8dd57601714f3200bd69fc2e727ec812362d2a7f
[sfrench/cifs-2.6.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                                 flush_dcache_page(new);
252                         }
253                 } else
254                         flush_dcache_page(new);
255
256 #ifdef CONFIG_HUGETLB_PAGE
257                 if (PageHuge(new)) {
258                         pte = pte_mkhuge(pte);
259                         pte = arch_make_huge_pte(pte, vma, new, 0);
260                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261                         if (PageAnon(new))
262                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
263                         else
264                                 page_dup_rmap(new, true);
265                 } else
266 #endif
267                 {
268                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270                         if (PageAnon(new))
271                                 page_add_anon_rmap(new, vma, pvmw.address, false);
272                         else
273                                 page_add_file_rmap(new, false);
274                 }
275                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276                         mlock_vma_page(new);
277
278                 if (PageTransHuge(page) && PageMlocked(page))
279                         clear_page_mlock(page);
280
281                 /* No need to invalidate - it was non-present before */
282                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
283         }
284
285         return true;
286 }
287
288 /*
289  * Get rid of all migration entries and replace them by
290  * references to the indicated page.
291  */
292 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
293 {
294         struct rmap_walk_control rwc = {
295                 .rmap_one = remove_migration_pte,
296                 .arg = old,
297         };
298
299         if (locked)
300                 rmap_walk_locked(new, &rwc);
301         else
302                 rmap_walk(new, &rwc);
303 }
304
305 /*
306  * Something used the pte of a page under migration. We need to
307  * get to the page and wait until migration is finished.
308  * When we return from this function the fault will be retried.
309  */
310 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
311                                 spinlock_t *ptl)
312 {
313         pte_t pte;
314         swp_entry_t entry;
315         struct page *page;
316
317         spin_lock(ptl);
318         pte = *ptep;
319         if (!is_swap_pte(pte))
320                 goto out;
321
322         entry = pte_to_swp_entry(pte);
323         if (!is_migration_entry(entry))
324                 goto out;
325
326         page = migration_entry_to_page(entry);
327
328         /*
329          * Once page cache replacement of page migration started, page_count
330          * is zero; but we must not call put_and_wait_on_page_locked() without
331          * a ref. Use get_page_unless_zero(), and just fault again if it fails.
332          */
333         if (!get_page_unless_zero(page))
334                 goto out;
335         pte_unmap_unlock(ptep, ptl);
336         put_and_wait_on_page_locked(page);
337         return;
338 out:
339         pte_unmap_unlock(ptep, ptl);
340 }
341
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343                                 unsigned long address)
344 {
345         spinlock_t *ptl = pte_lockptr(mm, pmd);
346         pte_t *ptep = pte_offset_map(pmd, address);
347         __migration_entry_wait(mm, ptep, ptl);
348 }
349
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351                 struct mm_struct *mm, pte_t *pte)
352 {
353         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354         __migration_entry_wait(mm, pte, ptl);
355 }
356
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360         spinlock_t *ptl;
361         struct page *page;
362
363         ptl = pmd_lock(mm, pmd);
364         if (!is_pmd_migration_entry(*pmd))
365                 goto unlock;
366         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367         if (!get_page_unless_zero(page))
368                 goto unlock;
369         spin_unlock(ptl);
370         put_and_wait_on_page_locked(page);
371         return;
372 unlock:
373         spin_unlock(ptl);
374 }
375 #endif
376
377 static int expected_page_refs(struct page *page)
378 {
379         int expected_count = 1;
380
381         /*
382          * Device public or private pages have an extra refcount as they are
383          * ZONE_DEVICE pages.
384          */
385         expected_count += is_device_private_page(page);
386         expected_count += is_device_public_page(page);
387         if (page_mapping(page))
388                 expected_count += hpage_nr_pages(page) + page_has_private(page);
389
390         return expected_count;
391 }
392
393 /*
394  * Replace the page in the mapping.
395  *
396  * The number of remaining references must be:
397  * 1 for anonymous pages without a mapping
398  * 2 for pages with a mapping
399  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
400  */
401 int migrate_page_move_mapping(struct address_space *mapping,
402                 struct page *newpage, struct page *page,
403                 struct buffer_head *head, enum migrate_mode mode,
404                 int extra_count)
405 {
406         XA_STATE(xas, &mapping->i_pages, page_index(page));
407         struct zone *oldzone, *newzone;
408         int dirty;
409         int expected_count = expected_page_refs(page) + extra_count;
410
411         if (!mapping) {
412                 /* Anonymous page without mapping */
413                 if (page_count(page) != expected_count)
414                         return -EAGAIN;
415
416                 /* No turning back from here */
417                 newpage->index = page->index;
418                 newpage->mapping = page->mapping;
419                 if (PageSwapBacked(page))
420                         __SetPageSwapBacked(newpage);
421
422                 return MIGRATEPAGE_SUCCESS;
423         }
424
425         oldzone = page_zone(page);
426         newzone = page_zone(newpage);
427
428         xas_lock_irq(&xas);
429         if (page_count(page) != expected_count || xas_load(&xas) != page) {
430                 xas_unlock_irq(&xas);
431                 return -EAGAIN;
432         }
433
434         if (!page_ref_freeze(page, expected_count)) {
435                 xas_unlock_irq(&xas);
436                 return -EAGAIN;
437         }
438
439         /*
440          * Now we know that no one else is looking at the page:
441          * no turning back from here.
442          */
443         newpage->index = page->index;
444         newpage->mapping = page->mapping;
445         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
446         if (PageSwapBacked(page)) {
447                 __SetPageSwapBacked(newpage);
448                 if (PageSwapCache(page)) {
449                         SetPageSwapCache(newpage);
450                         set_page_private(newpage, page_private(page));
451                 }
452         } else {
453                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
454         }
455
456         /* Move dirty while page refs frozen and newpage not yet exposed */
457         dirty = PageDirty(page);
458         if (dirty) {
459                 ClearPageDirty(page);
460                 SetPageDirty(newpage);
461         }
462
463         xas_store(&xas, newpage);
464         if (PageTransHuge(page)) {
465                 int i;
466
467                 for (i = 1; i < HPAGE_PMD_NR; i++) {
468                         xas_next(&xas);
469                         xas_store(&xas, newpage + i);
470                 }
471         }
472
473         /*
474          * Drop cache reference from old page by unfreezing
475          * to one less reference.
476          * We know this isn't the last reference.
477          */
478         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
479
480         xas_unlock(&xas);
481         /* Leave irq disabled to prevent preemption while updating stats */
482
483         /*
484          * If moved to a different zone then also account
485          * the page for that zone. Other VM counters will be
486          * taken care of when we establish references to the
487          * new page and drop references to the old page.
488          *
489          * Note that anonymous pages are accounted for
490          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
491          * are mapped to swap space.
492          */
493         if (newzone != oldzone) {
494                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
495                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
496                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
497                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
498                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
499                 }
500                 if (dirty && mapping_cap_account_dirty(mapping)) {
501                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
502                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
503                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
504                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
505                 }
506         }
507         local_irq_enable();
508
509         return MIGRATEPAGE_SUCCESS;
510 }
511 EXPORT_SYMBOL(migrate_page_move_mapping);
512
513 /*
514  * The expected number of remaining references is the same as that
515  * of migrate_page_move_mapping().
516  */
517 int migrate_huge_page_move_mapping(struct address_space *mapping,
518                                    struct page *newpage, struct page *page)
519 {
520         XA_STATE(xas, &mapping->i_pages, page_index(page));
521         int expected_count;
522
523         xas_lock_irq(&xas);
524         expected_count = 2 + page_has_private(page);
525         if (page_count(page) != expected_count || xas_load(&xas) != page) {
526                 xas_unlock_irq(&xas);
527                 return -EAGAIN;
528         }
529
530         if (!page_ref_freeze(page, expected_count)) {
531                 xas_unlock_irq(&xas);
532                 return -EAGAIN;
533         }
534
535         newpage->index = page->index;
536         newpage->mapping = page->mapping;
537
538         get_page(newpage);
539
540         xas_store(&xas, newpage);
541
542         page_ref_unfreeze(page, expected_count - 1);
543
544         xas_unlock_irq(&xas);
545
546         return MIGRATEPAGE_SUCCESS;
547 }
548
549 /*
550  * Gigantic pages are so large that we do not guarantee that page++ pointer
551  * arithmetic will work across the entire page.  We need something more
552  * specialized.
553  */
554 static void __copy_gigantic_page(struct page *dst, struct page *src,
555                                 int nr_pages)
556 {
557         int i;
558         struct page *dst_base = dst;
559         struct page *src_base = src;
560
561         for (i = 0; i < nr_pages; ) {
562                 cond_resched();
563                 copy_highpage(dst, src);
564
565                 i++;
566                 dst = mem_map_next(dst, dst_base, i);
567                 src = mem_map_next(src, src_base, i);
568         }
569 }
570
571 static void copy_huge_page(struct page *dst, struct page *src)
572 {
573         int i;
574         int nr_pages;
575
576         if (PageHuge(src)) {
577                 /* hugetlbfs page */
578                 struct hstate *h = page_hstate(src);
579                 nr_pages = pages_per_huge_page(h);
580
581                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
582                         __copy_gigantic_page(dst, src, nr_pages);
583                         return;
584                 }
585         } else {
586                 /* thp page */
587                 BUG_ON(!PageTransHuge(src));
588                 nr_pages = hpage_nr_pages(src);
589         }
590
591         for (i = 0; i < nr_pages; i++) {
592                 cond_resched();
593                 copy_highpage(dst + i, src + i);
594         }
595 }
596
597 /*
598  * Copy the page to its new location
599  */
600 void migrate_page_states(struct page *newpage, struct page *page)
601 {
602         int cpupid;
603
604         if (PageError(page))
605                 SetPageError(newpage);
606         if (PageReferenced(page))
607                 SetPageReferenced(newpage);
608         if (PageUptodate(page))
609                 SetPageUptodate(newpage);
610         if (TestClearPageActive(page)) {
611                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
612                 SetPageActive(newpage);
613         } else if (TestClearPageUnevictable(page))
614                 SetPageUnevictable(newpage);
615         if (PageWorkingset(page))
616                 SetPageWorkingset(newpage);
617         if (PageChecked(page))
618                 SetPageChecked(newpage);
619         if (PageMappedToDisk(page))
620                 SetPageMappedToDisk(newpage);
621
622         /* Move dirty on pages not done by migrate_page_move_mapping() */
623         if (PageDirty(page))
624                 SetPageDirty(newpage);
625
626         if (page_is_young(page))
627                 set_page_young(newpage);
628         if (page_is_idle(page))
629                 set_page_idle(newpage);
630
631         /*
632          * Copy NUMA information to the new page, to prevent over-eager
633          * future migrations of this same page.
634          */
635         cpupid = page_cpupid_xchg_last(page, -1);
636         page_cpupid_xchg_last(newpage, cpupid);
637
638         ksm_migrate_page(newpage, page);
639         /*
640          * Please do not reorder this without considering how mm/ksm.c's
641          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
642          */
643         if (PageSwapCache(page))
644                 ClearPageSwapCache(page);
645         ClearPagePrivate(page);
646         set_page_private(page, 0);
647
648         /*
649          * If any waiters have accumulated on the new page then
650          * wake them up.
651          */
652         if (PageWriteback(newpage))
653                 end_page_writeback(newpage);
654
655         copy_page_owner(page, newpage);
656
657         mem_cgroup_migrate(page, newpage);
658 }
659 EXPORT_SYMBOL(migrate_page_states);
660
661 void migrate_page_copy(struct page *newpage, struct page *page)
662 {
663         if (PageHuge(page) || PageTransHuge(page))
664                 copy_huge_page(newpage, page);
665         else
666                 copy_highpage(newpage, page);
667
668         migrate_page_states(newpage, page);
669 }
670 EXPORT_SYMBOL(migrate_page_copy);
671
672 /************************************************************
673  *                    Migration functions
674  ***********************************************************/
675
676 /*
677  * Common logic to directly migrate a single LRU page suitable for
678  * pages that do not use PagePrivate/PagePrivate2.
679  *
680  * Pages are locked upon entry and exit.
681  */
682 int migrate_page(struct address_space *mapping,
683                 struct page *newpage, struct page *page,
684                 enum migrate_mode mode)
685 {
686         int rc;
687
688         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
689
690         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
691
692         if (rc != MIGRATEPAGE_SUCCESS)
693                 return rc;
694
695         if (mode != MIGRATE_SYNC_NO_COPY)
696                 migrate_page_copy(newpage, page);
697         else
698                 migrate_page_states(newpage, page);
699         return MIGRATEPAGE_SUCCESS;
700 }
701 EXPORT_SYMBOL(migrate_page);
702
703 #ifdef CONFIG_BLOCK
704 /* Returns true if all buffers are successfully locked */
705 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
706                                                         enum migrate_mode mode)
707 {
708         struct buffer_head *bh = head;
709
710         /* Simple case, sync compaction */
711         if (mode != MIGRATE_ASYNC) {
712                 do {
713                         get_bh(bh);
714                         lock_buffer(bh);
715                         bh = bh->b_this_page;
716
717                 } while (bh != head);
718
719                 return true;
720         }
721
722         /* async case, we cannot block on lock_buffer so use trylock_buffer */
723         do {
724                 get_bh(bh);
725                 if (!trylock_buffer(bh)) {
726                         /*
727                          * We failed to lock the buffer and cannot stall in
728                          * async migration. Release the taken locks
729                          */
730                         struct buffer_head *failed_bh = bh;
731                         put_bh(failed_bh);
732                         bh = head;
733                         while (bh != failed_bh) {
734                                 unlock_buffer(bh);
735                                 put_bh(bh);
736                                 bh = bh->b_this_page;
737                         }
738                         return false;
739                 }
740
741                 bh = bh->b_this_page;
742         } while (bh != head);
743         return true;
744 }
745
746 static int __buffer_migrate_page(struct address_space *mapping,
747                 struct page *newpage, struct page *page, enum migrate_mode mode,
748                 bool check_refs)
749 {
750         struct buffer_head *bh, *head;
751         int rc;
752         int expected_count;
753
754         if (!page_has_buffers(page))
755                 return migrate_page(mapping, newpage, page, mode);
756
757         /* Check whether page does not have extra refs before we do more work */
758         expected_count = expected_page_refs(page);
759         if (page_count(page) != expected_count)
760                 return -EAGAIN;
761
762         head = page_buffers(page);
763         if (!buffer_migrate_lock_buffers(head, mode))
764                 return -EAGAIN;
765
766         if (check_refs) {
767                 bool busy;
768                 bool invalidated = false;
769
770 recheck_buffers:
771                 busy = false;
772                 spin_lock(&mapping->private_lock);
773                 bh = head;
774                 do {
775                         if (atomic_read(&bh->b_count)) {
776                                 busy = true;
777                                 break;
778                         }
779                         bh = bh->b_this_page;
780                 } while (bh != head);
781                 spin_unlock(&mapping->private_lock);
782                 if (busy) {
783                         if (invalidated) {
784                                 rc = -EAGAIN;
785                                 goto unlock_buffers;
786                         }
787                         invalidate_bh_lrus();
788                         invalidated = true;
789                         goto recheck_buffers;
790                 }
791         }
792
793         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
794         if (rc != MIGRATEPAGE_SUCCESS)
795                 goto unlock_buffers;
796
797         ClearPagePrivate(page);
798         set_page_private(newpage, page_private(page));
799         set_page_private(page, 0);
800         put_page(page);
801         get_page(newpage);
802
803         bh = head;
804         do {
805                 set_bh_page(bh, newpage, bh_offset(bh));
806                 bh = bh->b_this_page;
807
808         } while (bh != head);
809
810         SetPagePrivate(newpage);
811
812         if (mode != MIGRATE_SYNC_NO_COPY)
813                 migrate_page_copy(newpage, page);
814         else
815                 migrate_page_states(newpage, page);
816
817         rc = MIGRATEPAGE_SUCCESS;
818 unlock_buffers:
819         bh = head;
820         do {
821                 unlock_buffer(bh);
822                 put_bh(bh);
823                 bh = bh->b_this_page;
824
825         } while (bh != head);
826
827         return rc;
828 }
829
830 /*
831  * Migration function for pages with buffers. This function can only be used
832  * if the underlying filesystem guarantees that no other references to "page"
833  * exist. For example attached buffer heads are accessed only under page lock.
834  */
835 int buffer_migrate_page(struct address_space *mapping,
836                 struct page *newpage, struct page *page, enum migrate_mode mode)
837 {
838         return __buffer_migrate_page(mapping, newpage, page, mode, false);
839 }
840 EXPORT_SYMBOL(buffer_migrate_page);
841
842 /*
843  * Same as above except that this variant is more careful and checks that there
844  * are also no buffer head references. This function is the right one for
845  * mappings where buffer heads are directly looked up and referenced (such as
846  * block device mappings).
847  */
848 int buffer_migrate_page_norefs(struct address_space *mapping,
849                 struct page *newpage, struct page *page, enum migrate_mode mode)
850 {
851         return __buffer_migrate_page(mapping, newpage, page, mode, true);
852 }
853 #endif
854
855 /*
856  * Writeback a page to clean the dirty state
857  */
858 static int writeout(struct address_space *mapping, struct page *page)
859 {
860         struct writeback_control wbc = {
861                 .sync_mode = WB_SYNC_NONE,
862                 .nr_to_write = 1,
863                 .range_start = 0,
864                 .range_end = LLONG_MAX,
865                 .for_reclaim = 1
866         };
867         int rc;
868
869         if (!mapping->a_ops->writepage)
870                 /* No write method for the address space */
871                 return -EINVAL;
872
873         if (!clear_page_dirty_for_io(page))
874                 /* Someone else already triggered a write */
875                 return -EAGAIN;
876
877         /*
878          * A dirty page may imply that the underlying filesystem has
879          * the page on some queue. So the page must be clean for
880          * migration. Writeout may mean we loose the lock and the
881          * page state is no longer what we checked for earlier.
882          * At this point we know that the migration attempt cannot
883          * be successful.
884          */
885         remove_migration_ptes(page, page, false);
886
887         rc = mapping->a_ops->writepage(page, &wbc);
888
889         if (rc != AOP_WRITEPAGE_ACTIVATE)
890                 /* unlocked. Relock */
891                 lock_page(page);
892
893         return (rc < 0) ? -EIO : -EAGAIN;
894 }
895
896 /*
897  * Default handling if a filesystem does not provide a migration function.
898  */
899 static int fallback_migrate_page(struct address_space *mapping,
900         struct page *newpage, struct page *page, enum migrate_mode mode)
901 {
902         if (PageDirty(page)) {
903                 /* Only writeback pages in full synchronous migration */
904                 switch (mode) {
905                 case MIGRATE_SYNC:
906                 case MIGRATE_SYNC_NO_COPY:
907                         break;
908                 default:
909                         return -EBUSY;
910                 }
911                 return writeout(mapping, page);
912         }
913
914         /*
915          * Buffers may be managed in a filesystem specific way.
916          * We must have no buffers or drop them.
917          */
918         if (page_has_private(page) &&
919             !try_to_release_page(page, GFP_KERNEL))
920                 return -EAGAIN;
921
922         return migrate_page(mapping, newpage, page, mode);
923 }
924
925 /*
926  * Move a page to a newly allocated page
927  * The page is locked and all ptes have been successfully removed.
928  *
929  * The new page will have replaced the old page if this function
930  * is successful.
931  *
932  * Return value:
933  *   < 0 - error code
934  *  MIGRATEPAGE_SUCCESS - success
935  */
936 static int move_to_new_page(struct page *newpage, struct page *page,
937                                 enum migrate_mode mode)
938 {
939         struct address_space *mapping;
940         int rc = -EAGAIN;
941         bool is_lru = !__PageMovable(page);
942
943         VM_BUG_ON_PAGE(!PageLocked(page), page);
944         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
945
946         mapping = page_mapping(page);
947
948         if (likely(is_lru)) {
949                 if (!mapping)
950                         rc = migrate_page(mapping, newpage, page, mode);
951                 else if (mapping->a_ops->migratepage)
952                         /*
953                          * Most pages have a mapping and most filesystems
954                          * provide a migratepage callback. Anonymous pages
955                          * are part of swap space which also has its own
956                          * migratepage callback. This is the most common path
957                          * for page migration.
958                          */
959                         rc = mapping->a_ops->migratepage(mapping, newpage,
960                                                         page, mode);
961                 else
962                         rc = fallback_migrate_page(mapping, newpage,
963                                                         page, mode);
964         } else {
965                 /*
966                  * In case of non-lru page, it could be released after
967                  * isolation step. In that case, we shouldn't try migration.
968                  */
969                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
970                 if (!PageMovable(page)) {
971                         rc = MIGRATEPAGE_SUCCESS;
972                         __ClearPageIsolated(page);
973                         goto out;
974                 }
975
976                 rc = mapping->a_ops->migratepage(mapping, newpage,
977                                                 page, mode);
978                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
979                         !PageIsolated(page));
980         }
981
982         /*
983          * When successful, old pagecache page->mapping must be cleared before
984          * page is freed; but stats require that PageAnon be left as PageAnon.
985          */
986         if (rc == MIGRATEPAGE_SUCCESS) {
987                 if (__PageMovable(page)) {
988                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
989
990                         /*
991                          * We clear PG_movable under page_lock so any compactor
992                          * cannot try to migrate this page.
993                          */
994                         __ClearPageIsolated(page);
995                 }
996
997                 /*
998                  * Anonymous and movable page->mapping will be cleard by
999                  * free_pages_prepare so don't reset it here for keeping
1000                  * the type to work PageAnon, for example.
1001                  */
1002                 if (!PageMappingFlags(page))
1003                         page->mapping = NULL;
1004         }
1005 out:
1006         return rc;
1007 }
1008
1009 static int __unmap_and_move(struct page *page, struct page *newpage,
1010                                 int force, enum migrate_mode mode)
1011 {
1012         int rc = -EAGAIN;
1013         int page_was_mapped = 0;
1014         struct anon_vma *anon_vma = NULL;
1015         bool is_lru = !__PageMovable(page);
1016
1017         if (!trylock_page(page)) {
1018                 if (!force || mode == MIGRATE_ASYNC)
1019                         goto out;
1020
1021                 /*
1022                  * It's not safe for direct compaction to call lock_page.
1023                  * For example, during page readahead pages are added locked
1024                  * to the LRU. Later, when the IO completes the pages are
1025                  * marked uptodate and unlocked. However, the queueing
1026                  * could be merging multiple pages for one bio (e.g.
1027                  * mpage_readpages). If an allocation happens for the
1028                  * second or third page, the process can end up locking
1029                  * the same page twice and deadlocking. Rather than
1030                  * trying to be clever about what pages can be locked,
1031                  * avoid the use of lock_page for direct compaction
1032                  * altogether.
1033                  */
1034                 if (current->flags & PF_MEMALLOC)
1035                         goto out;
1036
1037                 lock_page(page);
1038         }
1039
1040         if (PageWriteback(page)) {
1041                 /*
1042                  * Only in the case of a full synchronous migration is it
1043                  * necessary to wait for PageWriteback. In the async case,
1044                  * the retry loop is too short and in the sync-light case,
1045                  * the overhead of stalling is too much
1046                  */
1047                 switch (mode) {
1048                 case MIGRATE_SYNC:
1049                 case MIGRATE_SYNC_NO_COPY:
1050                         break;
1051                 default:
1052                         rc = -EBUSY;
1053                         goto out_unlock;
1054                 }
1055                 if (!force)
1056                         goto out_unlock;
1057                 wait_on_page_writeback(page);
1058         }
1059
1060         /*
1061          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1062          * we cannot notice that anon_vma is freed while we migrates a page.
1063          * This get_anon_vma() delays freeing anon_vma pointer until the end
1064          * of migration. File cache pages are no problem because of page_lock()
1065          * File Caches may use write_page() or lock_page() in migration, then,
1066          * just care Anon page here.
1067          *
1068          * Only page_get_anon_vma() understands the subtleties of
1069          * getting a hold on an anon_vma from outside one of its mms.
1070          * But if we cannot get anon_vma, then we won't need it anyway,
1071          * because that implies that the anon page is no longer mapped
1072          * (and cannot be remapped so long as we hold the page lock).
1073          */
1074         if (PageAnon(page) && !PageKsm(page))
1075                 anon_vma = page_get_anon_vma(page);
1076
1077         /*
1078          * Block others from accessing the new page when we get around to
1079          * establishing additional references. We are usually the only one
1080          * holding a reference to newpage at this point. We used to have a BUG
1081          * here if trylock_page(newpage) fails, but would like to allow for
1082          * cases where there might be a race with the previous use of newpage.
1083          * This is much like races on refcount of oldpage: just don't BUG().
1084          */
1085         if (unlikely(!trylock_page(newpage)))
1086                 goto out_unlock;
1087
1088         if (unlikely(!is_lru)) {
1089                 rc = move_to_new_page(newpage, page, mode);
1090                 goto out_unlock_both;
1091         }
1092
1093         /*
1094          * Corner case handling:
1095          * 1. When a new swap-cache page is read into, it is added to the LRU
1096          * and treated as swapcache but it has no rmap yet.
1097          * Calling try_to_unmap() against a page->mapping==NULL page will
1098          * trigger a BUG.  So handle it here.
1099          * 2. An orphaned page (see truncate_complete_page) might have
1100          * fs-private metadata. The page can be picked up due to memory
1101          * offlining.  Everywhere else except page reclaim, the page is
1102          * invisible to the vm, so the page can not be migrated.  So try to
1103          * free the metadata, so the page can be freed.
1104          */
1105         if (!page->mapping) {
1106                 VM_BUG_ON_PAGE(PageAnon(page), page);
1107                 if (page_has_private(page)) {
1108                         try_to_free_buffers(page);
1109                         goto out_unlock_both;
1110                 }
1111         } else if (page_mapped(page)) {
1112                 /* Establish migration ptes */
1113                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1114                                 page);
1115                 try_to_unmap(page,
1116                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1117                 page_was_mapped = 1;
1118         }
1119
1120         if (!page_mapped(page))
1121                 rc = move_to_new_page(newpage, page, mode);
1122
1123         if (page_was_mapped)
1124                 remove_migration_ptes(page,
1125                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1126
1127 out_unlock_both:
1128         unlock_page(newpage);
1129 out_unlock:
1130         /* Drop an anon_vma reference if we took one */
1131         if (anon_vma)
1132                 put_anon_vma(anon_vma);
1133         unlock_page(page);
1134 out:
1135         /*
1136          * If migration is successful, decrease refcount of the newpage
1137          * which will not free the page because new page owner increased
1138          * refcounter. As well, if it is LRU page, add the page to LRU
1139          * list in here.
1140          */
1141         if (rc == MIGRATEPAGE_SUCCESS) {
1142                 if (unlikely(__PageMovable(newpage)))
1143                         put_page(newpage);
1144                 else
1145                         putback_lru_page(newpage);
1146         }
1147
1148         return rc;
1149 }
1150
1151 /*
1152  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1153  * around it.
1154  */
1155 #if defined(CONFIG_ARM) && \
1156         defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1157 #define ICE_noinline noinline
1158 #else
1159 #define ICE_noinline
1160 #endif
1161
1162 /*
1163  * Obtain the lock on page, remove all ptes and migrate the page
1164  * to the newly allocated page in newpage.
1165  */
1166 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1167                                    free_page_t put_new_page,
1168                                    unsigned long private, struct page *page,
1169                                    int force, enum migrate_mode mode,
1170                                    enum migrate_reason reason)
1171 {
1172         int rc = MIGRATEPAGE_SUCCESS;
1173         struct page *newpage;
1174
1175         if (!thp_migration_supported() && PageTransHuge(page))
1176                 return -ENOMEM;
1177
1178         newpage = get_new_page(page, private);
1179         if (!newpage)
1180                 return -ENOMEM;
1181
1182         if (page_count(page) == 1) {
1183                 /* page was freed from under us. So we are done. */
1184                 ClearPageActive(page);
1185                 ClearPageUnevictable(page);
1186                 if (unlikely(__PageMovable(page))) {
1187                         lock_page(page);
1188                         if (!PageMovable(page))
1189                                 __ClearPageIsolated(page);
1190                         unlock_page(page);
1191                 }
1192                 if (put_new_page)
1193                         put_new_page(newpage, private);
1194                 else
1195                         put_page(newpage);
1196                 goto out;
1197         }
1198
1199         rc = __unmap_and_move(page, newpage, force, mode);
1200         if (rc == MIGRATEPAGE_SUCCESS)
1201                 set_page_owner_migrate_reason(newpage, reason);
1202
1203 out:
1204         if (rc != -EAGAIN) {
1205                 /*
1206                  * A page that has been migrated has all references
1207                  * removed and will be freed. A page that has not been
1208                  * migrated will have kepts its references and be
1209                  * restored.
1210                  */
1211                 list_del(&page->lru);
1212
1213                 /*
1214                  * Compaction can migrate also non-LRU pages which are
1215                  * not accounted to NR_ISOLATED_*. They can be recognized
1216                  * as __PageMovable
1217                  */
1218                 if (likely(!__PageMovable(page)))
1219                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1220                                         page_is_file_cache(page), -hpage_nr_pages(page));
1221         }
1222
1223         /*
1224          * If migration is successful, releases reference grabbed during
1225          * isolation. Otherwise, restore the page to right list unless
1226          * we want to retry.
1227          */
1228         if (rc == MIGRATEPAGE_SUCCESS) {
1229                 put_page(page);
1230                 if (reason == MR_MEMORY_FAILURE) {
1231                         /*
1232                          * Set PG_HWPoison on just freed page
1233                          * intentionally. Although it's rather weird,
1234                          * it's how HWPoison flag works at the moment.
1235                          */
1236                         if (set_hwpoison_free_buddy_page(page))
1237                                 num_poisoned_pages_inc();
1238                 }
1239         } else {
1240                 if (rc != -EAGAIN) {
1241                         if (likely(!__PageMovable(page))) {
1242                                 putback_lru_page(page);
1243                                 goto put_new;
1244                         }
1245
1246                         lock_page(page);
1247                         if (PageMovable(page))
1248                                 putback_movable_page(page);
1249                         else
1250                                 __ClearPageIsolated(page);
1251                         unlock_page(page);
1252                         put_page(page);
1253                 }
1254 put_new:
1255                 if (put_new_page)
1256                         put_new_page(newpage, private);
1257                 else
1258                         put_page(newpage);
1259         }
1260
1261         return rc;
1262 }
1263
1264 /*
1265  * Counterpart of unmap_and_move_page() for hugepage migration.
1266  *
1267  * This function doesn't wait the completion of hugepage I/O
1268  * because there is no race between I/O and migration for hugepage.
1269  * Note that currently hugepage I/O occurs only in direct I/O
1270  * where no lock is held and PG_writeback is irrelevant,
1271  * and writeback status of all subpages are counted in the reference
1272  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1273  * under direct I/O, the reference of the head page is 512 and a bit more.)
1274  * This means that when we try to migrate hugepage whose subpages are
1275  * doing direct I/O, some references remain after try_to_unmap() and
1276  * hugepage migration fails without data corruption.
1277  *
1278  * There is also no race when direct I/O is issued on the page under migration,
1279  * because then pte is replaced with migration swap entry and direct I/O code
1280  * will wait in the page fault for migration to complete.
1281  */
1282 static int unmap_and_move_huge_page(new_page_t get_new_page,
1283                                 free_page_t put_new_page, unsigned long private,
1284                                 struct page *hpage, int force,
1285                                 enum migrate_mode mode, int reason)
1286 {
1287         int rc = -EAGAIN;
1288         int page_was_mapped = 0;
1289         struct page *new_hpage;
1290         struct anon_vma *anon_vma = NULL;
1291
1292         /*
1293          * Movability of hugepages depends on architectures and hugepage size.
1294          * This check is necessary because some callers of hugepage migration
1295          * like soft offline and memory hotremove don't walk through page
1296          * tables or check whether the hugepage is pmd-based or not before
1297          * kicking migration.
1298          */
1299         if (!hugepage_migration_supported(page_hstate(hpage))) {
1300                 putback_active_hugepage(hpage);
1301                 return -ENOSYS;
1302         }
1303
1304         new_hpage = get_new_page(hpage, private);
1305         if (!new_hpage)
1306                 return -ENOMEM;
1307
1308         if (!trylock_page(hpage)) {
1309                 if (!force)
1310                         goto out;
1311                 switch (mode) {
1312                 case MIGRATE_SYNC:
1313                 case MIGRATE_SYNC_NO_COPY:
1314                         break;
1315                 default:
1316                         goto out;
1317                 }
1318                 lock_page(hpage);
1319         }
1320
1321         if (PageAnon(hpage))
1322                 anon_vma = page_get_anon_vma(hpage);
1323
1324         if (unlikely(!trylock_page(new_hpage)))
1325                 goto put_anon;
1326
1327         if (page_mapped(hpage)) {
1328                 try_to_unmap(hpage,
1329                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1330                 page_was_mapped = 1;
1331         }
1332
1333         if (!page_mapped(hpage))
1334                 rc = move_to_new_page(new_hpage, hpage, mode);
1335
1336         if (page_was_mapped)
1337                 remove_migration_ptes(hpage,
1338                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1339
1340         unlock_page(new_hpage);
1341
1342 put_anon:
1343         if (anon_vma)
1344                 put_anon_vma(anon_vma);
1345
1346         if (rc == MIGRATEPAGE_SUCCESS) {
1347                 move_hugetlb_state(hpage, new_hpage, reason);
1348                 put_new_page = NULL;
1349         }
1350
1351         unlock_page(hpage);
1352 out:
1353         if (rc != -EAGAIN)
1354                 putback_active_hugepage(hpage);
1355
1356         /*
1357          * If migration was not successful and there's a freeing callback, use
1358          * it.  Otherwise, put_page() will drop the reference grabbed during
1359          * isolation.
1360          */
1361         if (put_new_page)
1362                 put_new_page(new_hpage, private);
1363         else
1364                 putback_active_hugepage(new_hpage);
1365
1366         return rc;
1367 }
1368
1369 /*
1370  * migrate_pages - migrate the pages specified in a list, to the free pages
1371  *                 supplied as the target for the page migration
1372  *
1373  * @from:               The list of pages to be migrated.
1374  * @get_new_page:       The function used to allocate free pages to be used
1375  *                      as the target of the page migration.
1376  * @put_new_page:       The function used to free target pages if migration
1377  *                      fails, or NULL if no special handling is necessary.
1378  * @private:            Private data to be passed on to get_new_page()
1379  * @mode:               The migration mode that specifies the constraints for
1380  *                      page migration, if any.
1381  * @reason:             The reason for page migration.
1382  *
1383  * The function returns after 10 attempts or if no pages are movable any more
1384  * because the list has become empty or no retryable pages exist any more.
1385  * The caller should call putback_movable_pages() to return pages to the LRU
1386  * or free list only if ret != 0.
1387  *
1388  * Returns the number of pages that were not migrated, or an error code.
1389  */
1390 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1391                 free_page_t put_new_page, unsigned long private,
1392                 enum migrate_mode mode, int reason)
1393 {
1394         int retry = 1;
1395         int nr_failed = 0;
1396         int nr_succeeded = 0;
1397         int pass = 0;
1398         struct page *page;
1399         struct page *page2;
1400         int swapwrite = current->flags & PF_SWAPWRITE;
1401         int rc;
1402
1403         if (!swapwrite)
1404                 current->flags |= PF_SWAPWRITE;
1405
1406         for(pass = 0; pass < 10 && retry; pass++) {
1407                 retry = 0;
1408
1409                 list_for_each_entry_safe(page, page2, from, lru) {
1410 retry:
1411                         cond_resched();
1412
1413                         if (PageHuge(page))
1414                                 rc = unmap_and_move_huge_page(get_new_page,
1415                                                 put_new_page, private, page,
1416                                                 pass > 2, mode, reason);
1417                         else
1418                                 rc = unmap_and_move(get_new_page, put_new_page,
1419                                                 private, page, pass > 2, mode,
1420                                                 reason);
1421
1422                         switch(rc) {
1423                         case -ENOMEM:
1424                                 /*
1425                                  * THP migration might be unsupported or the
1426                                  * allocation could've failed so we should
1427                                  * retry on the same page with the THP split
1428                                  * to base pages.
1429                                  *
1430                                  * Head page is retried immediately and tail
1431                                  * pages are added to the tail of the list so
1432                                  * we encounter them after the rest of the list
1433                                  * is processed.
1434                                  */
1435                                 if (PageTransHuge(page) && !PageHuge(page)) {
1436                                         lock_page(page);
1437                                         rc = split_huge_page_to_list(page, from);
1438                                         unlock_page(page);
1439                                         if (!rc) {
1440                                                 list_safe_reset_next(page, page2, lru);
1441                                                 goto retry;
1442                                         }
1443                                 }
1444                                 nr_failed++;
1445                                 goto out;
1446                         case -EAGAIN:
1447                                 retry++;
1448                                 break;
1449                         case MIGRATEPAGE_SUCCESS:
1450                                 nr_succeeded++;
1451                                 break;
1452                         default:
1453                                 /*
1454                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1455                                  * unlike -EAGAIN case, the failed page is
1456                                  * removed from migration page list and not
1457                                  * retried in the next outer loop.
1458                                  */
1459                                 nr_failed++;
1460                                 break;
1461                         }
1462                 }
1463         }
1464         nr_failed += retry;
1465         rc = nr_failed;
1466 out:
1467         if (nr_succeeded)
1468                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1469         if (nr_failed)
1470                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1471         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1472
1473         if (!swapwrite)
1474                 current->flags &= ~PF_SWAPWRITE;
1475
1476         return rc;
1477 }
1478
1479 #ifdef CONFIG_NUMA
1480
1481 static int store_status(int __user *status, int start, int value, int nr)
1482 {
1483         while (nr-- > 0) {
1484                 if (put_user(value, status + start))
1485                         return -EFAULT;
1486                 start++;
1487         }
1488
1489         return 0;
1490 }
1491
1492 static int do_move_pages_to_node(struct mm_struct *mm,
1493                 struct list_head *pagelist, int node)
1494 {
1495         int err;
1496
1497         if (list_empty(pagelist))
1498                 return 0;
1499
1500         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1501                         MIGRATE_SYNC, MR_SYSCALL);
1502         if (err)
1503                 putback_movable_pages(pagelist);
1504         return err;
1505 }
1506
1507 /*
1508  * Resolves the given address to a struct page, isolates it from the LRU and
1509  * puts it to the given pagelist.
1510  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1511  * queued or the page doesn't need to be migrated because it is already on
1512  * the target node
1513  */
1514 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1515                 int node, struct list_head *pagelist, bool migrate_all)
1516 {
1517         struct vm_area_struct *vma;
1518         struct page *page;
1519         unsigned int follflags;
1520         int err;
1521
1522         down_read(&mm->mmap_sem);
1523         err = -EFAULT;
1524         vma = find_vma(mm, addr);
1525         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1526                 goto out;
1527
1528         /* FOLL_DUMP to ignore special (like zero) pages */
1529         follflags = FOLL_GET | FOLL_DUMP;
1530         page = follow_page(vma, addr, follflags);
1531
1532         err = PTR_ERR(page);
1533         if (IS_ERR(page))
1534                 goto out;
1535
1536         err = -ENOENT;
1537         if (!page)
1538                 goto out;
1539
1540         err = 0;
1541         if (page_to_nid(page) == node)
1542                 goto out_putpage;
1543
1544         err = -EACCES;
1545         if (page_mapcount(page) > 1 && !migrate_all)
1546                 goto out_putpage;
1547
1548         if (PageHuge(page)) {
1549                 if (PageHead(page)) {
1550                         isolate_huge_page(page, pagelist);
1551                         err = 0;
1552                 }
1553         } else {
1554                 struct page *head;
1555
1556                 head = compound_head(page);
1557                 err = isolate_lru_page(head);
1558                 if (err)
1559                         goto out_putpage;
1560
1561                 err = 0;
1562                 list_add_tail(&head->lru, pagelist);
1563                 mod_node_page_state(page_pgdat(head),
1564                         NR_ISOLATED_ANON + page_is_file_cache(head),
1565                         hpage_nr_pages(head));
1566         }
1567 out_putpage:
1568         /*
1569          * Either remove the duplicate refcount from
1570          * isolate_lru_page() or drop the page ref if it was
1571          * not isolated.
1572          */
1573         put_page(page);
1574 out:
1575         up_read(&mm->mmap_sem);
1576         return err;
1577 }
1578
1579 /*
1580  * Migrate an array of page address onto an array of nodes and fill
1581  * the corresponding array of status.
1582  */
1583 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1584                          unsigned long nr_pages,
1585                          const void __user * __user *pages,
1586                          const int __user *nodes,
1587                          int __user *status, int flags)
1588 {
1589         int current_node = NUMA_NO_NODE;
1590         LIST_HEAD(pagelist);
1591         int start, i;
1592         int err = 0, err1;
1593
1594         migrate_prep();
1595
1596         for (i = start = 0; i < nr_pages; i++) {
1597                 const void __user *p;
1598                 unsigned long addr;
1599                 int node;
1600
1601                 err = -EFAULT;
1602                 if (get_user(p, pages + i))
1603                         goto out_flush;
1604                 if (get_user(node, nodes + i))
1605                         goto out_flush;
1606                 addr = (unsigned long)p;
1607
1608                 err = -ENODEV;
1609                 if (node < 0 || node >= MAX_NUMNODES)
1610                         goto out_flush;
1611                 if (!node_state(node, N_MEMORY))
1612                         goto out_flush;
1613
1614                 err = -EACCES;
1615                 if (!node_isset(node, task_nodes))
1616                         goto out_flush;
1617
1618                 if (current_node == NUMA_NO_NODE) {
1619                         current_node = node;
1620                         start = i;
1621                 } else if (node != current_node) {
1622                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1623                         if (err)
1624                                 goto out;
1625                         err = store_status(status, start, current_node, i - start);
1626                         if (err)
1627                                 goto out;
1628                         start = i;
1629                         current_node = node;
1630                 }
1631
1632                 /*
1633                  * Errors in the page lookup or isolation are not fatal and we simply
1634                  * report them via status
1635                  */
1636                 err = add_page_for_migration(mm, addr, current_node,
1637                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1638                 if (!err)
1639                         continue;
1640
1641                 err = store_status(status, i, err, 1);
1642                 if (err)
1643                         goto out_flush;
1644
1645                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1646                 if (err)
1647                         goto out;
1648                 if (i > start) {
1649                         err = store_status(status, start, current_node, i - start);
1650                         if (err)
1651                                 goto out;
1652                 }
1653                 current_node = NUMA_NO_NODE;
1654         }
1655 out_flush:
1656         if (list_empty(&pagelist))
1657                 return err;
1658
1659         /* Make sure we do not overwrite the existing error */
1660         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1661         if (!err1)
1662                 err1 = store_status(status, start, current_node, i - start);
1663         if (!err)
1664                 err = err1;
1665 out:
1666         return err;
1667 }
1668
1669 /*
1670  * Determine the nodes of an array of pages and store it in an array of status.
1671  */
1672 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1673                                 const void __user **pages, int *status)
1674 {
1675         unsigned long i;
1676
1677         down_read(&mm->mmap_sem);
1678
1679         for (i = 0; i < nr_pages; i++) {
1680                 unsigned long addr = (unsigned long)(*pages);
1681                 struct vm_area_struct *vma;
1682                 struct page *page;
1683                 int err = -EFAULT;
1684
1685                 vma = find_vma(mm, addr);
1686                 if (!vma || addr < vma->vm_start)
1687                         goto set_status;
1688
1689                 /* FOLL_DUMP to ignore special (like zero) pages */
1690                 page = follow_page(vma, addr, FOLL_DUMP);
1691
1692                 err = PTR_ERR(page);
1693                 if (IS_ERR(page))
1694                         goto set_status;
1695
1696                 err = page ? page_to_nid(page) : -ENOENT;
1697 set_status:
1698                 *status = err;
1699
1700                 pages++;
1701                 status++;
1702         }
1703
1704         up_read(&mm->mmap_sem);
1705 }
1706
1707 /*
1708  * Determine the nodes of a user array of pages and store it in
1709  * a user array of status.
1710  */
1711 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1712                          const void __user * __user *pages,
1713                          int __user *status)
1714 {
1715 #define DO_PAGES_STAT_CHUNK_NR 16
1716         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1717         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1718
1719         while (nr_pages) {
1720                 unsigned long chunk_nr;
1721
1722                 chunk_nr = nr_pages;
1723                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1724                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1725
1726                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1727                         break;
1728
1729                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1730
1731                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1732                         break;
1733
1734                 pages += chunk_nr;
1735                 status += chunk_nr;
1736                 nr_pages -= chunk_nr;
1737         }
1738         return nr_pages ? -EFAULT : 0;
1739 }
1740
1741 /*
1742  * Move a list of pages in the address space of the currently executing
1743  * process.
1744  */
1745 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1746                              const void __user * __user *pages,
1747                              const int __user *nodes,
1748                              int __user *status, int flags)
1749 {
1750         struct task_struct *task;
1751         struct mm_struct *mm;
1752         int err;
1753         nodemask_t task_nodes;
1754
1755         /* Check flags */
1756         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1757                 return -EINVAL;
1758
1759         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1760                 return -EPERM;
1761
1762         /* Find the mm_struct */
1763         rcu_read_lock();
1764         task = pid ? find_task_by_vpid(pid) : current;
1765         if (!task) {
1766                 rcu_read_unlock();
1767                 return -ESRCH;
1768         }
1769         get_task_struct(task);
1770
1771         /*
1772          * Check if this process has the right to modify the specified
1773          * process. Use the regular "ptrace_may_access()" checks.
1774          */
1775         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1776                 rcu_read_unlock();
1777                 err = -EPERM;
1778                 goto out;
1779         }
1780         rcu_read_unlock();
1781
1782         err = security_task_movememory(task);
1783         if (err)
1784                 goto out;
1785
1786         task_nodes = cpuset_mems_allowed(task);
1787         mm = get_task_mm(task);
1788         put_task_struct(task);
1789
1790         if (!mm)
1791                 return -EINVAL;
1792
1793         if (nodes)
1794                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1795                                     nodes, status, flags);
1796         else
1797                 err = do_pages_stat(mm, nr_pages, pages, status);
1798
1799         mmput(mm);
1800         return err;
1801
1802 out:
1803         put_task_struct(task);
1804         return err;
1805 }
1806
1807 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1808                 const void __user * __user *, pages,
1809                 const int __user *, nodes,
1810                 int __user *, status, int, flags)
1811 {
1812         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1813 }
1814
1815 #ifdef CONFIG_COMPAT
1816 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1817                        compat_uptr_t __user *, pages32,
1818                        const int __user *, nodes,
1819                        int __user *, status,
1820                        int, flags)
1821 {
1822         const void __user * __user *pages;
1823         int i;
1824
1825         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1826         for (i = 0; i < nr_pages; i++) {
1827                 compat_uptr_t p;
1828
1829                 if (get_user(p, pages32 + i) ||
1830                         put_user(compat_ptr(p), pages + i))
1831                         return -EFAULT;
1832         }
1833         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1834 }
1835 #endif /* CONFIG_COMPAT */
1836
1837 #ifdef CONFIG_NUMA_BALANCING
1838 /*
1839  * Returns true if this is a safe migration target node for misplaced NUMA
1840  * pages. Currently it only checks the watermarks which crude
1841  */
1842 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1843                                    unsigned long nr_migrate_pages)
1844 {
1845         int z;
1846
1847         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1848                 struct zone *zone = pgdat->node_zones + z;
1849
1850                 if (!populated_zone(zone))
1851                         continue;
1852
1853                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1854                 if (!zone_watermark_ok(zone, 0,
1855                                        high_wmark_pages(zone) +
1856                                        nr_migrate_pages,
1857                                        0, 0))
1858                         continue;
1859                 return true;
1860         }
1861         return false;
1862 }
1863
1864 static struct page *alloc_misplaced_dst_page(struct page *page,
1865                                            unsigned long data)
1866 {
1867         int nid = (int) data;
1868         struct page *newpage;
1869
1870         newpage = __alloc_pages_node(nid,
1871                                          (GFP_HIGHUSER_MOVABLE |
1872                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1873                                           __GFP_NORETRY | __GFP_NOWARN) &
1874                                          ~__GFP_RECLAIM, 0);
1875
1876         return newpage;
1877 }
1878
1879 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1880 {
1881         int page_lru;
1882
1883         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1884
1885         /* Avoid migrating to a node that is nearly full */
1886         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1887                 return 0;
1888
1889         if (isolate_lru_page(page))
1890                 return 0;
1891
1892         /*
1893          * migrate_misplaced_transhuge_page() skips page migration's usual
1894          * check on page_count(), so we must do it here, now that the page
1895          * has been isolated: a GUP pin, or any other pin, prevents migration.
1896          * The expected page count is 3: 1 for page's mapcount and 1 for the
1897          * caller's pin and 1 for the reference taken by isolate_lru_page().
1898          */
1899         if (PageTransHuge(page) && page_count(page) != 3) {
1900                 putback_lru_page(page);
1901                 return 0;
1902         }
1903
1904         page_lru = page_is_file_cache(page);
1905         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1906                                 hpage_nr_pages(page));
1907
1908         /*
1909          * Isolating the page has taken another reference, so the
1910          * caller's reference can be safely dropped without the page
1911          * disappearing underneath us during migration.
1912          */
1913         put_page(page);
1914         return 1;
1915 }
1916
1917 bool pmd_trans_migrating(pmd_t pmd)
1918 {
1919         struct page *page = pmd_page(pmd);
1920         return PageLocked(page);
1921 }
1922
1923 /*
1924  * Attempt to migrate a misplaced page to the specified destination
1925  * node. Caller is expected to have an elevated reference count on
1926  * the page that will be dropped by this function before returning.
1927  */
1928 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1929                            int node)
1930 {
1931         pg_data_t *pgdat = NODE_DATA(node);
1932         int isolated;
1933         int nr_remaining;
1934         LIST_HEAD(migratepages);
1935
1936         /*
1937          * Don't migrate file pages that are mapped in multiple processes
1938          * with execute permissions as they are probably shared libraries.
1939          */
1940         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1941             (vma->vm_flags & VM_EXEC))
1942                 goto out;
1943
1944         /*
1945          * Also do not migrate dirty pages as not all filesystems can move
1946          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1947          */
1948         if (page_is_file_cache(page) && PageDirty(page))
1949                 goto out;
1950
1951         isolated = numamigrate_isolate_page(pgdat, page);
1952         if (!isolated)
1953                 goto out;
1954
1955         list_add(&page->lru, &migratepages);
1956         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1957                                      NULL, node, MIGRATE_ASYNC,
1958                                      MR_NUMA_MISPLACED);
1959         if (nr_remaining) {
1960                 if (!list_empty(&migratepages)) {
1961                         list_del(&page->lru);
1962                         dec_node_page_state(page, NR_ISOLATED_ANON +
1963                                         page_is_file_cache(page));
1964                         putback_lru_page(page);
1965                 }
1966                 isolated = 0;
1967         } else
1968                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1969         BUG_ON(!list_empty(&migratepages));
1970         return isolated;
1971
1972 out:
1973         put_page(page);
1974         return 0;
1975 }
1976 #endif /* CONFIG_NUMA_BALANCING */
1977
1978 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1979 /*
1980  * Migrates a THP to a given target node. page must be locked and is unlocked
1981  * before returning.
1982  */
1983 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1984                                 struct vm_area_struct *vma,
1985                                 pmd_t *pmd, pmd_t entry,
1986                                 unsigned long address,
1987                                 struct page *page, int node)
1988 {
1989         spinlock_t *ptl;
1990         pg_data_t *pgdat = NODE_DATA(node);
1991         int isolated = 0;
1992         struct page *new_page = NULL;
1993         int page_lru = page_is_file_cache(page);
1994         unsigned long start = address & HPAGE_PMD_MASK;
1995
1996         new_page = alloc_pages_node(node,
1997                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1998                 HPAGE_PMD_ORDER);
1999         if (!new_page)
2000                 goto out_fail;
2001         prep_transhuge_page(new_page);
2002
2003         isolated = numamigrate_isolate_page(pgdat, page);
2004         if (!isolated) {
2005                 put_page(new_page);
2006                 goto out_fail;
2007         }
2008
2009         /* Prepare a page as a migration target */
2010         __SetPageLocked(new_page);
2011         if (PageSwapBacked(page))
2012                 __SetPageSwapBacked(new_page);
2013
2014         /* anon mapping, we can simply copy page->mapping to the new page: */
2015         new_page->mapping = page->mapping;
2016         new_page->index = page->index;
2017         /* flush the cache before copying using the kernel virtual address */
2018         flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2019         migrate_page_copy(new_page, page);
2020         WARN_ON(PageLRU(new_page));
2021
2022         /* Recheck the target PMD */
2023         ptl = pmd_lock(mm, pmd);
2024         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2025                 spin_unlock(ptl);
2026
2027                 /* Reverse changes made by migrate_page_copy() */
2028                 if (TestClearPageActive(new_page))
2029                         SetPageActive(page);
2030                 if (TestClearPageUnevictable(new_page))
2031                         SetPageUnevictable(page);
2032
2033                 unlock_page(new_page);
2034                 put_page(new_page);             /* Free it */
2035
2036                 /* Retake the callers reference and putback on LRU */
2037                 get_page(page);
2038                 putback_lru_page(page);
2039                 mod_node_page_state(page_pgdat(page),
2040                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2041
2042                 goto out_unlock;
2043         }
2044
2045         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2046         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2047
2048         /*
2049          * Overwrite the old entry under pagetable lock and establish
2050          * the new PTE. Any parallel GUP will either observe the old
2051          * page blocking on the page lock, block on the page table
2052          * lock or observe the new page. The SetPageUptodate on the
2053          * new page and page_add_new_anon_rmap guarantee the copy is
2054          * visible before the pagetable update.
2055          */
2056         page_add_anon_rmap(new_page, vma, start, true);
2057         /*
2058          * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2059          * has already been flushed globally.  So no TLB can be currently
2060          * caching this non present pmd mapping.  There's no need to clear the
2061          * pmd before doing set_pmd_at(), nor to flush the TLB after
2062          * set_pmd_at().  Clearing the pmd here would introduce a race
2063          * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2064          * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2065          * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2066          * pmd.
2067          */
2068         set_pmd_at(mm, start, pmd, entry);
2069         update_mmu_cache_pmd(vma, address, &entry);
2070
2071         page_ref_unfreeze(page, 2);
2072         mlock_migrate_page(new_page, page);
2073         page_remove_rmap(page, true);
2074         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2075
2076         spin_unlock(ptl);
2077
2078         /* Take an "isolate" reference and put new page on the LRU. */
2079         get_page(new_page);
2080         putback_lru_page(new_page);
2081
2082         unlock_page(new_page);
2083         unlock_page(page);
2084         put_page(page);                 /* Drop the rmap reference */
2085         put_page(page);                 /* Drop the LRU isolation reference */
2086
2087         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2088         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2089
2090         mod_node_page_state(page_pgdat(page),
2091                         NR_ISOLATED_ANON + page_lru,
2092                         -HPAGE_PMD_NR);
2093         return isolated;
2094
2095 out_fail:
2096         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2097         ptl = pmd_lock(mm, pmd);
2098         if (pmd_same(*pmd, entry)) {
2099                 entry = pmd_modify(entry, vma->vm_page_prot);
2100                 set_pmd_at(mm, start, pmd, entry);
2101                 update_mmu_cache_pmd(vma, address, &entry);
2102         }
2103         spin_unlock(ptl);
2104
2105 out_unlock:
2106         unlock_page(page);
2107         put_page(page);
2108         return 0;
2109 }
2110 #endif /* CONFIG_NUMA_BALANCING */
2111
2112 #endif /* CONFIG_NUMA */
2113
2114 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2115 struct migrate_vma {
2116         struct vm_area_struct   *vma;
2117         unsigned long           *dst;
2118         unsigned long           *src;
2119         unsigned long           cpages;
2120         unsigned long           npages;
2121         unsigned long           start;
2122         unsigned long           end;
2123 };
2124
2125 static int migrate_vma_collect_hole(unsigned long start,
2126                                     unsigned long end,
2127                                     struct mm_walk *walk)
2128 {
2129         struct migrate_vma *migrate = walk->private;
2130         unsigned long addr;
2131
2132         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2133                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2134                 migrate->dst[migrate->npages] = 0;
2135                 migrate->npages++;
2136                 migrate->cpages++;
2137         }
2138
2139         return 0;
2140 }
2141
2142 static int migrate_vma_collect_skip(unsigned long start,
2143                                     unsigned long end,
2144                                     struct mm_walk *walk)
2145 {
2146         struct migrate_vma *migrate = walk->private;
2147         unsigned long addr;
2148
2149         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2150                 migrate->dst[migrate->npages] = 0;
2151                 migrate->src[migrate->npages++] = 0;
2152         }
2153
2154         return 0;
2155 }
2156
2157 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2158                                    unsigned long start,
2159                                    unsigned long end,
2160                                    struct mm_walk *walk)
2161 {
2162         struct migrate_vma *migrate = walk->private;
2163         struct vm_area_struct *vma = walk->vma;
2164         struct mm_struct *mm = vma->vm_mm;
2165         unsigned long addr = start, unmapped = 0;
2166         spinlock_t *ptl;
2167         pte_t *ptep;
2168
2169 again:
2170         if (pmd_none(*pmdp))
2171                 return migrate_vma_collect_hole(start, end, walk);
2172
2173         if (pmd_trans_huge(*pmdp)) {
2174                 struct page *page;
2175
2176                 ptl = pmd_lock(mm, pmdp);
2177                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2178                         spin_unlock(ptl);
2179                         goto again;
2180                 }
2181
2182                 page = pmd_page(*pmdp);
2183                 if (is_huge_zero_page(page)) {
2184                         spin_unlock(ptl);
2185                         split_huge_pmd(vma, pmdp, addr);
2186                         if (pmd_trans_unstable(pmdp))
2187                                 return migrate_vma_collect_skip(start, end,
2188                                                                 walk);
2189                 } else {
2190                         int ret;
2191
2192                         get_page(page);
2193                         spin_unlock(ptl);
2194                         if (unlikely(!trylock_page(page)))
2195                                 return migrate_vma_collect_skip(start, end,
2196                                                                 walk);
2197                         ret = split_huge_page(page);
2198                         unlock_page(page);
2199                         put_page(page);
2200                         if (ret)
2201                                 return migrate_vma_collect_skip(start, end,
2202                                                                 walk);
2203                         if (pmd_none(*pmdp))
2204                                 return migrate_vma_collect_hole(start, end,
2205                                                                 walk);
2206                 }
2207         }
2208
2209         if (unlikely(pmd_bad(*pmdp)))
2210                 return migrate_vma_collect_skip(start, end, walk);
2211
2212         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2213         arch_enter_lazy_mmu_mode();
2214
2215         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2216                 unsigned long mpfn, pfn;
2217                 struct page *page;
2218                 swp_entry_t entry;
2219                 pte_t pte;
2220
2221                 pte = *ptep;
2222                 pfn = pte_pfn(pte);
2223
2224                 if (pte_none(pte)) {
2225                         mpfn = MIGRATE_PFN_MIGRATE;
2226                         migrate->cpages++;
2227                         pfn = 0;
2228                         goto next;
2229                 }
2230
2231                 if (!pte_present(pte)) {
2232                         mpfn = pfn = 0;
2233
2234                         /*
2235                          * Only care about unaddressable device page special
2236                          * page table entry. Other special swap entries are not
2237                          * migratable, and we ignore regular swapped page.
2238                          */
2239                         entry = pte_to_swp_entry(pte);
2240                         if (!is_device_private_entry(entry))
2241                                 goto next;
2242
2243                         page = device_private_entry_to_page(entry);
2244                         mpfn = migrate_pfn(page_to_pfn(page))|
2245                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2246                         if (is_write_device_private_entry(entry))
2247                                 mpfn |= MIGRATE_PFN_WRITE;
2248                 } else {
2249                         if (is_zero_pfn(pfn)) {
2250                                 mpfn = MIGRATE_PFN_MIGRATE;
2251                                 migrate->cpages++;
2252                                 pfn = 0;
2253                                 goto next;
2254                         }
2255                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2256                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2257                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2258                 }
2259
2260                 /* FIXME support THP */
2261                 if (!page || !page->mapping || PageTransCompound(page)) {
2262                         mpfn = pfn = 0;
2263                         goto next;
2264                 }
2265                 pfn = page_to_pfn(page);
2266
2267                 /*
2268                  * By getting a reference on the page we pin it and that blocks
2269                  * any kind of migration. Side effect is that it "freezes" the
2270                  * pte.
2271                  *
2272                  * We drop this reference after isolating the page from the lru
2273                  * for non device page (device page are not on the lru and thus
2274                  * can't be dropped from it).
2275                  */
2276                 get_page(page);
2277                 migrate->cpages++;
2278
2279                 /*
2280                  * Optimize for the common case where page is only mapped once
2281                  * in one process. If we can lock the page, then we can safely
2282                  * set up a special migration page table entry now.
2283                  */
2284                 if (trylock_page(page)) {
2285                         pte_t swp_pte;
2286
2287                         mpfn |= MIGRATE_PFN_LOCKED;
2288                         ptep_get_and_clear(mm, addr, ptep);
2289
2290                         /* Setup special migration page table entry */
2291                         entry = make_migration_entry(page, mpfn &
2292                                                      MIGRATE_PFN_WRITE);
2293                         swp_pte = swp_entry_to_pte(entry);
2294                         if (pte_soft_dirty(pte))
2295                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2296                         set_pte_at(mm, addr, ptep, swp_pte);
2297
2298                         /*
2299                          * This is like regular unmap: we remove the rmap and
2300                          * drop page refcount. Page won't be freed, as we took
2301                          * a reference just above.
2302                          */
2303                         page_remove_rmap(page, false);
2304                         put_page(page);
2305
2306                         if (pte_present(pte))
2307                                 unmapped++;
2308                 }
2309
2310 next:
2311                 migrate->dst[migrate->npages] = 0;
2312                 migrate->src[migrate->npages++] = mpfn;
2313         }
2314         arch_leave_lazy_mmu_mode();
2315         pte_unmap_unlock(ptep - 1, ptl);
2316
2317         /* Only flush the TLB if we actually modified any entries */
2318         if (unmapped)
2319                 flush_tlb_range(walk->vma, start, end);
2320
2321         return 0;
2322 }
2323
2324 /*
2325  * migrate_vma_collect() - collect pages over a range of virtual addresses
2326  * @migrate: migrate struct containing all migration information
2327  *
2328  * This will walk the CPU page table. For each virtual address backed by a
2329  * valid page, it updates the src array and takes a reference on the page, in
2330  * order to pin the page until we lock it and unmap it.
2331  */
2332 static void migrate_vma_collect(struct migrate_vma *migrate)
2333 {
2334         struct mmu_notifier_range range;
2335         struct mm_walk mm_walk;
2336
2337         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2338         mm_walk.pte_entry = NULL;
2339         mm_walk.pte_hole = migrate_vma_collect_hole;
2340         mm_walk.hugetlb_entry = NULL;
2341         mm_walk.test_walk = NULL;
2342         mm_walk.vma = migrate->vma;
2343         mm_walk.mm = migrate->vma->vm_mm;
2344         mm_walk.private = migrate;
2345
2346         mmu_notifier_range_init(&range, mm_walk.mm, migrate->start,
2347                                 migrate->end);
2348         mmu_notifier_invalidate_range_start(&range);
2349         walk_page_range(migrate->start, migrate->end, &mm_walk);
2350         mmu_notifier_invalidate_range_end(&range);
2351
2352         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2353 }
2354
2355 /*
2356  * migrate_vma_check_page() - check if page is pinned or not
2357  * @page: struct page to check
2358  *
2359  * Pinned pages cannot be migrated. This is the same test as in
2360  * migrate_page_move_mapping(), except that here we allow migration of a
2361  * ZONE_DEVICE page.
2362  */
2363 static bool migrate_vma_check_page(struct page *page)
2364 {
2365         /*
2366          * One extra ref because caller holds an extra reference, either from
2367          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2368          * a device page.
2369          */
2370         int extra = 1;
2371
2372         /*
2373          * FIXME support THP (transparent huge page), it is bit more complex to
2374          * check them than regular pages, because they can be mapped with a pmd
2375          * or with a pte (split pte mapping).
2376          */
2377         if (PageCompound(page))
2378                 return false;
2379
2380         /* Page from ZONE_DEVICE have one extra reference */
2381         if (is_zone_device_page(page)) {
2382                 /*
2383                  * Private page can never be pin as they have no valid pte and
2384                  * GUP will fail for those. Yet if there is a pending migration
2385                  * a thread might try to wait on the pte migration entry and
2386                  * will bump the page reference count. Sadly there is no way to
2387                  * differentiate a regular pin from migration wait. Hence to
2388                  * avoid 2 racing thread trying to migrate back to CPU to enter
2389                  * infinite loop (one stoping migration because the other is
2390                  * waiting on pte migration entry). We always return true here.
2391                  *
2392                  * FIXME proper solution is to rework migration_entry_wait() so
2393                  * it does not need to take a reference on page.
2394                  */
2395                 if (is_device_private_page(page))
2396                         return true;
2397
2398                 /*
2399                  * Only allow device public page to be migrated and account for
2400                  * the extra reference count imply by ZONE_DEVICE pages.
2401                  */
2402                 if (!is_device_public_page(page))
2403                         return false;
2404                 extra++;
2405         }
2406
2407         /* For file back page */
2408         if (page_mapping(page))
2409                 extra += 1 + page_has_private(page);
2410
2411         if ((page_count(page) - extra) > page_mapcount(page))
2412                 return false;
2413
2414         return true;
2415 }
2416
2417 /*
2418  * migrate_vma_prepare() - lock pages and isolate them from the lru
2419  * @migrate: migrate struct containing all migration information
2420  *
2421  * This locks pages that have been collected by migrate_vma_collect(). Once each
2422  * page is locked it is isolated from the lru (for non-device pages). Finally,
2423  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2424  * migrated by concurrent kernel threads.
2425  */
2426 static void migrate_vma_prepare(struct migrate_vma *migrate)
2427 {
2428         const unsigned long npages = migrate->npages;
2429         const unsigned long start = migrate->start;
2430         unsigned long addr, i, restore = 0;
2431         bool allow_drain = true;
2432
2433         lru_add_drain();
2434
2435         for (i = 0; (i < npages) && migrate->cpages; i++) {
2436                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2437                 bool remap = true;
2438
2439                 if (!page)
2440                         continue;
2441
2442                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2443                         /*
2444                          * Because we are migrating several pages there can be
2445                          * a deadlock between 2 concurrent migration where each
2446                          * are waiting on each other page lock.
2447                          *
2448                          * Make migrate_vma() a best effort thing and backoff
2449                          * for any page we can not lock right away.
2450                          */
2451                         if (!trylock_page(page)) {
2452                                 migrate->src[i] = 0;
2453                                 migrate->cpages--;
2454                                 put_page(page);
2455                                 continue;
2456                         }
2457                         remap = false;
2458                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2459                 }
2460
2461                 /* ZONE_DEVICE pages are not on LRU */
2462                 if (!is_zone_device_page(page)) {
2463                         if (!PageLRU(page) && allow_drain) {
2464                                 /* Drain CPU's pagevec */
2465                                 lru_add_drain_all();
2466                                 allow_drain = false;
2467                         }
2468
2469                         if (isolate_lru_page(page)) {
2470                                 if (remap) {
2471                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2472                                         migrate->cpages--;
2473                                         restore++;
2474                                 } else {
2475                                         migrate->src[i] = 0;
2476                                         unlock_page(page);
2477                                         migrate->cpages--;
2478                                         put_page(page);
2479                                 }
2480                                 continue;
2481                         }
2482
2483                         /* Drop the reference we took in collect */
2484                         put_page(page);
2485                 }
2486
2487                 if (!migrate_vma_check_page(page)) {
2488                         if (remap) {
2489                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2490                                 migrate->cpages--;
2491                                 restore++;
2492
2493                                 if (!is_zone_device_page(page)) {
2494                                         get_page(page);
2495                                         putback_lru_page(page);
2496                                 }
2497                         } else {
2498                                 migrate->src[i] = 0;
2499                                 unlock_page(page);
2500                                 migrate->cpages--;
2501
2502                                 if (!is_zone_device_page(page))
2503                                         putback_lru_page(page);
2504                                 else
2505                                         put_page(page);
2506                         }
2507                 }
2508         }
2509
2510         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2511                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2512
2513                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2514                         continue;
2515
2516                 remove_migration_pte(page, migrate->vma, addr, page);
2517
2518                 migrate->src[i] = 0;
2519                 unlock_page(page);
2520                 put_page(page);
2521                 restore--;
2522         }
2523 }
2524
2525 /*
2526  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2527  * @migrate: migrate struct containing all migration information
2528  *
2529  * Replace page mapping (CPU page table pte) with a special migration pte entry
2530  * and check again if it has been pinned. Pinned pages are restored because we
2531  * cannot migrate them.
2532  *
2533  * This is the last step before we call the device driver callback to allocate
2534  * destination memory and copy contents of original page over to new page.
2535  */
2536 static void migrate_vma_unmap(struct migrate_vma *migrate)
2537 {
2538         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2539         const unsigned long npages = migrate->npages;
2540         const unsigned long start = migrate->start;
2541         unsigned long addr, i, restore = 0;
2542
2543         for (i = 0; i < npages; i++) {
2544                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2545
2546                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2547                         continue;
2548
2549                 if (page_mapped(page)) {
2550                         try_to_unmap(page, flags);
2551                         if (page_mapped(page))
2552                                 goto restore;
2553                 }
2554
2555                 if (migrate_vma_check_page(page))
2556                         continue;
2557
2558 restore:
2559                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2560                 migrate->cpages--;
2561                 restore++;
2562         }
2563
2564         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2565                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2566
2567                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2568                         continue;
2569
2570                 remove_migration_ptes(page, page, false);
2571
2572                 migrate->src[i] = 0;
2573                 unlock_page(page);
2574                 restore--;
2575
2576                 if (is_zone_device_page(page))
2577                         put_page(page);
2578                 else
2579                         putback_lru_page(page);
2580         }
2581 }
2582
2583 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2584                                     unsigned long addr,
2585                                     struct page *page,
2586                                     unsigned long *src,
2587                                     unsigned long *dst)
2588 {
2589         struct vm_area_struct *vma = migrate->vma;
2590         struct mm_struct *mm = vma->vm_mm;
2591         struct mem_cgroup *memcg;
2592         bool flush = false;
2593         spinlock_t *ptl;
2594         pte_t entry;
2595         pgd_t *pgdp;
2596         p4d_t *p4dp;
2597         pud_t *pudp;
2598         pmd_t *pmdp;
2599         pte_t *ptep;
2600
2601         /* Only allow populating anonymous memory */
2602         if (!vma_is_anonymous(vma))
2603                 goto abort;
2604
2605         pgdp = pgd_offset(mm, addr);
2606         p4dp = p4d_alloc(mm, pgdp, addr);
2607         if (!p4dp)
2608                 goto abort;
2609         pudp = pud_alloc(mm, p4dp, addr);
2610         if (!pudp)
2611                 goto abort;
2612         pmdp = pmd_alloc(mm, pudp, addr);
2613         if (!pmdp)
2614                 goto abort;
2615
2616         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2617                 goto abort;
2618
2619         /*
2620          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2621          * pte_offset_map() on pmds where a huge pmd might be created
2622          * from a different thread.
2623          *
2624          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2625          * parallel threads are excluded by other means.
2626          *
2627          * Here we only have down_read(mmap_sem).
2628          */
2629         if (pte_alloc(mm, pmdp, addr))
2630                 goto abort;
2631
2632         /* See the comment in pte_alloc_one_map() */
2633         if (unlikely(pmd_trans_unstable(pmdp)))
2634                 goto abort;
2635
2636         if (unlikely(anon_vma_prepare(vma)))
2637                 goto abort;
2638         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2639                 goto abort;
2640
2641         /*
2642          * The memory barrier inside __SetPageUptodate makes sure that
2643          * preceding stores to the page contents become visible before
2644          * the set_pte_at() write.
2645          */
2646         __SetPageUptodate(page);
2647
2648         if (is_zone_device_page(page)) {
2649                 if (is_device_private_page(page)) {
2650                         swp_entry_t swp_entry;
2651
2652                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2653                         entry = swp_entry_to_pte(swp_entry);
2654                 } else if (is_device_public_page(page)) {
2655                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2656                         if (vma->vm_flags & VM_WRITE)
2657                                 entry = pte_mkwrite(pte_mkdirty(entry));
2658                         entry = pte_mkdevmap(entry);
2659                 }
2660         } else {
2661                 entry = mk_pte(page, vma->vm_page_prot);
2662                 if (vma->vm_flags & VM_WRITE)
2663                         entry = pte_mkwrite(pte_mkdirty(entry));
2664         }
2665
2666         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2667
2668         if (pte_present(*ptep)) {
2669                 unsigned long pfn = pte_pfn(*ptep);
2670
2671                 if (!is_zero_pfn(pfn)) {
2672                         pte_unmap_unlock(ptep, ptl);
2673                         mem_cgroup_cancel_charge(page, memcg, false);
2674                         goto abort;
2675                 }
2676                 flush = true;
2677         } else if (!pte_none(*ptep)) {
2678                 pte_unmap_unlock(ptep, ptl);
2679                 mem_cgroup_cancel_charge(page, memcg, false);
2680                 goto abort;
2681         }
2682
2683         /*
2684          * Check for usefaultfd but do not deliver the fault. Instead,
2685          * just back off.
2686          */
2687         if (userfaultfd_missing(vma)) {
2688                 pte_unmap_unlock(ptep, ptl);
2689                 mem_cgroup_cancel_charge(page, memcg, false);
2690                 goto abort;
2691         }
2692
2693         inc_mm_counter(mm, MM_ANONPAGES);
2694         page_add_new_anon_rmap(page, vma, addr, false);
2695         mem_cgroup_commit_charge(page, memcg, false, false);
2696         if (!is_zone_device_page(page))
2697                 lru_cache_add_active_or_unevictable(page, vma);
2698         get_page(page);
2699
2700         if (flush) {
2701                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2702                 ptep_clear_flush_notify(vma, addr, ptep);
2703                 set_pte_at_notify(mm, addr, ptep, entry);
2704                 update_mmu_cache(vma, addr, ptep);
2705         } else {
2706                 /* No need to invalidate - it was non-present before */
2707                 set_pte_at(mm, addr, ptep, entry);
2708                 update_mmu_cache(vma, addr, ptep);
2709         }
2710
2711         pte_unmap_unlock(ptep, ptl);
2712         *src = MIGRATE_PFN_MIGRATE;
2713         return;
2714
2715 abort:
2716         *src &= ~MIGRATE_PFN_MIGRATE;
2717 }
2718
2719 /*
2720  * migrate_vma_pages() - migrate meta-data from src page to dst page
2721  * @migrate: migrate struct containing all migration information
2722  *
2723  * This migrates struct page meta-data from source struct page to destination
2724  * struct page. This effectively finishes the migration from source page to the
2725  * destination page.
2726  */
2727 static void migrate_vma_pages(struct migrate_vma *migrate)
2728 {
2729         const unsigned long npages = migrate->npages;
2730         const unsigned long start = migrate->start;
2731         struct mmu_notifier_range range;
2732         unsigned long addr, i;
2733         bool notified = false;
2734
2735         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2736                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2737                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2738                 struct address_space *mapping;
2739                 int r;
2740
2741                 if (!newpage) {
2742                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2743                         continue;
2744                 }
2745
2746                 if (!page) {
2747                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2748                                 continue;
2749                         }
2750                         if (!notified) {
2751                                 notified = true;
2752
2753                                 mmu_notifier_range_init(&range,
2754                                                         migrate->vma->vm_mm,
2755                                                         addr, migrate->end);
2756                                 mmu_notifier_invalidate_range_start(&range);
2757                         }
2758                         migrate_vma_insert_page(migrate, addr, newpage,
2759                                                 &migrate->src[i],
2760                                                 &migrate->dst[i]);
2761                         continue;
2762                 }
2763
2764                 mapping = page_mapping(page);
2765
2766                 if (is_zone_device_page(newpage)) {
2767                         if (is_device_private_page(newpage)) {
2768                                 /*
2769                                  * For now only support private anonymous when
2770                                  * migrating to un-addressable device memory.
2771                                  */
2772                                 if (mapping) {
2773                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2774                                         continue;
2775                                 }
2776                         } else if (!is_device_public_page(newpage)) {
2777                                 /*
2778                                  * Other types of ZONE_DEVICE page are not
2779                                  * supported.
2780                                  */
2781                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2782                                 continue;
2783                         }
2784                 }
2785
2786                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2787                 if (r != MIGRATEPAGE_SUCCESS)
2788                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2789         }
2790
2791         /*
2792          * No need to double call mmu_notifier->invalidate_range() callback as
2793          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2794          * did already call it.
2795          */
2796         if (notified)
2797                 mmu_notifier_invalidate_range_only_end(&range);
2798 }
2799
2800 /*
2801  * migrate_vma_finalize() - restore CPU page table entry
2802  * @migrate: migrate struct containing all migration information
2803  *
2804  * This replaces the special migration pte entry with either a mapping to the
2805  * new page if migration was successful for that page, or to the original page
2806  * otherwise.
2807  *
2808  * This also unlocks the pages and puts them back on the lru, or drops the extra
2809  * refcount, for device pages.
2810  */
2811 static void migrate_vma_finalize(struct migrate_vma *migrate)
2812 {
2813         const unsigned long npages = migrate->npages;
2814         unsigned long i;
2815
2816         for (i = 0; i < npages; i++) {
2817                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2818                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2819
2820                 if (!page) {
2821                         if (newpage) {
2822                                 unlock_page(newpage);
2823                                 put_page(newpage);
2824                         }
2825                         continue;
2826                 }
2827
2828                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2829                         if (newpage) {
2830                                 unlock_page(newpage);
2831                                 put_page(newpage);
2832                         }
2833                         newpage = page;
2834                 }
2835
2836                 remove_migration_ptes(page, newpage, false);
2837                 unlock_page(page);
2838                 migrate->cpages--;
2839
2840                 if (is_zone_device_page(page))
2841                         put_page(page);
2842                 else
2843                         putback_lru_page(page);
2844
2845                 if (newpage != page) {
2846                         unlock_page(newpage);
2847                         if (is_zone_device_page(newpage))
2848                                 put_page(newpage);
2849                         else
2850                                 putback_lru_page(newpage);
2851                 }
2852         }
2853 }
2854
2855 /*
2856  * migrate_vma() - migrate a range of memory inside vma
2857  *
2858  * @ops: migration callback for allocating destination memory and copying
2859  * @vma: virtual memory area containing the range to be migrated
2860  * @start: start address of the range to migrate (inclusive)
2861  * @end: end address of the range to migrate (exclusive)
2862  * @src: array of hmm_pfn_t containing source pfns
2863  * @dst: array of hmm_pfn_t containing destination pfns
2864  * @private: pointer passed back to each of the callback
2865  * Returns: 0 on success, error code otherwise
2866  *
2867  * This function tries to migrate a range of memory virtual address range, using
2868  * callbacks to allocate and copy memory from source to destination. First it
2869  * collects all the pages backing each virtual address in the range, saving this
2870  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2871  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2872  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2873  * in the corresponding src array entry. It then restores any pages that are
2874  * pinned, by remapping and unlocking those pages.
2875  *
2876  * At this point it calls the alloc_and_copy() callback. For documentation on
2877  * what is expected from that callback, see struct migrate_vma_ops comments in
2878  * include/linux/migrate.h
2879  *
2880  * After the alloc_and_copy() callback, this function goes over each entry in
2881  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2882  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2883  * then the function tries to migrate struct page information from the source
2884  * struct page to the destination struct page. If it fails to migrate the struct
2885  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2886  * array.
2887  *
2888  * At this point all successfully migrated pages have an entry in the src
2889  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2890  * array entry with MIGRATE_PFN_VALID flag set.
2891  *
2892  * It then calls the finalize_and_map() callback. See comments for "struct
2893  * migrate_vma_ops", in include/linux/migrate.h for details about
2894  * finalize_and_map() behavior.
2895  *
2896  * After the finalize_and_map() callback, for successfully migrated pages, this
2897  * function updates the CPU page table to point to new pages, otherwise it
2898  * restores the CPU page table to point to the original source pages.
2899  *
2900  * Function returns 0 after the above steps, even if no pages were migrated
2901  * (The function only returns an error if any of the arguments are invalid.)
2902  *
2903  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2904  * unsigned long entries.
2905  */
2906 int migrate_vma(const struct migrate_vma_ops *ops,
2907                 struct vm_area_struct *vma,
2908                 unsigned long start,
2909                 unsigned long end,
2910                 unsigned long *src,
2911                 unsigned long *dst,
2912                 void *private)
2913 {
2914         struct migrate_vma migrate;
2915
2916         /* Sanity check the arguments */
2917         start &= PAGE_MASK;
2918         end &= PAGE_MASK;
2919         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2920                         vma_is_dax(vma))
2921                 return -EINVAL;
2922         if (start < vma->vm_start || start >= vma->vm_end)
2923                 return -EINVAL;
2924         if (end <= vma->vm_start || end > vma->vm_end)
2925                 return -EINVAL;
2926         if (!ops || !src || !dst || start >= end)
2927                 return -EINVAL;
2928
2929         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2930         migrate.src = src;
2931         migrate.dst = dst;
2932         migrate.start = start;
2933         migrate.npages = 0;
2934         migrate.cpages = 0;
2935         migrate.end = end;
2936         migrate.vma = vma;
2937
2938         /* Collect, and try to unmap source pages */
2939         migrate_vma_collect(&migrate);
2940         if (!migrate.cpages)
2941                 return 0;
2942
2943         /* Lock and isolate page */
2944         migrate_vma_prepare(&migrate);
2945         if (!migrate.cpages)
2946                 return 0;
2947
2948         /* Unmap pages */
2949         migrate_vma_unmap(&migrate);
2950         if (!migrate.cpages)
2951                 return 0;
2952
2953         /*
2954          * At this point pages are locked and unmapped, and thus they have
2955          * stable content and can safely be copied to destination memory that
2956          * is allocated by the callback.
2957          *
2958          * Note that migration can fail in migrate_vma_struct_page() for each
2959          * individual page.
2960          */
2961         ops->alloc_and_copy(vma, src, dst, start, end, private);
2962
2963         /* This does the real migration of struct page */
2964         migrate_vma_pages(&migrate);
2965
2966         ops->finalize_and_map(vma, src, dst, start, end, private);
2967
2968         /* Unlock and remap pages */
2969         migrate_vma_finalize(&migrate);
2970
2971         return 0;
2972 }
2973 EXPORT_SYMBOL(migrate_vma);
2974 #endif /* defined(MIGRATE_VMA_HELPER) */