mm: migrate: move migrate_page_lock_buffers()
[sfrench/cifs-2.6.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                                 flush_dcache_page(new);
252                         }
253                 } else
254                         flush_dcache_page(new);
255
256 #ifdef CONFIG_HUGETLB_PAGE
257                 if (PageHuge(new)) {
258                         pte = pte_mkhuge(pte);
259                         pte = arch_make_huge_pte(pte, vma, new, 0);
260                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261                         if (PageAnon(new))
262                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
263                         else
264                                 page_dup_rmap(new, true);
265                 } else
266 #endif
267                 {
268                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270                         if (PageAnon(new))
271                                 page_add_anon_rmap(new, vma, pvmw.address, false);
272                         else
273                                 page_add_file_rmap(new, false);
274                 }
275                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276                         mlock_vma_page(new);
277
278                 if (PageTransHuge(page) && PageMlocked(page))
279                         clear_page_mlock(page);
280
281                 /* No need to invalidate - it was non-present before */
282                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283         }
284
285         return true;
286 }
287
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294         struct rmap_walk_control rwc = {
295                 .rmap_one = remove_migration_pte,
296                 .arg = old,
297         };
298
299         if (locked)
300                 rmap_walk_locked(new, &rwc);
301         else
302                 rmap_walk(new, &rwc);
303 }
304
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311                                 spinlock_t *ptl)
312 {
313         pte_t pte;
314         swp_entry_t entry;
315         struct page *page;
316
317         spin_lock(ptl);
318         pte = *ptep;
319         if (!is_swap_pte(pte))
320                 goto out;
321
322         entry = pte_to_swp_entry(pte);
323         if (!is_migration_entry(entry))
324                 goto out;
325
326         page = migration_entry_to_page(entry);
327
328         /*
329          * Once page cache replacement of page migration started, page_count
330          * is zero; but we must not call put_and_wait_on_page_locked() without
331          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
332          */
333         if (!get_page_unless_zero(page))
334                 goto out;
335         pte_unmap_unlock(ptep, ptl);
336         put_and_wait_on_page_locked(page);
337         return;
338 out:
339         pte_unmap_unlock(ptep, ptl);
340 }
341
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343                                 unsigned long address)
344 {
345         spinlock_t *ptl = pte_lockptr(mm, pmd);
346         pte_t *ptep = pte_offset_map(pmd, address);
347         __migration_entry_wait(mm, ptep, ptl);
348 }
349
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351                 struct mm_struct *mm, pte_t *pte)
352 {
353         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354         __migration_entry_wait(mm, pte, ptl);
355 }
356
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360         spinlock_t *ptl;
361         struct page *page;
362
363         ptl = pmd_lock(mm, pmd);
364         if (!is_pmd_migration_entry(*pmd))
365                 goto unlock;
366         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367         if (!get_page_unless_zero(page))
368                 goto unlock;
369         spin_unlock(ptl);
370         put_and_wait_on_page_locked(page);
371         return;
372 unlock:
373         spin_unlock(ptl);
374 }
375 #endif
376
377 static int expected_page_refs(struct page *page)
378 {
379         int expected_count = 1;
380
381         /*
382          * Device public or private pages have an extra refcount as they are
383          * ZONE_DEVICE pages.
384          */
385         expected_count += is_device_private_page(page);
386         expected_count += is_device_public_page(page);
387         if (page_mapping(page))
388                 expected_count += hpage_nr_pages(page) + page_has_private(page);
389
390         return expected_count;
391 }
392
393 /*
394  * Replace the page in the mapping.
395  *
396  * The number of remaining references must be:
397  * 1 for anonymous pages without a mapping
398  * 2 for pages with a mapping
399  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
400  */
401 int migrate_page_move_mapping(struct address_space *mapping,
402                 struct page *newpage, struct page *page,
403                 struct buffer_head *head, enum migrate_mode mode,
404                 int extra_count)
405 {
406         XA_STATE(xas, &mapping->i_pages, page_index(page));
407         struct zone *oldzone, *newzone;
408         int dirty;
409         int expected_count = expected_page_refs(page) + extra_count;
410
411         if (!mapping) {
412                 /* Anonymous page without mapping */
413                 if (page_count(page) != expected_count)
414                         return -EAGAIN;
415
416                 /* No turning back from here */
417                 newpage->index = page->index;
418                 newpage->mapping = page->mapping;
419                 if (PageSwapBacked(page))
420                         __SetPageSwapBacked(newpage);
421
422                 return MIGRATEPAGE_SUCCESS;
423         }
424
425         oldzone = page_zone(page);
426         newzone = page_zone(newpage);
427
428         xas_lock_irq(&xas);
429         if (page_count(page) != expected_count || xas_load(&xas) != page) {
430                 xas_unlock_irq(&xas);
431                 return -EAGAIN;
432         }
433
434         if (!page_ref_freeze(page, expected_count)) {
435                 xas_unlock_irq(&xas);
436                 return -EAGAIN;
437         }
438
439         /*
440          * Now we know that no one else is looking at the page:
441          * no turning back from here.
442          */
443         newpage->index = page->index;
444         newpage->mapping = page->mapping;
445         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
446         if (PageSwapBacked(page)) {
447                 __SetPageSwapBacked(newpage);
448                 if (PageSwapCache(page)) {
449                         SetPageSwapCache(newpage);
450                         set_page_private(newpage, page_private(page));
451                 }
452         } else {
453                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
454         }
455
456         /* Move dirty while page refs frozen and newpage not yet exposed */
457         dirty = PageDirty(page);
458         if (dirty) {
459                 ClearPageDirty(page);
460                 SetPageDirty(newpage);
461         }
462
463         xas_store(&xas, newpage);
464         if (PageTransHuge(page)) {
465                 int i;
466
467                 for (i = 1; i < HPAGE_PMD_NR; i++) {
468                         xas_next(&xas);
469                         xas_store(&xas, newpage + i);
470                 }
471         }
472
473         /*
474          * Drop cache reference from old page by unfreezing
475          * to one less reference.
476          * We know this isn't the last reference.
477          */
478         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
479
480         xas_unlock(&xas);
481         /* Leave irq disabled to prevent preemption while updating stats */
482
483         /*
484          * If moved to a different zone then also account
485          * the page for that zone. Other VM counters will be
486          * taken care of when we establish references to the
487          * new page and drop references to the old page.
488          *
489          * Note that anonymous pages are accounted for
490          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
491          * are mapped to swap space.
492          */
493         if (newzone != oldzone) {
494                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
495                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
496                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
497                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
498                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
499                 }
500                 if (dirty && mapping_cap_account_dirty(mapping)) {
501                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
502                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
503                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
504                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
505                 }
506         }
507         local_irq_enable();
508
509         return MIGRATEPAGE_SUCCESS;
510 }
511 EXPORT_SYMBOL(migrate_page_move_mapping);
512
513 /*
514  * The expected number of remaining references is the same as that
515  * of migrate_page_move_mapping().
516  */
517 int migrate_huge_page_move_mapping(struct address_space *mapping,
518                                    struct page *newpage, struct page *page)
519 {
520         XA_STATE(xas, &mapping->i_pages, page_index(page));
521         int expected_count;
522
523         xas_lock_irq(&xas);
524         expected_count = 2 + page_has_private(page);
525         if (page_count(page) != expected_count || xas_load(&xas) != page) {
526                 xas_unlock_irq(&xas);
527                 return -EAGAIN;
528         }
529
530         if (!page_ref_freeze(page, expected_count)) {
531                 xas_unlock_irq(&xas);
532                 return -EAGAIN;
533         }
534
535         newpage->index = page->index;
536         newpage->mapping = page->mapping;
537
538         get_page(newpage);
539
540         xas_store(&xas, newpage);
541
542         page_ref_unfreeze(page, expected_count - 1);
543
544         xas_unlock_irq(&xas);
545
546         return MIGRATEPAGE_SUCCESS;
547 }
548
549 /*
550  * Gigantic pages are so large that we do not guarantee that page++ pointer
551  * arithmetic will work across the entire page.  We need something more
552  * specialized.
553  */
554 static void __copy_gigantic_page(struct page *dst, struct page *src,
555                                 int nr_pages)
556 {
557         int i;
558         struct page *dst_base = dst;
559         struct page *src_base = src;
560
561         for (i = 0; i < nr_pages; ) {
562                 cond_resched();
563                 copy_highpage(dst, src);
564
565                 i++;
566                 dst = mem_map_next(dst, dst_base, i);
567                 src = mem_map_next(src, src_base, i);
568         }
569 }
570
571 static void copy_huge_page(struct page *dst, struct page *src)
572 {
573         int i;
574         int nr_pages;
575
576         if (PageHuge(src)) {
577                 /* hugetlbfs page */
578                 struct hstate *h = page_hstate(src);
579                 nr_pages = pages_per_huge_page(h);
580
581                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
582                         __copy_gigantic_page(dst, src, nr_pages);
583                         return;
584                 }
585         } else {
586                 /* thp page */
587                 BUG_ON(!PageTransHuge(src));
588                 nr_pages = hpage_nr_pages(src);
589         }
590
591         for (i = 0; i < nr_pages; i++) {
592                 cond_resched();
593                 copy_highpage(dst + i, src + i);
594         }
595 }
596
597 /*
598  * Copy the page to its new location
599  */
600 void migrate_page_states(struct page *newpage, struct page *page)
601 {
602         int cpupid;
603
604         if (PageError(page))
605                 SetPageError(newpage);
606         if (PageReferenced(page))
607                 SetPageReferenced(newpage);
608         if (PageUptodate(page))
609                 SetPageUptodate(newpage);
610         if (TestClearPageActive(page)) {
611                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
612                 SetPageActive(newpage);
613         } else if (TestClearPageUnevictable(page))
614                 SetPageUnevictable(newpage);
615         if (PageWorkingset(page))
616                 SetPageWorkingset(newpage);
617         if (PageChecked(page))
618                 SetPageChecked(newpage);
619         if (PageMappedToDisk(page))
620                 SetPageMappedToDisk(newpage);
621
622         /* Move dirty on pages not done by migrate_page_move_mapping() */
623         if (PageDirty(page))
624                 SetPageDirty(newpage);
625
626         if (page_is_young(page))
627                 set_page_young(newpage);
628         if (page_is_idle(page))
629                 set_page_idle(newpage);
630
631         /*
632          * Copy NUMA information to the new page, to prevent over-eager
633          * future migrations of this same page.
634          */
635         cpupid = page_cpupid_xchg_last(page, -1);
636         page_cpupid_xchg_last(newpage, cpupid);
637
638         ksm_migrate_page(newpage, page);
639         /*
640          * Please do not reorder this without considering how mm/ksm.c's
641          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
642          */
643         if (PageSwapCache(page))
644                 ClearPageSwapCache(page);
645         ClearPagePrivate(page);
646         set_page_private(page, 0);
647
648         /*
649          * If any waiters have accumulated on the new page then
650          * wake them up.
651          */
652         if (PageWriteback(newpage))
653                 end_page_writeback(newpage);
654
655         copy_page_owner(page, newpage);
656
657         mem_cgroup_migrate(page, newpage);
658 }
659 EXPORT_SYMBOL(migrate_page_states);
660
661 void migrate_page_copy(struct page *newpage, struct page *page)
662 {
663         if (PageHuge(page) || PageTransHuge(page))
664                 copy_huge_page(newpage, page);
665         else
666                 copy_highpage(newpage, page);
667
668         migrate_page_states(newpage, page);
669 }
670 EXPORT_SYMBOL(migrate_page_copy);
671
672 /************************************************************
673  *                    Migration functions
674  ***********************************************************/
675
676 /*
677  * Common logic to directly migrate a single LRU page suitable for
678  * pages that do not use PagePrivate/PagePrivate2.
679  *
680  * Pages are locked upon entry and exit.
681  */
682 int migrate_page(struct address_space *mapping,
683                 struct page *newpage, struct page *page,
684                 enum migrate_mode mode)
685 {
686         int rc;
687
688         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
689
690         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
691
692         if (rc != MIGRATEPAGE_SUCCESS)
693                 return rc;
694
695         if (mode != MIGRATE_SYNC_NO_COPY)
696                 migrate_page_copy(newpage, page);
697         else
698                 migrate_page_states(newpage, page);
699         return MIGRATEPAGE_SUCCESS;
700 }
701 EXPORT_SYMBOL(migrate_page);
702
703 #ifdef CONFIG_BLOCK
704 /* Returns true if all buffers are successfully locked */
705 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
706                                                         enum migrate_mode mode)
707 {
708         struct buffer_head *bh = head;
709
710         /* Simple case, sync compaction */
711         if (mode != MIGRATE_ASYNC) {
712                 do {
713                         get_bh(bh);
714                         lock_buffer(bh);
715                         bh = bh->b_this_page;
716
717                 } while (bh != head);
718
719                 return true;
720         }
721
722         /* async case, we cannot block on lock_buffer so use trylock_buffer */
723         do {
724                 get_bh(bh);
725                 if (!trylock_buffer(bh)) {
726                         /*
727                          * We failed to lock the buffer and cannot stall in
728                          * async migration. Release the taken locks
729                          */
730                         struct buffer_head *failed_bh = bh;
731                         put_bh(failed_bh);
732                         bh = head;
733                         while (bh != failed_bh) {
734                                 unlock_buffer(bh);
735                                 put_bh(bh);
736                                 bh = bh->b_this_page;
737                         }
738                         return false;
739                 }
740
741                 bh = bh->b_this_page;
742         } while (bh != head);
743         return true;
744 }
745
746 /*
747  * Migration function for pages with buffers. This function can only be used
748  * if the underlying filesystem guarantees that no other references to "page"
749  * exist.
750  */
751 int buffer_migrate_page(struct address_space *mapping,
752                 struct page *newpage, struct page *page, enum migrate_mode mode)
753 {
754         struct buffer_head *bh, *head;
755         int rc;
756         int expected_count;
757
758         if (!page_has_buffers(page))
759                 return migrate_page(mapping, newpage, page, mode);
760
761         /* Check whether page does not have extra refs before we do more work */
762         expected_count = expected_page_refs(page);
763         if (page_count(page) != expected_count)
764                 return -EAGAIN;
765
766         head = page_buffers(page);
767         if (!buffer_migrate_lock_buffers(head, mode))
768                 return -EAGAIN;
769
770         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
771         if (rc != MIGRATEPAGE_SUCCESS)
772                 goto unlock_buffers;
773
774         ClearPagePrivate(page);
775         set_page_private(newpage, page_private(page));
776         set_page_private(page, 0);
777         put_page(page);
778         get_page(newpage);
779
780         bh = head;
781         do {
782                 set_bh_page(bh, newpage, bh_offset(bh));
783                 bh = bh->b_this_page;
784
785         } while (bh != head);
786
787         SetPagePrivate(newpage);
788
789         if (mode != MIGRATE_SYNC_NO_COPY)
790                 migrate_page_copy(newpage, page);
791         else
792                 migrate_page_states(newpage, page);
793
794         rc = MIGRATEPAGE_SUCCESS;
795 unlock_buffers:
796         bh = head;
797         do {
798                 unlock_buffer(bh);
799                 put_bh(bh);
800                 bh = bh->b_this_page;
801
802         } while (bh != head);
803
804         return rc;
805 }
806 EXPORT_SYMBOL(buffer_migrate_page);
807 #endif
808
809 /*
810  * Writeback a page to clean the dirty state
811  */
812 static int writeout(struct address_space *mapping, struct page *page)
813 {
814         struct writeback_control wbc = {
815                 .sync_mode = WB_SYNC_NONE,
816                 .nr_to_write = 1,
817                 .range_start = 0,
818                 .range_end = LLONG_MAX,
819                 .for_reclaim = 1
820         };
821         int rc;
822
823         if (!mapping->a_ops->writepage)
824                 /* No write method for the address space */
825                 return -EINVAL;
826
827         if (!clear_page_dirty_for_io(page))
828                 /* Someone else already triggered a write */
829                 return -EAGAIN;
830
831         /*
832          * A dirty page may imply that the underlying filesystem has
833          * the page on some queue. So the page must be clean for
834          * migration. Writeout may mean we loose the lock and the
835          * page state is no longer what we checked for earlier.
836          * At this point we know that the migration attempt cannot
837          * be successful.
838          */
839         remove_migration_ptes(page, page, false);
840
841         rc = mapping->a_ops->writepage(page, &wbc);
842
843         if (rc != AOP_WRITEPAGE_ACTIVATE)
844                 /* unlocked. Relock */
845                 lock_page(page);
846
847         return (rc < 0) ? -EIO : -EAGAIN;
848 }
849
850 /*
851  * Default handling if a filesystem does not provide a migration function.
852  */
853 static int fallback_migrate_page(struct address_space *mapping,
854         struct page *newpage, struct page *page, enum migrate_mode mode)
855 {
856         if (PageDirty(page)) {
857                 /* Only writeback pages in full synchronous migration */
858                 switch (mode) {
859                 case MIGRATE_SYNC:
860                 case MIGRATE_SYNC_NO_COPY:
861                         break;
862                 default:
863                         return -EBUSY;
864                 }
865                 return writeout(mapping, page);
866         }
867
868         /*
869          * Buffers may be managed in a filesystem specific way.
870          * We must have no buffers or drop them.
871          */
872         if (page_has_private(page) &&
873             !try_to_release_page(page, GFP_KERNEL))
874                 return -EAGAIN;
875
876         return migrate_page(mapping, newpage, page, mode);
877 }
878
879 /*
880  * Move a page to a newly allocated page
881  * The page is locked and all ptes have been successfully removed.
882  *
883  * The new page will have replaced the old page if this function
884  * is successful.
885  *
886  * Return value:
887  *   < 0 - error code
888  *  MIGRATEPAGE_SUCCESS - success
889  */
890 static int move_to_new_page(struct page *newpage, struct page *page,
891                                 enum migrate_mode mode)
892 {
893         struct address_space *mapping;
894         int rc = -EAGAIN;
895         bool is_lru = !__PageMovable(page);
896
897         VM_BUG_ON_PAGE(!PageLocked(page), page);
898         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
899
900         mapping = page_mapping(page);
901
902         if (likely(is_lru)) {
903                 if (!mapping)
904                         rc = migrate_page(mapping, newpage, page, mode);
905                 else if (mapping->a_ops->migratepage)
906                         /*
907                          * Most pages have a mapping and most filesystems
908                          * provide a migratepage callback. Anonymous pages
909                          * are part of swap space which also has its own
910                          * migratepage callback. This is the most common path
911                          * for page migration.
912                          */
913                         rc = mapping->a_ops->migratepage(mapping, newpage,
914                                                         page, mode);
915                 else
916                         rc = fallback_migrate_page(mapping, newpage,
917                                                         page, mode);
918         } else {
919                 /*
920                  * In case of non-lru page, it could be released after
921                  * isolation step. In that case, we shouldn't try migration.
922                  */
923                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
924                 if (!PageMovable(page)) {
925                         rc = MIGRATEPAGE_SUCCESS;
926                         __ClearPageIsolated(page);
927                         goto out;
928                 }
929
930                 rc = mapping->a_ops->migratepage(mapping, newpage,
931                                                 page, mode);
932                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
933                         !PageIsolated(page));
934         }
935
936         /*
937          * When successful, old pagecache page->mapping must be cleared before
938          * page is freed; but stats require that PageAnon be left as PageAnon.
939          */
940         if (rc == MIGRATEPAGE_SUCCESS) {
941                 if (__PageMovable(page)) {
942                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
943
944                         /*
945                          * We clear PG_movable under page_lock so any compactor
946                          * cannot try to migrate this page.
947                          */
948                         __ClearPageIsolated(page);
949                 }
950
951                 /*
952                  * Anonymous and movable page->mapping will be cleard by
953                  * free_pages_prepare so don't reset it here for keeping
954                  * the type to work PageAnon, for example.
955                  */
956                 if (!PageMappingFlags(page))
957                         page->mapping = NULL;
958         }
959 out:
960         return rc;
961 }
962
963 static int __unmap_and_move(struct page *page, struct page *newpage,
964                                 int force, enum migrate_mode mode)
965 {
966         int rc = -EAGAIN;
967         int page_was_mapped = 0;
968         struct anon_vma *anon_vma = NULL;
969         bool is_lru = !__PageMovable(page);
970
971         if (!trylock_page(page)) {
972                 if (!force || mode == MIGRATE_ASYNC)
973                         goto out;
974
975                 /*
976                  * It's not safe for direct compaction to call lock_page.
977                  * For example, during page readahead pages are added locked
978                  * to the LRU. Later, when the IO completes the pages are
979                  * marked uptodate and unlocked. However, the queueing
980                  * could be merging multiple pages for one bio (e.g.
981                  * mpage_readpages). If an allocation happens for the
982                  * second or third page, the process can end up locking
983                  * the same page twice and deadlocking. Rather than
984                  * trying to be clever about what pages can be locked,
985                  * avoid the use of lock_page for direct compaction
986                  * altogether.
987                  */
988                 if (current->flags & PF_MEMALLOC)
989                         goto out;
990
991                 lock_page(page);
992         }
993
994         if (PageWriteback(page)) {
995                 /*
996                  * Only in the case of a full synchronous migration is it
997                  * necessary to wait for PageWriteback. In the async case,
998                  * the retry loop is too short and in the sync-light case,
999                  * the overhead of stalling is too much
1000                  */
1001                 switch (mode) {
1002                 case MIGRATE_SYNC:
1003                 case MIGRATE_SYNC_NO_COPY:
1004                         break;
1005                 default:
1006                         rc = -EBUSY;
1007                         goto out_unlock;
1008                 }
1009                 if (!force)
1010                         goto out_unlock;
1011                 wait_on_page_writeback(page);
1012         }
1013
1014         /*
1015          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1016          * we cannot notice that anon_vma is freed while we migrates a page.
1017          * This get_anon_vma() delays freeing anon_vma pointer until the end
1018          * of migration. File cache pages are no problem because of page_lock()
1019          * File Caches may use write_page() or lock_page() in migration, then,
1020          * just care Anon page here.
1021          *
1022          * Only page_get_anon_vma() understands the subtleties of
1023          * getting a hold on an anon_vma from outside one of its mms.
1024          * But if we cannot get anon_vma, then we won't need it anyway,
1025          * because that implies that the anon page is no longer mapped
1026          * (and cannot be remapped so long as we hold the page lock).
1027          */
1028         if (PageAnon(page) && !PageKsm(page))
1029                 anon_vma = page_get_anon_vma(page);
1030
1031         /*
1032          * Block others from accessing the new page when we get around to
1033          * establishing additional references. We are usually the only one
1034          * holding a reference to newpage at this point. We used to have a BUG
1035          * here if trylock_page(newpage) fails, but would like to allow for
1036          * cases where there might be a race with the previous use of newpage.
1037          * This is much like races on refcount of oldpage: just don't BUG().
1038          */
1039         if (unlikely(!trylock_page(newpage)))
1040                 goto out_unlock;
1041
1042         if (unlikely(!is_lru)) {
1043                 rc = move_to_new_page(newpage, page, mode);
1044                 goto out_unlock_both;
1045         }
1046
1047         /*
1048          * Corner case handling:
1049          * 1. When a new swap-cache page is read into, it is added to the LRU
1050          * and treated as swapcache but it has no rmap yet.
1051          * Calling try_to_unmap() against a page->mapping==NULL page will
1052          * trigger a BUG.  So handle it here.
1053          * 2. An orphaned page (see truncate_complete_page) might have
1054          * fs-private metadata. The page can be picked up due to memory
1055          * offlining.  Everywhere else except page reclaim, the page is
1056          * invisible to the vm, so the page can not be migrated.  So try to
1057          * free the metadata, so the page can be freed.
1058          */
1059         if (!page->mapping) {
1060                 VM_BUG_ON_PAGE(PageAnon(page), page);
1061                 if (page_has_private(page)) {
1062                         try_to_free_buffers(page);
1063                         goto out_unlock_both;
1064                 }
1065         } else if (page_mapped(page)) {
1066                 /* Establish migration ptes */
1067                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1068                                 page);
1069                 try_to_unmap(page,
1070                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1071                 page_was_mapped = 1;
1072         }
1073
1074         if (!page_mapped(page))
1075                 rc = move_to_new_page(newpage, page, mode);
1076
1077         if (page_was_mapped)
1078                 remove_migration_ptes(page,
1079                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1080
1081 out_unlock_both:
1082         unlock_page(newpage);
1083 out_unlock:
1084         /* Drop an anon_vma reference if we took one */
1085         if (anon_vma)
1086                 put_anon_vma(anon_vma);
1087         unlock_page(page);
1088 out:
1089         /*
1090          * If migration is successful, decrease refcount of the newpage
1091          * which will not free the page because new page owner increased
1092          * refcounter. As well, if it is LRU page, add the page to LRU
1093          * list in here.
1094          */
1095         if (rc == MIGRATEPAGE_SUCCESS) {
1096                 if (unlikely(__PageMovable(newpage)))
1097                         put_page(newpage);
1098                 else
1099                         putback_lru_page(newpage);
1100         }
1101
1102         return rc;
1103 }
1104
1105 /*
1106  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1107  * around it.
1108  */
1109 #if defined(CONFIG_ARM) && \
1110         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1111 #define ICE_noinline noinline
1112 #else
1113 #define ICE_noinline
1114 #endif
1115
1116 /*
1117  * Obtain the lock on page, remove all ptes and migrate the page
1118  * to the newly allocated page in newpage.
1119  */
1120 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1121                                    free_page_t put_new_page,
1122                                    unsigned long private, struct page *page,
1123                                    int force, enum migrate_mode mode,
1124                                    enum migrate_reason reason)
1125 {
1126         int rc = MIGRATEPAGE_SUCCESS;
1127         struct page *newpage;
1128
1129         if (!thp_migration_supported() && PageTransHuge(page))
1130                 return -ENOMEM;
1131
1132         newpage = get_new_page(page, private);
1133         if (!newpage)
1134                 return -ENOMEM;
1135
1136         if (page_count(page) == 1) {
1137                 /* page was freed from under us. So we are done. */
1138                 ClearPageActive(page);
1139                 ClearPageUnevictable(page);
1140                 if (unlikely(__PageMovable(page))) {
1141                         lock_page(page);
1142                         if (!PageMovable(page))
1143                                 __ClearPageIsolated(page);
1144                         unlock_page(page);
1145                 }
1146                 if (put_new_page)
1147                         put_new_page(newpage, private);
1148                 else
1149                         put_page(newpage);
1150                 goto out;
1151         }
1152
1153         rc = __unmap_and_move(page, newpage, force, mode);
1154         if (rc == MIGRATEPAGE_SUCCESS)
1155                 set_page_owner_migrate_reason(newpage, reason);
1156
1157 out:
1158         if (rc != -EAGAIN) {
1159                 /*
1160                  * A page that has been migrated has all references
1161                  * removed and will be freed. A page that has not been
1162                  * migrated will have kepts its references and be
1163                  * restored.
1164                  */
1165                 list_del(&page->lru);
1166
1167                 /*
1168                  * Compaction can migrate also non-LRU pages which are
1169                  * not accounted to NR_ISOLATED_*. They can be recognized
1170                  * as __PageMovable
1171                  */
1172                 if (likely(!__PageMovable(page)))
1173                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1174                                         page_is_file_cache(page), -hpage_nr_pages(page));
1175         }
1176
1177         /*
1178          * If migration is successful, releases reference grabbed during
1179          * isolation. Otherwise, restore the page to right list unless
1180          * we want to retry.
1181          */
1182         if (rc == MIGRATEPAGE_SUCCESS) {
1183                 put_page(page);
1184                 if (reason == MR_MEMORY_FAILURE) {
1185                         /*
1186                          * Set PG_HWPoison on just freed page
1187                          * intentionally. Although it's rather weird,
1188                          * it's how HWPoison flag works at the moment.
1189                          */
1190                         if (set_hwpoison_free_buddy_page(page))
1191                                 num_poisoned_pages_inc();
1192                 }
1193         } else {
1194                 if (rc != -EAGAIN) {
1195                         if (likely(!__PageMovable(page))) {
1196                                 putback_lru_page(page);
1197                                 goto put_new;
1198                         }
1199
1200                         lock_page(page);
1201                         if (PageMovable(page))
1202                                 putback_movable_page(page);
1203                         else
1204                                 __ClearPageIsolated(page);
1205                         unlock_page(page);
1206                         put_page(page);
1207                 }
1208 put_new:
1209                 if (put_new_page)
1210                         put_new_page(newpage, private);
1211                 else
1212                         put_page(newpage);
1213         }
1214
1215         return rc;
1216 }
1217
1218 /*
1219  * Counterpart of unmap_and_move_page() for hugepage migration.
1220  *
1221  * This function doesn't wait the completion of hugepage I/O
1222  * because there is no race between I/O and migration for hugepage.
1223  * Note that currently hugepage I/O occurs only in direct I/O
1224  * where no lock is held and PG_writeback is irrelevant,
1225  * and writeback status of all subpages are counted in the reference
1226  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1227  * under direct I/O, the reference of the head page is 512 and a bit more.)
1228  * This means that when we try to migrate hugepage whose subpages are
1229  * doing direct I/O, some references remain after try_to_unmap() and
1230  * hugepage migration fails without data corruption.
1231  *
1232  * There is also no race when direct I/O is issued on the page under migration,
1233  * because then pte is replaced with migration swap entry and direct I/O code
1234  * will wait in the page fault for migration to complete.
1235  */
1236 static int unmap_and_move_huge_page(new_page_t get_new_page,
1237                                 free_page_t put_new_page, unsigned long private,
1238                                 struct page *hpage, int force,
1239                                 enum migrate_mode mode, int reason)
1240 {
1241         int rc = -EAGAIN;
1242         int page_was_mapped = 0;
1243         struct page *new_hpage;
1244         struct anon_vma *anon_vma = NULL;
1245
1246         /*
1247          * Movability of hugepages depends on architectures and hugepage size.
1248          * This check is necessary because some callers of hugepage migration
1249          * like soft offline and memory hotremove don't walk through page
1250          * tables or check whether the hugepage is pmd-based or not before
1251          * kicking migration.
1252          */
1253         if (!hugepage_migration_supported(page_hstate(hpage))) {
1254                 putback_active_hugepage(hpage);
1255                 return -ENOSYS;
1256         }
1257
1258         new_hpage = get_new_page(hpage, private);
1259         if (!new_hpage)
1260                 return -ENOMEM;
1261
1262         if (!trylock_page(hpage)) {
1263                 if (!force)
1264                         goto out;
1265                 switch (mode) {
1266                 case MIGRATE_SYNC:
1267                 case MIGRATE_SYNC_NO_COPY:
1268                         break;
1269                 default:
1270                         goto out;
1271                 }
1272                 lock_page(hpage);
1273         }
1274
1275         if (PageAnon(hpage))
1276                 anon_vma = page_get_anon_vma(hpage);
1277
1278         if (unlikely(!trylock_page(new_hpage)))
1279                 goto put_anon;
1280
1281         if (page_mapped(hpage)) {
1282                 try_to_unmap(hpage,
1283                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1284                 page_was_mapped = 1;
1285         }
1286
1287         if (!page_mapped(hpage))
1288                 rc = move_to_new_page(new_hpage, hpage, mode);
1289
1290         if (page_was_mapped)
1291                 remove_migration_ptes(hpage,
1292                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1293
1294         unlock_page(new_hpage);
1295
1296 put_anon:
1297         if (anon_vma)
1298                 put_anon_vma(anon_vma);
1299
1300         if (rc == MIGRATEPAGE_SUCCESS) {
1301                 move_hugetlb_state(hpage, new_hpage, reason);
1302                 put_new_page = NULL;
1303         }
1304
1305         unlock_page(hpage);
1306 out:
1307         if (rc != -EAGAIN)
1308                 putback_active_hugepage(hpage);
1309
1310         /*
1311          * If migration was not successful and there's a freeing callback, use
1312          * it.  Otherwise, put_page() will drop the reference grabbed during
1313          * isolation.
1314          */
1315         if (put_new_page)
1316                 put_new_page(new_hpage, private);
1317         else
1318                 putback_active_hugepage(new_hpage);
1319
1320         return rc;
1321 }
1322
1323 /*
1324  * migrate_pages - migrate the pages specified in a list, to the free pages
1325  *                 supplied as the target for the page migration
1326  *
1327  * @from:               The list of pages to be migrated.
1328  * @get_new_page:       The function used to allocate free pages to be used
1329  *                      as the target of the page migration.
1330  * @put_new_page:       The function used to free target pages if migration
1331  *                      fails, or NULL if no special handling is necessary.
1332  * @private:            Private data to be passed on to get_new_page()
1333  * @mode:               The migration mode that specifies the constraints for
1334  *                      page migration, if any.
1335  * @reason:             The reason for page migration.
1336  *
1337  * The function returns after 10 attempts or if no pages are movable any more
1338  * because the list has become empty or no retryable pages exist any more.
1339  * The caller should call putback_movable_pages() to return pages to the LRU
1340  * or free list only if ret != 0.
1341  *
1342  * Returns the number of pages that were not migrated, or an error code.
1343  */
1344 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1345                 free_page_t put_new_page, unsigned long private,
1346                 enum migrate_mode mode, int reason)
1347 {
1348         int retry = 1;
1349         int nr_failed = 0;
1350         int nr_succeeded = 0;
1351         int pass = 0;
1352         struct page *page;
1353         struct page *page2;
1354         int swapwrite = current->flags & PF_SWAPWRITE;
1355         int rc;
1356
1357         if (!swapwrite)
1358                 current->flags |= PF_SWAPWRITE;
1359
1360         for(pass = 0; pass < 10 && retry; pass++) {
1361                 retry = 0;
1362
1363                 list_for_each_entry_safe(page, page2, from, lru) {
1364 retry:
1365                         cond_resched();
1366
1367                         if (PageHuge(page))
1368                                 rc = unmap_and_move_huge_page(get_new_page,
1369                                                 put_new_page, private, page,
1370                                                 pass > 2, mode, reason);
1371                         else
1372                                 rc = unmap_and_move(get_new_page, put_new_page,
1373                                                 private, page, pass > 2, mode,
1374                                                 reason);
1375
1376                         switch(rc) {
1377                         case -ENOMEM:
1378                                 /*
1379                                  * THP migration might be unsupported or the
1380                                  * allocation could've failed so we should
1381                                  * retry on the same page with the THP split
1382                                  * to base pages.
1383                                  *
1384                                  * Head page is retried immediately and tail
1385                                  * pages are added to the tail of the list so
1386                                  * we encounter them after the rest of the list
1387                                  * is processed.
1388                                  */
1389                                 if (PageTransHuge(page) && !PageHuge(page)) {
1390                                         lock_page(page);
1391                                         rc = split_huge_page_to_list(page, from);
1392                                         unlock_page(page);
1393                                         if (!rc) {
1394                                                 list_safe_reset_next(page, page2, lru);
1395                                                 goto retry;
1396                                         }
1397                                 }
1398                                 nr_failed++;
1399                                 goto out;
1400                         case -EAGAIN:
1401                                 retry++;
1402                                 break;
1403                         case MIGRATEPAGE_SUCCESS:
1404                                 nr_succeeded++;
1405                                 break;
1406                         default:
1407                                 /*
1408                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1409                                  * unlike -EAGAIN case, the failed page is
1410                                  * removed from migration page list and not
1411                                  * retried in the next outer loop.
1412                                  */
1413                                 nr_failed++;
1414                                 break;
1415                         }
1416                 }
1417         }
1418         nr_failed += retry;
1419         rc = nr_failed;
1420 out:
1421         if (nr_succeeded)
1422                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1423         if (nr_failed)
1424                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1425         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1426
1427         if (!swapwrite)
1428                 current->flags &= ~PF_SWAPWRITE;
1429
1430         return rc;
1431 }
1432
1433 #ifdef CONFIG_NUMA
1434
1435 static int store_status(int __user *status, int start, int value, int nr)
1436 {
1437         while (nr-- > 0) {
1438                 if (put_user(value, status + start))
1439                         return -EFAULT;
1440                 start++;
1441         }
1442
1443         return 0;
1444 }
1445
1446 static int do_move_pages_to_node(struct mm_struct *mm,
1447                 struct list_head *pagelist, int node)
1448 {
1449         int err;
1450
1451         if (list_empty(pagelist))
1452                 return 0;
1453
1454         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1455                         MIGRATE_SYNC, MR_SYSCALL);
1456         if (err)
1457                 putback_movable_pages(pagelist);
1458         return err;
1459 }
1460
1461 /*
1462  * Resolves the given address to a struct page, isolates it from the LRU and
1463  * puts it to the given pagelist.
1464  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1465  * queued or the page doesn't need to be migrated because it is already on
1466  * the target node
1467  */
1468 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1469                 int node, struct list_head *pagelist, bool migrate_all)
1470 {
1471         struct vm_area_struct *vma;
1472         struct page *page;
1473         unsigned int follflags;
1474         int err;
1475
1476         down_read(&mm->mmap_sem);
1477         err = -EFAULT;
1478         vma = find_vma(mm, addr);
1479         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1480                 goto out;
1481
1482         /* FOLL_DUMP to ignore special (like zero) pages */
1483         follflags = FOLL_GET | FOLL_DUMP;
1484         page = follow_page(vma, addr, follflags);
1485
1486         err = PTR_ERR(page);
1487         if (IS_ERR(page))
1488                 goto out;
1489
1490         err = -ENOENT;
1491         if (!page)
1492                 goto out;
1493
1494         err = 0;
1495         if (page_to_nid(page) == node)
1496                 goto out_putpage;
1497
1498         err = -EACCES;
1499         if (page_mapcount(page) > 1 && !migrate_all)
1500                 goto out_putpage;
1501
1502         if (PageHuge(page)) {
1503                 if (PageHead(page)) {
1504                         isolate_huge_page(page, pagelist);
1505                         err = 0;
1506                 }
1507         } else {
1508                 struct page *head;
1509
1510                 head = compound_head(page);
1511                 err = isolate_lru_page(head);
1512                 if (err)
1513                         goto out_putpage;
1514
1515                 err = 0;
1516                 list_add_tail(&head->lru, pagelist);
1517                 mod_node_page_state(page_pgdat(head),
1518                         NR_ISOLATED_ANON + page_is_file_cache(head),
1519                         hpage_nr_pages(head));
1520         }
1521 out_putpage:
1522         /*
1523          * Either remove the duplicate refcount from
1524          * isolate_lru_page() or drop the page ref if it was
1525          * not isolated.
1526          */
1527         put_page(page);
1528 out:
1529         up_read(&mm->mmap_sem);
1530         return err;
1531 }
1532
1533 /*
1534  * Migrate an array of page address onto an array of nodes and fill
1535  * the corresponding array of status.
1536  */
1537 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1538                          unsigned long nr_pages,
1539                          const void __user * __user *pages,
1540                          const int __user *nodes,
1541                          int __user *status, int flags)
1542 {
1543         int current_node = NUMA_NO_NODE;
1544         LIST_HEAD(pagelist);
1545         int start, i;
1546         int err = 0, err1;
1547
1548         migrate_prep();
1549
1550         for (i = start = 0; i < nr_pages; i++) {
1551                 const void __user *p;
1552                 unsigned long addr;
1553                 int node;
1554
1555                 err = -EFAULT;
1556                 if (get_user(p, pages + i))
1557                         goto out_flush;
1558                 if (get_user(node, nodes + i))
1559                         goto out_flush;
1560                 addr = (unsigned long)p;
1561
1562                 err = -ENODEV;
1563                 if (node < 0 || node >= MAX_NUMNODES)
1564                         goto out_flush;
1565                 if (!node_state(node, N_MEMORY))
1566                         goto out_flush;
1567
1568                 err = -EACCES;
1569                 if (!node_isset(node, task_nodes))
1570                         goto out_flush;
1571
1572                 if (current_node == NUMA_NO_NODE) {
1573                         current_node = node;
1574                         start = i;
1575                 } else if (node != current_node) {
1576                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1577                         if (err)
1578                                 goto out;
1579                         err = store_status(status, start, current_node, i - start);
1580                         if (err)
1581                                 goto out;
1582                         start = i;
1583                         current_node = node;
1584                 }
1585
1586                 /*
1587                  * Errors in the page lookup or isolation are not fatal and we simply
1588                  * report them via status
1589                  */
1590                 err = add_page_for_migration(mm, addr, current_node,
1591                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1592                 if (!err)
1593                         continue;
1594
1595                 err = store_status(status, i, err, 1);
1596                 if (err)
1597                         goto out_flush;
1598
1599                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1600                 if (err)
1601                         goto out;
1602                 if (i > start) {
1603                         err = store_status(status, start, current_node, i - start);
1604                         if (err)
1605                                 goto out;
1606                 }
1607                 current_node = NUMA_NO_NODE;
1608         }
1609 out_flush:
1610         if (list_empty(&pagelist))
1611                 return err;
1612
1613         /* Make sure we do not overwrite the existing error */
1614         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1615         if (!err1)
1616                 err1 = store_status(status, start, current_node, i - start);
1617         if (!err)
1618                 err = err1;
1619 out:
1620         return err;
1621 }
1622
1623 /*
1624  * Determine the nodes of an array of pages and store it in an array of status.
1625  */
1626 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1627                                 const void __user **pages, int *status)
1628 {
1629         unsigned long i;
1630
1631         down_read(&mm->mmap_sem);
1632
1633         for (i = 0; i < nr_pages; i++) {
1634                 unsigned long addr = (unsigned long)(*pages);
1635                 struct vm_area_struct *vma;
1636                 struct page *page;
1637                 int err = -EFAULT;
1638
1639                 vma = find_vma(mm, addr);
1640                 if (!vma || addr < vma->vm_start)
1641                         goto set_status;
1642
1643                 /* FOLL_DUMP to ignore special (like zero) pages */
1644                 page = follow_page(vma, addr, FOLL_DUMP);
1645
1646                 err = PTR_ERR(page);
1647                 if (IS_ERR(page))
1648                         goto set_status;
1649
1650                 err = page ? page_to_nid(page) : -ENOENT;
1651 set_status:
1652                 *status = err;
1653
1654                 pages++;
1655                 status++;
1656         }
1657
1658         up_read(&mm->mmap_sem);
1659 }
1660
1661 /*
1662  * Determine the nodes of a user array of pages and store it in
1663  * a user array of status.
1664  */
1665 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1666                          const void __user * __user *pages,
1667                          int __user *status)
1668 {
1669 #define DO_PAGES_STAT_CHUNK_NR 16
1670         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1671         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1672
1673         while (nr_pages) {
1674                 unsigned long chunk_nr;
1675
1676                 chunk_nr = nr_pages;
1677                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1678                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1679
1680                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1681                         break;
1682
1683                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1684
1685                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1686                         break;
1687
1688                 pages += chunk_nr;
1689                 status += chunk_nr;
1690                 nr_pages -= chunk_nr;
1691         }
1692         return nr_pages ? -EFAULT : 0;
1693 }
1694
1695 /*
1696  * Move a list of pages in the address space of the currently executing
1697  * process.
1698  */
1699 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1700                              const void __user * __user *pages,
1701                              const int __user *nodes,
1702                              int __user *status, int flags)
1703 {
1704         struct task_struct *task;
1705         struct mm_struct *mm;
1706         int err;
1707         nodemask_t task_nodes;
1708
1709         /* Check flags */
1710         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1711                 return -EINVAL;
1712
1713         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1714                 return -EPERM;
1715
1716         /* Find the mm_struct */
1717         rcu_read_lock();
1718         task = pid ? find_task_by_vpid(pid) : current;
1719         if (!task) {
1720                 rcu_read_unlock();
1721                 return -ESRCH;
1722         }
1723         get_task_struct(task);
1724
1725         /*
1726          * Check if this process has the right to modify the specified
1727          * process. Use the regular "ptrace_may_access()" checks.
1728          */
1729         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1730                 rcu_read_unlock();
1731                 err = -EPERM;
1732                 goto out;
1733         }
1734         rcu_read_unlock();
1735
1736         err = security_task_movememory(task);
1737         if (err)
1738                 goto out;
1739
1740         task_nodes = cpuset_mems_allowed(task);
1741         mm = get_task_mm(task);
1742         put_task_struct(task);
1743
1744         if (!mm)
1745                 return -EINVAL;
1746
1747         if (nodes)
1748                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1749                                     nodes, status, flags);
1750         else
1751                 err = do_pages_stat(mm, nr_pages, pages, status);
1752
1753         mmput(mm);
1754         return err;
1755
1756 out:
1757         put_task_struct(task);
1758         return err;
1759 }
1760
1761 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1762                 const void __user * __user *, pages,
1763                 const int __user *, nodes,
1764                 int __user *, status, int, flags)
1765 {
1766         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1767 }
1768
1769 #ifdef CONFIG_COMPAT
1770 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1771                        compat_uptr_t __user *, pages32,
1772                        const int __user *, nodes,
1773                        int __user *, status,
1774                        int, flags)
1775 {
1776         const void __user * __user *pages;
1777         int i;
1778
1779         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1780         for (i = 0; i < nr_pages; i++) {
1781                 compat_uptr_t p;
1782
1783                 if (get_user(p, pages32 + i) ||
1784                         put_user(compat_ptr(p), pages + i))
1785                         return -EFAULT;
1786         }
1787         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1788 }
1789 #endif /* CONFIG_COMPAT */
1790
1791 #ifdef CONFIG_NUMA_BALANCING
1792 /*
1793  * Returns true if this is a safe migration target node for misplaced NUMA
1794  * pages. Currently it only checks the watermarks which crude
1795  */
1796 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1797                                    unsigned long nr_migrate_pages)
1798 {
1799         int z;
1800
1801         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1802                 struct zone *zone = pgdat->node_zones + z;
1803
1804                 if (!populated_zone(zone))
1805                         continue;
1806
1807                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1808                 if (!zone_watermark_ok(zone, 0,
1809                                        high_wmark_pages(zone) +
1810                                        nr_migrate_pages,
1811                                        0, 0))
1812                         continue;
1813                 return true;
1814         }
1815         return false;
1816 }
1817
1818 static struct page *alloc_misplaced_dst_page(struct page *page,
1819                                            unsigned long data)
1820 {
1821         int nid = (int) data;
1822         struct page *newpage;
1823
1824         newpage = __alloc_pages_node(nid,
1825                                          (GFP_HIGHUSER_MOVABLE |
1826                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1827                                           __GFP_NORETRY | __GFP_NOWARN) &
1828                                          ~__GFP_RECLAIM, 0);
1829
1830         return newpage;
1831 }
1832
1833 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1834 {
1835         int page_lru;
1836
1837         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1838
1839         /* Avoid migrating to a node that is nearly full */
1840         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1841                 return 0;
1842
1843         if (isolate_lru_page(page))
1844                 return 0;
1845
1846         /*
1847          * migrate_misplaced_transhuge_page() skips page migration's usual
1848          * check on page_count(), so we must do it here, now that the page
1849          * has been isolated: a GUP pin, or any other pin, prevents migration.
1850          * The expected page count is 3: 1 for page's mapcount and 1 for the
1851          * caller's pin and 1 for the reference taken by isolate_lru_page().
1852          */
1853         if (PageTransHuge(page) && page_count(page) != 3) {
1854                 putback_lru_page(page);
1855                 return 0;
1856         }
1857
1858         page_lru = page_is_file_cache(page);
1859         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1860                                 hpage_nr_pages(page));
1861
1862         /*
1863          * Isolating the page has taken another reference, so the
1864          * caller's reference can be safely dropped without the page
1865          * disappearing underneath us during migration.
1866          */
1867         put_page(page);
1868         return 1;
1869 }
1870
1871 bool pmd_trans_migrating(pmd_t pmd)
1872 {
1873         struct page *page = pmd_page(pmd);
1874         return PageLocked(page);
1875 }
1876
1877 /*
1878  * Attempt to migrate a misplaced page to the specified destination
1879  * node. Caller is expected to have an elevated reference count on
1880  * the page that will be dropped by this function before returning.
1881  */
1882 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1883                            int node)
1884 {
1885         pg_data_t *pgdat = NODE_DATA(node);
1886         int isolated;
1887         int nr_remaining;
1888         LIST_HEAD(migratepages);
1889
1890         /*
1891          * Don't migrate file pages that are mapped in multiple processes
1892          * with execute permissions as they are probably shared libraries.
1893          */
1894         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1895             (vma->vm_flags & VM_EXEC))
1896                 goto out;
1897
1898         /*
1899          * Also do not migrate dirty pages as not all filesystems can move
1900          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1901          */
1902         if (page_is_file_cache(page) && PageDirty(page))
1903                 goto out;
1904
1905         isolated = numamigrate_isolate_page(pgdat, page);
1906         if (!isolated)
1907                 goto out;
1908
1909         list_add(&page->lru, &migratepages);
1910         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1911                                      NULL, node, MIGRATE_ASYNC,
1912                                      MR_NUMA_MISPLACED);
1913         if (nr_remaining) {
1914                 if (!list_empty(&migratepages)) {
1915                         list_del(&page->lru);
1916                         dec_node_page_state(page, NR_ISOLATED_ANON +
1917                                         page_is_file_cache(page));
1918                         putback_lru_page(page);
1919                 }
1920                 isolated = 0;
1921         } else
1922                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1923         BUG_ON(!list_empty(&migratepages));
1924         return isolated;
1925
1926 out:
1927         put_page(page);
1928         return 0;
1929 }
1930 #endif /* CONFIG_NUMA_BALANCING */
1931
1932 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1933 /*
1934  * Migrates a THP to a given target node. page must be locked and is unlocked
1935  * before returning.
1936  */
1937 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1938                                 struct vm_area_struct *vma,
1939                                 pmd_t *pmd, pmd_t entry,
1940                                 unsigned long address,
1941                                 struct page *page, int node)
1942 {
1943         spinlock_t *ptl;
1944         pg_data_t *pgdat = NODE_DATA(node);
1945         int isolated = 0;
1946         struct page *new_page = NULL;
1947         int page_lru = page_is_file_cache(page);
1948         unsigned long start = address & HPAGE_PMD_MASK;
1949
1950         new_page = alloc_pages_node(node,
1951                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1952                 HPAGE_PMD_ORDER);
1953         if (!new_page)
1954                 goto out_fail;
1955         prep_transhuge_page(new_page);
1956
1957         isolated = numamigrate_isolate_page(pgdat, page);
1958         if (!isolated) {
1959                 put_page(new_page);
1960                 goto out_fail;
1961         }
1962
1963         /* Prepare a page as a migration target */
1964         __SetPageLocked(new_page);
1965         if (PageSwapBacked(page))
1966                 __SetPageSwapBacked(new_page);
1967
1968         /* anon mapping, we can simply copy page->mapping to the new page: */
1969         new_page->mapping = page->mapping;
1970         new_page->index = page->index;
1971         /* flush the cache before copying using the kernel virtual address */
1972         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
1973         migrate_page_copy(new_page, page);
1974         WARN_ON(PageLRU(new_page));
1975
1976         /* Recheck the target PMD */
1977         ptl = pmd_lock(mm, pmd);
1978         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
1979                 spin_unlock(ptl);
1980
1981                 /* Reverse changes made by migrate_page_copy() */
1982                 if (TestClearPageActive(new_page))
1983                         SetPageActive(page);
1984                 if (TestClearPageUnevictable(new_page))
1985                         SetPageUnevictable(page);
1986
1987                 unlock_page(new_page);
1988                 put_page(new_page);             /* Free it */
1989
1990                 /* Retake the callers reference and putback on LRU */
1991                 get_page(page);
1992                 putback_lru_page(page);
1993                 mod_node_page_state(page_pgdat(page),
1994                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1995
1996                 goto out_unlock;
1997         }
1998
1999         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2000         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2001
2002         /*
2003          * Overwrite the old entry under pagetable lock and establish
2004          * the new PTE. Any parallel GUP will either observe the old
2005          * page blocking on the page lock, block on the page table
2006          * lock or observe the new page. The SetPageUptodate on the
2007          * new page and page_add_new_anon_rmap guarantee the copy is
2008          * visible before the pagetable update.
2009          */
2010         page_add_anon_rmap(new_page, vma, start, true);
2011         /*
2012          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2013          * has already been flushed globally.  So no TLB can be currently
2014          * caching this non present pmd mapping.  There's no need to clear the
2015          * pmd before doing set_pmd_at(), nor to flush the TLB after
2016          * set_pmd_at().  Clearing the pmd here would introduce a race
2017          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2018          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2019          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2020          * pmd.
2021          */
2022         set_pmd_at(mm, start, pmd, entry);
2023         update_mmu_cache_pmd(vma, address, &entry);
2024
2025         page_ref_unfreeze(page, 2);
2026         mlock_migrate_page(new_page, page);
2027         page_remove_rmap(page, true);
2028         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2029
2030         spin_unlock(ptl);
2031
2032         /* Take an "isolate" reference and put new page on the LRU. */
2033         get_page(new_page);
2034         putback_lru_page(new_page);
2035
2036         unlock_page(new_page);
2037         unlock_page(page);
2038         put_page(page);                 /* Drop the rmap reference */
2039         put_page(page);                 /* Drop the LRU isolation reference */
2040
2041         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2042         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2043
2044         mod_node_page_state(page_pgdat(page),
2045                         NR_ISOLATED_ANON + page_lru,
2046                         -HPAGE_PMD_NR);
2047         return isolated;
2048
2049 out_fail:
2050         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2051         ptl = pmd_lock(mm, pmd);
2052         if (pmd_same(*pmd, entry)) {
2053                 entry = pmd_modify(entry, vma->vm_page_prot);
2054                 set_pmd_at(mm, start, pmd, entry);
2055                 update_mmu_cache_pmd(vma, address, &entry);
2056         }
2057         spin_unlock(ptl);
2058
2059 out_unlock:
2060         unlock_page(page);
2061         put_page(page);
2062         return 0;
2063 }
2064 #endif /* CONFIG_NUMA_BALANCING */
2065
2066 #endif /* CONFIG_NUMA */
2067
2068 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2069 struct migrate_vma {
2070         struct vm_area_struct   *vma;
2071         unsigned long           *dst;
2072         unsigned long           *src;
2073         unsigned long           cpages;
2074         unsigned long           npages;
2075         unsigned long           start;
2076         unsigned long           end;
2077 };
2078
2079 static int migrate_vma_collect_hole(unsigned long start,
2080                                     unsigned long end,
2081                                     struct mm_walk *walk)
2082 {
2083         struct migrate_vma *migrate = walk->private;
2084         unsigned long addr;
2085
2086         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2087                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2088                 migrate->dst[migrate->npages] = 0;
2089                 migrate->npages++;
2090                 migrate->cpages++;
2091         }
2092
2093         return 0;
2094 }
2095
2096 static int migrate_vma_collect_skip(unsigned long start,
2097                                     unsigned long end,
2098                                     struct mm_walk *walk)
2099 {
2100         struct migrate_vma *migrate = walk->private;
2101         unsigned long addr;
2102
2103         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2104                 migrate->dst[migrate->npages] = 0;
2105                 migrate->src[migrate->npages++] = 0;
2106         }
2107
2108         return 0;
2109 }
2110
2111 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2112                                    unsigned long start,
2113                                    unsigned long end,
2114                                    struct mm_walk *walk)
2115 {
2116         struct migrate_vma *migrate = walk->private;
2117         struct vm_area_struct *vma = walk->vma;
2118         struct mm_struct *mm = vma->vm_mm;
2119         unsigned long addr = start, unmapped = 0;
2120         spinlock_t *ptl;
2121         pte_t *ptep;
2122
2123 again:
2124         if (pmd_none(*pmdp))
2125                 return migrate_vma_collect_hole(start, end, walk);
2126
2127         if (pmd_trans_huge(*pmdp)) {
2128                 struct page *page;
2129
2130                 ptl = pmd_lock(mm, pmdp);
2131                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2132                         spin_unlock(ptl);
2133                         goto again;
2134                 }
2135
2136                 page = pmd_page(*pmdp);
2137                 if (is_huge_zero_page(page)) {
2138                         spin_unlock(ptl);
2139                         split_huge_pmd(vma, pmdp, addr);
2140                         if (pmd_trans_unstable(pmdp))
2141                                 return migrate_vma_collect_skip(start, end,
2142                                                                 walk);
2143                 } else {
2144                         int ret;
2145
2146                         get_page(page);
2147                         spin_unlock(ptl);
2148                         if (unlikely(!trylock_page(page)))
2149                                 return migrate_vma_collect_skip(start, end,
2150                                                                 walk);
2151                         ret = split_huge_page(page);
2152                         unlock_page(page);
2153                         put_page(page);
2154                         if (ret)
2155                                 return migrate_vma_collect_skip(start, end,
2156                                                                 walk);
2157                         if (pmd_none(*pmdp))
2158                                 return migrate_vma_collect_hole(start, end,
2159                                                                 walk);
2160                 }
2161         }
2162
2163         if (unlikely(pmd_bad(*pmdp)))
2164                 return migrate_vma_collect_skip(start, end, walk);
2165
2166         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2167         arch_enter_lazy_mmu_mode();
2168
2169         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2170                 unsigned long mpfn, pfn;
2171                 struct page *page;
2172                 swp_entry_t entry;
2173                 pte_t pte;
2174
2175                 pte = *ptep;
2176                 pfn = pte_pfn(pte);
2177
2178                 if (pte_none(pte)) {
2179                         mpfn = MIGRATE_PFN_MIGRATE;
2180                         migrate->cpages++;
2181                         pfn = 0;
2182                         goto next;
2183                 }
2184
2185                 if (!pte_present(pte)) {
2186                         mpfn = pfn = 0;
2187
2188                         /*
2189                          * Only care about unaddressable device page special
2190                          * page table entry. Other special swap entries are not
2191                          * migratable, and we ignore regular swapped page.
2192                          */
2193                         entry = pte_to_swp_entry(pte);
2194                         if (!is_device_private_entry(entry))
2195                                 goto next;
2196
2197                         page = device_private_entry_to_page(entry);
2198                         mpfn = migrate_pfn(page_to_pfn(page))|
2199                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2200                         if (is_write_device_private_entry(entry))
2201                                 mpfn |= MIGRATE_PFN_WRITE;
2202                 } else {
2203                         if (is_zero_pfn(pfn)) {
2204                                 mpfn = MIGRATE_PFN_MIGRATE;
2205                                 migrate->cpages++;
2206                                 pfn = 0;
2207                                 goto next;
2208                         }
2209                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2210                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2211                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2212                 }
2213
2214                 /* FIXME support THP */
2215                 if (!page || !page->mapping || PageTransCompound(page)) {
2216                         mpfn = pfn = 0;
2217                         goto next;
2218                 }
2219                 pfn = page_to_pfn(page);
2220
2221                 /*
2222                  * By getting a reference on the page we pin it and that blocks
2223                  * any kind of migration. Side effect is that it "freezes" the
2224                  * pte.
2225                  *
2226                  * We drop this reference after isolating the page from the lru
2227                  * for non device page (device page are not on the lru and thus
2228                  * can't be dropped from it).
2229                  */
2230                 get_page(page);
2231                 migrate->cpages++;
2232
2233                 /*
2234                  * Optimize for the common case where page is only mapped once
2235                  * in one process. If we can lock the page, then we can safely
2236                  * set up a special migration page table entry now.
2237                  */
2238                 if (trylock_page(page)) {
2239                         pte_t swp_pte;
2240
2241                         mpfn |= MIGRATE_PFN_LOCKED;
2242                         ptep_get_and_clear(mm, addr, ptep);
2243
2244                         /* Setup special migration page table entry */
2245                         entry = make_migration_entry(page, mpfn &
2246                                                      MIGRATE_PFN_WRITE);
2247                         swp_pte = swp_entry_to_pte(entry);
2248                         if (pte_soft_dirty(pte))
2249                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2250                         set_pte_at(mm, addr, ptep, swp_pte);
2251
2252                         /*
2253                          * This is like regular unmap: we remove the rmap and
2254                          * drop page refcount. Page won't be freed, as we took
2255                          * a reference just above.
2256                          */
2257                         page_remove_rmap(page, false);
2258                         put_page(page);
2259
2260                         if (pte_present(pte))
2261                                 unmapped++;
2262                 }
2263
2264 next:
2265                 migrate->dst[migrate->npages] = 0;
2266                 migrate->src[migrate->npages++] = mpfn;
2267         }
2268         arch_leave_lazy_mmu_mode();
2269         pte_unmap_unlock(ptep - 1, ptl);
2270
2271         /* Only flush the TLB if we actually modified any entries */
2272         if (unmapped)
2273                 flush_tlb_range(walk->vma, start, end);
2274
2275         return 0;
2276 }
2277
2278 /*
2279  * migrate_vma_collect() - collect pages over a range of virtual addresses
2280  * @migrate: migrate struct containing all migration information
2281  *
2282  * This will walk the CPU page table. For each virtual address backed by a
2283  * valid page, it updates the src array and takes a reference on the page, in
2284  * order to pin the page until we lock it and unmap it.
2285  */
2286 static void migrate_vma_collect(struct migrate_vma *migrate)
2287 {
2288         struct mmu_notifier_range range;
2289         struct mm_walk mm_walk;
2290
2291         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2292         mm_walk.pte_entry = NULL;
2293         mm_walk.pte_hole = migrate_vma_collect_hole;
2294         mm_walk.hugetlb_entry = NULL;
2295         mm_walk.test_walk = NULL;
2296         mm_walk.vma = migrate->vma;
2297         mm_walk.mm = migrate->vma->vm_mm;
2298         mm_walk.private = migrate;
2299
2300         mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2301                                 migrate->end);
2302         mmu_notifier_invalidate_range_start(&range);
2303         walk_page_range(migrate->start, migrate->end, &mm_walk);
2304         mmu_notifier_invalidate_range_end(&range);
2305
2306         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2307 }
2308
2309 /*
2310  * migrate_vma_check_page() - check if page is pinned or not
2311  * @page: struct page to check
2312  *
2313  * Pinned pages cannot be migrated. This is the same test as in
2314  * migrate_page_move_mapping(), except that here we allow migration of a
2315  * ZONE_DEVICE page.
2316  */
2317 static bool migrate_vma_check_page(struct page *page)
2318 {
2319         /*
2320          * One extra ref because caller holds an extra reference, either from
2321          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2322          * a device page.
2323          */
2324         int extra = 1;
2325
2326         /*
2327          * FIXME support THP (transparent huge page), it is bit more complex to
2328          * check them than regular pages, because they can be mapped with a pmd
2329          * or with a pte (split pte mapping).
2330          */
2331         if (PageCompound(page))
2332                 return false;
2333
2334         /* Page from ZONE_DEVICE have one extra reference */
2335         if (is_zone_device_page(page)) {
2336                 /*
2337                  * Private page can never be pin as they have no valid pte and
2338                  * GUP will fail for those. Yet if there is a pending migration
2339                  * a thread might try to wait on the pte migration entry and
2340                  * will bump the page reference count. Sadly there is no way to
2341                  * differentiate a regular pin from migration wait. Hence to
2342                  * avoid 2 racing thread trying to migrate back to CPU to enter
2343                  * infinite loop (one stoping migration because the other is
2344                  * waiting on pte migration entry). We always return true here.
2345                  *
2346                  * FIXME proper solution is to rework migration_entry_wait() so
2347                  * it does not need to take a reference on page.
2348                  */
2349                 if (is_device_private_page(page))
2350                         return true;
2351
2352                 /*
2353                  * Only allow device public page to be migrated and account for
2354                  * the extra reference count imply by ZONE_DEVICE pages.
2355                  */
2356                 if (!is_device_public_page(page))
2357                         return false;
2358                 extra++;
2359         }
2360
2361         /* For file back page */
2362         if (page_mapping(page))
2363                 extra += 1 + page_has_private(page);
2364
2365         if ((page_count(page) - extra) > page_mapcount(page))
2366                 return false;
2367
2368         return true;
2369 }
2370
2371 /*
2372  * migrate_vma_prepare() - lock pages and isolate them from the lru
2373  * @migrate: migrate struct containing all migration information
2374  *
2375  * This locks pages that have been collected by migrate_vma_collect(). Once each
2376  * page is locked it is isolated from the lru (for non-device pages). Finally,
2377  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2378  * migrated by concurrent kernel threads.
2379  */
2380 static void migrate_vma_prepare(struct migrate_vma *migrate)
2381 {
2382         const unsigned long npages = migrate->npages;
2383         const unsigned long start = migrate->start;
2384         unsigned long addr, i, restore = 0;
2385         bool allow_drain = true;
2386
2387         lru_add_drain();
2388
2389         for (i = 0; (i < npages) && migrate->cpages; i++) {
2390                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2391                 bool remap = true;
2392
2393                 if (!page)
2394                         continue;
2395
2396                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2397                         /*
2398                          * Because we are migrating several pages there can be
2399                          * a deadlock between 2 concurrent migration where each
2400                          * are waiting on each other page lock.
2401                          *
2402                          * Make migrate_vma() a best effort thing and backoff
2403                          * for any page we can not lock right away.
2404                          */
2405                         if (!trylock_page(page)) {
2406                                 migrate->src[i] = 0;
2407                                 migrate->cpages--;
2408                                 put_page(page);
2409                                 continue;
2410                         }
2411                         remap = false;
2412                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2413                 }
2414
2415                 /* ZONE_DEVICE pages are not on LRU */
2416                 if (!is_zone_device_page(page)) {
2417                         if (!PageLRU(page) && allow_drain) {
2418                                 /* Drain CPU's pagevec */
2419                                 lru_add_drain_all();
2420                                 allow_drain = false;
2421                         }
2422
2423                         if (isolate_lru_page(page)) {
2424                                 if (remap) {
2425                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2426                                         migrate->cpages--;
2427                                         restore++;
2428                                 } else {
2429                                         migrate->src[i] = 0;
2430                                         unlock_page(page);
2431                                         migrate->cpages--;
2432                                         put_page(page);
2433                                 }
2434                                 continue;
2435                         }
2436
2437                         /* Drop the reference we took in collect */
2438                         put_page(page);
2439                 }
2440
2441                 if (!migrate_vma_check_page(page)) {
2442                         if (remap) {
2443                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2444                                 migrate->cpages--;
2445                                 restore++;
2446
2447                                 if (!is_zone_device_page(page)) {
2448                                         get_page(page);
2449                                         putback_lru_page(page);
2450                                 }
2451                         } else {
2452                                 migrate->src[i] = 0;
2453                                 unlock_page(page);
2454                                 migrate->cpages--;
2455
2456                                 if (!is_zone_device_page(page))
2457                                         putback_lru_page(page);
2458                                 else
2459                                         put_page(page);
2460                         }
2461                 }
2462         }
2463
2464         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2465                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2466
2467                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2468                         continue;
2469
2470                 remove_migration_pte(page, migrate->vma, addr, page);
2471
2472                 migrate->src[i] = 0;
2473                 unlock_page(page);
2474                 put_page(page);
2475                 restore--;
2476         }
2477 }
2478
2479 /*
2480  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2481  * @migrate: migrate struct containing all migration information
2482  *
2483  * Replace page mapping (CPU page table pte) with a special migration pte entry
2484  * and check again if it has been pinned. Pinned pages are restored because we
2485  * cannot migrate them.
2486  *
2487  * This is the last step before we call the device driver callback to allocate
2488  * destination memory and copy contents of original page over to new page.
2489  */
2490 static void migrate_vma_unmap(struct migrate_vma *migrate)
2491 {
2492         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2493         const unsigned long npages = migrate->npages;
2494         const unsigned long start = migrate->start;
2495         unsigned long addr, i, restore = 0;
2496
2497         for (i = 0; i < npages; i++) {
2498                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2499
2500                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2501                         continue;
2502
2503                 if (page_mapped(page)) {
2504                         try_to_unmap(page, flags);
2505                         if (page_mapped(page))
2506                                 goto restore;
2507                 }
2508
2509                 if (migrate_vma_check_page(page))
2510                         continue;
2511
2512 restore:
2513                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2514                 migrate->cpages--;
2515                 restore++;
2516         }
2517
2518         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2519                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2520
2521                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2522                         continue;
2523
2524                 remove_migration_ptes(page, page, false);
2525
2526                 migrate->src[i] = 0;
2527                 unlock_page(page);
2528                 restore--;
2529
2530                 if (is_zone_device_page(page))
2531                         put_page(page);
2532                 else
2533                         putback_lru_page(page);
2534         }
2535 }
2536
2537 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2538                                     unsigned long addr,
2539                                     struct page *page,
2540                                     unsigned long *src,
2541                                     unsigned long *dst)
2542 {
2543         struct vm_area_struct *vma = migrate->vma;
2544         struct mm_struct *mm = vma->vm_mm;
2545         struct mem_cgroup *memcg;
2546         bool flush = false;
2547         spinlock_t *ptl;
2548         pte_t entry;
2549         pgd_t *pgdp;
2550         p4d_t *p4dp;
2551         pud_t *pudp;
2552         pmd_t *pmdp;
2553         pte_t *ptep;
2554
2555         /* Only allow populating anonymous memory */
2556         if (!vma_is_anonymous(vma))
2557                 goto abort;
2558
2559         pgdp = pgd_offset(mm, addr);
2560         p4dp = p4d_alloc(mm, pgdp, addr);
2561         if (!p4dp)
2562                 goto abort;
2563         pudp = pud_alloc(mm, p4dp, addr);
2564         if (!pudp)
2565                 goto abort;
2566         pmdp = pmd_alloc(mm, pudp, addr);
2567         if (!pmdp)
2568                 goto abort;
2569
2570         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2571                 goto abort;
2572
2573         /*
2574          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2575          * pte_offset_map() on pmds where a huge pmd might be created
2576          * from a different thread.
2577          *
2578          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2579          * parallel threads are excluded by other means.
2580          *
2581          * Here we only have down_read(mmap_sem).
2582          */
2583         if (pte_alloc(mm, pmdp, addr))
2584                 goto abort;
2585
2586         /* See the comment in pte_alloc_one_map() */
2587         if (unlikely(pmd_trans_unstable(pmdp)))
2588                 goto abort;
2589
2590         if (unlikely(anon_vma_prepare(vma)))
2591                 goto abort;
2592         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2593                 goto abort;
2594
2595         /*
2596          * The memory barrier inside __SetPageUptodate makes sure that
2597          * preceding stores to the page contents become visible before
2598          * the set_pte_at() write.
2599          */
2600         __SetPageUptodate(page);
2601
2602         if (is_zone_device_page(page)) {
2603                 if (is_device_private_page(page)) {
2604                         swp_entry_t swp_entry;
2605
2606                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2607                         entry = swp_entry_to_pte(swp_entry);
2608                 } else if (is_device_public_page(page)) {
2609                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2610                         if (vma->vm_flags & VM_WRITE)
2611                                 entry = pte_mkwrite(pte_mkdirty(entry));
2612                         entry = pte_mkdevmap(entry);
2613                 }
2614         } else {
2615                 entry = mk_pte(page, vma->vm_page_prot);
2616                 if (vma->vm_flags & VM_WRITE)
2617                         entry = pte_mkwrite(pte_mkdirty(entry));
2618         }
2619
2620         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2621
2622         if (pte_present(*ptep)) {
2623                 unsigned long pfn = pte_pfn(*ptep);
2624
2625                 if (!is_zero_pfn(pfn)) {
2626                         pte_unmap_unlock(ptep, ptl);
2627                         mem_cgroup_cancel_charge(page, memcg, false);
2628                         goto abort;
2629                 }
2630                 flush = true;
2631         } else if (!pte_none(*ptep)) {
2632                 pte_unmap_unlock(ptep, ptl);
2633                 mem_cgroup_cancel_charge(page, memcg, false);
2634                 goto abort;
2635         }
2636
2637         /*
2638          * Check for usefaultfd but do not deliver the fault. Instead,
2639          * just back off.
2640          */
2641         if (userfaultfd_missing(vma)) {
2642                 pte_unmap_unlock(ptep, ptl);
2643                 mem_cgroup_cancel_charge(page, memcg, false);
2644                 goto abort;
2645         }
2646
2647         inc_mm_counter(mm, MM_ANONPAGES);
2648         page_add_new_anon_rmap(page, vma, addr, false);
2649         mem_cgroup_commit_charge(page, memcg, false, false);
2650         if (!is_zone_device_page(page))
2651                 lru_cache_add_active_or_unevictable(page, vma);
2652         get_page(page);
2653
2654         if (flush) {
2655                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2656                 ptep_clear_flush_notify(vma, addr, ptep);
2657                 set_pte_at_notify(mm, addr, ptep, entry);
2658                 update_mmu_cache(vma, addr, ptep);
2659         } else {
2660                 /* No need to invalidate - it was non-present before */
2661                 set_pte_at(mm, addr, ptep, entry);
2662                 update_mmu_cache(vma, addr, ptep);
2663         }
2664
2665         pte_unmap_unlock(ptep, ptl);
2666         *src = MIGRATE_PFN_MIGRATE;
2667         return;
2668
2669 abort:
2670         *src &= ~MIGRATE_PFN_MIGRATE;
2671 }
2672
2673 /*
2674  * migrate_vma_pages() - migrate meta-data from src page to dst page
2675  * @migrate: migrate struct containing all migration information
2676  *
2677  * This migrates struct page meta-data from source struct page to destination
2678  * struct page. This effectively finishes the migration from source page to the
2679  * destination page.
2680  */
2681 static void migrate_vma_pages(struct migrate_vma *migrate)
2682 {
2683         const unsigned long npages = migrate->npages;
2684         const unsigned long start = migrate->start;
2685         struct mmu_notifier_range range;
2686         unsigned long addr, i;
2687         bool notified = false;
2688
2689         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2690                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2691                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2692                 struct address_space *mapping;
2693                 int r;
2694
2695                 if (!newpage) {
2696                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2697                         continue;
2698                 }
2699
2700                 if (!page) {
2701                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2702                                 continue;
2703                         }
2704                         if (!notified) {
2705                                 notified = true;
2706
2707                                 mmu_notifier_range_init(&range,
2708                                                         migrate->vma->vm_mm,
2709                                                         addr, migrate->end);
2710                                 mmu_notifier_invalidate_range_start(&range);
2711                         }
2712                         migrate_vma_insert_page(migrate, addr, newpage,
2713                                                 &migrate->src[i],
2714                                                 &migrate->dst[i]);
2715                         continue;
2716                 }
2717
2718                 mapping = page_mapping(page);
2719
2720                 if (is_zone_device_page(newpage)) {
2721                         if (is_device_private_page(newpage)) {
2722                                 /*
2723                                  * For now only support private anonymous when
2724                                  * migrating to un-addressable device memory.
2725                                  */
2726                                 if (mapping) {
2727                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2728                                         continue;
2729                                 }
2730                         } else if (!is_device_public_page(newpage)) {
2731                                 /*
2732                                  * Other types of ZONE_DEVICE page are not
2733                                  * supported.
2734                                  */
2735                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2736                                 continue;
2737                         }
2738                 }
2739
2740                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2741                 if (r != MIGRATEPAGE_SUCCESS)
2742                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2743         }
2744
2745         /*
2746          * No need to double call mmu_notifier->invalidate_range() callback as
2747          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2748          * did already call it.
2749          */
2750         if (notified)
2751                 mmu_notifier_invalidate_range_only_end(&range);
2752 }
2753
2754 /*
2755  * migrate_vma_finalize() - restore CPU page table entry
2756  * @migrate: migrate struct containing all migration information
2757  *
2758  * This replaces the special migration pte entry with either a mapping to the
2759  * new page if migration was successful for that page, or to the original page
2760  * otherwise.
2761  *
2762  * This also unlocks the pages and puts them back on the lru, or drops the extra
2763  * refcount, for device pages.
2764  */
2765 static void migrate_vma_finalize(struct migrate_vma *migrate)
2766 {
2767         const unsigned long npages = migrate->npages;
2768         unsigned long i;
2769
2770         for (i = 0; i < npages; i++) {
2771                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2772                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2773
2774                 if (!page) {
2775                         if (newpage) {
2776                                 unlock_page(newpage);
2777                                 put_page(newpage);
2778                         }
2779                         continue;
2780                 }
2781
2782                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2783                         if (newpage) {
2784                                 unlock_page(newpage);
2785                                 put_page(newpage);
2786                         }
2787                         newpage = page;
2788                 }
2789
2790                 remove_migration_ptes(page, newpage, false);
2791                 unlock_page(page);
2792                 migrate->cpages--;
2793
2794                 if (is_zone_device_page(page))
2795                         put_page(page);
2796                 else
2797                         putback_lru_page(page);
2798
2799                 if (newpage != page) {
2800                         unlock_page(newpage);
2801                         if (is_zone_device_page(newpage))
2802                                 put_page(newpage);
2803                         else
2804                                 putback_lru_page(newpage);
2805                 }
2806         }
2807 }
2808
2809 /*
2810  * migrate_vma() - migrate a range of memory inside vma
2811  *
2812  * @ops: migration callback for allocating destination memory and copying
2813  * @vma: virtual memory area containing the range to be migrated
2814  * @start: start address of the range to migrate (inclusive)
2815  * @end: end address of the range to migrate (exclusive)
2816  * @src: array of hmm_pfn_t containing source pfns
2817  * @dst: array of hmm_pfn_t containing destination pfns
2818  * @private: pointer passed back to each of the callback
2819  * Returns: 0 on success, error code otherwise
2820  *
2821  * This function tries to migrate a range of memory virtual address range, using
2822  * callbacks to allocate and copy memory from source to destination. First it
2823  * collects all the pages backing each virtual address in the range, saving this
2824  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2825  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2826  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2827  * in the corresponding src array entry. It then restores any pages that are
2828  * pinned, by remapping and unlocking those pages.
2829  *
2830  * At this point it calls the alloc_and_copy() callback. For documentation on
2831  * what is expected from that callback, see struct migrate_vma_ops comments in
2832  * include/linux/migrate.h
2833  *
2834  * After the alloc_and_copy() callback, this function goes over each entry in
2835  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2836  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2837  * then the function tries to migrate struct page information from the source
2838  * struct page to the destination struct page. If it fails to migrate the struct
2839  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2840  * array.
2841  *
2842  * At this point all successfully migrated pages have an entry in the src
2843  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2844  * array entry with MIGRATE_PFN_VALID flag set.
2845  *
2846  * It then calls the finalize_and_map() callback. See comments for "struct
2847  * migrate_vma_ops", in include/linux/migrate.h for details about
2848  * finalize_and_map() behavior.
2849  *
2850  * After the finalize_and_map() callback, for successfully migrated pages, this
2851  * function updates the CPU page table to point to new pages, otherwise it
2852  * restores the CPU page table to point to the original source pages.
2853  *
2854  * Function returns 0 after the above steps, even if no pages were migrated
2855  * (The function only returns an error if any of the arguments are invalid.)
2856  *
2857  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2858  * unsigned long entries.
2859  */
2860 int migrate_vma(const struct migrate_vma_ops *ops,
2861                 struct vm_area_struct *vma,
2862                 unsigned long start,
2863                 unsigned long end,
2864                 unsigned long *src,
2865                 unsigned long *dst,
2866                 void *private)
2867 {
2868         struct migrate_vma migrate;
2869
2870         /* Sanity check the arguments */
2871         start &= PAGE_MASK;
2872         end &= PAGE_MASK;
2873         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2874                         vma_is_dax(vma))
2875                 return -EINVAL;
2876         if (start < vma->vm_start || start >= vma->vm_end)
2877                 return -EINVAL;
2878         if (end <= vma->vm_start || end > vma->vm_end)
2879                 return -EINVAL;
2880         if (!ops || !src || !dst || start >= end)
2881                 return -EINVAL;
2882
2883         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2884         migrate.src = src;
2885         migrate.dst = dst;
2886         migrate.start = start;
2887         migrate.npages = 0;
2888         migrate.cpages = 0;
2889         migrate.end = end;
2890         migrate.vma = vma;
2891
2892         /* Collect, and try to unmap source pages */
2893         migrate_vma_collect(&migrate);
2894         if (!migrate.cpages)
2895                 return 0;
2896
2897         /* Lock and isolate page */
2898         migrate_vma_prepare(&migrate);
2899         if (!migrate.cpages)
2900                 return 0;
2901
2902         /* Unmap pages */
2903         migrate_vma_unmap(&migrate);
2904         if (!migrate.cpages)
2905                 return 0;
2906
2907         /*
2908          * At this point pages are locked and unmapped, and thus they have
2909          * stable content and can safely be copied to destination memory that
2910          * is allocated by the callback.
2911          *
2912          * Note that migration can fail in migrate_vma_struct_page() for each
2913          * individual page.
2914          */
2915         ops->alloc_and_copy(vma, src, dst, start, end, private);
2916
2917         /* This does the real migration of struct page */
2918         migrate_vma_pages(&migrate);
2919
2920         ops->finalize_and_map(vma, src, dst, start, end, private);
2921
2922         /* Unlock and remap pages */
2923         migrate_vma_finalize(&migrate);
2924
2925         return 0;
2926 }
2927 EXPORT_SYMBOL(migrate_vma);
2928 #endif /* defined(MIGRATE_VMA_HELPER) */