Merge tag 'vfio-v4.17-rc1' of git://github.com/awilliam/linux-vfio
[sfrench/cifs-2.6.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                                 flush_dcache_page(new);
252                         }
253                 } else
254                         flush_dcache_page(new);
255
256 #ifdef CONFIG_HUGETLB_PAGE
257                 if (PageHuge(new)) {
258                         pte = pte_mkhuge(pte);
259                         pte = arch_make_huge_pte(pte, vma, new, 0);
260                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261                         if (PageAnon(new))
262                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
263                         else
264                                 page_dup_rmap(new, true);
265                 } else
266 #endif
267                 {
268                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270                         if (PageAnon(new))
271                                 page_add_anon_rmap(new, vma, pvmw.address, false);
272                         else
273                                 page_add_file_rmap(new, false);
274                 }
275                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276                         mlock_vma_page(new);
277
278                 /* No need to invalidate - it was non-present before */
279                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280         }
281
282         return true;
283 }
284
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291         struct rmap_walk_control rwc = {
292                 .rmap_one = remove_migration_pte,
293                 .arg = old,
294         };
295
296         if (locked)
297                 rmap_walk_locked(new, &rwc);
298         else
299                 rmap_walk(new, &rwc);
300 }
301
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308                                 spinlock_t *ptl)
309 {
310         pte_t pte;
311         swp_entry_t entry;
312         struct page *page;
313
314         spin_lock(ptl);
315         pte = *ptep;
316         if (!is_swap_pte(pte))
317                 goto out;
318
319         entry = pte_to_swp_entry(pte);
320         if (!is_migration_entry(entry))
321                 goto out;
322
323         page = migration_entry_to_page(entry);
324
325         /*
326          * Once radix-tree replacement of page migration started, page_count
327          * *must* be zero. And, we don't want to call wait_on_page_locked()
328          * against a page without get_page().
329          * So, we use get_page_unless_zero(), here. Even failed, page fault
330          * will occur again.
331          */
332         if (!get_page_unless_zero(page))
333                 goto out;
334         pte_unmap_unlock(ptep, ptl);
335         wait_on_page_locked(page);
336         put_page(page);
337         return;
338 out:
339         pte_unmap_unlock(ptep, ptl);
340 }
341
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343                                 unsigned long address)
344 {
345         spinlock_t *ptl = pte_lockptr(mm, pmd);
346         pte_t *ptep = pte_offset_map(pmd, address);
347         __migration_entry_wait(mm, ptep, ptl);
348 }
349
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351                 struct mm_struct *mm, pte_t *pte)
352 {
353         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354         __migration_entry_wait(mm, pte, ptl);
355 }
356
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360         spinlock_t *ptl;
361         struct page *page;
362
363         ptl = pmd_lock(mm, pmd);
364         if (!is_pmd_migration_entry(*pmd))
365                 goto unlock;
366         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367         if (!get_page_unless_zero(page))
368                 goto unlock;
369         spin_unlock(ptl);
370         wait_on_page_locked(page);
371         put_page(page);
372         return;
373 unlock:
374         spin_unlock(ptl);
375 }
376 #endif
377
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381                                                         enum migrate_mode mode)
382 {
383         struct buffer_head *bh = head;
384
385         /* Simple case, sync compaction */
386         if (mode != MIGRATE_ASYNC) {
387                 do {
388                         get_bh(bh);
389                         lock_buffer(bh);
390                         bh = bh->b_this_page;
391
392                 } while (bh != head);
393
394                 return true;
395         }
396
397         /* async case, we cannot block on lock_buffer so use trylock_buffer */
398         do {
399                 get_bh(bh);
400                 if (!trylock_buffer(bh)) {
401                         /*
402                          * We failed to lock the buffer and cannot stall in
403                          * async migration. Release the taken locks
404                          */
405                         struct buffer_head *failed_bh = bh;
406                         put_bh(failed_bh);
407                         bh = head;
408                         while (bh != failed_bh) {
409                                 unlock_buffer(bh);
410                                 put_bh(bh);
411                                 bh = bh->b_this_page;
412                         }
413                         return false;
414                 }
415
416                 bh = bh->b_this_page;
417         } while (bh != head);
418         return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422                                                         enum migrate_mode mode)
423 {
424         return true;
425 }
426 #endif /* CONFIG_BLOCK */
427
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437                 struct page *newpage, struct page *page,
438                 struct buffer_head *head, enum migrate_mode mode,
439                 int extra_count)
440 {
441         struct zone *oldzone, *newzone;
442         int dirty;
443         int expected_count = 1 + extra_count;
444         void **pslot;
445
446         /*
447          * Device public or private pages have an extra refcount as they are
448          * ZONE_DEVICE pages.
449          */
450         expected_count += is_device_private_page(page);
451         expected_count += is_device_public_page(page);
452
453         if (!mapping) {
454                 /* Anonymous page without mapping */
455                 if (page_count(page) != expected_count)
456                         return -EAGAIN;
457
458                 /* No turning back from here */
459                 newpage->index = page->index;
460                 newpage->mapping = page->mapping;
461                 if (PageSwapBacked(page))
462                         __SetPageSwapBacked(newpage);
463
464                 return MIGRATEPAGE_SUCCESS;
465         }
466
467         oldzone = page_zone(page);
468         newzone = page_zone(newpage);
469
470         spin_lock_irq(&mapping->tree_lock);
471
472         pslot = radix_tree_lookup_slot(&mapping->page_tree,
473                                         page_index(page));
474
475         expected_count += 1 + page_has_private(page);
476         if (page_count(page) != expected_count ||
477                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
478                 spin_unlock_irq(&mapping->tree_lock);
479                 return -EAGAIN;
480         }
481
482         if (!page_ref_freeze(page, expected_count)) {
483                 spin_unlock_irq(&mapping->tree_lock);
484                 return -EAGAIN;
485         }
486
487         /*
488          * In the async migration case of moving a page with buffers, lock the
489          * buffers using trylock before the mapping is moved. If the mapping
490          * was moved, we later failed to lock the buffers and could not move
491          * the mapping back due to an elevated page count, we would have to
492          * block waiting on other references to be dropped.
493          */
494         if (mode == MIGRATE_ASYNC && head &&
495                         !buffer_migrate_lock_buffers(head, mode)) {
496                 page_ref_unfreeze(page, expected_count);
497                 spin_unlock_irq(&mapping->tree_lock);
498                 return -EAGAIN;
499         }
500
501         /*
502          * Now we know that no one else is looking at the page:
503          * no turning back from here.
504          */
505         newpage->index = page->index;
506         newpage->mapping = page->mapping;
507         get_page(newpage);      /* add cache reference */
508         if (PageSwapBacked(page)) {
509                 __SetPageSwapBacked(newpage);
510                 if (PageSwapCache(page)) {
511                         SetPageSwapCache(newpage);
512                         set_page_private(newpage, page_private(page));
513                 }
514         } else {
515                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
516         }
517
518         /* Move dirty while page refs frozen and newpage not yet exposed */
519         dirty = PageDirty(page);
520         if (dirty) {
521                 ClearPageDirty(page);
522                 SetPageDirty(newpage);
523         }
524
525         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
526
527         /*
528          * Drop cache reference from old page by unfreezing
529          * to one less reference.
530          * We know this isn't the last reference.
531          */
532         page_ref_unfreeze(page, expected_count - 1);
533
534         spin_unlock(&mapping->tree_lock);
535         /* Leave irq disabled to prevent preemption while updating stats */
536
537         /*
538          * If moved to a different zone then also account
539          * the page for that zone. Other VM counters will be
540          * taken care of when we establish references to the
541          * new page and drop references to the old page.
542          *
543          * Note that anonymous pages are accounted for
544          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
545          * are mapped to swap space.
546          */
547         if (newzone != oldzone) {
548                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
549                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
550                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
551                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
552                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
553                 }
554                 if (dirty && mapping_cap_account_dirty(mapping)) {
555                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
556                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
557                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
558                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
559                 }
560         }
561         local_irq_enable();
562
563         return MIGRATEPAGE_SUCCESS;
564 }
565 EXPORT_SYMBOL(migrate_page_move_mapping);
566
567 /*
568  * The expected number of remaining references is the same as that
569  * of migrate_page_move_mapping().
570  */
571 int migrate_huge_page_move_mapping(struct address_space *mapping,
572                                    struct page *newpage, struct page *page)
573 {
574         int expected_count;
575         void **pslot;
576
577         spin_lock_irq(&mapping->tree_lock);
578
579         pslot = radix_tree_lookup_slot(&mapping->page_tree,
580                                         page_index(page));
581
582         expected_count = 2 + page_has_private(page);
583         if (page_count(page) != expected_count ||
584                 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
585                 spin_unlock_irq(&mapping->tree_lock);
586                 return -EAGAIN;
587         }
588
589         if (!page_ref_freeze(page, expected_count)) {
590                 spin_unlock_irq(&mapping->tree_lock);
591                 return -EAGAIN;
592         }
593
594         newpage->index = page->index;
595         newpage->mapping = page->mapping;
596
597         get_page(newpage);
598
599         radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
600
601         page_ref_unfreeze(page, expected_count - 1);
602
603         spin_unlock_irq(&mapping->tree_lock);
604
605         return MIGRATEPAGE_SUCCESS;
606 }
607
608 /*
609  * Gigantic pages are so large that we do not guarantee that page++ pointer
610  * arithmetic will work across the entire page.  We need something more
611  * specialized.
612  */
613 static void __copy_gigantic_page(struct page *dst, struct page *src,
614                                 int nr_pages)
615 {
616         int i;
617         struct page *dst_base = dst;
618         struct page *src_base = src;
619
620         for (i = 0; i < nr_pages; ) {
621                 cond_resched();
622                 copy_highpage(dst, src);
623
624                 i++;
625                 dst = mem_map_next(dst, dst_base, i);
626                 src = mem_map_next(src, src_base, i);
627         }
628 }
629
630 static void copy_huge_page(struct page *dst, struct page *src)
631 {
632         int i;
633         int nr_pages;
634
635         if (PageHuge(src)) {
636                 /* hugetlbfs page */
637                 struct hstate *h = page_hstate(src);
638                 nr_pages = pages_per_huge_page(h);
639
640                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
641                         __copy_gigantic_page(dst, src, nr_pages);
642                         return;
643                 }
644         } else {
645                 /* thp page */
646                 BUG_ON(!PageTransHuge(src));
647                 nr_pages = hpage_nr_pages(src);
648         }
649
650         for (i = 0; i < nr_pages; i++) {
651                 cond_resched();
652                 copy_highpage(dst + i, src + i);
653         }
654 }
655
656 /*
657  * Copy the page to its new location
658  */
659 void migrate_page_states(struct page *newpage, struct page *page)
660 {
661         int cpupid;
662
663         if (PageError(page))
664                 SetPageError(newpage);
665         if (PageReferenced(page))
666                 SetPageReferenced(newpage);
667         if (PageUptodate(page))
668                 SetPageUptodate(newpage);
669         if (TestClearPageActive(page)) {
670                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
671                 SetPageActive(newpage);
672         } else if (TestClearPageUnevictable(page))
673                 SetPageUnevictable(newpage);
674         if (PageChecked(page))
675                 SetPageChecked(newpage);
676         if (PageMappedToDisk(page))
677                 SetPageMappedToDisk(newpage);
678
679         /* Move dirty on pages not done by migrate_page_move_mapping() */
680         if (PageDirty(page))
681                 SetPageDirty(newpage);
682
683         if (page_is_young(page))
684                 set_page_young(newpage);
685         if (page_is_idle(page))
686                 set_page_idle(newpage);
687
688         /*
689          * Copy NUMA information to the new page, to prevent over-eager
690          * future migrations of this same page.
691          */
692         cpupid = page_cpupid_xchg_last(page, -1);
693         page_cpupid_xchg_last(newpage, cpupid);
694
695         ksm_migrate_page(newpage, page);
696         /*
697          * Please do not reorder this without considering how mm/ksm.c's
698          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699          */
700         if (PageSwapCache(page))
701                 ClearPageSwapCache(page);
702         ClearPagePrivate(page);
703         set_page_private(page, 0);
704
705         /*
706          * If any waiters have accumulated on the new page then
707          * wake them up.
708          */
709         if (PageWriteback(newpage))
710                 end_page_writeback(newpage);
711
712         copy_page_owner(page, newpage);
713
714         mem_cgroup_migrate(page, newpage);
715 }
716 EXPORT_SYMBOL(migrate_page_states);
717
718 void migrate_page_copy(struct page *newpage, struct page *page)
719 {
720         if (PageHuge(page) || PageTransHuge(page))
721                 copy_huge_page(newpage, page);
722         else
723                 copy_highpage(newpage, page);
724
725         migrate_page_states(newpage, page);
726 }
727 EXPORT_SYMBOL(migrate_page_copy);
728
729 /************************************************************
730  *                    Migration functions
731  ***********************************************************/
732
733 /*
734  * Common logic to directly migrate a single LRU page suitable for
735  * pages that do not use PagePrivate/PagePrivate2.
736  *
737  * Pages are locked upon entry and exit.
738  */
739 int migrate_page(struct address_space *mapping,
740                 struct page *newpage, struct page *page,
741                 enum migrate_mode mode)
742 {
743         int rc;
744
745         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
746
747         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
748
749         if (rc != MIGRATEPAGE_SUCCESS)
750                 return rc;
751
752         if (mode != MIGRATE_SYNC_NO_COPY)
753                 migrate_page_copy(newpage, page);
754         else
755                 migrate_page_states(newpage, page);
756         return MIGRATEPAGE_SUCCESS;
757 }
758 EXPORT_SYMBOL(migrate_page);
759
760 #ifdef CONFIG_BLOCK
761 /*
762  * Migration function for pages with buffers. This function can only be used
763  * if the underlying filesystem guarantees that no other references to "page"
764  * exist.
765  */
766 int buffer_migrate_page(struct address_space *mapping,
767                 struct page *newpage, struct page *page, enum migrate_mode mode)
768 {
769         struct buffer_head *bh, *head;
770         int rc;
771
772         if (!page_has_buffers(page))
773                 return migrate_page(mapping, newpage, page, mode);
774
775         head = page_buffers(page);
776
777         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
778
779         if (rc != MIGRATEPAGE_SUCCESS)
780                 return rc;
781
782         /*
783          * In the async case, migrate_page_move_mapping locked the buffers
784          * with an IRQ-safe spinlock held. In the sync case, the buffers
785          * need to be locked now
786          */
787         if (mode != MIGRATE_ASYNC)
788                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
789
790         ClearPagePrivate(page);
791         set_page_private(newpage, page_private(page));
792         set_page_private(page, 0);
793         put_page(page);
794         get_page(newpage);
795
796         bh = head;
797         do {
798                 set_bh_page(bh, newpage, bh_offset(bh));
799                 bh = bh->b_this_page;
800
801         } while (bh != head);
802
803         SetPagePrivate(newpage);
804
805         if (mode != MIGRATE_SYNC_NO_COPY)
806                 migrate_page_copy(newpage, page);
807         else
808                 migrate_page_states(newpage, page);
809
810         bh = head;
811         do {
812                 unlock_buffer(bh);
813                 put_bh(bh);
814                 bh = bh->b_this_page;
815
816         } while (bh != head);
817
818         return MIGRATEPAGE_SUCCESS;
819 }
820 EXPORT_SYMBOL(buffer_migrate_page);
821 #endif
822
823 /*
824  * Writeback a page to clean the dirty state
825  */
826 static int writeout(struct address_space *mapping, struct page *page)
827 {
828         struct writeback_control wbc = {
829                 .sync_mode = WB_SYNC_NONE,
830                 .nr_to_write = 1,
831                 .range_start = 0,
832                 .range_end = LLONG_MAX,
833                 .for_reclaim = 1
834         };
835         int rc;
836
837         if (!mapping->a_ops->writepage)
838                 /* No write method for the address space */
839                 return -EINVAL;
840
841         if (!clear_page_dirty_for_io(page))
842                 /* Someone else already triggered a write */
843                 return -EAGAIN;
844
845         /*
846          * A dirty page may imply that the underlying filesystem has
847          * the page on some queue. So the page must be clean for
848          * migration. Writeout may mean we loose the lock and the
849          * page state is no longer what we checked for earlier.
850          * At this point we know that the migration attempt cannot
851          * be successful.
852          */
853         remove_migration_ptes(page, page, false);
854
855         rc = mapping->a_ops->writepage(page, &wbc);
856
857         if (rc != AOP_WRITEPAGE_ACTIVATE)
858                 /* unlocked. Relock */
859                 lock_page(page);
860
861         return (rc < 0) ? -EIO : -EAGAIN;
862 }
863
864 /*
865  * Default handling if a filesystem does not provide a migration function.
866  */
867 static int fallback_migrate_page(struct address_space *mapping,
868         struct page *newpage, struct page *page, enum migrate_mode mode)
869 {
870         if (PageDirty(page)) {
871                 /* Only writeback pages in full synchronous migration */
872                 switch (mode) {
873                 case MIGRATE_SYNC:
874                 case MIGRATE_SYNC_NO_COPY:
875                         break;
876                 default:
877                         return -EBUSY;
878                 }
879                 return writeout(mapping, page);
880         }
881
882         /*
883          * Buffers may be managed in a filesystem specific way.
884          * We must have no buffers or drop them.
885          */
886         if (page_has_private(page) &&
887             !try_to_release_page(page, GFP_KERNEL))
888                 return -EAGAIN;
889
890         return migrate_page(mapping, newpage, page, mode);
891 }
892
893 /*
894  * Move a page to a newly allocated page
895  * The page is locked and all ptes have been successfully removed.
896  *
897  * The new page will have replaced the old page if this function
898  * is successful.
899  *
900  * Return value:
901  *   < 0 - error code
902  *  MIGRATEPAGE_SUCCESS - success
903  */
904 static int move_to_new_page(struct page *newpage, struct page *page,
905                                 enum migrate_mode mode)
906 {
907         struct address_space *mapping;
908         int rc = -EAGAIN;
909         bool is_lru = !__PageMovable(page);
910
911         VM_BUG_ON_PAGE(!PageLocked(page), page);
912         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
913
914         mapping = page_mapping(page);
915
916         if (likely(is_lru)) {
917                 if (!mapping)
918                         rc = migrate_page(mapping, newpage, page, mode);
919                 else if (mapping->a_ops->migratepage)
920                         /*
921                          * Most pages have a mapping and most filesystems
922                          * provide a migratepage callback. Anonymous pages
923                          * are part of swap space which also has its own
924                          * migratepage callback. This is the most common path
925                          * for page migration.
926                          */
927                         rc = mapping->a_ops->migratepage(mapping, newpage,
928                                                         page, mode);
929                 else
930                         rc = fallback_migrate_page(mapping, newpage,
931                                                         page, mode);
932         } else {
933                 /*
934                  * In case of non-lru page, it could be released after
935                  * isolation step. In that case, we shouldn't try migration.
936                  */
937                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
938                 if (!PageMovable(page)) {
939                         rc = MIGRATEPAGE_SUCCESS;
940                         __ClearPageIsolated(page);
941                         goto out;
942                 }
943
944                 rc = mapping->a_ops->migratepage(mapping, newpage,
945                                                 page, mode);
946                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947                         !PageIsolated(page));
948         }
949
950         /*
951          * When successful, old pagecache page->mapping must be cleared before
952          * page is freed; but stats require that PageAnon be left as PageAnon.
953          */
954         if (rc == MIGRATEPAGE_SUCCESS) {
955                 if (__PageMovable(page)) {
956                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
957
958                         /*
959                          * We clear PG_movable under page_lock so any compactor
960                          * cannot try to migrate this page.
961                          */
962                         __ClearPageIsolated(page);
963                 }
964
965                 /*
966                  * Anonymous and movable page->mapping will be cleard by
967                  * free_pages_prepare so don't reset it here for keeping
968                  * the type to work PageAnon, for example.
969                  */
970                 if (!PageMappingFlags(page))
971                         page->mapping = NULL;
972         }
973 out:
974         return rc;
975 }
976
977 static int __unmap_and_move(struct page *page, struct page *newpage,
978                                 int force, enum migrate_mode mode)
979 {
980         int rc = -EAGAIN;
981         int page_was_mapped = 0;
982         struct anon_vma *anon_vma = NULL;
983         bool is_lru = !__PageMovable(page);
984
985         if (!trylock_page(page)) {
986                 if (!force || mode == MIGRATE_ASYNC)
987                         goto out;
988
989                 /*
990                  * It's not safe for direct compaction to call lock_page.
991                  * For example, during page readahead pages are added locked
992                  * to the LRU. Later, when the IO completes the pages are
993                  * marked uptodate and unlocked. However, the queueing
994                  * could be merging multiple pages for one bio (e.g.
995                  * mpage_readpages). If an allocation happens for the
996                  * second or third page, the process can end up locking
997                  * the same page twice and deadlocking. Rather than
998                  * trying to be clever about what pages can be locked,
999                  * avoid the use of lock_page for direct compaction
1000                  * altogether.
1001                  */
1002                 if (current->flags & PF_MEMALLOC)
1003                         goto out;
1004
1005                 lock_page(page);
1006         }
1007
1008         if (PageWriteback(page)) {
1009                 /*
1010                  * Only in the case of a full synchronous migration is it
1011                  * necessary to wait for PageWriteback. In the async case,
1012                  * the retry loop is too short and in the sync-light case,
1013                  * the overhead of stalling is too much
1014                  */
1015                 switch (mode) {
1016                 case MIGRATE_SYNC:
1017                 case MIGRATE_SYNC_NO_COPY:
1018                         break;
1019                 default:
1020                         rc = -EBUSY;
1021                         goto out_unlock;
1022                 }
1023                 if (!force)
1024                         goto out_unlock;
1025                 wait_on_page_writeback(page);
1026         }
1027
1028         /*
1029          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1030          * we cannot notice that anon_vma is freed while we migrates a page.
1031          * This get_anon_vma() delays freeing anon_vma pointer until the end
1032          * of migration. File cache pages are no problem because of page_lock()
1033          * File Caches may use write_page() or lock_page() in migration, then,
1034          * just care Anon page here.
1035          *
1036          * Only page_get_anon_vma() understands the subtleties of
1037          * getting a hold on an anon_vma from outside one of its mms.
1038          * But if we cannot get anon_vma, then we won't need it anyway,
1039          * because that implies that the anon page is no longer mapped
1040          * (and cannot be remapped so long as we hold the page lock).
1041          */
1042         if (PageAnon(page) && !PageKsm(page))
1043                 anon_vma = page_get_anon_vma(page);
1044
1045         /*
1046          * Block others from accessing the new page when we get around to
1047          * establishing additional references. We are usually the only one
1048          * holding a reference to newpage at this point. We used to have a BUG
1049          * here if trylock_page(newpage) fails, but would like to allow for
1050          * cases where there might be a race with the previous use of newpage.
1051          * This is much like races on refcount of oldpage: just don't BUG().
1052          */
1053         if (unlikely(!trylock_page(newpage)))
1054                 goto out_unlock;
1055
1056         if (unlikely(!is_lru)) {
1057                 rc = move_to_new_page(newpage, page, mode);
1058                 goto out_unlock_both;
1059         }
1060
1061         /*
1062          * Corner case handling:
1063          * 1. When a new swap-cache page is read into, it is added to the LRU
1064          * and treated as swapcache but it has no rmap yet.
1065          * Calling try_to_unmap() against a page->mapping==NULL page will
1066          * trigger a BUG.  So handle it here.
1067          * 2. An orphaned page (see truncate_complete_page) might have
1068          * fs-private metadata. The page can be picked up due to memory
1069          * offlining.  Everywhere else except page reclaim, the page is
1070          * invisible to the vm, so the page can not be migrated.  So try to
1071          * free the metadata, so the page can be freed.
1072          */
1073         if (!page->mapping) {
1074                 VM_BUG_ON_PAGE(PageAnon(page), page);
1075                 if (page_has_private(page)) {
1076                         try_to_free_buffers(page);
1077                         goto out_unlock_both;
1078                 }
1079         } else if (page_mapped(page)) {
1080                 /* Establish migration ptes */
1081                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1082                                 page);
1083                 try_to_unmap(page,
1084                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1085                 page_was_mapped = 1;
1086         }
1087
1088         if (!page_mapped(page))
1089                 rc = move_to_new_page(newpage, page, mode);
1090
1091         if (page_was_mapped)
1092                 remove_migration_ptes(page,
1093                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1094
1095 out_unlock_both:
1096         unlock_page(newpage);
1097 out_unlock:
1098         /* Drop an anon_vma reference if we took one */
1099         if (anon_vma)
1100                 put_anon_vma(anon_vma);
1101         unlock_page(page);
1102 out:
1103         /*
1104          * If migration is successful, decrease refcount of the newpage
1105          * which will not free the page because new page owner increased
1106          * refcounter. As well, if it is LRU page, add the page to LRU
1107          * list in here.
1108          */
1109         if (rc == MIGRATEPAGE_SUCCESS) {
1110                 if (unlikely(__PageMovable(newpage)))
1111                         put_page(newpage);
1112                 else
1113                         putback_lru_page(newpage);
1114         }
1115
1116         return rc;
1117 }
1118
1119 /*
1120  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1121  * around it.
1122  */
1123 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1124 #define ICE_noinline noinline
1125 #else
1126 #define ICE_noinline
1127 #endif
1128
1129 /*
1130  * Obtain the lock on page, remove all ptes and migrate the page
1131  * to the newly allocated page in newpage.
1132  */
1133 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1134                                    free_page_t put_new_page,
1135                                    unsigned long private, struct page *page,
1136                                    int force, enum migrate_mode mode,
1137                                    enum migrate_reason reason)
1138 {
1139         int rc = MIGRATEPAGE_SUCCESS;
1140         int *result = NULL;
1141         struct page *newpage;
1142
1143         newpage = get_new_page(page, private, &result);
1144         if (!newpage)
1145                 return -ENOMEM;
1146
1147         if (page_count(page) == 1) {
1148                 /* page was freed from under us. So we are done. */
1149                 ClearPageActive(page);
1150                 ClearPageUnevictable(page);
1151                 if (unlikely(__PageMovable(page))) {
1152                         lock_page(page);
1153                         if (!PageMovable(page))
1154                                 __ClearPageIsolated(page);
1155                         unlock_page(page);
1156                 }
1157                 if (put_new_page)
1158                         put_new_page(newpage, private);
1159                 else
1160                         put_page(newpage);
1161                 goto out;
1162         }
1163
1164         if (unlikely(PageTransHuge(page) && !PageTransHuge(newpage))) {
1165                 lock_page(page);
1166                 rc = split_huge_page(page);
1167                 unlock_page(page);
1168                 if (rc)
1169                         goto out;
1170         }
1171
1172         rc = __unmap_and_move(page, newpage, force, mode);
1173         if (rc == MIGRATEPAGE_SUCCESS)
1174                 set_page_owner_migrate_reason(newpage, reason);
1175
1176 out:
1177         if (rc != -EAGAIN) {
1178                 /*
1179                  * A page that has been migrated has all references
1180                  * removed and will be freed. A page that has not been
1181                  * migrated will have kepts its references and be
1182                  * restored.
1183                  */
1184                 list_del(&page->lru);
1185
1186                 /*
1187                  * Compaction can migrate also non-LRU pages which are
1188                  * not accounted to NR_ISOLATED_*. They can be recognized
1189                  * as __PageMovable
1190                  */
1191                 if (likely(!__PageMovable(page)))
1192                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1193                                         page_is_file_cache(page), -hpage_nr_pages(page));
1194         }
1195
1196         /*
1197          * If migration is successful, releases reference grabbed during
1198          * isolation. Otherwise, restore the page to right list unless
1199          * we want to retry.
1200          */
1201         if (rc == MIGRATEPAGE_SUCCESS) {
1202                 put_page(page);
1203                 if (reason == MR_MEMORY_FAILURE) {
1204                         /*
1205                          * Set PG_HWPoison on just freed page
1206                          * intentionally. Although it's rather weird,
1207                          * it's how HWPoison flag works at the moment.
1208                          */
1209                         if (!test_set_page_hwpoison(page))
1210                                 num_poisoned_pages_inc();
1211                 }
1212         } else {
1213                 if (rc != -EAGAIN) {
1214                         if (likely(!__PageMovable(page))) {
1215                                 putback_lru_page(page);
1216                                 goto put_new;
1217                         }
1218
1219                         lock_page(page);
1220                         if (PageMovable(page))
1221                                 putback_movable_page(page);
1222                         else
1223                                 __ClearPageIsolated(page);
1224                         unlock_page(page);
1225                         put_page(page);
1226                 }
1227 put_new:
1228                 if (put_new_page)
1229                         put_new_page(newpage, private);
1230                 else
1231                         put_page(newpage);
1232         }
1233
1234         if (result) {
1235                 if (rc)
1236                         *result = rc;
1237                 else
1238                         *result = page_to_nid(newpage);
1239         }
1240         return rc;
1241 }
1242
1243 /*
1244  * Counterpart of unmap_and_move_page() for hugepage migration.
1245  *
1246  * This function doesn't wait the completion of hugepage I/O
1247  * because there is no race between I/O and migration for hugepage.
1248  * Note that currently hugepage I/O occurs only in direct I/O
1249  * where no lock is held and PG_writeback is irrelevant,
1250  * and writeback status of all subpages are counted in the reference
1251  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1252  * under direct I/O, the reference of the head page is 512 and a bit more.)
1253  * This means that when we try to migrate hugepage whose subpages are
1254  * doing direct I/O, some references remain after try_to_unmap() and
1255  * hugepage migration fails without data corruption.
1256  *
1257  * There is also no race when direct I/O is issued on the page under migration,
1258  * because then pte is replaced with migration swap entry and direct I/O code
1259  * will wait in the page fault for migration to complete.
1260  */
1261 static int unmap_and_move_huge_page(new_page_t get_new_page,
1262                                 free_page_t put_new_page, unsigned long private,
1263                                 struct page *hpage, int force,
1264                                 enum migrate_mode mode, int reason)
1265 {
1266         int rc = -EAGAIN;
1267         int *result = NULL;
1268         int page_was_mapped = 0;
1269         struct page *new_hpage;
1270         struct anon_vma *anon_vma = NULL;
1271
1272         /*
1273          * Movability of hugepages depends on architectures and hugepage size.
1274          * This check is necessary because some callers of hugepage migration
1275          * like soft offline and memory hotremove don't walk through page
1276          * tables or check whether the hugepage is pmd-based or not before
1277          * kicking migration.
1278          */
1279         if (!hugepage_migration_supported(page_hstate(hpage))) {
1280                 putback_active_hugepage(hpage);
1281                 return -ENOSYS;
1282         }
1283
1284         new_hpage = get_new_page(hpage, private, &result);
1285         if (!new_hpage)
1286                 return -ENOMEM;
1287
1288         if (!trylock_page(hpage)) {
1289                 if (!force)
1290                         goto out;
1291                 switch (mode) {
1292                 case MIGRATE_SYNC:
1293                 case MIGRATE_SYNC_NO_COPY:
1294                         break;
1295                 default:
1296                         goto out;
1297                 }
1298                 lock_page(hpage);
1299         }
1300
1301         if (PageAnon(hpage))
1302                 anon_vma = page_get_anon_vma(hpage);
1303
1304         if (unlikely(!trylock_page(new_hpage)))
1305                 goto put_anon;
1306
1307         if (page_mapped(hpage)) {
1308                 try_to_unmap(hpage,
1309                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1310                 page_was_mapped = 1;
1311         }
1312
1313         if (!page_mapped(hpage))
1314                 rc = move_to_new_page(new_hpage, hpage, mode);
1315
1316         if (page_was_mapped)
1317                 remove_migration_ptes(hpage,
1318                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1319
1320         unlock_page(new_hpage);
1321
1322 put_anon:
1323         if (anon_vma)
1324                 put_anon_vma(anon_vma);
1325
1326         if (rc == MIGRATEPAGE_SUCCESS) {
1327                 move_hugetlb_state(hpage, new_hpage, reason);
1328                 put_new_page = NULL;
1329         }
1330
1331         unlock_page(hpage);
1332 out:
1333         if (rc != -EAGAIN)
1334                 putback_active_hugepage(hpage);
1335         if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1336                 num_poisoned_pages_inc();
1337
1338         /*
1339          * If migration was not successful and there's a freeing callback, use
1340          * it.  Otherwise, put_page() will drop the reference grabbed during
1341          * isolation.
1342          */
1343         if (put_new_page)
1344                 put_new_page(new_hpage, private);
1345         else
1346                 putback_active_hugepage(new_hpage);
1347
1348         if (result) {
1349                 if (rc)
1350                         *result = rc;
1351                 else
1352                         *result = page_to_nid(new_hpage);
1353         }
1354         return rc;
1355 }
1356
1357 /*
1358  * migrate_pages - migrate the pages specified in a list, to the free pages
1359  *                 supplied as the target for the page migration
1360  *
1361  * @from:               The list of pages to be migrated.
1362  * @get_new_page:       The function used to allocate free pages to be used
1363  *                      as the target of the page migration.
1364  * @put_new_page:       The function used to free target pages if migration
1365  *                      fails, or NULL if no special handling is necessary.
1366  * @private:            Private data to be passed on to get_new_page()
1367  * @mode:               The migration mode that specifies the constraints for
1368  *                      page migration, if any.
1369  * @reason:             The reason for page migration.
1370  *
1371  * The function returns after 10 attempts or if no pages are movable any more
1372  * because the list has become empty or no retryable pages exist any more.
1373  * The caller should call putback_movable_pages() to return pages to the LRU
1374  * or free list only if ret != 0.
1375  *
1376  * Returns the number of pages that were not migrated, or an error code.
1377  */
1378 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1379                 free_page_t put_new_page, unsigned long private,
1380                 enum migrate_mode mode, int reason)
1381 {
1382         int retry = 1;
1383         int nr_failed = 0;
1384         int nr_succeeded = 0;
1385         int pass = 0;
1386         struct page *page;
1387         struct page *page2;
1388         int swapwrite = current->flags & PF_SWAPWRITE;
1389         int rc;
1390
1391         if (!swapwrite)
1392                 current->flags |= PF_SWAPWRITE;
1393
1394         for(pass = 0; pass < 10 && retry; pass++) {
1395                 retry = 0;
1396
1397                 list_for_each_entry_safe(page, page2, from, lru) {
1398                         cond_resched();
1399
1400                         if (PageHuge(page))
1401                                 rc = unmap_and_move_huge_page(get_new_page,
1402                                                 put_new_page, private, page,
1403                                                 pass > 2, mode, reason);
1404                         else
1405                                 rc = unmap_and_move(get_new_page, put_new_page,
1406                                                 private, page, pass > 2, mode,
1407                                                 reason);
1408
1409                         switch(rc) {
1410                         case -ENOMEM:
1411                                 nr_failed++;
1412                                 goto out;
1413                         case -EAGAIN:
1414                                 retry++;
1415                                 break;
1416                         case MIGRATEPAGE_SUCCESS:
1417                                 nr_succeeded++;
1418                                 break;
1419                         default:
1420                                 /*
1421                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1422                                  * unlike -EAGAIN case, the failed page is
1423                                  * removed from migration page list and not
1424                                  * retried in the next outer loop.
1425                                  */
1426                                 nr_failed++;
1427                                 break;
1428                         }
1429                 }
1430         }
1431         nr_failed += retry;
1432         rc = nr_failed;
1433 out:
1434         if (nr_succeeded)
1435                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1436         if (nr_failed)
1437                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1438         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1439
1440         if (!swapwrite)
1441                 current->flags &= ~PF_SWAPWRITE;
1442
1443         return rc;
1444 }
1445
1446 #ifdef CONFIG_NUMA
1447 /*
1448  * Move a list of individual pages
1449  */
1450 struct page_to_node {
1451         unsigned long addr;
1452         struct page *page;
1453         int node;
1454         int status;
1455 };
1456
1457 static struct page *new_page_node(struct page *p, unsigned long private,
1458                 int **result)
1459 {
1460         struct page_to_node *pm = (struct page_to_node *)private;
1461
1462         while (pm->node != MAX_NUMNODES && pm->page != p)
1463                 pm++;
1464
1465         if (pm->node == MAX_NUMNODES)
1466                 return NULL;
1467
1468         *result = &pm->status;
1469
1470         if (PageHuge(p))
1471                 return alloc_huge_page_node(page_hstate(compound_head(p)),
1472                                         pm->node);
1473         else if (thp_migration_supported() && PageTransHuge(p)) {
1474                 struct page *thp;
1475
1476                 thp = alloc_pages_node(pm->node,
1477                         (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_RECLAIM,
1478                         HPAGE_PMD_ORDER);
1479                 if (!thp)
1480                         return NULL;
1481                 prep_transhuge_page(thp);
1482                 return thp;
1483         } else
1484                 return __alloc_pages_node(pm->node,
1485                                 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1486 }
1487
1488 /*
1489  * Move a set of pages as indicated in the pm array. The addr
1490  * field must be set to the virtual address of the page to be moved
1491  * and the node number must contain a valid target node.
1492  * The pm array ends with node = MAX_NUMNODES.
1493  */
1494 static int do_move_page_to_node_array(struct mm_struct *mm,
1495                                       struct page_to_node *pm,
1496                                       int migrate_all)
1497 {
1498         int err;
1499         struct page_to_node *pp;
1500         LIST_HEAD(pagelist);
1501
1502         down_read(&mm->mmap_sem);
1503
1504         /*
1505          * Build a list of pages to migrate
1506          */
1507         for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1508                 struct vm_area_struct *vma;
1509                 struct page *page;
1510                 struct page *head;
1511                 unsigned int follflags;
1512
1513                 err = -EFAULT;
1514                 vma = find_vma(mm, pp->addr);
1515                 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1516                         goto set_status;
1517
1518                 /* FOLL_DUMP to ignore special (like zero) pages */
1519                 follflags = FOLL_GET | FOLL_DUMP;
1520                 if (!thp_migration_supported())
1521                         follflags |= FOLL_SPLIT;
1522                 page = follow_page(vma, pp->addr, follflags);
1523
1524                 err = PTR_ERR(page);
1525                 if (IS_ERR(page))
1526                         goto set_status;
1527
1528                 err = -ENOENT;
1529                 if (!page)
1530                         goto set_status;
1531
1532                 err = page_to_nid(page);
1533
1534                 if (err == pp->node)
1535                         /*
1536                          * Node already in the right place
1537                          */
1538                         goto put_and_set;
1539
1540                 err = -EACCES;
1541                 if (page_mapcount(page) > 1 &&
1542                                 !migrate_all)
1543                         goto put_and_set;
1544
1545                 if (PageHuge(page)) {
1546                         if (PageHead(page)) {
1547                                 isolate_huge_page(page, &pagelist);
1548                                 err = 0;
1549                                 pp->page = page;
1550                         }
1551                         goto put_and_set;
1552                 }
1553
1554                 pp->page = compound_head(page);
1555                 head = compound_head(page);
1556                 err = isolate_lru_page(head);
1557                 if (!err) {
1558                         list_add_tail(&head->lru, &pagelist);
1559                         mod_node_page_state(page_pgdat(head),
1560                                 NR_ISOLATED_ANON + page_is_file_cache(head),
1561                                 hpage_nr_pages(head));
1562                 }
1563 put_and_set:
1564                 /*
1565                  * Either remove the duplicate refcount from
1566                  * isolate_lru_page() or drop the page ref if it was
1567                  * not isolated.
1568                  */
1569                 put_page(page);
1570 set_status:
1571                 pp->status = err;
1572         }
1573
1574         err = 0;
1575         if (!list_empty(&pagelist)) {
1576                 err = migrate_pages(&pagelist, new_page_node, NULL,
1577                                 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1578                 if (err)
1579                         putback_movable_pages(&pagelist);
1580         }
1581
1582         up_read(&mm->mmap_sem);
1583         return err;
1584 }
1585
1586 /*
1587  * Migrate an array of page address onto an array of nodes and fill
1588  * the corresponding array of status.
1589  */
1590 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1591                          unsigned long nr_pages,
1592                          const void __user * __user *pages,
1593                          const int __user *nodes,
1594                          int __user *status, int flags)
1595 {
1596         struct page_to_node *pm;
1597         unsigned long chunk_nr_pages;
1598         unsigned long chunk_start;
1599         int err;
1600
1601         err = -ENOMEM;
1602         pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1603         if (!pm)
1604                 goto out;
1605
1606         migrate_prep();
1607
1608         /*
1609          * Store a chunk of page_to_node array in a page,
1610          * but keep the last one as a marker
1611          */
1612         chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1613
1614         for (chunk_start = 0;
1615              chunk_start < nr_pages;
1616              chunk_start += chunk_nr_pages) {
1617                 int j;
1618
1619                 if (chunk_start + chunk_nr_pages > nr_pages)
1620                         chunk_nr_pages = nr_pages - chunk_start;
1621
1622                 /* fill the chunk pm with addrs and nodes from user-space */
1623                 for (j = 0; j < chunk_nr_pages; j++) {
1624                         const void __user *p;
1625                         int node;
1626
1627                         err = -EFAULT;
1628                         if (get_user(p, pages + j + chunk_start))
1629                                 goto out_pm;
1630                         pm[j].addr = (unsigned long) p;
1631
1632                         if (get_user(node, nodes + j + chunk_start))
1633                                 goto out_pm;
1634
1635                         err = -ENODEV;
1636                         if (node < 0 || node >= MAX_NUMNODES)
1637                                 goto out_pm;
1638
1639                         if (!node_state(node, N_MEMORY))
1640                                 goto out_pm;
1641
1642                         err = -EACCES;
1643                         if (!node_isset(node, task_nodes))
1644                                 goto out_pm;
1645
1646                         pm[j].node = node;
1647                 }
1648
1649                 /* End marker for this chunk */
1650                 pm[chunk_nr_pages].node = MAX_NUMNODES;
1651
1652                 /* Migrate this chunk */
1653                 err = do_move_page_to_node_array(mm, pm,
1654                                                  flags & MPOL_MF_MOVE_ALL);
1655                 if (err < 0)
1656                         goto out_pm;
1657
1658                 /* Return status information */
1659                 for (j = 0; j < chunk_nr_pages; j++)
1660                         if (put_user(pm[j].status, status + j + chunk_start)) {
1661                                 err = -EFAULT;
1662                                 goto out_pm;
1663                         }
1664         }
1665         err = 0;
1666
1667 out_pm:
1668         free_page((unsigned long)pm);
1669 out:
1670         return err;
1671 }
1672
1673 /*
1674  * Determine the nodes of an array of pages and store it in an array of status.
1675  */
1676 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1677                                 const void __user **pages, int *status)
1678 {
1679         unsigned long i;
1680
1681         down_read(&mm->mmap_sem);
1682
1683         for (i = 0; i < nr_pages; i++) {
1684                 unsigned long addr = (unsigned long)(*pages);
1685                 struct vm_area_struct *vma;
1686                 struct page *page;
1687                 int err = -EFAULT;
1688
1689                 vma = find_vma(mm, addr);
1690                 if (!vma || addr < vma->vm_start)
1691                         goto set_status;
1692
1693                 /* FOLL_DUMP to ignore special (like zero) pages */
1694                 page = follow_page(vma, addr, FOLL_DUMP);
1695
1696                 err = PTR_ERR(page);
1697                 if (IS_ERR(page))
1698                         goto set_status;
1699
1700                 err = page ? page_to_nid(page) : -ENOENT;
1701 set_status:
1702                 *status = err;
1703
1704                 pages++;
1705                 status++;
1706         }
1707
1708         up_read(&mm->mmap_sem);
1709 }
1710
1711 /*
1712  * Determine the nodes of a user array of pages and store it in
1713  * a user array of status.
1714  */
1715 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1716                          const void __user * __user *pages,
1717                          int __user *status)
1718 {
1719 #define DO_PAGES_STAT_CHUNK_NR 16
1720         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1721         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1722
1723         while (nr_pages) {
1724                 unsigned long chunk_nr;
1725
1726                 chunk_nr = nr_pages;
1727                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1728                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1729
1730                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1731                         break;
1732
1733                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1734
1735                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1736                         break;
1737
1738                 pages += chunk_nr;
1739                 status += chunk_nr;
1740                 nr_pages -= chunk_nr;
1741         }
1742         return nr_pages ? -EFAULT : 0;
1743 }
1744
1745 /*
1746  * Move a list of pages in the address space of the currently executing
1747  * process.
1748  */
1749 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1750                              const void __user * __user *pages,
1751                              const int __user *nodes,
1752                              int __user *status, int flags)
1753 {
1754         struct task_struct *task;
1755         struct mm_struct *mm;
1756         int err;
1757         nodemask_t task_nodes;
1758
1759         /* Check flags */
1760         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1761                 return -EINVAL;
1762
1763         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1764                 return -EPERM;
1765
1766         /* Find the mm_struct */
1767         rcu_read_lock();
1768         task = pid ? find_task_by_vpid(pid) : current;
1769         if (!task) {
1770                 rcu_read_unlock();
1771                 return -ESRCH;
1772         }
1773         get_task_struct(task);
1774
1775         /*
1776          * Check if this process has the right to modify the specified
1777          * process. Use the regular "ptrace_may_access()" checks.
1778          */
1779         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1780                 rcu_read_unlock();
1781                 err = -EPERM;
1782                 goto out;
1783         }
1784         rcu_read_unlock();
1785
1786         err = security_task_movememory(task);
1787         if (err)
1788                 goto out;
1789
1790         task_nodes = cpuset_mems_allowed(task);
1791         mm = get_task_mm(task);
1792         put_task_struct(task);
1793
1794         if (!mm)
1795                 return -EINVAL;
1796
1797         if (nodes)
1798                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1799                                     nodes, status, flags);
1800         else
1801                 err = do_pages_stat(mm, nr_pages, pages, status);
1802
1803         mmput(mm);
1804         return err;
1805
1806 out:
1807         put_task_struct(task);
1808         return err;
1809 }
1810
1811 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1812                 const void __user * __user *, pages,
1813                 const int __user *, nodes,
1814                 int __user *, status, int, flags)
1815 {
1816         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1817 }
1818
1819 #ifdef CONFIG_COMPAT
1820 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1821                        compat_uptr_t __user *, pages32,
1822                        const int __user *, nodes,
1823                        int __user *, status,
1824                        int, flags)
1825 {
1826         const void __user * __user *pages;
1827         int i;
1828
1829         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1830         for (i = 0; i < nr_pages; i++) {
1831                 compat_uptr_t p;
1832
1833                 if (get_user(p, pages32 + i) ||
1834                         put_user(compat_ptr(p), pages + i))
1835                         return -EFAULT;
1836         }
1837         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1838 }
1839 #endif /* CONFIG_COMPAT */
1840
1841 #ifdef CONFIG_NUMA_BALANCING
1842 /*
1843  * Returns true if this is a safe migration target node for misplaced NUMA
1844  * pages. Currently it only checks the watermarks which crude
1845  */
1846 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1847                                    unsigned long nr_migrate_pages)
1848 {
1849         int z;
1850
1851         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1852                 struct zone *zone = pgdat->node_zones + z;
1853
1854                 if (!populated_zone(zone))
1855                         continue;
1856
1857                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1858                 if (!zone_watermark_ok(zone, 0,
1859                                        high_wmark_pages(zone) +
1860                                        nr_migrate_pages,
1861                                        0, 0))
1862                         continue;
1863                 return true;
1864         }
1865         return false;
1866 }
1867
1868 static struct page *alloc_misplaced_dst_page(struct page *page,
1869                                            unsigned long data,
1870                                            int **result)
1871 {
1872         int nid = (int) data;
1873         struct page *newpage;
1874
1875         newpage = __alloc_pages_node(nid,
1876                                          (GFP_HIGHUSER_MOVABLE |
1877                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1878                                           __GFP_NORETRY | __GFP_NOWARN) &
1879                                          ~__GFP_RECLAIM, 0);
1880
1881         return newpage;
1882 }
1883
1884 /*
1885  * page migration rate limiting control.
1886  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1887  * window of time. Default here says do not migrate more than 1280M per second.
1888  */
1889 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1890 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1891
1892 /* Returns true if the node is migrate rate-limited after the update */
1893 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1894                                         unsigned long nr_pages)
1895 {
1896         /*
1897          * Rate-limit the amount of data that is being migrated to a node.
1898          * Optimal placement is no good if the memory bus is saturated and
1899          * all the time is being spent migrating!
1900          */
1901         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1902                 spin_lock(&pgdat->numabalancing_migrate_lock);
1903                 pgdat->numabalancing_migrate_nr_pages = 0;
1904                 pgdat->numabalancing_migrate_next_window = jiffies +
1905                         msecs_to_jiffies(migrate_interval_millisecs);
1906                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1907         }
1908         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1909                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1910                                                                 nr_pages);
1911                 return true;
1912         }
1913
1914         /*
1915          * This is an unlocked non-atomic update so errors are possible.
1916          * The consequences are failing to migrate when we potentiall should
1917          * have which is not severe enough to warrant locking. If it is ever
1918          * a problem, it can be converted to a per-cpu counter.
1919          */
1920         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1921         return false;
1922 }
1923
1924 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1925 {
1926         int page_lru;
1927
1928         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1929
1930         /* Avoid migrating to a node that is nearly full */
1931         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1932                 return 0;
1933
1934         if (isolate_lru_page(page))
1935                 return 0;
1936
1937         /*
1938          * migrate_misplaced_transhuge_page() skips page migration's usual
1939          * check on page_count(), so we must do it here, now that the page
1940          * has been isolated: a GUP pin, or any other pin, prevents migration.
1941          * The expected page count is 3: 1 for page's mapcount and 1 for the
1942          * caller's pin and 1 for the reference taken by isolate_lru_page().
1943          */
1944         if (PageTransHuge(page) && page_count(page) != 3) {
1945                 putback_lru_page(page);
1946                 return 0;
1947         }
1948
1949         page_lru = page_is_file_cache(page);
1950         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1951                                 hpage_nr_pages(page));
1952
1953         /*
1954          * Isolating the page has taken another reference, so the
1955          * caller's reference can be safely dropped without the page
1956          * disappearing underneath us during migration.
1957          */
1958         put_page(page);
1959         return 1;
1960 }
1961
1962 bool pmd_trans_migrating(pmd_t pmd)
1963 {
1964         struct page *page = pmd_page(pmd);
1965         return PageLocked(page);
1966 }
1967
1968 /*
1969  * Attempt to migrate a misplaced page to the specified destination
1970  * node. Caller is expected to have an elevated reference count on
1971  * the page that will be dropped by this function before returning.
1972  */
1973 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1974                            int node)
1975 {
1976         pg_data_t *pgdat = NODE_DATA(node);
1977         int isolated;
1978         int nr_remaining;
1979         LIST_HEAD(migratepages);
1980
1981         /*
1982          * Don't migrate file pages that are mapped in multiple processes
1983          * with execute permissions as they are probably shared libraries.
1984          */
1985         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1986             (vma->vm_flags & VM_EXEC))
1987                 goto out;
1988
1989         /*
1990          * Rate-limit the amount of data that is being migrated to a node.
1991          * Optimal placement is no good if the memory bus is saturated and
1992          * all the time is being spent migrating!
1993          */
1994         if (numamigrate_update_ratelimit(pgdat, 1))
1995                 goto out;
1996
1997         isolated = numamigrate_isolate_page(pgdat, page);
1998         if (!isolated)
1999                 goto out;
2000
2001         list_add(&page->lru, &migratepages);
2002         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
2003                                      NULL, node, MIGRATE_ASYNC,
2004                                      MR_NUMA_MISPLACED);
2005         if (nr_remaining) {
2006                 if (!list_empty(&migratepages)) {
2007                         list_del(&page->lru);
2008                         dec_node_page_state(page, NR_ISOLATED_ANON +
2009                                         page_is_file_cache(page));
2010                         putback_lru_page(page);
2011                 }
2012                 isolated = 0;
2013         } else
2014                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
2015         BUG_ON(!list_empty(&migratepages));
2016         return isolated;
2017
2018 out:
2019         put_page(page);
2020         return 0;
2021 }
2022 #endif /* CONFIG_NUMA_BALANCING */
2023
2024 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2025 /*
2026  * Migrates a THP to a given target node. page must be locked and is unlocked
2027  * before returning.
2028  */
2029 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2030                                 struct vm_area_struct *vma,
2031                                 pmd_t *pmd, pmd_t entry,
2032                                 unsigned long address,
2033                                 struct page *page, int node)
2034 {
2035         spinlock_t *ptl;
2036         pg_data_t *pgdat = NODE_DATA(node);
2037         int isolated = 0;
2038         struct page *new_page = NULL;
2039         int page_lru = page_is_file_cache(page);
2040         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2041         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2042
2043         /*
2044          * Rate-limit the amount of data that is being migrated to a node.
2045          * Optimal placement is no good if the memory bus is saturated and
2046          * all the time is being spent migrating!
2047          */
2048         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2049                 goto out_dropref;
2050
2051         new_page = alloc_pages_node(node,
2052                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2053                 HPAGE_PMD_ORDER);
2054         if (!new_page)
2055                 goto out_fail;
2056         prep_transhuge_page(new_page);
2057
2058         isolated = numamigrate_isolate_page(pgdat, page);
2059         if (!isolated) {
2060                 put_page(new_page);
2061                 goto out_fail;
2062         }
2063
2064         /* Prepare a page as a migration target */
2065         __SetPageLocked(new_page);
2066         if (PageSwapBacked(page))
2067                 __SetPageSwapBacked(new_page);
2068
2069         /* anon mapping, we can simply copy page->mapping to the new page: */
2070         new_page->mapping = page->mapping;
2071         new_page->index = page->index;
2072         migrate_page_copy(new_page, page);
2073         WARN_ON(PageLRU(new_page));
2074
2075         /* Recheck the target PMD */
2076         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2077         ptl = pmd_lock(mm, pmd);
2078         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2079                 spin_unlock(ptl);
2080                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2081
2082                 /* Reverse changes made by migrate_page_copy() */
2083                 if (TestClearPageActive(new_page))
2084                         SetPageActive(page);
2085                 if (TestClearPageUnevictable(new_page))
2086                         SetPageUnevictable(page);
2087
2088                 unlock_page(new_page);
2089                 put_page(new_page);             /* Free it */
2090
2091                 /* Retake the callers reference and putback on LRU */
2092                 get_page(page);
2093                 putback_lru_page(page);
2094                 mod_node_page_state(page_pgdat(page),
2095                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2096
2097                 goto out_unlock;
2098         }
2099
2100         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2101         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2102
2103         /*
2104          * Clear the old entry under pagetable lock and establish the new PTE.
2105          * Any parallel GUP will either observe the old page blocking on the
2106          * page lock, block on the page table lock or observe the new page.
2107          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2108          * guarantee the copy is visible before the pagetable update.
2109          */
2110         flush_cache_range(vma, mmun_start, mmun_end);
2111         page_add_anon_rmap(new_page, vma, mmun_start, true);
2112         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2113         set_pmd_at(mm, mmun_start, pmd, entry);
2114         update_mmu_cache_pmd(vma, address, &entry);
2115
2116         page_ref_unfreeze(page, 2);
2117         mlock_migrate_page(new_page, page);
2118         page_remove_rmap(page, true);
2119         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2120
2121         spin_unlock(ptl);
2122         /*
2123          * No need to double call mmu_notifier->invalidate_range() callback as
2124          * the above pmdp_huge_clear_flush_notify() did already call it.
2125          */
2126         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2127
2128         /* Take an "isolate" reference and put new page on the LRU. */
2129         get_page(new_page);
2130         putback_lru_page(new_page);
2131
2132         unlock_page(new_page);
2133         unlock_page(page);
2134         put_page(page);                 /* Drop the rmap reference */
2135         put_page(page);                 /* Drop the LRU isolation reference */
2136
2137         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2138         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2139
2140         mod_node_page_state(page_pgdat(page),
2141                         NR_ISOLATED_ANON + page_lru,
2142                         -HPAGE_PMD_NR);
2143         return isolated;
2144
2145 out_fail:
2146         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2147 out_dropref:
2148         ptl = pmd_lock(mm, pmd);
2149         if (pmd_same(*pmd, entry)) {
2150                 entry = pmd_modify(entry, vma->vm_page_prot);
2151                 set_pmd_at(mm, mmun_start, pmd, entry);
2152                 update_mmu_cache_pmd(vma, address, &entry);
2153         }
2154         spin_unlock(ptl);
2155
2156 out_unlock:
2157         unlock_page(page);
2158         put_page(page);
2159         return 0;
2160 }
2161 #endif /* CONFIG_NUMA_BALANCING */
2162
2163 #endif /* CONFIG_NUMA */
2164
2165 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2166 struct migrate_vma {
2167         struct vm_area_struct   *vma;
2168         unsigned long           *dst;
2169         unsigned long           *src;
2170         unsigned long           cpages;
2171         unsigned long           npages;
2172         unsigned long           start;
2173         unsigned long           end;
2174 };
2175
2176 static int migrate_vma_collect_hole(unsigned long start,
2177                                     unsigned long end,
2178                                     struct mm_walk *walk)
2179 {
2180         struct migrate_vma *migrate = walk->private;
2181         unsigned long addr;
2182
2183         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2184                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2185                 migrate->dst[migrate->npages] = 0;
2186                 migrate->npages++;
2187                 migrate->cpages++;
2188         }
2189
2190         return 0;
2191 }
2192
2193 static int migrate_vma_collect_skip(unsigned long start,
2194                                     unsigned long end,
2195                                     struct mm_walk *walk)
2196 {
2197         struct migrate_vma *migrate = walk->private;
2198         unsigned long addr;
2199
2200         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2201                 migrate->dst[migrate->npages] = 0;
2202                 migrate->src[migrate->npages++] = 0;
2203         }
2204
2205         return 0;
2206 }
2207
2208 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2209                                    unsigned long start,
2210                                    unsigned long end,
2211                                    struct mm_walk *walk)
2212 {
2213         struct migrate_vma *migrate = walk->private;
2214         struct vm_area_struct *vma = walk->vma;
2215         struct mm_struct *mm = vma->vm_mm;
2216         unsigned long addr = start, unmapped = 0;
2217         spinlock_t *ptl;
2218         pte_t *ptep;
2219
2220 again:
2221         if (pmd_none(*pmdp))
2222                 return migrate_vma_collect_hole(start, end, walk);
2223
2224         if (pmd_trans_huge(*pmdp)) {
2225                 struct page *page;
2226
2227                 ptl = pmd_lock(mm, pmdp);
2228                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2229                         spin_unlock(ptl);
2230                         goto again;
2231                 }
2232
2233                 page = pmd_page(*pmdp);
2234                 if (is_huge_zero_page(page)) {
2235                         spin_unlock(ptl);
2236                         split_huge_pmd(vma, pmdp, addr);
2237                         if (pmd_trans_unstable(pmdp))
2238                                 return migrate_vma_collect_skip(start, end,
2239                                                                 walk);
2240                 } else {
2241                         int ret;
2242
2243                         get_page(page);
2244                         spin_unlock(ptl);
2245                         if (unlikely(!trylock_page(page)))
2246                                 return migrate_vma_collect_skip(start, end,
2247                                                                 walk);
2248                         ret = split_huge_page(page);
2249                         unlock_page(page);
2250                         put_page(page);
2251                         if (ret)
2252                                 return migrate_vma_collect_skip(start, end,
2253                                                                 walk);
2254                         if (pmd_none(*pmdp))
2255                                 return migrate_vma_collect_hole(start, end,
2256                                                                 walk);
2257                 }
2258         }
2259
2260         if (unlikely(pmd_bad(*pmdp)))
2261                 return migrate_vma_collect_skip(start, end, walk);
2262
2263         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2264         arch_enter_lazy_mmu_mode();
2265
2266         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2267                 unsigned long mpfn, pfn;
2268                 struct page *page;
2269                 swp_entry_t entry;
2270                 pte_t pte;
2271
2272                 pte = *ptep;
2273                 pfn = pte_pfn(pte);
2274
2275                 if (pte_none(pte)) {
2276                         mpfn = MIGRATE_PFN_MIGRATE;
2277                         migrate->cpages++;
2278                         pfn = 0;
2279                         goto next;
2280                 }
2281
2282                 if (!pte_present(pte)) {
2283                         mpfn = pfn = 0;
2284
2285                         /*
2286                          * Only care about unaddressable device page special
2287                          * page table entry. Other special swap entries are not
2288                          * migratable, and we ignore regular swapped page.
2289                          */
2290                         entry = pte_to_swp_entry(pte);
2291                         if (!is_device_private_entry(entry))
2292                                 goto next;
2293
2294                         page = device_private_entry_to_page(entry);
2295                         mpfn = migrate_pfn(page_to_pfn(page))|
2296                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2297                         if (is_write_device_private_entry(entry))
2298                                 mpfn |= MIGRATE_PFN_WRITE;
2299                 } else {
2300                         if (is_zero_pfn(pfn)) {
2301                                 mpfn = MIGRATE_PFN_MIGRATE;
2302                                 migrate->cpages++;
2303                                 pfn = 0;
2304                                 goto next;
2305                         }
2306                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2307                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2308                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2309                 }
2310
2311                 /* FIXME support THP */
2312                 if (!page || !page->mapping || PageTransCompound(page)) {
2313                         mpfn = pfn = 0;
2314                         goto next;
2315                 }
2316                 pfn = page_to_pfn(page);
2317
2318                 /*
2319                  * By getting a reference on the page we pin it and that blocks
2320                  * any kind of migration. Side effect is that it "freezes" the
2321                  * pte.
2322                  *
2323                  * We drop this reference after isolating the page from the lru
2324                  * for non device page (device page are not on the lru and thus
2325                  * can't be dropped from it).
2326                  */
2327                 get_page(page);
2328                 migrate->cpages++;
2329
2330                 /*
2331                  * Optimize for the common case where page is only mapped once
2332                  * in one process. If we can lock the page, then we can safely
2333                  * set up a special migration page table entry now.
2334                  */
2335                 if (trylock_page(page)) {
2336                         pte_t swp_pte;
2337
2338                         mpfn |= MIGRATE_PFN_LOCKED;
2339                         ptep_get_and_clear(mm, addr, ptep);
2340
2341                         /* Setup special migration page table entry */
2342                         entry = make_migration_entry(page, pte_write(pte));
2343                         swp_pte = swp_entry_to_pte(entry);
2344                         if (pte_soft_dirty(pte))
2345                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2346                         set_pte_at(mm, addr, ptep, swp_pte);
2347
2348                         /*
2349                          * This is like regular unmap: we remove the rmap and
2350                          * drop page refcount. Page won't be freed, as we took
2351                          * a reference just above.
2352                          */
2353                         page_remove_rmap(page, false);
2354                         put_page(page);
2355
2356                         if (pte_present(pte))
2357                                 unmapped++;
2358                 }
2359
2360 next:
2361                 migrate->dst[migrate->npages] = 0;
2362                 migrate->src[migrate->npages++] = mpfn;
2363         }
2364         arch_leave_lazy_mmu_mode();
2365         pte_unmap_unlock(ptep - 1, ptl);
2366
2367         /* Only flush the TLB if we actually modified any entries */
2368         if (unmapped)
2369                 flush_tlb_range(walk->vma, start, end);
2370
2371         return 0;
2372 }
2373
2374 /*
2375  * migrate_vma_collect() - collect pages over a range of virtual addresses
2376  * @migrate: migrate struct containing all migration information
2377  *
2378  * This will walk the CPU page table. For each virtual address backed by a
2379  * valid page, it updates the src array and takes a reference on the page, in
2380  * order to pin the page until we lock it and unmap it.
2381  */
2382 static void migrate_vma_collect(struct migrate_vma *migrate)
2383 {
2384         struct mm_walk mm_walk;
2385
2386         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2387         mm_walk.pte_entry = NULL;
2388         mm_walk.pte_hole = migrate_vma_collect_hole;
2389         mm_walk.hugetlb_entry = NULL;
2390         mm_walk.test_walk = NULL;
2391         mm_walk.vma = migrate->vma;
2392         mm_walk.mm = migrate->vma->vm_mm;
2393         mm_walk.private = migrate;
2394
2395         mmu_notifier_invalidate_range_start(mm_walk.mm,
2396                                             migrate->start,
2397                                             migrate->end);
2398         walk_page_range(migrate->start, migrate->end, &mm_walk);
2399         mmu_notifier_invalidate_range_end(mm_walk.mm,
2400                                           migrate->start,
2401                                           migrate->end);
2402
2403         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2404 }
2405
2406 /*
2407  * migrate_vma_check_page() - check if page is pinned or not
2408  * @page: struct page to check
2409  *
2410  * Pinned pages cannot be migrated. This is the same test as in
2411  * migrate_page_move_mapping(), except that here we allow migration of a
2412  * ZONE_DEVICE page.
2413  */
2414 static bool migrate_vma_check_page(struct page *page)
2415 {
2416         /*
2417          * One extra ref because caller holds an extra reference, either from
2418          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2419          * a device page.
2420          */
2421         int extra = 1;
2422
2423         /*
2424          * FIXME support THP (transparent huge page), it is bit more complex to
2425          * check them than regular pages, because they can be mapped with a pmd
2426          * or with a pte (split pte mapping).
2427          */
2428         if (PageCompound(page))
2429                 return false;
2430
2431         /* Page from ZONE_DEVICE have one extra reference */
2432         if (is_zone_device_page(page)) {
2433                 /*
2434                  * Private page can never be pin as they have no valid pte and
2435                  * GUP will fail for those. Yet if there is a pending migration
2436                  * a thread might try to wait on the pte migration entry and
2437                  * will bump the page reference count. Sadly there is no way to
2438                  * differentiate a regular pin from migration wait. Hence to
2439                  * avoid 2 racing thread trying to migrate back to CPU to enter
2440                  * infinite loop (one stoping migration because the other is
2441                  * waiting on pte migration entry). We always return true here.
2442                  *
2443                  * FIXME proper solution is to rework migration_entry_wait() so
2444                  * it does not need to take a reference on page.
2445                  */
2446                 if (is_device_private_page(page))
2447                         return true;
2448
2449                 /*
2450                  * Only allow device public page to be migrated and account for
2451                  * the extra reference count imply by ZONE_DEVICE pages.
2452                  */
2453                 if (!is_device_public_page(page))
2454                         return false;
2455                 extra++;
2456         }
2457
2458         /* For file back page */
2459         if (page_mapping(page))
2460                 extra += 1 + page_has_private(page);
2461
2462         if ((page_count(page) - extra) > page_mapcount(page))
2463                 return false;
2464
2465         return true;
2466 }
2467
2468 /*
2469  * migrate_vma_prepare() - lock pages and isolate them from the lru
2470  * @migrate: migrate struct containing all migration information
2471  *
2472  * This locks pages that have been collected by migrate_vma_collect(). Once each
2473  * page is locked it is isolated from the lru (for non-device pages). Finally,
2474  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2475  * migrated by concurrent kernel threads.
2476  */
2477 static void migrate_vma_prepare(struct migrate_vma *migrate)
2478 {
2479         const unsigned long npages = migrate->npages;
2480         const unsigned long start = migrate->start;
2481         unsigned long addr, i, restore = 0;
2482         bool allow_drain = true;
2483
2484         lru_add_drain();
2485
2486         for (i = 0; (i < npages) && migrate->cpages; i++) {
2487                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2488                 bool remap = true;
2489
2490                 if (!page)
2491                         continue;
2492
2493                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2494                         /*
2495                          * Because we are migrating several pages there can be
2496                          * a deadlock between 2 concurrent migration where each
2497                          * are waiting on each other page lock.
2498                          *
2499                          * Make migrate_vma() a best effort thing and backoff
2500                          * for any page we can not lock right away.
2501                          */
2502                         if (!trylock_page(page)) {
2503                                 migrate->src[i] = 0;
2504                                 migrate->cpages--;
2505                                 put_page(page);
2506                                 continue;
2507                         }
2508                         remap = false;
2509                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2510                 }
2511
2512                 /* ZONE_DEVICE pages are not on LRU */
2513                 if (!is_zone_device_page(page)) {
2514                         if (!PageLRU(page) && allow_drain) {
2515                                 /* Drain CPU's pagevec */
2516                                 lru_add_drain_all();
2517                                 allow_drain = false;
2518                         }
2519
2520                         if (isolate_lru_page(page)) {
2521                                 if (remap) {
2522                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2523                                         migrate->cpages--;
2524                                         restore++;
2525                                 } else {
2526                                         migrate->src[i] = 0;
2527                                         unlock_page(page);
2528                                         migrate->cpages--;
2529                                         put_page(page);
2530                                 }
2531                                 continue;
2532                         }
2533
2534                         /* Drop the reference we took in collect */
2535                         put_page(page);
2536                 }
2537
2538                 if (!migrate_vma_check_page(page)) {
2539                         if (remap) {
2540                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2541                                 migrate->cpages--;
2542                                 restore++;
2543
2544                                 if (!is_zone_device_page(page)) {
2545                                         get_page(page);
2546                                         putback_lru_page(page);
2547                                 }
2548                         } else {
2549                                 migrate->src[i] = 0;
2550                                 unlock_page(page);
2551                                 migrate->cpages--;
2552
2553                                 if (!is_zone_device_page(page))
2554                                         putback_lru_page(page);
2555                                 else
2556                                         put_page(page);
2557                         }
2558                 }
2559         }
2560
2561         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2562                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563
2564                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565                         continue;
2566
2567                 remove_migration_pte(page, migrate->vma, addr, page);
2568
2569                 migrate->src[i] = 0;
2570                 unlock_page(page);
2571                 put_page(page);
2572                 restore--;
2573         }
2574 }
2575
2576 /*
2577  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2578  * @migrate: migrate struct containing all migration information
2579  *
2580  * Replace page mapping (CPU page table pte) with a special migration pte entry
2581  * and check again if it has been pinned. Pinned pages are restored because we
2582  * cannot migrate them.
2583  *
2584  * This is the last step before we call the device driver callback to allocate
2585  * destination memory and copy contents of original page over to new page.
2586  */
2587 static void migrate_vma_unmap(struct migrate_vma *migrate)
2588 {
2589         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2590         const unsigned long npages = migrate->npages;
2591         const unsigned long start = migrate->start;
2592         unsigned long addr, i, restore = 0;
2593
2594         for (i = 0; i < npages; i++) {
2595                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2596
2597                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2598                         continue;
2599
2600                 if (page_mapped(page)) {
2601                         try_to_unmap(page, flags);
2602                         if (page_mapped(page))
2603                                 goto restore;
2604                 }
2605
2606                 if (migrate_vma_check_page(page))
2607                         continue;
2608
2609 restore:
2610                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2611                 migrate->cpages--;
2612                 restore++;
2613         }
2614
2615         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2616                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2617
2618                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2619                         continue;
2620
2621                 remove_migration_ptes(page, page, false);
2622
2623                 migrate->src[i] = 0;
2624                 unlock_page(page);
2625                 restore--;
2626
2627                 if (is_zone_device_page(page))
2628                         put_page(page);
2629                 else
2630                         putback_lru_page(page);
2631         }
2632 }
2633
2634 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2635                                     unsigned long addr,
2636                                     struct page *page,
2637                                     unsigned long *src,
2638                                     unsigned long *dst)
2639 {
2640         struct vm_area_struct *vma = migrate->vma;
2641         struct mm_struct *mm = vma->vm_mm;
2642         struct mem_cgroup *memcg;
2643         bool flush = false;
2644         spinlock_t *ptl;
2645         pte_t entry;
2646         pgd_t *pgdp;
2647         p4d_t *p4dp;
2648         pud_t *pudp;
2649         pmd_t *pmdp;
2650         pte_t *ptep;
2651
2652         /* Only allow populating anonymous memory */
2653         if (!vma_is_anonymous(vma))
2654                 goto abort;
2655
2656         pgdp = pgd_offset(mm, addr);
2657         p4dp = p4d_alloc(mm, pgdp, addr);
2658         if (!p4dp)
2659                 goto abort;
2660         pudp = pud_alloc(mm, p4dp, addr);
2661         if (!pudp)
2662                 goto abort;
2663         pmdp = pmd_alloc(mm, pudp, addr);
2664         if (!pmdp)
2665                 goto abort;
2666
2667         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2668                 goto abort;
2669
2670         /*
2671          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2672          * pte_offset_map() on pmds where a huge pmd might be created
2673          * from a different thread.
2674          *
2675          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2676          * parallel threads are excluded by other means.
2677          *
2678          * Here we only have down_read(mmap_sem).
2679          */
2680         if (pte_alloc(mm, pmdp, addr))
2681                 goto abort;
2682
2683         /* See the comment in pte_alloc_one_map() */
2684         if (unlikely(pmd_trans_unstable(pmdp)))
2685                 goto abort;
2686
2687         if (unlikely(anon_vma_prepare(vma)))
2688                 goto abort;
2689         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2690                 goto abort;
2691
2692         /*
2693          * The memory barrier inside __SetPageUptodate makes sure that
2694          * preceding stores to the page contents become visible before
2695          * the set_pte_at() write.
2696          */
2697         __SetPageUptodate(page);
2698
2699         if (is_zone_device_page(page)) {
2700                 if (is_device_private_page(page)) {
2701                         swp_entry_t swp_entry;
2702
2703                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2704                         entry = swp_entry_to_pte(swp_entry);
2705                 } else if (is_device_public_page(page)) {
2706                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2707                         if (vma->vm_flags & VM_WRITE)
2708                                 entry = pte_mkwrite(pte_mkdirty(entry));
2709                         entry = pte_mkdevmap(entry);
2710                 }
2711         } else {
2712                 entry = mk_pte(page, vma->vm_page_prot);
2713                 if (vma->vm_flags & VM_WRITE)
2714                         entry = pte_mkwrite(pte_mkdirty(entry));
2715         }
2716
2717         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2718
2719         if (pte_present(*ptep)) {
2720                 unsigned long pfn = pte_pfn(*ptep);
2721
2722                 if (!is_zero_pfn(pfn)) {
2723                         pte_unmap_unlock(ptep, ptl);
2724                         mem_cgroup_cancel_charge(page, memcg, false);
2725                         goto abort;
2726                 }
2727                 flush = true;
2728         } else if (!pte_none(*ptep)) {
2729                 pte_unmap_unlock(ptep, ptl);
2730                 mem_cgroup_cancel_charge(page, memcg, false);
2731                 goto abort;
2732         }
2733
2734         /*
2735          * Check for usefaultfd but do not deliver the fault. Instead,
2736          * just back off.
2737          */
2738         if (userfaultfd_missing(vma)) {
2739                 pte_unmap_unlock(ptep, ptl);
2740                 mem_cgroup_cancel_charge(page, memcg, false);
2741                 goto abort;
2742         }
2743
2744         inc_mm_counter(mm, MM_ANONPAGES);
2745         page_add_new_anon_rmap(page, vma, addr, false);
2746         mem_cgroup_commit_charge(page, memcg, false, false);
2747         if (!is_zone_device_page(page))
2748                 lru_cache_add_active_or_unevictable(page, vma);
2749         get_page(page);
2750
2751         if (flush) {
2752                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2753                 ptep_clear_flush_notify(vma, addr, ptep);
2754                 set_pte_at_notify(mm, addr, ptep, entry);
2755                 update_mmu_cache(vma, addr, ptep);
2756         } else {
2757                 /* No need to invalidate - it was non-present before */
2758                 set_pte_at(mm, addr, ptep, entry);
2759                 update_mmu_cache(vma, addr, ptep);
2760         }
2761
2762         pte_unmap_unlock(ptep, ptl);
2763         *src = MIGRATE_PFN_MIGRATE;
2764         return;
2765
2766 abort:
2767         *src &= ~MIGRATE_PFN_MIGRATE;
2768 }
2769
2770 /*
2771  * migrate_vma_pages() - migrate meta-data from src page to dst page
2772  * @migrate: migrate struct containing all migration information
2773  *
2774  * This migrates struct page meta-data from source struct page to destination
2775  * struct page. This effectively finishes the migration from source page to the
2776  * destination page.
2777  */
2778 static void migrate_vma_pages(struct migrate_vma *migrate)
2779 {
2780         const unsigned long npages = migrate->npages;
2781         const unsigned long start = migrate->start;
2782         struct vm_area_struct *vma = migrate->vma;
2783         struct mm_struct *mm = vma->vm_mm;
2784         unsigned long addr, i, mmu_start;
2785         bool notified = false;
2786
2787         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2788                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2789                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2790                 struct address_space *mapping;
2791                 int r;
2792
2793                 if (!newpage) {
2794                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2795                         continue;
2796                 }
2797
2798                 if (!page) {
2799                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2800                                 continue;
2801                         }
2802                         if (!notified) {
2803                                 mmu_start = addr;
2804                                 notified = true;
2805                                 mmu_notifier_invalidate_range_start(mm,
2806                                                                 mmu_start,
2807                                                                 migrate->end);
2808                         }
2809                         migrate_vma_insert_page(migrate, addr, newpage,
2810                                                 &migrate->src[i],
2811                                                 &migrate->dst[i]);
2812                         continue;
2813                 }
2814
2815                 mapping = page_mapping(page);
2816
2817                 if (is_zone_device_page(newpage)) {
2818                         if (is_device_private_page(newpage)) {
2819                                 /*
2820                                  * For now only support private anonymous when
2821                                  * migrating to un-addressable device memory.
2822                                  */
2823                                 if (mapping) {
2824                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2825                                         continue;
2826                                 }
2827                         } else if (!is_device_public_page(newpage)) {
2828                                 /*
2829                                  * Other types of ZONE_DEVICE page are not
2830                                  * supported.
2831                                  */
2832                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2833                                 continue;
2834                         }
2835                 }
2836
2837                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2838                 if (r != MIGRATEPAGE_SUCCESS)
2839                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2840         }
2841
2842         /*
2843          * No need to double call mmu_notifier->invalidate_range() callback as
2844          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2845          * did already call it.
2846          */
2847         if (notified)
2848                 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2849                                                        migrate->end);
2850 }
2851
2852 /*
2853  * migrate_vma_finalize() - restore CPU page table entry
2854  * @migrate: migrate struct containing all migration information
2855  *
2856  * This replaces the special migration pte entry with either a mapping to the
2857  * new page if migration was successful for that page, or to the original page
2858  * otherwise.
2859  *
2860  * This also unlocks the pages and puts them back on the lru, or drops the extra
2861  * refcount, for device pages.
2862  */
2863 static void migrate_vma_finalize(struct migrate_vma *migrate)
2864 {
2865         const unsigned long npages = migrate->npages;
2866         unsigned long i;
2867
2868         for (i = 0; i < npages; i++) {
2869                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2870                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2871
2872                 if (!page) {
2873                         if (newpage) {
2874                                 unlock_page(newpage);
2875                                 put_page(newpage);
2876                         }
2877                         continue;
2878                 }
2879
2880                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2881                         if (newpage) {
2882                                 unlock_page(newpage);
2883                                 put_page(newpage);
2884                         }
2885                         newpage = page;
2886                 }
2887
2888                 remove_migration_ptes(page, newpage, false);
2889                 unlock_page(page);
2890                 migrate->cpages--;
2891
2892                 if (is_zone_device_page(page))
2893                         put_page(page);
2894                 else
2895                         putback_lru_page(page);
2896
2897                 if (newpage != page) {
2898                         unlock_page(newpage);
2899                         if (is_zone_device_page(newpage))
2900                                 put_page(newpage);
2901                         else
2902                                 putback_lru_page(newpage);
2903                 }
2904         }
2905 }
2906
2907 /*
2908  * migrate_vma() - migrate a range of memory inside vma
2909  *
2910  * @ops: migration callback for allocating destination memory and copying
2911  * @vma: virtual memory area containing the range to be migrated
2912  * @start: start address of the range to migrate (inclusive)
2913  * @end: end address of the range to migrate (exclusive)
2914  * @src: array of hmm_pfn_t containing source pfns
2915  * @dst: array of hmm_pfn_t containing destination pfns
2916  * @private: pointer passed back to each of the callback
2917  * Returns: 0 on success, error code otherwise
2918  *
2919  * This function tries to migrate a range of memory virtual address range, using
2920  * callbacks to allocate and copy memory from source to destination. First it
2921  * collects all the pages backing each virtual address in the range, saving this
2922  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2923  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2924  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2925  * in the corresponding src array entry. It then restores any pages that are
2926  * pinned, by remapping and unlocking those pages.
2927  *
2928  * At this point it calls the alloc_and_copy() callback. For documentation on
2929  * what is expected from that callback, see struct migrate_vma_ops comments in
2930  * include/linux/migrate.h
2931  *
2932  * After the alloc_and_copy() callback, this function goes over each entry in
2933  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2934  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2935  * then the function tries to migrate struct page information from the source
2936  * struct page to the destination struct page. If it fails to migrate the struct
2937  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2938  * array.
2939  *
2940  * At this point all successfully migrated pages have an entry in the src
2941  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2942  * array entry with MIGRATE_PFN_VALID flag set.
2943  *
2944  * It then calls the finalize_and_map() callback. See comments for "struct
2945  * migrate_vma_ops", in include/linux/migrate.h for details about
2946  * finalize_and_map() behavior.
2947  *
2948  * After the finalize_and_map() callback, for successfully migrated pages, this
2949  * function updates the CPU page table to point to new pages, otherwise it
2950  * restores the CPU page table to point to the original source pages.
2951  *
2952  * Function returns 0 after the above steps, even if no pages were migrated
2953  * (The function only returns an error if any of the arguments are invalid.)
2954  *
2955  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2956  * unsigned long entries.
2957  */
2958 int migrate_vma(const struct migrate_vma_ops *ops,
2959                 struct vm_area_struct *vma,
2960                 unsigned long start,
2961                 unsigned long end,
2962                 unsigned long *src,
2963                 unsigned long *dst,
2964                 void *private)
2965 {
2966         struct migrate_vma migrate;
2967
2968         /* Sanity check the arguments */
2969         start &= PAGE_MASK;
2970         end &= PAGE_MASK;
2971         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2972                 return -EINVAL;
2973         if (start < vma->vm_start || start >= vma->vm_end)
2974                 return -EINVAL;
2975         if (end <= vma->vm_start || end > vma->vm_end)
2976                 return -EINVAL;
2977         if (!ops || !src || !dst || start >= end)
2978                 return -EINVAL;
2979
2980         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2981         migrate.src = src;
2982         migrate.dst = dst;
2983         migrate.start = start;
2984         migrate.npages = 0;
2985         migrate.cpages = 0;
2986         migrate.end = end;
2987         migrate.vma = vma;
2988
2989         /* Collect, and try to unmap source pages */
2990         migrate_vma_collect(&migrate);
2991         if (!migrate.cpages)
2992                 return 0;
2993
2994         /* Lock and isolate page */
2995         migrate_vma_prepare(&migrate);
2996         if (!migrate.cpages)
2997                 return 0;
2998
2999         /* Unmap pages */
3000         migrate_vma_unmap(&migrate);
3001         if (!migrate.cpages)
3002                 return 0;
3003
3004         /*
3005          * At this point pages are locked and unmapped, and thus they have
3006          * stable content and can safely be copied to destination memory that
3007          * is allocated by the callback.
3008          *
3009          * Note that migration can fail in migrate_vma_struct_page() for each
3010          * individual page.
3011          */
3012         ops->alloc_and_copy(vma, src, dst, start, end, private);
3013
3014         /* This does the real migration of struct page */
3015         migrate_vma_pages(&migrate);
3016
3017         ops->finalize_and_map(vma, src, dst, start, end, private);
3018
3019         /* Unlock and remap pages */
3020         migrate_vma_finalize(&migrate);
3021
3022         return 0;
3023 }
3024 EXPORT_SYMBOL(migrate_vma);
3025 #endif /* defined(MIGRATE_VMA_HELPER) */