINEAR))
653                         vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
654                 else
655                         vma_interval_tree_insert(vma, &mapping->i_mmap);
656                 flush_dcache_mmap_unlock(mapping);
657         }
658 }
659
660 static void
661 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
662         struct vm_area_struct *prev, struct rb_node **rb_link,
663         struct rb_node *rb_parent)
664 {
665         __vma_link_list(mm, vma, prev, rb_parent);
666         __vma_link_rb(mm, vma, rb_link, rb_parent);
667 }
668
669 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
670                         struct vm_area_struct *prev, struct rb_node **rb_link,
671                         struct rb_node *rb_parent)
672 {
673         struct address_space *mapping = NULL;
674
675         if (vma->vm_file) {
676                 mapping = vma->vm_file->f_mapping;
677                 mutex_lock(&mapping->i_mmap_mutex);
678         }
679
680         __vma_link(mm, vma, prev, rb_link, rb_parent);
681         __vma_link_file(vma);
682
683         if (mapping)
684                 mutex_unlock(&mapping->i_mmap_mutex);
685
686         mm->map_count++;
687         validate_mm(mm);
688 }
689
690 /*
691  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
692  * mm's list and rbtree.  It has already been inserted into the interval tree.
693  */
694 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
695 {
696         struct vm_area_struct *prev;
697         struct rb_node **rb_link, *rb_parent;
698
699         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
700                            &prev, &rb_link, &rb_parent))
701                 BUG();
702         __vma_link(mm, vma, prev, rb_link, rb_parent);
703         mm->map_count++;
704 }
705
706 static inline void
707 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
708                 struct vm_area_struct *prev)
709 {
710         struct vm_area_struct *next;
711
712         vma_rb_erase(vma, &mm->mm_rb);
713         prev->vm_next = next = vma->vm_next;
714         if (next)
715                 next->vm_prev = prev;
716
717         /* Kill the cache */
718         vmacache_invalidate(mm);
719 }
720
721 /*
722  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
723  * is already present in an i_mmap tree without adjusting the tree.
724  * The following helper function should be used when such adjustments
725  * are necessary.  The "insert" vma (if any) is to be inserted
726  * before we drop the necessary locks.
727  */
728 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
729         unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
730 {
731         struct mm_struct *mm = vma->vm_mm;
732         struct vm_area_struct *next = vma->vm_next;
733         struct vm_area_struct *importer = NULL;
734         struct address_space *mapping = NULL;
735         struct rb_root *root = NULL;
736         struct anon_vma *anon_vma = NULL;
737         struct file *file = vma->vm_file;
738         bool start_changed = false, end_changed = false;
739         long adjust_next = 0;
740         int remove_next = 0;
741
742         if (next && !insert) {
743                 struct vm_area_struct *exporter = NULL;
744
745                 if (end >= next->vm_end) {
746                         /*
747                          * vma expands, overlapping all the next, and
748                          * perhaps the one after too (mprotect case 6).
749                          */
750 again:                  remove_next = 1 + (end > next->vm_end);
751                         end = next->vm_end;
752                         exporter = next;
753                         importer = vma;
754                 } else if (end > next->vm_start) {
755                         /*
756                          * vma expands, overlapping part of the next:
757                          * mprotect case 5 shifting the boundary up.
758                          */
759                         adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
760                         exporter = next;
761                         importer = vma;
762                 } else if (end < vma->vm_end) {
763                         /*
764                          * vma shrinks, and !insert tells it's not
765                          * split_vma inserting another: so it must be
766                          * mprotect case 4 shifting the boundary down.
767                          */
768                         adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769                         exporter = vma;
770                         importer = next;
771                 }
772
773                 /*
774                  * Easily overlooked: when mprotect shifts the boundary,
775                  * make sure the expanding vma has anon_vma set if the
776                  * shrinking vma had, to cover any anon pages imported.
777                  */
778                 if (exporter && exporter->anon_vma && !importer->anon_vma) {
779                         if (anon_vma_clone(importer, exporter))
780                                 return -ENOMEM;
781                         importer->anon_vma = exporter->anon_vma;
782                 }
783         }
784
785         if (file) {
786                 mapping = file->f_mapping;
787                 if (!(vma->vm_flags & VM_NONLINEAR)) {
788                         root = &mapping->i_mmap;
789                         uprobe_munmap(vma, vma->vm_start, vma->vm_end);
790
791                         if (adjust_next)
792                                 uprobe_munmap(next, next->vm_start,
793                                                         next->vm_end);
794                 }
795
796                 mutex_lock(&mapping->i_mmap_mutex);
797                 if (insert) {
798                         /*
799                          * Put into interval tree now, so instantiated pages
800                          * are visible to arm/parisc __flush_dcache_page
801                          * throughout; but we cannot insert into address
802                          * space until vma start or end is updated.
803                          */
804                         __vma_link_file(insert);
805                 }
806         }
807
808         vma_adjust_trans_huge(vma, start, end, adjust_next);
809
810         anon_vma = vma->anon_vma;
811         if (!anon_vma && adjust_next)
812                 anon_vma = next->anon_vma;
813         if (anon_vma) {
814                 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
815                           anon_vma != next->anon_vma, next);
816                 anon_vma_lock_write(anon_vma);
817                 anon_vma_interval_tree_pre_update_vma(vma);
818                 if (adjust_next)
819                         anon_vma_interval_tree_pre_update_vma(next);
820         }
821
822         if (root) {
823                 flush_dcache_mmap_lock(mapping);
824                 vma_interval_tree_remove(vma, root);
825                 if (adjust_next)
826                         vma_interval_tree_remove(next, root);
827         }
828
829         if (start != vma->vm_start) {
830                 vma->vm_start = start;
831                 start_changed = true;
832         }
833         if (end != vma->vm_end) {
834                 vma->vm_end = end;
835                 end_changed = true;
836         }
837         vma->vm_pgoff = pgoff;
838         if (adjust_next) {
839                 next->vm_start += adjust_next << PAGE_SHIFT;
840                 next->vm_pgoff += adjust_next;
841         }
842
843         if (root) {
844                 if (adjust_next)
845                         vma_interval_tree_insert(next, root);
846                 vma_interval_tree_insert(vma, root);
847                 flush_dcache_mmap_unlock(mapping);
848         }
849
850         if (remove_next) {
851                 /*
852                  * vma_merge has merged next into vma, and needs
853                  * us to remove next before dropping the locks.
854                  */
855                 __vma_unlink(mm, next, vma);
856                 if (file)
857                         __remove_shared_vm_struct(next, file, mapping);
858         } else if (insert) {
859                 /*
860                  * split_vma has split insert from vma, and needs
861                  * us to insert it before dropping the locks
862                  * (it may either follow vma or precede it).
863                  */
864                 __insert_vm_struct(mm, insert);
865         } else {
866                 if (start_changed)
867                         vma_gap_update(vma);
868                 if (end_changed) {
869                         if (!next)
870                                 mm->highest_vm_end = end;
871                         else if (!adjust_next)
872                                 vma_gap_update(next);
873                 }
874         }
875
876         if (anon_vma) {
877                 anon_vma_interval_tree_post_update_vma(vma);
878                 if (adjust_next)
879                         anon_vma_interval_tree_post_update_vma(next);
880                 anon_vma_unlock_write(anon_vma);
881         }
882         if (mapping)
883                 mutex_unlock(&mapping->i_mmap_mutex);
884
885         if (root) {
886                 uprobe_mmap(vma);
887
888                 if (adjust_next)
889                         uprobe_mmap(next);
890         }
891
892         if (remove_next) {
893                 if (file) {
894                         uprobe_munmap(next, next->vm_start, next->vm_end);
895                         fput(file);
896                 }
897                 if (next->anon_vma)
898                         anon_vma_merge(vma, next);
899                 mm->map_count--;
900                 mpol_put(vma_policy(next));
901                 kmem_cache_free(vm_area_cachep, next);
902                 /*
903                  * In mprotect's case 6 (see comments on vma_merge),
904                  * we must remove another next too. It would clutter
905                  * up the code too much to do both in one go.
906                  */
907                 next = vma->vm_next;
908                 if (remove_next == 2)
909                         goto again;
910                 else if (next)
911                         vma_gap_update(next);
912                 else
913                         mm->highest_vm_end = end;
914         }
915         if (insert && file)
916                 uprobe_mmap(insert);
917
918         validate_mm(mm);
919
920         return 0;
921 }
922
923 /*
924  * If the vma has a ->close operation then the driver probably needs to release
925  * per-vma resources, so we don't attempt to merge those.
926  */
927 static inline int is_mergeable_vma(struct vm_area_struct *vma,
928                         struct file *file, unsigned long vm_flags)
929 {
930         /*
931          * VM_SOFTDIRTY should not prevent from VMA merging, if we
932          * match the flags but dirty bit -- the caller should mark
933          * merged VMA as dirty. If dirty bit won't be excluded from
934          * comparison, we increase pressue on the memory system forcing
935          * the kernel to generate new VMAs when old one could be
936          * extended instead.
937          */
938         if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
939                 return 0;
940         if (vma->vm_file != file)
941                 return 0;
942         if (vma->vm_ops && vma->vm_ops->close)
943                 return 0;
944         return 1;
945 }
946
947 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
948                                         struct anon_vma *anon_vma2,
949                                         struct vm_area_struct *vma)
950 {
951         /*
952          * The list_is_singular() test is to avoid merging VMA cloned from
953          * parents. This can improve scalability caused by anon_vma lock.
954          */
955         if ((!anon_vma1 || !anon_vma2) && (!vma ||
956                 list_is_singular(&vma->anon_vma_chain)))
957                 return 1;
958         return anon_vma1 == anon_vma2;
959 }
960
961 /*
962  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
963  * in front of (at a lower virtual address and file offset than) the vma.
964  *
965  * We cannot merge two vmas if they have differently assigned (non-NULL)
966  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
967  *
968  * We don't check here for the merged mmap wrapping around the end of pagecache
969  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
970  * wrap, nor mmaps which cover the final page at index -1UL.
971  */
972 static int
973 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
974         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
975 {
976         if (is_mergeable_vma(vma, file, vm_flags) &&
977             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
978                 if (vma->vm_pgoff == vm_pgoff)
979                         return 1;
980         }
981         return 0;
982 }
983
984 /*
985  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
986  * beyond (at a higher virtual address and file offset than) the vma.
987  *
988  * We cannot merge two vmas if they have differently assigned (non-NULL)
989  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
990  */
991 static int
992 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
993         struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
994 {
995         if (is_mergeable_vma(vma, file, vm_flags) &&
996             is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
997                 pgoff_t vm_pglen;
998                 vm_pglen = vma_pages(vma);
999                 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1000                         return 1;
1001         }
1002         return 0;
1003 }
1004
1005 /*
1006  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1007  * whether that can be merged with its predecessor or its successor.
1008  * Or both (it neatly fills a hole).
1009  *
1010  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1011  * certain not to be mapped by the time vma_merge is called; but when
1012  * called for mprotect, it is certain to be already mapped (either at
1013  * an offset within prev, or at the start of next), and the flags of
1014  * this area are about to be changed to vm_flags - and the no-change
1015  * case has already been eliminated.
1016  *
1017  * The following mprotect cases have to be considered, where AAAA is
1018  * the area passed down from mprotect_fixup, never extending beyond one
1019  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1020  *
1021  *     AAAA             AAAA                AAAA          AAAA
1022  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1023  *    cannot merge    might become    might become    might become
1024  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1025  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1026  *    mremap move:                                    PPPPNNNNNNNN 8
1027  *        AAAA
1028  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1029  *    might become    case 1 below    case 2 below    case 3 below
1030  *
1031  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1032  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1033  */
1034 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1035                         struct vm_area_struct *prev, unsigned long addr,
1036                         unsigned long end, unsigned long vm_flags,
1037                         struct anon_vma *anon_vma, struct file *file,
1038                         pgoff_t pgoff, struct mempolicy *policy)
1039 {
1040         pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1041         struct vm_area_struct *area, *next;
1042         int err;
1043
1044         /*
1045          * We later require that vma->vm_flags == vm_flags,
1046          * so this tests vma->vm_flags & VM_SPECIAL, too.
1047          */
1048         if (vm_flags & VM_SPECIAL)
1049                 return NULL;
1050
1051         if (prev)
1052                 next = prev->vm_next;
1053         else
1054                 next = mm->mmap;
1055         area = next;
1056         if (next && next->vm_end == end)                /* cases 6, 7, 8 */
1057                 next = next->vm_next;
1058
1059         /*
1060          * Can it merge with the predecessor?
1061          */
1062         if (prev && prev->vm_end == addr &&
1063                         mpol_equal(vma_policy(prev), policy) &&
1064                         can_vma_merge_after(prev, vm_flags,
1065                                                 anon_vma, file, pgoff)) {
1066                 /*
1067                  * OK, it can.  Can we now merge in the successor as well?
1068                  */
1069                 if (next && end == next->vm_start &&
1070                                 mpol_equal(policy, vma_policy(next)) &&
1071                                 can_vma_merge_before(next, vm_flags,
1072                                         anon_vma, file, pgoff+pglen) &&
1073                                 is_mergeable_anon_vma(prev->anon_vma,
1074                                                       next->anon_vma, NULL)) {
1075                                                         /* cases 1, 6 */
1076                         err = vma_adjust(prev, prev->vm_start,
1077                                 next->vm_end, prev->vm_pgoff, NULL);
1078                 } else                                  /* cases 2, 5, 7 */
1079                         err = vma_adjust(prev, prev->vm_start,
1080                                 end, prev->vm_pgoff, NULL);
1081                 if (err)
1082                         return NULL;
1083                 khugepaged_enter_vma_merge(prev, vm_flags);
1084                 return prev;
1085         }
1086
1087         /*
1088          * Can this new request be merged in front of next?
1089          */
1090         if (next && end == next->vm_start &&
1091                         mpol_equal(policy, vma_policy(next)) &&
1092                         can_vma_merge_before(next, vm_flags,
1093                                         anon_vma, file, pgoff+pglen)) {
1094                 if (prev && addr < prev->vm_end)        /* case 4 */
1095                         err = vma_adjust(prev, prev->vm_start,
1096                                 addr, prev->vm_pgoff, NULL);
1097                 else                                    /* cases 3, 8 */
1098                         err = vma_adjust(area, addr, next->vm_end,
1099                                 next->vm_pgoff - pglen, NULL);
1100                 if (err)
1101                         return NULL;
1102                 khugepaged_enter_vma_merge(area, vm_flags);
1103                 return area;
1104         }
1105
1106         return NULL;
1107 }
1108
1109 /*
1110  * Rough compatbility check to quickly see if it's even worth looking
1111  * at sharing an anon_vma.
1112  *
1113  * They need to have the same vm_file, and the flags can only differ
1114  * in things that mprotect may change.
1115  *
1116  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1117  * we can merge the two vma's. For example, we refuse to merge a vma if
1118  * there is a vm_ops->close() function, because that indicates that the
1119  * driver is doing some kind of reference counting. But that doesn't
1120  * really matter for the anon_vma sharing case.
1121  */
1122 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1123 {
1124         return a->vm_end == b->vm_start &&
1125                 mpol_equal(vma_policy(a), vma_policy(b)) &&
1126                 a->vm_file == b->vm_file &&
1127                 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1128                 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1129 }
1130
1131 /*
1132  * Do some basic sanity checking to see if we can re-use the anon_vma
1133  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1134  * the same as 'old', the other will be the new one that is trying
1135  * to share the anon_vma.
1136  *
1137  * NOTE! This runs with mm_sem held for reading, so it is possible that
1138  * the anon_vma of 'old' is concurrently in the process of being set up
1139  * by another page fault trying to merge _that_. But that's ok: if it
1140  * is being set up, that automatically means that it will be a singleton
1141  * acceptable for merging, so we can do all of this optimistically. But
1142  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1143  *
1144  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1145  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1146  * is to return an anon_vma that is "complex" due to having gone through
1147  * a fork).
1148  *
1149  * We also make sure that the two vma's are compatible (adjacent,
1150  * and with the same memory policies). That's all stable, even with just
1151  * a read lock on the mm_sem.
1152  */
1153 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1154 {
1155         if (anon_vma_compatible(a, b)) {
1156                 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1157
1158                 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1159                         return anon_vma;
1160         }
1161         return NULL;
1162 }
1163
1164 /*
1165  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1166  * neighbouring vmas for a suitable anon_vma, before it goes off
1167  * to allocate a new anon_vma.  It checks because a repetitive
1168  * sequence of mprotects and faults may otherwise lead to distinct
1169  * anon_vmas being allocated, preventing vma merge in subsequent
1170  * mprotect.
1171  */
1172 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1173 {
1174         struct anon_vma *anon_vma;
1175         struct vm_area_struct *near;
1176
1177         near = vma->vm_next;
1178         if (!near)
1179                 goto try_prev;
1180
1181         anon_vma = reusable_anon_vma(near, vma, near);
1182         if (anon_vma)
1183                 return anon_vma;
1184 try_prev:
1185         near = vma->vm_prev;
1186         if (!near)
1187                 goto none;
1188
1189         anon_vma = reusable_anon_vma(near, near, vma);
1190         if (anon_vma)
1191                 return anon_vma;
1192 none:
1193         /*
1194          * There's no absolute need to look only at touching neighbours:
1195          * we could search further afield for "compatible" anon_vmas.
1196          * But it would probably just be a waste of time searching,
1197          * or lead to too many vmas hanging off the same anon_vma.
1198          * We're trying to allow mprotect remerging later on,
1199          * not trying to minimize memory used for anon_vmas.
1200          */
1201         return NULL;
1202 }
1203
1204 #ifdef CONFIG_PROC_FS
1205 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1206                                                 struct file *file, long pages)
1207 {
1208         const unsigned long stack_flags
1209                 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1210
1211         mm->total_vm += pages;
1212
1213         if (file) {
1214                 mm->shared_vm += pages;
1215                 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1216                         mm->exec_vm += pages;
1217         } else if (flags & stack_flags)
1218                 mm->stack_vm += pages;
1219 }
1220 #endif /* CONFIG_PROC_FS */
1221
1222 /*
1223  * If a hint addr is less than mmap_min_addr change hint to be as
1224  * low as possible but still greater than mmap_min_addr
1225  */
1226 static inline unsigned long round_hint_to_min(unsigned long hint)
1227 {
1228         hint &= PAGE_MASK;
1229         if (((void *)hint != NULL) &&
1230             (hint < mmap_min_addr))
1231                 return PAGE_ALIGN(mmap_min_addr);
1232         return hint;
1233 }
1234
1235 static inline int mlock_future_check(struct mm_struct *mm,
1236                                      unsigned long flags,
1237                                      unsigned long len)
1238 {
1239         unsigned long locked, lock_limit;
1240
1241         /*  mlock MCL_FUTURE? */
1242         if (flags & VM_LOCKED) {
1243                 locked = len >> PAGE_SHIFT;
1244                 locked += mm->locked_vm;
1245                 lock_limit = rlimit(RLIMIT_MEMLOCK);
1246                 lock_limit >>= PAGE_SHIFT;
1247                 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1248                         return -EAGAIN;
1249         }
1250         return 0;
1251 }
1252
1253 /*
1254  * The caller must hold down_write(&current->mm->mmap_sem).
1255  */
1256
1257 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1258                         unsigned long len, unsigned long prot,
1259                         unsigned long flags, unsigned long pgoff,
1260                         unsigned long *populate)
1261 {
1262         struct mm_struct *mm = current->mm;
1263         vm_flags_t vm_flags;
1264
1265         *populate = 0;
1266
1267         /*
1268          * Does the application expect PROT_READ to imply PROT_EXEC?
1269          *
1270          * (the exception is when the underlying filesystem is noexec
1271          *  mounted, in which case we dont add PROT_EXEC.)
1272          */
1273         if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1274                 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1275                         prot |= PROT_EXEC;
1276
1277         if (!len)
1278                 return -EINVAL;
1279
1280         if (!(flags & MAP_FIXED))
1281                 addr = round_hint_to_min(addr);
1282
1283         /* Careful about overflows.. */
1284         len = PAGE_ALIGN(len);
1285         if (!len)
1286                 return -ENOMEM;
1287
1288         /* offset overflow? */
1289         if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1290                 return -EOVERFLOW;
1291
1292         /* Too many mappings? */
1293         if (mm->map_count > sysctl_max_map_count)
1294                 return -ENOMEM;
1295
1296         /* Obtain the address to map to. we verify (or select) it and ensure
1297          * that it represents a valid section of the address space.
1298          */
1299         addr = get_unmapped_area(file, addr, len, pgoff, flags);
1300         if (addr & ~PAGE_MASK)
1301                 return addr;
1302
1303         /* Do simple checking here so the lower-level routines won't have
1304          * to. we assume access permissions have been handled by the open
1305          * of the memory object, so we don't do any here.
1306          */
1307         vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1308                         mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1309
1310         if (flags & MAP_LOCKED)
1311                 if (!can_do_mlock())
1312                         return -EPERM;
1313
1314         if (mlock_future_check(mm, vm_flags, len))
1315                 return -EAGAIN;
1316
1317         if (file) {
1318                 struct inode *inode = file_inode(file);
1319
1320                 switch (flags & MAP_TYPE) {
1321                 case MAP_SHARED:
1322                         if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1323                                 return -EACCES;
1324
1325                         /*
1326                          * Make sure we don't allow writing to an append-only
1327                          * file..
1328                          */
1329                         if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1330                                 return -EACCES;
1331
1332                         /*
1333                          * Make sure there are no mandatory locks on the file.
1334                          */
1335                         if (locks_verify_locked(file))
1336                                 return -EAGAIN;
1337
1338                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1339                         if (!(file->f_mode & FMODE_WRITE))
1340                                 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1341
1342                         /* fall through */
1343                 case MAP_PRIVATE:
1344                         if (!(file->f_mode & FMODE_READ))
1345                                 return -EACCES;
1346                         if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1347                                 if (vm_flags & VM_EXEC)
1348                                         return -EPERM;
1349                                 vm_flags &= ~VM_MAYEXEC;
1350                         }
1351
1352                         if (!file->f_op->mmap)
1353                                 return -ENODEV;
1354                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1355                                 return -EINVAL;
1356                         break;
1357
1358                 default:
1359                         return -EINVAL;
1360                 }
1361         } else {
1362                 switch (flags & MAP_TYPE) {
1363                 case MAP_SHARED:
1364                         if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1365                                 return -EINVAL;
1366                         /*
1367                          * Ignore pgoff.
1368                          */
1369                         pgoff = 0;
1370                         vm_flags |= VM_SHARED | VM_MAYSHARE;
1371                         break;
1372                 case MAP_PRIVATE:
1373                         /*
1374                          * Set pgoff according to addr for anon_vma.
1375                          */
1376                         pgoff = addr >> PAGE_SHIFT;
1377                         break;
1378                 default:
1379                         return -EINVAL;
1380                 }
1381         }
1382
1383         /*
1384          * Set 'VM_NORESERVE' if we should not account for the
1385          * memory use of this mapping.
1386          */
1387         if (flags & MAP_NORESERVE) {
1388                 /* We honor MAP_NORESERVE if allowed to overcommit */
1389                 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1390                         vm_flags |= VM_NORESERVE;
1391
1392                 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1393                 if (file && is_file_hugepages(file))
1394                         vm_flags |= VM_NORESERVE;
1395         }
1396
1397         addr = mmap_region(file, addr, len, vm_flags, pgoff);
1398         if (!IS_ERR_VALUE(addr) &&
1399             ((vm_flags & VM_LOCKED) ||
1400              (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1401                 *populate = len;
1402         return addr;
1403 }
1404
1405 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1406                 unsigned long, prot, unsigned long, flags,
1407                 unsigned long, fd, unsigned long, pgoff)
1408 {
1409         struct file *file = NULL;
1410         unsigned long retval = -EBADF;
1411
1412         if (!(flags & MAP_ANONYMOUS)) {
1413                 audit_mmap_fd(fd, flags);
1414                 file = fget(fd);
1415                 if (!file)
1416                         goto out;
1417                 if (is_file_hugepages(file))
1418                         len = ALIGN(len, huge_page_size(hstate_file(file)));
1419                 retval = -EINVAL;
1420                 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1421                         goto out_fput;
1422         } else if (flags & MAP_HUGETLB) {
1423                 struct user_struct *user = NULL;
1424                 struct hstate *hs;
1425
1426                 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1427                 if (!hs)
1428                         return -EINVAL;
1429
1430                 len = ALIGN(len, huge_page_size(hs));
1431                 /*
1432                  * VM_NORESERVE is used because the reservations will be
1433                  * taken when vm_ops->mmap() is called
1434                  * A dummy user value is used because we are not locking
1435                  * memory so no accounting is necessary
1436                  */
1437                 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1438                                 VM_NORESERVE,
1439                                 &user, HUGETLB_ANONHUGE_INODE,
1440                                 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1441                 if (IS_ERR(file))
1442                         return PTR_ERR(file);
1443         }
1444
1445         flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1446
1447         retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1448 out_fput:
1449         if (file)
1450                 fput(file);
1451 out:
1452         return retval;
1453 }
1454
1455 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1456 struct mmap_arg_struct {
1457         unsigned long addr;
1458         unsigned long len;
1459         unsigned long prot;
1460         unsigned long flags;
1461         unsigned long fd;
1462         unsigned long offset;
1463 };
1464
1465 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1466 {
1467         struct mmap_arg_struct a;
1468
1469         if (copy_from_user(&a, arg, sizeof(a)))
1470                 return -EFAULT;
1471         if (a.offset & ~PAGE_MASK)
1472                 return -EINVAL;
1473
1474         return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1475                               a.offset >> PAGE_SHIFT);
1476 }
1477 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1478
1479 /*
1480  * Some shared mappigns will want the pages marked read-only
1481  * to track write events. If so, we'll downgrade vm_page_prot
1482  * to the private version (using protection_map[] without the
1483  * VM_SHARED bit).
1484  */
1485 int vma_wants_writenotify(struct vm_area_struct *vma)
1486 {
1487         vm_flags_t vm_flags = vma->vm_flags;
1488
1489         /* If it was private or non-writable, the write bit is already clear */
1490         if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1491                 return 0;
1492
1493         /* The backer wishes to know when pages are first written to? */
1494         if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1495                 return 1;
1496
1497         /* The open routine did something to the protections that pgprot_modify
1498          * won't preserve? */
1499         if (pgprot_val(vma->vm_page_prot) !=
1500             pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1501                 return 0;
1502
1503         /* Do we need to track softdirty? */
1504         if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1505                 return 1;
1506
1507         /* Specialty mapping? */
1508         if (vm_flags & VM_PFNMAP)
1509                 return 0;
1510
1511         /* Can the mapping track the dirty pages? */
1512         return vma->vm_file && vma->vm_file->f_mapping &&
1513                 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1514 }
1515
1516 /*
1517  * We account for memory if it's a private writeable mapping,
1518  * not hugepages and VM_NORESERVE wasn't set.
1519  */
1520 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1521 {
1522         /*
1523          * hugetlb has its own accounting separate from the core VM
1524          * VM_HUGETLB may not be set yet so we cannot check for that flag.
1525          */
1526         if (file && is_file_hugepages(file))
1527                 return 0;
1528
1529         return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1530 }
1531
1532 unsigned long mmap_region(struct file *file, unsigned long addr,
1533                 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1534 {
1535         struct mm_struct *mm = current->mm;
1536         struct vm_area_struct *vma, *prev;
1537         int error;
1538         struct rb_node **rb_link, *rb_parent;
1539         unsigned long charged = 0;
1540
1541         /* Check against address space limit. */
1542         if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1543                 unsigned long nr_pages;
1544
1545                 /*
1546                  * MAP_FIXED may remove pages of mappings that intersects with
1547                  * requested mapping. Account for the pages it would unmap.
1548                  */
1549                 if (!(vm_flags & MAP_FIXED))
1550                         return -ENOMEM;
1551
1552                 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1553
1554                 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1555                         return -ENOMEM;
1556         }
1557
1558         /* Clear old maps */
1559         error = -ENOMEM;
1560 munmap_back:
1561         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1562                 if (do_munmap(mm, addr, len))
1563                         return -ENOMEM;
1564                 goto munmap_back;
1565         }
1566
1567         /*
1568          * Private writable mapping: check memory availability
1569          */
1570         if (accountable_mapping(file, vm_flags)) {
1571                 charged = len >> PAGE_SHIFT;
1572                 if (security_vm_enough_memory_mm(mm, charged))
1573                         return -ENOMEM;
1574                 vm_flags |= VM_ACCOUNT;
1575         }
1576
1577         /*
1578          * Can we just expand an old mapping?
1579          */
1580         vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1581         if (vma)
1582                 goto out;
1583
1584         /*
1585          * Determine the object being mapped and call the appropriate
1586          * specific mapper. the address has already been validated, but
1587          * not unmapped, but the maps are removed from the list.
1588          */
1589         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1590         if (!vma) {
1591                 error = -ENOMEM;
1592                 goto unacct_error;
1593         }
1594
1595         vma->vm_mm = mm;
1596         vma->vm_start = addr;
1597         vma->vm_end = addr + len;
1598         vma->vm_flags = vm_flags;
1599         vma->vm_page_prot = vm_get_page_prot(vm_flags);
1600         vma->vm_pgoff = pgoff;
1601         INIT_LIST_HEAD(&vma->anon_vma_chain);
1602
1603         if (file) {
1604                 if (vm_flags & VM_DENYWRITE) {
1605                         error = deny_write_access(file);
1606                         if (error)
1607                                 goto free_vma;
1608                 }
1609                 if (vm_flags & VM_SHARED) {
1610                         error = mapping_map_writable(file->f_mapping);
1611                         if (error)
1612                                 goto allow_write_and_free_vma;
1613                 }
1614
1615                 /* ->mmap() can change vma->vm_file, but must guarantee that
1616                  * vma_link() below can deny write-access if VM_DENYWRITE is set
1617                  * and map writably if VM_SHARED is set. This usually means the
1618                  * new file must not have been exposed to user-space, yet.
1619                  */
1620                 vma->vm_file = get_file(file);
1621                 error = file->f_op->mmap(file, vma);
1622                 if (error)
1623                         goto unmap_and_free_vma;
1624
1625                 /* Can addr have changed??
1626                  *
1627                  * Answer: Yes, several device drivers can do it in their
1628                  *         f_op->mmap method. -DaveM
1629                  * Bug: If addr is changed, prev, rb_link, rb_parent should
1630                  *      be updated for vma_link()
1631                  */
1632                 WARN_ON_ONCE(addr != vma->vm_start);
1633
1634                 addr = vma->vm_start;
1635                 vm_flags = vma->vm_flags;
1636         } else if (vm_flags & VM_SHARED) {
1637                 error = shmem_zero_setup(vma);
1638                 if (error)
1639                         goto free_vma;
1640         }
1641
1642         vma_link(mm, vma, prev, rb_link, rb_parent);
1643         /* Once vma denies write, undo our temporary denial count */
1644         if (file) {
1645                 if (vm_flags & VM_SHARED)
1646                         mapping_unmap_writable(file->f_mapping);
1647                 if (vm_flags & VM_DENYWRITE)
1648                         allow_write_access(file);
1649         }
1650         file = vma->vm_file;
1651 out:
1652         perf_event_mmap(vma);
1653
1654         vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1655         if (vm_flags & VM_LOCKED) {
1656                 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1657                                         vma == get_gate_vma(current->mm)))
1658                         mm->locked_vm += (len >> PAGE_SHIFT);
1659                 else
1660                         vma->vm_flags &= ~VM_LOCKED;
1661         }
1662
1663         if (file)
1664                 uprobe_mmap(vma);
1665
1666         /*
1667          * New (or expanded) vma always get soft dirty status.
1668          * Otherwise user-space soft-dirty page tracker won't
1669          * be able to distinguish situation when vma area unmapped,
1670          * then new mapped in-place (which must be aimed as
1671          * a completely new data area).
1672          */
1673         vma->vm_flags |= VM_SOFTDIRTY;
1674
1675         vma_set_page_prot(vma);
1676
1677         return addr;
1678
1679 unmap_and_free_vma:
1680         vma->vm_file = NULL;
1681         fput(file);
1682
1683         /* Undo any partial mapping done by a device driver. */
1684         unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1685         charged = 0;
1686         if (vm_flags & VM_SHARED)
1687                 mapping_unmap_writable(file->f_mapping);
1688 allow_write_and_free_vma:
1689         if (vm_flags & VM_DENYWRITE)
1690                 allow_write_access(file);
1691 free_vma:
1692         kmem_cache_free(vm_area_cachep, vma);
1693 unacct_error:
1694         if (charged)
1695                 vm_unacct_memory(charged);
1696         return error;
1697 }
1698
1699 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1700 {
1701         /*
1702          * We implement the search by looking for an rbtree node that
1703          * immediately follows a suitable gap. That is,
1704          * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1705          * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1706          * - gap_end - gap_start >= length
1707          */
1708
1709         struct mm_struct *mm = current->mm;
1710         struct vm_area_struct *vma;
1711         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1712
1713         /* Adjust search length to account for worst case alignment overhead */
1714         length = info->length + info->align_mask;
1715         if (length < info->length)
1716                 return -ENOMEM;
1717
1718         /* Adjust search limits by the desired length */
1719         if (info->high_limit < length)
1720                 return -ENOMEM;
1721         high_limit = info->high_limit - length;
1722
1723         if (info->low_limit > high_limit)
1724                 return -ENOMEM;
1725         low_limit = info->low_limit + length;
1726
1727         /* Check if rbtree root looks promising */
1728         if (RB_EMPTY_ROOT(&mm->mm_rb))
1729                 goto check_highest;
1730         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1731         if (vma->rb_subtree_gap < length)
1732                 goto check_highest;
1733
1734         while (true) {
1735                 /* Visit left subtree if it looks promising */
1736                 gap_end = vma->vm_start;
1737                 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1738                         struct vm_area_struct *left =
1739                                 rb_entry(vma->vm_rb.rb_left,
1740                                          struct vm_area_struct, vm_rb);
1741                         if (left->rb_subtree_gap >= length) {
1742                                 vma = left;
1743                                 continue;
1744                         }
1745                 }
1746
1747                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1748 check_current:
1749                 /* Check if current node has a suitable gap */
1750                 if (gap_start > high_limit)
1751                         return -ENOMEM;
1752                 if (gap_end >= low_limit && gap_end - gap_start >= length)
1753                         goto found;
1754
1755                 /* Visit right subtree if it looks promising */
1756                 if (vma->vm_rb.rb_right) {
1757                         struct vm_area_struct *right =
1758                                 rb_entry(vma->vm_rb.rb_right,
1759                                          struct vm_area_struct, vm_rb);
1760                         if (right->rb_subtree_gap >= length) {
1761                                 vma = right;
1762                                 continue;
1763                         }
1764                 }
1765
1766                 /* Go back up the rbtree to find next candidate node */
1767                 while (true) {
1768                         struct rb_node *prev = &vma->vm_rb;
1769                         if (!rb_parent(prev))
1770                                 goto check_highest;
1771                         vma = rb_entry(rb_parent(prev),
1772                                        struct vm_area_struct, vm_rb);
1773                         if (prev == vma->vm_rb.rb_left) {
1774                                 gap_start = vma->vm_prev->vm_end;
1775                                 gap_end = vma->vm_start;
1776                                 goto check_current;
1777                         }
1778                 }
1779         }
1780
1781 check_highest:
1782         /* Check highest gap, which does not precede any rbtree node */
1783         gap_start = mm->highest_vm_end;
1784         gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1785         if (gap_start > high_limit)
1786                 return -ENOMEM;
1787
1788 found:
1789         /* We found a suitable gap. Clip it with the original low_limit. */
1790         if (gap_start < info->low_limit)
1791                 gap_start = info->low_limit;
1792
1793         /* Adjust gap address to the desired alignment */
1794         gap_start += (info->align_offset - gap_start) & info->align_mask;
1795
1796         VM_BUG_ON(gap_start + info->length > info->high_limit);
1797         VM_BUG_ON(gap_start + info->length > gap_end);
1798         return gap_start;
1799 }
1800
1801 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1802 {
1803         struct mm_struct *mm = current->mm;
1804         struct vm_area_struct *vma;
1805         unsigned long length, low_limit, high_limit, gap_start, gap_end;
1806
1807         /* Adjust search length to account for worst case alignment overhead */
1808         length = info->length + info->align_mask;
1809         if (length < info->length)
1810                 return -ENOMEM;
1811
1812         /*
1813          * Adjust search limits by the desired length.
1814          * See implementation comment at top of unmapped_area().
1815          */
1816         gap_end = info->high_limit;
1817         if (gap_end < length)
1818                 return -ENOMEM;
1819         high_limit = gap_end - length;
1820
1821         if (info->low_limit > high_limit)
1822                 return -ENOMEM;
1823         low_limit = info->low_limit + length;
1824
1825         /* Check highest gap, which does not precede any rbtree node */
1826         gap_start = mm->highest_vm_end;
1827         if (gap_start <= high_limit)
1828                 goto found_highest;
1829
1830         /* Check if rbtree root looks promising */
1831         if (RB_EMPTY_ROOT(&mm->mm_rb))
1832                 return -ENOMEM;
1833         vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1834         if (vma->rb_subtree_gap < length)
1835                 return -ENOMEM;
1836
1837         while (true) {
1838                 /* Visit right subtree if it looks promising */
1839                 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1840                 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1841                         struct vm_area_struct *right =
1842                                 rb_entry(vma->vm_rb.rb_right,
1843                                          struct vm_area_struct, vm_rb);
1844                         if (right->rb_subtree_gap >= length) {
1845                                 vma = right;
1846                                 continue;
1847                         }
1848                 }
1849
1850 check_current:
1851                 /* Check if current node has a suitable gap */
1852                 gap_end = vma->vm_start;
1853                 if (gap_end < low_limit)
1854                         return -ENOMEM;
1855                 if (gap_start <= high_limit && gap_end - gap_start >= length)
1856                         goto found;
1857
1858                 /* Visit left subtree if it looks promising */
1859                 if (vma->vm_rb.rb_left) {
1860                         struct vm_area_struct *left =
1861                                 rb_entry(vma->vm_rb.rb_left,
1862                                          struct vm_area_struct, vm_rb);
1863                         if (left->rb_subtree_gap >= length) {
1864                                 vma = left;
1865                                 continue;
1866                         }
1867                 }
1868
1869                 /* Go back up the rbtree to find next candidate node */
1870                 while (true) {
1871                         struct rb_node *prev = &vma->vm_rb;
1872                         if (!rb_parent(prev))
1873                                 return -ENOMEM;
1874                         vma = rb_entry(rb_parent(prev),
1875                                        struct vm_area_struct, vm_rb);
1876                         if (prev == vma->vm_rb.rb_right) {
1877                                 gap_start = vma->vm_prev ?
1878                                         vma->vm_prev->vm_end : 0;
1879                                 goto check_current;
1880                         }
1881                 }
1882         }
1883
1884 found:
1885         /* We found a suitable gap. Clip it with the original high_limit. */
1886         if (gap_end > info->high_limit)
1887                 gap_end = info->high_limit;
1888
1889 found_highest:
1890         /* Compute highest gap address at the desired alignment */
1891         gap_end -= info->length;
1892         gap_end -= (gap_end - info->align_offset) & info->align_mask;
1893
1894         VM_BUG_ON(gap_end < info->low_limit);
1895         VM_BUG_ON(gap_end < gap_start);
1896         return gap_end;
1897 }
1898
1899 /* Get an address range which is currently unmapped.
1900  * For shmat() with addr=0.
1901  *
1902  * Ugly calling convention alert:
1903  * Return value with the low bits set means error value,
1904  * ie
1905  *      if (ret & ~PAGE_MASK)
1906  *              error = ret;
1907  *
1908  * This function "knows" that -ENOMEM has the bits set.
1909  */
1910 #ifndef HAVE_ARCH_UNMAPPED_AREA
1911 unsigned long
1912 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1913                 unsigned long len, unsigned long pgoff, unsigned long flags)
1914 {
1915         struct mm_struct *mm = current->mm;
1916         struct vm_area_struct *vma;
1917         struct vm_unmapped_area_info info;
1918
1919         if (len > TASK_SIZE - mmap_min_addr)
1920                 return -ENOMEM;
1921
1922         if (flags & MAP_FIXED)
1923                 return addr;
1924
1925         if (addr) {
1926                 addr = PAGE_ALIGN(addr);
1927                 vma = find_vma(mm, addr);
1928                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1929                     (!vma || addr + len <= vma->vm_start))
1930                         return addr;
1931         }
1932
1933         info.flags = 0;
1934         info.length = len;
1935         info.low_limit = mm->mmap_base;
1936         info.high_limit = TASK_SIZE;
1937         info.align_mask = 0;
1938         return vm_unmapped_area(&info);
1939 }
1940 #endif
1941
1942 /*
1943  * This mmap-allocator allocates new areas top-down from below the
1944  * stack's low limit (the base):
1945  */
1946 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1947 unsigned long
1948 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1949                           const unsigned long len, const unsigned long pgoff,
1950                           const unsigned long flags)
1951 {
1952         struct vm_area_struct *vma;
1953         struct mm_struct *mm = current->mm;
1954         unsigned long addr = addr0;
1955         struct vm_unmapped_area_info info;
1956
1957         /* requested length too big for entire address space */
1958         if (len > TASK_SIZE - mmap_min_addr)
1959                 return -ENOMEM;
1960
1961         if (flags & MAP_FIXED)
1962                 return addr;
1963
1964         /* requesting a specific address */
1965         if (addr) {
1966                 addr = PAGE_ALIGN(addr);
1967                 vma = find_vma(mm, addr);
1968                 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1969                                 (!vma || addr + len <= vma->vm_start))
1970                         return addr;
1971         }
1972
1973         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1974         info.length = len;
1975         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1976         info.high_limit = mm->mmap_base;
1977         info.align_mask = 0;
1978         addr = vm_unmapped_area(&info);
1979
1980         /*
1981          * A failed mmap() very likely causes application failure,
1982          * so fall back to the bottom-up function here. This scenario
1983          * can happen with large stack limits and large mmap()
1984          * allocations.
1985          */
1986         if (addr & ~PAGE_MASK) {
1987                 VM_BUG_ON(addr != -ENOMEM);
1988                 info.flags = 0;
1989                 info.low_limit = TASK_UNMAPPED_BASE;
1990                 info.high_limit = TASK_SIZE;
1991                 addr = vm_unmapped_area(&info);
1992         }
1993
1994         return addr;
1995 }
1996 #endif
1997
1998 unsigned long
1999 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2000                 unsigned long pgoff, unsigned long flags)
2001 {
2002         unsigned long (*get_area)(struct file *, unsigned long,
2003                                   unsigned long, unsigned long, unsigned long);
2004
2005         unsigned long error = arch_mmap_check(addr, len, flags);
2006         if (error)
2007                 return error;
2008
2009         /* Careful about overflows.. */
2010         if (len > TASK_SIZE)
2011                 return -ENOMEM;
2012
2013         get_area = current->mm->get_unmapped_area;
2014         if (file && file->f_op->get_unmapped_area)
2015                 get_area = file->f_op->get_unmapped_area;
2016         addr = get_area(file, addr, len, pgoff, flags);
2017         if (IS_ERR_VALUE(addr))
2018                 return addr;
2019
2020         if (addr > TASK_SIZE - len)
2021                 return -ENOMEM;
2022         if (addr & ~PAGE_MASK)
2023                 return -EINVAL;
2024
2025         addr = arch_rebalance_pgtables(addr, len);
2026         error = security_mmap_addr(addr);
2027         return error ? error : addr;
2028 }
2029
2030 EXPORT_SYMBOL(get_unmapped_area);
2031
2032 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2033 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2034 {
2035         struct rb_node *rb_node;
2036         struct vm_area_struct *vma;
2037
2038         /* Check the cache first. */
2039         vma = vmacache_find(mm, addr);
2040         if (likely(vma))
2041                 return vma;
2042
2043         rb_node = mm->mm_rb.rb_node;
2044         vma = NULL;
2045
2046         while (rb_node) {
2047                 struct vm_area_struct *tmp;
2048
2049                 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2050
2051                 if (tmp->vm_end > addr) {
2052                         vma = tmp;
2053                         if (tmp->vm_start <= addr)
2054                                 break;
2055                         rb_node = rb_node->rb_left;
2056                 } else
2057                         rb_node = rb_node->rb_right;
2058         }
2059
2060         if (vma)
2061                 vmacache_update(addr, vma);
2062         return vma;
2063 }
2064
2065 EXPORT_SYMBOL(find_vma);
2066
2067 /*
2068  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2069  */
2070 struct vm_area_struct *
2071 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2072                         struct vm_area_struct **pprev)
2073 {
2074         struct vm_area_struct *vma;
2075
2076         vma = find_vma(mm, addr);
2077         if (vma) {
2078                 *pprev = vma->vm_prev;
2079         } else {
2080                 struct rb_node *rb_node = mm->mm_rb.rb_node;
2081                 *pprev = NULL;
2082                 while (rb_node) {
2083                         *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2084                         rb_node = rb_node->rb_right;
2085                 }
2086         }
2087         return vma;
2088 }
2089
2090 /*
2091  * Verify that the stack growth is acceptable and
2092  * update accounting. This is shared with both the
2093  * grow-up and grow-down cases.
2094  */
2095 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2096 {
2097         struct mm_struct *mm = vma->vm_mm;
2098         struct rlimit *rlim = current->signal->rlim;
2099         unsigned long new_start;
2100
2101         /* address space limit tests */
2102         if (!may_expand_vm(mm, grow))
2103                 return -ENOMEM;
2104
2105         /* Stack limit test */
2106         if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2107                 return -ENOMEM;
2108
2109         /* mlock limit tests */
2110         if (vma->vm_flags & VM_LOCKED) {
2111                 unsigned long locked;
2112                 unsigned long limit;
2113                 locked = mm->locked_vm + grow;
2114                 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2115                 limit >>= PAGE_SHIFT;
2116                 if (locked > limit && !capable(CAP_IPC_LOCK))
2117                         return -ENOMEM;
2118         }
2119
2120         /* Check to ensure the stack will not grow into a hugetlb-only region */
2121         new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2122                         vma->vm_end - size;
2123         if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2124                 return -EFAULT;
2125
2126         /*
2127          * Overcommit..  This must be the final test, as it will
2128          * update security statistics.
2129          */
2130         if (security_vm_enough_memory_mm(mm, grow))
2131                 return -ENOMEM;
2132
2133         /* Ok, everything looks good - let it rip */
2134         if (vma->vm_flags & VM_LOCKED)
2135                 mm->locked_vm += grow;
2136         vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2137         return 0;
2138 }
2139
2140 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2141 /*
2142  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2143  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2144  */
2145 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2146 {
2147         int error;
2148
2149         if (!(vma->vm_flags & VM_GROWSUP))
2150                 return -EFAULT;
2151
2152         /*
2153          * We must make sure the anon_vma is allocated
2154          * so that the anon_vma locking is not a noop.
2155          */
2156         if (unlikely(anon_vma_prepare(vma)))
2157                 return -ENOMEM;
2158         vma_lock_anon_vma(vma);
2159
2160         /*
2161          * vma->vm_start/vm_end cannot change under us because the caller
2162          * is required to hold the mmap_sem in read mode.  We need the
2163          * anon_vma lock to serialize against concurrent expand_stacks.
2164          * Also guard against wrapping around to address 0.
2165          */
2166         if (address < PAGE_ALIGN(address+4))
2167                 address = PAGE_ALIGN(address+4);
2168         else {
2169                 vma_unlock_anon_vma(vma);
2170                 return -ENOMEM;
2171         }
2172         error = 0;
2173
2174         /* Somebody else might have raced and expanded it already */
2175         if (address > vma->vm_end) {
2176                 unsigned long size, grow;
2177
2178                 size = address - vma->vm_start;
2179                 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2180
2181                 error = -ENOMEM;
2182                 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2183                         error = acct_stack_growth(vma, size, grow);
2184                         if (!error) {
2185                                 /*
2186                                  * vma_gap_update() doesn't support concurrent
2187                                  * updates, but we only hold a shared mmap_sem
2188                                  * lock here, so we need to protect against
2189                                  * concurrent vma expansions.
2190                                  * vma_lock_anon_vma() doesn't help here, as
2191                                  * we don't guarantee that all growable vmas
2192                                  * in a mm share the same root anon vma.
2193                                  * So, we reuse mm->page_table_lock to guard
2194                                  * against concurrent vma expansions.
2195                                  */
2196                                 spin_lock(&vma->vm_mm->page_table_lock);
2197                                 anon_vma_interval_tree_pre_update_vma(vma);
2198                                 vma->vm_end = address;
2199                                 anon_vma_interval_tree_post_update_vma(vma);
2200                                 if (vma->vm_next)
2201                                         vma_gap_update(vma->vm_next);
2202                                 else
2203                                         vma->vm_mm->highest_vm_end = address;
2204                                 spin_unlock(&vma->vm_mm->page_table_lock);
2205
2206                                 perf_event_mmap(vma);
2207                         }
2208                 }
2209         }
2210         vma_unlock_anon_vma(vma);
2211         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2212         validate_mm(vma->vm_mm);
2213         return error;
2214 }
2215 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2216
2217 /*
2218  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2219  */
2220 int expand_downwards(struct vm_area_struct *vma,
2221                                    unsigned long address)
2222 {
2223         int error;
2224
2225         /*
2226          * We must make sure the anon_vma is allocated
2227          * so that the anon_vma locking is not a noop.
2228          */
2229         if (unlikely(anon_vma_prepare(vma)))
2230                 return -ENOMEM;
2231
2232         address &= PAGE_MASK;
2233         error = security_mmap_addr(address);
2234         if (error)
2235                 return error;
2236
2237         vma_lock_anon_vma(vma);
2238
2239         /*
2240          * vma->vm_start/vm_end cannot change under us because the caller
2241          * is required to hold the mmap_sem in read mode.  We need the
2242          * anon_vma lock to serialize against concurrent expand_stacks.
2243          */
2244
2245         /* Somebody else might have raced and expanded it already */
2246         if (address < vma->vm_start) {
2247                 unsigned long size, grow;
2248
2249                 size = vma->vm_end - address;
2250                 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2251
2252                 error = -ENOMEM;
2253                 if (grow <= vma->vm_pgoff) {
2254                         error = acct_stack_growth(vma, size, grow);
2255                         if (!error) {
2256                                 /*
2257                                  * vma_gap_update() doesn't support concurrent
2258                                  * updates, but we only hold a shared mmap_sem
2259                                  * lock here, so we need to protect against
2260                                  * concurrent vma expansions.
2261                                  * vma_lock_anon_vma() doesn't help here, as
2262                                  * we don't guarantee that all growable vmas
2263                                  * in a mm share the same root anon vma.
2264                                  * So, we reuse mm->page_table_lock to guard
2265                                  * against concurrent vma expansions.
2266                                  */
2267                                 spin_lock(&vma->vm_mm->page_table_lock);
2268                                 anon_vma_interval_tree_pre_update_vma(vma);
2269                                 vma->vm_start = address;
2270                                 vma->vm_pgoff -= grow;
2271                                 anon_vma_interval_tree_post_update_vma(vma);
2272                                 vma_gap_update(vma);
2273                                 spin_unlock(&vma->vm_mm->page_table_lock);
2274
2275                                 perf_event_mmap(vma);
2276                         }
2277                 }
2278         }
2279         vma_unlock_anon_vma(vma);
2280         khugepaged_enter_vma_merge(vma, vma->vm_flags);
2281         validate_mm(vma->vm_mm);
2282         return error;
2283 }
2284
2285 /*
2286  * Note how expand_stack() refuses to expand the stack all the way to
2287  * abut the next virtual mapping, *unless* that mapping itself is also
2288  * a stack mapping. We want to leave room for a guard page, after all
2289  * (the guard page itself is not added here, that is done by the
2290  * actual page faulting logic)
2291  *
2292  * This matches the behavior of the guard page logic (see mm/memory.c:
2293  * check_stack_guard_page()), which only allows the guard page to be
2294  * removed under these circumstances.
2295  */
2296 #ifdef CONFIG_STACK_GROWSUP
2297 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2298 {
2299         struct vm_area_struct *next;
2300
2301         address &= PAGE_MASK;
2302         next = vma->vm_next;
2303         if (next && next->vm_start == address + PAGE_SIZE) {
2304                 if (!(next->vm_flags & VM_GROWSUP))
2305                         return -ENOMEM;
2306         }
2307         return expand_upwards(vma, address);
2308 }
2309
2310 struct vm_area_struct *
2311 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2312 {
2313         struct vm_area_struct *vma, *prev;
2314
2315         addr &= PAGE_MASK;
2316         vma = find_vma_prev(mm, addr, &prev);
2317         if (vma && (vma->vm_start <= addr))
2318                 return vma;
2319         if (!prev || expand_stack(prev, addr))
2320                 return NULL;
2321         if (prev->vm_flags & VM_LOCKED)
2322                 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2323         return prev;
2324 }
2325 #else
2326 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2327 {
2328         struct vm_area_struct *prev;
2329
2330         address &= PAGE_MASK;
2331         prev = vma->vm_prev;
2332         if (prev && prev->vm_end == address) {
2333                 if (!(prev->vm_flags & VM_GROWSDOWN))
2334                         return -ENOMEM;
2335         }
2336         return expand_downwards(vma, address);
2337 }
2338
2339 struct vm_area_struct *
2340 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2341 {
2342         struct vm_area_struct *vma;
2343         unsigned long start;
2344
2345         addr &= PAGE_MASK;
2346         vma = find_vma(mm, addr);
2347         if (!vma)
2348                 return NULL;
2349         if (vma->vm_start <= addr)
2350                 return vma;
2351         if (!(vma->vm_flags & VM_GROWSDOWN))
2352                 return NULL;
2353         start = vma->vm_start;
2354         if (expand_stack(vma, addr))
2355                 return NULL;
2356         if (vma->vm_flags & VM_LOCKED)
2357                 __mlock_vma_pages_range(vma, addr, start, NULL);
2358         return vma;
2359 }
2360 #endif
2361
2362 /*
2363  * Ok - we have the memory areas we should free on the vma list,
2364  * so release them, and do the vma updates.
2365  *
2366  * Called with the mm semaphore held.
2367  */
2368 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2369 {
2370         unsigned long nr_accounted = 0;
2371
2372         /* Update high watermark before we lower total_vm */
2373         update_hiwater_vm(mm);
2374         do {
2375                 long nrpages = vma_pages(vma);
2376
2377                 if (vma->vm_flags & VM_ACCOUNT)
2378                         nr_accounted += nrpages;
2379                 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2380                 vma = remove_vma(vma);
2381         } while (vma);
2382         vm_unacct_memory(nr_accounted);
2383         validate_mm(mm);
2384 }
2385
2386 /*
2387  * Get rid of page table information in the indicated region.
2388  *
2389  * Called with the mm semaphore held.
2390  */
2391 static void unmap_region(struct mm_struct *mm,
2392                 struct vm_area_struct *vma, struct vm_area_struct *prev,
2393                 unsigned long start, unsigned long end)
2394 {
2395         struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2396         struct mmu_gather tlb;
2397
2398         lru_add_drain();
2399         tlb_gather_mmu(&tlb, mm, start, end);
2400         update_hiwater_rss(mm);
2401         unmap_vmas(&tlb, vma, start, end);
2402         free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2403                                  next ? next->vm_start : USER_PGTABLES_CEILING);
2404         tlb_finish_mmu(&tlb, start, end);
2405 }
2406
2407 /*
2408  * Create a list of vma's touched by the unmap, removing them from the mm's
2409  * vma list as we go..
2410  */
2411 static void
2412 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2413         struct vm_area_struct *prev, unsigned long end)
2414 {
2415         struct vm_area_struct **insertion_point;
2416         struct vm_area_struct *tail_vma = NULL;
2417
2418         insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2419         vma->vm_prev = NULL;
2420         do {
2421                 vma_rb_erase(vma, &mm->mm_rb);
2422                 mm->map_count--;
2423                 tail_vma = vma;
2424                 vma = vma->vm_next;
2425         } while (vma && vma->vm_start < end);
2426         *insertion_point = vma;
2427         if (vma) {
2428                 vma->vm_prev = prev;
2429                 vma_gap_update(vma);
2430         } else
2431                 mm->highest_vm_end = prev ? prev->vm_end : 0;
2432         tail_vma->vm_next = NULL;
2433
2434         /* Kill the cache */
2435         vmacache_invalidate(mm);
2436 }
2437
2438 /*
2439  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2440  * munmap path where it doesn't make sense to fail.
2441  */
2442 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2443               unsigned long addr, int new_below)
2444 {
2445         struct vm_area_struct *new;
2446         int err = -ENOMEM;
2447
2448         if (is_vm_hugetlb_page(vma) && (addr &
2449                                         ~(huge_page_mask(hstate_vma(vma)))))
2450                 return -EINVAL;
2451
2452         new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2453         if (!new)
2454                 goto out_err;
2455
2456         /* most fields are the same, copy all, and then fixup */
2457         *new = *vma;
2458
2459         INIT_LIST_HEAD(&new->anon_vma_chain);
2460
2461         if (new_below)
2462                 new->vm_end = addr;
2463         else {
2464                 new->vm_start = addr;
2465                 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2466         }
2467
2468         err = vma_dup_policy(vma, new);
2469         if (err)
2470                 goto out_free_vma;
2471
2472         if (anon_vma_clone(new, vma))
2473                 goto out_free_mpol;
2474
2475         if (new->vm_file)
2476                 get_file(new->vm_file);
2477
2478         if (new->vm_ops && new->vm_ops->open)
2479                 new->vm_ops->open(new);
2480
2481         if (new_below)
2482                 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2483                         ((addr - new->vm_start) >> PAGE_SHIFT), new);
2484         else
2485                 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2486
2487         /* Success. */
2488         if (!err)
2489                 return 0;
2490
2491         /* Clean everything up if vma_adjust failed. */
2492         if (new->vm_ops && new->vm_ops->close)
2493                 new->vm_ops->close(new);
2494         if (new->vm_file)
2495                 fput(new->vm_file);
2496         unlink_anon_vmas(new);
2497  out_free_mpol:
2498         mpol_put(vma_policy(new));
2499  out_free_vma:
2500         kmem_cache_free(vm_area_cachep, new);
2501  out_err:
2502         return err;
2503 }
2504
2505 /*
2506  * Split a vma into two pieces at address 'addr', a new vma is allocated
2507  * either for the first part or the tail.
2508  */
2509 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2510               unsigned long addr, int new_below)
2511 {
2512         if (mm->map_count >= sysctl_max_map_count)
2513                 return -ENOMEM;
2514
2515         return __split_vma(mm, vma, addr, new_below);
2516 }
2517
2518 /* Munmap is split into 2 main parts -- this part which finds
2519  * what needs doing, and the areas themselves, which do the
2520  * work.  This now handles partial unmappings.
2521  * Jeremy Fitzhardinge <jeremy@goop.org>
2522  */
2523 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2524 {
2525         unsigned long end;
2526         struct vm_area_struct *vma, *prev, *last;
2527
2528         if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2529                 return -EINVAL;
2530
2531         len = PAGE_ALIGN(len);
2532         if (len == 0)
2533                 return -EINVAL;
2534
2535         /* Find the first overlapping VMA */
2536         vma = find_vma(mm, start);
2537         if (!vma)
2538                 return 0;
2539         prev = vma->vm_prev;
2540         /* we have  start < vma->vm_end  */
2541
2542         /* if it doesn't overlap, we have nothing.. */
2543         end = start + len;
2544         if (vma->vm_start >= end)
2545                 return 0;
2546
2547         /*
2548          * If we need to split any vma, do it now to save pain later.
2549          *
2550          * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2551          * unmapped vm_area_struct will remain in use: so lower split_vma
2552          * places tmp vma above, and higher split_vma places tmp vma below.
2553          */
2554         if (start > vma->vm_start) {
2555                 int error;
2556
2557                 /*
2558                  * Make sure that map_count on return from munmap() will
2559                  * not exceed its limit; but let map_count go just above
2560                  * its limit temporarily, to help free resources as expected.
2561                  */
2562                 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2563                         return -ENOMEM;
2564
2565                 error = __split_vma(mm, vma, start, 0);
2566                 if (error)
2567                         return error;
2568                 prev = vma;
2569         }
2570
2571         /* Does it split the last one? */
2572         last = find_vma(mm, end);
2573         if (last && end > last->vm_start) {
2574                 int error = __split_vma(mm, last, end, 1);
2575                 if (error)
2576                         return error;
2577         }
2578         vma = prev ? prev->vm_next : mm->mmap;
2579
2580         /*
2581          * unlock any mlock()ed ranges before detaching vmas
2582          */
2583         if (mm->locked_vm) {
2584                 struct vm_area_struct *tmp = vma;
2585                 while (tmp && tmp->vm_start < end) {
2586                         if (tmp->vm_flags & VM_LOCKED) {
2587                                 mm->locked_vm -= vma_pages(tmp);
2588                                 munlock_vma_pages_all(tmp);
2589                         }
2590                         tmp = tmp->vm_next;
2591                 }
2592         }
2593
2594         /*
2595          * Remove the vma's, and unmap the actual pages
2596          */
2597         detach_vmas_to_be_unmapped(mm, vma, prev, end);
2598         unmap_region(mm, vma, prev, start, end);
2599
2600         /* Fix up all other VM information */
2601         remove_vma_list(mm, vma);
2602
2603         return 0;
2604 }
2605
2606 int vm_munmap(unsigned long start, size_t len)
2607 {
2608         int ret;
2609         struct mm_struct *mm = current->mm;
2610
2611         down_write(&mm->mmap_sem);
2612         ret = do_munmap(mm, start, len);
2613         up_write(&mm->mmap_sem);
2614         return ret;
2615 }
2616 EXPORT_SYMBOL(vm_munmap);
2617
2618 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2619 {
2620         profile_munmap(addr);
2621         return vm_munmap(addr, len);
2622 }
2623
2624 static inline void verify_mm_writelocked(struct mm_struct *mm)
2625 {
2626 #ifdef CONFIG_DEBUG_VM
2627         if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2628                 WARN_ON(1);
2629                 up_read(&mm->mmap_sem);
2630         }
2631 #endif
2632 }
2633
2634 /*
2635  *  this is really a simplified "do_mmap".  it only handles
2636  *  anonymous maps.  eventually we may be able to do some
2637  *  brk-specific accounting here.
2638  */
2639 static unsigned long do_brk(unsigned long addr, unsigned long len)
2640 {
2641         struct mm_struct *mm = current->mm;
2642         struct vm_area_struct *vma, *prev;
2643         unsigned long flags;
2644         struct rb_node **rb_link, *rb_parent;
2645         pgoff_t pgoff = addr >> PAGE_SHIFT;
2646         int error;
2647
2648         len = PAGE_ALIGN(len);
2649         if (!len)
2650                 return addr;
2651
2652         flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2653
2654         error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2655         if (error & ~PAGE_MASK)
2656                 return error;
2657
2658         error = mlock_future_check(mm, mm->def_flags, len);
2659         if (error)
2660                 return error;
2661
2662         /*
2663          * mm->mmap_sem is required to protect against another thread
2664          * changing the mappings in case we sleep.
2665          */
2666         verify_mm_writelocked(mm);
2667
2668         /*
2669          * Clear old maps.  this also does some error checking for us
2670          */
2671  munmap_back:
2672         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2673                 if (do_munmap(mm, addr, len))
2674                         return -ENOMEM;
2675                 goto munmap_back;
2676         }
2677
2678         /* Check against address space limits *after* clearing old maps... */
2679         if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2680                 return -ENOMEM;
2681
2682         if (mm->map_count > sysctl_max_map_count)
2683                 return -ENOMEM;
2684
2685         if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2686                 return -ENOMEM;
2687
2688         /* Can we just expand an old private anonymous mapping? */
2689         vma = vma_merge(mm, prev, addr, addr + len, flags,
2690                                         NULL, NULL, pgoff, NULL);
2691         if (vma)
2692                 goto out;
2693
2694         /*
2695          * create a vma struct for an anonymous mapping
2696          */
2697         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2698         if (!vma) {
2699                 vm_unacct_memory(len >> PAGE_SHIFT);
2700                 return -ENOMEM;
2701         }
2702
2703         INIT_LIST_HEAD(&vma->anon_vma_chain);
2704         vma->vm_mm = mm;
2705         vma->vm_start = addr;
2706         vma->vm_end = addr + len;
2707         vma->vm_pgoff = pgoff;
2708         vma->vm_flags = flags;
2709         vma->vm_page_prot = vm_get_page_prot(flags);
2710         vma_link(mm, vma, prev, rb_link, rb_parent);
2711 out:
2712         perf_event_mmap(vma);
2713         mm->total_vm += len >> PAGE_SHIFT;
2714         if (flags & VM_LOCKED)
2715                 mm->locked_vm += (len >> PAGE_SHIFT);
2716         vma->vm_flags |= VM_SOFTDIRTY;
2717         return addr;
2718 }
2719
2720 unsigned long vm_brk(unsigned long addr, unsigned long len)
2721 {
2722         struct mm_struct *mm = current->mm;
2723         unsigned long ret;
2724         bool populate;
2725
2726         down_write(&mm->mmap_sem);
2727         ret = do_brk(addr, len);
2728         populate = ((mm->def_flags & VM_LOCKED) != 0);
2729         up_write(&mm->mmap_sem);
2730         if (populate)
2731                 mm_populate(addr, len);
2732         return ret;
2733 }
2734 EXPORT_SYMBOL(vm_brk);
2735
2736 /* Release all mmaps. */
2737 void exit_mmap(struct mm_struct *mm)
2738 {
2739         struct mmu_gather tlb;
2740         struct vm_area_struct *vma;
2741         unsigned long nr_accounted = 0;
2742
2743         /* mm's last user has gone, and its about to be pulled down */
2744         mmu_notifier_release(mm);
2745
2746         if (mm->locked_vm) {
2747                 vma = mm->mmap;
2748                 while (vma) {
2749                         if (vma->vm_flags & VM_LOCKED)
2750                                 munlock_vma_pages_all(vma);
2751                         vma = vma->vm_next;
2752                 }
2753         }
2754
2755         arch_exit_mmap(mm);
2756
2757         vma = mm->mmap;
2758         if (!vma)       /* Can happen if dup_mmap() received an OOM */
2759                 return;
2760
2761         lru_add_drain();
2762         flush_cache_mm(mm);
2763         tlb_gather_mmu(&tlb, mm, 0, -1);
2764         /* update_hiwater_rss(mm) here? but nobody should be looking */
2765         /* Use -1 here to ensure all VMAs in the mm are unmapped */
2766         unmap_vmas(&tlb, vma, 0, -1);
2767
2768         free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2769         tlb_finish_mmu(&tlb, 0, -1);
2770
2771         /*
2772          * Walk the list again, actually closing and freeing it,
2773          * with preemption enabled, without holding any MM locks.
2774          */
2775         while (vma) {
2776                 if (vma->vm_flags & VM_ACCOUNT)
2777                         nr_accounted += vma_pages(vma);
2778                 vma = remove_vma(vma);
2779         }
2780         vm_unacct_memory(nr_accounted);
2781
2782         WARN_ON(atomic_long_read(&mm->nr_ptes) >
2783                         (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2784 }
2785
2786 /* Insert vm structure into process list sorted by address
2787  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2788  * then i_mmap_mutex is taken here.
2789  */
2790 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2791 {
2792         struct vm_area_struct *prev;
2793         struct rb_node **rb_link, *rb_parent;
2794
2795         /*
2796          * The vm_pgoff of a purely anonymous vma should be irrelevant
2797          * until its first write fault, when page's anon_vma and index
2798          * are set.  But now set the vm_pgoff it will almost certainly
2799          * end up with (unless mremap moves it elsewhere before that
2800          * first wfault), so /proc/pid/maps tells a consistent story.
2801          *
2802          * By setting it to reflect the virtual start address of the
2803          * vma, merges and splits can happen in a seamless way, just
2804          * using the existing file pgoff checks and manipulations.
2805          * Similarly in do_mmap_pgoff and in do_brk.
2806          */
2807         if (!vma->vm_file) {
2808                 BUG_ON(vma->anon_vma);
2809                 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2810         }
2811         if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2812                            &prev, &rb_link, &rb_parent))
2813                 return -ENOMEM;
2814         if ((vma->vm_flags & VM_ACCOUNT) &&
2815              security_vm_enough_memory_mm(mm, vma_pages(vma)))
2816                 return -ENOMEM;
2817
2818         vma_link(mm, vma, prev, rb_link, rb_parent);
2819         return 0;
2820 }
2821
2822 /*
2823  * Copy the vma structure to a new location in the same mm,
2824  * prior to moving page table entries, to effect an mremap move.
2825  */
2826 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2827         unsigned long addr, unsigned long len, pgoff_t pgoff,
2828         bool *need_rmap_locks)
2829 {
2830         struct vm_area_struct *vma = *vmap;
2831         unsigned long vma_start = vma->vm_start;
2832         struct mm_struct *mm = vma->vm_mm;
2833         struct vm_area_struct *new_vma, *prev;
2834         struct rb_node **rb_link, *rb_parent;
2835         bool faulted_in_anon_vma = true;
2836
2837         /*
2838          * If anonymous vma has not yet been faulted, update new pgoff
2839          * to match new location, to increase its chance of merging.
2840          */
2841         if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2842                 pgoff = addr >> PAGE_SHIFT;
2843                 faulted_in_anon_vma = false;
2844         }
2845
2846         if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2847                 return NULL;    /* should never get here */
2848         new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2849                         vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2850         if (new_vma) {
2851                 /*
2852                  * Source vma may have been merged into new_vma
2853                  */
2854                 if (unlikely(vma_start >= new_vma->vm_start &&
2855                              vma_start < new_vma->vm_end)) {
2856                         /*
2857                          * The only way we can get a vma_merge with
2858                          * self during an mremap is if the vma hasn't
2859                          * been faulted in yet and we were allowed to
2860                          * reset the dst vma->vm_pgoff to the
2861                          * destination address of the mremap to allow
2862                          * the merge to happen. mremap must change the
2863                          * vm_pgoff linearity between src and dst vmas
2864                          * (in turn preventing a vma_merge) to be
2865                          * safe. It is only safe to keep the vm_pgoff
2866                          * linear if there are no pages mapped yet.
2867                          */
2868                         VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2869                         *vmap = vma = new_vma;
2870                 }
2871                 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2872         } else {
2873                 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2874                 if (new_vma) {
2875                         *new_vma = *vma;
2876                         new_vma->vm_start = addr;
2877                         new_vma->vm_end = addr + len;
2878                         new_vma->vm_pgoff = pgoff;
2879                         if (vma_dup_policy(vma, new_vma))
2880                                 goto out_free_vma;
2881                         INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2882                         if (anon_vma_clone(new_vma, vma))
2883                                 goto out_free_mempol;
2884                         if (new_vma->vm_file)
2885                                 get_file(new_vma->vm_file);
2886                         if (new_vma->vm_ops && new_vma->vm_ops->open)
2887                                 new_vma->vm_ops->open(new_vma);
2888                         vma_link(mm, new_vma, prev, rb_link, rb_parent);
2889                         *need_rmap_locks = false;
2890                 }
2891         }
2892         return new_vma;
2893
2894  out_free_mempol:
2895         mpol_put(vma_policy(new_vma));
2896  out_free_vma:
2897         kmem_cache_free(vm_area_cachep, new_vma);
2898         return NULL;
2899 }
2900
2901 /*
2902  * Return true if the calling process may expand its vm space by the passed
2903  * number of pages
2904  */
2905 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2906 {
2907         unsigned long cur = mm->total_vm;       /* pages */
2908         unsigned long lim;
2909
2910         lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2911
2912         if (cur + npages > lim)
2913                 return 0;
2914         return 1;
2915 }
2916
2917 static int special_mapping_fault(struct vm_area_struct *vma,
2918                                  struct vm_fault *vmf);
2919
2920 /*
2921  * Having a close hook prevents vma merging regardless of flags.
2922  */
2923 static void special_mapping_close(struct vm_area_struct *vma)
2924 {
2925 }
2926
2927 static const char *special_mapping_name(struct vm_area_struct *vma)
2928 {
2929         return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2930 }
2931
2932 static const struct vm_operations_struct special_mapping_vmops = {
2933         .close = special_mapping_close,
2934         .fault = special_mapping_fault,
2935         .name = special_mapping_name,
2936 };
2937
2938 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2939         .close = special_mapping_close,
2940         .fault = special_mapping_fault,
2941 };
2942
2943 static int special_mapping_fault(struct vm_area_struct *vma,
2944                                 struct vm_fault *vmf)
2945 {
2946         pgoff_t pgoff;
2947         struct page **pages;
2948
2949         /*
2950          * special mappings have no vm_file, and in that case, the mm
2951          * uses vm_pgoff internally. So we have to subtract it from here.
2952          * We are allowed to do this because we are the mm; do not copy
2953          * this code into drivers!
2954          */
2955         pgoff = vmf->pgoff - vma->vm_pgoff;
2956
2957         if (vma->vm_ops == &legacy_special_mapping_vmops)
2958                 pages = vma->vm_private_data;
2959         else
2960                 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2961                         pages;
2962
2963         for (; pgoff && *pages; ++pages)
2964                 pgoff--;
2965
2966         if (*pages) {
2967                 struct page *page = *pages;
2968                 get_page(page);
2969                 vmf->page = page;
2970                 return 0;
2971         }
2972
2973         return VM_FAULT_SIGBUS;
2974 }
2975
2976 static struct vm_area_struct *__install_special_mapping(
2977         struct mm_struct *mm,
2978         unsigned long addr, unsigned long len,
2979         unsigned long vm_flags, const struct vm_operations_struct *ops,
2980         void *priv)
2981 {
2982         int ret;
2983         struct vm_area_struct *vma;
2984
2985         vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2986         if (unlikely(vma == NULL))
2987                 return ERR_PTR(-ENOMEM);
2988
2989         INIT_LIST_HEAD(&vma->anon_vma_chain);
2990         vma->vm_mm = mm;
2991         vma->vm_start = addr;
2992         vma->vm_end = addr + len;
2993
2994         vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2995         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2996
2997         vma->vm_ops = ops;
2998         vma->vm_private_data = priv;
2999
3000         ret = insert_vm_struct(mm, vma);
3001         if (ret)
3002                 goto out;
3003
3004         mm->total_vm += len >> PAGE_SHIFT;
3005
3006         perf_event_mmap(vma);
3007
3008         return vma;
3009
3010 out:
3011         kmem_cache_free(vm_area_cachep, vma);
3012         return ERR_PTR(ret);
3013 }
3014
3015 /*
3016  * Called with mm->mmap_sem held for writing.
3017  * Insert a new vma covering the given region, with the given flags.
3018  * Its pages are supplied by the given array of struct page *.
3019  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3020  * The region past the last page supplied will always produce SIGBUS.
3021  * The array pointer and the pages it points to are assumed to stay alive
3022  * for as long as this mapping might exist.
3023  */
3024 struct vm_area_struct *_install_special_mapping(
3025         struct mm_struct *mm,
3026         unsigned long addr, unsigned long len,
3027         unsigned long vm_flags, const struct vm_special_mapping *spec)
3028 {
3029         return __install_special_mapping(mm, addr, len, vm_flags,
3030                                          &special_mapping_vmops, (void *)spec);
3031 }
3032
3033 int install_special_mapping(struct mm_struct *mm,
3034                             unsigned long addr, unsigned long len,
3035                             unsigned long vm_flags, struct page **pages)
3036 {
3037         struct vm_area_struct *vma = __install_special_mapping(
3038                 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3039                 (void *)pages);
3040
3041         return PTR_ERR_OR_ZERO(vma);
3042 }
3043
3044 static DEFINE_MUTEX(mm_all_locks_mutex);
3045
3046 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3047 {
3048         if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3049                 /*
3050                  * The LSB of head.next can't change from under us
3051                  * because we hold the mm_all_locks_mutex.
3052                  */
3053                 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3054                 /*
3055                  * We can safely modify head.next after taking the
3056                  * anon_vma->root->rwsem. If some other vma in this mm shares
3057                  * the same anon_vma we won't take it again.
3058                  *
3059                  * No need of atomic instructions here, head.next
3060                  * can't change from under us thanks to the
3061                  * anon_vma->root->rwsem.
3062                  */
3063                 if (__test_and_set_bit(0, (unsigned long *)
3064                                        &anon_vma->root->rb_root.rb_node))
3065                         BUG();
3066         }
3067 }
3068
3069 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3070 {
3071         if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3072                 /*
3073                  * AS_MM_ALL_LOCKS can't change from under us because
3074                  * we hold the mm_all_locks_mutex.
3075                  *
3076                  * Operations on ->flags have to be atomic because
3077                  * even if AS_MM_ALL_LOCKS is stable thanks to the
3078                  * mm_all_locks_mutex, there may be other cpus
3079                  * changing other bitflags in parallel to us.
3080                  */
3081                 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3082                         BUG();
3083                 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3084         }
3085 }
3086
3087 /*
3088  * This operation locks against the VM for all pte/vma/mm related
3089  * operations that could ever happen on a certain mm. This includes
3090  * vmtruncate, try_to_unmap, and all page faults.
3091  *
3092  * The caller must take the mmap_sem in write mode before calling
3093  * mm_take_all_locks(). The caller isn't allowed to release the
3094  * mmap_sem until mm_drop_all_locks() returns.
3095  *
3096  * mmap_sem in write mode is required in order to block all operations
3097  * that could modify pagetables and free pages without need of
3098  * altering the vma layout (for example populate_range() with
3099  * nonlinear vmas). It's also needed in write mode to avoid new
3100  * anon_vmas to be associated with existing vmas.
3101  *
3102  * A single task can't take more than one mm_take_all_locks() in a row
3103  * or it would deadlock.
3104  *
3105  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3106  * mapping->flags avoid to take the same lock twice, if more than one
3107  * vma in this mm is backed by the same anon_vma or address_space.
3108  *
3109  * We can take all the locks in random order because the VM code
3110  * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3111  * takes more than one of them in a row. Secondly we're protected
3112  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3113  *
3114  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3115  * that may have to take thousand of locks.
3116  *
3117  * mm_take_all_locks() can fail if it's interrupted by signals.
3118  */
3119 int mm_take_all_locks(struct mm_struct *mm)
3120 {
3121         struct vm_area_struct *vma;
3122         struct anon_vma_chain *avc;
3123
3124         BUG_ON(down_read_trylock(&mm->mmap_sem));
3125
3126         mutex_lock(&mm_all_locks_mutex);
3127
3128         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3129                 if (signal_pending(current))
3130                         goto out_unlock;
3131                 if (vma->vm_file && vma->vm_file->f_mapping)
3132                         vm_lock_mapping(mm, vma->vm_file->f_mapping);
3133         }
3134
3135         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3136                 if (signal_pending(current))
3137                         goto out_unlock;
3138                 if (vma->anon_vma)
3139                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3140                                 vm_lock_anon_vma(mm, avc->anon_vma);
3141         }
3142
3143         return 0;
3144
3145 out_unlock:
3146         mm_drop_all_locks(mm);
3147         return -EINTR;
3148 }
3149
3150 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3151 {
3152         if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3153                 /*
3154                  * The LSB of head.next can't change to 0 from under
3155                  * us because we hold the mm_all_locks_mutex.
3156                  *
3157                  * We must however clear the bitflag before unlocking
3158                  * the vma so the users using the anon_vma->rb_root will
3159                  * never see our bitflag.
3160                  *
3161                  * No need of atomic instructions here, head.next
3162                  * can't change from under us until we release the
3163                  * anon_vma->root->rwsem.
3164                  */
3165                 if (!__test_and_clear_bit(0, (unsigned long *)
3166                                           &anon_vma->root->rb_root.rb_node))
3167                         BUG();
3168                 anon_vma_unlock_write(anon_vma);
3169         }
3170 }
3171
3172 static void vm_unlock_mapping(struct address_space *mapping)
3173 {
3174         if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3175                 /*
3176                  * AS_MM_ALL_LOCKS can't change to 0 from under us
3177                  * because we hold the mm_all_locks_mutex.
3178                  */
3179                 mutex_unlock(&mapping->i_mmap_mutex);
3180                 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3181                                         &mapping->flags))
3182                         BUG();
3183         }
3184 }
3185
3186 /*
3187  * The mmap_sem cannot be released by the caller until
3188  * mm_drop_all_locks() returns.
3189  */
3190 void mm_drop_all_locks(struct mm_struct *mm)
3191 {
3192         struct vm_area_struct *vma;
3193         struct anon_vma_chain *avc;
3194
3195         BUG_ON(down_read_trylock(&mm->mmap_sem));
3196         BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3197
3198         for (vma = mm->mmap; vma; vma = vma->vm_next) {
3199                 if (vma->anon_vma)
3200                         list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3201                                 vm_unlock_anon_vma(avc->anon_vma);
3202                 if (vma->vm_file && vma->vm_file->f_mapping)
3203                         vm_unlock_mapping(vma->vm_file->f_mapping);
3204         }
3205
3206         mutex_unlock(&mm_all_locks_mutex);
3207 }
3208
3209 /*
3210  * initialise the VMA slab
3211  */
3212 void __init mmap_init(void)
3213 {
3214         int ret;
3215
3216         ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3217         VM_BUG_ON(ret);
3218 }
3219
3220 /*
3221  * Initialise sysctl_user_reserve_kbytes.
3222  *
3223  * This is intended to prevent a user from starting a single memory hogging
3224  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3225  * mode.
3226  *
3227  * The default value is min(3% of free memory, 128MB)
3228  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3229  */
3230 static int init_user_reserve(void)
3231 {
3232         unsigned long free_kbytes;
3233
3234         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3235
3236         sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3237         return 0;
3238 }
3239 subsys_initcall(init_user_reserve);
3240
3241 /*
3242  * Initialise sysctl_admin_reserve_kbytes.
3243  *
3244  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3245  * to log in and kill a memory hogging process.
3246  *
3247  * Systems with more than 256MB will reserve 8MB, enough to recover
3248  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3249  * only reserve 3% of free pages by default.
3250  */
3251 static int init_admin_reserve(void)
3252 {
3253         unsigned long free_kbytes;
3254
3255         free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3256
3257         sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3258         return 0;
3259 }
3260 subsys_initcall(init_admin_reserve);
3261
3262 /*
3263  * Reinititalise user and admin reserves if memory is added or removed.
3264  *
3265  * The default user reserve max is 128MB, and the default max for the
3266  * admin reserve is 8MB. These are usually, but not always, enough to
3267  * enable recovery from a memory hogging process using login/sshd, a shell,
3268  * and tools like top. It may make sense to increase or even disable the
3269  * reserve depending on the existence of swap or variations in the recovery
3270  * tools. So, the admin may have changed them.
3271  *
3272  * If memory is added and the reserves have been eliminated or increased above
3273  * the default max, then we'll trust the admin.
3274  *
3275  * If memory is removed and there isn't enough free memory, then we
3276  * need to reset the reserves.
3277  *
3278  * Otherwise keep the reserve set by the admin.
3279  */
3280 static int reserve_mem_notifier(struct notifier_block *nb,
3281                              unsigned long action, void *data)
3282 {
3283         unsigned long tmp, free_kbytes;
3284
3285         switch (action) {
3286         case MEM_ONLINE:
3287                 /* Default max is 128MB. Leave alone if modified by operator. */
3288                 tmp = sysctl_user_reserve_kbytes;
3289                 if (0 < tmp && tmp < (1UL << 17))
3290                         init_user_reserve();
3291
3292                 /* Default max is 8MB.  Leave alone if modified by operator. */
3293                 tmp = sysctl_admin_reserve_kbytes;
3294                 if (0 < tmp && tmp < (1UL << 13))
3295                         init_admin_reserve();
3296
3297                 break;
3298         case MEM_OFFLINE:
3299                 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3300
3301                 if (sysctl_user_reserve_kbytes > free_kbytes) {
3302                         init_user_reserve();
3303                         pr_info("vm.user_reserve_kbytes reset to %lu\n",
3304                                 sysctl_user_reserve_kbytes);
3305                 }
3306
3307                 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3308                         init_admin_reserve();
3309                         pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3310                                 sysctl_admin_reserve_kbytes);
3311                 }
3312                 break;
3313         default:
3314                 break;
3315         }
3316         return NOTIFY_OK;
3317 }
3318
3319 static struct notifier_block reserve_mem_nb = {
3320         .notifier_call = reserve_mem_notifier,
3321 };
3322
3323 static int __meminit init_reserve_notifier(void)
3324 {
3325         if (register_hotmemory_notifier(&reserve_mem_nb))
3326                 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3327
3328         return 0;
3329 }
3330 subsys_initcall(init_reserve_notifier);