Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[sfrench/cifs-2.6.git] / mm / migrate.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Memory Migration functionality - linux/mm/migrate.c
4  *
5  * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6  *
7  * Page migration was first developed in the context of the memory hotplug
8  * project. The main authors of the migration code are:
9  *
10  * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
11  * Hirokazu Takahashi <taka@valinux.co.jp>
12  * Dave Hansen <haveblue@us.ibm.com>
13  * Christoph Lameter
14  */
15
16 #include <linux/migrate.h>
17 #include <linux/export.h>
18 #include <linux/swap.h>
19 #include <linux/swapops.h>
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/mm_inline.h>
23 #include <linux/nsproxy.h>
24 #include <linux/pagevec.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/topology.h>
28 #include <linux/cpu.h>
29 #include <linux/cpuset.h>
30 #include <linux/writeback.h>
31 #include <linux/mempolicy.h>
32 #include <linux/vmalloc.h>
33 #include <linux/security.h>
34 #include <linux/backing-dev.h>
35 #include <linux/compaction.h>
36 #include <linux/syscalls.h>
37 #include <linux/compat.h>
38 #include <linux/hugetlb.h>
39 #include <linux/hugetlb_cgroup.h>
40 #include <linux/gfp.h>
41 #include <linux/pfn_t.h>
42 #include <linux/memremap.h>
43 #include <linux/userfaultfd_k.h>
44 #include <linux/balloon_compaction.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/page_idle.h>
47 #include <linux/page_owner.h>
48 #include <linux/sched/mm.h>
49 #include <linux/ptrace.h>
50
51 #include <asm/tlbflush.h>
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/migrate.h>
55
56 #include "internal.h"
57
58 /*
59  * migrate_prep() needs to be called before we start compiling a list of pages
60  * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
61  * undesirable, use migrate_prep_local()
62  */
63 int migrate_prep(void)
64 {
65         /*
66          * Clear the LRU lists so pages can be isolated.
67          * Note that pages may be moved off the LRU after we have
68          * drained them. Those pages will fail to migrate like other
69          * pages that may be busy.
70          */
71         lru_add_drain_all();
72
73         return 0;
74 }
75
76 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
77 int migrate_prep_local(void)
78 {
79         lru_add_drain();
80
81         return 0;
82 }
83
84 int isolate_movable_page(struct page *page, isolate_mode_t mode)
85 {
86         struct address_space *mapping;
87
88         /*
89          * Avoid burning cycles with pages that are yet under __free_pages(),
90          * or just got freed under us.
91          *
92          * In case we 'win' a race for a movable page being freed under us and
93          * raise its refcount preventing __free_pages() from doing its job
94          * the put_page() at the end of this block will take care of
95          * release this page, thus avoiding a nasty leakage.
96          */
97         if (unlikely(!get_page_unless_zero(page)))
98                 goto out;
99
100         /*
101          * Check PageMovable before holding a PG_lock because page's owner
102          * assumes anybody doesn't touch PG_lock of newly allocated page
103          * so unconditionally grapping the lock ruins page's owner side.
104          */
105         if (unlikely(!__PageMovable(page)))
106                 goto out_putpage;
107         /*
108          * As movable pages are not isolated from LRU lists, concurrent
109          * compaction threads can race against page migration functions
110          * as well as race against the releasing a page.
111          *
112          * In order to avoid having an already isolated movable page
113          * being (wrongly) re-isolated while it is under migration,
114          * or to avoid attempting to isolate pages being released,
115          * lets be sure we have the page lock
116          * before proceeding with the movable page isolation steps.
117          */
118         if (unlikely(!trylock_page(page)))
119                 goto out_putpage;
120
121         if (!PageMovable(page) || PageIsolated(page))
122                 goto out_no_isolated;
123
124         mapping = page_mapping(page);
125         VM_BUG_ON_PAGE(!mapping, page);
126
127         if (!mapping->a_ops->isolate_page(page, mode))
128                 goto out_no_isolated;
129
130         /* Driver shouldn't use PG_isolated bit of page->flags */
131         WARN_ON_ONCE(PageIsolated(page));
132         __SetPageIsolated(page);
133         unlock_page(page);
134
135         return 0;
136
137 out_no_isolated:
138         unlock_page(page);
139 out_putpage:
140         put_page(page);
141 out:
142         return -EBUSY;
143 }
144
145 /* It should be called on page which is PG_movable */
146 void putback_movable_page(struct page *page)
147 {
148         struct address_space *mapping;
149
150         VM_BUG_ON_PAGE(!PageLocked(page), page);
151         VM_BUG_ON_PAGE(!PageMovable(page), page);
152         VM_BUG_ON_PAGE(!PageIsolated(page), page);
153
154         mapping = page_mapping(page);
155         mapping->a_ops->putback_page(page);
156         __ClearPageIsolated(page);
157 }
158
159 /*
160  * Put previously isolated pages back onto the appropriate lists
161  * from where they were once taken off for compaction/migration.
162  *
163  * This function shall be used whenever the isolated pageset has been
164  * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
165  * and isolate_huge_page().
166  */
167 void putback_movable_pages(struct list_head *l)
168 {
169         struct page *page;
170         struct page *page2;
171
172         list_for_each_entry_safe(page, page2, l, lru) {
173                 if (unlikely(PageHuge(page))) {
174                         putback_active_hugepage(page);
175                         continue;
176                 }
177                 list_del(&page->lru);
178                 /*
179                  * We isolated non-lru movable page so here we can use
180                  * __PageMovable because LRU page's mapping cannot have
181                  * PAGE_MAPPING_MOVABLE.
182                  */
183                 if (unlikely(__PageMovable(page))) {
184                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
185                         lock_page(page);
186                         if (PageMovable(page))
187                                 putback_movable_page(page);
188                         else
189                                 __ClearPageIsolated(page);
190                         unlock_page(page);
191                         put_page(page);
192                 } else {
193                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
194                                         page_is_file_cache(page), -hpage_nr_pages(page));
195                         putback_lru_page(page);
196                 }
197         }
198 }
199
200 /*
201  * Restore a potential migration pte to a working pte entry
202  */
203 static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
204                                  unsigned long addr, void *old)
205 {
206         struct page_vma_mapped_walk pvmw = {
207                 .page = old,
208                 .vma = vma,
209                 .address = addr,
210                 .flags = PVMW_SYNC | PVMW_MIGRATION,
211         };
212         struct page *new;
213         pte_t pte;
214         swp_entry_t entry;
215
216         VM_BUG_ON_PAGE(PageTail(page), page);
217         while (page_vma_mapped_walk(&pvmw)) {
218                 if (PageKsm(page))
219                         new = page;
220                 else
221                         new = page - pvmw.page->index +
222                                 linear_page_index(vma, pvmw.address);
223
224 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
225                 /* PMD-mapped THP migration entry */
226                 if (!pvmw.pte) {
227                         VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
228                         remove_migration_pmd(&pvmw, new);
229                         continue;
230                 }
231 #endif
232
233                 get_page(new);
234                 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
235                 if (pte_swp_soft_dirty(*pvmw.pte))
236                         pte = pte_mksoft_dirty(pte);
237
238                 /*
239                  * Recheck VMA as permissions can change since migration started
240                  */
241                 entry = pte_to_swp_entry(*pvmw.pte);
242                 if (is_write_migration_entry(entry))
243                         pte = maybe_mkwrite(pte, vma);
244
245                 if (unlikely(is_zone_device_page(new))) {
246                         if (is_device_private_page(new)) {
247                                 entry = make_device_private_entry(new, pte_write(pte));
248                                 pte = swp_entry_to_pte(entry);
249                         } else if (is_device_public_page(new)) {
250                                 pte = pte_mkdevmap(pte);
251                                 flush_dcache_page(new);
252                         }
253                 } else
254                         flush_dcache_page(new);
255
256 #ifdef CONFIG_HUGETLB_PAGE
257                 if (PageHuge(new)) {
258                         pte = pte_mkhuge(pte);
259                         pte = arch_make_huge_pte(pte, vma, new, 0);
260                         set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
261                         if (PageAnon(new))
262                                 hugepage_add_anon_rmap(new, vma, pvmw.address);
263                         else
264                                 page_dup_rmap(new, true);
265                 } else
266 #endif
267                 {
268                         set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
269
270                         if (PageAnon(new))
271                                 page_add_anon_rmap(new, vma, pvmw.address, false);
272                         else
273                                 page_add_file_rmap(new, false);
274                 }
275                 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
276                         mlock_vma_page(new);
277
278                 /* No need to invalidate - it was non-present before */
279                 update_mmu_cache(vma, pvmw.address, pvmw.pte);
280         }
281
282         return true;
283 }
284
285 /*
286  * Get rid of all migration entries and replace them by
287  * references to the indicated page.
288  */
289 void remove_migration_ptes(struct page *old, struct page *new, bool locked)
290 {
291         struct rmap_walk_control rwc = {
292                 .rmap_one = remove_migration_pte,
293                 .arg = old,
294         };
295
296         if (locked)
297                 rmap_walk_locked(new, &rwc);
298         else
299                 rmap_walk(new, &rwc);
300 }
301
302 /*
303  * Something used the pte of a page under migration. We need to
304  * get to the page and wait until migration is finished.
305  * When we return from this function the fault will be retried.
306  */
307 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
308                                 spinlock_t *ptl)
309 {
310         pte_t pte;
311         swp_entry_t entry;
312         struct page *page;
313
314         spin_lock(ptl);
315         pte = *ptep;
316         if (!is_swap_pte(pte))
317                 goto out;
318
319         entry = pte_to_swp_entry(pte);
320         if (!is_migration_entry(entry))
321                 goto out;
322
323         page = migration_entry_to_page(entry);
324
325         /*
326          * Once radix-tree replacement of page migration started, page_count
327          * *must* be zero. And, we don't want to call wait_on_page_locked()
328          * against a page without get_page().
329          * So, we use get_page_unless_zero(), here. Even failed, page fault
330          * will occur again.
331          */
332         if (!get_page_unless_zero(page))
333                 goto out;
334         pte_unmap_unlock(ptep, ptl);
335         wait_on_page_locked(page);
336         put_page(page);
337         return;
338 out:
339         pte_unmap_unlock(ptep, ptl);
340 }
341
342 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
343                                 unsigned long address)
344 {
345         spinlock_t *ptl = pte_lockptr(mm, pmd);
346         pte_t *ptep = pte_offset_map(pmd, address);
347         __migration_entry_wait(mm, ptep, ptl);
348 }
349
350 void migration_entry_wait_huge(struct vm_area_struct *vma,
351                 struct mm_struct *mm, pte_t *pte)
352 {
353         spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
354         __migration_entry_wait(mm, pte, ptl);
355 }
356
357 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
358 void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
359 {
360         spinlock_t *ptl;
361         struct page *page;
362
363         ptl = pmd_lock(mm, pmd);
364         if (!is_pmd_migration_entry(*pmd))
365                 goto unlock;
366         page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
367         if (!get_page_unless_zero(page))
368                 goto unlock;
369         spin_unlock(ptl);
370         wait_on_page_locked(page);
371         put_page(page);
372         return;
373 unlock:
374         spin_unlock(ptl);
375 }
376 #endif
377
378 #ifdef CONFIG_BLOCK
379 /* Returns true if all buffers are successfully locked */
380 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
381                                                         enum migrate_mode mode)
382 {
383         struct buffer_head *bh = head;
384
385         /* Simple case, sync compaction */
386         if (mode != MIGRATE_ASYNC) {
387                 do {
388                         get_bh(bh);
389                         lock_buffer(bh);
390                         bh = bh->b_this_page;
391
392                 } while (bh != head);
393
394                 return true;
395         }
396
397         /* async case, we cannot block on lock_buffer so use trylock_buffer */
398         do {
399                 get_bh(bh);
400                 if (!trylock_buffer(bh)) {
401                         /*
402                          * We failed to lock the buffer and cannot stall in
403                          * async migration. Release the taken locks
404                          */
405                         struct buffer_head *failed_bh = bh;
406                         put_bh(failed_bh);
407                         bh = head;
408                         while (bh != failed_bh) {
409                                 unlock_buffer(bh);
410                                 put_bh(bh);
411                                 bh = bh->b_this_page;
412                         }
413                         return false;
414                 }
415
416                 bh = bh->b_this_page;
417         } while (bh != head);
418         return true;
419 }
420 #else
421 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
422                                                         enum migrate_mode mode)
423 {
424         return true;
425 }
426 #endif /* CONFIG_BLOCK */
427
428 /*
429  * Replace the page in the mapping.
430  *
431  * The number of remaining references must be:
432  * 1 for anonymous pages without a mapping
433  * 2 for pages with a mapping
434  * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
435  */
436 int migrate_page_move_mapping(struct address_space *mapping,
437                 struct page *newpage, struct page *page,
438                 struct buffer_head *head, enum migrate_mode mode,
439                 int extra_count)
440 {
441         struct zone *oldzone, *newzone;
442         int dirty;
443         int expected_count = 1 + extra_count;
444         void **pslot;
445
446         /*
447          * Device public or private pages have an extra refcount as they are
448          * ZONE_DEVICE pages.
449          */
450         expected_count += is_device_private_page(page);
451         expected_count += is_device_public_page(page);
452
453         if (!mapping) {
454                 /* Anonymous page without mapping */
455                 if (page_count(page) != expected_count)
456                         return -EAGAIN;
457
458                 /* No turning back from here */
459                 newpage->index = page->index;
460                 newpage->mapping = page->mapping;
461                 if (PageSwapBacked(page))
462                         __SetPageSwapBacked(newpage);
463
464                 return MIGRATEPAGE_SUCCESS;
465         }
466
467         oldzone = page_zone(page);
468         newzone = page_zone(newpage);
469
470         xa_lock_irq(&mapping->i_pages);
471
472         pslot = radix_tree_lookup_slot(&mapping->i_pages,
473                                         page_index(page));
474
475         expected_count += hpage_nr_pages(page) + page_has_private(page);
476         if (page_count(page) != expected_count ||
477                 radix_tree_deref_slot_protected(pslot,
478                                         &mapping->i_pages.xa_lock) != page) {
479                 xa_unlock_irq(&mapping->i_pages);
480                 return -EAGAIN;
481         }
482
483         if (!page_ref_freeze(page, expected_count)) {
484                 xa_unlock_irq(&mapping->i_pages);
485                 return -EAGAIN;
486         }
487
488         /*
489          * In the async migration case of moving a page with buffers, lock the
490          * buffers using trylock before the mapping is moved. If the mapping
491          * was moved, we later failed to lock the buffers and could not move
492          * the mapping back due to an elevated page count, we would have to
493          * block waiting on other references to be dropped.
494          */
495         if (mode == MIGRATE_ASYNC && head &&
496                         !buffer_migrate_lock_buffers(head, mode)) {
497                 page_ref_unfreeze(page, expected_count);
498                 xa_unlock_irq(&mapping->i_pages);
499                 return -EAGAIN;
500         }
501
502         /*
503          * Now we know that no one else is looking at the page:
504          * no turning back from here.
505          */
506         newpage->index = page->index;
507         newpage->mapping = page->mapping;
508         page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
509         if (PageSwapBacked(page)) {
510                 __SetPageSwapBacked(newpage);
511                 if (PageSwapCache(page)) {
512                         SetPageSwapCache(newpage);
513                         set_page_private(newpage, page_private(page));
514                 }
515         } else {
516                 VM_BUG_ON_PAGE(PageSwapCache(page), page);
517         }
518
519         /* Move dirty while page refs frozen and newpage not yet exposed */
520         dirty = PageDirty(page);
521         if (dirty) {
522                 ClearPageDirty(page);
523                 SetPageDirty(newpage);
524         }
525
526         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
527         if (PageTransHuge(page)) {
528                 int i;
529                 int index = page_index(page);
530
531                 for (i = 0; i < HPAGE_PMD_NR; i++) {
532                         pslot = radix_tree_lookup_slot(&mapping->i_pages,
533                                                        index + i);
534                         radix_tree_replace_slot(&mapping->i_pages, pslot,
535                                                 newpage + i);
536                 }
537         } else {
538                 radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
539         }
540
541         /*
542          * Drop cache reference from old page by unfreezing
543          * to one less reference.
544          * We know this isn't the last reference.
545          */
546         page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
547
548         xa_unlock(&mapping->i_pages);
549         /* Leave irq disabled to prevent preemption while updating stats */
550
551         /*
552          * If moved to a different zone then also account
553          * the page for that zone. Other VM counters will be
554          * taken care of when we establish references to the
555          * new page and drop references to the old page.
556          *
557          * Note that anonymous pages are accounted for
558          * via NR_FILE_PAGES and NR_ANON_MAPPED if they
559          * are mapped to swap space.
560          */
561         if (newzone != oldzone) {
562                 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
563                 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
564                 if (PageSwapBacked(page) && !PageSwapCache(page)) {
565                         __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
566                         __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
567                 }
568                 if (dirty && mapping_cap_account_dirty(mapping)) {
569                         __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
570                         __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
571                         __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
572                         __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
573                 }
574         }
575         local_irq_enable();
576
577         return MIGRATEPAGE_SUCCESS;
578 }
579 EXPORT_SYMBOL(migrate_page_move_mapping);
580
581 /*
582  * The expected number of remaining references is the same as that
583  * of migrate_page_move_mapping().
584  */
585 int migrate_huge_page_move_mapping(struct address_space *mapping,
586                                    struct page *newpage, struct page *page)
587 {
588         int expected_count;
589         void **pslot;
590
591         xa_lock_irq(&mapping->i_pages);
592
593         pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
594
595         expected_count = 2 + page_has_private(page);
596         if (page_count(page) != expected_count ||
597                 radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
598                 xa_unlock_irq(&mapping->i_pages);
599                 return -EAGAIN;
600         }
601
602         if (!page_ref_freeze(page, expected_count)) {
603                 xa_unlock_irq(&mapping->i_pages);
604                 return -EAGAIN;
605         }
606
607         newpage->index = page->index;
608         newpage->mapping = page->mapping;
609
610         get_page(newpage);
611
612         radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
613
614         page_ref_unfreeze(page, expected_count - 1);
615
616         xa_unlock_irq(&mapping->i_pages);
617
618         return MIGRATEPAGE_SUCCESS;
619 }
620
621 /*
622  * Gigantic pages are so large that we do not guarantee that page++ pointer
623  * arithmetic will work across the entire page.  We need something more
624  * specialized.
625  */
626 static void __copy_gigantic_page(struct page *dst, struct page *src,
627                                 int nr_pages)
628 {
629         int i;
630         struct page *dst_base = dst;
631         struct page *src_base = src;
632
633         for (i = 0; i < nr_pages; ) {
634                 cond_resched();
635                 copy_highpage(dst, src);
636
637                 i++;
638                 dst = mem_map_next(dst, dst_base, i);
639                 src = mem_map_next(src, src_base, i);
640         }
641 }
642
643 static void copy_huge_page(struct page *dst, struct page *src)
644 {
645         int i;
646         int nr_pages;
647
648         if (PageHuge(src)) {
649                 /* hugetlbfs page */
650                 struct hstate *h = page_hstate(src);
651                 nr_pages = pages_per_huge_page(h);
652
653                 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
654                         __copy_gigantic_page(dst, src, nr_pages);
655                         return;
656                 }
657         } else {
658                 /* thp page */
659                 BUG_ON(!PageTransHuge(src));
660                 nr_pages = hpage_nr_pages(src);
661         }
662
663         for (i = 0; i < nr_pages; i++) {
664                 cond_resched();
665                 copy_highpage(dst + i, src + i);
666         }
667 }
668
669 /*
670  * Copy the page to its new location
671  */
672 void migrate_page_states(struct page *newpage, struct page *page)
673 {
674         int cpupid;
675
676         if (PageError(page))
677                 SetPageError(newpage);
678         if (PageReferenced(page))
679                 SetPageReferenced(newpage);
680         if (PageUptodate(page))
681                 SetPageUptodate(newpage);
682         if (TestClearPageActive(page)) {
683                 VM_BUG_ON_PAGE(PageUnevictable(page), page);
684                 SetPageActive(newpage);
685         } else if (TestClearPageUnevictable(page))
686                 SetPageUnevictable(newpage);
687         if (PageChecked(page))
688                 SetPageChecked(newpage);
689         if (PageMappedToDisk(page))
690                 SetPageMappedToDisk(newpage);
691
692         /* Move dirty on pages not done by migrate_page_move_mapping() */
693         if (PageDirty(page))
694                 SetPageDirty(newpage);
695
696         if (page_is_young(page))
697                 set_page_young(newpage);
698         if (page_is_idle(page))
699                 set_page_idle(newpage);
700
701         /*
702          * Copy NUMA information to the new page, to prevent over-eager
703          * future migrations of this same page.
704          */
705         cpupid = page_cpupid_xchg_last(page, -1);
706         page_cpupid_xchg_last(newpage, cpupid);
707
708         ksm_migrate_page(newpage, page);
709         /*
710          * Please do not reorder this without considering how mm/ksm.c's
711          * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
712          */
713         if (PageSwapCache(page))
714                 ClearPageSwapCache(page);
715         ClearPagePrivate(page);
716         set_page_private(page, 0);
717
718         /*
719          * If any waiters have accumulated on the new page then
720          * wake them up.
721          */
722         if (PageWriteback(newpage))
723                 end_page_writeback(newpage);
724
725         copy_page_owner(page, newpage);
726
727         mem_cgroup_migrate(page, newpage);
728 }
729 EXPORT_SYMBOL(migrate_page_states);
730
731 void migrate_page_copy(struct page *newpage, struct page *page)
732 {
733         if (PageHuge(page) || PageTransHuge(page))
734                 copy_huge_page(newpage, page);
735         else
736                 copy_highpage(newpage, page);
737
738         migrate_page_states(newpage, page);
739 }
740 EXPORT_SYMBOL(migrate_page_copy);
741
742 /************************************************************
743  *                    Migration functions
744  ***********************************************************/
745
746 /*
747  * Common logic to directly migrate a single LRU page suitable for
748  * pages that do not use PagePrivate/PagePrivate2.
749  *
750  * Pages are locked upon entry and exit.
751  */
752 int migrate_page(struct address_space *mapping,
753                 struct page *newpage, struct page *page,
754                 enum migrate_mode mode)
755 {
756         int rc;
757
758         BUG_ON(PageWriteback(page));    /* Writeback must be complete */
759
760         rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
761
762         if (rc != MIGRATEPAGE_SUCCESS)
763                 return rc;
764
765         if (mode != MIGRATE_SYNC_NO_COPY)
766                 migrate_page_copy(newpage, page);
767         else
768                 migrate_page_states(newpage, page);
769         return MIGRATEPAGE_SUCCESS;
770 }
771 EXPORT_SYMBOL(migrate_page);
772
773 #ifdef CONFIG_BLOCK
774 /*
775  * Migration function for pages with buffers. This function can only be used
776  * if the underlying filesystem guarantees that no other references to "page"
777  * exist.
778  */
779 int buffer_migrate_page(struct address_space *mapping,
780                 struct page *newpage, struct page *page, enum migrate_mode mode)
781 {
782         struct buffer_head *bh, *head;
783         int rc;
784
785         if (!page_has_buffers(page))
786                 return migrate_page(mapping, newpage, page, mode);
787
788         head = page_buffers(page);
789
790         rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
791
792         if (rc != MIGRATEPAGE_SUCCESS)
793                 return rc;
794
795         /*
796          * In the async case, migrate_page_move_mapping locked the buffers
797          * with an IRQ-safe spinlock held. In the sync case, the buffers
798          * need to be locked now
799          */
800         if (mode != MIGRATE_ASYNC)
801                 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
802
803         ClearPagePrivate(page);
804         set_page_private(newpage, page_private(page));
805         set_page_private(page, 0);
806         put_page(page);
807         get_page(newpage);
808
809         bh = head;
810         do {
811                 set_bh_page(bh, newpage, bh_offset(bh));
812                 bh = bh->b_this_page;
813
814         } while (bh != head);
815
816         SetPagePrivate(newpage);
817
818         if (mode != MIGRATE_SYNC_NO_COPY)
819                 migrate_page_copy(newpage, page);
820         else
821                 migrate_page_states(newpage, page);
822
823         bh = head;
824         do {
825                 unlock_buffer(bh);
826                 put_bh(bh);
827                 bh = bh->b_this_page;
828
829         } while (bh != head);
830
831         return MIGRATEPAGE_SUCCESS;
832 }
833 EXPORT_SYMBOL(buffer_migrate_page);
834 #endif
835
836 /*
837  * Writeback a page to clean the dirty state
838  */
839 static int writeout(struct address_space *mapping, struct page *page)
840 {
841         struct writeback_control wbc = {
842                 .sync_mode = WB_SYNC_NONE,
843                 .nr_to_write = 1,
844                 .range_start = 0,
845                 .range_end = LLONG_MAX,
846                 .for_reclaim = 1
847         };
848         int rc;
849
850         if (!mapping->a_ops->writepage)
851                 /* No write method for the address space */
852                 return -EINVAL;
853
854         if (!clear_page_dirty_for_io(page))
855                 /* Someone else already triggered a write */
856                 return -EAGAIN;
857
858         /*
859          * A dirty page may imply that the underlying filesystem has
860          * the page on some queue. So the page must be clean for
861          * migration. Writeout may mean we loose the lock and the
862          * page state is no longer what we checked for earlier.
863          * At this point we know that the migration attempt cannot
864          * be successful.
865          */
866         remove_migration_ptes(page, page, false);
867
868         rc = mapping->a_ops->writepage(page, &wbc);
869
870         if (rc != AOP_WRITEPAGE_ACTIVATE)
871                 /* unlocked. Relock */
872                 lock_page(page);
873
874         return (rc < 0) ? -EIO : -EAGAIN;
875 }
876
877 /*
878  * Default handling if a filesystem does not provide a migration function.
879  */
880 static int fallback_migrate_page(struct address_space *mapping,
881         struct page *newpage, struct page *page, enum migrate_mode mode)
882 {
883         if (PageDirty(page)) {
884                 /* Only writeback pages in full synchronous migration */
885                 switch (mode) {
886                 case MIGRATE_SYNC:
887                 case MIGRATE_SYNC_NO_COPY:
888                         break;
889                 default:
890                         return -EBUSY;
891                 }
892                 return writeout(mapping, page);
893         }
894
895         /*
896          * Buffers may be managed in a filesystem specific way.
897          * We must have no buffers or drop them.
898          */
899         if (page_has_private(page) &&
900             !try_to_release_page(page, GFP_KERNEL))
901                 return -EAGAIN;
902
903         return migrate_page(mapping, newpage, page, mode);
904 }
905
906 /*
907  * Move a page to a newly allocated page
908  * The page is locked and all ptes have been successfully removed.
909  *
910  * The new page will have replaced the old page if this function
911  * is successful.
912  *
913  * Return value:
914  *   < 0 - error code
915  *  MIGRATEPAGE_SUCCESS - success
916  */
917 static int move_to_new_page(struct page *newpage, struct page *page,
918                                 enum migrate_mode mode)
919 {
920         struct address_space *mapping;
921         int rc = -EAGAIN;
922         bool is_lru = !__PageMovable(page);
923
924         VM_BUG_ON_PAGE(!PageLocked(page), page);
925         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
926
927         mapping = page_mapping(page);
928
929         if (likely(is_lru)) {
930                 if (!mapping)
931                         rc = migrate_page(mapping, newpage, page, mode);
932                 else if (mapping->a_ops->migratepage)
933                         /*
934                          * Most pages have a mapping and most filesystems
935                          * provide a migratepage callback. Anonymous pages
936                          * are part of swap space which also has its own
937                          * migratepage callback. This is the most common path
938                          * for page migration.
939                          */
940                         rc = mapping->a_ops->migratepage(mapping, newpage,
941                                                         page, mode);
942                 else
943                         rc = fallback_migrate_page(mapping, newpage,
944                                                         page, mode);
945         } else {
946                 /*
947                  * In case of non-lru page, it could be released after
948                  * isolation step. In that case, we shouldn't try migration.
949                  */
950                 VM_BUG_ON_PAGE(!PageIsolated(page), page);
951                 if (!PageMovable(page)) {
952                         rc = MIGRATEPAGE_SUCCESS;
953                         __ClearPageIsolated(page);
954                         goto out;
955                 }
956
957                 rc = mapping->a_ops->migratepage(mapping, newpage,
958                                                 page, mode);
959                 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
960                         !PageIsolated(page));
961         }
962
963         /*
964          * When successful, old pagecache page->mapping must be cleared before
965          * page is freed; but stats require that PageAnon be left as PageAnon.
966          */
967         if (rc == MIGRATEPAGE_SUCCESS) {
968                 if (__PageMovable(page)) {
969                         VM_BUG_ON_PAGE(!PageIsolated(page), page);
970
971                         /*
972                          * We clear PG_movable under page_lock so any compactor
973                          * cannot try to migrate this page.
974                          */
975                         __ClearPageIsolated(page);
976                 }
977
978                 /*
979                  * Anonymous and movable page->mapping will be cleard by
980                  * free_pages_prepare so don't reset it here for keeping
981                  * the type to work PageAnon, for example.
982                  */
983                 if (!PageMappingFlags(page))
984                         page->mapping = NULL;
985         }
986 out:
987         return rc;
988 }
989
990 static int __unmap_and_move(struct page *page, struct page *newpage,
991                                 int force, enum migrate_mode mode)
992 {
993         int rc = -EAGAIN;
994         int page_was_mapped = 0;
995         struct anon_vma *anon_vma = NULL;
996         bool is_lru = !__PageMovable(page);
997
998         if (!trylock_page(page)) {
999                 if (!force || mode == MIGRATE_ASYNC)
1000                         goto out;
1001
1002                 /*
1003                  * It's not safe for direct compaction to call lock_page.
1004                  * For example, during page readahead pages are added locked
1005                  * to the LRU. Later, when the IO completes the pages are
1006                  * marked uptodate and unlocked. However, the queueing
1007                  * could be merging multiple pages for one bio (e.g.
1008                  * mpage_readpages). If an allocation happens for the
1009                  * second or third page, the process can end up locking
1010                  * the same page twice and deadlocking. Rather than
1011                  * trying to be clever about what pages can be locked,
1012                  * avoid the use of lock_page for direct compaction
1013                  * altogether.
1014                  */
1015                 if (current->flags & PF_MEMALLOC)
1016                         goto out;
1017
1018                 lock_page(page);
1019         }
1020
1021         if (PageWriteback(page)) {
1022                 /*
1023                  * Only in the case of a full synchronous migration is it
1024                  * necessary to wait for PageWriteback. In the async case,
1025                  * the retry loop is too short and in the sync-light case,
1026                  * the overhead of stalling is too much
1027                  */
1028                 switch (mode) {
1029                 case MIGRATE_SYNC:
1030                 case MIGRATE_SYNC_NO_COPY:
1031                         break;
1032                 default:
1033                         rc = -EBUSY;
1034                         goto out_unlock;
1035                 }
1036                 if (!force)
1037                         goto out_unlock;
1038                 wait_on_page_writeback(page);
1039         }
1040
1041         /*
1042          * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1043          * we cannot notice that anon_vma is freed while we migrates a page.
1044          * This get_anon_vma() delays freeing anon_vma pointer until the end
1045          * of migration. File cache pages are no problem because of page_lock()
1046          * File Caches may use write_page() or lock_page() in migration, then,
1047          * just care Anon page here.
1048          *
1049          * Only page_get_anon_vma() understands the subtleties of
1050          * getting a hold on an anon_vma from outside one of its mms.
1051          * But if we cannot get anon_vma, then we won't need it anyway,
1052          * because that implies that the anon page is no longer mapped
1053          * (and cannot be remapped so long as we hold the page lock).
1054          */
1055         if (PageAnon(page) && !PageKsm(page))
1056                 anon_vma = page_get_anon_vma(page);
1057
1058         /*
1059          * Block others from accessing the new page when we get around to
1060          * establishing additional references. We are usually the only one
1061          * holding a reference to newpage at this point. We used to have a BUG
1062          * here if trylock_page(newpage) fails, but would like to allow for
1063          * cases where there might be a race with the previous use of newpage.
1064          * This is much like races on refcount of oldpage: just don't BUG().
1065          */
1066         if (unlikely(!trylock_page(newpage)))
1067                 goto out_unlock;
1068
1069         if (unlikely(!is_lru)) {
1070                 rc = move_to_new_page(newpage, page, mode);
1071                 goto out_unlock_both;
1072         }
1073
1074         /*
1075          * Corner case handling:
1076          * 1. When a new swap-cache page is read into, it is added to the LRU
1077          * and treated as swapcache but it has no rmap yet.
1078          * Calling try_to_unmap() against a page->mapping==NULL page will
1079          * trigger a BUG.  So handle it here.
1080          * 2. An orphaned page (see truncate_complete_page) might have
1081          * fs-private metadata. The page can be picked up due to memory
1082          * offlining.  Everywhere else except page reclaim, the page is
1083          * invisible to the vm, so the page can not be migrated.  So try to
1084          * free the metadata, so the page can be freed.
1085          */
1086         if (!page->mapping) {
1087                 VM_BUG_ON_PAGE(PageAnon(page), page);
1088                 if (page_has_private(page)) {
1089                         try_to_free_buffers(page);
1090                         goto out_unlock_both;
1091                 }
1092         } else if (page_mapped(page)) {
1093                 /* Establish migration ptes */
1094                 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1095                                 page);
1096                 try_to_unmap(page,
1097                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1098                 page_was_mapped = 1;
1099         }
1100
1101         if (!page_mapped(page))
1102                 rc = move_to_new_page(newpage, page, mode);
1103
1104         if (page_was_mapped)
1105                 remove_migration_ptes(page,
1106                         rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1107
1108 out_unlock_both:
1109         unlock_page(newpage);
1110 out_unlock:
1111         /* Drop an anon_vma reference if we took one */
1112         if (anon_vma)
1113                 put_anon_vma(anon_vma);
1114         unlock_page(page);
1115 out:
1116         /*
1117          * If migration is successful, decrease refcount of the newpage
1118          * which will not free the page because new page owner increased
1119          * refcounter. As well, if it is LRU page, add the page to LRU
1120          * list in here.
1121          */
1122         if (rc == MIGRATEPAGE_SUCCESS) {
1123                 if (unlikely(__PageMovable(newpage)))
1124                         put_page(newpage);
1125                 else
1126                         putback_lru_page(newpage);
1127         }
1128
1129         return rc;
1130 }
1131
1132 /*
1133  * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1134  * around it.
1135  */
1136 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1137 #define ICE_noinline noinline
1138 #else
1139 #define ICE_noinline
1140 #endif
1141
1142 /*
1143  * Obtain the lock on page, remove all ptes and migrate the page
1144  * to the newly allocated page in newpage.
1145  */
1146 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1147                                    free_page_t put_new_page,
1148                                    unsigned long private, struct page *page,
1149                                    int force, enum migrate_mode mode,
1150                                    enum migrate_reason reason)
1151 {
1152         int rc = MIGRATEPAGE_SUCCESS;
1153         struct page *newpage;
1154
1155         if (!thp_migration_supported() && PageTransHuge(page))
1156                 return -ENOMEM;
1157
1158         newpage = get_new_page(page, private);
1159         if (!newpage)
1160                 return -ENOMEM;
1161
1162         if (page_count(page) == 1) {
1163                 /* page was freed from under us. So we are done. */
1164                 ClearPageActive(page);
1165                 ClearPageUnevictable(page);
1166                 if (unlikely(__PageMovable(page))) {
1167                         lock_page(page);
1168                         if (!PageMovable(page))
1169                                 __ClearPageIsolated(page);
1170                         unlock_page(page);
1171                 }
1172                 if (put_new_page)
1173                         put_new_page(newpage, private);
1174                 else
1175                         put_page(newpage);
1176                 goto out;
1177         }
1178
1179         rc = __unmap_and_move(page, newpage, force, mode);
1180         if (rc == MIGRATEPAGE_SUCCESS)
1181                 set_page_owner_migrate_reason(newpage, reason);
1182
1183 out:
1184         if (rc != -EAGAIN) {
1185                 /*
1186                  * A page that has been migrated has all references
1187                  * removed and will be freed. A page that has not been
1188                  * migrated will have kepts its references and be
1189                  * restored.
1190                  */
1191                 list_del(&page->lru);
1192
1193                 /*
1194                  * Compaction can migrate also non-LRU pages which are
1195                  * not accounted to NR_ISOLATED_*. They can be recognized
1196                  * as __PageMovable
1197                  */
1198                 if (likely(!__PageMovable(page)))
1199                         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1200                                         page_is_file_cache(page), -hpage_nr_pages(page));
1201         }
1202
1203         /*
1204          * If migration is successful, releases reference grabbed during
1205          * isolation. Otherwise, restore the page to right list unless
1206          * we want to retry.
1207          */
1208         if (rc == MIGRATEPAGE_SUCCESS) {
1209                 put_page(page);
1210                 if (reason == MR_MEMORY_FAILURE) {
1211                         /*
1212                          * Set PG_HWPoison on just freed page
1213                          * intentionally. Although it's rather weird,
1214                          * it's how HWPoison flag works at the moment.
1215                          */
1216                         if (!test_set_page_hwpoison(page))
1217                                 num_poisoned_pages_inc();
1218                 }
1219         } else {
1220                 if (rc != -EAGAIN) {
1221                         if (likely(!__PageMovable(page))) {
1222                                 putback_lru_page(page);
1223                                 goto put_new;
1224                         }
1225
1226                         lock_page(page);
1227                         if (PageMovable(page))
1228                                 putback_movable_page(page);
1229                         else
1230                                 __ClearPageIsolated(page);
1231                         unlock_page(page);
1232                         put_page(page);
1233                 }
1234 put_new:
1235                 if (put_new_page)
1236                         put_new_page(newpage, private);
1237                 else
1238                         put_page(newpage);
1239         }
1240
1241         return rc;
1242 }
1243
1244 /*
1245  * Counterpart of unmap_and_move_page() for hugepage migration.
1246  *
1247  * This function doesn't wait the completion of hugepage I/O
1248  * because there is no race between I/O and migration for hugepage.
1249  * Note that currently hugepage I/O occurs only in direct I/O
1250  * where no lock is held and PG_writeback is irrelevant,
1251  * and writeback status of all subpages are counted in the reference
1252  * count of the head page (i.e. if all subpages of a 2MB hugepage are
1253  * under direct I/O, the reference of the head page is 512 and a bit more.)
1254  * This means that when we try to migrate hugepage whose subpages are
1255  * doing direct I/O, some references remain after try_to_unmap() and
1256  * hugepage migration fails without data corruption.
1257  *
1258  * There is also no race when direct I/O is issued on the page under migration,
1259  * because then pte is replaced with migration swap entry and direct I/O code
1260  * will wait in the page fault for migration to complete.
1261  */
1262 static int unmap_and_move_huge_page(new_page_t get_new_page,
1263                                 free_page_t put_new_page, unsigned long private,
1264                                 struct page *hpage, int force,
1265                                 enum migrate_mode mode, int reason)
1266 {
1267         int rc = -EAGAIN;
1268         int page_was_mapped = 0;
1269         struct page *new_hpage;
1270         struct anon_vma *anon_vma = NULL;
1271
1272         /*
1273          * Movability of hugepages depends on architectures and hugepage size.
1274          * This check is necessary because some callers of hugepage migration
1275          * like soft offline and memory hotremove don't walk through page
1276          * tables or check whether the hugepage is pmd-based or not before
1277          * kicking migration.
1278          */
1279         if (!hugepage_migration_supported(page_hstate(hpage))) {
1280                 putback_active_hugepage(hpage);
1281                 return -ENOSYS;
1282         }
1283
1284         new_hpage = get_new_page(hpage, private);
1285         if (!new_hpage)
1286                 return -ENOMEM;
1287
1288         if (!trylock_page(hpage)) {
1289                 if (!force)
1290                         goto out;
1291                 switch (mode) {
1292                 case MIGRATE_SYNC:
1293                 case MIGRATE_SYNC_NO_COPY:
1294                         break;
1295                 default:
1296                         goto out;
1297                 }
1298                 lock_page(hpage);
1299         }
1300
1301         if (PageAnon(hpage))
1302                 anon_vma = page_get_anon_vma(hpage);
1303
1304         if (unlikely(!trylock_page(new_hpage)))
1305                 goto put_anon;
1306
1307         if (page_mapped(hpage)) {
1308                 try_to_unmap(hpage,
1309                         TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1310                 page_was_mapped = 1;
1311         }
1312
1313         if (!page_mapped(hpage))
1314                 rc = move_to_new_page(new_hpage, hpage, mode);
1315
1316         if (page_was_mapped)
1317                 remove_migration_ptes(hpage,
1318                         rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1319
1320         unlock_page(new_hpage);
1321
1322 put_anon:
1323         if (anon_vma)
1324                 put_anon_vma(anon_vma);
1325
1326         if (rc == MIGRATEPAGE_SUCCESS) {
1327                 move_hugetlb_state(hpage, new_hpage, reason);
1328                 put_new_page = NULL;
1329         }
1330
1331         unlock_page(hpage);
1332 out:
1333         if (rc != -EAGAIN)
1334                 putback_active_hugepage(hpage);
1335         if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1336                 num_poisoned_pages_inc();
1337
1338         /*
1339          * If migration was not successful and there's a freeing callback, use
1340          * it.  Otherwise, put_page() will drop the reference grabbed during
1341          * isolation.
1342          */
1343         if (put_new_page)
1344                 put_new_page(new_hpage, private);
1345         else
1346                 putback_active_hugepage(new_hpage);
1347
1348         return rc;
1349 }
1350
1351 /*
1352  * migrate_pages - migrate the pages specified in a list, to the free pages
1353  *                 supplied as the target for the page migration
1354  *
1355  * @from:               The list of pages to be migrated.
1356  * @get_new_page:       The function used to allocate free pages to be used
1357  *                      as the target of the page migration.
1358  * @put_new_page:       The function used to free target pages if migration
1359  *                      fails, or NULL if no special handling is necessary.
1360  * @private:            Private data to be passed on to get_new_page()
1361  * @mode:               The migration mode that specifies the constraints for
1362  *                      page migration, if any.
1363  * @reason:             The reason for page migration.
1364  *
1365  * The function returns after 10 attempts or if no pages are movable any more
1366  * because the list has become empty or no retryable pages exist any more.
1367  * The caller should call putback_movable_pages() to return pages to the LRU
1368  * or free list only if ret != 0.
1369  *
1370  * Returns the number of pages that were not migrated, or an error code.
1371  */
1372 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1373                 free_page_t put_new_page, unsigned long private,
1374                 enum migrate_mode mode, int reason)
1375 {
1376         int retry = 1;
1377         int nr_failed = 0;
1378         int nr_succeeded = 0;
1379         int pass = 0;
1380         struct page *page;
1381         struct page *page2;
1382         int swapwrite = current->flags & PF_SWAPWRITE;
1383         int rc;
1384
1385         if (!swapwrite)
1386                 current->flags |= PF_SWAPWRITE;
1387
1388         for(pass = 0; pass < 10 && retry; pass++) {
1389                 retry = 0;
1390
1391                 list_for_each_entry_safe(page, page2, from, lru) {
1392 retry:
1393                         cond_resched();
1394
1395                         if (PageHuge(page))
1396                                 rc = unmap_and_move_huge_page(get_new_page,
1397                                                 put_new_page, private, page,
1398                                                 pass > 2, mode, reason);
1399                         else
1400                                 rc = unmap_and_move(get_new_page, put_new_page,
1401                                                 private, page, pass > 2, mode,
1402                                                 reason);
1403
1404                         switch(rc) {
1405                         case -ENOMEM:
1406                                 /*
1407                                  * THP migration might be unsupported or the
1408                                  * allocation could've failed so we should
1409                                  * retry on the same page with the THP split
1410                                  * to base pages.
1411                                  *
1412                                  * Head page is retried immediately and tail
1413                                  * pages are added to the tail of the list so
1414                                  * we encounter them after the rest of the list
1415                                  * is processed.
1416                                  */
1417                                 if (PageTransHuge(page)) {
1418                                         lock_page(page);
1419                                         rc = split_huge_page_to_list(page, from);
1420                                         unlock_page(page);
1421                                         if (!rc) {
1422                                                 list_safe_reset_next(page, page2, lru);
1423                                                 goto retry;
1424                                         }
1425                                 }
1426                                 nr_failed++;
1427                                 goto out;
1428                         case -EAGAIN:
1429                                 retry++;
1430                                 break;
1431                         case MIGRATEPAGE_SUCCESS:
1432                                 nr_succeeded++;
1433                                 break;
1434                         default:
1435                                 /*
1436                                  * Permanent failure (-EBUSY, -ENOSYS, etc.):
1437                                  * unlike -EAGAIN case, the failed page is
1438                                  * removed from migration page list and not
1439                                  * retried in the next outer loop.
1440                                  */
1441                                 nr_failed++;
1442                                 break;
1443                         }
1444                 }
1445         }
1446         nr_failed += retry;
1447         rc = nr_failed;
1448 out:
1449         if (nr_succeeded)
1450                 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1451         if (nr_failed)
1452                 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1453         trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1454
1455         if (!swapwrite)
1456                 current->flags &= ~PF_SWAPWRITE;
1457
1458         return rc;
1459 }
1460
1461 #ifdef CONFIG_NUMA
1462
1463 static int store_status(int __user *status, int start, int value, int nr)
1464 {
1465         while (nr-- > 0) {
1466                 if (put_user(value, status + start))
1467                         return -EFAULT;
1468                 start++;
1469         }
1470
1471         return 0;
1472 }
1473
1474 static int do_move_pages_to_node(struct mm_struct *mm,
1475                 struct list_head *pagelist, int node)
1476 {
1477         int err;
1478
1479         if (list_empty(pagelist))
1480                 return 0;
1481
1482         err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1483                         MIGRATE_SYNC, MR_SYSCALL);
1484         if (err)
1485                 putback_movable_pages(pagelist);
1486         return err;
1487 }
1488
1489 /*
1490  * Resolves the given address to a struct page, isolates it from the LRU and
1491  * puts it to the given pagelist.
1492  * Returns -errno if the page cannot be found/isolated or 0 when it has been
1493  * queued or the page doesn't need to be migrated because it is already on
1494  * the target node
1495  */
1496 static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1497                 int node, struct list_head *pagelist, bool migrate_all)
1498 {
1499         struct vm_area_struct *vma;
1500         struct page *page;
1501         unsigned int follflags;
1502         int err;
1503
1504         down_read(&mm->mmap_sem);
1505         err = -EFAULT;
1506         vma = find_vma(mm, addr);
1507         if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1508                 goto out;
1509
1510         /* FOLL_DUMP to ignore special (like zero) pages */
1511         follflags = FOLL_GET | FOLL_DUMP;
1512         page = follow_page(vma, addr, follflags);
1513
1514         err = PTR_ERR(page);
1515         if (IS_ERR(page))
1516                 goto out;
1517
1518         err = -ENOENT;
1519         if (!page)
1520                 goto out;
1521
1522         err = 0;
1523         if (page_to_nid(page) == node)
1524                 goto out_putpage;
1525
1526         err = -EACCES;
1527         if (page_mapcount(page) > 1 && !migrate_all)
1528                 goto out_putpage;
1529
1530         if (PageHuge(page)) {
1531                 if (PageHead(page)) {
1532                         isolate_huge_page(page, pagelist);
1533                         err = 0;
1534                 }
1535         } else {
1536                 struct page *head;
1537
1538                 head = compound_head(page);
1539                 err = isolate_lru_page(head);
1540                 if (err)
1541                         goto out_putpage;
1542
1543                 err = 0;
1544                 list_add_tail(&head->lru, pagelist);
1545                 mod_node_page_state(page_pgdat(head),
1546                         NR_ISOLATED_ANON + page_is_file_cache(head),
1547                         hpage_nr_pages(head));
1548         }
1549 out_putpage:
1550         /*
1551          * Either remove the duplicate refcount from
1552          * isolate_lru_page() or drop the page ref if it was
1553          * not isolated.
1554          */
1555         put_page(page);
1556 out:
1557         up_read(&mm->mmap_sem);
1558         return err;
1559 }
1560
1561 /*
1562  * Migrate an array of page address onto an array of nodes and fill
1563  * the corresponding array of status.
1564  */
1565 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1566                          unsigned long nr_pages,
1567                          const void __user * __user *pages,
1568                          const int __user *nodes,
1569                          int __user *status, int flags)
1570 {
1571         int current_node = NUMA_NO_NODE;
1572         LIST_HEAD(pagelist);
1573         int start, i;
1574         int err = 0, err1;
1575
1576         migrate_prep();
1577
1578         for (i = start = 0; i < nr_pages; i++) {
1579                 const void __user *p;
1580                 unsigned long addr;
1581                 int node;
1582
1583                 err = -EFAULT;
1584                 if (get_user(p, pages + i))
1585                         goto out_flush;
1586                 if (get_user(node, nodes + i))
1587                         goto out_flush;
1588                 addr = (unsigned long)p;
1589
1590                 err = -ENODEV;
1591                 if (node < 0 || node >= MAX_NUMNODES)
1592                         goto out_flush;
1593                 if (!node_state(node, N_MEMORY))
1594                         goto out_flush;
1595
1596                 err = -EACCES;
1597                 if (!node_isset(node, task_nodes))
1598                         goto out_flush;
1599
1600                 if (current_node == NUMA_NO_NODE) {
1601                         current_node = node;
1602                         start = i;
1603                 } else if (node != current_node) {
1604                         err = do_move_pages_to_node(mm, &pagelist, current_node);
1605                         if (err)
1606                                 goto out;
1607                         err = store_status(status, start, current_node, i - start);
1608                         if (err)
1609                                 goto out;
1610                         start = i;
1611                         current_node = node;
1612                 }
1613
1614                 /*
1615                  * Errors in the page lookup or isolation are not fatal and we simply
1616                  * report them via status
1617                  */
1618                 err = add_page_for_migration(mm, addr, current_node,
1619                                 &pagelist, flags & MPOL_MF_MOVE_ALL);
1620                 if (!err)
1621                         continue;
1622
1623                 err = store_status(status, i, err, 1);
1624                 if (err)
1625                         goto out_flush;
1626
1627                 err = do_move_pages_to_node(mm, &pagelist, current_node);
1628                 if (err)
1629                         goto out;
1630                 if (i > start) {
1631                         err = store_status(status, start, current_node, i - start);
1632                         if (err)
1633                                 goto out;
1634                 }
1635                 current_node = NUMA_NO_NODE;
1636         }
1637 out_flush:
1638         if (list_empty(&pagelist))
1639                 return err;
1640
1641         /* Make sure we do not overwrite the existing error */
1642         err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1643         if (!err1)
1644                 err1 = store_status(status, start, current_node, i - start);
1645         if (!err)
1646                 err = err1;
1647 out:
1648         return err;
1649 }
1650
1651 /*
1652  * Determine the nodes of an array of pages and store it in an array of status.
1653  */
1654 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1655                                 const void __user **pages, int *status)
1656 {
1657         unsigned long i;
1658
1659         down_read(&mm->mmap_sem);
1660
1661         for (i = 0; i < nr_pages; i++) {
1662                 unsigned long addr = (unsigned long)(*pages);
1663                 struct vm_area_struct *vma;
1664                 struct page *page;
1665                 int err = -EFAULT;
1666
1667                 vma = find_vma(mm, addr);
1668                 if (!vma || addr < vma->vm_start)
1669                         goto set_status;
1670
1671                 /* FOLL_DUMP to ignore special (like zero) pages */
1672                 page = follow_page(vma, addr, FOLL_DUMP);
1673
1674                 err = PTR_ERR(page);
1675                 if (IS_ERR(page))
1676                         goto set_status;
1677
1678                 err = page ? page_to_nid(page) : -ENOENT;
1679 set_status:
1680                 *status = err;
1681
1682                 pages++;
1683                 status++;
1684         }
1685
1686         up_read(&mm->mmap_sem);
1687 }
1688
1689 /*
1690  * Determine the nodes of a user array of pages and store it in
1691  * a user array of status.
1692  */
1693 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1694                          const void __user * __user *pages,
1695                          int __user *status)
1696 {
1697 #define DO_PAGES_STAT_CHUNK_NR 16
1698         const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1699         int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1700
1701         while (nr_pages) {
1702                 unsigned long chunk_nr;
1703
1704                 chunk_nr = nr_pages;
1705                 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1706                         chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1707
1708                 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1709                         break;
1710
1711                 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1712
1713                 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1714                         break;
1715
1716                 pages += chunk_nr;
1717                 status += chunk_nr;
1718                 nr_pages -= chunk_nr;
1719         }
1720         return nr_pages ? -EFAULT : 0;
1721 }
1722
1723 /*
1724  * Move a list of pages in the address space of the currently executing
1725  * process.
1726  */
1727 static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1728                              const void __user * __user *pages,
1729                              const int __user *nodes,
1730                              int __user *status, int flags)
1731 {
1732         struct task_struct *task;
1733         struct mm_struct *mm;
1734         int err;
1735         nodemask_t task_nodes;
1736
1737         /* Check flags */
1738         if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1739                 return -EINVAL;
1740
1741         if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1742                 return -EPERM;
1743
1744         /* Find the mm_struct */
1745         rcu_read_lock();
1746         task = pid ? find_task_by_vpid(pid) : current;
1747         if (!task) {
1748                 rcu_read_unlock();
1749                 return -ESRCH;
1750         }
1751         get_task_struct(task);
1752
1753         /*
1754          * Check if this process has the right to modify the specified
1755          * process. Use the regular "ptrace_may_access()" checks.
1756          */
1757         if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1758                 rcu_read_unlock();
1759                 err = -EPERM;
1760                 goto out;
1761         }
1762         rcu_read_unlock();
1763
1764         err = security_task_movememory(task);
1765         if (err)
1766                 goto out;
1767
1768         task_nodes = cpuset_mems_allowed(task);
1769         mm = get_task_mm(task);
1770         put_task_struct(task);
1771
1772         if (!mm)
1773                 return -EINVAL;
1774
1775         if (nodes)
1776                 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1777                                     nodes, status, flags);
1778         else
1779                 err = do_pages_stat(mm, nr_pages, pages, status);
1780
1781         mmput(mm);
1782         return err;
1783
1784 out:
1785         put_task_struct(task);
1786         return err;
1787 }
1788
1789 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1790                 const void __user * __user *, pages,
1791                 const int __user *, nodes,
1792                 int __user *, status, int, flags)
1793 {
1794         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1795 }
1796
1797 #ifdef CONFIG_COMPAT
1798 COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1799                        compat_uptr_t __user *, pages32,
1800                        const int __user *, nodes,
1801                        int __user *, status,
1802                        int, flags)
1803 {
1804         const void __user * __user *pages;
1805         int i;
1806
1807         pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1808         for (i = 0; i < nr_pages; i++) {
1809                 compat_uptr_t p;
1810
1811                 if (get_user(p, pages32 + i) ||
1812                         put_user(compat_ptr(p), pages + i))
1813                         return -EFAULT;
1814         }
1815         return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1816 }
1817 #endif /* CONFIG_COMPAT */
1818
1819 #ifdef CONFIG_NUMA_BALANCING
1820 /*
1821  * Returns true if this is a safe migration target node for misplaced NUMA
1822  * pages. Currently it only checks the watermarks which crude
1823  */
1824 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1825                                    unsigned long nr_migrate_pages)
1826 {
1827         int z;
1828
1829         for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1830                 struct zone *zone = pgdat->node_zones + z;
1831
1832                 if (!populated_zone(zone))
1833                         continue;
1834
1835                 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1836                 if (!zone_watermark_ok(zone, 0,
1837                                        high_wmark_pages(zone) +
1838                                        nr_migrate_pages,
1839                                        0, 0))
1840                         continue;
1841                 return true;
1842         }
1843         return false;
1844 }
1845
1846 static struct page *alloc_misplaced_dst_page(struct page *page,
1847                                            unsigned long data)
1848 {
1849         int nid = (int) data;
1850         struct page *newpage;
1851
1852         newpage = __alloc_pages_node(nid,
1853                                          (GFP_HIGHUSER_MOVABLE |
1854                                           __GFP_THISNODE | __GFP_NOMEMALLOC |
1855                                           __GFP_NORETRY | __GFP_NOWARN) &
1856                                          ~__GFP_RECLAIM, 0);
1857
1858         return newpage;
1859 }
1860
1861 /*
1862  * page migration rate limiting control.
1863  * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1864  * window of time. Default here says do not migrate more than 1280M per second.
1865  */
1866 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1867 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1868
1869 /* Returns true if the node is migrate rate-limited after the update */
1870 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1871                                         unsigned long nr_pages)
1872 {
1873         /*
1874          * Rate-limit the amount of data that is being migrated to a node.
1875          * Optimal placement is no good if the memory bus is saturated and
1876          * all the time is being spent migrating!
1877          */
1878         if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1879                 spin_lock(&pgdat->numabalancing_migrate_lock);
1880                 pgdat->numabalancing_migrate_nr_pages = 0;
1881                 pgdat->numabalancing_migrate_next_window = jiffies +
1882                         msecs_to_jiffies(migrate_interval_millisecs);
1883                 spin_unlock(&pgdat->numabalancing_migrate_lock);
1884         }
1885         if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1886                 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1887                                                                 nr_pages);
1888                 return true;
1889         }
1890
1891         /*
1892          * This is an unlocked non-atomic update so errors are possible.
1893          * The consequences are failing to migrate when we potentiall should
1894          * have which is not severe enough to warrant locking. If it is ever
1895          * a problem, it can be converted to a per-cpu counter.
1896          */
1897         pgdat->numabalancing_migrate_nr_pages += nr_pages;
1898         return false;
1899 }
1900
1901 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1902 {
1903         int page_lru;
1904
1905         VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1906
1907         /* Avoid migrating to a node that is nearly full */
1908         if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1909                 return 0;
1910
1911         if (isolate_lru_page(page))
1912                 return 0;
1913
1914         /*
1915          * migrate_misplaced_transhuge_page() skips page migration's usual
1916          * check on page_count(), so we must do it here, now that the page
1917          * has been isolated: a GUP pin, or any other pin, prevents migration.
1918          * The expected page count is 3: 1 for page's mapcount and 1 for the
1919          * caller's pin and 1 for the reference taken by isolate_lru_page().
1920          */
1921         if (PageTransHuge(page) && page_count(page) != 3) {
1922                 putback_lru_page(page);
1923                 return 0;
1924         }
1925
1926         page_lru = page_is_file_cache(page);
1927         mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1928                                 hpage_nr_pages(page));
1929
1930         /*
1931          * Isolating the page has taken another reference, so the
1932          * caller's reference can be safely dropped without the page
1933          * disappearing underneath us during migration.
1934          */
1935         put_page(page);
1936         return 1;
1937 }
1938
1939 bool pmd_trans_migrating(pmd_t pmd)
1940 {
1941         struct page *page = pmd_page(pmd);
1942         return PageLocked(page);
1943 }
1944
1945 /*
1946  * Attempt to migrate a misplaced page to the specified destination
1947  * node. Caller is expected to have an elevated reference count on
1948  * the page that will be dropped by this function before returning.
1949  */
1950 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1951                            int node)
1952 {
1953         pg_data_t *pgdat = NODE_DATA(node);
1954         int isolated;
1955         int nr_remaining;
1956         LIST_HEAD(migratepages);
1957
1958         /*
1959          * Don't migrate file pages that are mapped in multiple processes
1960          * with execute permissions as they are probably shared libraries.
1961          */
1962         if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1963             (vma->vm_flags & VM_EXEC))
1964                 goto out;
1965
1966         /*
1967          * Also do not migrate dirty pages as not all filesystems can move
1968          * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1969          */
1970         if (page_is_file_cache(page) && PageDirty(page))
1971                 goto out;
1972
1973         /*
1974          * Rate-limit the amount of data that is being migrated to a node.
1975          * Optimal placement is no good if the memory bus is saturated and
1976          * all the time is being spent migrating!
1977          */
1978         if (numamigrate_update_ratelimit(pgdat, 1))
1979                 goto out;
1980
1981         isolated = numamigrate_isolate_page(pgdat, page);
1982         if (!isolated)
1983                 goto out;
1984
1985         list_add(&page->lru, &migratepages);
1986         nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1987                                      NULL, node, MIGRATE_ASYNC,
1988                                      MR_NUMA_MISPLACED);
1989         if (nr_remaining) {
1990                 if (!list_empty(&migratepages)) {
1991                         list_del(&page->lru);
1992                         dec_node_page_state(page, NR_ISOLATED_ANON +
1993                                         page_is_file_cache(page));
1994                         putback_lru_page(page);
1995                 }
1996                 isolated = 0;
1997         } else
1998                 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1999         BUG_ON(!list_empty(&migratepages));
2000         return isolated;
2001
2002 out:
2003         put_page(page);
2004         return 0;
2005 }
2006 #endif /* CONFIG_NUMA_BALANCING */
2007
2008 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2009 /*
2010  * Migrates a THP to a given target node. page must be locked and is unlocked
2011  * before returning.
2012  */
2013 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
2014                                 struct vm_area_struct *vma,
2015                                 pmd_t *pmd, pmd_t entry,
2016                                 unsigned long address,
2017                                 struct page *page, int node)
2018 {
2019         spinlock_t *ptl;
2020         pg_data_t *pgdat = NODE_DATA(node);
2021         int isolated = 0;
2022         struct page *new_page = NULL;
2023         int page_lru = page_is_file_cache(page);
2024         unsigned long mmun_start = address & HPAGE_PMD_MASK;
2025         unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
2026
2027         /*
2028          * Rate-limit the amount of data that is being migrated to a node.
2029          * Optimal placement is no good if the memory bus is saturated and
2030          * all the time is being spent migrating!
2031          */
2032         if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
2033                 goto out_dropref;
2034
2035         new_page = alloc_pages_node(node,
2036                 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2037                 HPAGE_PMD_ORDER);
2038         if (!new_page)
2039                 goto out_fail;
2040         prep_transhuge_page(new_page);
2041
2042         isolated = numamigrate_isolate_page(pgdat, page);
2043         if (!isolated) {
2044                 put_page(new_page);
2045                 goto out_fail;
2046         }
2047
2048         /* Prepare a page as a migration target */
2049         __SetPageLocked(new_page);
2050         if (PageSwapBacked(page))
2051                 __SetPageSwapBacked(new_page);
2052
2053         /* anon mapping, we can simply copy page->mapping to the new page: */
2054         new_page->mapping = page->mapping;
2055         new_page->index = page->index;
2056         migrate_page_copy(new_page, page);
2057         WARN_ON(PageLRU(new_page));
2058
2059         /* Recheck the target PMD */
2060         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2061         ptl = pmd_lock(mm, pmd);
2062         if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2063                 spin_unlock(ptl);
2064                 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2065
2066                 /* Reverse changes made by migrate_page_copy() */
2067                 if (TestClearPageActive(new_page))
2068                         SetPageActive(page);
2069                 if (TestClearPageUnevictable(new_page))
2070                         SetPageUnevictable(page);
2071
2072                 unlock_page(new_page);
2073                 put_page(new_page);             /* Free it */
2074
2075                 /* Retake the callers reference and putback on LRU */
2076                 get_page(page);
2077                 putback_lru_page(page);
2078                 mod_node_page_state(page_pgdat(page),
2079                          NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2080
2081                 goto out_unlock;
2082         }
2083
2084         entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2085         entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2086
2087         /*
2088          * Clear the old entry under pagetable lock and establish the new PTE.
2089          * Any parallel GUP will either observe the old page blocking on the
2090          * page lock, block on the page table lock or observe the new page.
2091          * The SetPageUptodate on the new page and page_add_new_anon_rmap
2092          * guarantee the copy is visible before the pagetable update.
2093          */
2094         flush_cache_range(vma, mmun_start, mmun_end);
2095         page_add_anon_rmap(new_page, vma, mmun_start, true);
2096         pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2097         set_pmd_at(mm, mmun_start, pmd, entry);
2098         update_mmu_cache_pmd(vma, address, &entry);
2099
2100         page_ref_unfreeze(page, 2);
2101         mlock_migrate_page(new_page, page);
2102         page_remove_rmap(page, true);
2103         set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2104
2105         spin_unlock(ptl);
2106         /*
2107          * No need to double call mmu_notifier->invalidate_range() callback as
2108          * the above pmdp_huge_clear_flush_notify() did already call it.
2109          */
2110         mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2111
2112         /* Take an "isolate" reference and put new page on the LRU. */
2113         get_page(new_page);
2114         putback_lru_page(new_page);
2115
2116         unlock_page(new_page);
2117         unlock_page(page);
2118         put_page(page);                 /* Drop the rmap reference */
2119         put_page(page);                 /* Drop the LRU isolation reference */
2120
2121         count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2122         count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2123
2124         mod_node_page_state(page_pgdat(page),
2125                         NR_ISOLATED_ANON + page_lru,
2126                         -HPAGE_PMD_NR);
2127         return isolated;
2128
2129 out_fail:
2130         count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2131 out_dropref:
2132         ptl = pmd_lock(mm, pmd);
2133         if (pmd_same(*pmd, entry)) {
2134                 entry = pmd_modify(entry, vma->vm_page_prot);
2135                 set_pmd_at(mm, mmun_start, pmd, entry);
2136                 update_mmu_cache_pmd(vma, address, &entry);
2137         }
2138         spin_unlock(ptl);
2139
2140 out_unlock:
2141         unlock_page(page);
2142         put_page(page);
2143         return 0;
2144 }
2145 #endif /* CONFIG_NUMA_BALANCING */
2146
2147 #endif /* CONFIG_NUMA */
2148
2149 #if defined(CONFIG_MIGRATE_VMA_HELPER)
2150 struct migrate_vma {
2151         struct vm_area_struct   *vma;
2152         unsigned long           *dst;
2153         unsigned long           *src;
2154         unsigned long           cpages;
2155         unsigned long           npages;
2156         unsigned long           start;
2157         unsigned long           end;
2158 };
2159
2160 static int migrate_vma_collect_hole(unsigned long start,
2161                                     unsigned long end,
2162                                     struct mm_walk *walk)
2163 {
2164         struct migrate_vma *migrate = walk->private;
2165         unsigned long addr;
2166
2167         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2168                 migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2169                 migrate->dst[migrate->npages] = 0;
2170                 migrate->npages++;
2171                 migrate->cpages++;
2172         }
2173
2174         return 0;
2175 }
2176
2177 static int migrate_vma_collect_skip(unsigned long start,
2178                                     unsigned long end,
2179                                     struct mm_walk *walk)
2180 {
2181         struct migrate_vma *migrate = walk->private;
2182         unsigned long addr;
2183
2184         for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2185                 migrate->dst[migrate->npages] = 0;
2186                 migrate->src[migrate->npages++] = 0;
2187         }
2188
2189         return 0;
2190 }
2191
2192 static int migrate_vma_collect_pmd(pmd_t *pmdp,
2193                                    unsigned long start,
2194                                    unsigned long end,
2195                                    struct mm_walk *walk)
2196 {
2197         struct migrate_vma *migrate = walk->private;
2198         struct vm_area_struct *vma = walk->vma;
2199         struct mm_struct *mm = vma->vm_mm;
2200         unsigned long addr = start, unmapped = 0;
2201         spinlock_t *ptl;
2202         pte_t *ptep;
2203
2204 again:
2205         if (pmd_none(*pmdp))
2206                 return migrate_vma_collect_hole(start, end, walk);
2207
2208         if (pmd_trans_huge(*pmdp)) {
2209                 struct page *page;
2210
2211                 ptl = pmd_lock(mm, pmdp);
2212                 if (unlikely(!pmd_trans_huge(*pmdp))) {
2213                         spin_unlock(ptl);
2214                         goto again;
2215                 }
2216
2217                 page = pmd_page(*pmdp);
2218                 if (is_huge_zero_page(page)) {
2219                         spin_unlock(ptl);
2220                         split_huge_pmd(vma, pmdp, addr);
2221                         if (pmd_trans_unstable(pmdp))
2222                                 return migrate_vma_collect_skip(start, end,
2223                                                                 walk);
2224                 } else {
2225                         int ret;
2226
2227                         get_page(page);
2228                         spin_unlock(ptl);
2229                         if (unlikely(!trylock_page(page)))
2230                                 return migrate_vma_collect_skip(start, end,
2231                                                                 walk);
2232                         ret = split_huge_page(page);
2233                         unlock_page(page);
2234                         put_page(page);
2235                         if (ret)
2236                                 return migrate_vma_collect_skip(start, end,
2237                                                                 walk);
2238                         if (pmd_none(*pmdp))
2239                                 return migrate_vma_collect_hole(start, end,
2240                                                                 walk);
2241                 }
2242         }
2243
2244         if (unlikely(pmd_bad(*pmdp)))
2245                 return migrate_vma_collect_skip(start, end, walk);
2246
2247         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2248         arch_enter_lazy_mmu_mode();
2249
2250         for (; addr < end; addr += PAGE_SIZE, ptep++) {
2251                 unsigned long mpfn, pfn;
2252                 struct page *page;
2253                 swp_entry_t entry;
2254                 pte_t pte;
2255
2256                 pte = *ptep;
2257                 pfn = pte_pfn(pte);
2258
2259                 if (pte_none(pte)) {
2260                         mpfn = MIGRATE_PFN_MIGRATE;
2261                         migrate->cpages++;
2262                         pfn = 0;
2263                         goto next;
2264                 }
2265
2266                 if (!pte_present(pte)) {
2267                         mpfn = pfn = 0;
2268
2269                         /*
2270                          * Only care about unaddressable device page special
2271                          * page table entry. Other special swap entries are not
2272                          * migratable, and we ignore regular swapped page.
2273                          */
2274                         entry = pte_to_swp_entry(pte);
2275                         if (!is_device_private_entry(entry))
2276                                 goto next;
2277
2278                         page = device_private_entry_to_page(entry);
2279                         mpfn = migrate_pfn(page_to_pfn(page))|
2280                                 MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2281                         if (is_write_device_private_entry(entry))
2282                                 mpfn |= MIGRATE_PFN_WRITE;
2283                 } else {
2284                         if (is_zero_pfn(pfn)) {
2285                                 mpfn = MIGRATE_PFN_MIGRATE;
2286                                 migrate->cpages++;
2287                                 pfn = 0;
2288                                 goto next;
2289                         }
2290                         page = _vm_normal_page(migrate->vma, addr, pte, true);
2291                         mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2292                         mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2293                 }
2294
2295                 /* FIXME support THP */
2296                 if (!page || !page->mapping || PageTransCompound(page)) {
2297                         mpfn = pfn = 0;
2298                         goto next;
2299                 }
2300                 pfn = page_to_pfn(page);
2301
2302                 /*
2303                  * By getting a reference on the page we pin it and that blocks
2304                  * any kind of migration. Side effect is that it "freezes" the
2305                  * pte.
2306                  *
2307                  * We drop this reference after isolating the page from the lru
2308                  * for non device page (device page are not on the lru and thus
2309                  * can't be dropped from it).
2310                  */
2311                 get_page(page);
2312                 migrate->cpages++;
2313
2314                 /*
2315                  * Optimize for the common case where page is only mapped once
2316                  * in one process. If we can lock the page, then we can safely
2317                  * set up a special migration page table entry now.
2318                  */
2319                 if (trylock_page(page)) {
2320                         pte_t swp_pte;
2321
2322                         mpfn |= MIGRATE_PFN_LOCKED;
2323                         ptep_get_and_clear(mm, addr, ptep);
2324
2325                         /* Setup special migration page table entry */
2326                         entry = make_migration_entry(page, mpfn &
2327                                                      MIGRATE_PFN_WRITE);
2328                         swp_pte = swp_entry_to_pte(entry);
2329                         if (pte_soft_dirty(pte))
2330                                 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2331                         set_pte_at(mm, addr, ptep, swp_pte);
2332
2333                         /*
2334                          * This is like regular unmap: we remove the rmap and
2335                          * drop page refcount. Page won't be freed, as we took
2336                          * a reference just above.
2337                          */
2338                         page_remove_rmap(page, false);
2339                         put_page(page);
2340
2341                         if (pte_present(pte))
2342                                 unmapped++;
2343                 }
2344
2345 next:
2346                 migrate->dst[migrate->npages] = 0;
2347                 migrate->src[migrate->npages++] = mpfn;
2348         }
2349         arch_leave_lazy_mmu_mode();
2350         pte_unmap_unlock(ptep - 1, ptl);
2351
2352         /* Only flush the TLB if we actually modified any entries */
2353         if (unmapped)
2354                 flush_tlb_range(walk->vma, start, end);
2355
2356         return 0;
2357 }
2358
2359 /*
2360  * migrate_vma_collect() - collect pages over a range of virtual addresses
2361  * @migrate: migrate struct containing all migration information
2362  *
2363  * This will walk the CPU page table. For each virtual address backed by a
2364  * valid page, it updates the src array and takes a reference on the page, in
2365  * order to pin the page until we lock it and unmap it.
2366  */
2367 static void migrate_vma_collect(struct migrate_vma *migrate)
2368 {
2369         struct mm_walk mm_walk;
2370
2371         mm_walk.pmd_entry = migrate_vma_collect_pmd;
2372         mm_walk.pte_entry = NULL;
2373         mm_walk.pte_hole = migrate_vma_collect_hole;
2374         mm_walk.hugetlb_entry = NULL;
2375         mm_walk.test_walk = NULL;
2376         mm_walk.vma = migrate->vma;
2377         mm_walk.mm = migrate->vma->vm_mm;
2378         mm_walk.private = migrate;
2379
2380         mmu_notifier_invalidate_range_start(mm_walk.mm,
2381                                             migrate->start,
2382                                             migrate->end);
2383         walk_page_range(migrate->start, migrate->end, &mm_walk);
2384         mmu_notifier_invalidate_range_end(mm_walk.mm,
2385                                           migrate->start,
2386                                           migrate->end);
2387
2388         migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2389 }
2390
2391 /*
2392  * migrate_vma_check_page() - check if page is pinned or not
2393  * @page: struct page to check
2394  *
2395  * Pinned pages cannot be migrated. This is the same test as in
2396  * migrate_page_move_mapping(), except that here we allow migration of a
2397  * ZONE_DEVICE page.
2398  */
2399 static bool migrate_vma_check_page(struct page *page)
2400 {
2401         /*
2402          * One extra ref because caller holds an extra reference, either from
2403          * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2404          * a device page.
2405          */
2406         int extra = 1;
2407
2408         /*
2409          * FIXME support THP (transparent huge page), it is bit more complex to
2410          * check them than regular pages, because they can be mapped with a pmd
2411          * or with a pte (split pte mapping).
2412          */
2413         if (PageCompound(page))
2414                 return false;
2415
2416         /* Page from ZONE_DEVICE have one extra reference */
2417         if (is_zone_device_page(page)) {
2418                 /*
2419                  * Private page can never be pin as they have no valid pte and
2420                  * GUP will fail for those. Yet if there is a pending migration
2421                  * a thread might try to wait on the pte migration entry and
2422                  * will bump the page reference count. Sadly there is no way to
2423                  * differentiate a regular pin from migration wait. Hence to
2424                  * avoid 2 racing thread trying to migrate back to CPU to enter
2425                  * infinite loop (one stoping migration because the other is
2426                  * waiting on pte migration entry). We always return true here.
2427                  *
2428                  * FIXME proper solution is to rework migration_entry_wait() so
2429                  * it does not need to take a reference on page.
2430                  */
2431                 if (is_device_private_page(page))
2432                         return true;
2433
2434                 /*
2435                  * Only allow device public page to be migrated and account for
2436                  * the extra reference count imply by ZONE_DEVICE pages.
2437                  */
2438                 if (!is_device_public_page(page))
2439                         return false;
2440                 extra++;
2441         }
2442
2443         /* For file back page */
2444         if (page_mapping(page))
2445                 extra += 1 + page_has_private(page);
2446
2447         if ((page_count(page) - extra) > page_mapcount(page))
2448                 return false;
2449
2450         return true;
2451 }
2452
2453 /*
2454  * migrate_vma_prepare() - lock pages and isolate them from the lru
2455  * @migrate: migrate struct containing all migration information
2456  *
2457  * This locks pages that have been collected by migrate_vma_collect(). Once each
2458  * page is locked it is isolated from the lru (for non-device pages). Finally,
2459  * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2460  * migrated by concurrent kernel threads.
2461  */
2462 static void migrate_vma_prepare(struct migrate_vma *migrate)
2463 {
2464         const unsigned long npages = migrate->npages;
2465         const unsigned long start = migrate->start;
2466         unsigned long addr, i, restore = 0;
2467         bool allow_drain = true;
2468
2469         lru_add_drain();
2470
2471         for (i = 0; (i < npages) && migrate->cpages; i++) {
2472                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2473                 bool remap = true;
2474
2475                 if (!page)
2476                         continue;
2477
2478                 if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2479                         /*
2480                          * Because we are migrating several pages there can be
2481                          * a deadlock between 2 concurrent migration where each
2482                          * are waiting on each other page lock.
2483                          *
2484                          * Make migrate_vma() a best effort thing and backoff
2485                          * for any page we can not lock right away.
2486                          */
2487                         if (!trylock_page(page)) {
2488                                 migrate->src[i] = 0;
2489                                 migrate->cpages--;
2490                                 put_page(page);
2491                                 continue;
2492                         }
2493                         remap = false;
2494                         migrate->src[i] |= MIGRATE_PFN_LOCKED;
2495                 }
2496
2497                 /* ZONE_DEVICE pages are not on LRU */
2498                 if (!is_zone_device_page(page)) {
2499                         if (!PageLRU(page) && allow_drain) {
2500                                 /* Drain CPU's pagevec */
2501                                 lru_add_drain_all();
2502                                 allow_drain = false;
2503                         }
2504
2505                         if (isolate_lru_page(page)) {
2506                                 if (remap) {
2507                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2508                                         migrate->cpages--;
2509                                         restore++;
2510                                 } else {
2511                                         migrate->src[i] = 0;
2512                                         unlock_page(page);
2513                                         migrate->cpages--;
2514                                         put_page(page);
2515                                 }
2516                                 continue;
2517                         }
2518
2519                         /* Drop the reference we took in collect */
2520                         put_page(page);
2521                 }
2522
2523                 if (!migrate_vma_check_page(page)) {
2524                         if (remap) {
2525                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2526                                 migrate->cpages--;
2527                                 restore++;
2528
2529                                 if (!is_zone_device_page(page)) {
2530                                         get_page(page);
2531                                         putback_lru_page(page);
2532                                 }
2533                         } else {
2534                                 migrate->src[i] = 0;
2535                                 unlock_page(page);
2536                                 migrate->cpages--;
2537
2538                                 if (!is_zone_device_page(page))
2539                                         putback_lru_page(page);
2540                                 else
2541                                         put_page(page);
2542                         }
2543                 }
2544         }
2545
2546         for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2547                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2548
2549                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2550                         continue;
2551
2552                 remove_migration_pte(page, migrate->vma, addr, page);
2553
2554                 migrate->src[i] = 0;
2555                 unlock_page(page);
2556                 put_page(page);
2557                 restore--;
2558         }
2559 }
2560
2561 /*
2562  * migrate_vma_unmap() - replace page mapping with special migration pte entry
2563  * @migrate: migrate struct containing all migration information
2564  *
2565  * Replace page mapping (CPU page table pte) with a special migration pte entry
2566  * and check again if it has been pinned. Pinned pages are restored because we
2567  * cannot migrate them.
2568  *
2569  * This is the last step before we call the device driver callback to allocate
2570  * destination memory and copy contents of original page over to new page.
2571  */
2572 static void migrate_vma_unmap(struct migrate_vma *migrate)
2573 {
2574         int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2575         const unsigned long npages = migrate->npages;
2576         const unsigned long start = migrate->start;
2577         unsigned long addr, i, restore = 0;
2578
2579         for (i = 0; i < npages; i++) {
2580                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2581
2582                 if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2583                         continue;
2584
2585                 if (page_mapped(page)) {
2586                         try_to_unmap(page, flags);
2587                         if (page_mapped(page))
2588                                 goto restore;
2589                 }
2590
2591                 if (migrate_vma_check_page(page))
2592                         continue;
2593
2594 restore:
2595                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2596                 migrate->cpages--;
2597                 restore++;
2598         }
2599
2600         for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2601                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2602
2603                 if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2604                         continue;
2605
2606                 remove_migration_ptes(page, page, false);
2607
2608                 migrate->src[i] = 0;
2609                 unlock_page(page);
2610                 restore--;
2611
2612                 if (is_zone_device_page(page))
2613                         put_page(page);
2614                 else
2615                         putback_lru_page(page);
2616         }
2617 }
2618
2619 static void migrate_vma_insert_page(struct migrate_vma *migrate,
2620                                     unsigned long addr,
2621                                     struct page *page,
2622                                     unsigned long *src,
2623                                     unsigned long *dst)
2624 {
2625         struct vm_area_struct *vma = migrate->vma;
2626         struct mm_struct *mm = vma->vm_mm;
2627         struct mem_cgroup *memcg;
2628         bool flush = false;
2629         spinlock_t *ptl;
2630         pte_t entry;
2631         pgd_t *pgdp;
2632         p4d_t *p4dp;
2633         pud_t *pudp;
2634         pmd_t *pmdp;
2635         pte_t *ptep;
2636
2637         /* Only allow populating anonymous memory */
2638         if (!vma_is_anonymous(vma))
2639                 goto abort;
2640
2641         pgdp = pgd_offset(mm, addr);
2642         p4dp = p4d_alloc(mm, pgdp, addr);
2643         if (!p4dp)
2644                 goto abort;
2645         pudp = pud_alloc(mm, p4dp, addr);
2646         if (!pudp)
2647                 goto abort;
2648         pmdp = pmd_alloc(mm, pudp, addr);
2649         if (!pmdp)
2650                 goto abort;
2651
2652         if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2653                 goto abort;
2654
2655         /*
2656          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2657          * pte_offset_map() on pmds where a huge pmd might be created
2658          * from a different thread.
2659          *
2660          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2661          * parallel threads are excluded by other means.
2662          *
2663          * Here we only have down_read(mmap_sem).
2664          */
2665         if (pte_alloc(mm, pmdp, addr))
2666                 goto abort;
2667
2668         /* See the comment in pte_alloc_one_map() */
2669         if (unlikely(pmd_trans_unstable(pmdp)))
2670                 goto abort;
2671
2672         if (unlikely(anon_vma_prepare(vma)))
2673                 goto abort;
2674         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2675                 goto abort;
2676
2677         /*
2678          * The memory barrier inside __SetPageUptodate makes sure that
2679          * preceding stores to the page contents become visible before
2680          * the set_pte_at() write.
2681          */
2682         __SetPageUptodate(page);
2683
2684         if (is_zone_device_page(page)) {
2685                 if (is_device_private_page(page)) {
2686                         swp_entry_t swp_entry;
2687
2688                         swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2689                         entry = swp_entry_to_pte(swp_entry);
2690                 } else if (is_device_public_page(page)) {
2691                         entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2692                         if (vma->vm_flags & VM_WRITE)
2693                                 entry = pte_mkwrite(pte_mkdirty(entry));
2694                         entry = pte_mkdevmap(entry);
2695                 }
2696         } else {
2697                 entry = mk_pte(page, vma->vm_page_prot);
2698                 if (vma->vm_flags & VM_WRITE)
2699                         entry = pte_mkwrite(pte_mkdirty(entry));
2700         }
2701
2702         ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2703
2704         if (pte_present(*ptep)) {
2705                 unsigned long pfn = pte_pfn(*ptep);
2706
2707                 if (!is_zero_pfn(pfn)) {
2708                         pte_unmap_unlock(ptep, ptl);
2709                         mem_cgroup_cancel_charge(page, memcg, false);
2710                         goto abort;
2711                 }
2712                 flush = true;
2713         } else if (!pte_none(*ptep)) {
2714                 pte_unmap_unlock(ptep, ptl);
2715                 mem_cgroup_cancel_charge(page, memcg, false);
2716                 goto abort;
2717         }
2718
2719         /*
2720          * Check for usefaultfd but do not deliver the fault. Instead,
2721          * just back off.
2722          */
2723         if (userfaultfd_missing(vma)) {
2724                 pte_unmap_unlock(ptep, ptl);
2725                 mem_cgroup_cancel_charge(page, memcg, false);
2726                 goto abort;
2727         }
2728
2729         inc_mm_counter(mm, MM_ANONPAGES);
2730         page_add_new_anon_rmap(page, vma, addr, false);
2731         mem_cgroup_commit_charge(page, memcg, false, false);
2732         if (!is_zone_device_page(page))
2733                 lru_cache_add_active_or_unevictable(page, vma);
2734         get_page(page);
2735
2736         if (flush) {
2737                 flush_cache_page(vma, addr, pte_pfn(*ptep));
2738                 ptep_clear_flush_notify(vma, addr, ptep);
2739                 set_pte_at_notify(mm, addr, ptep, entry);
2740                 update_mmu_cache(vma, addr, ptep);
2741         } else {
2742                 /* No need to invalidate - it was non-present before */
2743                 set_pte_at(mm, addr, ptep, entry);
2744                 update_mmu_cache(vma, addr, ptep);
2745         }
2746
2747         pte_unmap_unlock(ptep, ptl);
2748         *src = MIGRATE_PFN_MIGRATE;
2749         return;
2750
2751 abort:
2752         *src &= ~MIGRATE_PFN_MIGRATE;
2753 }
2754
2755 /*
2756  * migrate_vma_pages() - migrate meta-data from src page to dst page
2757  * @migrate: migrate struct containing all migration information
2758  *
2759  * This migrates struct page meta-data from source struct page to destination
2760  * struct page. This effectively finishes the migration from source page to the
2761  * destination page.
2762  */
2763 static void migrate_vma_pages(struct migrate_vma *migrate)
2764 {
2765         const unsigned long npages = migrate->npages;
2766         const unsigned long start = migrate->start;
2767         struct vm_area_struct *vma = migrate->vma;
2768         struct mm_struct *mm = vma->vm_mm;
2769         unsigned long addr, i, mmu_start;
2770         bool notified = false;
2771
2772         for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2773                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2774                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2775                 struct address_space *mapping;
2776                 int r;
2777
2778                 if (!newpage) {
2779                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2780                         continue;
2781                 }
2782
2783                 if (!page) {
2784                         if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2785                                 continue;
2786                         }
2787                         if (!notified) {
2788                                 mmu_start = addr;
2789                                 notified = true;
2790                                 mmu_notifier_invalidate_range_start(mm,
2791                                                                 mmu_start,
2792                                                                 migrate->end);
2793                         }
2794                         migrate_vma_insert_page(migrate, addr, newpage,
2795                                                 &migrate->src[i],
2796                                                 &migrate->dst[i]);
2797                         continue;
2798                 }
2799
2800                 mapping = page_mapping(page);
2801
2802                 if (is_zone_device_page(newpage)) {
2803                         if (is_device_private_page(newpage)) {
2804                                 /*
2805                                  * For now only support private anonymous when
2806                                  * migrating to un-addressable device memory.
2807                                  */
2808                                 if (mapping) {
2809                                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2810                                         continue;
2811                                 }
2812                         } else if (!is_device_public_page(newpage)) {
2813                                 /*
2814                                  * Other types of ZONE_DEVICE page are not
2815                                  * supported.
2816                                  */
2817                                 migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2818                                 continue;
2819                         }
2820                 }
2821
2822                 r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2823                 if (r != MIGRATEPAGE_SUCCESS)
2824                         migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2825         }
2826
2827         /*
2828          * No need to double call mmu_notifier->invalidate_range() callback as
2829          * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2830          * did already call it.
2831          */
2832         if (notified)
2833                 mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2834                                                        migrate->end);
2835 }
2836
2837 /*
2838  * migrate_vma_finalize() - restore CPU page table entry
2839  * @migrate: migrate struct containing all migration information
2840  *
2841  * This replaces the special migration pte entry with either a mapping to the
2842  * new page if migration was successful for that page, or to the original page
2843  * otherwise.
2844  *
2845  * This also unlocks the pages and puts them back on the lru, or drops the extra
2846  * refcount, for device pages.
2847  */
2848 static void migrate_vma_finalize(struct migrate_vma *migrate)
2849 {
2850         const unsigned long npages = migrate->npages;
2851         unsigned long i;
2852
2853         for (i = 0; i < npages; i++) {
2854                 struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2855                 struct page *page = migrate_pfn_to_page(migrate->src[i]);
2856
2857                 if (!page) {
2858                         if (newpage) {
2859                                 unlock_page(newpage);
2860                                 put_page(newpage);
2861                         }
2862                         continue;
2863                 }
2864
2865                 if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2866                         if (newpage) {
2867                                 unlock_page(newpage);
2868                                 put_page(newpage);
2869                         }
2870                         newpage = page;
2871                 }
2872
2873                 remove_migration_ptes(page, newpage, false);
2874                 unlock_page(page);
2875                 migrate->cpages--;
2876
2877                 if (is_zone_device_page(page))
2878                         put_page(page);
2879                 else
2880                         putback_lru_page(page);
2881
2882                 if (newpage != page) {
2883                         unlock_page(newpage);
2884                         if (is_zone_device_page(newpage))
2885                                 put_page(newpage);
2886                         else
2887                                 putback_lru_page(newpage);
2888                 }
2889         }
2890 }
2891
2892 /*
2893  * migrate_vma() - migrate a range of memory inside vma
2894  *
2895  * @ops: migration callback for allocating destination memory and copying
2896  * @vma: virtual memory area containing the range to be migrated
2897  * @start: start address of the range to migrate (inclusive)
2898  * @end: end address of the range to migrate (exclusive)
2899  * @src: array of hmm_pfn_t containing source pfns
2900  * @dst: array of hmm_pfn_t containing destination pfns
2901  * @private: pointer passed back to each of the callback
2902  * Returns: 0 on success, error code otherwise
2903  *
2904  * This function tries to migrate a range of memory virtual address range, using
2905  * callbacks to allocate and copy memory from source to destination. First it
2906  * collects all the pages backing each virtual address in the range, saving this
2907  * inside the src array. Then it locks those pages and unmaps them. Once the pages
2908  * are locked and unmapped, it checks whether each page is pinned or not. Pages
2909  * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2910  * in the corresponding src array entry. It then restores any pages that are
2911  * pinned, by remapping and unlocking those pages.
2912  *
2913  * At this point it calls the alloc_and_copy() callback. For documentation on
2914  * what is expected from that callback, see struct migrate_vma_ops comments in
2915  * include/linux/migrate.h
2916  *
2917  * After the alloc_and_copy() callback, this function goes over each entry in
2918  * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2919  * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2920  * then the function tries to migrate struct page information from the source
2921  * struct page to the destination struct page. If it fails to migrate the struct
2922  * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2923  * array.
2924  *
2925  * At this point all successfully migrated pages have an entry in the src
2926  * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2927  * array entry with MIGRATE_PFN_VALID flag set.
2928  *
2929  * It then calls the finalize_and_map() callback. See comments for "struct
2930  * migrate_vma_ops", in include/linux/migrate.h for details about
2931  * finalize_and_map() behavior.
2932  *
2933  * After the finalize_and_map() callback, for successfully migrated pages, this
2934  * function updates the CPU page table to point to new pages, otherwise it
2935  * restores the CPU page table to point to the original source pages.
2936  *
2937  * Function returns 0 after the above steps, even if no pages were migrated
2938  * (The function only returns an error if any of the arguments are invalid.)
2939  *
2940  * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2941  * unsigned long entries.
2942  */
2943 int migrate_vma(const struct migrate_vma_ops *ops,
2944                 struct vm_area_struct *vma,
2945                 unsigned long start,
2946                 unsigned long end,
2947                 unsigned long *src,
2948                 unsigned long *dst,
2949                 void *private)
2950 {
2951         struct migrate_vma migrate;
2952
2953         /* Sanity check the arguments */
2954         start &= PAGE_MASK;
2955         end &= PAGE_MASK;
2956         if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL))
2957                 return -EINVAL;
2958         if (start < vma->vm_start || start >= vma->vm_end)
2959                 return -EINVAL;
2960         if (end <= vma->vm_start || end > vma->vm_end)
2961                 return -EINVAL;
2962         if (!ops || !src || !dst || start >= end)
2963                 return -EINVAL;
2964
2965         memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2966         migrate.src = src;
2967         migrate.dst = dst;
2968         migrate.start = start;
2969         migrate.npages = 0;
2970         migrate.cpages = 0;
2971         migrate.end = end;
2972         migrate.vma = vma;
2973
2974         /* Collect, and try to unmap source pages */
2975         migrate_vma_collect(&migrate);
2976         if (!migrate.cpages)
2977                 return 0;
2978
2979         /* Lock and isolate page */
2980         migrate_vma_prepare(&migrate);
2981         if (!migrate.cpages)
2982                 return 0;
2983
2984         /* Unmap pages */
2985         migrate_vma_unmap(&migrate);
2986         if (!migrate.cpages)
2987                 return 0;
2988
2989         /*
2990          * At this point pages are locked and unmapped, and thus they have
2991          * stable content and can safely be copied to destination memory that
2992          * is allocated by the callback.
2993          *
2994          * Note that migration can fail in migrate_vma_struct_page() for each
2995          * individual page.
2996          */
2997         ops->alloc_and_copy(vma, src, dst, start, end, private);
2998
2999         /* This does the real migration of struct page */
3000         migrate_vma_pages(&migrate);
3001
3002         ops->finalize_and_map(vma, src, dst, start, end, private);
3003
3004         /* Unlock and remap pages */
3005         migrate_vma_finalize(&migrate);
3006
3007         return 0;
3008 }
3009 EXPORT_SYMBOL(migrate_vma);
3010 #endif /* defined(MIGRATE_VMA_HELPER) */