Merge branch 'work.thaw' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                                 flush_dcache_page(new);
252                         }
253                 } else
254                         flush_dcache_page(new);
255
256 #ifdef CONFIG_HUGETLB_PAGE
257                 if (PageHuge(new)) {
258                         pte = pte_mkhuge(pte);
259                         pte = arch_make_huge_pte(pte, vma, new, 0);
260                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261                         if (PageAnon(new))
262                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
263                         else
264                                 page_dup_rmap(new, true);
265                 } else
266 #endif
267                 {
268                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270                         if (PageAnon(new))
271                                 page_add_anon_rmap(new, vma, pvmw.address, false);
272                         else
273                                 page_add_file_rmap(new, false);
274                 }
275                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276                         mlock_vma_page(new);
277
278                 /* No need to invalidate - it was non-present before */
279                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280         }
281
282         return true;
283 }
284
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291         struct rmap_walk_control rwc = {
292                 .rmap_one = remove_migration_pte,
293                 .arg = old,
294         };
295
296         if (locked)
297                 rmap_walk_locked(new, &rwc);
298         else
299                 rmap_walk(new, &rwc);
300 }
301
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308                                 spinlock_t *ptl)
309 {
310         pte_t pte;
311         swp_entry_t entry;
312         struct page *page;
313
314         spin_lock(ptl);
315         pte = *ptep;
316         if (!is_swap_pte(pte))
317                 goto out;
318
319         entry = pte_to_swp_entry(pte);
320         if (!is_migration_entry(entry))
321                 goto out;
322
323         page = migration_entry_to_page(entry);
324
325         /*
326          * Once radix-tree replacement of page migration started, page_count
327          * *must* be zero. And, we don't want to call wait_on_page_locked()
328          * against a page without get_page().
329          * So, we use get_page_unless_zero(), here. Even failed, page fault
330          * will occur again.
331          */
332         if (!get_page_unless_zero(page))
333                 goto out;
334         pte_unmap_unlock(ptep, ptl);
335         wait_on_page_locked(page);
336         put_page(page);
337         return;
338 out:
339         pte_unmap_unlock(ptep, ptl);
340 }
341
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343                                 unsigned long address)
344 {
345         spinlock_t *ptl = pte_lockptr(mm, pmd);
346         pte_t *ptep = pte_offset_map(pmd, address);
347         __migration_entry_wait(mm, ptep, ptl);
348 }
349
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351                 struct mm_struct *mm, pte_t *pte)
352 {
353         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354         __migration_entry_wait(mm, pte, ptl);
355 }
356
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360         spinlock_t *ptl;
361         struct page *page;
362
363         ptl = pmd_lock(mm, pmd);
364         if (!is_pmd_migration_entry(*pmd))
365                 goto unlock;
366         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367         if (!get_page_unless_zero(page))
368                 goto unlock;
369         spin_unlock(ptl);
370         wait_on_page_locked(page);
371         put_page(page);
372         return;
373 unlock:
374         spin_unlock(ptl);
375 }
376 #endif
377
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381                                                         enum migrate_mode mode)
382 {
383         struct buffer_head *bh = head;
384
385         /* Simple case, sync compaction */
386         if (mode != MIGRATE_ASYNC) {
387                 do {
388                         get_bh(bh);
389                         lock_buffer(bh);
390                         bh = bh->b_this_page;
391
392                 } while (bh != head);
393
394                 return true;
395         }
396
397         /* async case, we cannot block on lock_buffer so use trylock_buffer */
398         do {
399                 get_bh(bh);
400                 if (!trylock_buffer(bh)) {
401                         /*
402                          * We failed to lock the buffer and cannot stall in
403                          * async migration. Release the taken locks
404                          */
405                         struct buffer_head *failed_bh = bh;
406                         put_bh(failed_bh);
407                         bh = head;
408                         while (bh != failed_bh) {
409                                 unlock_buffer(bh);
410                                 put_bh(bh);
411                                 bh = bh->b_this_page;
412                         }
413                         return false;
414                 }
415
416                 bh = bh->b_this_page;
417         } while (bh != head);
418         return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422                                                         enum migrate_mode mode)
423 {
424         return true;
425 }
426 #endif /* CONFIG_BLOCK */
427
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437                 struct page *newpage, struct page *page,
438                 struct buffer_head *head, enum migrate_mode mode,
439                 int extra_count)
440 {
441         struct zone *oldzone, *newzone;
442         int dirty;
443         int expected_count = 1 + extra_count;
444         void **pslot;
445
446         /*
447          * Device public or private pages have an extra refcount as they are
448          * ZONE_DEVICE pages.
449          */
450         expected_count += is_device_private_page(page);
451         expected_count += is_device_public_page(page);
452
453         if (!mapping) {
454                 /* Anonymous page without mapping */
455                 if (page_count(page) != expected_count)
456                         return -EAGAIN;
457
458                 /* No turning back from here */
459                 newpage->index = page->index;
460                 newpage->mapping = page->mapping;
461                 if (PageSwapBacked(page))
462                         __SetPageSwapBacked(newpage);
463
464                 return MIGRATEPAGE_SUCCESS;
465         }
466
467         oldzone = page_zone(page);
468         newzone = page_zone(newpage);
469
470         xa_lock_irq(&mapping->i_pages);
471
472         pslot = radix_tree_lookup_slot(&mapping->i_pages,
473                                         page_index(page));
474
475         expected_count += 1 + page_has_private(page);
476         if (page_count(page) != expected_count ||
477                 radix_tree_deref_slot_protected(pslot,
478                                         &mapping->i_pages.xa_lock) != page) {
479                 xa_unlock_irq(&mapping->i_pages);
480                 return -EAGAIN;
481         }
482
483         if (!page_ref_freeze(page, expected_count)) {
484                 xa_unlock_irq(&mapping->i_pages);
485                 return -EAGAIN;
486         }
487
488         /*
489          * In the async migration case of moving a page with buffers, lock the
490          * buffers using trylock before the mapping is moved. If the mapping
491          * was moved, we later failed to lock the buffers and could not move
492          * the mapping back due to an elevated page count, we would have to
493          * block waiting on other references to be dropped.
494          */
495         if (mode == MIGRATE_ASYNC && head &&
496                         !buffer_migrate_lock_buffers(head, mode)) {
497                 page_ref_unfreeze(page, expected_count);
498                 xa_unlock_irq(&mapping->i_pages);
499                 return -EAGAIN;
500         }
501
502         /*
503          * Now we know that no one else is looking at the page:
504          * no turning back from here.
505          */
506         newpage->index = page->index;
507         newpage->mapping = page->mapping;
508         get_page(newpage);      /* add cache reference */
509         if (PageSwapBacked(page)) {
510                 __SetPageSwapBacked(newpage);
511                 if (PageSwapCache(page)) {
512                         SetPageSwapCache(newpage);
513                         set_page_private(newpage, page_private(page));
514                 }
515         } else {
516                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
517         }
518
519         /* Move dirty while page refs frozen and newpage not yet exposed */
520         dirty = PageDirty(page);
521         if (dirty) {
522                 ClearPageDirty(page);
523                 SetPageDirty(newpage);
524         }
525
526         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
527
528         /*
529          * Drop cache reference from old page by unfreezing
530          * to one less reference.
531          * We know this isn't the last reference.
532          */
533         page_ref_unfreeze(page, expected_count - 1);
534
535         xa_unlock(&mapping->i_pages);
536         /* Leave irq disabled to prevent preemption while updating stats */
537
538         /*
539          * If moved to a different zone then also account
540          * the page for that zone. Other VM counters will be
541          * taken care of when we establish references to the
542          * new page and drop references to the old page.
543          *
544          * Note that anonymous pages are accounted for
545          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
546          * are mapped to swap space.
547          */
548         if (newzone != oldzone) {
549                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
550                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
551                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
552                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
553                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
554                 }
555                 if (dirty && mapping_cap_account_dirty(mapping)) {
556                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
557                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
558                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
559                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
560                 }
561         }
562         local_irq_enable();
563
564         return MIGRATEPAGE_SUCCESS;
565 }
566 EXPORT_SYMBOL(migrate_page_move_mapping);
567
568 /*
569  * The expected number of remaining references is the same as that
570  * of migrate_page_move_mapping().
571  */
572 int migrate_huge_page_move_mapping(struct address_space *mapping,
573                                    struct page *newpage, struct page *page)
574 {
575         int expected_count;
576         void **pslot;
577
578         xa_lock_irq(&mapping->i_pages);
579
580         pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
581
582         expected_count = 2 + page_has_private(page);
583         if (page_count(page) != expected_count ||
584                 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
585                 xa_unlock_irq(&mapping->i_pages);
586                 return -EAGAIN;
587         }
588
589         if (!page_ref_freeze(page, expected_count)) {
590                 xa_unlock_irq(&mapping->i_pages);
591                 return -EAGAIN;
592         }
593
594         newpage->index = page->index;
595         newpage->mapping = page->mapping;
596
597         get_page(newpage);
598
599         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
600
601         page_ref_unfreeze(page, expected_count - 1);
602
603         xa_unlock_irq(&mapping->i_pages);
604
605         return MIGRATEPAGE_SUCCESS;
606 }
607
608 /*
609  * Gigantic pages are so large that we do not guarantee that page++ pointer
610  * arithmetic will work across the entire page.  We need something more
611  * specialized.
612  */
613 static void __copy_gigantic_page(struct page *dst, struct page *src,
614                                 int nr_pages)
615 {
616         int i;
617         struct page *dst_base = dst;
618         struct page *src_base = src;
619
620         for (i = 0; i < nr_pages; ) {
621                 cond_resched();
622                 copy_highpage(dst, src);
623
624                 i++;
625                 dst = mem_map_next(dst, dst_base, i);
626                 src = mem_map_next(src, src_base, i);
627         }
628 }
629
630 static void copy_huge_page(struct page *dst, struct page *src)
631 {
632         int i;
633         int nr_pages;
634
635         if (PageHuge(src)) {
636                 /* hugetlbfs page */
637                 struct hstate *h = page_hstate(src);
638                 nr_pages = pages_per_huge_page(h);
639
640                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
641                         __copy_gigantic_page(dst, src, nr_pages);
642                         return;
643                 }
644         } else {
645                 /* thp page */
646                 BUG_ON(!PageTransHuge(src));
647                 nr_pages = hpage_nr_pages(src);
648         }
649
650         for (i = 0; i < nr_pages; i++) {
651                 cond_resched();
652                 copy_highpage(dst + i, src + i);
653         }
654 }
655
656 /*
657  * Copy the page to its new location
658  */
659 void migrate_page_states(struct page *newpage, struct page *page)
660 {
661         int cpupid;
662
663         if (PageError(page))
664                 SetPageError(newpage);
665         if (PageReferenced(page))
666                 SetPageReferenced(newpage);
667         if (PageUptodate(page))
668                 SetPageUptodate(newpage);
669         if (TestClearPageActive(page)) {
670                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
671                 SetPageActive(newpage);
672         } else if (TestClearPageUnevictable(page))
673                 SetPageUnevictable(newpage);
674         if (PageChecked(page))
675                 SetPageChecked(newpage);
676         if (PageMappedToDisk(page))
677                 SetPageMappedToDisk(newpage);
678
679         /* Move dirty on pages not done by migrate_page_move_mapping() */
680         if (PageDirty(page))
681                 SetPageDirty(newpage);
682
683         if (page_is_young(page))
684                 set_page_young(newpage);
685         if (page_is_idle(page))
686                 set_page_idle(newpage);
687
688         /*
689          * Copy NUMA information to the new page, to prevent over-eager
690          * future migrations of this same page.
691          */
692         cpupid = page_cpupid_xchg_last(page, -1);
693         page_cpupid_xchg_last(newpage, cpupid);
694
695         ksm_migrate_page(newpage, page);
696         /*
697          * Please do not reorder this without considering how mm/ksm.c's
698          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
699          */
700         if (PageSwapCache(page))
701                 ClearPageSwapCache(page);
702         ClearPagePrivate(page);
703         set_page_private(page, 0);
704
705         /*
706          * If any waiters have accumulated on the new page then
707          * wake them up.
708          */
709         if (PageWriteback(newpage))
710                 end_page_writeback(newpage);
711
712         copy_page_owner(page, newpage);
713
714         mem_cgroup_migrate(page, newpage);
715 }
716 EXPORT_SYMBOL(migrate_page_states);
717
718 void migrate_page_copy(struct page *newpage, struct page *page)
719 {
720         if (PageHuge(page) || PageTransHuge(page))
721                 copy_huge_page(newpage, page);
722         else
723                 copy_highpage(newpage, page);
724
725         migrate_page_states(newpage, page);
726 }
727 EXPORT_SYMBOL(migrate_page_copy);
728
729 /************************************************************
730  *                    Migration functions
731  ***********************************************************/
732
733 /*
734  * Common logic to directly migrate a single LRU page suitable for
735  * pages that do not use PagePrivate/PagePrivate2.
736  *
737  * Pages are locked upon entry and exit.
738  */
739 int migrate_page(struct address_space *mapping,
740                 struct page *newpage, struct page *page,
741                 enum migrate_mode mode)
742 {
743         int rc;
744
745         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
746
747         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
748
749         if (rc != MIGRATEPAGE_SUCCESS)
750                 return rc;
751
752         if (mode != MIGRATE_SYNC_NO_COPY)
753                 migrate_page_copy(newpage, page);
754         else
755                 migrate_page_states(newpage, page);
756         return MIGRATEPAGE_SUCCESS;
757 }
758 EXPORT_SYMBOL(migrate_page);
759
760 #ifdef CONFIG_BLOCK
761 /*
762  * Migration function for pages with buffers. This function can only be used
763  * if the underlying filesystem guarantees that no other references to "page"
764  * exist.
765  */
766 int buffer_migrate_page(struct address_space *mapping,
767                 struct page *newpage, struct page *page, enum migrate_mode mode)
768 {
769         struct buffer_head *bh, *head;
770         int rc;
771
772         if (!page_has_buffers(page))
773                 return migrate_page(mapping, newpage, page, mode);
774
775         head = page_buffers(page);
776
777         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
778
779         if (rc != MIGRATEPAGE_SUCCESS)
780                 return rc;
781
782         /*
783          * In the async case, migrate_page_move_mapping locked the buffers
784          * with an IRQ-safe spinlock held. In the sync case, the buffers
785          * need to be locked now
786          */
787         if (mode != MIGRATE_ASYNC)
788                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
789
790         ClearPagePrivate(page);
791         set_page_private(newpage, page_private(page));
792         set_page_private(page, 0);
793         put_page(page);
794         get_page(newpage);
795
796         bh = head;
797         do {
798                 set_bh_page(bh, newpage, bh_offset(bh));
799                 bh = bh->b_this_page;
800
801         } while (bh != head);
802
803         SetPagePrivate(newpage);
804
805         if (mode != MIGRATE_SYNC_NO_COPY)
806                 migrate_page_copy(newpage, page);
807         else
808                 migrate_page_states(newpage, page);
809
810         bh = head;
811         do {
812                 unlock_buffer(bh);
813                 put_bh(bh);
814                 bh = bh->b_this_page;
815
816         } while (bh != head);
817
818         return MIGRATEPAGE_SUCCESS;
819 }
820 EXPORT_SYMBOL(buffer_migrate_page);
821 #endif
822
823 /*
824  * Writeback a page to clean the dirty state
825  */
826 static int writeout(struct address_space *mapping, struct page *page)
827 {
828         struct writeback_control wbc = {
829                 .sync_mode = WB_SYNC_NONE,
830                 .nr_to_write = 1,
831                 .range_start = 0,
832                 .range_end = LLONG_MAX,
833                 .for_reclaim = 1
834         };
835         int rc;
836
837         if (!mapping->a_ops->writepage)
838                 /* No write method for the address space */
839                 return -EINVAL;
840
841         if (!clear_page_dirty_for_io(page))
842                 /* Someone else already triggered a write */
843                 return -EAGAIN;
844
845         /*
846          * A dirty page may imply that the underlying filesystem has
847          * the page on some queue. So the page must be clean for
848          * migration. Writeout may mean we loose the lock and the
849          * page state is no longer what we checked for earlier.
850          * At this point we know that the migration attempt cannot
851          * be successful.
852          */
853         remove_migration_ptes(page, page, false);
854
855         rc = mapping->a_ops->writepage(page, &wbc);
856
857         if (rc != AOP_WRITEPAGE_ACTIVATE)
858                 /* unlocked. Relock */
859                 lock_page(page);
860
861         return (rc < 0) ? -EIO : -EAGAIN;
862 }
863
864 /*
865  * Default handling if a filesystem does not provide a migration function.
866  */
867 static int fallback_migrate_page(struct address_space *mapping,
868         struct page *newpage, struct page *page, enum migrate_mode mode)
869 {
870         if (PageDirty(page)) {
871                 /* Only writeback pages in full synchronous migration */
872                 switch (mode) {
873                 case MIGRATE_SYNC:
874                 case MIGRATE_SYNC_NO_COPY:
875                         break;
876                 default:
877                         return -EBUSY;
878                 }
879                 return writeout(mapping, page);
880         }
881
882         /*
883          * Buffers may be managed in a filesystem specific way.
884          * We must have no buffers or drop them.
885          */
886         if (page_has_private(page) &&
887             !try_to_release_page(page, GFP_KERNEL))
888                 return -EAGAIN;
889
890         return migrate_page(mapping, newpage, page, mode);
891 }
892
893 /*
894  * Move a page to a newly allocated page
895  * The page is locked and all ptes have been successfully removed.
896  *
897  * The new page will have replaced the old page if this function
898  * is successful.
899  *
900  * Return value:
901  *   < 0 - error code
902  *  MIGRATEPAGE_SUCCESS - success
903  */
904 static int move_to_new_page(struct page *newpage, struct page *page,
905                                 enum migrate_mode mode)
906 {
907         struct address_space *mapping;
908         int rc = -EAGAIN;
909         bool is_lru = !__PageMovable(page);
910
911         VM_BUG_ON_PAGE(!PageLocked(page), page);
912         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
913
914         mapping = page_mapping(page);
915
916         if (likely(is_lru)) {
917                 if (!mapping)
918                         rc = migrate_page(mapping, newpage, page, mode);
919                 else if (mapping->a_ops->migratepage)
920                         /*
921                          * Most pages have a mapping and most filesystems
922                          * provide a migratepage callback. Anonymous pages
923                          * are part of swap space which also has its own
924                          * migratepage callback. This is the most common path
925                          * for page migration.
926                          */
927                         rc = mapping->a_ops->migratepage(mapping, newpage,
928                                                         page, mode);
929                 else
930                         rc = fallback_migrate_page(mapping, newpage,
931                                                         page, mode);
932         } else {
933                 /*
934                  * In case of non-lru page, it could be released after
935                  * isolation step. In that case, we shouldn't try migration.
936                  */
937                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
938                 if (!PageMovable(page)) {
939                         rc = MIGRATEPAGE_SUCCESS;
940                         __ClearPageIsolated(page);
941                         goto out;
942                 }
943
944                 rc = mapping->a_ops->migratepage(mapping, newpage,
945                                                 page, mode);
946                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
947                         !PageIsolated(page));
948         }
949
950         /*
951          * When successful, old pagecache page->mapping must be cleared before
952          * page is freed; but stats require that PageAnon be left as PageAnon.
953          */
954         if (rc == MIGRATEPAGE_SUCCESS) {
955                 if (__PageMovable(page)) {
956                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
957
958                         /*
959                          * We clear PG_movable under page_lock so any compactor
960                          * cannot try to migrate this page.
961                          */
962                         __ClearPageIsolated(page);
963                 }
964
965                 /*
966                  * Anonymous and movable page->mapping will be cleard by
967                  * free_pages_prepare so don't reset it here for keeping
968                  * the type to work PageAnon, for example.
969                  */
970                 if (!PageMappingFlags(page))
971                         page->mapping = NULL;
972         }
973 out:
974         return rc;
975 }
976
977 static int __unmap_and_move(struct page *page, struct page *newpage,
978                                 int force, enum migrate_mode mode)
979 {
980         int rc = -EAGAIN;
981         int page_was_mapped = 0;
982         struct anon_vma *anon_vma = NULL;
983         bool is_lru = !__PageMovable(page);
984
985         if (!trylock_page(page)) {
986                 if (!force || mode == MIGRATE_ASYNC)
987                         goto out;
988
989                 /*
990                  * It's not safe for direct compaction to call lock_page.
991                  * For example, during page readahead pages are added locked
992                  * to the LRU. Later, when the IO completes the pages are
993                  * marked uptodate and unlocked. However, the queueing
994                  * could be merging multiple pages for one bio (e.g.
995                  * mpage_readpages). If an allocation happens for the
996                  * second or third page, the process can end up locking
997                  * the same page twice and deadlocking. Rather than
998                  * trying to be clever about what pages can be locked,
999                  * avoid the use of lock_page for direct compaction
1000                  * altogether.
1001                  */
1002                 if (current->flags & PF_MEMALLOC)
1003                         goto out;
1004
1005                 lock_page(page);
1006         }
1007
1008         if (PageWriteback(page)) {
1009                 /*
1010                  * Only in the case of a full synchronous migration is it
1011                  * necessary to wait for PageWriteback. In the async case,
1012                  * the retry loop is too short and in the sync-light case,
1013                  * the overhead of stalling is too much
1014                  */
1015                 switch (mode) {
1016                 case MIGRATE_SYNC:
1017                 case MIGRATE_SYNC_NO_COPY:
1018                         break;
1019                 default:
1020                         rc = -EBUSY;
1021                         goto out_unlock;
1022                 }
1023                 if (!force)
1024                         goto out_unlock;
1025                 wait_on_page_writeback(page);
1026         }
1027
1028         /*
1029          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1030          * we cannot notice that anon_vma is freed while we migrates a page.
1031          * This get_anon_vma() delays freeing anon_vma pointer until the end
1032          * of migration. File cache pages are no problem because of page_lock()
1033          * File Caches may use write_page() or lock_page() in migration, then,
1034          * just care Anon page here.
1035          *
1036          * Only page_get_anon_vma() understands the subtleties of
1037          * getting a hold on an anon_vma from outside one of its mms.
1038          * But if we cannot get anon_vma, then we won't need it anyway,
1039          * because that implies that the anon page is no longer mapped
1040          * (and cannot be remapped so long as we hold the page lock).
1041          */
1042         if (PageAnon(page) && !PageKsm(page))
1043                 anon_vma = page_get_anon_vma(page);
1044
1045         /*
1046          * Block others from accessing the new page when we get around to
1047          * establishing additional references. We are usually the only one
1048          * holding a reference to newpage at this point. We used to have a BUG
1049          * here if trylock_page(newpage) fails, but would like to allow for
1050          * cases where there might be a race with the previous use of newpage.
1051          * This is much like races on refcount of oldpage: just don't BUG().
1052          */
1053         if (unlikely(!trylock_page(newpage)))
1054                 goto out_unlock;
1055
1056         if (unlikely(!is_lru)) {
1057                 rc = move_to_new_page(newpage, page, mode);
1058                 goto out_unlock_both;
1059         }
1060
1061         /*
1062          * Corner case handling:
1063          * 1. When a new swap-cache page is read into, it is added to the LRU
1064          * and treated as swapcache but it has no rmap yet.
1065          * Calling try_to_unmap() against a page->mapping==NULL page will
1066          * trigger a BUG.  So handle it here.
1067          * 2. An orphaned page (see truncate_complete_page) might have
1068          * fs-private metadata. The page can be picked up due to memory
1069          * offlining.  Everywhere else except page reclaim, the page is
1070          * invisible to the vm, so the page can not be migrated.  So try to
1071          * free the metadata, so the page can be freed.
1072          */
1073         if (!page->mapping) {
1074                 VM_BUG_ON_PAGE(PageAnon(page), page);
1075                 if (page_has_private(page)) {
1076                         try_to_free_buffers(page);
1077                         goto out_unlock_both;
1078                 }
1079         } else if (page_mapped(page)) {
1080                 /* Establish migration ptes */
1081                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1082                                 page);
1083                 try_to_unmap(page,
1084                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1085                 page_was_mapped = 1;
1086         }
1087
1088         if (!page_mapped(page))
1089                 rc = move_to_new_page(newpage, page, mode);
1090
1091         if (page_was_mapped)
1092                 remove_migration_ptes(page,
1093                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1094
1095 out_unlock_both:
1096         unlock_page(newpage);
1097 out_unlock:
1098         /* Drop an anon_vma reference if we took one */
1099         if (anon_vma)
1100                 put_anon_vma(anon_vma);
1101         unlock_page(page);
1102 out:
1103         /*
1104          * If migration is successful, decrease refcount of the newpage
1105          * which will not free the page because new page owner increased
1106          * refcounter. As well, if it is LRU page, add the page to LRU
1107          * list in here.
1108          */
1109         if (rc == MIGRATEPAGE_SUCCESS) {
1110                 if (unlikely(__PageMovable(newpage)))
1111                         put_page(newpage);
1112                 else
1113                         putback_lru_page(newpage);
1114         }
1115
1116         return rc;
1117 }
1118
1119 /*
1120  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1121  * around it.
1122  */
1123 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1124 #define ICE_noinline noinline
1125 #else
1126 #define ICE_noinline
1127 #endif
1128
1129 /*
1130  * Obtain the lock on page, remove all ptes and migrate the page
1131  * to the newly allocated page in newpage.
1132  */
1133 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1134                                    free_page_t put_new_page,
1135                                    unsigned long private, struct page *page,
1136                                    int force, enum migrate_mode mode,
1137                                    enum migrate_reason reason)
1138 {
1139         int rc = MIGRATEPAGE_SUCCESS;
1140         struct page *newpage;
1141
1142         if (!thp_migration_supported() && PageTransHuge(page))
1143                 return -ENOMEM;
1144
1145         newpage = get_new_page(page, private);
1146         if (!newpage)
1147                 return -ENOMEM;
1148
1149         if (page_count(page) == 1) {
1150                 /* page was freed from under us. So we are done. */
1151                 ClearPageActive(page);
1152                 ClearPageUnevictable(page);
1153                 if (unlikely(__PageMovable(page))) {
1154                         lock_page(page);
1155                         if (!PageMovable(page))
1156                                 __ClearPageIsolated(page);
1157                         unlock_page(page);
1158                 }
1159                 if (put_new_page)
1160                         put_new_page(newpage, private);
1161                 else
1162                         put_page(newpage);
1163                 goto out;
1164         }
1165
1166         rc = __unmap_and_move(page, newpage, force, mode);
1167         if (rc == MIGRATEPAGE_SUCCESS)
1168                 set_page_owner_migrate_reason(newpage, reason);
1169
1170 out:
1171         if (rc != -EAGAIN) {
1172                 /*
1173                  * A page that has been migrated has all references
1174                  * removed and will be freed. A page that has not been
1175                  * migrated will have kepts its references and be
1176                  * restored.
1177                  */
1178                 list_del(&page->lru);
1179
1180                 /*
1181                  * Compaction can migrate also non-LRU pages which are
1182                  * not accounted to NR_ISOLATED_*. They can be recognized
1183                  * as __PageMovable
1184                  */
1185                 if (likely(!__PageMovable(page)))
1186                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1187                                         page_is_file_cache(page), -hpage_nr_pages(page));
1188         }
1189
1190         /*
1191          * If migration is successful, releases reference grabbed during
1192          * isolation. Otherwise, restore the page to right list unless
1193          * we want to retry.
1194          */
1195         if (rc == MIGRATEPAGE_SUCCESS) {
1196                 put_page(page);
1197                 if (reason == MR_MEMORY_FAILURE) {
1198                         /*
1199                          * Set PG_HWPoison on just freed page
1200                          * intentionally. Although it's rather weird,
1201                          * it's how HWPoison flag works at the moment.
1202                          */
1203                         if (!test_set_page_hwpoison(page))
1204                                 num_poisoned_pages_inc();
1205                 }
1206         } else {
1207                 if (rc != -EAGAIN) {
1208                         if (likely(!__PageMovable(page))) {
1209                                 putback_lru_page(page);
1210                                 goto put_new;
1211                         }
1212
1213                         lock_page(page);
1214                         if (PageMovable(page))
1215                                 putback_movable_page(page);
1216                         else
1217                                 __ClearPageIsolated(page);
1218                         unlock_page(page);
1219                         put_page(page);
1220                 }
1221 put_new:
1222                 if (put_new_page)
1223                         put_new_page(newpage, private);
1224                 else
1225                         put_page(newpage);
1226         }
1227
1228         return rc;
1229 }
1230
1231 /*
1232  * Counterpart of unmap_and_move_page() for hugepage migration.
1233  *
1234  * This function doesn't wait the completion of hugepage I/O
1235  * because there is no race between I/O and migration for hugepage.
1236  * Note that currently hugepage I/O occurs only in direct I/O
1237  * where no lock is held and PG_writeback is irrelevant,
1238  * and writeback status of all subpages are counted in the reference
1239  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1240  * under direct I/O, the reference of the head page is 512 and a bit more.)
1241  * This means that when we try to migrate hugepage whose subpages are
1242  * doing direct I/O, some references remain after try_to_unmap() and
1243  * hugepage migration fails without data corruption.
1244  *
1245  * There is also no race when direct I/O is issued on the page under migration,
1246  * because then pte is replaced with migration swap entry and direct I/O code
1247  * will wait in the page fault for migration to complete.
1248  */
1249 static int unmap_and_move_huge_page(new_page_t get_new_page,
1250                                 free_page_t put_new_page, unsigned long private,
1251                                 struct page *hpage, int force,
1252                                 enum migrate_mode mode, int reason)
1253 {
1254         int rc = -EAGAIN;
1255         int page_was_mapped = 0;
1256         struct page *new_hpage;
1257         struct anon_vma *anon_vma = NULL;
1258
1259         /*
1260          * Movability of hugepages depends on architectures and hugepage size.
1261          * This check is necessary because some callers of hugepage migration
1262          * like soft offline and memory hotremove don't walk through page
1263          * tables or check whether the hugepage is pmd-based or not before
1264          * kicking migration.
1265          */
1266         if (!hugepage_migration_supported(page_hstate(hpage))) {
1267                 putback_active_hugepage(hpage);
1268                 return -ENOSYS;
1269         }
1270
1271         new_hpage = get_new_page(hpage, private);
1272         if (!new_hpage)
1273                 return -ENOMEM;
1274
1275         if (!trylock_page(hpage)) {
1276                 if (!force)
1277                         goto out;
1278                 switch (mode) {
1279                 case MIGRATE_SYNC:
1280                 case MIGRATE_SYNC_NO_COPY:
1281                         break;
1282                 default:
1283                         goto out;
1284                 }
1285                 lock_page(hpage);
1286         }
1287
1288         if (PageAnon(hpage))
1289                 anon_vma = page_get_anon_vma(hpage);
1290
1291         if (unlikely(!trylock_page(new_hpage)))
1292                 goto put_anon;
1293
1294         if (page_mapped(hpage)) {
1295                 try_to_unmap(hpage,
1296                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1297                 page_was_mapped = 1;
1298         }
1299
1300         if (!page_mapped(hpage))
1301                 rc = move_to_new_page(new_hpage, hpage, mode);
1302
1303         if (page_was_mapped)
1304                 remove_migration_ptes(hpage,
1305                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1306
1307         unlock_page(new_hpage);
1308
1309 put_anon:
1310         if (anon_vma)
1311                 put_anon_vma(anon_vma);
1312
1313         if (rc == MIGRATEPAGE_SUCCESS) {
1314                 move_hugetlb_state(hpage, new_hpage, reason);
1315                 put_new_page = NULL;
1316         }
1317
1318         unlock_page(hpage);
1319 out:
1320         if (rc != -EAGAIN)
1321                 putback_active_hugepage(hpage);
1322         if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1323                 num_poisoned_pages_inc();
1324
1325         /*
1326          * If migration was not successful and there's a freeing callback, use
1327          * it.  Otherwise, put_page() will drop the reference grabbed during
1328          * isolation.
1329          */
1330         if (put_new_page)
1331                 put_new_page(new_hpage, private);
1332         else
1333                 putback_active_hugepage(new_hpage);
1334
1335         return rc;
1336 }
1337
1338 /*
1339  * migrate_pages - migrate the pages specified in a list, to the free pages
1340  *                 supplied as the target for the page migration
1341  *
1342  * @from:               The list of pages to be migrated.
1343  * @get_new_page:       The function used to allocate free pages to be used
1344  *                      as the target of the page migration.
1345  * @put_new_page:       The function used to free target pages if migration
1346  *                      fails, or NULL if no special handling is necessary.
1347  * @private:            Private data to be passed on to get_new_page()
1348  * @mode:               The migration mode that specifies the constraints for
1349  *                      page migration, if any.
1350  * @reason:             The reason for page migration.
1351  *
1352  * The function returns after 10 attempts or if no pages are movable any more
1353  * because the list has become empty or no retryable pages exist any more.
1354  * The caller should call putback_movable_pages() to return pages to the LRU
1355  * or free list only if ret != 0.
1356  *
1357  * Returns the number of pages that were not migrated, or an error code.
1358  */
1359 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1360                 free_page_t put_new_page, unsigned long private,
1361                 enum migrate_mode mode, int reason)
1362 {
1363         int retry = 1;
1364         int nr_failed = 0;
1365         int nr_succeeded = 0;
1366         int pass = 0;
1367         struct page *page;
1368         struct page *page2;
1369         int swapwrite = current->flags & PF_SWAPWRITE;
1370         int rc;
1371
1372         if (!swapwrite)
1373                 current->flags |= PF_SWAPWRITE;
1374
1375         for(pass = 0; pass < 10 && retry; pass++) {
1376                 retry = 0;
1377
1378                 list_for_each_entry_safe(page, page2, from, lru) {
1379 retry:
1380                         cond_resched();
1381
1382                         if (PageHuge(page))
1383                                 rc = unmap_and_move_huge_page(get_new_page,
1384                                                 put_new_page, private, page,
1385                                                 pass > 2, mode, reason);
1386                         else
1387                                 rc = unmap_and_move(get_new_page, put_new_page,
1388                                                 private, page, pass > 2, mode,
1389                                                 reason);
1390
1391                         switch(rc) {
1392                         case -ENOMEM:
1393                                 /*
1394                                  * THP migration might be unsupported or the
1395                                  * allocation could've failed so we should
1396                                  * retry on the same page with the THP split
1397                                  * to base pages.
1398                                  *
1399                                  * Head page is retried immediately and tail
1400                                  * pages are added to the tail of the list so
1401                                  * we encounter them after the rest of the list
1402                                  * is processed.
1403                                  */
1404                                 if (PageTransHuge(page)) {
1405                                         lock_page(page);
1406                                         rc = split_huge_page_to_list(page, from);
1407                                         unlock_page(page);
1408                                         if (!rc) {
1409                                                 list_safe_reset_next(page, page2, lru);
1410                                                 goto retry;
1411                                         }
1412                                 }
1413                                 nr_failed++;
1414                                 goto out;
1415                         case -EAGAIN:
1416                                 retry++;
1417                                 break;
1418                         case MIGRATEPAGE_SUCCESS:
1419                                 nr_succeeded++;
1420                                 break;
1421                         default:
1422                                 /*
1423                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1424                                  * unlike -EAGAIN case, the failed page is
1425                                  * removed from migration page list and not
1426                                  * retried in the next outer loop.
1427                                  */
1428                                 nr_failed++;
1429                                 break;
1430                         }
1431                 }
1432         }
1433         nr_failed += retry;
1434         rc = nr_failed;
1435 out:
1436         if (nr_succeeded)
1437                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1438         if (nr_failed)
1439                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1440         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1441
1442         if (!swapwrite)
1443                 current->flags &= ~PF_SWAPWRITE;
1444
1445         return rc;
1446 }
1447
1448 #ifdef CONFIG_NUMA
1449
1450 static int store_status(int __user *status, int start, int value, int nr)
1451 {
1452         while (nr-- > 0) {
1453                 if (put_user(value, status + start))
1454                         return -EFAULT;
1455                 start++;
1456         }
1457
1458         return 0;
1459 }
1460
1461 static int do_move_pages_to_node(struct mm_struct *mm,
1462                 struct list_head *pagelist, int node)
1463 {
1464         int err;
1465
1466         if (list_empty(pagelist))
1467                 return 0;
1468
1469         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1470                         MIGRATE_SYNC, MR_SYSCALL);
1471         if (err)
1472                 putback_movable_pages(pagelist);
1473         return err;
1474 }
1475
1476 /*
1477  * Resolves the given address to a struct page, isolates it from the LRU and
1478  * puts it to the given pagelist.
1479  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1480  * queued or the page doesn't need to be migrated because it is already on
1481  * the target node
1482  */
1483 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1484                 int node, struct list_head *pagelist, bool migrate_all)
1485 {
1486         struct vm_area_struct *vma;
1487         struct page *page;
1488         unsigned int follflags;
1489         int err;
1490
1491         down_read(&mm->mmap_sem);
1492         err = -EFAULT;
1493         vma = find_vma(mm, addr);
1494         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1495                 goto out;
1496
1497         /* FOLL_DUMP to ignore special (like zero) pages */
1498         follflags = FOLL_GET | FOLL_DUMP;
1499         page = follow_page(vma, addr, follflags);
1500
1501         err = PTR_ERR(page);
1502         if (IS_ERR(page))
1503                 goto out;
1504
1505         err = -ENOENT;
1506         if (!page)
1507                 goto out;
1508
1509         err = 0;
1510         if (page_to_nid(page) == node)
1511                 goto out_putpage;
1512
1513         err = -EACCES;
1514         if (page_mapcount(page) > 1 && !migrate_all)
1515                 goto out_putpage;
1516
1517         if (PageHuge(page)) {
1518                 if (PageHead(page)) {
1519                         isolate_huge_page(page, pagelist);
1520                         err = 0;
1521                 }
1522         } else {
1523                 struct page *head;
1524
1525                 head = compound_head(page);
1526                 err = isolate_lru_page(head);
1527                 if (err)
1528                         goto out_putpage;
1529
1530                 err = 0;
1531                 list_add_tail(&head->lru, pagelist);
1532                 mod_node_page_state(page_pgdat(head),
1533                         NR_ISOLATED_ANON + page_is_file_cache(head),
1534                         hpage_nr_pages(head));
1535         }
1536 out_putpage:
1537         /*
1538          * Either remove the duplicate refcount from
1539          * isolate_lru_page() or drop the page ref if it was
1540          * not isolated.
1541          */
1542         put_page(page);
1543 out:
1544         up_read(&mm->mmap_sem);
1545         return err;
1546 }
1547
1548 /*
1549  * Migrate an array of page address onto an array of nodes and fill
1550  * the corresponding array of status.
1551  */
1552 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1553                          unsigned long nr_pages,
1554                          const void __user * __user *pages,
1555                          const int __user *nodes,
1556                          int __user *status, int flags)
1557 {
1558         int current_node = NUMA_NO_NODE;
1559         LIST_HEAD(pagelist);
1560         int start, i;
1561         int err = 0, err1;
1562
1563         migrate_prep();
1564
1565         for (i = start = 0; i < nr_pages; i++) {
1566                 const void __user *p;
1567                 unsigned long addr;
1568                 int node;
1569
1570                 err = -EFAULT;
1571                 if (get_user(p, pages + i))
1572                         goto out_flush;
1573                 if (get_user(node, nodes + i))
1574                         goto out_flush;
1575                 addr = (unsigned long)p;
1576
1577                 err = -ENODEV;
1578                 if (node < 0 || node >= MAX_NUMNODES)
1579                         goto out_flush;
1580                 if (!node_state(node, N_MEMORY))
1581                         goto out_flush;
1582
1583                 err = -EACCES;
1584                 if (!node_isset(node, task_nodes))
1585                         goto out_flush;
1586
1587                 if (current_node == NUMA_NO_NODE) {
1588                         current_node = node;
1589                         start = i;
1590                 } else if (node != current_node) {
1591                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1592                         if (err)
1593                                 goto out;
1594                         err = store_status(status, start, current_node, i - start);
1595                         if (err)
1596                                 goto out;
1597                         start = i;
1598                         current_node = node;
1599                 }
1600
1601                 /*
1602                  * Errors in the page lookup or isolation are not fatal and we simply
1603                  * report them via status
1604                  */
1605                 err = add_page_for_migration(mm, addr, current_node,
1606                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1607                 if (!err)
1608                         continue;
1609
1610                 err = store_status(status, i, err, 1);
1611                 if (err)
1612                         goto out_flush;
1613
1614                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1615                 if (err)
1616                         goto out;
1617                 if (i > start) {
1618                         err = store_status(status, start, current_node, i - start);
1619                         if (err)
1620                                 goto out;
1621                 }
1622                 current_node = NUMA_NO_NODE;
1623         }
1624 out_flush:
1625         /* Make sure we do not overwrite the existing error */
1626         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1627         if (!err1)
1628                 err1 = store_status(status, start, current_node, i - start);
1629         if (!err)
1630                 err = err1;
1631 out:
1632         return err;
1633 }
1634
1635 /*
1636  * Determine the nodes of an array of pages and store it in an array of status.
1637  */
1638 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1639                                 const void __user **pages, int *status)
1640 {
1641         unsigned long i;
1642
1643         down_read(&mm->mmap_sem);
1644
1645         for (i = 0; i < nr_pages; i++) {
1646                 unsigned long addr = (unsigned long)(*pages);
1647                 struct vm_area_struct *vma;
1648                 struct page *page;
1649                 int err = -EFAULT;
1650
1651                 vma = find_vma(mm, addr);
1652                 if (!vma || addr < vma->vm_start)
1653                         goto set_status;
1654
1655                 /* FOLL_DUMP to ignore special (like zero) pages */
1656                 page = follow_page(vma, addr, FOLL_DUMP);
1657
1658                 err = PTR_ERR(page);
1659                 if (IS_ERR(page))
1660                         goto set_status;
1661
1662                 err = page ? page_to_nid(page) : -ENOENT;
1663 set_status:
1664                 *status = err;
1665
1666                 pages++;
1667                 status++;
1668         }
1669
1670         up_read(&mm->mmap_sem);
1671 }
1672
1673 /*
1674  * Determine the nodes of a user array of pages and store it in
1675  * a user array of status.
1676  */
1677 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1678                          const void __user * __user *pages,
1679                          int __user *status)
1680 {
1681 #define DO_PAGES_STAT_CHUNK_NR 16
1682         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1683         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1684
1685         while (nr_pages) {
1686                 unsigned long chunk_nr;
1687
1688                 chunk_nr = nr_pages;
1689                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1690                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1691
1692                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1693                         break;
1694
1695                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1696
1697                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1698                         break;
1699
1700                 pages += chunk_nr;
1701                 status += chunk_nr;
1702                 nr_pages -= chunk_nr;
1703         }
1704         return nr_pages ? -EFAULT : 0;
1705 }
1706
1707 /*
1708  * Move a list of pages in the address space of the currently executing
1709  * process.
1710  */
1711 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1712                              const void __user * __user *pages,
1713                              const int __user *nodes,
1714                              int __user *status, int flags)
1715 {
1716         struct task_struct *task;
1717         struct mm_struct *mm;
1718         int err;
1719         nodemask_t task_nodes;
1720
1721         /* Check flags */
1722         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1723                 return -EINVAL;
1724
1725         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1726                 return -EPERM;
1727
1728         /* Find the mm_struct */
1729         rcu_read_lock();
1730         task = pid ? find_task_by_vpid(pid) : current;
1731         if (!task) {
1732                 rcu_read_unlock();
1733                 return -ESRCH;
1734         }
1735         get_task_struct(task);
1736
1737         /*
1738          * Check if this process has the right to modify the specified
1739          * process. Use the regular "ptrace_may_access()" checks.
1740          */
1741         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1742                 rcu_read_unlock();
1743                 err = -EPERM;
1744                 goto out;
1745         }
1746         rcu_read_unlock();
1747
1748         err = security_task_movememory(task);
1749         if (err)
1750                 goto out;
1751
1752         task_nodes = cpuset_mems_allowed(task);
1753         mm = get_task_mm(task);
1754         put_task_struct(task);
1755
1756         if (!mm)
1757                 return -EINVAL;
1758
1759         if (nodes)
1760                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1761                                     nodes, status, flags);
1762         else
1763                 err = do_pages_stat(mm, nr_pages, pages, status);
1764
1765         mmput(mm);
1766         return err;
1767
1768 out:
1769         put_task_struct(task);
1770         return err;
1771 }
1772
1773 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1774                 const void __user * __user *, pages,
1775                 const int __user *, nodes,
1776                 int __user *, status, int, flags)
1777 {
1778         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1779 }
1780
1781 #ifdef CONFIG_COMPAT
1782 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1783                        compat_uptr_t __user *, pages32,
1784                        const int __user *, nodes,
1785                        int __user *, status,
1786                        int, flags)
1787 {
1788         const void __user * __user *pages;
1789         int i;
1790
1791         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1792         for (i = 0; i < nr_pages; i++) {
1793                 compat_uptr_t p;
1794
1795                 if (get_user(p, pages32 + i) ||
1796                         put_user(compat_ptr(p), pages + i))
1797                         return -EFAULT;
1798         }
1799         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1800 }
1801 #endif /* CONFIG_COMPAT */
1802
1803 #ifdef CONFIG_NUMA_BALANCING
1804 /*
1805  * Returns true if this is a safe migration target node for misplaced NUMA
1806  * pages. Currently it only checks the watermarks which crude
1807  */
1808 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1809                                    unsigned long nr_migrate_pages)
1810 {
1811         int z;
1812
1813         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1814                 struct zone *zone = pgdat->node_zones + z;
1815
1816                 if (!populated_zone(zone))
1817                         continue;
1818
1819                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1820                 if (!zone_watermark_ok(zone, 0,
1821                                        high_wmark_pages(zone) +
1822                                        nr_migrate_pages,
1823                                        0, 0))
1824                         continue;
1825                 return true;
1826         }
1827         return false;
1828 }
1829
1830 static struct page *alloc_misplaced_dst_page(struct page *page,
1831                                            unsigned long data)
1832 {
1833         int nid = (int) data;
1834         struct page *newpage;
1835
1836         newpage = __alloc_pages_node(nid,
1837                                          (GFP_HIGHUSER_MOVABLE |
1838                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1839                                           __GFP_NORETRY | __GFP_NOWARN) &
1840                                          ~__GFP_RECLAIM, 0);
1841
1842         return newpage;
1843 }
1844
1845 /*
1846  * page migration rate limiting control.
1847  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1848  * window of time. Default here says do not migrate more than 1280M per second.
1849  */
1850 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1851 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1852
1853 /* Returns true if the node is migrate rate-limited after the update */
1854 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1855                                         unsigned long nr_pages)
1856 {
1857         /*
1858          * Rate-limit the amount of data that is being migrated to a node.
1859          * Optimal placement is no good if the memory bus is saturated and
1860          * all the time is being spent migrating!
1861          */
1862         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1863                 spin_lock(&pgdat->numabalancing_migrate_lock);
1864                 pgdat->numabalancing_migrate_nr_pages = 0;
1865                 pgdat->numabalancing_migrate_next_window = jiffies +
1866                         msecs_to_jiffies(migrate_interval_millisecs);
1867                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1868         }
1869         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1870                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1871                                                                 nr_pages);
1872                 return true;
1873         }
1874
1875         /*
1876          * This is an unlocked non-atomic update so errors are possible.
1877          * The consequences are failing to migrate when we potentiall should
1878          * have which is not severe enough to warrant locking. If it is ever
1879          * a problem, it can be converted to a per-cpu counter.
1880          */
1881         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1882         return false;
1883 }
1884
1885 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1886 {
1887         int page_lru;
1888
1889         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1890
1891         /* Avoid migrating to a node that is nearly full */
1892         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1893                 return 0;
1894
1895         if (isolate_lru_page(page))
1896                 return 0;
1897
1898         /*
1899          * migrate_misplaced_transhuge_page() skips page migration's usual
1900          * check on page_count(), so we must do it here, now that the page
1901          * has been isolated: a GUP pin, or any other pin, prevents migration.
1902          * The expected page count is 3: 1 for page's mapcount and 1 for the
1903          * caller's pin and 1 for the reference taken by isolate_lru_page().
1904          */
1905         if (PageTransHuge(page) && page_count(page) != 3) {
1906                 putback_lru_page(page);
1907                 return 0;
1908         }
1909
1910         page_lru = page_is_file_cache(page);
1911         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1912                                 hpage_nr_pages(page));
1913
1914         /*
1915          * Isolating the page has taken another reference, so the
1916          * caller's reference can be safely dropped without the page
1917          * disappearing underneath us during migration.
1918          */
1919         put_page(page);
1920         return 1;
1921 }
1922
1923 bool pmd_trans_migrating(pmd_t pmd)
1924 {
1925         struct page *page = pmd_page(pmd);
1926         return PageLocked(page);
1927 }
1928
1929 /*
1930  * Attempt to migrate a misplaced page to the specified destination
1931  * node. Caller is expected to have an elevated reference count on
1932  * the page that will be dropped by this function before returning.
1933  */
1934 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1935                            int node)
1936 {
1937         pg_data_t *pgdat = NODE_DATA(node);
1938         int isolated;
1939         int nr_remaining;
1940         LIST_HEAD(migratepages);
1941
1942         /*
1943          * Don't migrate file pages that are mapped in multiple processes
1944          * with execute permissions as they are probably shared libraries.
1945          */
1946         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1947             (vma->vm_flags & VM_EXEC))
1948                 goto out;
1949
1950         /*
1951          * Also do not migrate dirty pages as not all filesystems can move
1952          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1953          */
1954         if (page_is_file_cache(page) && PageDirty(page))
1955                 goto out;
1956
1957         /*
1958          * Rate-limit the amount of data that is being migrated to a node.
1959          * Optimal placement is no good if the memory bus is saturated and
1960          * all the time is being spent migrating!
1961          */
1962         if (numamigrate_update_ratelimit(pgdat, 1))
1963                 goto out;
1964
1965         isolated = numamigrate_isolate_page(pgdat, page);
1966         if (!isolated)
1967                 goto out;
1968
1969         list_add(&page->lru, &migratepages);
1970         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1971                                      NULL, node, MIGRATE_ASYNC,
1972                                      MR_NUMA_MISPLACED);
1973         if (nr_remaining) {
1974                 if (!list_empty(&migratepages)) {
1975                         list_del(&page->lru);
1976                         dec_node_page_state(page, NR_ISOLATED_ANON +
1977                                         page_is_file_cache(page));
1978                         putback_lru_page(page);
1979                 }
1980                 isolated = 0;
1981         } else
1982                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1983         BUG_ON(!list_empty(&migratepages));
1984         return isolated;
1985
1986 out:
1987         put_page(page);
1988         return 0;
1989 }
1990 #endif /* CONFIG_NUMA_BALANCING */
1991
1992 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1993 /*
1994  * Migrates a THP to a given target node. page must be locked and is unlocked
1995  * before returning.
1996  */
1997 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1998                                 struct vm_area_struct *vma,
1999                                 pmd_t *pmd, pmd_t entry,
2000                                 unsigned long address,
2001                                 struct page *page, int node)
2002 {
2003         spinlock_t *ptl;
2004         pg_data_t *pgdat = NODE_DATA(node);
2005         int isolated = 0;
2006         struct page *new_page = NULL;
2007         int page_lru = page_is_file_cache(page);
2008         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2009         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2010
2011         /*
2012          * Rate-limit the amount of data that is being migrated to a node.
2013          * Optimal placement is no good if the memory bus is saturated and
2014          * all the time is being spent migrating!
2015          */
2016         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2017                 goto out_dropref;
2018
2019         new_page = alloc_pages_node(node,
2020                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2021                 HPAGE_PMD_ORDER);
2022         if (!new_page)
2023                 goto out_fail;
2024         prep_transhuge_page(new_page);
2025
2026         isolated = numamigrate_isolate_page(pgdat, page);
2027         if (!isolated) {
2028                 put_page(new_page);
2029                 goto out_fail;
2030         }
2031
2032         /* Prepare a page as a migration target */
2033         __SetPageLocked(new_page);
2034         if (PageSwapBacked(page))
2035                 __SetPageSwapBacked(new_page);
2036
2037         /* anon mapping, we can simply copy page->mapping to the new page: */
2038         new_page->mapping = page->mapping;
2039         new_page->index = page->index;
2040         migrate_page_copy(new_page, page);
2041         WARN_ON(PageLRU(new_page));
2042
2043         /* Recheck the target PMD */
2044         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2045         ptl = pmd_lock(mm, pmd);
2046         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2047                 spin_unlock(ptl);
2048                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2049
2050                 /* Reverse changes made by migrate_page_copy() */
2051                 if (TestClearPageActive(new_page))
2052                         SetPageActive(page);
2053                 if (TestClearPageUnevictable(new_page))
2054                         SetPageUnevictable(page);
2055
2056                 unlock_page(new_page);
2057                 put_page(new_page);             /* Free it */
2058
2059                 /* Retake the callers reference and putback on LRU */
2060                 get_page(page);
2061                 putback_lru_page(page);
2062                 mod_node_page_state(page_pgdat(page),
2063                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2064
2065                 goto out_unlock;
2066         }
2067
2068         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2069         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2070
2071         /*
2072          * Clear the old entry under pagetable lock and establish the new PTE.
2073          * Any parallel GUP will either observe the old page blocking on the
2074          * page lock, block on the page table lock or observe the new page.
2075          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2076          * guarantee the copy is visible before the pagetable update.
2077          */
2078         flush_cache_range(vma, mmun_start, mmun_end);
2079         page_add_anon_rmap(new_page, vma, mmun_start, true);
2080         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2081         set_pmd_at(mm, mmun_start, pmd, entry);
2082         update_mmu_cache_pmd(vma, address, &entry);
2083
2084         page_ref_unfreeze(page, 2);
2085         mlock_migrate_page(new_page, page);
2086         page_remove_rmap(page, true);
2087         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2088
2089         spin_unlock(ptl);
2090         /*
2091          * No need to double call mmu_notifier->invalidate_range() callback as
2092          * the above pmdp_huge_clear_flush_notify() did already call it.
2093          */
2094         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2095
2096         /* Take an "isolate" reference and put new page on the LRU. */
2097         get_page(new_page);
2098         putback_lru_page(new_page);
2099
2100         unlock_page(new_page);
2101         unlock_page(page);
2102         put_page(page);                 /* Drop the rmap reference */
2103         put_page(page);                 /* Drop the LRU isolation reference */
2104
2105         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2106         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2107
2108         mod_node_page_state(page_pgdat(page),
2109                         NR_ISOLATED_ANON + page_lru,
2110                         -HPAGE_PMD_NR);
2111         return isolated;
2112
2113 out_fail:
2114         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2115 out_dropref:
2116         ptl = pmd_lock(mm, pmd);
2117         if (pmd_same(*pmd, entry)) {
2118                 entry = pmd_modify(entry, vma->vm_page_prot);
2119                 set_pmd_at(mm, mmun_start, pmd, entry);
2120                 update_mmu_cache_pmd(vma, address, &entry);
2121         }
2122         spin_unlock(ptl);
2123
2124 out_unlock:
2125         unlock_page(page);
2126         put_page(page);
2127         return 0;
2128 }
2129 #endif /* CONFIG_NUMA_BALANCING */
2130
2131 #endif /* CONFIG_NUMA */
2132
2133 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2134 struct migrate_vma {
2135         struct vm_area_struct   *vma;
2136         unsigned long           *dst;
2137         unsigned long           *src;
2138         unsigned long           cpages;
2139         unsigned long           npages;
2140         unsigned long           start;
2141         unsigned long           end;
2142 };
2143
2144 static int migrate_vma_collect_hole(unsigned long start,
2145                                     unsigned long end,
2146                                     struct mm_walk *walk)
2147 {
2148         struct migrate_vma *migrate = walk->private;
2149         unsigned long addr;
2150
2151         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2152                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2153                 migrate->dst[migrate->npages] = 0;
2154                 migrate->npages++;
2155                 migrate->cpages++;
2156         }
2157
2158         return 0;
2159 }
2160
2161 static int migrate_vma_collect_skip(unsigned long start,
2162                                     unsigned long end,
2163                                     struct mm_walk *walk)
2164 {
2165         struct migrate_vma *migrate = walk->private;
2166         unsigned long addr;
2167
2168         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2169                 migrate->dst[migrate->npages] = 0;
2170                 migrate->src[migrate->npages++] = 0;
2171         }
2172
2173         return 0;
2174 }
2175
2176 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2177                                    unsigned long start,
2178                                    unsigned long end,
2179                                    struct mm_walk *walk)
2180 {
2181         struct migrate_vma *migrate = walk->private;
2182         struct vm_area_struct *vma = walk->vma;
2183         struct mm_struct *mm = vma->vm_mm;
2184         unsigned long addr = start, unmapped = 0;
2185         spinlock_t *ptl;
2186         pte_t *ptep;
2187
2188 again:
2189         if (pmd_none(*pmdp))
2190                 return migrate_vma_collect_hole(start, end, walk);
2191
2192         if (pmd_trans_huge(*pmdp)) {
2193                 struct page *page;
2194
2195                 ptl = pmd_lock(mm, pmdp);
2196                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2197                         spin_unlock(ptl);
2198                         goto again;
2199                 }
2200
2201                 page = pmd_page(*pmdp);
2202                 if (is_huge_zero_page(page)) {
2203                         spin_unlock(ptl);
2204                         split_huge_pmd(vma, pmdp, addr);
2205                         if (pmd_trans_unstable(pmdp))
2206                                 return migrate_vma_collect_skip(start, end,
2207                                                                 walk);
2208                 } else {
2209                         int ret;
2210
2211                         get_page(page);
2212                         spin_unlock(ptl);
2213                         if (unlikely(!trylock_page(page)))
2214                                 return migrate_vma_collect_skip(start, end,
2215                                                                 walk);
2216                         ret = split_huge_page(page);
2217                         unlock_page(page);
2218                         put_page(page);
2219                         if (ret)
2220                                 return migrate_vma_collect_skip(start, end,
2221                                                                 walk);
2222                         if (pmd_none(*pmdp))
2223                                 return migrate_vma_collect_hole(start, end,
2224                                                                 walk);
2225                 }
2226         }
2227
2228         if (unlikely(pmd_bad(*pmdp)))
2229                 return migrate_vma_collect_skip(start, end, walk);
2230
2231         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2232         arch_enter_lazy_mmu_mode();
2233
2234         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2235                 unsigned long mpfn, pfn;
2236                 struct page *page;
2237                 swp_entry_t entry;
2238                 pte_t pte;
2239
2240                 pte = *ptep;
2241                 pfn = pte_pfn(pte);
2242
2243                 if (pte_none(pte)) {
2244                         mpfn = MIGRATE_PFN_MIGRATE;
2245                         migrate->cpages++;
2246                         pfn = 0;
2247                         goto next;
2248                 }
2249
2250                 if (!pte_present(pte)) {
2251                         mpfn = pfn = 0;
2252
2253                         /*
2254                          * Only care about unaddressable device page special
2255                          * page table entry. Other special swap entries are not
2256                          * migratable, and we ignore regular swapped page.
2257                          */
2258                         entry = pte_to_swp_entry(pte);
2259                         if (!is_device_private_entry(entry))
2260                                 goto next;
2261
2262                         page = device_private_entry_to_page(entry);
2263                         mpfn = migrate_pfn(page_to_pfn(page))|
2264                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2265                         if (is_write_device_private_entry(entry))
2266                                 mpfn |= MIGRATE_PFN_WRITE;
2267                 } else {
2268                         if (is_zero_pfn(pfn)) {
2269                                 mpfn = MIGRATE_PFN_MIGRATE;
2270                                 migrate->cpages++;
2271                                 pfn = 0;
2272                                 goto next;
2273                         }
2274                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2275                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2276                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2277                 }
2278
2279                 /* FIXME support THP */
2280                 if (!page || !page->mapping || PageTransCompound(page)) {
2281                         mpfn = pfn = 0;
2282                         goto next;
2283                 }
2284                 pfn = page_to_pfn(page);
2285
2286                 /*
2287                  * By getting a reference on the page we pin it and that blocks
2288                  * any kind of migration. Side effect is that it "freezes" the
2289                  * pte.
2290                  *
2291                  * We drop this reference after isolating the page from the lru
2292                  * for non device page (device page are not on the lru and thus
2293                  * can't be dropped from it).
2294                  */
2295                 get_page(page);
2296                 migrate->cpages++;
2297
2298                 /*
2299                  * Optimize for the common case where page is only mapped once
2300                  * in one process. If we can lock the page, then we can safely
2301                  * set up a special migration page table entry now.
2302                  */
2303                 if (trylock_page(page)) {
2304                         pte_t swp_pte;
2305
2306                         mpfn |= MIGRATE_PFN_LOCKED;
2307                         ptep_get_and_clear(mm, addr, ptep);
2308
2309                         /* Setup special migration page table entry */
2310                         entry = make_migration_entry(page, mpfn &
2311                                                      MIGRATE_PFN_WRITE);
2312                         swp_pte = swp_entry_to_pte(entry);
2313                         if (pte_soft_dirty(pte))
2314                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2315                         set_pte_at(mm, addr, ptep, swp_pte);
2316
2317                         /*
2318                          * This is like regular unmap: we remove the rmap and
2319                          * drop page refcount. Page won't be freed, as we took
2320                          * a reference just above.
2321                          */
2322                         page_remove_rmap(page, false);
2323                         put_page(page);
2324
2325                         if (pte_present(pte))
2326                                 unmapped++;
2327                 }
2328
2329 next:
2330                 migrate->dst[migrate->npages] = 0;
2331                 migrate->src[migrate->npages++] = mpfn;
2332         }
2333         arch_leave_lazy_mmu_mode();
2334         pte_unmap_unlock(ptep - 1, ptl);
2335
2336         /* Only flush the TLB if we actually modified any entries */
2337         if (unmapped)
2338                 flush_tlb_range(walk->vma, start, end);
2339
2340         return 0;
2341 }
2342
2343 /*
2344  * migrate_vma_collect() - collect pages over a range of virtual addresses
2345  * @migrate: migrate struct containing all migration information
2346  *
2347  * This will walk the CPU page table. For each virtual address backed by a
2348  * valid page, it updates the src array and takes a reference on the page, in
2349  * order to pin the page until we lock it and unmap it.
2350  */
2351 static void migrate_vma_collect(struct migrate_vma *migrate)
2352 {
2353         struct mm_walk mm_walk;
2354
2355         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2356         mm_walk.pte_entry = NULL;
2357         mm_walk.pte_hole = migrate_vma_collect_hole;
2358         mm_walk.hugetlb_entry = NULL;
2359         mm_walk.test_walk = NULL;
2360         mm_walk.vma = migrate->vma;
2361         mm_walk.mm = migrate->vma->vm_mm;
2362         mm_walk.private = migrate;
2363
2364         mmu_notifier_invalidate_range_start(mm_walk.mm,
2365                                             migrate->start,
2366                                             migrate->end);
2367         walk_page_range(migrate->start, migrate->end, &mm_walk);
2368         mmu_notifier_invalidate_range_end(mm_walk.mm,
2369                                           migrate->start,
2370                                           migrate->end);
2371
2372         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2373 }
2374
2375 /*
2376  * migrate_vma_check_page() - check if page is pinned or not
2377  * @page: struct page to check
2378  *
2379  * Pinned pages cannot be migrated. This is the same test as in
2380  * migrate_page_move_mapping(), except that here we allow migration of a
2381  * ZONE_DEVICE page.
2382  */
2383 static bool migrate_vma_check_page(struct page *page)
2384 {
2385         /*
2386          * One extra ref because caller holds an extra reference, either from
2387          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2388          * a device page.
2389          */
2390         int extra = 1;
2391
2392         /*
2393          * FIXME support THP (transparent huge page), it is bit more complex to
2394          * check them than regular pages, because they can be mapped with a pmd
2395          * or with a pte (split pte mapping).
2396          */
2397         if (PageCompound(page))
2398                 return false;
2399
2400         /* Page from ZONE_DEVICE have one extra reference */
2401         if (is_zone_device_page(page)) {
2402                 /*
2403                  * Private page can never be pin as they have no valid pte and
2404                  * GUP will fail for those. Yet if there is a pending migration
2405                  * a thread might try to wait on the pte migration entry and
2406                  * will bump the page reference count. Sadly there is no way to
2407                  * differentiate a regular pin from migration wait. Hence to
2408                  * avoid 2 racing thread trying to migrate back to CPU to enter
2409                  * infinite loop (one stoping migration because the other is
2410                  * waiting on pte migration entry). We always return true here.
2411                  *
2412                  * FIXME proper solution is to rework migration_entry_wait() so
2413                  * it does not need to take a reference on page.
2414                  */
2415                 if (is_device_private_page(page))
2416                         return true;
2417
2418                 /*
2419                  * Only allow device public page to be migrated and account for
2420                  * the extra reference count imply by ZONE_DEVICE pages.
2421                  */
2422                 if (!is_device_public_page(page))
2423                         return false;
2424                 extra++;
2425         }
2426
2427         /* For file back page */
2428         if (page_mapping(page))
2429                 extra += 1 + page_has_private(page);
2430
2431         if ((page_count(page) - extra) > page_mapcount(page))
2432                 return false;
2433
2434         return true;
2435 }
2436
2437 /*
2438  * migrate_vma_prepare() - lock pages and isolate them from the lru
2439  * @migrate: migrate struct containing all migration information
2440  *
2441  * This locks pages that have been collected by migrate_vma_collect(). Once each
2442  * page is locked it is isolated from the lru (for non-device pages). Finally,
2443  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2444  * migrated by concurrent kernel threads.
2445  */
2446 static void migrate_vma_prepare(struct migrate_vma *migrate)
2447 {
2448         const unsigned long npages = migrate->npages;
2449         const unsigned long start = migrate->start;
2450         unsigned long addr, i, restore = 0;
2451         bool allow_drain = true;
2452
2453         lru_add_drain();
2454
2455         for (i = 0; (i < npages) && migrate->cpages; i++) {
2456                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2457                 bool remap = true;
2458
2459                 if (!page)
2460                         continue;
2461
2462                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2463                         /*
2464                          * Because we are migrating several pages there can be
2465                          * a deadlock between 2 concurrent migration where each
2466                          * are waiting on each other page lock.
2467                          *
2468                          * Make migrate_vma() a best effort thing and backoff
2469                          * for any page we can not lock right away.
2470                          */
2471                         if (!trylock_page(page)) {
2472                                 migrate->src[i] = 0;
2473                                 migrate->cpages--;
2474                                 put_page(page);
2475                                 continue;
2476                         }
2477                         remap = false;
2478                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2479                 }
2480
2481                 /* ZONE_DEVICE pages are not on LRU */
2482                 if (!is_zone_device_page(page)) {
2483                         if (!PageLRU(page) && allow_drain) {
2484                                 /* Drain CPU's pagevec */
2485                                 lru_add_drain_all();
2486                                 allow_drain = false;
2487                         }
2488
2489                         if (isolate_lru_page(page)) {
2490                                 if (remap) {
2491                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2492                                         migrate->cpages--;
2493                                         restore++;
2494                                 } else {
2495                                         migrate->src[i] = 0;
2496                                         unlock_page(page);
2497                                         migrate->cpages--;
2498                                         put_page(page);
2499                                 }
2500                                 continue;
2501                         }
2502
2503                         /* Drop the reference we took in collect */
2504                         put_page(page);
2505                 }
2506
2507                 if (!migrate_vma_check_page(page)) {
2508                         if (remap) {
2509                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2510                                 migrate->cpages--;
2511                                 restore++;
2512
2513                                 if (!is_zone_device_page(page)) {
2514                                         get_page(page);
2515                                         putback_lru_page(page);
2516                                 }
2517                         } else {
2518                                 migrate->src[i] = 0;
2519                                 unlock_page(page);
2520                                 migrate->cpages--;
2521
2522                                 if (!is_zone_device_page(page))
2523                                         putback_lru_page(page);
2524                                 else
2525                                         put_page(page);
2526                         }
2527                 }
2528         }
2529
2530         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2531                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2532
2533                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2534                         continue;
2535
2536                 remove_migration_pte(page, migrate->vma, addr, page);
2537
2538                 migrate->src[i] = 0;
2539                 unlock_page(page);
2540                 put_page(page);
2541                 restore--;
2542         }
2543 }
2544
2545 /*
2546  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2547  * @migrate: migrate struct containing all migration information
2548  *
2549  * Replace page mapping (CPU page table pte) with a special migration pte entry
2550  * and check again if it has been pinned. Pinned pages are restored because we
2551  * cannot migrate them.
2552  *
2553  * This is the last step before we call the device driver callback to allocate
2554  * destination memory and copy contents of original page over to new page.
2555  */
2556 static void migrate_vma_unmap(struct migrate_vma *migrate)
2557 {
2558         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2559         const unsigned long npages = migrate->npages;
2560         const unsigned long start = migrate->start;
2561         unsigned long addr, i, restore = 0;
2562
2563         for (i = 0; i < npages; i++) {
2564                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2565
2566                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2567                         continue;
2568
2569                 if (page_mapped(page)) {
2570                         try_to_unmap(page, flags);
2571                         if (page_mapped(page))
2572                                 goto restore;
2573                 }
2574
2575                 if (migrate_vma_check_page(page))
2576                         continue;
2577
2578 restore:
2579                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2580                 migrate->cpages--;
2581                 restore++;
2582         }
2583
2584         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2585                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2586
2587                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2588                         continue;
2589
2590                 remove_migration_ptes(page, page, false);
2591
2592                 migrate->src[i] = 0;
2593                 unlock_page(page);
2594                 restore--;
2595
2596                 if (is_zone_device_page(page))
2597                         put_page(page);
2598                 else
2599                         putback_lru_page(page);
2600         }
2601 }
2602
2603 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2604                                     unsigned long addr,
2605                                     struct page *page,
2606                                     unsigned long *src,
2607                                     unsigned long *dst)
2608 {
2609         struct vm_area_struct *vma = migrate->vma;
2610         struct mm_struct *mm = vma->vm_mm;
2611         struct mem_cgroup *memcg;
2612         bool flush = false;
2613         spinlock_t *ptl;
2614         pte_t entry;
2615         pgd_t *pgdp;
2616         p4d_t *p4dp;
2617         pud_t *pudp;
2618         pmd_t *pmdp;
2619         pte_t *ptep;
2620
2621         /* Only allow populating anonymous memory */
2622         if (!vma_is_anonymous(vma))
2623                 goto abort;
2624
2625         pgdp = pgd_offset(mm, addr);
2626         p4dp = p4d_alloc(mm, pgdp, addr);
2627         if (!p4dp)
2628                 goto abort;
2629         pudp = pud_alloc(mm, p4dp, addr);
2630         if (!pudp)
2631                 goto abort;
2632         pmdp = pmd_alloc(mm, pudp, addr);
2633         if (!pmdp)
2634                 goto abort;
2635
2636         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2637                 goto abort;
2638
2639         /*
2640          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2641          * pte_offset_map() on pmds where a huge pmd might be created
2642          * from a different thread.
2643          *
2644          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2645          * parallel threads are excluded by other means.
2646          *
2647          * Here we only have down_read(mmap_sem).
2648          */
2649         if (pte_alloc(mm, pmdp, addr))
2650                 goto abort;
2651
2652         /* See the comment in pte_alloc_one_map() */
2653         if (unlikely(pmd_trans_unstable(pmdp)))
2654                 goto abort;
2655
2656         if (unlikely(anon_vma_prepare(vma)))
2657                 goto abort;
2658         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2659                 goto abort;
2660
2661         /*
2662          * The memory barrier inside __SetPageUptodate makes sure that
2663          * preceding stores to the page contents become visible before
2664          * the set_pte_at() write.
2665          */
2666         __SetPageUptodate(page);
2667
2668         if (is_zone_device_page(page)) {
2669                 if (is_device_private_page(page)) {
2670                         swp_entry_t swp_entry;
2671
2672                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2673                         entry = swp_entry_to_pte(swp_entry);
2674                 } else if (is_device_public_page(page)) {
2675                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2676                         if (vma->vm_flags & VM_WRITE)
2677                                 entry = pte_mkwrite(pte_mkdirty(entry));
2678                         entry = pte_mkdevmap(entry);
2679                 }
2680         } else {
2681                 entry = mk_pte(page, vma->vm_page_prot);
2682                 if (vma->vm_flags & VM_WRITE)
2683                         entry = pte_mkwrite(pte_mkdirty(entry));
2684         }
2685
2686         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2687
2688         if (pte_present(*ptep)) {
2689                 unsigned long pfn = pte_pfn(*ptep);
2690
2691                 if (!is_zero_pfn(pfn)) {
2692                         pte_unmap_unlock(ptep, ptl);
2693                         mem_cgroup_cancel_charge(page, memcg, false);
2694                         goto abort;
2695                 }
2696                 flush = true;
2697         } else if (!pte_none(*ptep)) {
2698                 pte_unmap_unlock(ptep, ptl);
2699                 mem_cgroup_cancel_charge(page, memcg, false);
2700                 goto abort;
2701         }
2702
2703         /*
2704          * Check for usefaultfd but do not deliver the fault. Instead,
2705          * just back off.
2706          */
2707         if (userfaultfd_missing(vma)) {
2708                 pte_unmap_unlock(ptep, ptl);
2709                 mem_cgroup_cancel_charge(page, memcg, false);
2710                 goto abort;
2711         }
2712
2713         inc_mm_counter(mm, MM_ANONPAGES);
2714         page_add_new_anon_rmap(page, vma, addr, false);
2715         mem_cgroup_commit_charge(page, memcg, false, false);
2716         if (!is_zone_device_page(page))
2717                 lru_cache_add_active_or_unevictable(page, vma);
2718         get_page(page);
2719
2720         if (flush) {
2721                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2722                 ptep_clear_flush_notify(vma, addr, ptep);
2723                 set_pte_at_notify(mm, addr, ptep, entry);
2724                 update_mmu_cache(vma, addr, ptep);
2725         } else {
2726                 /* No need to invalidate - it was non-present before */
2727                 set_pte_at(mm, addr, ptep, entry);
2728                 update_mmu_cache(vma, addr, ptep);
2729         }
2730
2731         pte_unmap_unlock(ptep, ptl);
2732         *src = MIGRATE_PFN_MIGRATE;
2733         return;
2734
2735 abort:
2736         *src &= ~MIGRATE_PFN_MIGRATE;
2737 }
2738
2739 /*
2740  * migrate_vma_pages() - migrate meta-data from src page to dst page
2741  * @migrate: migrate struct containing all migration information
2742  *
2743  * This migrates struct page meta-data from source struct page to destination
2744  * struct page. This effectively finishes the migration from source page to the
2745  * destination page.
2746  */
2747 static void migrate_vma_pages(struct migrate_vma *migrate)
2748 {
2749         const unsigned long npages = migrate->npages;
2750         const unsigned long start = migrate->start;
2751         struct vm_area_struct *vma = migrate->vma;
2752         struct mm_struct *mm = vma->vm_mm;
2753         unsigned long addr, i, mmu_start;
2754         bool notified = false;
2755
2756         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2757                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2758                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2759                 struct address_space *mapping;
2760                 int r;
2761
2762                 if (!newpage) {
2763                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2764                         continue;
2765                 }
2766
2767                 if (!page) {
2768                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2769                                 continue;
2770                         }
2771                         if (!notified) {
2772                                 mmu_start = addr;
2773                                 notified = true;
2774                                 mmu_notifier_invalidate_range_start(mm,
2775                                                                 mmu_start,
2776                                                                 migrate->end);
2777                         }
2778                         migrate_vma_insert_page(migrate, addr, newpage,
2779                                                 &migrate->src[i],
2780                                                 &migrate->dst[i]);
2781                         continue;
2782                 }
2783
2784                 mapping = page_mapping(page);
2785
2786                 if (is_zone_device_page(newpage)) {
2787                         if (is_device_private_page(newpage)) {
2788                                 /*
2789                                  * For now only support private anonymous when
2790                                  * migrating to un-addressable device memory.
2791                                  */
2792                                 if (mapping) {
2793                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2794                                         continue;
2795                                 }
2796                         } else if (!is_device_public_page(newpage)) {
2797                                 /*
2798                                  * Other types of ZONE_DEVICE page are not
2799                                  * supported.
2800                                  */
2801                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2802                                 continue;
2803                         }
2804                 }
2805
2806                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2807                 if (r != MIGRATEPAGE_SUCCESS)
2808                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2809         }
2810
2811         /*
2812          * No need to double call mmu_notifier->invalidate_range() callback as
2813          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2814          * did already call it.
2815          */
2816         if (notified)
2817                 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2818                                                        migrate->end);
2819 }
2820
2821 /*
2822  * migrate_vma_finalize() - restore CPU page table entry
2823  * @migrate: migrate struct containing all migration information
2824  *
2825  * This replaces the special migration pte entry with either a mapping to the
2826  * new page if migration was successful for that page, or to the original page
2827  * otherwise.
2828  *
2829  * This also unlocks the pages and puts them back on the lru, or drops the extra
2830  * refcount, for device pages.
2831  */
2832 static void migrate_vma_finalize(struct migrate_vma *migrate)
2833 {
2834         const unsigned long npages = migrate->npages;
2835         unsigned long i;
2836
2837         for (i = 0; i < npages; i++) {
2838                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2839                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2840
2841                 if (!page) {
2842                         if (newpage) {
2843                                 unlock_page(newpage);
2844                                 put_page(newpage);
2845                         }
2846                         continue;
2847                 }
2848
2849                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2850                         if (newpage) {
2851                                 unlock_page(newpage);
2852                                 put_page(newpage);
2853                         }
2854                         newpage = page;
2855                 }
2856
2857                 remove_migration_ptes(page, newpage, false);
2858                 unlock_page(page);
2859                 migrate->cpages--;
2860
2861                 if (is_zone_device_page(page))
2862                         put_page(page);
2863                 else
2864                         putback_lru_page(page);
2865
2866                 if (newpage != page) {
2867                         unlock_page(newpage);
2868                         if (is_zone_device_page(newpage))
2869                                 put_page(newpage);
2870                         else
2871                                 putback_lru_page(newpage);
2872                 }
2873         }
2874 }
2875
2876 /*
2877  * migrate_vma() - migrate a range of memory inside vma
2878  *
2879  * @ops: migration callback for allocating destination memory and copying
2880  * @vma: virtual memory area containing the range to be migrated
2881  * @start: start address of the range to migrate (inclusive)
2882  * @end: end address of the range to migrate (exclusive)
2883  * @src: array of hmm_pfn_t containing source pfns
2884  * @dst: array of hmm_pfn_t containing destination pfns
2885  * @private: pointer passed back to each of the callback
2886  * Returns: 0 on success, error code otherwise
2887  *
2888  * This function tries to migrate a range of memory virtual address range, using
2889  * callbacks to allocate and copy memory from source to destination. First it
2890  * collects all the pages backing each virtual address in the range, saving this
2891  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2892  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2893  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2894  * in the corresponding src array entry. It then restores any pages that are
2895  * pinned, by remapping and unlocking those pages.
2896  *
2897  * At this point it calls the alloc_and_copy() callback. For documentation on
2898  * what is expected from that callback, see struct migrate_vma_ops comments in
2899  * include/linux/migrate.h
2900  *
2901  * After the alloc_and_copy() callback, this function goes over each entry in
2902  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2903  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2904  * then the function tries to migrate struct page information from the source
2905  * struct page to the destination struct page. If it fails to migrate the struct
2906  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2907  * array.
2908  *
2909  * At this point all successfully migrated pages have an entry in the src
2910  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2911  * array entry with MIGRATE_PFN_VALID flag set.
2912  *
2913  * It then calls the finalize_and_map() callback. See comments for "struct
2914  * migrate_vma_ops", in include/linux/migrate.h for details about
2915  * finalize_and_map() behavior.
2916  *
2917  * After the finalize_and_map() callback, for successfully migrated pages, this
2918  * function updates the CPU page table to point to new pages, otherwise it
2919  * restores the CPU page table to point to the original source pages.
2920  *
2921  * Function returns 0 after the above steps, even if no pages were migrated
2922  * (The function only returns an error if any of the arguments are invalid.)
2923  *
2924  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2925  * unsigned long entries.
2926  */
2927 int migrate_vma(const struct migrate_vma_ops *ops,
2928                 struct vm_area_struct *vma,
2929                 unsigned long start,
2930                 unsigned long end,
2931                 unsigned long *src,
2932                 unsigned long *dst,
2933                 void *private)
2934 {
2935         struct migrate_vma migrate;
2936
2937         /* Sanity check the arguments */
2938         start &= PAGE_MASK;
2939         end &= PAGE_MASK;
2940         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2941                 return -EINVAL;
2942         if (start < vma->vm_start || start >= vma->vm_end)
2943                 return -EINVAL;
2944         if (end <= vma->vm_start || end > vma->vm_end)
2945                 return -EINVAL;
2946         if (!ops || !src || !dst || start >= end)
2947                 return -EINVAL;
2948
2949         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2950         migrate.src = src;
2951         migrate.dst = dst;
2952         migrate.start = start;
2953         migrate.npages = 0;
2954         migrate.cpages = 0;
2955         migrate.end = end;
2956         migrate.vma = vma;
2957
2958         /* Collect, and try to unmap source pages */
2959         migrate_vma_collect(&migrate);
2960         if (!migrate.cpages)
2961                 return 0;
2962
2963         /* Lock and isolate page */
2964         migrate_vma_prepare(&migrate);
2965         if (!migrate.cpages)
2966                 return 0;
2967
2968         /* Unmap pages */
2969         migrate_vma_unmap(&migrate);
2970         if (!migrate.cpages)
2971                 return 0;
2972
2973         /*
2974          * At this point pages are locked and unmapped, and thus they have
2975          * stable content and can safely be copied to destination memory that
2976          * is allocated by the callback.
2977          *
2978          * Note that migration can fail in migrate_vma_struct_page() for each
2979          * individual page.
2980          */
2981         ops->alloc_and_copy(vma, src, dst, start, end, private);
2982
2983         /* This does the real migration of struct page */
2984         migrate_vma_pages(&migrate);
2985
2986         ops->finalize_and_map(vma, src, dst, start, end, private);
2987
2988         /* Unlock and remap pages */
2989         migrate_vma_finalize(&migrate);
2990
2991         return 0;
2992 }
2993 EXPORT_SYMBOL(migrate_vma);
2994 #endif /* defined(MIGRATE_VMA_HELPER) */