Merge tag 'sound-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193         struct mmu_gather_batch *batch;
194
195         batch = tlb->active;
196         if (batch->next) {
197                 tlb->active = batch->next;
198                 return true;
199         }
200
201         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202                 return false;
203
204         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205         if (!batch)
206                 return false;
207
208         tlb->batch_count++;
209         batch->next = NULL;
210         batch->nr   = 0;
211         batch->max  = MAX_GATHER_BATCH;
212
213         tlb->active->next = batch;
214         tlb->active = batch;
215
216         return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220                                 unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249         tlb_table_flush(tlb);
250 #endif
251         __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256         struct mmu_gather_batch *batch;
257
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276                 unsigned long start, unsigned long end, bool force)
277 {
278         struct mmu_gather_batch *batch, *next;
279
280         if (force)
281                 __tlb_adjust_range(tlb, start, end - start);
282
283         tlb_flush_mmu(tlb);
284
285         /* keep the page table cache within bounds */
286         check_pgt_cache();
287
288         for (batch = tlb->local.next; batch; batch = next) {
289                 next = batch->next;
290                 free_pages((unsigned long)batch, 0);
291         }
292         tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *      handling the additional races in SMP caused by other CPUs caching valid
298  *      mappings in their TLBs. Returns the number of free page slots left.
299  *      When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304         struct mmu_gather_batch *batch;
305
306         VM_BUG_ON(!tlb->end);
307         VM_WARN_ON(tlb->page_size != page_size);
308
309         batch = tlb->active;
310         /*
311          * Add the page and check if we are full. If so
312          * force a flush.
313          */
314         batch->pages[batch->nr++] = page;
315         if (batch->nr == batch->max) {
316                 if (!tlb_next_batch(tlb))
317                         return true;
318                 batch = tlb->active;
319         }
320         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322         return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 /*
330  * See the comment near struct mmu_table_batch.
331  */
332
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335         /* Simply deliver the interrupt */
336 }
337
338 static void tlb_remove_table_one(void *table)
339 {
340         /*
341          * This isn't an RCU grace period and hence the page-tables cannot be
342          * assumed to be actually RCU-freed.
343          *
344          * It is however sufficient for software page-table walkers that rely on
345          * IRQ disabling. See the comment near struct mmu_table_batch.
346          */
347         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348         __tlb_remove_table(table);
349 }
350
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353         struct mmu_table_batch *batch;
354         int i;
355
356         batch = container_of(head, struct mmu_table_batch, rcu);
357
358         for (i = 0; i < batch->nr; i++)
359                 __tlb_remove_table(batch->tables[i]);
360
361         free_page((unsigned long)batch);
362 }
363
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366         struct mmu_table_batch **batch = &tlb->batch;
367
368         if (*batch) {
369                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370                 *batch = NULL;
371         }
372 }
373
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376         struct mmu_table_batch **batch = &tlb->batch;
377
378         /*
379          * When there's less then two users of this mm there cannot be a
380          * concurrent page-table walk.
381          */
382         if (atomic_read(&tlb->mm->mm_users) < 2) {
383                 __tlb_remove_table(table);
384                 return;
385         }
386
387         if (*batch == NULL) {
388                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389                 if (*batch == NULL) {
390                         tlb_remove_table_one(table);
391                         return;
392                 }
393                 (*batch)->nr = 0;
394         }
395         (*batch)->tables[(*batch)->nr++] = table;
396         if ((*batch)->nr == MAX_TABLE_BATCH)
397                 tlb_table_flush(tlb);
398 }
399
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401
402 /* tlb_gather_mmu
403  *      Called to initialize an (on-stack) mmu_gather structure for page-table
404  *      tear-down from @mm. The @fullmm argument is used when @mm is without
405  *      users and we're going to destroy the full address space (exit/execve).
406  */
407 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
408                         unsigned long start, unsigned long end)
409 {
410         arch_tlb_gather_mmu(tlb, mm, start, end);
411         inc_tlb_flush_pending(tlb->mm);
412 }
413
414 void tlb_finish_mmu(struct mmu_gather *tlb,
415                 unsigned long start, unsigned long end)
416 {
417         /*
418          * If there are parallel threads are doing PTE changes on same range
419          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
420          * flush by batching, a thread has stable TLB entry can fail to flush
421          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
422          * forcefully if we detect parallel PTE batching threads.
423          */
424         bool force = mm_tlb_flush_nested(tlb->mm);
425
426         arch_tlb_finish_mmu(tlb, start, end, force);
427         dec_tlb_flush_pending(tlb->mm);
428 }
429
430 /*
431  * Note: this doesn't free the actual pages themselves. That
432  * has been handled earlier when unmapping all the memory regions.
433  */
434 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
435                            unsigned long addr)
436 {
437         pgtable_t token = pmd_pgtable(*pmd);
438         pmd_clear(pmd);
439         pte_free_tlb(tlb, token, addr);
440         atomic_long_dec(&tlb->mm->nr_ptes);
441 }
442
443 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
444                                 unsigned long addr, unsigned long end,
445                                 unsigned long floor, unsigned long ceiling)
446 {
447         pmd_t *pmd;
448         unsigned long next;
449         unsigned long start;
450
451         start = addr;
452         pmd = pmd_offset(pud, addr);
453         do {
454                 next = pmd_addr_end(addr, end);
455                 if (pmd_none_or_clear_bad(pmd))
456                         continue;
457                 free_pte_range(tlb, pmd, addr);
458         } while (pmd++, addr = next, addr != end);
459
460         start &= PUD_MASK;
461         if (start < floor)
462                 return;
463         if (ceiling) {
464                 ceiling &= PUD_MASK;
465                 if (!ceiling)
466                         return;
467         }
468         if (end - 1 > ceiling - 1)
469                 return;
470
471         pmd = pmd_offset(pud, start);
472         pud_clear(pud);
473         pmd_free_tlb(tlb, pmd, start);
474         mm_dec_nr_pmds(tlb->mm);
475 }
476
477 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
478                                 unsigned long addr, unsigned long end,
479                                 unsigned long floor, unsigned long ceiling)
480 {
481         pud_t *pud;
482         unsigned long next;
483         unsigned long start;
484
485         start = addr;
486         pud = pud_offset(p4d, addr);
487         do {
488                 next = pud_addr_end(addr, end);
489                 if (pud_none_or_clear_bad(pud))
490                         continue;
491                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
492         } while (pud++, addr = next, addr != end);
493
494         start &= P4D_MASK;
495         if (start < floor)
496                 return;
497         if (ceiling) {
498                 ceiling &= P4D_MASK;
499                 if (!ceiling)
500                         return;
501         }
502         if (end - 1 > ceiling - 1)
503                 return;
504
505         pud = pud_offset(p4d, start);
506         p4d_clear(p4d);
507         pud_free_tlb(tlb, pud, start);
508 }
509
510 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
511                                 unsigned long addr, unsigned long end,
512                                 unsigned long floor, unsigned long ceiling)
513 {
514         p4d_t *p4d;
515         unsigned long next;
516         unsigned long start;
517
518         start = addr;
519         p4d = p4d_offset(pgd, addr);
520         do {
521                 next = p4d_addr_end(addr, end);
522                 if (p4d_none_or_clear_bad(p4d))
523                         continue;
524                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
525         } while (p4d++, addr = next, addr != end);
526
527         start &= PGDIR_MASK;
528         if (start < floor)
529                 return;
530         if (ceiling) {
531                 ceiling &= PGDIR_MASK;
532                 if (!ceiling)
533                         return;
534         }
535         if (end - 1 > ceiling - 1)
536                 return;
537
538         p4d = p4d_offset(pgd, start);
539         pgd_clear(pgd);
540         p4d_free_tlb(tlb, p4d, start);
541 }
542
543 /*
544  * This function frees user-level page tables of a process.
545  */
546 void free_pgd_range(struct mmu_gather *tlb,
547                         unsigned long addr, unsigned long end,
548                         unsigned long floor, unsigned long ceiling)
549 {
550         pgd_t *pgd;
551         unsigned long next;
552
553         /*
554          * The next few lines have given us lots of grief...
555          *
556          * Why are we testing PMD* at this top level?  Because often
557          * there will be no work to do at all, and we'd prefer not to
558          * go all the way down to the bottom just to discover that.
559          *
560          * Why all these "- 1"s?  Because 0 represents both the bottom
561          * of the address space and the top of it (using -1 for the
562          * top wouldn't help much: the masks would do the wrong thing).
563          * The rule is that addr 0 and floor 0 refer to the bottom of
564          * the address space, but end 0 and ceiling 0 refer to the top
565          * Comparisons need to use "end - 1" and "ceiling - 1" (though
566          * that end 0 case should be mythical).
567          *
568          * Wherever addr is brought up or ceiling brought down, we must
569          * be careful to reject "the opposite 0" before it confuses the
570          * subsequent tests.  But what about where end is brought down
571          * by PMD_SIZE below? no, end can't go down to 0 there.
572          *
573          * Whereas we round start (addr) and ceiling down, by different
574          * masks at different levels, in order to test whether a table
575          * now has no other vmas using it, so can be freed, we don't
576          * bother to round floor or end up - the tests don't need that.
577          */
578
579         addr &= PMD_MASK;
580         if (addr < floor) {
581                 addr += PMD_SIZE;
582                 if (!addr)
583                         return;
584         }
585         if (ceiling) {
586                 ceiling &= PMD_MASK;
587                 if (!ceiling)
588                         return;
589         }
590         if (end - 1 > ceiling - 1)
591                 end -= PMD_SIZE;
592         if (addr > end - 1)
593                 return;
594         /*
595          * We add page table cache pages with PAGE_SIZE,
596          * (see pte_free_tlb()), flush the tlb if we need
597          */
598         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
599         pgd = pgd_offset(tlb->mm, addr);
600         do {
601                 next = pgd_addr_end(addr, end);
602                 if (pgd_none_or_clear_bad(pgd))
603                         continue;
604                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
605         } while (pgd++, addr = next, addr != end);
606 }
607
608 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
609                 unsigned long floor, unsigned long ceiling)
610 {
611         while (vma) {
612                 struct vm_area_struct *next = vma->vm_next;
613                 unsigned long addr = vma->vm_start;
614
615                 /*
616                  * Hide vma from rmap and truncate_pagecache before freeing
617                  * pgtables
618                  */
619                 unlink_anon_vmas(vma);
620                 unlink_file_vma(vma);
621
622                 if (is_vm_hugetlb_page(vma)) {
623                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
624                                 floor, next ? next->vm_start : ceiling);
625                 } else {
626                         /*
627                          * Optimization: gather nearby vmas into one call down
628                          */
629                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
630                                && !is_vm_hugetlb_page(next)) {
631                                 vma = next;
632                                 next = vma->vm_next;
633                                 unlink_anon_vmas(vma);
634                                 unlink_file_vma(vma);
635                         }
636                         free_pgd_range(tlb, addr, vma->vm_end,
637                                 floor, next ? next->vm_start : ceiling);
638                 }
639                 vma = next;
640         }
641 }
642
643 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
644 {
645         spinlock_t *ptl;
646         pgtable_t new = pte_alloc_one(mm, address);
647         if (!new)
648                 return -ENOMEM;
649
650         /*
651          * Ensure all pte setup (eg. pte page lock and page clearing) are
652          * visible before the pte is made visible to other CPUs by being
653          * put into page tables.
654          *
655          * The other side of the story is the pointer chasing in the page
656          * table walking code (when walking the page table without locking;
657          * ie. most of the time). Fortunately, these data accesses consist
658          * of a chain of data-dependent loads, meaning most CPUs (alpha
659          * being the notable exception) will already guarantee loads are
660          * seen in-order. See the alpha page table accessors for the
661          * smp_read_barrier_depends() barriers in page table walking code.
662          */
663         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
664
665         ptl = pmd_lock(mm, pmd);
666         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
667                 atomic_long_inc(&mm->nr_ptes);
668                 pmd_populate(mm, pmd, new);
669                 new = NULL;
670         }
671         spin_unlock(ptl);
672         if (new)
673                 pte_free(mm, new);
674         return 0;
675 }
676
677 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
678 {
679         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
680         if (!new)
681                 return -ENOMEM;
682
683         smp_wmb(); /* See comment in __pte_alloc */
684
685         spin_lock(&init_mm.page_table_lock);
686         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
687                 pmd_populate_kernel(&init_mm, pmd, new);
688                 new = NULL;
689         }
690         spin_unlock(&init_mm.page_table_lock);
691         if (new)
692                 pte_free_kernel(&init_mm, new);
693         return 0;
694 }
695
696 static inline void init_rss_vec(int *rss)
697 {
698         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
699 }
700
701 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
702 {
703         int i;
704
705         if (current->mm == mm)
706                 sync_mm_rss(mm);
707         for (i = 0; i < NR_MM_COUNTERS; i++)
708                 if (rss[i])
709                         add_mm_counter(mm, i, rss[i]);
710 }
711
712 /*
713  * This function is called to print an error when a bad pte
714  * is found. For example, we might have a PFN-mapped pte in
715  * a region that doesn't allow it.
716  *
717  * The calling function must still handle the error.
718  */
719 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
720                           pte_t pte, struct page *page)
721 {
722         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
723         p4d_t *p4d = p4d_offset(pgd, addr);
724         pud_t *pud = pud_offset(p4d, addr);
725         pmd_t *pmd = pmd_offset(pud, addr);
726         struct address_space *mapping;
727         pgoff_t index;
728         static unsigned long resume;
729         static unsigned long nr_shown;
730         static unsigned long nr_unshown;
731
732         /*
733          * Allow a burst of 60 reports, then keep quiet for that minute;
734          * or allow a steady drip of one report per second.
735          */
736         if (nr_shown == 60) {
737                 if (time_before(jiffies, resume)) {
738                         nr_unshown++;
739                         return;
740                 }
741                 if (nr_unshown) {
742                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
743                                  nr_unshown);
744                         nr_unshown = 0;
745                 }
746                 nr_shown = 0;
747         }
748         if (nr_shown++ == 0)
749                 resume = jiffies + 60 * HZ;
750
751         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
752         index = linear_page_index(vma, addr);
753
754         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
755                  current->comm,
756                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
757         if (page)
758                 dump_page(page, "bad pte");
759         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
760                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
761         /*
762          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
763          */
764         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
765                  vma->vm_file,
766                  vma->vm_ops ? vma->vm_ops->fault : NULL,
767                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
768                  mapping ? mapping->a_ops->readpage : NULL);
769         dump_stack();
770         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
771 }
772
773 /*
774  * vm_normal_page -- This function gets the "struct page" associated with a pte.
775  *
776  * "Special" mappings do not wish to be associated with a "struct page" (either
777  * it doesn't exist, or it exists but they don't want to touch it). In this
778  * case, NULL is returned here. "Normal" mappings do have a struct page.
779  *
780  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
781  * pte bit, in which case this function is trivial. Secondly, an architecture
782  * may not have a spare pte bit, which requires a more complicated scheme,
783  * described below.
784  *
785  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
786  * special mapping (even if there are underlying and valid "struct pages").
787  * COWed pages of a VM_PFNMAP are always normal.
788  *
789  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
790  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
791  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
792  * mapping will always honor the rule
793  *
794  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
795  *
796  * And for normal mappings this is false.
797  *
798  * This restricts such mappings to be a linear translation from virtual address
799  * to pfn. To get around this restriction, we allow arbitrary mappings so long
800  * as the vma is not a COW mapping; in that case, we know that all ptes are
801  * special (because none can have been COWed).
802  *
803  *
804  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
805  *
806  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
807  * page" backing, however the difference is that _all_ pages with a struct
808  * page (that is, those where pfn_valid is true) are refcounted and considered
809  * normal pages by the VM. The disadvantage is that pages are refcounted
810  * (which can be slower and simply not an option for some PFNMAP users). The
811  * advantage is that we don't have to follow the strict linearity rule of
812  * PFNMAP mappings in order to support COWable mappings.
813  *
814  */
815 #ifdef __HAVE_ARCH_PTE_SPECIAL
816 # define HAVE_PTE_SPECIAL 1
817 #else
818 # define HAVE_PTE_SPECIAL 0
819 #endif
820 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821                                 pte_t pte)
822 {
823         unsigned long pfn = pte_pfn(pte);
824
825         if (HAVE_PTE_SPECIAL) {
826                 if (likely(!pte_special(pte)))
827                         goto check_pfn;
828                 if (vma->vm_ops && vma->vm_ops->find_special_page)
829                         return vma->vm_ops->find_special_page(vma, addr);
830                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831                         return NULL;
832                 if (!is_zero_pfn(pfn))
833                         print_bad_pte(vma, addr, pte, NULL);
834                 return NULL;
835         }
836
837         /* !HAVE_PTE_SPECIAL case follows: */
838
839         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
840                 if (vma->vm_flags & VM_MIXEDMAP) {
841                         if (!pfn_valid(pfn))
842                                 return NULL;
843                         goto out;
844                 } else {
845                         unsigned long off;
846                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
847                         if (pfn == vma->vm_pgoff + off)
848                                 return NULL;
849                         if (!is_cow_mapping(vma->vm_flags))
850                                 return NULL;
851                 }
852         }
853
854         if (is_zero_pfn(pfn))
855                 return NULL;
856 check_pfn:
857         if (unlikely(pfn > highest_memmap_pfn)) {
858                 print_bad_pte(vma, addr, pte, NULL);
859                 return NULL;
860         }
861
862         /*
863          * NOTE! We still have PageReserved() pages in the page tables.
864          * eg. VDSO mappings can cause them to exist.
865          */
866 out:
867         return pfn_to_page(pfn);
868 }
869
870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
871 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
872                                 pmd_t pmd)
873 {
874         unsigned long pfn = pmd_pfn(pmd);
875
876         /*
877          * There is no pmd_special() but there may be special pmds, e.g.
878          * in a direct-access (dax) mapping, so let's just replicate the
879          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
880          */
881         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
882                 if (vma->vm_flags & VM_MIXEDMAP) {
883                         if (!pfn_valid(pfn))
884                                 return NULL;
885                         goto out;
886                 } else {
887                         unsigned long off;
888                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
889                         if (pfn == vma->vm_pgoff + off)
890                                 return NULL;
891                         if (!is_cow_mapping(vma->vm_flags))
892                                 return NULL;
893                 }
894         }
895
896         if (is_zero_pfn(pfn))
897                 return NULL;
898         if (unlikely(pfn > highest_memmap_pfn))
899                 return NULL;
900
901         /*
902          * NOTE! We still have PageReserved() pages in the page tables.
903          * eg. VDSO mappings can cause them to exist.
904          */
905 out:
906         return pfn_to_page(pfn);
907 }
908 #endif
909
910 /*
911  * copy one vm_area from one task to the other. Assumes the page tables
912  * already present in the new task to be cleared in the whole range
913  * covered by this vma.
914  */
915
916 static inline unsigned long
917 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
919                 unsigned long addr, int *rss)
920 {
921         unsigned long vm_flags = vma->vm_flags;
922         pte_t pte = *src_pte;
923         struct page *page;
924
925         /* pte contains position in swap or file, so copy. */
926         if (unlikely(!pte_present(pte))) {
927                 swp_entry_t entry = pte_to_swp_entry(pte);
928
929                 if (likely(!non_swap_entry(entry))) {
930                         if (swap_duplicate(entry) < 0)
931                                 return entry.val;
932
933                         /* make sure dst_mm is on swapoff's mmlist. */
934                         if (unlikely(list_empty(&dst_mm->mmlist))) {
935                                 spin_lock(&mmlist_lock);
936                                 if (list_empty(&dst_mm->mmlist))
937                                         list_add(&dst_mm->mmlist,
938                                                         &src_mm->mmlist);
939                                 spin_unlock(&mmlist_lock);
940                         }
941                         rss[MM_SWAPENTS]++;
942                 } else if (is_migration_entry(entry)) {
943                         page = migration_entry_to_page(entry);
944
945                         rss[mm_counter(page)]++;
946
947                         if (is_write_migration_entry(entry) &&
948                                         is_cow_mapping(vm_flags)) {
949                                 /*
950                                  * COW mappings require pages in both
951                                  * parent and child to be set to read.
952                                  */
953                                 make_migration_entry_read(&entry);
954                                 pte = swp_entry_to_pte(entry);
955                                 if (pte_swp_soft_dirty(*src_pte))
956                                         pte = pte_swp_mksoft_dirty(pte);
957                                 set_pte_at(src_mm, addr, src_pte, pte);
958                         }
959                 }
960                 goto out_set_pte;
961         }
962
963         /*
964          * If it's a COW mapping, write protect it both
965          * in the parent and the child
966          */
967         if (is_cow_mapping(vm_flags)) {
968                 ptep_set_wrprotect(src_mm, addr, src_pte);
969                 pte = pte_wrprotect(pte);
970         }
971
972         /*
973          * If it's a shared mapping, mark it clean in
974          * the child
975          */
976         if (vm_flags & VM_SHARED)
977                 pte = pte_mkclean(pte);
978         pte = pte_mkold(pte);
979
980         page = vm_normal_page(vma, addr, pte);
981         if (page) {
982                 get_page(page);
983                 page_dup_rmap(page, false);
984                 rss[mm_counter(page)]++;
985         }
986
987 out_set_pte:
988         set_pte_at(dst_mm, addr, dst_pte, pte);
989         return 0;
990 }
991
992 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
994                    unsigned long addr, unsigned long end)
995 {
996         pte_t *orig_src_pte, *orig_dst_pte;
997         pte_t *src_pte, *dst_pte;
998         spinlock_t *src_ptl, *dst_ptl;
999         int progress = 0;
1000         int rss[NR_MM_COUNTERS];
1001         swp_entry_t entry = (swp_entry_t){0};
1002
1003 again:
1004         init_rss_vec(rss);
1005
1006         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1007         if (!dst_pte)
1008                 return -ENOMEM;
1009         src_pte = pte_offset_map(src_pmd, addr);
1010         src_ptl = pte_lockptr(src_mm, src_pmd);
1011         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1012         orig_src_pte = src_pte;
1013         orig_dst_pte = dst_pte;
1014         arch_enter_lazy_mmu_mode();
1015
1016         do {
1017                 /*
1018                  * We are holding two locks at this point - either of them
1019                  * could generate latencies in another task on another CPU.
1020                  */
1021                 if (progress >= 32) {
1022                         progress = 0;
1023                         if (need_resched() ||
1024                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1025                                 break;
1026                 }
1027                 if (pte_none(*src_pte)) {
1028                         progress++;
1029                         continue;
1030                 }
1031                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1032                                                         vma, addr, rss);
1033                 if (entry.val)
1034                         break;
1035                 progress += 8;
1036         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1037
1038         arch_leave_lazy_mmu_mode();
1039         spin_unlock(src_ptl);
1040         pte_unmap(orig_src_pte);
1041         add_mm_rss_vec(dst_mm, rss);
1042         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1043         cond_resched();
1044
1045         if (entry.val) {
1046                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1047                         return -ENOMEM;
1048                 progress = 0;
1049         }
1050         if (addr != end)
1051                 goto again;
1052         return 0;
1053 }
1054
1055 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1056                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1057                 unsigned long addr, unsigned long end)
1058 {
1059         pmd_t *src_pmd, *dst_pmd;
1060         unsigned long next;
1061
1062         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1063         if (!dst_pmd)
1064                 return -ENOMEM;
1065         src_pmd = pmd_offset(src_pud, addr);
1066         do {
1067                 next = pmd_addr_end(addr, end);
1068                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1069                         int err;
1070                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1071                         err = copy_huge_pmd(dst_mm, src_mm,
1072                                             dst_pmd, src_pmd, addr, vma);
1073                         if (err == -ENOMEM)
1074                                 return -ENOMEM;
1075                         if (!err)
1076                                 continue;
1077                         /* fall through */
1078                 }
1079                 if (pmd_none_or_clear_bad(src_pmd))
1080                         continue;
1081                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1082                                                 vma, addr, next))
1083                         return -ENOMEM;
1084         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1085         return 0;
1086 }
1087
1088 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1089                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1090                 unsigned long addr, unsigned long end)
1091 {
1092         pud_t *src_pud, *dst_pud;
1093         unsigned long next;
1094
1095         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1096         if (!dst_pud)
1097                 return -ENOMEM;
1098         src_pud = pud_offset(src_p4d, addr);
1099         do {
1100                 next = pud_addr_end(addr, end);
1101                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1102                         int err;
1103
1104                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1105                         err = copy_huge_pud(dst_mm, src_mm,
1106                                             dst_pud, src_pud, addr, vma);
1107                         if (err == -ENOMEM)
1108                                 return -ENOMEM;
1109                         if (!err)
1110                                 continue;
1111                         /* fall through */
1112                 }
1113                 if (pud_none_or_clear_bad(src_pud))
1114                         continue;
1115                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1116                                                 vma, addr, next))
1117                         return -ENOMEM;
1118         } while (dst_pud++, src_pud++, addr = next, addr != end);
1119         return 0;
1120 }
1121
1122 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1124                 unsigned long addr, unsigned long end)
1125 {
1126         p4d_t *src_p4d, *dst_p4d;
1127         unsigned long next;
1128
1129         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1130         if (!dst_p4d)
1131                 return -ENOMEM;
1132         src_p4d = p4d_offset(src_pgd, addr);
1133         do {
1134                 next = p4d_addr_end(addr, end);
1135                 if (p4d_none_or_clear_bad(src_p4d))
1136                         continue;
1137                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1138                                                 vma, addr, next))
1139                         return -ENOMEM;
1140         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1141         return 0;
1142 }
1143
1144 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1145                 struct vm_area_struct *vma)
1146 {
1147         pgd_t *src_pgd, *dst_pgd;
1148         unsigned long next;
1149         unsigned long addr = vma->vm_start;
1150         unsigned long end = vma->vm_end;
1151         unsigned long mmun_start;       /* For mmu_notifiers */
1152         unsigned long mmun_end;         /* For mmu_notifiers */
1153         bool is_cow;
1154         int ret;
1155
1156         /*
1157          * Don't copy ptes where a page fault will fill them correctly.
1158          * Fork becomes much lighter when there are big shared or private
1159          * readonly mappings. The tradeoff is that copy_page_range is more
1160          * efficient than faulting.
1161          */
1162         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1163                         !vma->anon_vma)
1164                 return 0;
1165
1166         if (is_vm_hugetlb_page(vma))
1167                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1168
1169         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1170                 /*
1171                  * We do not free on error cases below as remove_vma
1172                  * gets called on error from higher level routine
1173                  */
1174                 ret = track_pfn_copy(vma);
1175                 if (ret)
1176                         return ret;
1177         }
1178
1179         /*
1180          * We need to invalidate the secondary MMU mappings only when
1181          * there could be a permission downgrade on the ptes of the
1182          * parent mm. And a permission downgrade will only happen if
1183          * is_cow_mapping() returns true.
1184          */
1185         is_cow = is_cow_mapping(vma->vm_flags);
1186         mmun_start = addr;
1187         mmun_end   = end;
1188         if (is_cow)
1189                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1190                                                     mmun_end);
1191
1192         ret = 0;
1193         dst_pgd = pgd_offset(dst_mm, addr);
1194         src_pgd = pgd_offset(src_mm, addr);
1195         do {
1196                 next = pgd_addr_end(addr, end);
1197                 if (pgd_none_or_clear_bad(src_pgd))
1198                         continue;
1199                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1200                                             vma, addr, next))) {
1201                         ret = -ENOMEM;
1202                         break;
1203                 }
1204         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1205
1206         if (is_cow)
1207                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1208         return ret;
1209 }
1210
1211 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1212                                 struct vm_area_struct *vma, pmd_t *pmd,
1213                                 unsigned long addr, unsigned long end,
1214                                 struct zap_details *details)
1215 {
1216         struct mm_struct *mm = tlb->mm;
1217         int force_flush = 0;
1218         int rss[NR_MM_COUNTERS];
1219         spinlock_t *ptl;
1220         pte_t *start_pte;
1221         pte_t *pte;
1222         swp_entry_t entry;
1223
1224         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1225 again:
1226         init_rss_vec(rss);
1227         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1228         pte = start_pte;
1229         flush_tlb_batched_pending(mm);
1230         arch_enter_lazy_mmu_mode();
1231         do {
1232                 pte_t ptent = *pte;
1233                 if (pte_none(ptent))
1234                         continue;
1235
1236                 if (pte_present(ptent)) {
1237                         struct page *page;
1238
1239                         page = vm_normal_page(vma, addr, ptent);
1240                         if (unlikely(details) && page) {
1241                                 /*
1242                                  * unmap_shared_mapping_pages() wants to
1243                                  * invalidate cache without truncating:
1244                                  * unmap shared but keep private pages.
1245                                  */
1246                                 if (details->check_mapping &&
1247                                     details->check_mapping != page_rmapping(page))
1248                                         continue;
1249                         }
1250                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1251                                                         tlb->fullmm);
1252                         tlb_remove_tlb_entry(tlb, pte, addr);
1253                         if (unlikely(!page))
1254                                 continue;
1255
1256                         if (!PageAnon(page)) {
1257                                 if (pte_dirty(ptent)) {
1258                                         force_flush = 1;
1259                                         set_page_dirty(page);
1260                                 }
1261                                 if (pte_young(ptent) &&
1262                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1263                                         mark_page_accessed(page);
1264                         }
1265                         rss[mm_counter(page)]--;
1266                         page_remove_rmap(page, false);
1267                         if (unlikely(page_mapcount(page) < 0))
1268                                 print_bad_pte(vma, addr, ptent, page);
1269                         if (unlikely(__tlb_remove_page(tlb, page))) {
1270                                 force_flush = 1;
1271                                 addr += PAGE_SIZE;
1272                                 break;
1273                         }
1274                         continue;
1275                 }
1276                 /* If details->check_mapping, we leave swap entries. */
1277                 if (unlikely(details))
1278                         continue;
1279
1280                 entry = pte_to_swp_entry(ptent);
1281                 if (!non_swap_entry(entry))
1282                         rss[MM_SWAPENTS]--;
1283                 else if (is_migration_entry(entry)) {
1284                         struct page *page;
1285
1286                         page = migration_entry_to_page(entry);
1287                         rss[mm_counter(page)]--;
1288                 }
1289                 if (unlikely(!free_swap_and_cache(entry)))
1290                         print_bad_pte(vma, addr, ptent, NULL);
1291                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1292         } while (pte++, addr += PAGE_SIZE, addr != end);
1293
1294         add_mm_rss_vec(mm, rss);
1295         arch_leave_lazy_mmu_mode();
1296
1297         /* Do the actual TLB flush before dropping ptl */
1298         if (force_flush)
1299                 tlb_flush_mmu_tlbonly(tlb);
1300         pte_unmap_unlock(start_pte, ptl);
1301
1302         /*
1303          * If we forced a TLB flush (either due to running out of
1304          * batch buffers or because we needed to flush dirty TLB
1305          * entries before releasing the ptl), free the batched
1306          * memory too. Restart if we didn't do everything.
1307          */
1308         if (force_flush) {
1309                 force_flush = 0;
1310                 tlb_flush_mmu_free(tlb);
1311                 if (addr != end)
1312                         goto again;
1313         }
1314
1315         return addr;
1316 }
1317
1318 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1319                                 struct vm_area_struct *vma, pud_t *pud,
1320                                 unsigned long addr, unsigned long end,
1321                                 struct zap_details *details)
1322 {
1323         pmd_t *pmd;
1324         unsigned long next;
1325
1326         pmd = pmd_offset(pud, addr);
1327         do {
1328                 next = pmd_addr_end(addr, end);
1329                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1330                         if (next - addr != HPAGE_PMD_SIZE) {
1331                                 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1332                                     !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1333                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1334                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1335                                 goto next;
1336                         /* fall through */
1337                 }
1338                 /*
1339                  * Here there can be other concurrent MADV_DONTNEED or
1340                  * trans huge page faults running, and if the pmd is
1341                  * none or trans huge it can change under us. This is
1342                  * because MADV_DONTNEED holds the mmap_sem in read
1343                  * mode.
1344                  */
1345                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1346                         goto next;
1347                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1348 next:
1349                 cond_resched();
1350         } while (pmd++, addr = next, addr != end);
1351
1352         return addr;
1353 }
1354
1355 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1356                                 struct vm_area_struct *vma, p4d_t *p4d,
1357                                 unsigned long addr, unsigned long end,
1358                                 struct zap_details *details)
1359 {
1360         pud_t *pud;
1361         unsigned long next;
1362
1363         pud = pud_offset(p4d, addr);
1364         do {
1365                 next = pud_addr_end(addr, end);
1366                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1367                         if (next - addr != HPAGE_PUD_SIZE) {
1368                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1369                                 split_huge_pud(vma, pud, addr);
1370                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1371                                 goto next;
1372                         /* fall through */
1373                 }
1374                 if (pud_none_or_clear_bad(pud))
1375                         continue;
1376                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1377 next:
1378                 cond_resched();
1379         } while (pud++, addr = next, addr != end);
1380
1381         return addr;
1382 }
1383
1384 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1385                                 struct vm_area_struct *vma, pgd_t *pgd,
1386                                 unsigned long addr, unsigned long end,
1387                                 struct zap_details *details)
1388 {
1389         p4d_t *p4d;
1390         unsigned long next;
1391
1392         p4d = p4d_offset(pgd, addr);
1393         do {
1394                 next = p4d_addr_end(addr, end);
1395                 if (p4d_none_or_clear_bad(p4d))
1396                         continue;
1397                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1398         } while (p4d++, addr = next, addr != end);
1399
1400         return addr;
1401 }
1402
1403 void unmap_page_range(struct mmu_gather *tlb,
1404                              struct vm_area_struct *vma,
1405                              unsigned long addr, unsigned long end,
1406                              struct zap_details *details)
1407 {
1408         pgd_t *pgd;
1409         unsigned long next;
1410
1411         BUG_ON(addr >= end);
1412         tlb_start_vma(tlb, vma);
1413         pgd = pgd_offset(vma->vm_mm, addr);
1414         do {
1415                 next = pgd_addr_end(addr, end);
1416                 if (pgd_none_or_clear_bad(pgd))
1417                         continue;
1418                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1419         } while (pgd++, addr = next, addr != end);
1420         tlb_end_vma(tlb, vma);
1421 }
1422
1423
1424 static void unmap_single_vma(struct mmu_gather *tlb,
1425                 struct vm_area_struct *vma, unsigned long start_addr,
1426                 unsigned long end_addr,
1427                 struct zap_details *details)
1428 {
1429         unsigned long start = max(vma->vm_start, start_addr);
1430         unsigned long end;
1431
1432         if (start >= vma->vm_end)
1433                 return;
1434         end = min(vma->vm_end, end_addr);
1435         if (end <= vma->vm_start)
1436                 return;
1437
1438         if (vma->vm_file)
1439                 uprobe_munmap(vma, start, end);
1440
1441         if (unlikely(vma->vm_flags & VM_PFNMAP))
1442                 untrack_pfn(vma, 0, 0);
1443
1444         if (start != end) {
1445                 if (unlikely(is_vm_hugetlb_page(vma))) {
1446                         /*
1447                          * It is undesirable to test vma->vm_file as it
1448                          * should be non-null for valid hugetlb area.
1449                          * However, vm_file will be NULL in the error
1450                          * cleanup path of mmap_region. When
1451                          * hugetlbfs ->mmap method fails,
1452                          * mmap_region() nullifies vma->vm_file
1453                          * before calling this function to clean up.
1454                          * Since no pte has actually been setup, it is
1455                          * safe to do nothing in this case.
1456                          */
1457                         if (vma->vm_file) {
1458                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1459                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1460                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1461                         }
1462                 } else
1463                         unmap_page_range(tlb, vma, start, end, details);
1464         }
1465 }
1466
1467 /**
1468  * unmap_vmas - unmap a range of memory covered by a list of vma's
1469  * @tlb: address of the caller's struct mmu_gather
1470  * @vma: the starting vma
1471  * @start_addr: virtual address at which to start unmapping
1472  * @end_addr: virtual address at which to end unmapping
1473  *
1474  * Unmap all pages in the vma list.
1475  *
1476  * Only addresses between `start' and `end' will be unmapped.
1477  *
1478  * The VMA list must be sorted in ascending virtual address order.
1479  *
1480  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1481  * range after unmap_vmas() returns.  So the only responsibility here is to
1482  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1483  * drops the lock and schedules.
1484  */
1485 void unmap_vmas(struct mmu_gather *tlb,
1486                 struct vm_area_struct *vma, unsigned long start_addr,
1487                 unsigned long end_addr)
1488 {
1489         struct mm_struct *mm = vma->vm_mm;
1490
1491         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1492         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1493                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1494         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1495 }
1496
1497 /**
1498  * zap_page_range - remove user pages in a given range
1499  * @vma: vm_area_struct holding the applicable pages
1500  * @start: starting address of pages to zap
1501  * @size: number of bytes to zap
1502  *
1503  * Caller must protect the VMA list
1504  */
1505 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1506                 unsigned long size)
1507 {
1508         struct mm_struct *mm = vma->vm_mm;
1509         struct mmu_gather tlb;
1510         unsigned long end = start + size;
1511
1512         lru_add_drain();
1513         tlb_gather_mmu(&tlb, mm, start, end);
1514         update_hiwater_rss(mm);
1515         mmu_notifier_invalidate_range_start(mm, start, end);
1516         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1517                 unmap_single_vma(&tlb, vma, start, end, NULL);
1518
1519                 /*
1520                  * zap_page_range does not specify whether mmap_sem should be
1521                  * held for read or write. That allows parallel zap_page_range
1522                  * operations to unmap a PTE and defer a flush meaning that
1523                  * this call observes pte_none and fails to flush the TLB.
1524                  * Rather than adding a complex API, ensure that no stale
1525                  * TLB entries exist when this call returns.
1526                  */
1527                 flush_tlb_range(vma, start, end);
1528         }
1529
1530         mmu_notifier_invalidate_range_end(mm, start, end);
1531         tlb_finish_mmu(&tlb, start, end);
1532 }
1533
1534 /**
1535  * zap_page_range_single - remove user pages in a given range
1536  * @vma: vm_area_struct holding the applicable pages
1537  * @address: starting address of pages to zap
1538  * @size: number of bytes to zap
1539  * @details: details of shared cache invalidation
1540  *
1541  * The range must fit into one VMA.
1542  */
1543 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1544                 unsigned long size, struct zap_details *details)
1545 {
1546         struct mm_struct *mm = vma->vm_mm;
1547         struct mmu_gather tlb;
1548         unsigned long end = address + size;
1549
1550         lru_add_drain();
1551         tlb_gather_mmu(&tlb, mm, address, end);
1552         update_hiwater_rss(mm);
1553         mmu_notifier_invalidate_range_start(mm, address, end);
1554         unmap_single_vma(&tlb, vma, address, end, details);
1555         mmu_notifier_invalidate_range_end(mm, address, end);
1556         tlb_finish_mmu(&tlb, address, end);
1557 }
1558
1559 /**
1560  * zap_vma_ptes - remove ptes mapping the vma
1561  * @vma: vm_area_struct holding ptes to be zapped
1562  * @address: starting address of pages to zap
1563  * @size: number of bytes to zap
1564  *
1565  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1566  *
1567  * The entire address range must be fully contained within the vma.
1568  *
1569  * Returns 0 if successful.
1570  */
1571 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1572                 unsigned long size)
1573 {
1574         if (address < vma->vm_start || address + size > vma->vm_end ||
1575                         !(vma->vm_flags & VM_PFNMAP))
1576                 return -1;
1577         zap_page_range_single(vma, address, size, NULL);
1578         return 0;
1579 }
1580 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1581
1582 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1583                         spinlock_t **ptl)
1584 {
1585         pgd_t *pgd;
1586         p4d_t *p4d;
1587         pud_t *pud;
1588         pmd_t *pmd;
1589
1590         pgd = pgd_offset(mm, addr);
1591         p4d = p4d_alloc(mm, pgd, addr);
1592         if (!p4d)
1593                 return NULL;
1594         pud = pud_alloc(mm, p4d, addr);
1595         if (!pud)
1596                 return NULL;
1597         pmd = pmd_alloc(mm, pud, addr);
1598         if (!pmd)
1599                 return NULL;
1600
1601         VM_BUG_ON(pmd_trans_huge(*pmd));
1602         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1603 }
1604
1605 /*
1606  * This is the old fallback for page remapping.
1607  *
1608  * For historical reasons, it only allows reserved pages. Only
1609  * old drivers should use this, and they needed to mark their
1610  * pages reserved for the old functions anyway.
1611  */
1612 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1613                         struct page *page, pgprot_t prot)
1614 {
1615         struct mm_struct *mm = vma->vm_mm;
1616         int retval;
1617         pte_t *pte;
1618         spinlock_t *ptl;
1619
1620         retval = -EINVAL;
1621         if (PageAnon(page))
1622                 goto out;
1623         retval = -ENOMEM;
1624         flush_dcache_page(page);
1625         pte = get_locked_pte(mm, addr, &ptl);
1626         if (!pte)
1627                 goto out;
1628         retval = -EBUSY;
1629         if (!pte_none(*pte))
1630                 goto out_unlock;
1631
1632         /* Ok, finally just insert the thing.. */
1633         get_page(page);
1634         inc_mm_counter_fast(mm, mm_counter_file(page));
1635         page_add_file_rmap(page, false);
1636         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1637
1638         retval = 0;
1639         pte_unmap_unlock(pte, ptl);
1640         return retval;
1641 out_unlock:
1642         pte_unmap_unlock(pte, ptl);
1643 out:
1644         return retval;
1645 }
1646
1647 /**
1648  * vm_insert_page - insert single page into user vma
1649  * @vma: user vma to map to
1650  * @addr: target user address of this page
1651  * @page: source kernel page
1652  *
1653  * This allows drivers to insert individual pages they've allocated
1654  * into a user vma.
1655  *
1656  * The page has to be a nice clean _individual_ kernel allocation.
1657  * If you allocate a compound page, you need to have marked it as
1658  * such (__GFP_COMP), or manually just split the page up yourself
1659  * (see split_page()).
1660  *
1661  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1662  * took an arbitrary page protection parameter. This doesn't allow
1663  * that. Your vma protection will have to be set up correctly, which
1664  * means that if you want a shared writable mapping, you'd better
1665  * ask for a shared writable mapping!
1666  *
1667  * The page does not need to be reserved.
1668  *
1669  * Usually this function is called from f_op->mmap() handler
1670  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1671  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1672  * function from other places, for example from page-fault handler.
1673  */
1674 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1675                         struct page *page)
1676 {
1677         if (addr < vma->vm_start || addr >= vma->vm_end)
1678                 return -EFAULT;
1679         if (!page_count(page))
1680                 return -EINVAL;
1681         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1682                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1683                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1684                 vma->vm_flags |= VM_MIXEDMAP;
1685         }
1686         return insert_page(vma, addr, page, vma->vm_page_prot);
1687 }
1688 EXPORT_SYMBOL(vm_insert_page);
1689
1690 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1691                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1692 {
1693         struct mm_struct *mm = vma->vm_mm;
1694         int retval;
1695         pte_t *pte, entry;
1696         spinlock_t *ptl;
1697
1698         retval = -ENOMEM;
1699         pte = get_locked_pte(mm, addr, &ptl);
1700         if (!pte)
1701                 goto out;
1702         retval = -EBUSY;
1703         if (!pte_none(*pte)) {
1704                 if (mkwrite) {
1705                         /*
1706                          * For read faults on private mappings the PFN passed
1707                          * in may not match the PFN we have mapped if the
1708                          * mapped PFN is a writeable COW page.  In the mkwrite
1709                          * case we are creating a writable PTE for a shared
1710                          * mapping and we expect the PFNs to match.
1711                          */
1712                         if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1713                                 goto out_unlock;
1714                         entry = *pte;
1715                         goto out_mkwrite;
1716                 } else
1717                         goto out_unlock;
1718         }
1719
1720         /* Ok, finally just insert the thing.. */
1721         if (pfn_t_devmap(pfn))
1722                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1723         else
1724                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1725
1726 out_mkwrite:
1727         if (mkwrite) {
1728                 entry = pte_mkyoung(entry);
1729                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1730         }
1731
1732         set_pte_at(mm, addr, pte, entry);
1733         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1734
1735         retval = 0;
1736 out_unlock:
1737         pte_unmap_unlock(pte, ptl);
1738 out:
1739         return retval;
1740 }
1741
1742 /**
1743  * vm_insert_pfn - insert single pfn into user vma
1744  * @vma: user vma to map to
1745  * @addr: target user address of this page
1746  * @pfn: source kernel pfn
1747  *
1748  * Similar to vm_insert_page, this allows drivers to insert individual pages
1749  * they've allocated into a user vma. Same comments apply.
1750  *
1751  * This function should only be called from a vm_ops->fault handler, and
1752  * in that case the handler should return NULL.
1753  *
1754  * vma cannot be a COW mapping.
1755  *
1756  * As this is called only for pages that do not currently exist, we
1757  * do not need to flush old virtual caches or the TLB.
1758  */
1759 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1760                         unsigned long pfn)
1761 {
1762         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1763 }
1764 EXPORT_SYMBOL(vm_insert_pfn);
1765
1766 /**
1767  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1768  * @vma: user vma to map to
1769  * @addr: target user address of this page
1770  * @pfn: source kernel pfn
1771  * @pgprot: pgprot flags for the inserted page
1772  *
1773  * This is exactly like vm_insert_pfn, except that it allows drivers to
1774  * to override pgprot on a per-page basis.
1775  *
1776  * This only makes sense for IO mappings, and it makes no sense for
1777  * cow mappings.  In general, using multiple vmas is preferable;
1778  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1779  * impractical.
1780  */
1781 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1782                         unsigned long pfn, pgprot_t pgprot)
1783 {
1784         int ret;
1785         /*
1786          * Technically, architectures with pte_special can avoid all these
1787          * restrictions (same for remap_pfn_range).  However we would like
1788          * consistency in testing and feature parity among all, so we should
1789          * try to keep these invariants in place for everybody.
1790          */
1791         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1792         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1793                                                 (VM_PFNMAP|VM_MIXEDMAP));
1794         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1795         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1796
1797         if (addr < vma->vm_start || addr >= vma->vm_end)
1798                 return -EFAULT;
1799
1800         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1801
1802         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1803                         false);
1804
1805         return ret;
1806 }
1807 EXPORT_SYMBOL(vm_insert_pfn_prot);
1808
1809 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1810                         pfn_t pfn, bool mkwrite)
1811 {
1812         pgprot_t pgprot = vma->vm_page_prot;
1813
1814         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1815
1816         if (addr < vma->vm_start || addr >= vma->vm_end)
1817                 return -EFAULT;
1818
1819         track_pfn_insert(vma, &pgprot, pfn);
1820
1821         /*
1822          * If we don't have pte special, then we have to use the pfn_valid()
1823          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1824          * refcount the page if pfn_valid is true (hence insert_page rather
1825          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1826          * without pte special, it would there be refcounted as a normal page.
1827          */
1828         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1829                 struct page *page;
1830
1831                 /*
1832                  * At this point we are committed to insert_page()
1833                  * regardless of whether the caller specified flags that
1834                  * result in pfn_t_has_page() == false.
1835                  */
1836                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1837                 return insert_page(vma, addr, page, pgprot);
1838         }
1839         return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1840 }
1841
1842 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1843                         pfn_t pfn)
1844 {
1845         return __vm_insert_mixed(vma, addr, pfn, false);
1846
1847 }
1848 EXPORT_SYMBOL(vm_insert_mixed);
1849
1850 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1851                         pfn_t pfn)
1852 {
1853         return __vm_insert_mixed(vma, addr, pfn, true);
1854 }
1855 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1856
1857 /*
1858  * maps a range of physical memory into the requested pages. the old
1859  * mappings are removed. any references to nonexistent pages results
1860  * in null mappings (currently treated as "copy-on-access")
1861  */
1862 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1863                         unsigned long addr, unsigned long end,
1864                         unsigned long pfn, pgprot_t prot)
1865 {
1866         pte_t *pte;
1867         spinlock_t *ptl;
1868
1869         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1870         if (!pte)
1871                 return -ENOMEM;
1872         arch_enter_lazy_mmu_mode();
1873         do {
1874                 BUG_ON(!pte_none(*pte));
1875                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1876                 pfn++;
1877         } while (pte++, addr += PAGE_SIZE, addr != end);
1878         arch_leave_lazy_mmu_mode();
1879         pte_unmap_unlock(pte - 1, ptl);
1880         return 0;
1881 }
1882
1883 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1884                         unsigned long addr, unsigned long end,
1885                         unsigned long pfn, pgprot_t prot)
1886 {
1887         pmd_t *pmd;
1888         unsigned long next;
1889
1890         pfn -= addr >> PAGE_SHIFT;
1891         pmd = pmd_alloc(mm, pud, addr);
1892         if (!pmd)
1893                 return -ENOMEM;
1894         VM_BUG_ON(pmd_trans_huge(*pmd));
1895         do {
1896                 next = pmd_addr_end(addr, end);
1897                 if (remap_pte_range(mm, pmd, addr, next,
1898                                 pfn + (addr >> PAGE_SHIFT), prot))
1899                         return -ENOMEM;
1900         } while (pmd++, addr = next, addr != end);
1901         return 0;
1902 }
1903
1904 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1905                         unsigned long addr, unsigned long end,
1906                         unsigned long pfn, pgprot_t prot)
1907 {
1908         pud_t *pud;
1909         unsigned long next;
1910
1911         pfn -= addr >> PAGE_SHIFT;
1912         pud = pud_alloc(mm, p4d, addr);
1913         if (!pud)
1914                 return -ENOMEM;
1915         do {
1916                 next = pud_addr_end(addr, end);
1917                 if (remap_pmd_range(mm, pud, addr, next,
1918                                 pfn + (addr >> PAGE_SHIFT), prot))
1919                         return -ENOMEM;
1920         } while (pud++, addr = next, addr != end);
1921         return 0;
1922 }
1923
1924 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1925                         unsigned long addr, unsigned long end,
1926                         unsigned long pfn, pgprot_t prot)
1927 {
1928         p4d_t *p4d;
1929         unsigned long next;
1930
1931         pfn -= addr >> PAGE_SHIFT;
1932         p4d = p4d_alloc(mm, pgd, addr);
1933         if (!p4d)
1934                 return -ENOMEM;
1935         do {
1936                 next = p4d_addr_end(addr, end);
1937                 if (remap_pud_range(mm, p4d, addr, next,
1938                                 pfn + (addr >> PAGE_SHIFT), prot))
1939                         return -ENOMEM;
1940         } while (p4d++, addr = next, addr != end);
1941         return 0;
1942 }
1943
1944 /**
1945  * remap_pfn_range - remap kernel memory to userspace
1946  * @vma: user vma to map to
1947  * @addr: target user address to start at
1948  * @pfn: physical address of kernel memory
1949  * @size: size of map area
1950  * @prot: page protection flags for this mapping
1951  *
1952  *  Note: this is only safe if the mm semaphore is held when called.
1953  */
1954 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1955                     unsigned long pfn, unsigned long size, pgprot_t prot)
1956 {
1957         pgd_t *pgd;
1958         unsigned long next;
1959         unsigned long end = addr + PAGE_ALIGN(size);
1960         struct mm_struct *mm = vma->vm_mm;
1961         unsigned long remap_pfn = pfn;
1962         int err;
1963
1964         /*
1965          * Physically remapped pages are special. Tell the
1966          * rest of the world about it:
1967          *   VM_IO tells people not to look at these pages
1968          *      (accesses can have side effects).
1969          *   VM_PFNMAP tells the core MM that the base pages are just
1970          *      raw PFN mappings, and do not have a "struct page" associated
1971          *      with them.
1972          *   VM_DONTEXPAND
1973          *      Disable vma merging and expanding with mremap().
1974          *   VM_DONTDUMP
1975          *      Omit vma from core dump, even when VM_IO turned off.
1976          *
1977          * There's a horrible special case to handle copy-on-write
1978          * behaviour that some programs depend on. We mark the "original"
1979          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1980          * See vm_normal_page() for details.
1981          */
1982         if (is_cow_mapping(vma->vm_flags)) {
1983                 if (addr != vma->vm_start || end != vma->vm_end)
1984                         return -EINVAL;
1985                 vma->vm_pgoff = pfn;
1986         }
1987
1988         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1989         if (err)
1990                 return -EINVAL;
1991
1992         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1993
1994         BUG_ON(addr >= end);
1995         pfn -= addr >> PAGE_SHIFT;
1996         pgd = pgd_offset(mm, addr);
1997         flush_cache_range(vma, addr, end);
1998         do {
1999                 next = pgd_addr_end(addr, end);
2000                 err = remap_p4d_range(mm, pgd, addr, next,
2001                                 pfn + (addr >> PAGE_SHIFT), prot);
2002                 if (err)
2003                         break;
2004         } while (pgd++, addr = next, addr != end);
2005
2006         if (err)
2007                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2008
2009         return err;
2010 }
2011 EXPORT_SYMBOL(remap_pfn_range);
2012
2013 /**
2014  * vm_iomap_memory - remap memory to userspace
2015  * @vma: user vma to map to
2016  * @start: start of area
2017  * @len: size of area
2018  *
2019  * This is a simplified io_remap_pfn_range() for common driver use. The
2020  * driver just needs to give us the physical memory range to be mapped,
2021  * we'll figure out the rest from the vma information.
2022  *
2023  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2024  * whatever write-combining details or similar.
2025  */
2026 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2027 {
2028         unsigned long vm_len, pfn, pages;
2029
2030         /* Check that the physical memory area passed in looks valid */
2031         if (start + len < start)
2032                 return -EINVAL;
2033         /*
2034          * You *really* shouldn't map things that aren't page-aligned,
2035          * but we've historically allowed it because IO memory might
2036          * just have smaller alignment.
2037          */
2038         len += start & ~PAGE_MASK;
2039         pfn = start >> PAGE_SHIFT;
2040         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2041         if (pfn + pages < pfn)
2042                 return -EINVAL;
2043
2044         /* We start the mapping 'vm_pgoff' pages into the area */
2045         if (vma->vm_pgoff > pages)
2046                 return -EINVAL;
2047         pfn += vma->vm_pgoff;
2048         pages -= vma->vm_pgoff;
2049
2050         /* Can we fit all of the mapping? */
2051         vm_len = vma->vm_end - vma->vm_start;
2052         if (vm_len >> PAGE_SHIFT > pages)
2053                 return -EINVAL;
2054
2055         /* Ok, let it rip */
2056         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2057 }
2058 EXPORT_SYMBOL(vm_iomap_memory);
2059
2060 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2061                                      unsigned long addr, unsigned long end,
2062                                      pte_fn_t fn, void *data)
2063 {
2064         pte_t *pte;
2065         int err;
2066         pgtable_t token;
2067         spinlock_t *uninitialized_var(ptl);
2068
2069         pte = (mm == &init_mm) ?
2070                 pte_alloc_kernel(pmd, addr) :
2071                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2072         if (!pte)
2073                 return -ENOMEM;
2074
2075         BUG_ON(pmd_huge(*pmd));
2076
2077         arch_enter_lazy_mmu_mode();
2078
2079         token = pmd_pgtable(*pmd);
2080
2081         do {
2082                 err = fn(pte++, token, addr, data);
2083                 if (err)
2084                         break;
2085         } while (addr += PAGE_SIZE, addr != end);
2086
2087         arch_leave_lazy_mmu_mode();
2088
2089         if (mm != &init_mm)
2090                 pte_unmap_unlock(pte-1, ptl);
2091         return err;
2092 }
2093
2094 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2095                                      unsigned long addr, unsigned long end,
2096                                      pte_fn_t fn, void *data)
2097 {
2098         pmd_t *pmd;
2099         unsigned long next;
2100         int err;
2101
2102         BUG_ON(pud_huge(*pud));
2103
2104         pmd = pmd_alloc(mm, pud, addr);
2105         if (!pmd)
2106                 return -ENOMEM;
2107         do {
2108                 next = pmd_addr_end(addr, end);
2109                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2110                 if (err)
2111                         break;
2112         } while (pmd++, addr = next, addr != end);
2113         return err;
2114 }
2115
2116 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2117                                      unsigned long addr, unsigned long end,
2118                                      pte_fn_t fn, void *data)
2119 {
2120         pud_t *pud;
2121         unsigned long next;
2122         int err;
2123
2124         pud = pud_alloc(mm, p4d, addr);
2125         if (!pud)
2126                 return -ENOMEM;
2127         do {
2128                 next = pud_addr_end(addr, end);
2129                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2130                 if (err)
2131                         break;
2132         } while (pud++, addr = next, addr != end);
2133         return err;
2134 }
2135
2136 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2137                                      unsigned long addr, unsigned long end,
2138                                      pte_fn_t fn, void *data)
2139 {
2140         p4d_t *p4d;
2141         unsigned long next;
2142         int err;
2143
2144         p4d = p4d_alloc(mm, pgd, addr);
2145         if (!p4d)
2146                 return -ENOMEM;
2147         do {
2148                 next = p4d_addr_end(addr, end);
2149                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2150                 if (err)
2151                         break;
2152         } while (p4d++, addr = next, addr != end);
2153         return err;
2154 }
2155
2156 /*
2157  * Scan a region of virtual memory, filling in page tables as necessary
2158  * and calling a provided function on each leaf page table.
2159  */
2160 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2161                         unsigned long size, pte_fn_t fn, void *data)
2162 {
2163         pgd_t *pgd;
2164         unsigned long next;
2165         unsigned long end = addr + size;
2166         int err;
2167
2168         if (WARN_ON(addr >= end))
2169                 return -EINVAL;
2170
2171         pgd = pgd_offset(mm, addr);
2172         do {
2173                 next = pgd_addr_end(addr, end);
2174                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2175                 if (err)
2176                         break;
2177         } while (pgd++, addr = next, addr != end);
2178
2179         return err;
2180 }
2181 EXPORT_SYMBOL_GPL(apply_to_page_range);
2182
2183 /*
2184  * handle_pte_fault chooses page fault handler according to an entry which was
2185  * read non-atomically.  Before making any commitment, on those architectures
2186  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2187  * parts, do_swap_page must check under lock before unmapping the pte and
2188  * proceeding (but do_wp_page is only called after already making such a check;
2189  * and do_anonymous_page can safely check later on).
2190  */
2191 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2192                                 pte_t *page_table, pte_t orig_pte)
2193 {
2194         int same = 1;
2195 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2196         if (sizeof(pte_t) > sizeof(unsigned long)) {
2197                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2198                 spin_lock(ptl);
2199                 same = pte_same(*page_table, orig_pte);
2200                 spin_unlock(ptl);
2201         }
2202 #endif
2203         pte_unmap(page_table);
2204         return same;
2205 }
2206
2207 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2208 {
2209         debug_dma_assert_idle(src);
2210
2211         /*
2212          * If the source page was a PFN mapping, we don't have
2213          * a "struct page" for it. We do a best-effort copy by
2214          * just copying from the original user address. If that
2215          * fails, we just zero-fill it. Live with it.
2216          */
2217         if (unlikely(!src)) {
2218                 void *kaddr = kmap_atomic(dst);
2219                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2220
2221                 /*
2222                  * This really shouldn't fail, because the page is there
2223                  * in the page tables. But it might just be unreadable,
2224                  * in which case we just give up and fill the result with
2225                  * zeroes.
2226                  */
2227                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2228                         clear_page(kaddr);
2229                 kunmap_atomic(kaddr);
2230                 flush_dcache_page(dst);
2231         } else
2232                 copy_user_highpage(dst, src, va, vma);
2233 }
2234
2235 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2236 {
2237         struct file *vm_file = vma->vm_file;
2238
2239         if (vm_file)
2240                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2241
2242         /*
2243          * Special mappings (e.g. VDSO) do not have any file so fake
2244          * a default GFP_KERNEL for them.
2245          */
2246         return GFP_KERNEL;
2247 }
2248
2249 /*
2250  * Notify the address space that the page is about to become writable so that
2251  * it can prohibit this or wait for the page to get into an appropriate state.
2252  *
2253  * We do this without the lock held, so that it can sleep if it needs to.
2254  */
2255 static int do_page_mkwrite(struct vm_fault *vmf)
2256 {
2257         int ret;
2258         struct page *page = vmf->page;
2259         unsigned int old_flags = vmf->flags;
2260
2261         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2262
2263         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2264         /* Restore original flags so that caller is not surprised */
2265         vmf->flags = old_flags;
2266         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2267                 return ret;
2268         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2269                 lock_page(page);
2270                 if (!page->mapping) {
2271                         unlock_page(page);
2272                         return 0; /* retry */
2273                 }
2274                 ret |= VM_FAULT_LOCKED;
2275         } else
2276                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2277         return ret;
2278 }
2279
2280 /*
2281  * Handle dirtying of a page in shared file mapping on a write fault.
2282  *
2283  * The function expects the page to be locked and unlocks it.
2284  */
2285 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2286                                     struct page *page)
2287 {
2288         struct address_space *mapping;
2289         bool dirtied;
2290         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2291
2292         dirtied = set_page_dirty(page);
2293         VM_BUG_ON_PAGE(PageAnon(page), page);
2294         /*
2295          * Take a local copy of the address_space - page.mapping may be zeroed
2296          * by truncate after unlock_page().   The address_space itself remains
2297          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2298          * release semantics to prevent the compiler from undoing this copying.
2299          */
2300         mapping = page_rmapping(page);
2301         unlock_page(page);
2302
2303         if ((dirtied || page_mkwrite) && mapping) {
2304                 /*
2305                  * Some device drivers do not set page.mapping
2306                  * but still dirty their pages
2307                  */
2308                 balance_dirty_pages_ratelimited(mapping);
2309         }
2310
2311         if (!page_mkwrite)
2312                 file_update_time(vma->vm_file);
2313 }
2314
2315 /*
2316  * Handle write page faults for pages that can be reused in the current vma
2317  *
2318  * This can happen either due to the mapping being with the VM_SHARED flag,
2319  * or due to us being the last reference standing to the page. In either
2320  * case, all we need to do here is to mark the page as writable and update
2321  * any related book-keeping.
2322  */
2323 static inline void wp_page_reuse(struct vm_fault *vmf)
2324         __releases(vmf->ptl)
2325 {
2326         struct vm_area_struct *vma = vmf->vma;
2327         struct page *page = vmf->page;
2328         pte_t entry;
2329         /*
2330          * Clear the pages cpupid information as the existing
2331          * information potentially belongs to a now completely
2332          * unrelated process.
2333          */
2334         if (page)
2335                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2336
2337         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2338         entry = pte_mkyoung(vmf->orig_pte);
2339         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2340         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2341                 update_mmu_cache(vma, vmf->address, vmf->pte);
2342         pte_unmap_unlock(vmf->pte, vmf->ptl);
2343 }
2344
2345 /*
2346  * Handle the case of a page which we actually need to copy to a new page.
2347  *
2348  * Called with mmap_sem locked and the old page referenced, but
2349  * without the ptl held.
2350  *
2351  * High level logic flow:
2352  *
2353  * - Allocate a page, copy the content of the old page to the new one.
2354  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2355  * - Take the PTL. If the pte changed, bail out and release the allocated page
2356  * - If the pte is still the way we remember it, update the page table and all
2357  *   relevant references. This includes dropping the reference the page-table
2358  *   held to the old page, as well as updating the rmap.
2359  * - In any case, unlock the PTL and drop the reference we took to the old page.
2360  */
2361 static int wp_page_copy(struct vm_fault *vmf)
2362 {
2363         struct vm_area_struct *vma = vmf->vma;
2364         struct mm_struct *mm = vma->vm_mm;
2365         struct page *old_page = vmf->page;
2366         struct page *new_page = NULL;
2367         pte_t entry;
2368         int page_copied = 0;
2369         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2370         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2371         struct mem_cgroup *memcg;
2372
2373         if (unlikely(anon_vma_prepare(vma)))
2374                 goto oom;
2375
2376         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2377                 new_page = alloc_zeroed_user_highpage_movable(vma,
2378                                                               vmf->address);
2379                 if (!new_page)
2380                         goto oom;
2381         } else {
2382                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2383                                 vmf->address);
2384                 if (!new_page)
2385                         goto oom;
2386                 cow_user_page(new_page, old_page, vmf->address, vma);
2387         }
2388
2389         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2390                 goto oom_free_new;
2391
2392         __SetPageUptodate(new_page);
2393
2394         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2395
2396         /*
2397          * Re-check the pte - we dropped the lock
2398          */
2399         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2400         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2401                 if (old_page) {
2402                         if (!PageAnon(old_page)) {
2403                                 dec_mm_counter_fast(mm,
2404                                                 mm_counter_file(old_page));
2405                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2406                         }
2407                 } else {
2408                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2409                 }
2410                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2411                 entry = mk_pte(new_page, vma->vm_page_prot);
2412                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2413                 /*
2414                  * Clear the pte entry and flush it first, before updating the
2415                  * pte with the new entry. This will avoid a race condition
2416                  * seen in the presence of one thread doing SMC and another
2417                  * thread doing COW.
2418                  */
2419                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2420                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2421                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2422                 lru_cache_add_active_or_unevictable(new_page, vma);
2423                 /*
2424                  * We call the notify macro here because, when using secondary
2425                  * mmu page tables (such as kvm shadow page tables), we want the
2426                  * new page to be mapped directly into the secondary page table.
2427                  */
2428                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2429                 update_mmu_cache(vma, vmf->address, vmf->pte);
2430                 if (old_page) {
2431                         /*
2432                          * Only after switching the pte to the new page may
2433                          * we remove the mapcount here. Otherwise another
2434                          * process may come and find the rmap count decremented
2435                          * before the pte is switched to the new page, and
2436                          * "reuse" the old page writing into it while our pte
2437                          * here still points into it and can be read by other
2438                          * threads.
2439                          *
2440                          * The critical issue is to order this
2441                          * page_remove_rmap with the ptp_clear_flush above.
2442                          * Those stores are ordered by (if nothing else,)
2443                          * the barrier present in the atomic_add_negative
2444                          * in page_remove_rmap.
2445                          *
2446                          * Then the TLB flush in ptep_clear_flush ensures that
2447                          * no process can access the old page before the
2448                          * decremented mapcount is visible. And the old page
2449                          * cannot be reused until after the decremented
2450                          * mapcount is visible. So transitively, TLBs to
2451                          * old page will be flushed before it can be reused.
2452                          */
2453                         page_remove_rmap(old_page, false);
2454                 }
2455
2456                 /* Free the old page.. */
2457                 new_page = old_page;
2458                 page_copied = 1;
2459         } else {
2460                 mem_cgroup_cancel_charge(new_page, memcg, false);
2461         }
2462
2463         if (new_page)
2464                 put_page(new_page);
2465
2466         pte_unmap_unlock(vmf->pte, vmf->ptl);
2467         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2468         if (old_page) {
2469                 /*
2470                  * Don't let another task, with possibly unlocked vma,
2471                  * keep the mlocked page.
2472                  */
2473                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2474                         lock_page(old_page);    /* LRU manipulation */
2475                         if (PageMlocked(old_page))
2476                                 munlock_vma_page(old_page);
2477                         unlock_page(old_page);
2478                 }
2479                 put_page(old_page);
2480         }
2481         return page_copied ? VM_FAULT_WRITE : 0;
2482 oom_free_new:
2483         put_page(new_page);
2484 oom:
2485         if (old_page)
2486                 put_page(old_page);
2487         return VM_FAULT_OOM;
2488 }
2489
2490 /**
2491  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2492  *                        writeable once the page is prepared
2493  *
2494  * @vmf: structure describing the fault
2495  *
2496  * This function handles all that is needed to finish a write page fault in a
2497  * shared mapping due to PTE being read-only once the mapped page is prepared.
2498  * It handles locking of PTE and modifying it. The function returns
2499  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2500  * lock.
2501  *
2502  * The function expects the page to be locked or other protection against
2503  * concurrent faults / writeback (such as DAX radix tree locks).
2504  */
2505 int finish_mkwrite_fault(struct vm_fault *vmf)
2506 {
2507         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2508         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2509                                        &vmf->ptl);
2510         /*
2511          * We might have raced with another page fault while we released the
2512          * pte_offset_map_lock.
2513          */
2514         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2515                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2516                 return VM_FAULT_NOPAGE;
2517         }
2518         wp_page_reuse(vmf);
2519         return 0;
2520 }
2521
2522 /*
2523  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2524  * mapping
2525  */
2526 static int wp_pfn_shared(struct vm_fault *vmf)
2527 {
2528         struct vm_area_struct *vma = vmf->vma;
2529
2530         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2531                 int ret;
2532
2533                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2534                 vmf->flags |= FAULT_FLAG_MKWRITE;
2535                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2536                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2537                         return ret;
2538                 return finish_mkwrite_fault(vmf);
2539         }
2540         wp_page_reuse(vmf);
2541         return VM_FAULT_WRITE;
2542 }
2543
2544 static int wp_page_shared(struct vm_fault *vmf)
2545         __releases(vmf->ptl)
2546 {
2547         struct vm_area_struct *vma = vmf->vma;
2548
2549         get_page(vmf->page);
2550
2551         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2552                 int tmp;
2553
2554                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2555                 tmp = do_page_mkwrite(vmf);
2556                 if (unlikely(!tmp || (tmp &
2557                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2558                         put_page(vmf->page);
2559                         return tmp;
2560                 }
2561                 tmp = finish_mkwrite_fault(vmf);
2562                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2563                         unlock_page(vmf->page);
2564                         put_page(vmf->page);
2565                         return tmp;
2566                 }
2567         } else {
2568                 wp_page_reuse(vmf);
2569                 lock_page(vmf->page);
2570         }
2571         fault_dirty_shared_page(vma, vmf->page);
2572         put_page(vmf->page);
2573
2574         return VM_FAULT_WRITE;
2575 }
2576
2577 /*
2578  * This routine handles present pages, when users try to write
2579  * to a shared page. It is done by copying the page to a new address
2580  * and decrementing the shared-page counter for the old page.
2581  *
2582  * Note that this routine assumes that the protection checks have been
2583  * done by the caller (the low-level page fault routine in most cases).
2584  * Thus we can safely just mark it writable once we've done any necessary
2585  * COW.
2586  *
2587  * We also mark the page dirty at this point even though the page will
2588  * change only once the write actually happens. This avoids a few races,
2589  * and potentially makes it more efficient.
2590  *
2591  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2592  * but allow concurrent faults), with pte both mapped and locked.
2593  * We return with mmap_sem still held, but pte unmapped and unlocked.
2594  */
2595 static int do_wp_page(struct vm_fault *vmf)
2596         __releases(vmf->ptl)
2597 {
2598         struct vm_area_struct *vma = vmf->vma;
2599
2600         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2601         if (!vmf->page) {
2602                 /*
2603                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2604                  * VM_PFNMAP VMA.
2605                  *
2606                  * We should not cow pages in a shared writeable mapping.
2607                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2608                  */
2609                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2610                                      (VM_WRITE|VM_SHARED))
2611                         return wp_pfn_shared(vmf);
2612
2613                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2614                 return wp_page_copy(vmf);
2615         }
2616
2617         /*
2618          * Take out anonymous pages first, anonymous shared vmas are
2619          * not dirty accountable.
2620          */
2621         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2622                 int total_map_swapcount;
2623                 if (!trylock_page(vmf->page)) {
2624                         get_page(vmf->page);
2625                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2626                         lock_page(vmf->page);
2627                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2628                                         vmf->address, &vmf->ptl);
2629                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2630                                 unlock_page(vmf->page);
2631                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2632                                 put_page(vmf->page);
2633                                 return 0;
2634                         }
2635                         put_page(vmf->page);
2636                 }
2637                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2638                         if (total_map_swapcount == 1) {
2639                                 /*
2640                                  * The page is all ours. Move it to
2641                                  * our anon_vma so the rmap code will
2642                                  * not search our parent or siblings.
2643                                  * Protected against the rmap code by
2644                                  * the page lock.
2645                                  */
2646                                 page_move_anon_rmap(vmf->page, vma);
2647                         }
2648                         unlock_page(vmf->page);
2649                         wp_page_reuse(vmf);
2650                         return VM_FAULT_WRITE;
2651                 }
2652                 unlock_page(vmf->page);
2653         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2654                                         (VM_WRITE|VM_SHARED))) {
2655                 return wp_page_shared(vmf);
2656         }
2657
2658         /*
2659          * Ok, we need to copy. Oh, well..
2660          */
2661         get_page(vmf->page);
2662
2663         pte_unmap_unlock(vmf->pte, vmf->ptl);
2664         return wp_page_copy(vmf);
2665 }
2666
2667 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2668                 unsigned long start_addr, unsigned long end_addr,
2669                 struct zap_details *details)
2670 {
2671         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2672 }
2673
2674 static inline void unmap_mapping_range_tree(struct rb_root *root,
2675                                             struct zap_details *details)
2676 {
2677         struct vm_area_struct *vma;
2678         pgoff_t vba, vea, zba, zea;
2679
2680         vma_interval_tree_foreach(vma, root,
2681                         details->first_index, details->last_index) {
2682
2683                 vba = vma->vm_pgoff;
2684                 vea = vba + vma_pages(vma) - 1;
2685                 zba = details->first_index;
2686                 if (zba < vba)
2687                         zba = vba;
2688                 zea = details->last_index;
2689                 if (zea > vea)
2690                         zea = vea;
2691
2692                 unmap_mapping_range_vma(vma,
2693                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2694                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2695                                 details);
2696         }
2697 }
2698
2699 /**
2700  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2701  * address_space corresponding to the specified page range in the underlying
2702  * file.
2703  *
2704  * @mapping: the address space containing mmaps to be unmapped.
2705  * @holebegin: byte in first page to unmap, relative to the start of
2706  * the underlying file.  This will be rounded down to a PAGE_SIZE
2707  * boundary.  Note that this is different from truncate_pagecache(), which
2708  * must keep the partial page.  In contrast, we must get rid of
2709  * partial pages.
2710  * @holelen: size of prospective hole in bytes.  This will be rounded
2711  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2712  * end of the file.
2713  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2714  * but 0 when invalidating pagecache, don't throw away private data.
2715  */
2716 void unmap_mapping_range(struct address_space *mapping,
2717                 loff_t const holebegin, loff_t const holelen, int even_cows)
2718 {
2719         struct zap_details details = { };
2720         pgoff_t hba = holebegin >> PAGE_SHIFT;
2721         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2722
2723         /* Check for overflow. */
2724         if (sizeof(holelen) > sizeof(hlen)) {
2725                 long long holeend =
2726                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2727                 if (holeend & ~(long long)ULONG_MAX)
2728                         hlen = ULONG_MAX - hba + 1;
2729         }
2730
2731         details.check_mapping = even_cows ? NULL : mapping;
2732         details.first_index = hba;
2733         details.last_index = hba + hlen - 1;
2734         if (details.last_index < details.first_index)
2735                 details.last_index = ULONG_MAX;
2736
2737         i_mmap_lock_write(mapping);
2738         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2739                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2740         i_mmap_unlock_write(mapping);
2741 }
2742 EXPORT_SYMBOL(unmap_mapping_range);
2743
2744 /*
2745  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2746  * but allow concurrent faults), and pte mapped but not yet locked.
2747  * We return with pte unmapped and unlocked.
2748  *
2749  * We return with the mmap_sem locked or unlocked in the same cases
2750  * as does filemap_fault().
2751  */
2752 int do_swap_page(struct vm_fault *vmf)
2753 {
2754         struct vm_area_struct *vma = vmf->vma;
2755         struct page *page = NULL, *swapcache;
2756         struct mem_cgroup *memcg;
2757         struct vma_swap_readahead swap_ra;
2758         swp_entry_t entry;
2759         pte_t pte;
2760         int locked;
2761         int exclusive = 0;
2762         int ret = 0;
2763         bool vma_readahead = swap_use_vma_readahead();
2764
2765         if (vma_readahead)
2766                 page = swap_readahead_detect(vmf, &swap_ra);
2767         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2768                 if (page)
2769                         put_page(page);
2770                 goto out;
2771         }
2772
2773         entry = pte_to_swp_entry(vmf->orig_pte);
2774         if (unlikely(non_swap_entry(entry))) {
2775                 if (is_migration_entry(entry)) {
2776                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2777                                              vmf->address);
2778                 } else if (is_hwpoison_entry(entry)) {
2779                         ret = VM_FAULT_HWPOISON;
2780                 } else {
2781                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2782                         ret = VM_FAULT_SIGBUS;
2783                 }
2784                 goto out;
2785         }
2786         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2787         if (!page)
2788                 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2789                                          vmf->address);
2790         if (!page) {
2791                 if (vma_readahead)
2792                         page = do_swap_page_readahead(entry,
2793                                 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2794                 else
2795                         page = swapin_readahead(entry,
2796                                 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2797                 if (!page) {
2798                         /*
2799                          * Back out if somebody else faulted in this pte
2800                          * while we released the pte lock.
2801                          */
2802                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2803                                         vmf->address, &vmf->ptl);
2804                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2805                                 ret = VM_FAULT_OOM;
2806                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2807                         goto unlock;
2808                 }
2809
2810                 /* Had to read the page from swap area: Major fault */
2811                 ret = VM_FAULT_MAJOR;
2812                 count_vm_event(PGMAJFAULT);
2813                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2814         } else if (PageHWPoison(page)) {
2815                 /*
2816                  * hwpoisoned dirty swapcache pages are kept for killing
2817                  * owner processes (which may be unknown at hwpoison time)
2818                  */
2819                 ret = VM_FAULT_HWPOISON;
2820                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2821                 swapcache = page;
2822                 goto out_release;
2823         }
2824
2825         swapcache = page;
2826         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2827
2828         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2829         if (!locked) {
2830                 ret |= VM_FAULT_RETRY;
2831                 goto out_release;
2832         }
2833
2834         /*
2835          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2836          * release the swapcache from under us.  The page pin, and pte_same
2837          * test below, are not enough to exclude that.  Even if it is still
2838          * swapcache, we need to check that the page's swap has not changed.
2839          */
2840         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2841                 goto out_page;
2842
2843         page = ksm_might_need_to_copy(page, vma, vmf->address);
2844         if (unlikely(!page)) {
2845                 ret = VM_FAULT_OOM;
2846                 page = swapcache;
2847                 goto out_page;
2848         }
2849
2850         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2851                                 &memcg, false)) {
2852                 ret = VM_FAULT_OOM;
2853                 goto out_page;
2854         }
2855
2856         /*
2857          * Back out if somebody else already faulted in this pte.
2858          */
2859         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2860                         &vmf->ptl);
2861         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2862                 goto out_nomap;
2863
2864         if (unlikely(!PageUptodate(page))) {
2865                 ret = VM_FAULT_SIGBUS;
2866                 goto out_nomap;
2867         }
2868
2869         /*
2870          * The page isn't present yet, go ahead with the fault.
2871          *
2872          * Be careful about the sequence of operations here.
2873          * To get its accounting right, reuse_swap_page() must be called
2874          * while the page is counted on swap but not yet in mapcount i.e.
2875          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2876          * must be called after the swap_free(), or it will never succeed.
2877          */
2878
2879         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2880         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2881         pte = mk_pte(page, vma->vm_page_prot);
2882         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2883                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2884                 vmf->flags &= ~FAULT_FLAG_WRITE;
2885                 ret |= VM_FAULT_WRITE;
2886                 exclusive = RMAP_EXCLUSIVE;
2887         }
2888         flush_icache_page(vma, page);
2889         if (pte_swp_soft_dirty(vmf->orig_pte))
2890                 pte = pte_mksoft_dirty(pte);
2891         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2892         vmf->orig_pte = pte;
2893         if (page == swapcache) {
2894                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2895                 mem_cgroup_commit_charge(page, memcg, true, false);
2896                 activate_page(page);
2897         } else { /* ksm created a completely new copy */
2898                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2899                 mem_cgroup_commit_charge(page, memcg, false, false);
2900                 lru_cache_add_active_or_unevictable(page, vma);
2901         }
2902
2903         swap_free(entry);
2904         if (mem_cgroup_swap_full(page) ||
2905             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2906                 try_to_free_swap(page);
2907         unlock_page(page);
2908         if (page != swapcache) {
2909                 /*
2910                  * Hold the lock to avoid the swap entry to be reused
2911                  * until we take the PT lock for the pte_same() check
2912                  * (to avoid false positives from pte_same). For
2913                  * further safety release the lock after the swap_free
2914                  * so that the swap count won't change under a
2915                  * parallel locked swapcache.
2916                  */
2917                 unlock_page(swapcache);
2918                 put_page(swapcache);
2919         }
2920
2921         if (vmf->flags & FAULT_FLAG_WRITE) {
2922                 ret |= do_wp_page(vmf);
2923                 if (ret & VM_FAULT_ERROR)
2924                         ret &= VM_FAULT_ERROR;
2925                 goto out;
2926         }
2927
2928         /* No need to invalidate - it was non-present before */
2929         update_mmu_cache(vma, vmf->address, vmf->pte);
2930 unlock:
2931         pte_unmap_unlock(vmf->pte, vmf->ptl);
2932 out:
2933         return ret;
2934 out_nomap:
2935         mem_cgroup_cancel_charge(page, memcg, false);
2936         pte_unmap_unlock(vmf->pte, vmf->ptl);
2937 out_page:
2938         unlock_page(page);
2939 out_release:
2940         put_page(page);
2941         if (page != swapcache) {
2942                 unlock_page(swapcache);
2943                 put_page(swapcache);
2944         }
2945         return ret;
2946 }
2947
2948 /*
2949  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2950  * but allow concurrent faults), and pte mapped but not yet locked.
2951  * We return with mmap_sem still held, but pte unmapped and unlocked.
2952  */
2953 static int do_anonymous_page(struct vm_fault *vmf)
2954 {
2955         struct vm_area_struct *vma = vmf->vma;
2956         struct mem_cgroup *memcg;
2957         struct page *page;
2958         int ret = 0;
2959         pte_t entry;
2960
2961         /* File mapping without ->vm_ops ? */
2962         if (vma->vm_flags & VM_SHARED)
2963                 return VM_FAULT_SIGBUS;
2964
2965         /*
2966          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2967          * pte_offset_map() on pmds where a huge pmd might be created
2968          * from a different thread.
2969          *
2970          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2971          * parallel threads are excluded by other means.
2972          *
2973          * Here we only have down_read(mmap_sem).
2974          */
2975         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2976                 return VM_FAULT_OOM;
2977
2978         /* See the comment in pte_alloc_one_map() */
2979         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2980                 return 0;
2981
2982         /* Use the zero-page for reads */
2983         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2984                         !mm_forbids_zeropage(vma->vm_mm)) {
2985                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2986                                                 vma->vm_page_prot));
2987                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2988                                 vmf->address, &vmf->ptl);
2989                 if (!pte_none(*vmf->pte))
2990                         goto unlock;
2991                 ret = check_stable_address_space(vma->vm_mm);
2992                 if (ret)
2993                         goto unlock;
2994                 /* Deliver the page fault to userland, check inside PT lock */
2995                 if (userfaultfd_missing(vma)) {
2996                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2997                         return handle_userfault(vmf, VM_UFFD_MISSING);
2998                 }
2999                 goto setpte;
3000         }
3001
3002         /* Allocate our own private page. */
3003         if (unlikely(anon_vma_prepare(vma)))
3004                 goto oom;
3005         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3006         if (!page)
3007                 goto oom;
3008
3009         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3010                 goto oom_free_page;
3011
3012         /*
3013          * The memory barrier inside __SetPageUptodate makes sure that
3014          * preceeding stores to the page contents become visible before
3015          * the set_pte_at() write.
3016          */
3017         __SetPageUptodate(page);
3018
3019         entry = mk_pte(page, vma->vm_page_prot);
3020         if (vma->vm_flags & VM_WRITE)
3021                 entry = pte_mkwrite(pte_mkdirty(entry));
3022
3023         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3024                         &vmf->ptl);
3025         if (!pte_none(*vmf->pte))
3026                 goto release;
3027
3028         ret = check_stable_address_space(vma->vm_mm);
3029         if (ret)
3030                 goto release;
3031
3032         /* Deliver the page fault to userland, check inside PT lock */
3033         if (userfaultfd_missing(vma)) {
3034                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3035                 mem_cgroup_cancel_charge(page, memcg, false);
3036                 put_page(page);
3037                 return handle_userfault(vmf, VM_UFFD_MISSING);
3038         }
3039
3040         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3041         page_add_new_anon_rmap(page, vma, vmf->address, false);
3042         mem_cgroup_commit_charge(page, memcg, false, false);
3043         lru_cache_add_active_or_unevictable(page, vma);
3044 setpte:
3045         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3046
3047         /* No need to invalidate - it was non-present before */
3048         update_mmu_cache(vma, vmf->address, vmf->pte);
3049 unlock:
3050         pte_unmap_unlock(vmf->pte, vmf->ptl);
3051         return ret;
3052 release:
3053         mem_cgroup_cancel_charge(page, memcg, false);
3054         put_page(page);
3055         goto unlock;
3056 oom_free_page:
3057         put_page(page);
3058 oom:
3059         return VM_FAULT_OOM;
3060 }
3061
3062 /*
3063  * The mmap_sem must have been held on entry, and may have been
3064  * released depending on flags and vma->vm_ops->fault() return value.
3065  * See filemap_fault() and __lock_page_retry().
3066  */
3067 static int __do_fault(struct vm_fault *vmf)
3068 {
3069         struct vm_area_struct *vma = vmf->vma;
3070         int ret;
3071
3072         ret = vma->vm_ops->fault(vmf);
3073         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3074                             VM_FAULT_DONE_COW)))
3075                 return ret;
3076
3077         if (unlikely(PageHWPoison(vmf->page))) {
3078                 if (ret & VM_FAULT_LOCKED)
3079                         unlock_page(vmf->page);
3080                 put_page(vmf->page);
3081                 vmf->page = NULL;
3082                 return VM_FAULT_HWPOISON;
3083         }
3084
3085         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3086                 lock_page(vmf->page);
3087         else
3088                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3089
3090         return ret;
3091 }
3092
3093 /*
3094  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3095  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3096  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3097  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3098  */
3099 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3100 {
3101         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3102 }
3103
3104 static int pte_alloc_one_map(struct vm_fault *vmf)
3105 {
3106         struct vm_area_struct *vma = vmf->vma;
3107
3108         if (!pmd_none(*vmf->pmd))
3109                 goto map_pte;
3110         if (vmf->prealloc_pte) {
3111                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3112                 if (unlikely(!pmd_none(*vmf->pmd))) {
3113                         spin_unlock(vmf->ptl);
3114                         goto map_pte;
3115                 }
3116
3117                 atomic_long_inc(&vma->vm_mm->nr_ptes);
3118                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3119                 spin_unlock(vmf->ptl);
3120                 vmf->prealloc_pte = NULL;
3121         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3122                 return VM_FAULT_OOM;
3123         }
3124 map_pte:
3125         /*
3126          * If a huge pmd materialized under us just retry later.  Use
3127          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3128          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3129          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3130          * running immediately after a huge pmd fault in a different thread of
3131          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3132          * All we have to ensure is that it is a regular pmd that we can walk
3133          * with pte_offset_map() and we can do that through an atomic read in
3134          * C, which is what pmd_trans_unstable() provides.
3135          */
3136         if (pmd_devmap_trans_unstable(vmf->pmd))
3137                 return VM_FAULT_NOPAGE;
3138
3139         /*
3140          * At this point we know that our vmf->pmd points to a page of ptes
3141          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3142          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3143          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3144          * be valid and we will re-check to make sure the vmf->pte isn't
3145          * pte_none() under vmf->ptl protection when we return to
3146          * alloc_set_pte().
3147          */
3148         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3149                         &vmf->ptl);
3150         return 0;
3151 }
3152
3153 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3154
3155 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3156 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3157                 unsigned long haddr)
3158 {
3159         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3160                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3161                 return false;
3162         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3163                 return false;
3164         return true;
3165 }
3166
3167 static void deposit_prealloc_pte(struct vm_fault *vmf)
3168 {
3169         struct vm_area_struct *vma = vmf->vma;
3170
3171         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3172         /*
3173          * We are going to consume the prealloc table,
3174          * count that as nr_ptes.
3175          */
3176         atomic_long_inc(&vma->vm_mm->nr_ptes);
3177         vmf->prealloc_pte = NULL;
3178 }
3179
3180 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3181 {
3182         struct vm_area_struct *vma = vmf->vma;
3183         bool write = vmf->flags & FAULT_FLAG_WRITE;
3184         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3185         pmd_t entry;
3186         int i, ret;
3187
3188         if (!transhuge_vma_suitable(vma, haddr))
3189                 return VM_FAULT_FALLBACK;
3190
3191         ret = VM_FAULT_FALLBACK;
3192         page = compound_head(page);
3193
3194         /*
3195          * Archs like ppc64 need additonal space to store information
3196          * related to pte entry. Use the preallocated table for that.
3197          */
3198         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3199                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3200                 if (!vmf->prealloc_pte)
3201                         return VM_FAULT_OOM;
3202                 smp_wmb(); /* See comment in __pte_alloc() */
3203         }
3204
3205         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3206         if (unlikely(!pmd_none(*vmf->pmd)))
3207                 goto out;
3208
3209         for (i = 0; i < HPAGE_PMD_NR; i++)
3210                 flush_icache_page(vma, page + i);
3211
3212         entry = mk_huge_pmd(page, vma->vm_page_prot);
3213         if (write)
3214                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3215
3216         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3217         page_add_file_rmap(page, true);
3218         /*
3219          * deposit and withdraw with pmd lock held
3220          */
3221         if (arch_needs_pgtable_deposit())
3222                 deposit_prealloc_pte(vmf);
3223
3224         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3225
3226         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3227
3228         /* fault is handled */
3229         ret = 0;
3230         count_vm_event(THP_FILE_MAPPED);
3231 out:
3232         spin_unlock(vmf->ptl);
3233         return ret;
3234 }
3235 #else
3236 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3237 {
3238         BUILD_BUG();
3239         return 0;
3240 }
3241 #endif
3242
3243 /**
3244  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3245  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3246  *
3247  * @vmf: fault environment
3248  * @memcg: memcg to charge page (only for private mappings)
3249  * @page: page to map
3250  *
3251  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3252  * return.
3253  *
3254  * Target users are page handler itself and implementations of
3255  * vm_ops->map_pages.
3256  */
3257 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3258                 struct page *page)
3259 {
3260         struct vm_area_struct *vma = vmf->vma;
3261         bool write = vmf->flags & FAULT_FLAG_WRITE;
3262         pte_t entry;
3263         int ret;
3264
3265         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3266                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3267                 /* THP on COW? */
3268                 VM_BUG_ON_PAGE(memcg, page);
3269
3270                 ret = do_set_pmd(vmf, page);
3271                 if (ret != VM_FAULT_FALLBACK)
3272                         return ret;
3273         }
3274
3275         if (!vmf->pte) {
3276                 ret = pte_alloc_one_map(vmf);
3277                 if (ret)
3278                         return ret;
3279         }
3280
3281         /* Re-check under ptl */
3282         if (unlikely(!pte_none(*vmf->pte)))
3283                 return VM_FAULT_NOPAGE;
3284
3285         flush_icache_page(vma, page);
3286         entry = mk_pte(page, vma->vm_page_prot);
3287         if (write)
3288                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3289         /* copy-on-write page */
3290         if (write && !(vma->vm_flags & VM_SHARED)) {
3291                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3292                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3293                 mem_cgroup_commit_charge(page, memcg, false, false);
3294                 lru_cache_add_active_or_unevictable(page, vma);
3295         } else {
3296                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3297                 page_add_file_rmap(page, false);
3298         }
3299         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3300
3301         /* no need to invalidate: a not-present page won't be cached */
3302         update_mmu_cache(vma, vmf->address, vmf->pte);
3303
3304         return 0;
3305 }
3306
3307
3308 /**
3309  * finish_fault - finish page fault once we have prepared the page to fault
3310  *
3311  * @vmf: structure describing the fault
3312  *
3313  * This function handles all that is needed to finish a page fault once the
3314  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3315  * given page, adds reverse page mapping, handles memcg charges and LRU
3316  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3317  * error.
3318  *
3319  * The function expects the page to be locked and on success it consumes a
3320  * reference of a page being mapped (for the PTE which maps it).
3321  */
3322 int finish_fault(struct vm_fault *vmf)
3323 {
3324         struct page *page;
3325         int ret = 0;
3326
3327         /* Did we COW the page? */
3328         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3329             !(vmf->vma->vm_flags & VM_SHARED))
3330                 page = vmf->cow_page;
3331         else
3332                 page = vmf->page;
3333
3334         /*
3335          * check even for read faults because we might have lost our CoWed
3336          * page
3337          */
3338         if (!(vmf->vma->vm_flags & VM_SHARED))
3339                 ret = check_stable_address_space(vmf->vma->vm_mm);
3340         if (!ret)
3341                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3342         if (vmf->pte)
3343                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3344         return ret;
3345 }
3346
3347 static unsigned long fault_around_bytes __read_mostly =
3348         rounddown_pow_of_two(65536);
3349
3350 #ifdef CONFIG_DEBUG_FS
3351 static int fault_around_bytes_get(void *data, u64 *val)
3352 {
3353         *val = fault_around_bytes;
3354         return 0;
3355 }
3356
3357 /*
3358  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3359  * rounded down to nearest page order. It's what do_fault_around() expects to
3360  * see.
3361  */
3362 static int fault_around_bytes_set(void *data, u64 val)
3363 {
3364         if (val / PAGE_SIZE > PTRS_PER_PTE)
3365                 return -EINVAL;
3366         if (val > PAGE_SIZE)
3367                 fault_around_bytes = rounddown_pow_of_two(val);
3368         else
3369                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3370         return 0;
3371 }
3372 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3373                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3374
3375 static int __init fault_around_debugfs(void)
3376 {
3377         void *ret;
3378
3379         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3380                         &fault_around_bytes_fops);
3381         if (!ret)
3382                 pr_warn("Failed to create fault_around_bytes in debugfs");
3383         return 0;
3384 }
3385 late_initcall(fault_around_debugfs);
3386 #endif
3387
3388 /*
3389  * do_fault_around() tries to map few pages around the fault address. The hope
3390  * is that the pages will be needed soon and this will lower the number of
3391  * faults to handle.
3392  *
3393  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3394  * not ready to be mapped: not up-to-date, locked, etc.
3395  *
3396  * This function is called with the page table lock taken. In the split ptlock
3397  * case the page table lock only protects only those entries which belong to
3398  * the page table corresponding to the fault address.
3399  *
3400  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3401  * only once.
3402  *
3403  * fault_around_pages() defines how many pages we'll try to map.
3404  * do_fault_around() expects it to return a power of two less than or equal to
3405  * PTRS_PER_PTE.
3406  *
3407  * The virtual address of the area that we map is naturally aligned to the
3408  * fault_around_pages() value (and therefore to page order).  This way it's
3409  * easier to guarantee that we don't cross page table boundaries.
3410  */
3411 static int do_fault_around(struct vm_fault *vmf)
3412 {
3413         unsigned long address = vmf->address, nr_pages, mask;
3414         pgoff_t start_pgoff = vmf->pgoff;
3415         pgoff_t end_pgoff;
3416         int off, ret = 0;
3417
3418         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3419         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3420
3421         vmf->address = max(address & mask, vmf->vma->vm_start);
3422         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3423         start_pgoff -= off;
3424
3425         /*
3426          *  end_pgoff is either end of page table or end of vma
3427          *  or fault_around_pages() from start_pgoff, depending what is nearest.
3428          */
3429         end_pgoff = start_pgoff -
3430                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3431                 PTRS_PER_PTE - 1;
3432         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3433                         start_pgoff + nr_pages - 1);
3434
3435         if (pmd_none(*vmf->pmd)) {
3436                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3437                                                   vmf->address);
3438                 if (!vmf->prealloc_pte)
3439                         goto out;
3440                 smp_wmb(); /* See comment in __pte_alloc() */
3441         }
3442
3443         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3444
3445         /* Huge page is mapped? Page fault is solved */
3446         if (pmd_trans_huge(*vmf->pmd)) {
3447                 ret = VM_FAULT_NOPAGE;
3448                 goto out;
3449         }
3450
3451         /* ->map_pages() haven't done anything useful. Cold page cache? */
3452         if (!vmf->pte)
3453                 goto out;
3454
3455         /* check if the page fault is solved */
3456         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3457         if (!pte_none(*vmf->pte))
3458                 ret = VM_FAULT_NOPAGE;
3459         pte_unmap_unlock(vmf->pte, vmf->ptl);
3460 out:
3461         vmf->address = address;
3462         vmf->pte = NULL;
3463         return ret;
3464 }
3465
3466 static int do_read_fault(struct vm_fault *vmf)
3467 {
3468         struct vm_area_struct *vma = vmf->vma;
3469         int ret = 0;
3470
3471         /*
3472          * Let's call ->map_pages() first and use ->fault() as fallback
3473          * if page by the offset is not ready to be mapped (cold cache or
3474          * something).
3475          */
3476         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3477                 ret = do_fault_around(vmf);
3478                 if (ret)
3479                         return ret;
3480         }
3481
3482         ret = __do_fault(vmf);
3483         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3484                 return ret;
3485
3486         ret |= finish_fault(vmf);
3487         unlock_page(vmf->page);
3488         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3489                 put_page(vmf->page);
3490         return ret;
3491 }
3492
3493 static int do_cow_fault(struct vm_fault *vmf)
3494 {
3495         struct vm_area_struct *vma = vmf->vma;
3496         int ret;
3497
3498         if (unlikely(anon_vma_prepare(vma)))
3499                 return VM_FAULT_OOM;
3500
3501         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3502         if (!vmf->cow_page)
3503                 return VM_FAULT_OOM;
3504
3505         if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3506                                 &vmf->memcg, false)) {
3507                 put_page(vmf->cow_page);
3508                 return VM_FAULT_OOM;
3509         }
3510
3511         ret = __do_fault(vmf);
3512         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3513                 goto uncharge_out;
3514         if (ret & VM_FAULT_DONE_COW)
3515                 return ret;
3516
3517         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3518         __SetPageUptodate(vmf->cow_page);
3519
3520         ret |= finish_fault(vmf);
3521         unlock_page(vmf->page);
3522         put_page(vmf->page);
3523         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3524                 goto uncharge_out;
3525         return ret;
3526 uncharge_out:
3527         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3528         put_page(vmf->cow_page);
3529         return ret;
3530 }
3531
3532 static int do_shared_fault(struct vm_fault *vmf)
3533 {
3534         struct vm_area_struct *vma = vmf->vma;
3535         int ret, tmp;
3536
3537         ret = __do_fault(vmf);
3538         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3539                 return ret;
3540
3541         /*
3542          * Check if the backing address space wants to know that the page is
3543          * about to become writable
3544          */
3545         if (vma->vm_ops->page_mkwrite) {
3546                 unlock_page(vmf->page);
3547                 tmp = do_page_mkwrite(vmf);
3548                 if (unlikely(!tmp ||
3549                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3550                         put_page(vmf->page);
3551                         return tmp;
3552                 }
3553         }
3554
3555         ret |= finish_fault(vmf);
3556         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3557                                         VM_FAULT_RETRY))) {
3558                 unlock_page(vmf->page);
3559                 put_page(vmf->page);
3560                 return ret;
3561         }
3562
3563         fault_dirty_shared_page(vma, vmf->page);
3564         return ret;
3565 }
3566
3567 /*
3568  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3569  * but allow concurrent faults).
3570  * The mmap_sem may have been released depending on flags and our
3571  * return value.  See filemap_fault() and __lock_page_or_retry().
3572  */
3573 static int do_fault(struct vm_fault *vmf)
3574 {
3575         struct vm_area_struct *vma = vmf->vma;
3576         int ret;
3577
3578         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3579         if (!vma->vm_ops->fault)
3580                 ret = VM_FAULT_SIGBUS;
3581         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3582                 ret = do_read_fault(vmf);
3583         else if (!(vma->vm_flags & VM_SHARED))
3584                 ret = do_cow_fault(vmf);
3585         else
3586                 ret = do_shared_fault(vmf);
3587
3588         /* preallocated pagetable is unused: free it */
3589         if (vmf->prealloc_pte) {
3590                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3591                 vmf->prealloc_pte = NULL;
3592         }
3593         return ret;
3594 }
3595
3596 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3597                                 unsigned long addr, int page_nid,
3598                                 int *flags)
3599 {
3600         get_page(page);
3601
3602         count_vm_numa_event(NUMA_HINT_FAULTS);
3603         if (page_nid == numa_node_id()) {
3604                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3605                 *flags |= TNF_FAULT_LOCAL;
3606         }
3607
3608         return mpol_misplaced(page, vma, addr);
3609 }
3610
3611 static int do_numa_page(struct vm_fault *vmf)
3612 {
3613         struct vm_area_struct *vma = vmf->vma;
3614         struct page *page = NULL;
3615         int page_nid = -1;
3616         int last_cpupid;
3617         int target_nid;
3618         bool migrated = false;
3619         pte_t pte;
3620         bool was_writable = pte_savedwrite(vmf->orig_pte);
3621         int flags = 0;
3622
3623         /*
3624          * The "pte" at this point cannot be used safely without
3625          * validation through pte_unmap_same(). It's of NUMA type but
3626          * the pfn may be screwed if the read is non atomic.
3627          */
3628         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3629         spin_lock(vmf->ptl);
3630         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3631                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3632                 goto out;
3633         }
3634
3635         /*
3636          * Make it present again, Depending on how arch implementes non
3637          * accessible ptes, some can allow access by kernel mode.
3638          */
3639         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3640         pte = pte_modify(pte, vma->vm_page_prot);
3641         pte = pte_mkyoung(pte);
3642         if (was_writable)
3643                 pte = pte_mkwrite(pte);
3644         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3645         update_mmu_cache(vma, vmf->address, vmf->pte);
3646
3647         page = vm_normal_page(vma, vmf->address, pte);
3648         if (!page) {
3649                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3650                 return 0;
3651         }
3652
3653         /* TODO: handle PTE-mapped THP */
3654         if (PageCompound(page)) {
3655                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3656                 return 0;
3657         }
3658
3659         /*
3660          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3661          * much anyway since they can be in shared cache state. This misses
3662          * the case where a mapping is writable but the process never writes
3663          * to it but pte_write gets cleared during protection updates and
3664          * pte_dirty has unpredictable behaviour between PTE scan updates,
3665          * background writeback, dirty balancing and application behaviour.
3666          */
3667         if (!pte_write(pte))
3668                 flags |= TNF_NO_GROUP;
3669
3670         /*
3671          * Flag if the page is shared between multiple address spaces. This
3672          * is later used when determining whether to group tasks together
3673          */
3674         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3675                 flags |= TNF_SHARED;
3676
3677         last_cpupid = page_cpupid_last(page);
3678         page_nid = page_to_nid(page);
3679         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3680                         &flags);
3681         pte_unmap_unlock(vmf->pte, vmf->ptl);
3682         if (target_nid == -1) {
3683                 put_page(page);
3684                 goto out;
3685         }
3686
3687         /* Migrate to the requested node */
3688         migrated = migrate_misplaced_page(page, vma, target_nid);
3689         if (migrated) {
3690                 page_nid = target_nid;
3691                 flags |= TNF_MIGRATED;
3692         } else
3693                 flags |= TNF_MIGRATE_FAIL;
3694
3695 out:
3696         if (page_nid != -1)
3697                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3698         return 0;
3699 }
3700
3701 static inline int create_huge_pmd(struct vm_fault *vmf)
3702 {
3703         if (vma_is_anonymous(vmf->vma))
3704                 return do_huge_pmd_anonymous_page(vmf);
3705         if (vmf->vma->vm_ops->huge_fault)
3706                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3707         return VM_FAULT_FALLBACK;
3708 }
3709
3710 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3711 {
3712         if (vma_is_anonymous(vmf->vma))
3713                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3714         if (vmf->vma->vm_ops->huge_fault)
3715                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3716
3717         /* COW handled on pte level: split pmd */
3718         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3719         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3720
3721         return VM_FAULT_FALLBACK;
3722 }
3723
3724 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3725 {
3726         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3727 }
3728
3729 static int create_huge_pud(struct vm_fault *vmf)
3730 {
3731 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3732         /* No support for anonymous transparent PUD pages yet */
3733         if (vma_is_anonymous(vmf->vma))
3734                 return VM_FAULT_FALLBACK;
3735         if (vmf->vma->vm_ops->huge_fault)
3736                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3737 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3738         return VM_FAULT_FALLBACK;
3739 }
3740
3741 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3742 {
3743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3744         /* No support for anonymous transparent PUD pages yet */
3745         if (vma_is_anonymous(vmf->vma))
3746                 return VM_FAULT_FALLBACK;
3747         if (vmf->vma->vm_ops->huge_fault)
3748                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3749 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3750         return VM_FAULT_FALLBACK;
3751 }
3752
3753 /*
3754  * These routines also need to handle stuff like marking pages dirty
3755  * and/or accessed for architectures that don't do it in hardware (most
3756  * RISC architectures).  The early dirtying is also good on the i386.
3757  *
3758  * There is also a hook called "update_mmu_cache()" that architectures
3759  * with external mmu caches can use to update those (ie the Sparc or
3760  * PowerPC hashed page tables that act as extended TLBs).
3761  *
3762  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3763  * concurrent faults).
3764  *
3765  * The mmap_sem may have been released depending on flags and our return value.
3766  * See filemap_fault() and __lock_page_or_retry().
3767  */
3768 static int handle_pte_fault(struct vm_fault *vmf)
3769 {
3770         pte_t entry;
3771
3772         if (unlikely(pmd_none(*vmf->pmd))) {
3773                 /*
3774                  * Leave __pte_alloc() until later: because vm_ops->fault may
3775                  * want to allocate huge page, and if we expose page table
3776                  * for an instant, it will be difficult to retract from
3777                  * concurrent faults and from rmap lookups.
3778                  */
3779                 vmf->pte = NULL;
3780         } else {
3781                 /* See comment in pte_alloc_one_map() */
3782                 if (pmd_devmap_trans_unstable(vmf->pmd))
3783                         return 0;
3784                 /*
3785                  * A regular pmd is established and it can't morph into a huge
3786                  * pmd from under us anymore at this point because we hold the
3787                  * mmap_sem read mode and khugepaged takes it in write mode.
3788                  * So now it's safe to run pte_offset_map().
3789                  */
3790                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3791                 vmf->orig_pte = *vmf->pte;
3792
3793                 /*
3794                  * some architectures can have larger ptes than wordsize,
3795                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3796                  * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3797                  * atomic accesses.  The code below just needs a consistent
3798                  * view for the ifs and we later double check anyway with the
3799                  * ptl lock held. So here a barrier will do.
3800                  */
3801                 barrier();
3802                 if (pte_none(vmf->orig_pte)) {
3803                         pte_unmap(vmf->pte);
3804                         vmf->pte = NULL;
3805                 }
3806         }
3807
3808         if (!vmf->pte) {
3809                 if (vma_is_anonymous(vmf->vma))
3810                         return do_anonymous_page(vmf);
3811                 else
3812                         return do_fault(vmf);
3813         }
3814
3815         if (!pte_present(vmf->orig_pte))
3816                 return do_swap_page(vmf);
3817
3818         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3819                 return do_numa_page(vmf);
3820
3821         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3822         spin_lock(vmf->ptl);
3823         entry = vmf->orig_pte;
3824         if (unlikely(!pte_same(*vmf->pte, entry)))
3825                 goto unlock;
3826         if (vmf->flags & FAULT_FLAG_WRITE) {
3827                 if (!pte_write(entry))
3828                         return do_wp_page(vmf);
3829                 entry = pte_mkdirty(entry);
3830         }
3831         entry = pte_mkyoung(entry);
3832         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3833                                 vmf->flags & FAULT_FLAG_WRITE)) {
3834                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3835         } else {
3836                 /*
3837                  * This is needed only for protection faults but the arch code
3838                  * is not yet telling us if this is a protection fault or not.
3839                  * This still avoids useless tlb flushes for .text page faults
3840                  * with threads.
3841                  */
3842                 if (vmf->flags & FAULT_FLAG_WRITE)
3843                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3844         }
3845 unlock:
3846         pte_unmap_unlock(vmf->pte, vmf->ptl);
3847         return 0;
3848 }
3849
3850 /*
3851  * By the time we get here, we already hold the mm semaphore
3852  *
3853  * The mmap_sem may have been released depending on flags and our
3854  * return value.  See filemap_fault() and __lock_page_or_retry().
3855  */
3856 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3857                 unsigned int flags)
3858 {
3859         struct vm_fault vmf = {
3860                 .vma = vma,
3861                 .address = address & PAGE_MASK,
3862                 .flags = flags,
3863                 .pgoff = linear_page_index(vma, address),
3864                 .gfp_mask = __get_fault_gfp_mask(vma),
3865         };
3866         struct mm_struct *mm = vma->vm_mm;
3867         pgd_t *pgd;
3868         p4d_t *p4d;
3869         int ret;
3870
3871         pgd = pgd_offset(mm, address);
3872         p4d = p4d_alloc(mm, pgd, address);
3873         if (!p4d)
3874                 return VM_FAULT_OOM;
3875
3876         vmf.pud = pud_alloc(mm, p4d, address);
3877         if (!vmf.pud)
3878                 return VM_FAULT_OOM;
3879         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3880                 ret = create_huge_pud(&vmf);
3881                 if (!(ret & VM_FAULT_FALLBACK))
3882                         return ret;
3883         } else {
3884                 pud_t orig_pud = *vmf.pud;
3885
3886                 barrier();
3887                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3888                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3889
3890                         /* NUMA case for anonymous PUDs would go here */
3891
3892                         if (dirty && !pud_write(orig_pud)) {
3893                                 ret = wp_huge_pud(&vmf, orig_pud);
3894                                 if (!(ret & VM_FAULT_FALLBACK))
3895                                         return ret;
3896                         } else {
3897                                 huge_pud_set_accessed(&vmf, orig_pud);
3898                                 return 0;
3899                         }
3900                 }
3901         }
3902
3903         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3904         if (!vmf.pmd)
3905                 return VM_FAULT_OOM;
3906         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3907                 ret = create_huge_pmd(&vmf);
3908                 if (!(ret & VM_FAULT_FALLBACK))
3909                         return ret;
3910         } else {
3911                 pmd_t orig_pmd = *vmf.pmd;
3912
3913                 barrier();
3914                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3915                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3916                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3917
3918                         if ((vmf.flags & FAULT_FLAG_WRITE) &&
3919                                         !pmd_write(orig_pmd)) {
3920                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3921                                 if (!(ret & VM_FAULT_FALLBACK))
3922                                         return ret;
3923                         } else {
3924                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3925                                 return 0;
3926                         }
3927                 }
3928         }
3929
3930         return handle_pte_fault(&vmf);
3931 }
3932
3933 /*
3934  * By the time we get here, we already hold the mm semaphore
3935  *
3936  * The mmap_sem may have been released depending on flags and our
3937  * return value.  See filemap_fault() and __lock_page_or_retry().
3938  */
3939 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3940                 unsigned int flags)
3941 {
3942         int ret;
3943
3944         __set_current_state(TASK_RUNNING);
3945
3946         count_vm_event(PGFAULT);
3947         count_memcg_event_mm(vma->vm_mm, PGFAULT);
3948
3949         /* do counter updates before entering really critical section. */
3950         check_sync_rss_stat(current);
3951
3952         /*
3953          * Enable the memcg OOM handling for faults triggered in user
3954          * space.  Kernel faults are handled more gracefully.
3955          */
3956         if (flags & FAULT_FLAG_USER)
3957                 mem_cgroup_oom_enable();
3958
3959         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3960                                             flags & FAULT_FLAG_INSTRUCTION,
3961                                             flags & FAULT_FLAG_REMOTE))
3962                 return VM_FAULT_SIGSEGV;
3963
3964         if (unlikely(is_vm_hugetlb_page(vma)))
3965                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3966         else
3967                 ret = __handle_mm_fault(vma, address, flags);
3968
3969         if (flags & FAULT_FLAG_USER) {
3970                 mem_cgroup_oom_disable();
3971                 /*
3972                  * The task may have entered a memcg OOM situation but
3973                  * if the allocation error was handled gracefully (no
3974                  * VM_FAULT_OOM), there is no need to kill anything.
3975                  * Just clean up the OOM state peacefully.
3976                  */
3977                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3978                         mem_cgroup_oom_synchronize(false);
3979         }
3980
3981         return ret;
3982 }
3983 EXPORT_SYMBOL_GPL(handle_mm_fault);
3984
3985 #ifndef __PAGETABLE_P4D_FOLDED
3986 /*
3987  * Allocate p4d page table.
3988  * We've already handled the fast-path in-line.
3989  */
3990 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3991 {
3992         p4d_t *new = p4d_alloc_one(mm, address);
3993         if (!new)
3994                 return -ENOMEM;
3995
3996         smp_wmb(); /* See comment in __pte_alloc */
3997
3998         spin_lock(&mm->page_table_lock);
3999         if (pgd_present(*pgd))          /* Another has populated it */
4000                 p4d_free(mm, new);
4001         else
4002                 pgd_populate(mm, pgd, new);
4003         spin_unlock(&mm->page_table_lock);
4004         return 0;
4005 }
4006 #endif /* __PAGETABLE_P4D_FOLDED */
4007
4008 #ifndef __PAGETABLE_PUD_FOLDED
4009 /*
4010  * Allocate page upper directory.
4011  * We've already handled the fast-path in-line.
4012  */
4013 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4014 {
4015         pud_t *new = pud_alloc_one(mm, address);
4016         if (!new)
4017                 return -ENOMEM;
4018
4019         smp_wmb(); /* See comment in __pte_alloc */
4020
4021         spin_lock(&mm->page_table_lock);
4022 #ifndef __ARCH_HAS_5LEVEL_HACK
4023         if (p4d_present(*p4d))          /* Another has populated it */
4024                 pud_free(mm, new);
4025         else
4026                 p4d_populate(mm, p4d, new);
4027 #else
4028         if (pgd_present(*p4d))          /* Another has populated it */
4029                 pud_free(mm, new);
4030         else
4031                 pgd_populate(mm, p4d, new);
4032 #endif /* __ARCH_HAS_5LEVEL_HACK */
4033         spin_unlock(&mm->page_table_lock);
4034         return 0;
4035 }
4036 #endif /* __PAGETABLE_PUD_FOLDED */
4037
4038 #ifndef __PAGETABLE_PMD_FOLDED
4039 /*
4040  * Allocate page middle directory.
4041  * We've already handled the fast-path in-line.
4042  */
4043 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4044 {
4045         spinlock_t *ptl;
4046         pmd_t *new = pmd_alloc_one(mm, address);
4047         if (!new)
4048                 return -ENOMEM;
4049
4050         smp_wmb(); /* See comment in __pte_alloc */
4051
4052         ptl = pud_lock(mm, pud);
4053 #ifndef __ARCH_HAS_4LEVEL_HACK
4054         if (!pud_present(*pud)) {
4055                 mm_inc_nr_pmds(mm);
4056                 pud_populate(mm, pud, new);
4057         } else  /* Another has populated it */
4058                 pmd_free(mm, new);
4059 #else
4060         if (!pgd_present(*pud)) {
4061                 mm_inc_nr_pmds(mm);
4062                 pgd_populate(mm, pud, new);
4063         } else /* Another has populated it */
4064                 pmd_free(mm, new);
4065 #endif /* __ARCH_HAS_4LEVEL_HACK */
4066         spin_unlock(ptl);
4067         return 0;
4068 }
4069 #endif /* __PAGETABLE_PMD_FOLDED */
4070
4071 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4072                             unsigned long *start, unsigned long *end,
4073                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4074 {
4075         pgd_t *pgd;
4076         p4d_t *p4d;
4077         pud_t *pud;
4078         pmd_t *pmd;
4079         pte_t *ptep;
4080
4081         pgd = pgd_offset(mm, address);
4082         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4083                 goto out;
4084
4085         p4d = p4d_offset(pgd, address);
4086         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4087                 goto out;
4088
4089         pud = pud_offset(p4d, address);
4090         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4091                 goto out;
4092
4093         pmd = pmd_offset(pud, address);
4094         VM_BUG_ON(pmd_trans_huge(*pmd));
4095
4096         if (pmd_huge(*pmd)) {
4097                 if (!pmdpp)
4098                         goto out;
4099
4100                 if (start && end) {
4101                         *start = address & PMD_MASK;
4102                         *end = *start + PMD_SIZE;
4103                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4104                 }
4105                 *ptlp = pmd_lock(mm, pmd);
4106                 if (pmd_huge(*pmd)) {
4107                         *pmdpp = pmd;
4108                         return 0;
4109                 }
4110                 spin_unlock(*ptlp);
4111                 if (start && end)
4112                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4113         }
4114
4115         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4116                 goto out;
4117
4118         if (start && end) {
4119                 *start = address & PAGE_MASK;
4120                 *end = *start + PAGE_SIZE;
4121                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4122         }
4123         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4124         if (!pte_present(*ptep))
4125                 goto unlock;
4126         *ptepp = ptep;
4127         return 0;
4128 unlock:
4129         pte_unmap_unlock(ptep, *ptlp);
4130         if (start && end)
4131                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4132 out:
4133         return -EINVAL;
4134 }
4135
4136 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4137                              pte_t **ptepp, spinlock_t **ptlp)
4138 {
4139         int res;
4140
4141         /* (void) is needed to make gcc happy */
4142         (void) __cond_lock(*ptlp,
4143                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4144                                                     ptepp, NULL, ptlp)));
4145         return res;
4146 }
4147
4148 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4149                              unsigned long *start, unsigned long *end,
4150                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4151 {
4152         int res;
4153
4154         /* (void) is needed to make gcc happy */
4155         (void) __cond_lock(*ptlp,
4156                            !(res = __follow_pte_pmd(mm, address, start, end,
4157                                                     ptepp, pmdpp, ptlp)));
4158         return res;
4159 }
4160 EXPORT_SYMBOL(follow_pte_pmd);
4161
4162 /**
4163  * follow_pfn - look up PFN at a user virtual address
4164  * @vma: memory mapping
4165  * @address: user virtual address
4166  * @pfn: location to store found PFN
4167  *
4168  * Only IO mappings and raw PFN mappings are allowed.
4169  *
4170  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4171  */
4172 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4173         unsigned long *pfn)
4174 {
4175         int ret = -EINVAL;
4176         spinlock_t *ptl;
4177         pte_t *ptep;
4178
4179         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4180                 return ret;
4181
4182         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4183         if (ret)
4184                 return ret;
4185         *pfn = pte_pfn(*ptep);
4186         pte_unmap_unlock(ptep, ptl);
4187         return 0;
4188 }
4189 EXPORT_SYMBOL(follow_pfn);
4190
4191 #ifdef CONFIG_HAVE_IOREMAP_PROT
4192 int follow_phys(struct vm_area_struct *vma,
4193                 unsigned long address, unsigned int flags,
4194                 unsigned long *prot, resource_size_t *phys)
4195 {
4196         int ret = -EINVAL;
4197         pte_t *ptep, pte;
4198         spinlock_t *ptl;
4199
4200         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4201                 goto out;
4202
4203         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4204                 goto out;
4205         pte = *ptep;
4206
4207         if ((flags & FOLL_WRITE) && !pte_write(pte))
4208                 goto unlock;
4209
4210         *prot = pgprot_val(pte_pgprot(pte));
4211         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4212
4213         ret = 0;
4214 unlock:
4215         pte_unmap_unlock(ptep, ptl);
4216 out:
4217         return ret;
4218 }
4219
4220 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4221                         void *buf, int len, int write)
4222 {
4223         resource_size_t phys_addr;
4224         unsigned long prot = 0;
4225         void __iomem *maddr;
4226         int offset = addr & (PAGE_SIZE-1);
4227
4228         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4229                 return -EINVAL;
4230
4231         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4232         if (write)
4233                 memcpy_toio(maddr + offset, buf, len);
4234         else
4235                 memcpy_fromio(buf, maddr + offset, len);
4236         iounmap(maddr);
4237
4238         return len;
4239 }
4240 EXPORT_SYMBOL_GPL(generic_access_phys);
4241 #endif
4242
4243 /*
4244  * Access another process' address space as given in mm.  If non-NULL, use the
4245  * given task for page fault accounting.
4246  */
4247 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4248                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4249 {
4250         struct vm_area_struct *vma;
4251         void *old_buf = buf;
4252         int write = gup_flags & FOLL_WRITE;
4253
4254         down_read(&mm->mmap_sem);
4255         /* ignore errors, just check how much was successfully transferred */
4256         while (len) {
4257                 int bytes, ret, offset;
4258                 void *maddr;
4259                 struct page *page = NULL;
4260
4261                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4262                                 gup_flags, &page, &vma, NULL);
4263                 if (ret <= 0) {
4264 #ifndef CONFIG_HAVE_IOREMAP_PROT
4265                         break;
4266 #else
4267                         /*
4268                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4269                          * we can access using slightly different code.
4270                          */
4271                         vma = find_vma(mm, addr);
4272                         if (!vma || vma->vm_start > addr)
4273                                 break;
4274                         if (vma->vm_ops && vma->vm_ops->access)
4275                                 ret = vma->vm_ops->access(vma, addr, buf,
4276                                                           len, write);
4277                         if (ret <= 0)
4278                                 break;
4279                         bytes = ret;
4280 #endif
4281                 } else {
4282                         bytes = len;
4283                         offset = addr & (PAGE_SIZE-1);
4284                         if (bytes > PAGE_SIZE-offset)
4285                                 bytes = PAGE_SIZE-offset;
4286
4287                         maddr = kmap(page);
4288                         if (write) {
4289                                 copy_to_user_page(vma, page, addr,
4290                                                   maddr + offset, buf, bytes);
4291                                 set_page_dirty_lock(page);
4292                         } else {
4293                                 copy_from_user_page(vma, page, addr,
4294                                                     buf, maddr + offset, bytes);
4295                         }
4296                         kunmap(page);
4297                         put_page(page);
4298                 }
4299                 len -= bytes;
4300                 buf += bytes;
4301                 addr += bytes;
4302         }
4303         up_read(&mm->mmap_sem);
4304
4305         return buf - old_buf;
4306 }
4307
4308 /**
4309  * access_remote_vm - access another process' address space
4310  * @mm:         the mm_struct of the target address space
4311  * @addr:       start address to access
4312  * @buf:        source or destination buffer
4313  * @len:        number of bytes to transfer
4314  * @gup_flags:  flags modifying lookup behaviour
4315  *
4316  * The caller must hold a reference on @mm.
4317  */
4318 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4319                 void *buf, int len, unsigned int gup_flags)
4320 {
4321         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4322 }
4323
4324 /*
4325  * Access another process' address space.
4326  * Source/target buffer must be kernel space,
4327  * Do not walk the page table directly, use get_user_pages
4328  */
4329 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4330                 void *buf, int len, unsigned int gup_flags)
4331 {
4332         struct mm_struct *mm;
4333         int ret;
4334
4335         mm = get_task_mm(tsk);
4336         if (!mm)
4337                 return 0;
4338
4339         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4340
4341         mmput(mm);
4342
4343         return ret;
4344 }
4345 EXPORT_SYMBOL_GPL(access_process_vm);
4346
4347 /*
4348  * Print the name of a VMA.
4349  */
4350 void print_vma_addr(char *prefix, unsigned long ip)
4351 {
4352         struct mm_struct *mm = current->mm;
4353         struct vm_area_struct *vma;
4354
4355         /*
4356          * Do not print if we are in atomic
4357          * contexts (in exception stacks, etc.):
4358          */
4359         if (preempt_count())
4360                 return;
4361
4362         down_read(&mm->mmap_sem);
4363         vma = find_vma(mm, ip);
4364         if (vma && vma->vm_file) {
4365                 struct file *f = vma->vm_file;
4366                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4367                 if (buf) {
4368                         char *p;
4369
4370                         p = file_path(f, buf, PAGE_SIZE);
4371                         if (IS_ERR(p))
4372                                 p = "?";
4373                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4374                                         vma->vm_start,
4375                                         vma->vm_end - vma->vm_start);
4376                         free_page((unsigned long)buf);
4377                 }
4378         }
4379         up_read(&mm->mmap_sem);
4380 }
4381
4382 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4383 void __might_fault(const char *file, int line)
4384 {
4385         /*
4386          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4387          * holding the mmap_sem, this is safe because kernel memory doesn't
4388          * get paged out, therefore we'll never actually fault, and the
4389          * below annotations will generate false positives.
4390          */
4391         if (uaccess_kernel())
4392                 return;
4393         if (pagefault_disabled())
4394                 return;
4395         __might_sleep(file, line, 0);
4396 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4397         if (current->mm)
4398                 might_lock_read(&current->mm->mmap_sem);
4399 #endif
4400 }
4401 EXPORT_SYMBOL(__might_fault);
4402 #endif
4403
4404 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4405 static void clear_gigantic_page(struct page *page,
4406                                 unsigned long addr,
4407                                 unsigned int pages_per_huge_page)
4408 {
4409         int i;
4410         struct page *p = page;
4411
4412         might_sleep();
4413         for (i = 0; i < pages_per_huge_page;
4414              i++, p = mem_map_next(p, page, i)) {
4415                 cond_resched();
4416                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4417         }
4418 }
4419 void clear_huge_page(struct page *page,
4420                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4421 {
4422         int i, n, base, l;
4423         unsigned long addr = addr_hint &
4424                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4425
4426         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4427                 clear_gigantic_page(page, addr, pages_per_huge_page);
4428                 return;
4429         }
4430
4431         /* Clear sub-page to access last to keep its cache lines hot */
4432         might_sleep();
4433         n = (addr_hint - addr) / PAGE_SIZE;
4434         if (2 * n <= pages_per_huge_page) {
4435                 /* If sub-page to access in first half of huge page */
4436                 base = 0;
4437                 l = n;
4438                 /* Clear sub-pages at the end of huge page */
4439                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4440                         cond_resched();
4441                         clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4442                 }
4443         } else {
4444                 /* If sub-page to access in second half of huge page */
4445                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4446                 l = pages_per_huge_page - n;
4447                 /* Clear sub-pages at the begin of huge page */
4448                 for (i = 0; i < base; i++) {
4449                         cond_resched();
4450                         clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4451                 }
4452         }
4453         /*
4454          * Clear remaining sub-pages in left-right-left-right pattern
4455          * towards the sub-page to access
4456          */
4457         for (i = 0; i < l; i++) {
4458                 int left_idx = base + i;
4459                 int right_idx = base + 2 * l - 1 - i;
4460
4461                 cond_resched();
4462                 clear_user_highpage(page + left_idx,
4463                                     addr + left_idx * PAGE_SIZE);
4464                 cond_resched();
4465                 clear_user_highpage(page + right_idx,
4466                                     addr + right_idx * PAGE_SIZE);
4467         }
4468 }
4469
4470 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4471                                     unsigned long addr,
4472                                     struct vm_area_struct *vma,
4473                                     unsigned int pages_per_huge_page)
4474 {
4475         int i;
4476         struct page *dst_base = dst;
4477         struct page *src_base = src;
4478
4479         for (i = 0; i < pages_per_huge_page; ) {
4480                 cond_resched();
4481                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4482
4483                 i++;
4484                 dst = mem_map_next(dst, dst_base, i);
4485                 src = mem_map_next(src, src_base, i);
4486         }
4487 }
4488
4489 void copy_user_huge_page(struct page *dst, struct page *src,
4490                          unsigned long addr, struct vm_area_struct *vma,
4491                          unsigned int pages_per_huge_page)
4492 {
4493         int i;
4494
4495         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4496                 copy_user_gigantic_page(dst, src, addr, vma,
4497                                         pages_per_huge_page);
4498                 return;
4499         }
4500
4501         might_sleep();
4502         for (i = 0; i < pages_per_huge_page; i++) {
4503                 cond_resched();
4504                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4505         }
4506 }
4507
4508 long copy_huge_page_from_user(struct page *dst_page,
4509                                 const void __user *usr_src,
4510                                 unsigned int pages_per_huge_page,
4511                                 bool allow_pagefault)
4512 {
4513         void *src = (void *)usr_src;
4514         void *page_kaddr;
4515         unsigned long i, rc = 0;
4516         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4517
4518         for (i = 0; i < pages_per_huge_page; i++) {
4519                 if (allow_pagefault)
4520                         page_kaddr = kmap(dst_page + i);
4521                 else
4522                         page_kaddr = kmap_atomic(dst_page + i);
4523                 rc = copy_from_user(page_kaddr,
4524                                 (const void __user *)(src + i * PAGE_SIZE),
4525                                 PAGE_SIZE);
4526                 if (allow_pagefault)
4527                         kunmap(dst_page + i);
4528                 else
4529                         kunmap_atomic(page_kaddr);
4530
4531                 ret_val -= (PAGE_SIZE - rc);
4532                 if (rc)
4533                         break;
4534
4535                 cond_resched();
4536         }
4537         return ret_val;
4538 }
4539 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4540
4541 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4542
4543 static struct kmem_cache *page_ptl_cachep;
4544
4545 void __init ptlock_cache_init(void)
4546 {
4547         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4548                         SLAB_PANIC, NULL);
4549 }
4550
4551 bool ptlock_alloc(struct page *page)
4552 {
4553         spinlock_t *ptl;
4554
4555         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4556         if (!ptl)
4557                 return false;
4558         page->ptl = ptl;
4559         return true;
4560 }
4561
4562 void ptlock_free(struct page *page)
4563 {
4564         kmem_cache_free(page_ptl_cachep, page->ptl);
4565 }
4566 #endif