Merge branch 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/export.h>
55 #include <linux/delayacct.h>
56 #include <linux/init.h>
57 #include <linux/pfn_t.h>
58 #include <linux/writeback.h>
59 #include <linux/memcontrol.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/kallsyms.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 #ifdef HAVE_GENERIC_MMU_GATHER
190
191 static bool tlb_next_batch(struct mmu_gather *tlb)
192 {
193         struct mmu_gather_batch *batch;
194
195         batch = tlb->active;
196         if (batch->next) {
197                 tlb->active = batch->next;
198                 return true;
199         }
200
201         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
202                 return false;
203
204         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205         if (!batch)
206                 return false;
207
208         tlb->batch_count++;
209         batch->next = NULL;
210         batch->nr   = 0;
211         batch->max  = MAX_GATHER_BATCH;
212
213         tlb->active->next = batch;
214         tlb->active = batch;
215
216         return true;
217 }
218
219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220                                 unsigned long start, unsigned long end)
221 {
222         tlb->mm = mm;
223
224         /* Is it from 0 to ~0? */
225         tlb->fullmm     = !(start | (end+1));
226         tlb->need_flush_all = 0;
227         tlb->local.next = NULL;
228         tlb->local.nr   = 0;
229         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
230         tlb->active     = &tlb->local;
231         tlb->batch_count = 0;
232
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234         tlb->batch = NULL;
235 #endif
236         tlb->page_size = 0;
237
238         __tlb_reset_range(tlb);
239 }
240
241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
242 {
243         if (!tlb->end)
244                 return;
245
246         tlb_flush(tlb);
247         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
249         tlb_table_flush(tlb);
250 #endif
251         __tlb_reset_range(tlb);
252 }
253
254 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255 {
256         struct mmu_gather_batch *batch;
257
258         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
259                 free_pages_and_swap_cache(batch->pages, batch->nr);
260                 batch->nr = 0;
261         }
262         tlb->active = &tlb->local;
263 }
264
265 void tlb_flush_mmu(struct mmu_gather *tlb)
266 {
267         tlb_flush_mmu_tlbonly(tlb);
268         tlb_flush_mmu_free(tlb);
269 }
270
271 /* tlb_finish_mmu
272  *      Called at the end of the shootdown operation to free up any resources
273  *      that were required.
274  */
275 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
276                 unsigned long start, unsigned long end, bool force)
277 {
278         struct mmu_gather_batch *batch, *next;
279
280         if (force)
281                 __tlb_adjust_range(tlb, start, end - start);
282
283         tlb_flush_mmu(tlb);
284
285         /* keep the page table cache within bounds */
286         check_pgt_cache();
287
288         for (batch = tlb->local.next; batch; batch = next) {
289                 next = batch->next;
290                 free_pages((unsigned long)batch, 0);
291         }
292         tlb->local.next = NULL;
293 }
294
295 /* __tlb_remove_page
296  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297  *      handling the additional races in SMP caused by other CPUs caching valid
298  *      mappings in their TLBs. Returns the number of free page slots left.
299  *      When out of page slots we must call tlb_flush_mmu().
300  *returns true if the caller should flush.
301  */
302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
303 {
304         struct mmu_gather_batch *batch;
305
306         VM_BUG_ON(!tlb->end);
307         VM_WARN_ON(tlb->page_size != page_size);
308
309         batch = tlb->active;
310         /*
311          * Add the page and check if we are full. If so
312          * force a flush.
313          */
314         batch->pages[batch->nr++] = page;
315         if (batch->nr == batch->max) {
316                 if (!tlb_next_batch(tlb))
317                         return true;
318                 batch = tlb->active;
319         }
320         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
321
322         return false;
323 }
324
325 #endif /* HAVE_GENERIC_MMU_GATHER */
326
327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329 /*
330  * See the comment near struct mmu_table_batch.
331  */
332
333 static void tlb_remove_table_smp_sync(void *arg)
334 {
335         /* Simply deliver the interrupt */
336 }
337
338 static void tlb_remove_table_one(void *table)
339 {
340         /*
341          * This isn't an RCU grace period and hence the page-tables cannot be
342          * assumed to be actually RCU-freed.
343          *
344          * It is however sufficient for software page-table walkers that rely on
345          * IRQ disabling. See the comment near struct mmu_table_batch.
346          */
347         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348         __tlb_remove_table(table);
349 }
350
351 static void tlb_remove_table_rcu(struct rcu_head *head)
352 {
353         struct mmu_table_batch *batch;
354         int i;
355
356         batch = container_of(head, struct mmu_table_batch, rcu);
357
358         for (i = 0; i < batch->nr; i++)
359                 __tlb_remove_table(batch->tables[i]);
360
361         free_page((unsigned long)batch);
362 }
363
364 void tlb_table_flush(struct mmu_gather *tlb)
365 {
366         struct mmu_table_batch **batch = &tlb->batch;
367
368         if (*batch) {
369                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370                 *batch = NULL;
371         }
372 }
373
374 void tlb_remove_table(struct mmu_gather *tlb, void *table)
375 {
376         struct mmu_table_batch **batch = &tlb->batch;
377
378         /*
379          * When there's less then two users of this mm there cannot be a
380          * concurrent page-table walk.
381          */
382         if (atomic_read(&tlb->mm->mm_users) < 2) {
383                 __tlb_remove_table(table);
384                 return;
385         }
386
387         if (*batch == NULL) {
388                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389                 if (*batch == NULL) {
390                         tlb_remove_table_one(table);
391                         return;
392                 }
393                 (*batch)->nr = 0;
394         }
395         (*batch)->tables[(*batch)->nr++] = table;
396         if ((*batch)->nr == MAX_TABLE_BATCH)
397                 tlb_table_flush(tlb);
398 }
399
400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
401
402 /* tlb_gather_mmu
403  *      Called to initialize an (on-stack) mmu_gather structure for page-table
404  *      tear-down from @mm. The @fullmm argument is used when @mm is without
405  *      users and we're going to destroy the full address space (exit/execve).
406  */
407 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
408                         unsigned long start, unsigned long end)
409 {
410         arch_tlb_gather_mmu(tlb, mm, start, end);
411         inc_tlb_flush_pending(tlb->mm);
412 }
413
414 void tlb_finish_mmu(struct mmu_gather *tlb,
415                 unsigned long start, unsigned long end)
416 {
417         /*
418          * If there are parallel threads are doing PTE changes on same range
419          * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
420          * flush by batching, a thread has stable TLB entry can fail to flush
421          * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
422          * forcefully if we detect parallel PTE batching threads.
423          */
424         bool force = mm_tlb_flush_nested(tlb->mm);
425
426         arch_tlb_finish_mmu(tlb, start, end, force);
427         dec_tlb_flush_pending(tlb->mm);
428 }
429
430 /*
431  * Note: this doesn't free the actual pages themselves. That
432  * has been handled earlier when unmapping all the memory regions.
433  */
434 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
435                            unsigned long addr)
436 {
437         pgtable_t token = pmd_pgtable(*pmd);
438         pmd_clear(pmd);
439         pte_free_tlb(tlb, token, addr);
440         atomic_long_dec(&tlb->mm->nr_ptes);
441 }
442
443 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
444                                 unsigned long addr, unsigned long end,
445                                 unsigned long floor, unsigned long ceiling)
446 {
447         pmd_t *pmd;
448         unsigned long next;
449         unsigned long start;
450
451         start = addr;
452         pmd = pmd_offset(pud, addr);
453         do {
454                 next = pmd_addr_end(addr, end);
455                 if (pmd_none_or_clear_bad(pmd))
456                         continue;
457                 free_pte_range(tlb, pmd, addr);
458         } while (pmd++, addr = next, addr != end);
459
460         start &= PUD_MASK;
461         if (start < floor)
462                 return;
463         if (ceiling) {
464                 ceiling &= PUD_MASK;
465                 if (!ceiling)
466                         return;
467         }
468         if (end - 1 > ceiling - 1)
469                 return;
470
471         pmd = pmd_offset(pud, start);
472         pud_clear(pud);
473         pmd_free_tlb(tlb, pmd, start);
474         mm_dec_nr_pmds(tlb->mm);
475 }
476
477 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
478                                 unsigned long addr, unsigned long end,
479                                 unsigned long floor, unsigned long ceiling)
480 {
481         pud_t *pud;
482         unsigned long next;
483         unsigned long start;
484
485         start = addr;
486         pud = pud_offset(p4d, addr);
487         do {
488                 next = pud_addr_end(addr, end);
489                 if (pud_none_or_clear_bad(pud))
490                         continue;
491                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
492         } while (pud++, addr = next, addr != end);
493
494         start &= P4D_MASK;
495         if (start < floor)
496                 return;
497         if (ceiling) {
498                 ceiling &= P4D_MASK;
499                 if (!ceiling)
500                         return;
501         }
502         if (end - 1 > ceiling - 1)
503                 return;
504
505         pud = pud_offset(p4d, start);
506         p4d_clear(p4d);
507         pud_free_tlb(tlb, pud, start);
508 }
509
510 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
511                                 unsigned long addr, unsigned long end,
512                                 unsigned long floor, unsigned long ceiling)
513 {
514         p4d_t *p4d;
515         unsigned long next;
516         unsigned long start;
517
518         start = addr;
519         p4d = p4d_offset(pgd, addr);
520         do {
521                 next = p4d_addr_end(addr, end);
522                 if (p4d_none_or_clear_bad(p4d))
523                         continue;
524                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
525         } while (p4d++, addr = next, addr != end);
526
527         start &= PGDIR_MASK;
528         if (start < floor)
529                 return;
530         if (ceiling) {
531                 ceiling &= PGDIR_MASK;
532                 if (!ceiling)
533                         return;
534         }
535         if (end - 1 > ceiling - 1)
536                 return;
537
538         p4d = p4d_offset(pgd, start);
539         pgd_clear(pgd);
540         p4d_free_tlb(tlb, p4d, start);
541 }
542
543 /*
544  * This function frees user-level page tables of a process.
545  */
546 void free_pgd_range(struct mmu_gather *tlb,
547                         unsigned long addr, unsigned long end,
548                         unsigned long floor, unsigned long ceiling)
549 {
550         pgd_t *pgd;
551         unsigned long next;
552
553         /*
554          * The next few lines have given us lots of grief...
555          *
556          * Why are we testing PMD* at this top level?  Because often
557          * there will be no work to do at all, and we'd prefer not to
558          * go all the way down to the bottom just to discover that.
559          *
560          * Why all these "- 1"s?  Because 0 represents both the bottom
561          * of the address space and the top of it (using -1 for the
562          * top wouldn't help much: the masks would do the wrong thing).
563          * The rule is that addr 0 and floor 0 refer to the bottom of
564          * the address space, but end 0 and ceiling 0 refer to the top
565          * Comparisons need to use "end - 1" and "ceiling - 1" (though
566          * that end 0 case should be mythical).
567          *
568          * Wherever addr is brought up or ceiling brought down, we must
569          * be careful to reject "the opposite 0" before it confuses the
570          * subsequent tests.  But what about where end is brought down
571          * by PMD_SIZE below? no, end can't go down to 0 there.
572          *
573          * Whereas we round start (addr) and ceiling down, by different
574          * masks at different levels, in order to test whether a table
575          * now has no other vmas using it, so can be freed, we don't
576          * bother to round floor or end up - the tests don't need that.
577          */
578
579         addr &= PMD_MASK;
580         if (addr < floor) {
581                 addr += PMD_SIZE;
582                 if (!addr)
583                         return;
584         }
585         if (ceiling) {
586                 ceiling &= PMD_MASK;
587                 if (!ceiling)
588                         return;
589         }
590         if (end - 1 > ceiling - 1)
591                 end -= PMD_SIZE;
592         if (addr > end - 1)
593                 return;
594         /*
595          * We add page table cache pages with PAGE_SIZE,
596          * (see pte_free_tlb()), flush the tlb if we need
597          */
598         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
599         pgd = pgd_offset(tlb->mm, addr);
600         do {
601                 next = pgd_addr_end(addr, end);
602                 if (pgd_none_or_clear_bad(pgd))
603                         continue;
604                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
605         } while (pgd++, addr = next, addr != end);
606 }
607
608 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
609                 unsigned long floor, unsigned long ceiling)
610 {
611         while (vma) {
612                 struct vm_area_struct *next = vma->vm_next;
613                 unsigned long addr = vma->vm_start;
614
615                 /*
616                  * Hide vma from rmap and truncate_pagecache before freeing
617                  * pgtables
618                  */
619                 unlink_anon_vmas(vma);
620                 unlink_file_vma(vma);
621
622                 if (is_vm_hugetlb_page(vma)) {
623                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
624                                 floor, next ? next->vm_start : ceiling);
625                 } else {
626                         /*
627                          * Optimization: gather nearby vmas into one call down
628                          */
629                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
630                                && !is_vm_hugetlb_page(next)) {
631                                 vma = next;
632                                 next = vma->vm_next;
633                                 unlink_anon_vmas(vma);
634                                 unlink_file_vma(vma);
635                         }
636                         free_pgd_range(tlb, addr, vma->vm_end,
637                                 floor, next ? next->vm_start : ceiling);
638                 }
639                 vma = next;
640         }
641 }
642
643 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
644 {
645         spinlock_t *ptl;
646         pgtable_t new = pte_alloc_one(mm, address);
647         if (!new)
648                 return -ENOMEM;
649
650         /*
651          * Ensure all pte setup (eg. pte page lock and page clearing) are
652          * visible before the pte is made visible to other CPUs by being
653          * put into page tables.
654          *
655          * The other side of the story is the pointer chasing in the page
656          * table walking code (when walking the page table without locking;
657          * ie. most of the time). Fortunately, these data accesses consist
658          * of a chain of data-dependent loads, meaning most CPUs (alpha
659          * being the notable exception) will already guarantee loads are
660          * seen in-order. See the alpha page table accessors for the
661          * smp_read_barrier_depends() barriers in page table walking code.
662          */
663         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
664
665         ptl = pmd_lock(mm, pmd);
666         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
667                 atomic_long_inc(&mm->nr_ptes);
668                 pmd_populate(mm, pmd, new);
669                 new = NULL;
670         }
671         spin_unlock(ptl);
672         if (new)
673                 pte_free(mm, new);
674         return 0;
675 }
676
677 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
678 {
679         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
680         if (!new)
681                 return -ENOMEM;
682
683         smp_wmb(); /* See comment in __pte_alloc */
684
685         spin_lock(&init_mm.page_table_lock);
686         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
687                 pmd_populate_kernel(&init_mm, pmd, new);
688                 new = NULL;
689         }
690         spin_unlock(&init_mm.page_table_lock);
691         if (new)
692                 pte_free_kernel(&init_mm, new);
693         return 0;
694 }
695
696 static inline void init_rss_vec(int *rss)
697 {
698         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
699 }
700
701 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
702 {
703         int i;
704
705         if (current->mm == mm)
706                 sync_mm_rss(mm);
707         for (i = 0; i < NR_MM_COUNTERS; i++)
708                 if (rss[i])
709                         add_mm_counter(mm, i, rss[i]);
710 }
711
712 /*
713  * This function is called to print an error when a bad pte
714  * is found. For example, we might have a PFN-mapped pte in
715  * a region that doesn't allow it.
716  *
717  * The calling function must still handle the error.
718  */
719 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
720                           pte_t pte, struct page *page)
721 {
722         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
723         p4d_t *p4d = p4d_offset(pgd, addr);
724         pud_t *pud = pud_offset(p4d, addr);
725         pmd_t *pmd = pmd_offset(pud, addr);
726         struct address_space *mapping;
727         pgoff_t index;
728         static unsigned long resume;
729         static unsigned long nr_shown;
730         static unsigned long nr_unshown;
731
732         /*
733          * Allow a burst of 60 reports, then keep quiet for that minute;
734          * or allow a steady drip of one report per second.
735          */
736         if (nr_shown == 60) {
737                 if (time_before(jiffies, resume)) {
738                         nr_unshown++;
739                         return;
740                 }
741                 if (nr_unshown) {
742                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
743                                  nr_unshown);
744                         nr_unshown = 0;
745                 }
746                 nr_shown = 0;
747         }
748         if (nr_shown++ == 0)
749                 resume = jiffies + 60 * HZ;
750
751         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
752         index = linear_page_index(vma, addr);
753
754         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
755                  current->comm,
756                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
757         if (page)
758                 dump_page(page, "bad pte");
759         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
760                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
761         /*
762          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
763          */
764         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
765                  vma->vm_file,
766                  vma->vm_ops ? vma->vm_ops->fault : NULL,
767                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
768                  mapping ? mapping->a_ops->readpage : NULL);
769         dump_stack();
770         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
771 }
772
773 /*
774  * vm_normal_page -- This function gets the "struct page" associated with a pte.
775  *
776  * "Special" mappings do not wish to be associated with a "struct page" (either
777  * it doesn't exist, or it exists but they don't want to touch it). In this
778  * case, NULL is returned here. "Normal" mappings do have a struct page.
779  *
780  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
781  * pte bit, in which case this function is trivial. Secondly, an architecture
782  * may not have a spare pte bit, which requires a more complicated scheme,
783  * described below.
784  *
785  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
786  * special mapping (even if there are underlying and valid "struct pages").
787  * COWed pages of a VM_PFNMAP are always normal.
788  *
789  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
790  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
791  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
792  * mapping will always honor the rule
793  *
794  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
795  *
796  * And for normal mappings this is false.
797  *
798  * This restricts such mappings to be a linear translation from virtual address
799  * to pfn. To get around this restriction, we allow arbitrary mappings so long
800  * as the vma is not a COW mapping; in that case, we know that all ptes are
801  * special (because none can have been COWed).
802  *
803  *
804  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
805  *
806  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
807  * page" backing, however the difference is that _all_ pages with a struct
808  * page (that is, those where pfn_valid is true) are refcounted and considered
809  * normal pages by the VM. The disadvantage is that pages are refcounted
810  * (which can be slower and simply not an option for some PFNMAP users). The
811  * advantage is that we don't have to follow the strict linearity rule of
812  * PFNMAP mappings in order to support COWable mappings.
813  *
814  */
815 #ifdef __HAVE_ARCH_PTE_SPECIAL
816 # define HAVE_PTE_SPECIAL 1
817 #else
818 # define HAVE_PTE_SPECIAL 0
819 #endif
820 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821                                 pte_t pte)
822 {
823         unsigned long pfn = pte_pfn(pte);
824
825         if (HAVE_PTE_SPECIAL) {
826                 if (likely(!pte_special(pte)))
827                         goto check_pfn;
828                 if (vma->vm_ops && vma->vm_ops->find_special_page)
829                         return vma->vm_ops->find_special_page(vma, addr);
830                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831                         return NULL;
832                 if (!is_zero_pfn(pfn))
833                         print_bad_pte(vma, addr, pte, NULL);
834                 return NULL;
835         }
836
837         /* !HAVE_PTE_SPECIAL case follows: */
838
839         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
840                 if (vma->vm_flags & VM_MIXEDMAP) {
841                         if (!pfn_valid(pfn))
842                                 return NULL;
843                         goto out;
844                 } else {
845                         unsigned long off;
846                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
847                         if (pfn == vma->vm_pgoff + off)
848                                 return NULL;
849                         if (!is_cow_mapping(vma->vm_flags))
850                                 return NULL;
851                 }
852         }
853
854         if (is_zero_pfn(pfn))
855                 return NULL;
856 check_pfn:
857         if (unlikely(pfn > highest_memmap_pfn)) {
858                 print_bad_pte(vma, addr, pte, NULL);
859                 return NULL;
860         }
861
862         /*
863          * NOTE! We still have PageReserved() pages in the page tables.
864          * eg. VDSO mappings can cause them to exist.
865          */
866 out:
867         return pfn_to_page(pfn);
868 }
869
870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
871 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
872                                 pmd_t pmd)
873 {
874         unsigned long pfn = pmd_pfn(pmd);
875
876         /*
877          * There is no pmd_special() but there may be special pmds, e.g.
878          * in a direct-access (dax) mapping, so let's just replicate the
879          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
880          */
881         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
882                 if (vma->vm_flags & VM_MIXEDMAP) {
883                         if (!pfn_valid(pfn))
884                                 return NULL;
885                         goto out;
886                 } else {
887                         unsigned long off;
888                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
889                         if (pfn == vma->vm_pgoff + off)
890                                 return NULL;
891                         if (!is_cow_mapping(vma->vm_flags))
892                                 return NULL;
893                 }
894         }
895
896         if (is_zero_pfn(pfn))
897                 return NULL;
898         if (unlikely(pfn > highest_memmap_pfn))
899                 return NULL;
900
901         /*
902          * NOTE! We still have PageReserved() pages in the page tables.
903          * eg. VDSO mappings can cause them to exist.
904          */
905 out:
906         return pfn_to_page(pfn);
907 }
908 #endif
909
910 /*
911  * copy one vm_area from one task to the other. Assumes the page tables
912  * already present in the new task to be cleared in the whole range
913  * covered by this vma.
914  */
915
916 static inline unsigned long
917 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
919                 unsigned long addr, int *rss)
920 {
921         unsigned long vm_flags = vma->vm_flags;
922         pte_t pte = *src_pte;
923         struct page *page;
924
925         /* pte contains position in swap or file, so copy. */
926         if (unlikely(!pte_present(pte))) {
927                 swp_entry_t entry = pte_to_swp_entry(pte);
928
929                 if (likely(!non_swap_entry(entry))) {
930                         if (swap_duplicate(entry) < 0)
931                                 return entry.val;
932
933                         /* make sure dst_mm is on swapoff's mmlist. */
934                         if (unlikely(list_empty(&dst_mm->mmlist))) {
935                                 spin_lock(&mmlist_lock);
936                                 if (list_empty(&dst_mm->mmlist))
937                                         list_add(&dst_mm->mmlist,
938                                                         &src_mm->mmlist);
939                                 spin_unlock(&mmlist_lock);
940                         }
941                         rss[MM_SWAPENTS]++;
942                 } else if (is_migration_entry(entry)) {
943                         page = migration_entry_to_page(entry);
944
945                         rss[mm_counter(page)]++;
946
947                         if (is_write_migration_entry(entry) &&
948                                         is_cow_mapping(vm_flags)) {
949                                 /*
950                                  * COW mappings require pages in both
951                                  * parent and child to be set to read.
952                                  */
953                                 make_migration_entry_read(&entry);
954                                 pte = swp_entry_to_pte(entry);
955                                 if (pte_swp_soft_dirty(*src_pte))
956                                         pte = pte_swp_mksoft_dirty(pte);
957                                 set_pte_at(src_mm, addr, src_pte, pte);
958                         }
959                 }
960                 goto out_set_pte;
961         }
962
963         /*
964          * If it's a COW mapping, write protect it both
965          * in the parent and the child
966          */
967         if (is_cow_mapping(vm_flags)) {
968                 ptep_set_wrprotect(src_mm, addr, src_pte);
969                 pte = pte_wrprotect(pte);
970         }
971
972         /*
973          * If it's a shared mapping, mark it clean in
974          * the child
975          */
976         if (vm_flags & VM_SHARED)
977                 pte = pte_mkclean(pte);
978         pte = pte_mkold(pte);
979
980         page = vm_normal_page(vma, addr, pte);
981         if (page) {
982                 get_page(page);
983                 page_dup_rmap(page, false);
984                 rss[mm_counter(page)]++;
985         }
986
987 out_set_pte:
988         set_pte_at(dst_mm, addr, dst_pte, pte);
989         return 0;
990 }
991
992 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
994                    unsigned long addr, unsigned long end)
995 {
996         pte_t *orig_src_pte, *orig_dst_pte;
997         pte_t *src_pte, *dst_pte;
998         spinlock_t *src_ptl, *dst_ptl;
999         int progress = 0;
1000         int rss[NR_MM_COUNTERS];
1001         swp_entry_t entry = (swp_entry_t){0};
1002
1003 again:
1004         init_rss_vec(rss);
1005
1006         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1007         if (!dst_pte)
1008                 return -ENOMEM;
1009         src_pte = pte_offset_map(src_pmd, addr);
1010         src_ptl = pte_lockptr(src_mm, src_pmd);
1011         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1012         orig_src_pte = src_pte;
1013         orig_dst_pte = dst_pte;
1014         arch_enter_lazy_mmu_mode();
1015
1016         do {
1017                 /*
1018                  * We are holding two locks at this point - either of them
1019                  * could generate latencies in another task on another CPU.
1020                  */
1021                 if (progress >= 32) {
1022                         progress = 0;
1023                         if (need_resched() ||
1024                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1025                                 break;
1026                 }
1027                 if (pte_none(*src_pte)) {
1028                         progress++;
1029                         continue;
1030                 }
1031                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1032                                                         vma, addr, rss);
1033                 if (entry.val)
1034                         break;
1035                 progress += 8;
1036         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1037
1038         arch_leave_lazy_mmu_mode();
1039         spin_unlock(src_ptl);
1040         pte_unmap(orig_src_pte);
1041         add_mm_rss_vec(dst_mm, rss);
1042         pte_unmap_unlock(orig_dst_pte, dst_ptl);
1043         cond_resched();
1044
1045         if (entry.val) {
1046                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1047                         return -ENOMEM;
1048                 progress = 0;
1049         }
1050         if (addr != end)
1051                 goto again;
1052         return 0;
1053 }
1054
1055 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1056                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1057                 unsigned long addr, unsigned long end)
1058 {
1059         pmd_t *src_pmd, *dst_pmd;
1060         unsigned long next;
1061
1062         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1063         if (!dst_pmd)
1064                 return -ENOMEM;
1065         src_pmd = pmd_offset(src_pud, addr);
1066         do {
1067                 next = pmd_addr_end(addr, end);
1068                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1069                         int err;
1070                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1071                         err = copy_huge_pmd(dst_mm, src_mm,
1072                                             dst_pmd, src_pmd, addr, vma);
1073                         if (err == -ENOMEM)
1074                                 return -ENOMEM;
1075                         if (!err)
1076                                 continue;
1077                         /* fall through */
1078                 }
1079                 if (pmd_none_or_clear_bad(src_pmd))
1080                         continue;
1081                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1082                                                 vma, addr, next))
1083                         return -ENOMEM;
1084         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1085         return 0;
1086 }
1087
1088 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1089                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1090                 unsigned long addr, unsigned long end)
1091 {
1092         pud_t *src_pud, *dst_pud;
1093         unsigned long next;
1094
1095         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1096         if (!dst_pud)
1097                 return -ENOMEM;
1098         src_pud = pud_offset(src_p4d, addr);
1099         do {
1100                 next = pud_addr_end(addr, end);
1101                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1102                         int err;
1103
1104                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1105                         err = copy_huge_pud(dst_mm, src_mm,
1106                                             dst_pud, src_pud, addr, vma);
1107                         if (err == -ENOMEM)
1108                                 return -ENOMEM;
1109                         if (!err)
1110                                 continue;
1111                         /* fall through */
1112                 }
1113                 if (pud_none_or_clear_bad(src_pud))
1114                         continue;
1115                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1116                                                 vma, addr, next))
1117                         return -ENOMEM;
1118         } while (dst_pud++, src_pud++, addr = next, addr != end);
1119         return 0;
1120 }
1121
1122 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1124                 unsigned long addr, unsigned long end)
1125 {
1126         p4d_t *src_p4d, *dst_p4d;
1127         unsigned long next;
1128
1129         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1130         if (!dst_p4d)
1131                 return -ENOMEM;
1132         src_p4d = p4d_offset(src_pgd, addr);
1133         do {
1134                 next = p4d_addr_end(addr, end);
1135                 if (p4d_none_or_clear_bad(src_p4d))
1136                         continue;
1137                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1138                                                 vma, addr, next))
1139                         return -ENOMEM;
1140         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1141         return 0;
1142 }
1143
1144 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1145                 struct vm_area_struct *vma)
1146 {
1147         pgd_t *src_pgd, *dst_pgd;
1148         unsigned long next;
1149         unsigned long addr = vma->vm_start;
1150         unsigned long end = vma->vm_end;
1151         unsigned long mmun_start;       /* For mmu_notifiers */
1152         unsigned long mmun_end;         /* For mmu_notifiers */
1153         bool is_cow;
1154         int ret;
1155
1156         /*
1157          * Don't copy ptes where a page fault will fill them correctly.
1158          * Fork becomes much lighter when there are big shared or private
1159          * readonly mappings. The tradeoff is that copy_page_range is more
1160          * efficient than faulting.
1161          */
1162         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1163                         !vma->anon_vma)
1164                 return 0;
1165
1166         if (is_vm_hugetlb_page(vma))
1167                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1168
1169         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1170                 /*
1171                  * We do not free on error cases below as remove_vma
1172                  * gets called on error from higher level routine
1173                  */
1174                 ret = track_pfn_copy(vma);
1175                 if (ret)
1176                         return ret;
1177         }
1178
1179         /*
1180          * We need to invalidate the secondary MMU mappings only when
1181          * there could be a permission downgrade on the ptes of the
1182          * parent mm. And a permission downgrade will only happen if
1183          * is_cow_mapping() returns true.
1184          */
1185         is_cow = is_cow_mapping(vma->vm_flags);
1186         mmun_start = addr;
1187         mmun_end   = end;
1188         if (is_cow)
1189                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1190                                                     mmun_end);
1191
1192         ret = 0;
1193         dst_pgd = pgd_offset(dst_mm, addr);
1194         src_pgd = pgd_offset(src_mm, addr);
1195         do {
1196                 next = pgd_addr_end(addr, end);
1197                 if (pgd_none_or_clear_bad(src_pgd))
1198                         continue;
1199                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1200                                             vma, addr, next))) {
1201                         ret = -ENOMEM;
1202                         break;
1203                 }
1204         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1205
1206         if (is_cow)
1207                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1208         return ret;
1209 }
1210
1211 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1212                                 struct vm_area_struct *vma, pmd_t *pmd,
1213                                 unsigned long addr, unsigned long end,
1214                                 struct zap_details *details)
1215 {
1216         struct mm_struct *mm = tlb->mm;
1217         int force_flush = 0;
1218         int rss[NR_MM_COUNTERS];
1219         spinlock_t *ptl;
1220         pte_t *start_pte;
1221         pte_t *pte;
1222         swp_entry_t entry;
1223
1224         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1225 again:
1226         init_rss_vec(rss);
1227         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1228         pte = start_pte;
1229         flush_tlb_batched_pending(mm);
1230         arch_enter_lazy_mmu_mode();
1231         do {
1232                 pte_t ptent = *pte;
1233                 if (pte_none(ptent))
1234                         continue;
1235
1236                 if (pte_present(ptent)) {
1237                         struct page *page;
1238
1239                         page = vm_normal_page(vma, addr, ptent);
1240                         if (unlikely(details) && page) {
1241                                 /*
1242                                  * unmap_shared_mapping_pages() wants to
1243                                  * invalidate cache without truncating:
1244                                  * unmap shared but keep private pages.
1245                                  */
1246                                 if (details->check_mapping &&
1247                                     details->check_mapping != page_rmapping(page))
1248                                         continue;
1249                         }
1250                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1251                                                         tlb->fullmm);
1252                         tlb_remove_tlb_entry(tlb, pte, addr);
1253                         if (unlikely(!page))
1254                                 continue;
1255
1256                         if (!PageAnon(page)) {
1257                                 if (pte_dirty(ptent)) {
1258                                         force_flush = 1;
1259                                         set_page_dirty(page);
1260                                 }
1261                                 if (pte_young(ptent) &&
1262                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1263                                         mark_page_accessed(page);
1264                         }
1265                         rss[mm_counter(page)]--;
1266                         page_remove_rmap(page, false);
1267                         if (unlikely(page_mapcount(page) < 0))
1268                                 print_bad_pte(vma, addr, ptent, page);
1269                         if (unlikely(__tlb_remove_page(tlb, page))) {
1270                                 force_flush = 1;
1271                                 addr += PAGE_SIZE;
1272                                 break;
1273                         }
1274                         continue;
1275                 }
1276                 /* If details->check_mapping, we leave swap entries. */
1277                 if (unlikely(details))
1278                         continue;
1279
1280                 entry = pte_to_swp_entry(ptent);
1281                 if (!non_swap_entry(entry))
1282                         rss[MM_SWAPENTS]--;
1283                 else if (is_migration_entry(entry)) {
1284                         struct page *page;
1285
1286                         page = migration_entry_to_page(entry);
1287                         rss[mm_counter(page)]--;
1288                 }
1289                 if (unlikely(!free_swap_and_cache(entry)))
1290                         print_bad_pte(vma, addr, ptent, NULL);
1291                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1292         } while (pte++, addr += PAGE_SIZE, addr != end);
1293
1294         add_mm_rss_vec(mm, rss);
1295         arch_leave_lazy_mmu_mode();
1296
1297         /* Do the actual TLB flush before dropping ptl */
1298         if (force_flush)
1299                 tlb_flush_mmu_tlbonly(tlb);
1300         pte_unmap_unlock(start_pte, ptl);
1301
1302         /*
1303          * If we forced a TLB flush (either due to running out of
1304          * batch buffers or because we needed to flush dirty TLB
1305          * entries before releasing the ptl), free the batched
1306          * memory too. Restart if we didn't do everything.
1307          */
1308         if (force_flush) {
1309                 force_flush = 0;
1310                 tlb_flush_mmu_free(tlb);
1311                 if (addr != end)
1312                         goto again;
1313         }
1314
1315         return addr;
1316 }
1317
1318 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1319                                 struct vm_area_struct *vma, pud_t *pud,
1320                                 unsigned long addr, unsigned long end,
1321                                 struct zap_details *details)
1322 {
1323         pmd_t *pmd;
1324         unsigned long next;
1325
1326         pmd = pmd_offset(pud, addr);
1327         do {
1328                 next = pmd_addr_end(addr, end);
1329                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1330                         if (next - addr != HPAGE_PMD_SIZE) {
1331                                 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1332                                     !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1333                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1334                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1335                                 goto next;
1336                         /* fall through */
1337                 }
1338                 /*
1339                  * Here there can be other concurrent MADV_DONTNEED or
1340                  * trans huge page faults running, and if the pmd is
1341                  * none or trans huge it can change under us. This is
1342                  * because MADV_DONTNEED holds the mmap_sem in read
1343                  * mode.
1344                  */
1345                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1346                         goto next;
1347                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1348 next:
1349                 cond_resched();
1350         } while (pmd++, addr = next, addr != end);
1351
1352         return addr;
1353 }
1354
1355 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1356                                 struct vm_area_struct *vma, p4d_t *p4d,
1357                                 unsigned long addr, unsigned long end,
1358                                 struct zap_details *details)
1359 {
1360         pud_t *pud;
1361         unsigned long next;
1362
1363         pud = pud_offset(p4d, addr);
1364         do {
1365                 next = pud_addr_end(addr, end);
1366                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1367                         if (next - addr != HPAGE_PUD_SIZE) {
1368                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1369                                 split_huge_pud(vma, pud, addr);
1370                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1371                                 goto next;
1372                         /* fall through */
1373                 }
1374                 if (pud_none_or_clear_bad(pud))
1375                         continue;
1376                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1377 next:
1378                 cond_resched();
1379         } while (pud++, addr = next, addr != end);
1380
1381         return addr;
1382 }
1383
1384 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1385                                 struct vm_area_struct *vma, pgd_t *pgd,
1386                                 unsigned long addr, unsigned long end,
1387                                 struct zap_details *details)
1388 {
1389         p4d_t *p4d;
1390         unsigned long next;
1391
1392         p4d = p4d_offset(pgd, addr);
1393         do {
1394                 next = p4d_addr_end(addr, end);
1395                 if (p4d_none_or_clear_bad(p4d))
1396                         continue;
1397                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1398         } while (p4d++, addr = next, addr != end);
1399
1400         return addr;
1401 }
1402
1403 void unmap_page_range(struct mmu_gather *tlb,
1404                              struct vm_area_struct *vma,
1405                              unsigned long addr, unsigned long end,
1406                              struct zap_details *details)
1407 {
1408         pgd_t *pgd;
1409         unsigned long next;
1410
1411         BUG_ON(addr >= end);
1412         tlb_start_vma(tlb, vma);
1413         pgd = pgd_offset(vma->vm_mm, addr);
1414         do {
1415                 next = pgd_addr_end(addr, end);
1416                 if (pgd_none_or_clear_bad(pgd))
1417                         continue;
1418                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1419         } while (pgd++, addr = next, addr != end);
1420         tlb_end_vma(tlb, vma);
1421 }
1422
1423
1424 static void unmap_single_vma(struct mmu_gather *tlb,
1425                 struct vm_area_struct *vma, unsigned long start_addr,
1426                 unsigned long end_addr,
1427                 struct zap_details *details)
1428 {
1429         unsigned long start = max(vma->vm_start, start_addr);
1430         unsigned long end;
1431
1432         if (start >= vma->vm_end)
1433                 return;
1434         end = min(vma->vm_end, end_addr);
1435         if (end <= vma->vm_start)
1436                 return;
1437
1438         if (vma->vm_file)
1439                 uprobe_munmap(vma, start, end);
1440
1441         if (unlikely(vma->vm_flags & VM_PFNMAP))
1442                 untrack_pfn(vma, 0, 0);
1443
1444         if (start != end) {
1445                 if (unlikely(is_vm_hugetlb_page(vma))) {
1446                         /*
1447                          * It is undesirable to test vma->vm_file as it
1448                          * should be non-null for valid hugetlb area.
1449                          * However, vm_file will be NULL in the error
1450                          * cleanup path of mmap_region. When
1451                          * hugetlbfs ->mmap method fails,
1452                          * mmap_region() nullifies vma->vm_file
1453                          * before calling this function to clean up.
1454                          * Since no pte has actually been setup, it is
1455                          * safe to do nothing in this case.
1456                          */
1457                         if (vma->vm_file) {
1458                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1459                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1460                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1461                         }
1462                 } else
1463                         unmap_page_range(tlb, vma, start, end, details);
1464         }
1465 }
1466
1467 /**
1468  * unmap_vmas - unmap a range of memory covered by a list of vma's
1469  * @tlb: address of the caller's struct mmu_gather
1470  * @vma: the starting vma
1471  * @start_addr: virtual address at which to start unmapping
1472  * @end_addr: virtual address at which to end unmapping
1473  *
1474  * Unmap all pages in the vma list.
1475  *
1476  * Only addresses between `start' and `end' will be unmapped.
1477  *
1478  * The VMA list must be sorted in ascending virtual address order.
1479  *
1480  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1481  * range after unmap_vmas() returns.  So the only responsibility here is to
1482  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1483  * drops the lock and schedules.
1484  */
1485 void unmap_vmas(struct mmu_gather *tlb,
1486                 struct vm_area_struct *vma, unsigned long start_addr,
1487                 unsigned long end_addr)
1488 {
1489         struct mm_struct *mm = vma->vm_mm;
1490
1491         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1492         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1493                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1494         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1495 }
1496
1497 /**
1498  * zap_page_range - remove user pages in a given range
1499  * @vma: vm_area_struct holding the applicable pages
1500  * @start: starting address of pages to zap
1501  * @size: number of bytes to zap
1502  *
1503  * Caller must protect the VMA list
1504  */
1505 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1506                 unsigned long size)
1507 {
1508         struct mm_struct *mm = vma->vm_mm;
1509         struct mmu_gather tlb;
1510         unsigned long end = start + size;
1511
1512         lru_add_drain();
1513         tlb_gather_mmu(&tlb, mm, start, end);
1514         update_hiwater_rss(mm);
1515         mmu_notifier_invalidate_range_start(mm, start, end);
1516         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1517                 unmap_single_vma(&tlb, vma, start, end, NULL);
1518         mmu_notifier_invalidate_range_end(mm, start, end);
1519         tlb_finish_mmu(&tlb, start, end);
1520 }
1521
1522 /**
1523  * zap_page_range_single - remove user pages in a given range
1524  * @vma: vm_area_struct holding the applicable pages
1525  * @address: starting address of pages to zap
1526  * @size: number of bytes to zap
1527  * @details: details of shared cache invalidation
1528  *
1529  * The range must fit into one VMA.
1530  */
1531 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1532                 unsigned long size, struct zap_details *details)
1533 {
1534         struct mm_struct *mm = vma->vm_mm;
1535         struct mmu_gather tlb;
1536         unsigned long end = address + size;
1537
1538         lru_add_drain();
1539         tlb_gather_mmu(&tlb, mm, address, end);
1540         update_hiwater_rss(mm);
1541         mmu_notifier_invalidate_range_start(mm, address, end);
1542         unmap_single_vma(&tlb, vma, address, end, details);
1543         mmu_notifier_invalidate_range_end(mm, address, end);
1544         tlb_finish_mmu(&tlb, address, end);
1545 }
1546
1547 /**
1548  * zap_vma_ptes - remove ptes mapping the vma
1549  * @vma: vm_area_struct holding ptes to be zapped
1550  * @address: starting address of pages to zap
1551  * @size: number of bytes to zap
1552  *
1553  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1554  *
1555  * The entire address range must be fully contained within the vma.
1556  *
1557  * Returns 0 if successful.
1558  */
1559 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1560                 unsigned long size)
1561 {
1562         if (address < vma->vm_start || address + size > vma->vm_end ||
1563                         !(vma->vm_flags & VM_PFNMAP))
1564                 return -1;
1565         zap_page_range_single(vma, address, size, NULL);
1566         return 0;
1567 }
1568 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1569
1570 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1571                         spinlock_t **ptl)
1572 {
1573         pgd_t *pgd;
1574         p4d_t *p4d;
1575         pud_t *pud;
1576         pmd_t *pmd;
1577
1578         pgd = pgd_offset(mm, addr);
1579         p4d = p4d_alloc(mm, pgd, addr);
1580         if (!p4d)
1581                 return NULL;
1582         pud = pud_alloc(mm, p4d, addr);
1583         if (!pud)
1584                 return NULL;
1585         pmd = pmd_alloc(mm, pud, addr);
1586         if (!pmd)
1587                 return NULL;
1588
1589         VM_BUG_ON(pmd_trans_huge(*pmd));
1590         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1591 }
1592
1593 /*
1594  * This is the old fallback for page remapping.
1595  *
1596  * For historical reasons, it only allows reserved pages. Only
1597  * old drivers should use this, and they needed to mark their
1598  * pages reserved for the old functions anyway.
1599  */
1600 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1601                         struct page *page, pgprot_t prot)
1602 {
1603         struct mm_struct *mm = vma->vm_mm;
1604         int retval;
1605         pte_t *pte;
1606         spinlock_t *ptl;
1607
1608         retval = -EINVAL;
1609         if (PageAnon(page))
1610                 goto out;
1611         retval = -ENOMEM;
1612         flush_dcache_page(page);
1613         pte = get_locked_pte(mm, addr, &ptl);
1614         if (!pte)
1615                 goto out;
1616         retval = -EBUSY;
1617         if (!pte_none(*pte))
1618                 goto out_unlock;
1619
1620         /* Ok, finally just insert the thing.. */
1621         get_page(page);
1622         inc_mm_counter_fast(mm, mm_counter_file(page));
1623         page_add_file_rmap(page, false);
1624         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1625
1626         retval = 0;
1627         pte_unmap_unlock(pte, ptl);
1628         return retval;
1629 out_unlock:
1630         pte_unmap_unlock(pte, ptl);
1631 out:
1632         return retval;
1633 }
1634
1635 /**
1636  * vm_insert_page - insert single page into user vma
1637  * @vma: user vma to map to
1638  * @addr: target user address of this page
1639  * @page: source kernel page
1640  *
1641  * This allows drivers to insert individual pages they've allocated
1642  * into a user vma.
1643  *
1644  * The page has to be a nice clean _individual_ kernel allocation.
1645  * If you allocate a compound page, you need to have marked it as
1646  * such (__GFP_COMP), or manually just split the page up yourself
1647  * (see split_page()).
1648  *
1649  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1650  * took an arbitrary page protection parameter. This doesn't allow
1651  * that. Your vma protection will have to be set up correctly, which
1652  * means that if you want a shared writable mapping, you'd better
1653  * ask for a shared writable mapping!
1654  *
1655  * The page does not need to be reserved.
1656  *
1657  * Usually this function is called from f_op->mmap() handler
1658  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1659  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1660  * function from other places, for example from page-fault handler.
1661  */
1662 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1663                         struct page *page)
1664 {
1665         if (addr < vma->vm_start || addr >= vma->vm_end)
1666                 return -EFAULT;
1667         if (!page_count(page))
1668                 return -EINVAL;
1669         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1670                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1671                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1672                 vma->vm_flags |= VM_MIXEDMAP;
1673         }
1674         return insert_page(vma, addr, page, vma->vm_page_prot);
1675 }
1676 EXPORT_SYMBOL(vm_insert_page);
1677
1678 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1679                         pfn_t pfn, pgprot_t prot)
1680 {
1681         struct mm_struct *mm = vma->vm_mm;
1682         int retval;
1683         pte_t *pte, entry;
1684         spinlock_t *ptl;
1685
1686         retval = -ENOMEM;
1687         pte = get_locked_pte(mm, addr, &ptl);
1688         if (!pte)
1689                 goto out;
1690         retval = -EBUSY;
1691         if (!pte_none(*pte))
1692                 goto out_unlock;
1693
1694         /* Ok, finally just insert the thing.. */
1695         if (pfn_t_devmap(pfn))
1696                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1697         else
1698                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1699         set_pte_at(mm, addr, pte, entry);
1700         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1701
1702         retval = 0;
1703 out_unlock:
1704         pte_unmap_unlock(pte, ptl);
1705 out:
1706         return retval;
1707 }
1708
1709 /**
1710  * vm_insert_pfn - insert single pfn into user vma
1711  * @vma: user vma to map to
1712  * @addr: target user address of this page
1713  * @pfn: source kernel pfn
1714  *
1715  * Similar to vm_insert_page, this allows drivers to insert individual pages
1716  * they've allocated into a user vma. Same comments apply.
1717  *
1718  * This function should only be called from a vm_ops->fault handler, and
1719  * in that case the handler should return NULL.
1720  *
1721  * vma cannot be a COW mapping.
1722  *
1723  * As this is called only for pages that do not currently exist, we
1724  * do not need to flush old virtual caches or the TLB.
1725  */
1726 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1727                         unsigned long pfn)
1728 {
1729         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1730 }
1731 EXPORT_SYMBOL(vm_insert_pfn);
1732
1733 /**
1734  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1735  * @vma: user vma to map to
1736  * @addr: target user address of this page
1737  * @pfn: source kernel pfn
1738  * @pgprot: pgprot flags for the inserted page
1739  *
1740  * This is exactly like vm_insert_pfn, except that it allows drivers to
1741  * to override pgprot on a per-page basis.
1742  *
1743  * This only makes sense for IO mappings, and it makes no sense for
1744  * cow mappings.  In general, using multiple vmas is preferable;
1745  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1746  * impractical.
1747  */
1748 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1749                         unsigned long pfn, pgprot_t pgprot)
1750 {
1751         int ret;
1752         /*
1753          * Technically, architectures with pte_special can avoid all these
1754          * restrictions (same for remap_pfn_range).  However we would like
1755          * consistency in testing and feature parity among all, so we should
1756          * try to keep these invariants in place for everybody.
1757          */
1758         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1759         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1760                                                 (VM_PFNMAP|VM_MIXEDMAP));
1761         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1762         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1763
1764         if (addr < vma->vm_start || addr >= vma->vm_end)
1765                 return -EFAULT;
1766
1767         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1768
1769         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1770
1771         return ret;
1772 }
1773 EXPORT_SYMBOL(vm_insert_pfn_prot);
1774
1775 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1776                         pfn_t pfn)
1777 {
1778         pgprot_t pgprot = vma->vm_page_prot;
1779
1780         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1781
1782         if (addr < vma->vm_start || addr >= vma->vm_end)
1783                 return -EFAULT;
1784
1785         track_pfn_insert(vma, &pgprot, pfn);
1786
1787         /*
1788          * If we don't have pte special, then we have to use the pfn_valid()
1789          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1790          * refcount the page if pfn_valid is true (hence insert_page rather
1791          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1792          * without pte special, it would there be refcounted as a normal page.
1793          */
1794         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1795                 struct page *page;
1796
1797                 /*
1798                  * At this point we are committed to insert_page()
1799                  * regardless of whether the caller specified flags that
1800                  * result in pfn_t_has_page() == false.
1801                  */
1802                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1803                 return insert_page(vma, addr, page, pgprot);
1804         }
1805         return insert_pfn(vma, addr, pfn, pgprot);
1806 }
1807 EXPORT_SYMBOL(vm_insert_mixed);
1808
1809 /*
1810  * maps a range of physical memory into the requested pages. the old
1811  * mappings are removed. any references to nonexistent pages results
1812  * in null mappings (currently treated as "copy-on-access")
1813  */
1814 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1815                         unsigned long addr, unsigned long end,
1816                         unsigned long pfn, pgprot_t prot)
1817 {
1818         pte_t *pte;
1819         spinlock_t *ptl;
1820
1821         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1822         if (!pte)
1823                 return -ENOMEM;
1824         arch_enter_lazy_mmu_mode();
1825         do {
1826                 BUG_ON(!pte_none(*pte));
1827                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1828                 pfn++;
1829         } while (pte++, addr += PAGE_SIZE, addr != end);
1830         arch_leave_lazy_mmu_mode();
1831         pte_unmap_unlock(pte - 1, ptl);
1832         return 0;
1833 }
1834
1835 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1836                         unsigned long addr, unsigned long end,
1837                         unsigned long pfn, pgprot_t prot)
1838 {
1839         pmd_t *pmd;
1840         unsigned long next;
1841
1842         pfn -= addr >> PAGE_SHIFT;
1843         pmd = pmd_alloc(mm, pud, addr);
1844         if (!pmd)
1845                 return -ENOMEM;
1846         VM_BUG_ON(pmd_trans_huge(*pmd));
1847         do {
1848                 next = pmd_addr_end(addr, end);
1849                 if (remap_pte_range(mm, pmd, addr, next,
1850                                 pfn + (addr >> PAGE_SHIFT), prot))
1851                         return -ENOMEM;
1852         } while (pmd++, addr = next, addr != end);
1853         return 0;
1854 }
1855
1856 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1857                         unsigned long addr, unsigned long end,
1858                         unsigned long pfn, pgprot_t prot)
1859 {
1860         pud_t *pud;
1861         unsigned long next;
1862
1863         pfn -= addr >> PAGE_SHIFT;
1864         pud = pud_alloc(mm, p4d, addr);
1865         if (!pud)
1866                 return -ENOMEM;
1867         do {
1868                 next = pud_addr_end(addr, end);
1869                 if (remap_pmd_range(mm, pud, addr, next,
1870                                 pfn + (addr >> PAGE_SHIFT), prot))
1871                         return -ENOMEM;
1872         } while (pud++, addr = next, addr != end);
1873         return 0;
1874 }
1875
1876 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1877                         unsigned long addr, unsigned long end,
1878                         unsigned long pfn, pgprot_t prot)
1879 {
1880         p4d_t *p4d;
1881         unsigned long next;
1882
1883         pfn -= addr >> PAGE_SHIFT;
1884         p4d = p4d_alloc(mm, pgd, addr);
1885         if (!p4d)
1886                 return -ENOMEM;
1887         do {
1888                 next = p4d_addr_end(addr, end);
1889                 if (remap_pud_range(mm, p4d, addr, next,
1890                                 pfn + (addr >> PAGE_SHIFT), prot))
1891                         return -ENOMEM;
1892         } while (p4d++, addr = next, addr != end);
1893         return 0;
1894 }
1895
1896 /**
1897  * remap_pfn_range - remap kernel memory to userspace
1898  * @vma: user vma to map to
1899  * @addr: target user address to start at
1900  * @pfn: physical address of kernel memory
1901  * @size: size of map area
1902  * @prot: page protection flags for this mapping
1903  *
1904  *  Note: this is only safe if the mm semaphore is held when called.
1905  */
1906 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1907                     unsigned long pfn, unsigned long size, pgprot_t prot)
1908 {
1909         pgd_t *pgd;
1910         unsigned long next;
1911         unsigned long end = addr + PAGE_ALIGN(size);
1912         struct mm_struct *mm = vma->vm_mm;
1913         unsigned long remap_pfn = pfn;
1914         int err;
1915
1916         /*
1917          * Physically remapped pages are special. Tell the
1918          * rest of the world about it:
1919          *   VM_IO tells people not to look at these pages
1920          *      (accesses can have side effects).
1921          *   VM_PFNMAP tells the core MM that the base pages are just
1922          *      raw PFN mappings, and do not have a "struct page" associated
1923          *      with them.
1924          *   VM_DONTEXPAND
1925          *      Disable vma merging and expanding with mremap().
1926          *   VM_DONTDUMP
1927          *      Omit vma from core dump, even when VM_IO turned off.
1928          *
1929          * There's a horrible special case to handle copy-on-write
1930          * behaviour that some programs depend on. We mark the "original"
1931          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1932          * See vm_normal_page() for details.
1933          */
1934         if (is_cow_mapping(vma->vm_flags)) {
1935                 if (addr != vma->vm_start || end != vma->vm_end)
1936                         return -EINVAL;
1937                 vma->vm_pgoff = pfn;
1938         }
1939
1940         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1941         if (err)
1942                 return -EINVAL;
1943
1944         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1945
1946         BUG_ON(addr >= end);
1947         pfn -= addr >> PAGE_SHIFT;
1948         pgd = pgd_offset(mm, addr);
1949         flush_cache_range(vma, addr, end);
1950         do {
1951                 next = pgd_addr_end(addr, end);
1952                 err = remap_p4d_range(mm, pgd, addr, next,
1953                                 pfn + (addr >> PAGE_SHIFT), prot);
1954                 if (err)
1955                         break;
1956         } while (pgd++, addr = next, addr != end);
1957
1958         if (err)
1959                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1960
1961         return err;
1962 }
1963 EXPORT_SYMBOL(remap_pfn_range);
1964
1965 /**
1966  * vm_iomap_memory - remap memory to userspace
1967  * @vma: user vma to map to
1968  * @start: start of area
1969  * @len: size of area
1970  *
1971  * This is a simplified io_remap_pfn_range() for common driver use. The
1972  * driver just needs to give us the physical memory range to be mapped,
1973  * we'll figure out the rest from the vma information.
1974  *
1975  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1976  * whatever write-combining details or similar.
1977  */
1978 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1979 {
1980         unsigned long vm_len, pfn, pages;
1981
1982         /* Check that the physical memory area passed in looks valid */
1983         if (start + len < start)
1984                 return -EINVAL;
1985         /*
1986          * You *really* shouldn't map things that aren't page-aligned,
1987          * but we've historically allowed it because IO memory might
1988          * just have smaller alignment.
1989          */
1990         len += start & ~PAGE_MASK;
1991         pfn = start >> PAGE_SHIFT;
1992         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1993         if (pfn + pages < pfn)
1994                 return -EINVAL;
1995
1996         /* We start the mapping 'vm_pgoff' pages into the area */
1997         if (vma->vm_pgoff > pages)
1998                 return -EINVAL;
1999         pfn += vma->vm_pgoff;
2000         pages -= vma->vm_pgoff;
2001
2002         /* Can we fit all of the mapping? */
2003         vm_len = vma->vm_end - vma->vm_start;
2004         if (vm_len >> PAGE_SHIFT > pages)
2005                 return -EINVAL;
2006
2007         /* Ok, let it rip */
2008         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2009 }
2010 EXPORT_SYMBOL(vm_iomap_memory);
2011
2012 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2013                                      unsigned long addr, unsigned long end,
2014                                      pte_fn_t fn, void *data)
2015 {
2016         pte_t *pte;
2017         int err;
2018         pgtable_t token;
2019         spinlock_t *uninitialized_var(ptl);
2020
2021         pte = (mm == &init_mm) ?
2022                 pte_alloc_kernel(pmd, addr) :
2023                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2024         if (!pte)
2025                 return -ENOMEM;
2026
2027         BUG_ON(pmd_huge(*pmd));
2028
2029         arch_enter_lazy_mmu_mode();
2030
2031         token = pmd_pgtable(*pmd);
2032
2033         do {
2034                 err = fn(pte++, token, addr, data);
2035                 if (err)
2036                         break;
2037         } while (addr += PAGE_SIZE, addr != end);
2038
2039         arch_leave_lazy_mmu_mode();
2040
2041         if (mm != &init_mm)
2042                 pte_unmap_unlock(pte-1, ptl);
2043         return err;
2044 }
2045
2046 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2047                                      unsigned long addr, unsigned long end,
2048                                      pte_fn_t fn, void *data)
2049 {
2050         pmd_t *pmd;
2051         unsigned long next;
2052         int err;
2053
2054         BUG_ON(pud_huge(*pud));
2055
2056         pmd = pmd_alloc(mm, pud, addr);
2057         if (!pmd)
2058                 return -ENOMEM;
2059         do {
2060                 next = pmd_addr_end(addr, end);
2061                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2062                 if (err)
2063                         break;
2064         } while (pmd++, addr = next, addr != end);
2065         return err;
2066 }
2067
2068 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2069                                      unsigned long addr, unsigned long end,
2070                                      pte_fn_t fn, void *data)
2071 {
2072         pud_t *pud;
2073         unsigned long next;
2074         int err;
2075
2076         pud = pud_alloc(mm, p4d, addr);
2077         if (!pud)
2078                 return -ENOMEM;
2079         do {
2080                 next = pud_addr_end(addr, end);
2081                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2082                 if (err)
2083                         break;
2084         } while (pud++, addr = next, addr != end);
2085         return err;
2086 }
2087
2088 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2089                                      unsigned long addr, unsigned long end,
2090                                      pte_fn_t fn, void *data)
2091 {
2092         p4d_t *p4d;
2093         unsigned long next;
2094         int err;
2095
2096         p4d = p4d_alloc(mm, pgd, addr);
2097         if (!p4d)
2098                 return -ENOMEM;
2099         do {
2100                 next = p4d_addr_end(addr, end);
2101                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2102                 if (err)
2103                         break;
2104         } while (p4d++, addr = next, addr != end);
2105         return err;
2106 }
2107
2108 /*
2109  * Scan a region of virtual memory, filling in page tables as necessary
2110  * and calling a provided function on each leaf page table.
2111  */
2112 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2113                         unsigned long size, pte_fn_t fn, void *data)
2114 {
2115         pgd_t *pgd;
2116         unsigned long next;
2117         unsigned long end = addr + size;
2118         int err;
2119
2120         if (WARN_ON(addr >= end))
2121                 return -EINVAL;
2122
2123         pgd = pgd_offset(mm, addr);
2124         do {
2125                 next = pgd_addr_end(addr, end);
2126                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2127                 if (err)
2128                         break;
2129         } while (pgd++, addr = next, addr != end);
2130
2131         return err;
2132 }
2133 EXPORT_SYMBOL_GPL(apply_to_page_range);
2134
2135 /*
2136  * handle_pte_fault chooses page fault handler according to an entry which was
2137  * read non-atomically.  Before making any commitment, on those architectures
2138  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2139  * parts, do_swap_page must check under lock before unmapping the pte and
2140  * proceeding (but do_wp_page is only called after already making such a check;
2141  * and do_anonymous_page can safely check later on).
2142  */
2143 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2144                                 pte_t *page_table, pte_t orig_pte)
2145 {
2146         int same = 1;
2147 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2148         if (sizeof(pte_t) > sizeof(unsigned long)) {
2149                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2150                 spin_lock(ptl);
2151                 same = pte_same(*page_table, orig_pte);
2152                 spin_unlock(ptl);
2153         }
2154 #endif
2155         pte_unmap(page_table);
2156         return same;
2157 }
2158
2159 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2160 {
2161         debug_dma_assert_idle(src);
2162
2163         /*
2164          * If the source page was a PFN mapping, we don't have
2165          * a "struct page" for it. We do a best-effort copy by
2166          * just copying from the original user address. If that
2167          * fails, we just zero-fill it. Live with it.
2168          */
2169         if (unlikely(!src)) {
2170                 void *kaddr = kmap_atomic(dst);
2171                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2172
2173                 /*
2174                  * This really shouldn't fail, because the page is there
2175                  * in the page tables. But it might just be unreadable,
2176                  * in which case we just give up and fill the result with
2177                  * zeroes.
2178                  */
2179                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2180                         clear_page(kaddr);
2181                 kunmap_atomic(kaddr);
2182                 flush_dcache_page(dst);
2183         } else
2184                 copy_user_highpage(dst, src, va, vma);
2185 }
2186
2187 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2188 {
2189         struct file *vm_file = vma->vm_file;
2190
2191         if (vm_file)
2192                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2193
2194         /*
2195          * Special mappings (e.g. VDSO) do not have any file so fake
2196          * a default GFP_KERNEL for them.
2197          */
2198         return GFP_KERNEL;
2199 }
2200
2201 /*
2202  * Notify the address space that the page is about to become writable so that
2203  * it can prohibit this or wait for the page to get into an appropriate state.
2204  *
2205  * We do this without the lock held, so that it can sleep if it needs to.
2206  */
2207 static int do_page_mkwrite(struct vm_fault *vmf)
2208 {
2209         int ret;
2210         struct page *page = vmf->page;
2211         unsigned int old_flags = vmf->flags;
2212
2213         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2214
2215         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2216         /* Restore original flags so that caller is not surprised */
2217         vmf->flags = old_flags;
2218         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2219                 return ret;
2220         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2221                 lock_page(page);
2222                 if (!page->mapping) {
2223                         unlock_page(page);
2224                         return 0; /* retry */
2225                 }
2226                 ret |= VM_FAULT_LOCKED;
2227         } else
2228                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2229         return ret;
2230 }
2231
2232 /*
2233  * Handle dirtying of a page in shared file mapping on a write fault.
2234  *
2235  * The function expects the page to be locked and unlocks it.
2236  */
2237 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2238                                     struct page *page)
2239 {
2240         struct address_space *mapping;
2241         bool dirtied;
2242         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2243
2244         dirtied = set_page_dirty(page);
2245         VM_BUG_ON_PAGE(PageAnon(page), page);
2246         /*
2247          * Take a local copy of the address_space - page.mapping may be zeroed
2248          * by truncate after unlock_page().   The address_space itself remains
2249          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2250          * release semantics to prevent the compiler from undoing this copying.
2251          */
2252         mapping = page_rmapping(page);
2253         unlock_page(page);
2254
2255         if ((dirtied || page_mkwrite) && mapping) {
2256                 /*
2257                  * Some device drivers do not set page.mapping
2258                  * but still dirty their pages
2259                  */
2260                 balance_dirty_pages_ratelimited(mapping);
2261         }
2262
2263         if (!page_mkwrite)
2264                 file_update_time(vma->vm_file);
2265 }
2266
2267 /*
2268  * Handle write page faults for pages that can be reused in the current vma
2269  *
2270  * This can happen either due to the mapping being with the VM_SHARED flag,
2271  * or due to us being the last reference standing to the page. In either
2272  * case, all we need to do here is to mark the page as writable and update
2273  * any related book-keeping.
2274  */
2275 static inline void wp_page_reuse(struct vm_fault *vmf)
2276         __releases(vmf->ptl)
2277 {
2278         struct vm_area_struct *vma = vmf->vma;
2279         struct page *page = vmf->page;
2280         pte_t entry;
2281         /*
2282          * Clear the pages cpupid information as the existing
2283          * information potentially belongs to a now completely
2284          * unrelated process.
2285          */
2286         if (page)
2287                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2288
2289         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2290         entry = pte_mkyoung(vmf->orig_pte);
2291         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2292         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2293                 update_mmu_cache(vma, vmf->address, vmf->pte);
2294         pte_unmap_unlock(vmf->pte, vmf->ptl);
2295 }
2296
2297 /*
2298  * Handle the case of a page which we actually need to copy to a new page.
2299  *
2300  * Called with mmap_sem locked and the old page referenced, but
2301  * without the ptl held.
2302  *
2303  * High level logic flow:
2304  *
2305  * - Allocate a page, copy the content of the old page to the new one.
2306  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2307  * - Take the PTL. If the pte changed, bail out and release the allocated page
2308  * - If the pte is still the way we remember it, update the page table and all
2309  *   relevant references. This includes dropping the reference the page-table
2310  *   held to the old page, as well as updating the rmap.
2311  * - In any case, unlock the PTL and drop the reference we took to the old page.
2312  */
2313 static int wp_page_copy(struct vm_fault *vmf)
2314 {
2315         struct vm_area_struct *vma = vmf->vma;
2316         struct mm_struct *mm = vma->vm_mm;
2317         struct page *old_page = vmf->page;
2318         struct page *new_page = NULL;
2319         pte_t entry;
2320         int page_copied = 0;
2321         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2322         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2323         struct mem_cgroup *memcg;
2324
2325         if (unlikely(anon_vma_prepare(vma)))
2326                 goto oom;
2327
2328         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2329                 new_page = alloc_zeroed_user_highpage_movable(vma,
2330                                                               vmf->address);
2331                 if (!new_page)
2332                         goto oom;
2333         } else {
2334                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2335                                 vmf->address);
2336                 if (!new_page)
2337                         goto oom;
2338                 cow_user_page(new_page, old_page, vmf->address, vma);
2339         }
2340
2341         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2342                 goto oom_free_new;
2343
2344         __SetPageUptodate(new_page);
2345
2346         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2347
2348         /*
2349          * Re-check the pte - we dropped the lock
2350          */
2351         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2352         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2353                 if (old_page) {
2354                         if (!PageAnon(old_page)) {
2355                                 dec_mm_counter_fast(mm,
2356                                                 mm_counter_file(old_page));
2357                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2358                         }
2359                 } else {
2360                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2361                 }
2362                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2363                 entry = mk_pte(new_page, vma->vm_page_prot);
2364                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2365                 /*
2366                  * Clear the pte entry and flush it first, before updating the
2367                  * pte with the new entry. This will avoid a race condition
2368                  * seen in the presence of one thread doing SMC and another
2369                  * thread doing COW.
2370                  */
2371                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2372                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2373                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2374                 lru_cache_add_active_or_unevictable(new_page, vma);
2375                 /*
2376                  * We call the notify macro here because, when using secondary
2377                  * mmu page tables (such as kvm shadow page tables), we want the
2378                  * new page to be mapped directly into the secondary page table.
2379                  */
2380                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2381                 update_mmu_cache(vma, vmf->address, vmf->pte);
2382                 if (old_page) {
2383                         /*
2384                          * Only after switching the pte to the new page may
2385                          * we remove the mapcount here. Otherwise another
2386                          * process may come and find the rmap count decremented
2387                          * before the pte is switched to the new page, and
2388                          * "reuse" the old page writing into it while our pte
2389                          * here still points into it and can be read by other
2390                          * threads.
2391                          *
2392                          * The critical issue is to order this
2393                          * page_remove_rmap with the ptp_clear_flush above.
2394                          * Those stores are ordered by (if nothing else,)
2395                          * the barrier present in the atomic_add_negative
2396                          * in page_remove_rmap.
2397                          *
2398                          * Then the TLB flush in ptep_clear_flush ensures that
2399                          * no process can access the old page before the
2400                          * decremented mapcount is visible. And the old page
2401                          * cannot be reused until after the decremented
2402                          * mapcount is visible. So transitively, TLBs to
2403                          * old page will be flushed before it can be reused.
2404                          */
2405                         page_remove_rmap(old_page, false);
2406                 }
2407
2408                 /* Free the old page.. */
2409                 new_page = old_page;
2410                 page_copied = 1;
2411         } else {
2412                 mem_cgroup_cancel_charge(new_page, memcg, false);
2413         }
2414
2415         if (new_page)
2416                 put_page(new_page);
2417
2418         pte_unmap_unlock(vmf->pte, vmf->ptl);
2419         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2420         if (old_page) {
2421                 /*
2422                  * Don't let another task, with possibly unlocked vma,
2423                  * keep the mlocked page.
2424                  */
2425                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2426                         lock_page(old_page);    /* LRU manipulation */
2427                         if (PageMlocked(old_page))
2428                                 munlock_vma_page(old_page);
2429                         unlock_page(old_page);
2430                 }
2431                 put_page(old_page);
2432         }
2433         return page_copied ? VM_FAULT_WRITE : 0;
2434 oom_free_new:
2435         put_page(new_page);
2436 oom:
2437         if (old_page)
2438                 put_page(old_page);
2439         return VM_FAULT_OOM;
2440 }
2441
2442 /**
2443  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2444  *                        writeable once the page is prepared
2445  *
2446  * @vmf: structure describing the fault
2447  *
2448  * This function handles all that is needed to finish a write page fault in a
2449  * shared mapping due to PTE being read-only once the mapped page is prepared.
2450  * It handles locking of PTE and modifying it. The function returns
2451  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2452  * lock.
2453  *
2454  * The function expects the page to be locked or other protection against
2455  * concurrent faults / writeback (such as DAX radix tree locks).
2456  */
2457 int finish_mkwrite_fault(struct vm_fault *vmf)
2458 {
2459         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2460         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2461                                        &vmf->ptl);
2462         /*
2463          * We might have raced with another page fault while we released the
2464          * pte_offset_map_lock.
2465          */
2466         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2467                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2468                 return VM_FAULT_NOPAGE;
2469         }
2470         wp_page_reuse(vmf);
2471         return 0;
2472 }
2473
2474 /*
2475  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2476  * mapping
2477  */
2478 static int wp_pfn_shared(struct vm_fault *vmf)
2479 {
2480         struct vm_area_struct *vma = vmf->vma;
2481
2482         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2483                 int ret;
2484
2485                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2486                 vmf->flags |= FAULT_FLAG_MKWRITE;
2487                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2488                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2489                         return ret;
2490                 return finish_mkwrite_fault(vmf);
2491         }
2492         wp_page_reuse(vmf);
2493         return VM_FAULT_WRITE;
2494 }
2495
2496 static int wp_page_shared(struct vm_fault *vmf)
2497         __releases(vmf->ptl)
2498 {
2499         struct vm_area_struct *vma = vmf->vma;
2500
2501         get_page(vmf->page);
2502
2503         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2504                 int tmp;
2505
2506                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2507                 tmp = do_page_mkwrite(vmf);
2508                 if (unlikely(!tmp || (tmp &
2509                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2510                         put_page(vmf->page);
2511                         return tmp;
2512                 }
2513                 tmp = finish_mkwrite_fault(vmf);
2514                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2515                         unlock_page(vmf->page);
2516                         put_page(vmf->page);
2517                         return tmp;
2518                 }
2519         } else {
2520                 wp_page_reuse(vmf);
2521                 lock_page(vmf->page);
2522         }
2523         fault_dirty_shared_page(vma, vmf->page);
2524         put_page(vmf->page);
2525
2526         return VM_FAULT_WRITE;
2527 }
2528
2529 /*
2530  * This routine handles present pages, when users try to write
2531  * to a shared page. It is done by copying the page to a new address
2532  * and decrementing the shared-page counter for the old page.
2533  *
2534  * Note that this routine assumes that the protection checks have been
2535  * done by the caller (the low-level page fault routine in most cases).
2536  * Thus we can safely just mark it writable once we've done any necessary
2537  * COW.
2538  *
2539  * We also mark the page dirty at this point even though the page will
2540  * change only once the write actually happens. This avoids a few races,
2541  * and potentially makes it more efficient.
2542  *
2543  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544  * but allow concurrent faults), with pte both mapped and locked.
2545  * We return with mmap_sem still held, but pte unmapped and unlocked.
2546  */
2547 static int do_wp_page(struct vm_fault *vmf)
2548         __releases(vmf->ptl)
2549 {
2550         struct vm_area_struct *vma = vmf->vma;
2551
2552         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2553         if (!vmf->page) {
2554                 /*
2555                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2556                  * VM_PFNMAP VMA.
2557                  *
2558                  * We should not cow pages in a shared writeable mapping.
2559                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2560                  */
2561                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2562                                      (VM_WRITE|VM_SHARED))
2563                         return wp_pfn_shared(vmf);
2564
2565                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2566                 return wp_page_copy(vmf);
2567         }
2568
2569         /*
2570          * Take out anonymous pages first, anonymous shared vmas are
2571          * not dirty accountable.
2572          */
2573         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2574                 int total_mapcount;
2575                 if (!trylock_page(vmf->page)) {
2576                         get_page(vmf->page);
2577                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2578                         lock_page(vmf->page);
2579                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2580                                         vmf->address, &vmf->ptl);
2581                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2582                                 unlock_page(vmf->page);
2583                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2584                                 put_page(vmf->page);
2585                                 return 0;
2586                         }
2587                         put_page(vmf->page);
2588                 }
2589                 if (reuse_swap_page(vmf->page, &total_mapcount)) {
2590                         if (total_mapcount == 1) {
2591                                 /*
2592                                  * The page is all ours. Move it to
2593                                  * our anon_vma so the rmap code will
2594                                  * not search our parent or siblings.
2595                                  * Protected against the rmap code by
2596                                  * the page lock.
2597                                  */
2598                                 page_move_anon_rmap(vmf->page, vma);
2599                         }
2600                         unlock_page(vmf->page);
2601                         wp_page_reuse(vmf);
2602                         return VM_FAULT_WRITE;
2603                 }
2604                 unlock_page(vmf->page);
2605         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2606                                         (VM_WRITE|VM_SHARED))) {
2607                 return wp_page_shared(vmf);
2608         }
2609
2610         /*
2611          * Ok, we need to copy. Oh, well..
2612          */
2613         get_page(vmf->page);
2614
2615         pte_unmap_unlock(vmf->pte, vmf->ptl);
2616         return wp_page_copy(vmf);
2617 }
2618
2619 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2620                 unsigned long start_addr, unsigned long end_addr,
2621                 struct zap_details *details)
2622 {
2623         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2624 }
2625
2626 static inline void unmap_mapping_range_tree(struct rb_root *root,
2627                                             struct zap_details *details)
2628 {
2629         struct vm_area_struct *vma;
2630         pgoff_t vba, vea, zba, zea;
2631
2632         vma_interval_tree_foreach(vma, root,
2633                         details->first_index, details->last_index) {
2634
2635                 vba = vma->vm_pgoff;
2636                 vea = vba + vma_pages(vma) - 1;
2637                 zba = details->first_index;
2638                 if (zba < vba)
2639                         zba = vba;
2640                 zea = details->last_index;
2641                 if (zea > vea)
2642                         zea = vea;
2643
2644                 unmap_mapping_range_vma(vma,
2645                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2646                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2647                                 details);
2648         }
2649 }
2650
2651 /**
2652  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2653  * address_space corresponding to the specified page range in the underlying
2654  * file.
2655  *
2656  * @mapping: the address space containing mmaps to be unmapped.
2657  * @holebegin: byte in first page to unmap, relative to the start of
2658  * the underlying file.  This will be rounded down to a PAGE_SIZE
2659  * boundary.  Note that this is different from truncate_pagecache(), which
2660  * must keep the partial page.  In contrast, we must get rid of
2661  * partial pages.
2662  * @holelen: size of prospective hole in bytes.  This will be rounded
2663  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2664  * end of the file.
2665  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2666  * but 0 when invalidating pagecache, don't throw away private data.
2667  */
2668 void unmap_mapping_range(struct address_space *mapping,
2669                 loff_t const holebegin, loff_t const holelen, int even_cows)
2670 {
2671         struct zap_details details = { };
2672         pgoff_t hba = holebegin >> PAGE_SHIFT;
2673         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2674
2675         /* Check for overflow. */
2676         if (sizeof(holelen) > sizeof(hlen)) {
2677                 long long holeend =
2678                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2679                 if (holeend & ~(long long)ULONG_MAX)
2680                         hlen = ULONG_MAX - hba + 1;
2681         }
2682
2683         details.check_mapping = even_cows ? NULL : mapping;
2684         details.first_index = hba;
2685         details.last_index = hba + hlen - 1;
2686         if (details.last_index < details.first_index)
2687                 details.last_index = ULONG_MAX;
2688
2689         i_mmap_lock_write(mapping);
2690         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2691                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2692         i_mmap_unlock_write(mapping);
2693 }
2694 EXPORT_SYMBOL(unmap_mapping_range);
2695
2696 /*
2697  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2698  * but allow concurrent faults), and pte mapped but not yet locked.
2699  * We return with pte unmapped and unlocked.
2700  *
2701  * We return with the mmap_sem locked or unlocked in the same cases
2702  * as does filemap_fault().
2703  */
2704 int do_swap_page(struct vm_fault *vmf)
2705 {
2706         struct vm_area_struct *vma = vmf->vma;
2707         struct page *page, *swapcache;
2708         struct mem_cgroup *memcg;
2709         swp_entry_t entry;
2710         pte_t pte;
2711         int locked;
2712         int exclusive = 0;
2713         int ret = 0;
2714
2715         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2716                 goto out;
2717
2718         entry = pte_to_swp_entry(vmf->orig_pte);
2719         if (unlikely(non_swap_entry(entry))) {
2720                 if (is_migration_entry(entry)) {
2721                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2722                                              vmf->address);
2723                 } else if (is_hwpoison_entry(entry)) {
2724                         ret = VM_FAULT_HWPOISON;
2725                 } else {
2726                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2727                         ret = VM_FAULT_SIGBUS;
2728                 }
2729                 goto out;
2730         }
2731         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2732         page = lookup_swap_cache(entry);
2733         if (!page) {
2734                 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2735                                         vmf->address);
2736                 if (!page) {
2737                         /*
2738                          * Back out if somebody else faulted in this pte
2739                          * while we released the pte lock.
2740                          */
2741                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2742                                         vmf->address, &vmf->ptl);
2743                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2744                                 ret = VM_FAULT_OOM;
2745                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2746                         goto unlock;
2747                 }
2748
2749                 /* Had to read the page from swap area: Major fault */
2750                 ret = VM_FAULT_MAJOR;
2751                 count_vm_event(PGMAJFAULT);
2752                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2753         } else if (PageHWPoison(page)) {
2754                 /*
2755                  * hwpoisoned dirty swapcache pages are kept for killing
2756                  * owner processes (which may be unknown at hwpoison time)
2757                  */
2758                 ret = VM_FAULT_HWPOISON;
2759                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2760                 swapcache = page;
2761                 goto out_release;
2762         }
2763
2764         swapcache = page;
2765         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2766
2767         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2768         if (!locked) {
2769                 ret |= VM_FAULT_RETRY;
2770                 goto out_release;
2771         }
2772
2773         /*
2774          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2775          * release the swapcache from under us.  The page pin, and pte_same
2776          * test below, are not enough to exclude that.  Even if it is still
2777          * swapcache, we need to check that the page's swap has not changed.
2778          */
2779         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2780                 goto out_page;
2781
2782         page = ksm_might_need_to_copy(page, vma, vmf->address);
2783         if (unlikely(!page)) {
2784                 ret = VM_FAULT_OOM;
2785                 page = swapcache;
2786                 goto out_page;
2787         }
2788
2789         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2790                                 &memcg, false)) {
2791                 ret = VM_FAULT_OOM;
2792                 goto out_page;
2793         }
2794
2795         /*
2796          * Back out if somebody else already faulted in this pte.
2797          */
2798         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2799                         &vmf->ptl);
2800         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2801                 goto out_nomap;
2802
2803         if (unlikely(!PageUptodate(page))) {
2804                 ret = VM_FAULT_SIGBUS;
2805                 goto out_nomap;
2806         }
2807
2808         /*
2809          * The page isn't present yet, go ahead with the fault.
2810          *
2811          * Be careful about the sequence of operations here.
2812          * To get its accounting right, reuse_swap_page() must be called
2813          * while the page is counted on swap but not yet in mapcount i.e.
2814          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2815          * must be called after the swap_free(), or it will never succeed.
2816          */
2817
2818         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2819         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2820         pte = mk_pte(page, vma->vm_page_prot);
2821         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2822                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2823                 vmf->flags &= ~FAULT_FLAG_WRITE;
2824                 ret |= VM_FAULT_WRITE;
2825                 exclusive = RMAP_EXCLUSIVE;
2826         }
2827         flush_icache_page(vma, page);
2828         if (pte_swp_soft_dirty(vmf->orig_pte))
2829                 pte = pte_mksoft_dirty(pte);
2830         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2831         vmf->orig_pte = pte;
2832         if (page == swapcache) {
2833                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2834                 mem_cgroup_commit_charge(page, memcg, true, false);
2835                 activate_page(page);
2836         } else { /* ksm created a completely new copy */
2837                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2838                 mem_cgroup_commit_charge(page, memcg, false, false);
2839                 lru_cache_add_active_or_unevictable(page, vma);
2840         }
2841
2842         swap_free(entry);
2843         if (mem_cgroup_swap_full(page) ||
2844             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2845                 try_to_free_swap(page);
2846         unlock_page(page);
2847         if (page != swapcache) {
2848                 /*
2849                  * Hold the lock to avoid the swap entry to be reused
2850                  * until we take the PT lock for the pte_same() check
2851                  * (to avoid false positives from pte_same). For
2852                  * further safety release the lock after the swap_free
2853                  * so that the swap count won't change under a
2854                  * parallel locked swapcache.
2855                  */
2856                 unlock_page(swapcache);
2857                 put_page(swapcache);
2858         }
2859
2860         if (vmf->flags & FAULT_FLAG_WRITE) {
2861                 ret |= do_wp_page(vmf);
2862                 if (ret & VM_FAULT_ERROR)
2863                         ret &= VM_FAULT_ERROR;
2864                 goto out;
2865         }
2866
2867         /* No need to invalidate - it was non-present before */
2868         update_mmu_cache(vma, vmf->address, vmf->pte);
2869 unlock:
2870         pte_unmap_unlock(vmf->pte, vmf->ptl);
2871 out:
2872         return ret;
2873 out_nomap:
2874         mem_cgroup_cancel_charge(page, memcg, false);
2875         pte_unmap_unlock(vmf->pte, vmf->ptl);
2876 out_page:
2877         unlock_page(page);
2878 out_release:
2879         put_page(page);
2880         if (page != swapcache) {
2881                 unlock_page(swapcache);
2882                 put_page(swapcache);
2883         }
2884         return ret;
2885 }
2886
2887 /*
2888  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2889  * but allow concurrent faults), and pte mapped but not yet locked.
2890  * We return with mmap_sem still held, but pte unmapped and unlocked.
2891  */
2892 static int do_anonymous_page(struct vm_fault *vmf)
2893 {
2894         struct vm_area_struct *vma = vmf->vma;
2895         struct mem_cgroup *memcg;
2896         struct page *page;
2897         int ret = 0;
2898         pte_t entry;
2899
2900         /* File mapping without ->vm_ops ? */
2901         if (vma->vm_flags & VM_SHARED)
2902                 return VM_FAULT_SIGBUS;
2903
2904         /*
2905          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2906          * pte_offset_map() on pmds where a huge pmd might be created
2907          * from a different thread.
2908          *
2909          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2910          * parallel threads are excluded by other means.
2911          *
2912          * Here we only have down_read(mmap_sem).
2913          */
2914         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2915                 return VM_FAULT_OOM;
2916
2917         /* See the comment in pte_alloc_one_map() */
2918         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2919                 return 0;
2920
2921         /* Use the zero-page for reads */
2922         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2923                         !mm_forbids_zeropage(vma->vm_mm)) {
2924                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2925                                                 vma->vm_page_prot));
2926                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2927                                 vmf->address, &vmf->ptl);
2928                 if (!pte_none(*vmf->pte))
2929                         goto unlock;
2930                 ret = check_stable_address_space(vma->vm_mm);
2931                 if (ret)
2932                         goto unlock;
2933                 /* Deliver the page fault to userland, check inside PT lock */
2934                 if (userfaultfd_missing(vma)) {
2935                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2936                         return handle_userfault(vmf, VM_UFFD_MISSING);
2937                 }
2938                 goto setpte;
2939         }
2940
2941         /* Allocate our own private page. */
2942         if (unlikely(anon_vma_prepare(vma)))
2943                 goto oom;
2944         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2945         if (!page)
2946                 goto oom;
2947
2948         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2949                 goto oom_free_page;
2950
2951         /*
2952          * The memory barrier inside __SetPageUptodate makes sure that
2953          * preceeding stores to the page contents become visible before
2954          * the set_pte_at() write.
2955          */
2956         __SetPageUptodate(page);
2957
2958         entry = mk_pte(page, vma->vm_page_prot);
2959         if (vma->vm_flags & VM_WRITE)
2960                 entry = pte_mkwrite(pte_mkdirty(entry));
2961
2962         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2963                         &vmf->ptl);
2964         if (!pte_none(*vmf->pte))
2965                 goto release;
2966
2967         ret = check_stable_address_space(vma->vm_mm);
2968         if (ret)
2969                 goto release;
2970
2971         /* Deliver the page fault to userland, check inside PT lock */
2972         if (userfaultfd_missing(vma)) {
2973                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2974                 mem_cgroup_cancel_charge(page, memcg, false);
2975                 put_page(page);
2976                 return handle_userfault(vmf, VM_UFFD_MISSING);
2977         }
2978
2979         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2980         page_add_new_anon_rmap(page, vma, vmf->address, false);
2981         mem_cgroup_commit_charge(page, memcg, false, false);
2982         lru_cache_add_active_or_unevictable(page, vma);
2983 setpte:
2984         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2985
2986         /* No need to invalidate - it was non-present before */
2987         update_mmu_cache(vma, vmf->address, vmf->pte);
2988 unlock:
2989         pte_unmap_unlock(vmf->pte, vmf->ptl);
2990         return ret;
2991 release:
2992         mem_cgroup_cancel_charge(page, memcg, false);
2993         put_page(page);
2994         goto unlock;
2995 oom_free_page:
2996         put_page(page);
2997 oom:
2998         return VM_FAULT_OOM;
2999 }
3000
3001 /*
3002  * The mmap_sem must have been held on entry, and may have been
3003  * released depending on flags and vma->vm_ops->fault() return value.
3004  * See filemap_fault() and __lock_page_retry().
3005  */
3006 static int __do_fault(struct vm_fault *vmf)
3007 {
3008         struct vm_area_struct *vma = vmf->vma;
3009         int ret;
3010
3011         ret = vma->vm_ops->fault(vmf);
3012         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3013                             VM_FAULT_DONE_COW)))
3014                 return ret;
3015
3016         if (unlikely(PageHWPoison(vmf->page))) {
3017                 if (ret & VM_FAULT_LOCKED)
3018                         unlock_page(vmf->page);
3019                 put_page(vmf->page);
3020                 vmf->page = NULL;
3021                 return VM_FAULT_HWPOISON;
3022         }
3023
3024         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3025                 lock_page(vmf->page);
3026         else
3027                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3028
3029         return ret;
3030 }
3031
3032 /*
3033  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3034  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3035  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3036  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3037  */
3038 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3039 {
3040         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3041 }
3042
3043 static int pte_alloc_one_map(struct vm_fault *vmf)
3044 {
3045         struct vm_area_struct *vma = vmf->vma;
3046
3047         if (!pmd_none(*vmf->pmd))
3048                 goto map_pte;
3049         if (vmf->prealloc_pte) {
3050                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3051                 if (unlikely(!pmd_none(*vmf->pmd))) {
3052                         spin_unlock(vmf->ptl);
3053                         goto map_pte;
3054                 }
3055
3056                 atomic_long_inc(&vma->vm_mm->nr_ptes);
3057                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3058                 spin_unlock(vmf->ptl);
3059                 vmf->prealloc_pte = NULL;
3060         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3061                 return VM_FAULT_OOM;
3062         }
3063 map_pte:
3064         /*
3065          * If a huge pmd materialized under us just retry later.  Use
3066          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3067          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3068          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3069          * running immediately after a huge pmd fault in a different thread of
3070          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3071          * All we have to ensure is that it is a regular pmd that we can walk
3072          * with pte_offset_map() and we can do that through an atomic read in
3073          * C, which is what pmd_trans_unstable() provides.
3074          */
3075         if (pmd_devmap_trans_unstable(vmf->pmd))
3076                 return VM_FAULT_NOPAGE;
3077
3078         /*
3079          * At this point we know that our vmf->pmd points to a page of ptes
3080          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3081          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3082          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3083          * be valid and we will re-check to make sure the vmf->pte isn't
3084          * pte_none() under vmf->ptl protection when we return to
3085          * alloc_set_pte().
3086          */
3087         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3088                         &vmf->ptl);
3089         return 0;
3090 }
3091
3092 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3093
3094 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3095 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3096                 unsigned long haddr)
3097 {
3098         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3099                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3100                 return false;
3101         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3102                 return false;
3103         return true;
3104 }
3105
3106 static void deposit_prealloc_pte(struct vm_fault *vmf)
3107 {
3108         struct vm_area_struct *vma = vmf->vma;
3109
3110         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3111         /*
3112          * We are going to consume the prealloc table,
3113          * count that as nr_ptes.
3114          */
3115         atomic_long_inc(&vma->vm_mm->nr_ptes);
3116         vmf->prealloc_pte = NULL;
3117 }
3118
3119 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3120 {
3121         struct vm_area_struct *vma = vmf->vma;
3122         bool write = vmf->flags & FAULT_FLAG_WRITE;
3123         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3124         pmd_t entry;
3125         int i, ret;
3126
3127         if (!transhuge_vma_suitable(vma, haddr))
3128                 return VM_FAULT_FALLBACK;
3129
3130         ret = VM_FAULT_FALLBACK;
3131         page = compound_head(page);
3132
3133         /*
3134          * Archs like ppc64 need additonal space to store information
3135          * related to pte entry. Use the preallocated table for that.
3136          */
3137         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3138                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3139                 if (!vmf->prealloc_pte)
3140                         return VM_FAULT_OOM;
3141                 smp_wmb(); /* See comment in __pte_alloc() */
3142         }
3143
3144         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3145         if (unlikely(!pmd_none(*vmf->pmd)))
3146                 goto out;
3147
3148         for (i = 0; i < HPAGE_PMD_NR; i++)
3149                 flush_icache_page(vma, page + i);
3150
3151         entry = mk_huge_pmd(page, vma->vm_page_prot);
3152         if (write)
3153                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3154
3155         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3156         page_add_file_rmap(page, true);
3157         /*
3158          * deposit and withdraw with pmd lock held
3159          */
3160         if (arch_needs_pgtable_deposit())
3161                 deposit_prealloc_pte(vmf);
3162
3163         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3164
3165         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3166
3167         /* fault is handled */
3168         ret = 0;
3169         count_vm_event(THP_FILE_MAPPED);
3170 out:
3171         spin_unlock(vmf->ptl);
3172         return ret;
3173 }
3174 #else
3175 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3176 {
3177         BUILD_BUG();
3178         return 0;
3179 }
3180 #endif
3181
3182 /**
3183  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3184  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3185  *
3186  * @vmf: fault environment
3187  * @memcg: memcg to charge page (only for private mappings)
3188  * @page: page to map
3189  *
3190  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3191  * return.
3192  *
3193  * Target users are page handler itself and implementations of
3194  * vm_ops->map_pages.
3195  */
3196 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3197                 struct page *page)
3198 {
3199         struct vm_area_struct *vma = vmf->vma;
3200         bool write = vmf->flags & FAULT_FLAG_WRITE;
3201         pte_t entry;
3202         int ret;
3203
3204         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3205                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3206                 /* THP on COW? */
3207                 VM_BUG_ON_PAGE(memcg, page);
3208
3209                 ret = do_set_pmd(vmf, page);
3210                 if (ret != VM_FAULT_FALLBACK)
3211                         return ret;
3212         }
3213
3214         if (!vmf->pte) {
3215                 ret = pte_alloc_one_map(vmf);
3216                 if (ret)
3217                         return ret;
3218         }
3219
3220         /* Re-check under ptl */
3221         if (unlikely(!pte_none(*vmf->pte)))
3222                 return VM_FAULT_NOPAGE;
3223
3224         flush_icache_page(vma, page);
3225         entry = mk_pte(page, vma->vm_page_prot);
3226         if (write)
3227                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3228         /* copy-on-write page */
3229         if (write && !(vma->vm_flags & VM_SHARED)) {
3230                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3231                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3232                 mem_cgroup_commit_charge(page, memcg, false, false);
3233                 lru_cache_add_active_or_unevictable(page, vma);
3234         } else {
3235                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3236                 page_add_file_rmap(page, false);
3237         }
3238         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3239
3240         /* no need to invalidate: a not-present page won't be cached */
3241         update_mmu_cache(vma, vmf->address, vmf->pte);
3242
3243         return 0;
3244 }
3245
3246
3247 /**
3248  * finish_fault - finish page fault once we have prepared the page to fault
3249  *
3250  * @vmf: structure describing the fault
3251  *
3252  * This function handles all that is needed to finish a page fault once the
3253  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3254  * given page, adds reverse page mapping, handles memcg charges and LRU
3255  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3256  * error.
3257  *
3258  * The function expects the page to be locked and on success it consumes a
3259  * reference of a page being mapped (for the PTE which maps it).
3260  */
3261 int finish_fault(struct vm_fault *vmf)
3262 {
3263         struct page *page;
3264         int ret = 0;
3265
3266         /* Did we COW the page? */
3267         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3268             !(vmf->vma->vm_flags & VM_SHARED))
3269                 page = vmf->cow_page;
3270         else
3271                 page = vmf->page;
3272
3273         /*
3274          * check even for read faults because we might have lost our CoWed
3275          * page
3276          */
3277         if (!(vmf->vma->vm_flags & VM_SHARED))
3278                 ret = check_stable_address_space(vmf->vma->vm_mm);
3279         if (!ret)
3280                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3281         if (vmf->pte)
3282                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3283         return ret;
3284 }
3285
3286 static unsigned long fault_around_bytes __read_mostly =
3287         rounddown_pow_of_two(65536);
3288
3289 #ifdef CONFIG_DEBUG_FS
3290 static int fault_around_bytes_get(void *data, u64 *val)
3291 {
3292         *val = fault_around_bytes;
3293         return 0;
3294 }
3295
3296 /*
3297  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3298  * rounded down to nearest page order. It's what do_fault_around() expects to
3299  * see.
3300  */
3301 static int fault_around_bytes_set(void *data, u64 val)
3302 {
3303         if (val / PAGE_SIZE > PTRS_PER_PTE)
3304                 return -EINVAL;
3305         if (val > PAGE_SIZE)
3306                 fault_around_bytes = rounddown_pow_of_two(val);
3307         else
3308                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3309         return 0;
3310 }
3311 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3312                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3313
3314 static int __init fault_around_debugfs(void)
3315 {
3316         void *ret;
3317
3318         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3319                         &fault_around_bytes_fops);
3320         if (!ret)
3321                 pr_warn("Failed to create fault_around_bytes in debugfs");
3322         return 0;
3323 }
3324 late_initcall(fault_around_debugfs);
3325 #endif
3326
3327 /*
3328  * do_fault_around() tries to map few pages around the fault address. The hope
3329  * is that the pages will be needed soon and this will lower the number of
3330  * faults to handle.
3331  *
3332  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3333  * not ready to be mapped: not up-to-date, locked, etc.
3334  *
3335  * This function is called with the page table lock taken. In the split ptlock
3336  * case the page table lock only protects only those entries which belong to
3337  * the page table corresponding to the fault address.
3338  *
3339  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3340  * only once.
3341  *
3342  * fault_around_pages() defines how many pages we'll try to map.
3343  * do_fault_around() expects it to return a power of two less than or equal to
3344  * PTRS_PER_PTE.
3345  *
3346  * The virtual address of the area that we map is naturally aligned to the
3347  * fault_around_pages() value (and therefore to page order).  This way it's
3348  * easier to guarantee that we don't cross page table boundaries.
3349  */
3350 static int do_fault_around(struct vm_fault *vmf)
3351 {
3352         unsigned long address = vmf->address, nr_pages, mask;
3353         pgoff_t start_pgoff = vmf->pgoff;
3354         pgoff_t end_pgoff;
3355         int off, ret = 0;
3356
3357         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3358         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3359
3360         vmf->address = max(address & mask, vmf->vma->vm_start);
3361         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3362         start_pgoff -= off;
3363
3364         /*
3365          *  end_pgoff is either end of page table or end of vma
3366          *  or fault_around_pages() from start_pgoff, depending what is nearest.
3367          */
3368         end_pgoff = start_pgoff -
3369                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3370                 PTRS_PER_PTE - 1;
3371         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3372                         start_pgoff + nr_pages - 1);
3373
3374         if (pmd_none(*vmf->pmd)) {
3375                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3376                                                   vmf->address);
3377                 if (!vmf->prealloc_pte)
3378                         goto out;
3379                 smp_wmb(); /* See comment in __pte_alloc() */
3380         }
3381
3382         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3383
3384         /* Huge page is mapped? Page fault is solved */
3385         if (pmd_trans_huge(*vmf->pmd)) {
3386                 ret = VM_FAULT_NOPAGE;
3387                 goto out;
3388         }
3389
3390         /* ->map_pages() haven't done anything useful. Cold page cache? */
3391         if (!vmf->pte)
3392                 goto out;
3393
3394         /* check if the page fault is solved */
3395         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3396         if (!pte_none(*vmf->pte))
3397                 ret = VM_FAULT_NOPAGE;
3398         pte_unmap_unlock(vmf->pte, vmf->ptl);
3399 out:
3400         vmf->address = address;
3401         vmf->pte = NULL;
3402         return ret;
3403 }
3404
3405 static int do_read_fault(struct vm_fault *vmf)
3406 {
3407         struct vm_area_struct *vma = vmf->vma;
3408         int ret = 0;
3409
3410         /*
3411          * Let's call ->map_pages() first and use ->fault() as fallback
3412          * if page by the offset is not ready to be mapped (cold cache or
3413          * something).
3414          */
3415         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3416                 ret = do_fault_around(vmf);
3417                 if (ret)
3418                         return ret;
3419         }
3420
3421         ret = __do_fault(vmf);
3422         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3423                 return ret;
3424
3425         ret |= finish_fault(vmf);
3426         unlock_page(vmf->page);
3427         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3428                 put_page(vmf->page);
3429         return ret;
3430 }
3431
3432 static int do_cow_fault(struct vm_fault *vmf)
3433 {
3434         struct vm_area_struct *vma = vmf->vma;
3435         int ret;
3436
3437         if (unlikely(anon_vma_prepare(vma)))
3438                 return VM_FAULT_OOM;
3439
3440         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3441         if (!vmf->cow_page)
3442                 return VM_FAULT_OOM;
3443
3444         if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3445                                 &vmf->memcg, false)) {
3446                 put_page(vmf->cow_page);
3447                 return VM_FAULT_OOM;
3448         }
3449
3450         ret = __do_fault(vmf);
3451         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3452                 goto uncharge_out;
3453         if (ret & VM_FAULT_DONE_COW)
3454                 return ret;
3455
3456         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3457         __SetPageUptodate(vmf->cow_page);
3458
3459         ret |= finish_fault(vmf);
3460         unlock_page(vmf->page);
3461         put_page(vmf->page);
3462         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3463                 goto uncharge_out;
3464         return ret;
3465 uncharge_out:
3466         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3467         put_page(vmf->cow_page);
3468         return ret;
3469 }
3470
3471 static int do_shared_fault(struct vm_fault *vmf)
3472 {
3473         struct vm_area_struct *vma = vmf->vma;
3474         int ret, tmp;
3475
3476         ret = __do_fault(vmf);
3477         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3478                 return ret;
3479
3480         /*
3481          * Check if the backing address space wants to know that the page is
3482          * about to become writable
3483          */
3484         if (vma->vm_ops->page_mkwrite) {
3485                 unlock_page(vmf->page);
3486                 tmp = do_page_mkwrite(vmf);
3487                 if (unlikely(!tmp ||
3488                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3489                         put_page(vmf->page);
3490                         return tmp;
3491                 }
3492         }
3493
3494         ret |= finish_fault(vmf);
3495         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3496                                         VM_FAULT_RETRY))) {
3497                 unlock_page(vmf->page);
3498                 put_page(vmf->page);
3499                 return ret;
3500         }
3501
3502         fault_dirty_shared_page(vma, vmf->page);
3503         return ret;
3504 }
3505
3506 /*
3507  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3508  * but allow concurrent faults).
3509  * The mmap_sem may have been released depending on flags and our
3510  * return value.  See filemap_fault() and __lock_page_or_retry().
3511  */
3512 static int do_fault(struct vm_fault *vmf)
3513 {
3514         struct vm_area_struct *vma = vmf->vma;
3515         int ret;
3516
3517         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3518         if (!vma->vm_ops->fault)
3519                 ret = VM_FAULT_SIGBUS;
3520         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3521                 ret = do_read_fault(vmf);
3522         else if (!(vma->vm_flags & VM_SHARED))
3523                 ret = do_cow_fault(vmf);
3524         else
3525                 ret = do_shared_fault(vmf);
3526
3527         /* preallocated pagetable is unused: free it */
3528         if (vmf->prealloc_pte) {
3529                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3530                 vmf->prealloc_pte = NULL;
3531         }
3532         return ret;
3533 }
3534
3535 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3536                                 unsigned long addr, int page_nid,
3537                                 int *flags)
3538 {
3539         get_page(page);
3540
3541         count_vm_numa_event(NUMA_HINT_FAULTS);
3542         if (page_nid == numa_node_id()) {
3543                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3544                 *flags |= TNF_FAULT_LOCAL;
3545         }
3546
3547         return mpol_misplaced(page, vma, addr);
3548 }
3549
3550 static int do_numa_page(struct vm_fault *vmf)
3551 {
3552         struct vm_area_struct *vma = vmf->vma;
3553         struct page *page = NULL;
3554         int page_nid = -1;
3555         int last_cpupid;
3556         int target_nid;
3557         bool migrated = false;
3558         pte_t pte;
3559         bool was_writable = pte_savedwrite(vmf->orig_pte);
3560         int flags = 0;
3561
3562         /*
3563          * The "pte" at this point cannot be used safely without
3564          * validation through pte_unmap_same(). It's of NUMA type but
3565          * the pfn may be screwed if the read is non atomic.
3566          */
3567         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3568         spin_lock(vmf->ptl);
3569         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3570                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3571                 goto out;
3572         }
3573
3574         /*
3575          * Make it present again, Depending on how arch implementes non
3576          * accessible ptes, some can allow access by kernel mode.
3577          */
3578         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3579         pte = pte_modify(pte, vma->vm_page_prot);
3580         pte = pte_mkyoung(pte);
3581         if (was_writable)
3582                 pte = pte_mkwrite(pte);
3583         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3584         update_mmu_cache(vma, vmf->address, vmf->pte);
3585
3586         page = vm_normal_page(vma, vmf->address, pte);
3587         if (!page) {
3588                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3589                 return 0;
3590         }
3591
3592         /* TODO: handle PTE-mapped THP */
3593         if (PageCompound(page)) {
3594                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3595                 return 0;
3596         }
3597
3598         /*
3599          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3600          * much anyway since they can be in shared cache state. This misses
3601          * the case where a mapping is writable but the process never writes
3602          * to it but pte_write gets cleared during protection updates and
3603          * pte_dirty has unpredictable behaviour between PTE scan updates,
3604          * background writeback, dirty balancing and application behaviour.
3605          */
3606         if (!pte_write(pte))
3607                 flags |= TNF_NO_GROUP;
3608
3609         /*
3610          * Flag if the page is shared between multiple address spaces. This
3611          * is later used when determining whether to group tasks together
3612          */
3613         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3614                 flags |= TNF_SHARED;
3615
3616         last_cpupid = page_cpupid_last(page);
3617         page_nid = page_to_nid(page);
3618         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3619                         &flags);
3620         pte_unmap_unlock(vmf->pte, vmf->ptl);
3621         if (target_nid == -1) {
3622                 put_page(page);
3623                 goto out;
3624         }
3625
3626         /* Migrate to the requested node */
3627         migrated = migrate_misplaced_page(page, vma, target_nid);
3628         if (migrated) {
3629                 page_nid = target_nid;
3630                 flags |= TNF_MIGRATED;
3631         } else
3632                 flags |= TNF_MIGRATE_FAIL;
3633
3634 out:
3635         if (page_nid != -1)
3636                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3637         return 0;
3638 }
3639
3640 static inline int create_huge_pmd(struct vm_fault *vmf)
3641 {
3642         if (vma_is_anonymous(vmf->vma))
3643                 return do_huge_pmd_anonymous_page(vmf);
3644         if (vmf->vma->vm_ops->huge_fault)
3645                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3646         return VM_FAULT_FALLBACK;
3647 }
3648
3649 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3650 {
3651         if (vma_is_anonymous(vmf->vma))
3652                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3653         if (vmf->vma->vm_ops->huge_fault)
3654                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3655
3656         /* COW handled on pte level: split pmd */
3657         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3658         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3659
3660         return VM_FAULT_FALLBACK;
3661 }
3662
3663 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3664 {
3665         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3666 }
3667
3668 static int create_huge_pud(struct vm_fault *vmf)
3669 {
3670 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3671         /* No support for anonymous transparent PUD pages yet */
3672         if (vma_is_anonymous(vmf->vma))
3673                 return VM_FAULT_FALLBACK;
3674         if (vmf->vma->vm_ops->huge_fault)
3675                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3676 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3677         return VM_FAULT_FALLBACK;
3678 }
3679
3680 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3681 {
3682 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3683         /* No support for anonymous transparent PUD pages yet */
3684         if (vma_is_anonymous(vmf->vma))
3685                 return VM_FAULT_FALLBACK;
3686         if (vmf->vma->vm_ops->huge_fault)
3687                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3688 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3689         return VM_FAULT_FALLBACK;
3690 }
3691
3692 /*
3693  * These routines also need to handle stuff like marking pages dirty
3694  * and/or accessed for architectures that don't do it in hardware (most
3695  * RISC architectures).  The early dirtying is also good on the i386.
3696  *
3697  * There is also a hook called "update_mmu_cache()" that architectures
3698  * with external mmu caches can use to update those (ie the Sparc or
3699  * PowerPC hashed page tables that act as extended TLBs).
3700  *
3701  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3702  * concurrent faults).
3703  *
3704  * The mmap_sem may have been released depending on flags and our return value.
3705  * See filemap_fault() and __lock_page_or_retry().
3706  */
3707 static int handle_pte_fault(struct vm_fault *vmf)
3708 {
3709         pte_t entry;
3710
3711         if (unlikely(pmd_none(*vmf->pmd))) {
3712                 /*
3713                  * Leave __pte_alloc() until later: because vm_ops->fault may
3714                  * want to allocate huge page, and if we expose page table
3715                  * for an instant, it will be difficult to retract from
3716                  * concurrent faults and from rmap lookups.
3717                  */
3718                 vmf->pte = NULL;
3719         } else {
3720                 /* See comment in pte_alloc_one_map() */
3721                 if (pmd_devmap_trans_unstable(vmf->pmd))
3722                         return 0;
3723                 /*
3724                  * A regular pmd is established and it can't morph into a huge
3725                  * pmd from under us anymore at this point because we hold the
3726                  * mmap_sem read mode and khugepaged takes it in write mode.
3727                  * So now it's safe to run pte_offset_map().
3728                  */
3729                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3730                 vmf->orig_pte = *vmf->pte;
3731
3732                 /*
3733                  * some architectures can have larger ptes than wordsize,
3734                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3735                  * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3736                  * atomic accesses.  The code below just needs a consistent
3737                  * view for the ifs and we later double check anyway with the
3738                  * ptl lock held. So here a barrier will do.
3739                  */
3740                 barrier();
3741                 if (pte_none(vmf->orig_pte)) {
3742                         pte_unmap(vmf->pte);
3743                         vmf->pte = NULL;
3744                 }
3745         }
3746
3747         if (!vmf->pte) {
3748                 if (vma_is_anonymous(vmf->vma))
3749                         return do_anonymous_page(vmf);
3750                 else
3751                         return do_fault(vmf);
3752         }
3753
3754         if (!pte_present(vmf->orig_pte))
3755                 return do_swap_page(vmf);
3756
3757         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3758                 return do_numa_page(vmf);
3759
3760         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3761         spin_lock(vmf->ptl);
3762         entry = vmf->orig_pte;
3763         if (unlikely(!pte_same(*vmf->pte, entry)))
3764                 goto unlock;
3765         if (vmf->flags & FAULT_FLAG_WRITE) {
3766                 if (!pte_write(entry))
3767                         return do_wp_page(vmf);
3768                 entry = pte_mkdirty(entry);
3769         }
3770         entry = pte_mkyoung(entry);
3771         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3772                                 vmf->flags & FAULT_FLAG_WRITE)) {
3773                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3774         } else {
3775                 /*
3776                  * This is needed only for protection faults but the arch code
3777                  * is not yet telling us if this is a protection fault or not.
3778                  * This still avoids useless tlb flushes for .text page faults
3779                  * with threads.
3780                  */
3781                 if (vmf->flags & FAULT_FLAG_WRITE)
3782                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3783         }
3784 unlock:
3785         pte_unmap_unlock(vmf->pte, vmf->ptl);
3786         return 0;
3787 }
3788
3789 /*
3790  * By the time we get here, we already hold the mm semaphore
3791  *
3792  * The mmap_sem may have been released depending on flags and our
3793  * return value.  See filemap_fault() and __lock_page_or_retry().
3794  */
3795 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3796                 unsigned int flags)
3797 {
3798         struct vm_fault vmf = {
3799                 .vma = vma,
3800                 .address = address & PAGE_MASK,
3801                 .flags = flags,
3802                 .pgoff = linear_page_index(vma, address),
3803                 .gfp_mask = __get_fault_gfp_mask(vma),
3804         };
3805         struct mm_struct *mm = vma->vm_mm;
3806         pgd_t *pgd;
3807         p4d_t *p4d;
3808         int ret;
3809
3810         pgd = pgd_offset(mm, address);
3811         p4d = p4d_alloc(mm, pgd, address);
3812         if (!p4d)
3813                 return VM_FAULT_OOM;
3814
3815         vmf.pud = pud_alloc(mm, p4d, address);
3816         if (!vmf.pud)
3817                 return VM_FAULT_OOM;
3818         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3819                 ret = create_huge_pud(&vmf);
3820                 if (!(ret & VM_FAULT_FALLBACK))
3821                         return ret;
3822         } else {
3823                 pud_t orig_pud = *vmf.pud;
3824
3825                 barrier();
3826                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3827                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3828
3829                         /* NUMA case for anonymous PUDs would go here */
3830
3831                         if (dirty && !pud_write(orig_pud)) {
3832                                 ret = wp_huge_pud(&vmf, orig_pud);
3833                                 if (!(ret & VM_FAULT_FALLBACK))
3834                                         return ret;
3835                         } else {
3836                                 huge_pud_set_accessed(&vmf, orig_pud);
3837                                 return 0;
3838                         }
3839                 }
3840         }
3841
3842         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3843         if (!vmf.pmd)
3844                 return VM_FAULT_OOM;
3845         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3846                 ret = create_huge_pmd(&vmf);
3847                 if (!(ret & VM_FAULT_FALLBACK))
3848                         return ret;
3849         } else {
3850                 pmd_t orig_pmd = *vmf.pmd;
3851
3852                 barrier();
3853                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3854                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3855                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3856
3857                         if ((vmf.flags & FAULT_FLAG_WRITE) &&
3858                                         !pmd_write(orig_pmd)) {
3859                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3860                                 if (!(ret & VM_FAULT_FALLBACK))
3861                                         return ret;
3862                         } else {
3863                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3864                                 return 0;
3865                         }
3866                 }
3867         }
3868
3869         return handle_pte_fault(&vmf);
3870 }
3871
3872 /*
3873  * By the time we get here, we already hold the mm semaphore
3874  *
3875  * The mmap_sem may have been released depending on flags and our
3876  * return value.  See filemap_fault() and __lock_page_or_retry().
3877  */
3878 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3879                 unsigned int flags)
3880 {
3881         int ret;
3882
3883         __set_current_state(TASK_RUNNING);
3884
3885         count_vm_event(PGFAULT);
3886         count_memcg_event_mm(vma->vm_mm, PGFAULT);
3887
3888         /* do counter updates before entering really critical section. */
3889         check_sync_rss_stat(current);
3890
3891         /*
3892          * Enable the memcg OOM handling for faults triggered in user
3893          * space.  Kernel faults are handled more gracefully.
3894          */
3895         if (flags & FAULT_FLAG_USER)
3896                 mem_cgroup_oom_enable();
3897
3898         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3899                                             flags & FAULT_FLAG_INSTRUCTION,
3900                                             flags & FAULT_FLAG_REMOTE))
3901                 return VM_FAULT_SIGSEGV;
3902
3903         if (unlikely(is_vm_hugetlb_page(vma)))
3904                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3905         else
3906                 ret = __handle_mm_fault(vma, address, flags);
3907
3908         if (flags & FAULT_FLAG_USER) {
3909                 mem_cgroup_oom_disable();
3910                 /*
3911                  * The task may have entered a memcg OOM situation but
3912                  * if the allocation error was handled gracefully (no
3913                  * VM_FAULT_OOM), there is no need to kill anything.
3914                  * Just clean up the OOM state peacefully.
3915                  */
3916                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3917                         mem_cgroup_oom_synchronize(false);
3918         }
3919
3920         return ret;
3921 }
3922 EXPORT_SYMBOL_GPL(handle_mm_fault);
3923
3924 #ifndef __PAGETABLE_P4D_FOLDED
3925 /*
3926  * Allocate p4d page table.
3927  * We've already handled the fast-path in-line.
3928  */
3929 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3930 {
3931         p4d_t *new = p4d_alloc_one(mm, address);
3932         if (!new)
3933                 return -ENOMEM;
3934
3935         smp_wmb(); /* See comment in __pte_alloc */
3936
3937         spin_lock(&mm->page_table_lock);
3938         if (pgd_present(*pgd))          /* Another has populated it */
3939                 p4d_free(mm, new);
3940         else
3941                 pgd_populate(mm, pgd, new);
3942         spin_unlock(&mm->page_table_lock);
3943         return 0;
3944 }
3945 #endif /* __PAGETABLE_P4D_FOLDED */
3946
3947 #ifndef __PAGETABLE_PUD_FOLDED
3948 /*
3949  * Allocate page upper directory.
3950  * We've already handled the fast-path in-line.
3951  */
3952 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3953 {
3954         pud_t *new = pud_alloc_one(mm, address);
3955         if (!new)
3956                 return -ENOMEM;
3957
3958         smp_wmb(); /* See comment in __pte_alloc */
3959
3960         spin_lock(&mm->page_table_lock);
3961 #ifndef __ARCH_HAS_5LEVEL_HACK
3962         if (p4d_present(*p4d))          /* Another has populated it */
3963                 pud_free(mm, new);
3964         else
3965                 p4d_populate(mm, p4d, new);
3966 #else
3967         if (pgd_present(*p4d))          /* Another has populated it */
3968                 pud_free(mm, new);
3969         else
3970                 pgd_populate(mm, p4d, new);
3971 #endif /* __ARCH_HAS_5LEVEL_HACK */
3972         spin_unlock(&mm->page_table_lock);
3973         return 0;
3974 }
3975 #endif /* __PAGETABLE_PUD_FOLDED */
3976
3977 #ifndef __PAGETABLE_PMD_FOLDED
3978 /*
3979  * Allocate page middle directory.
3980  * We've already handled the fast-path in-line.
3981  */
3982 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3983 {
3984         spinlock_t *ptl;
3985         pmd_t *new = pmd_alloc_one(mm, address);
3986         if (!new)
3987                 return -ENOMEM;
3988
3989         smp_wmb(); /* See comment in __pte_alloc */
3990
3991         ptl = pud_lock(mm, pud);
3992 #ifndef __ARCH_HAS_4LEVEL_HACK
3993         if (!pud_present(*pud)) {
3994                 mm_inc_nr_pmds(mm);
3995                 pud_populate(mm, pud, new);
3996         } else  /* Another has populated it */
3997                 pmd_free(mm, new);
3998 #else
3999         if (!pgd_present(*pud)) {
4000                 mm_inc_nr_pmds(mm);
4001                 pgd_populate(mm, pud, new);
4002         } else /* Another has populated it */
4003                 pmd_free(mm, new);
4004 #endif /* __ARCH_HAS_4LEVEL_HACK */
4005         spin_unlock(ptl);
4006         return 0;
4007 }
4008 #endif /* __PAGETABLE_PMD_FOLDED */
4009
4010 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4011                             unsigned long *start, unsigned long *end,
4012                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4013 {
4014         pgd_t *pgd;
4015         p4d_t *p4d;
4016         pud_t *pud;
4017         pmd_t *pmd;
4018         pte_t *ptep;
4019
4020         pgd = pgd_offset(mm, address);
4021         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4022                 goto out;
4023
4024         p4d = p4d_offset(pgd, address);
4025         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4026                 goto out;
4027
4028         pud = pud_offset(p4d, address);
4029         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4030                 goto out;
4031
4032         pmd = pmd_offset(pud, address);
4033         VM_BUG_ON(pmd_trans_huge(*pmd));
4034
4035         if (pmd_huge(*pmd)) {
4036                 if (!pmdpp)
4037                         goto out;
4038
4039                 if (start && end) {
4040                         *start = address & PMD_MASK;
4041                         *end = *start + PMD_SIZE;
4042                         mmu_notifier_invalidate_range_start(mm, *start, *end);
4043                 }
4044                 *ptlp = pmd_lock(mm, pmd);
4045                 if (pmd_huge(*pmd)) {
4046                         *pmdpp = pmd;
4047                         return 0;
4048                 }
4049                 spin_unlock(*ptlp);
4050                 if (start && end)
4051                         mmu_notifier_invalidate_range_end(mm, *start, *end);
4052         }
4053
4054         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4055                 goto out;
4056
4057         if (start && end) {
4058                 *start = address & PAGE_MASK;
4059                 *end = *start + PAGE_SIZE;
4060                 mmu_notifier_invalidate_range_start(mm, *start, *end);
4061         }
4062         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4063         if (!pte_present(*ptep))
4064                 goto unlock;
4065         *ptepp = ptep;
4066         return 0;
4067 unlock:
4068         pte_unmap_unlock(ptep, *ptlp);
4069         if (start && end)
4070                 mmu_notifier_invalidate_range_end(mm, *start, *end);
4071 out:
4072         return -EINVAL;
4073 }
4074
4075 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4076                              pte_t **ptepp, spinlock_t **ptlp)
4077 {
4078         int res;
4079
4080         /* (void) is needed to make gcc happy */
4081         (void) __cond_lock(*ptlp,
4082                            !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4083                                                     ptepp, NULL, ptlp)));
4084         return res;
4085 }
4086
4087 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4088                              unsigned long *start, unsigned long *end,
4089                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4090 {
4091         int res;
4092
4093         /* (void) is needed to make gcc happy */
4094         (void) __cond_lock(*ptlp,
4095                            !(res = __follow_pte_pmd(mm, address, start, end,
4096                                                     ptepp, pmdpp, ptlp)));
4097         return res;
4098 }
4099 EXPORT_SYMBOL(follow_pte_pmd);
4100
4101 /**
4102  * follow_pfn - look up PFN at a user virtual address
4103  * @vma: memory mapping
4104  * @address: user virtual address
4105  * @pfn: location to store found PFN
4106  *
4107  * Only IO mappings and raw PFN mappings are allowed.
4108  *
4109  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4110  */
4111 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4112         unsigned long *pfn)
4113 {
4114         int ret = -EINVAL;
4115         spinlock_t *ptl;
4116         pte_t *ptep;
4117
4118         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4119                 return ret;
4120
4121         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4122         if (ret)
4123                 return ret;
4124         *pfn = pte_pfn(*ptep);
4125         pte_unmap_unlock(ptep, ptl);
4126         return 0;
4127 }
4128 EXPORT_SYMBOL(follow_pfn);
4129
4130 #ifdef CONFIG_HAVE_IOREMAP_PROT
4131 int follow_phys(struct vm_area_struct *vma,
4132                 unsigned long address, unsigned int flags,
4133                 unsigned long *prot, resource_size_t *phys)
4134 {
4135         int ret = -EINVAL;
4136         pte_t *ptep, pte;
4137         spinlock_t *ptl;
4138
4139         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4140                 goto out;
4141
4142         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4143                 goto out;
4144         pte = *ptep;
4145
4146         if ((flags & FOLL_WRITE) && !pte_write(pte))
4147                 goto unlock;
4148
4149         *prot = pgprot_val(pte_pgprot(pte));
4150         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4151
4152         ret = 0;
4153 unlock:
4154         pte_unmap_unlock(ptep, ptl);
4155 out:
4156         return ret;
4157 }
4158
4159 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4160                         void *buf, int len, int write)
4161 {
4162         resource_size_t phys_addr;
4163         unsigned long prot = 0;
4164         void __iomem *maddr;
4165         int offset = addr & (PAGE_SIZE-1);
4166
4167         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4168                 return -EINVAL;
4169
4170         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4171         if (write)
4172                 memcpy_toio(maddr + offset, buf, len);
4173         else
4174                 memcpy_fromio(buf, maddr + offset, len);
4175         iounmap(maddr);
4176
4177         return len;
4178 }
4179 EXPORT_SYMBOL_GPL(generic_access_phys);
4180 #endif
4181
4182 /*
4183  * Access another process' address space as given in mm.  If non-NULL, use the
4184  * given task for page fault accounting.
4185  */
4186 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4187                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4188 {
4189         struct vm_area_struct *vma;
4190         void *old_buf = buf;
4191         int write = gup_flags & FOLL_WRITE;
4192
4193         down_read(&mm->mmap_sem);
4194         /* ignore errors, just check how much was successfully transferred */
4195         while (len) {
4196                 int bytes, ret, offset;
4197                 void *maddr;
4198                 struct page *page = NULL;
4199
4200                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4201                                 gup_flags, &page, &vma, NULL);
4202                 if (ret <= 0) {
4203 #ifndef CONFIG_HAVE_IOREMAP_PROT
4204                         break;
4205 #else
4206                         /*
4207                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4208                          * we can access using slightly different code.
4209                          */
4210                         vma = find_vma(mm, addr);
4211                         if (!vma || vma->vm_start > addr)
4212                                 break;
4213                         if (vma->vm_ops && vma->vm_ops->access)
4214                                 ret = vma->vm_ops->access(vma, addr, buf,
4215                                                           len, write);
4216                         if (ret <= 0)
4217                                 break;
4218                         bytes = ret;
4219 #endif
4220                 } else {
4221                         bytes = len;
4222                         offset = addr & (PAGE_SIZE-1);
4223                         if (bytes > PAGE_SIZE-offset)
4224                                 bytes = PAGE_SIZE-offset;
4225
4226                         maddr = kmap(page);
4227                         if (write) {
4228                                 copy_to_user_page(vma, page, addr,
4229                                                   maddr + offset, buf, bytes);
4230                                 set_page_dirty_lock(page);
4231                         } else {
4232                                 copy_from_user_page(vma, page, addr,
4233                                                     buf, maddr + offset, bytes);
4234                         }
4235                         kunmap(page);
4236                         put_page(page);
4237                 }
4238                 len -= bytes;
4239                 buf += bytes;
4240                 addr += bytes;
4241         }
4242         up_read(&mm->mmap_sem);
4243
4244         return buf - old_buf;
4245 }
4246
4247 /**
4248  * access_remote_vm - access another process' address space
4249  * @mm:         the mm_struct of the target address space
4250  * @addr:       start address to access
4251  * @buf:        source or destination buffer
4252  * @len:        number of bytes to transfer
4253  * @gup_flags:  flags modifying lookup behaviour
4254  *
4255  * The caller must hold a reference on @mm.
4256  */
4257 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4258                 void *buf, int len, unsigned int gup_flags)
4259 {
4260         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4261 }
4262
4263 /*
4264  * Access another process' address space.
4265  * Source/target buffer must be kernel space,
4266  * Do not walk the page table directly, use get_user_pages
4267  */
4268 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4269                 void *buf, int len, unsigned int gup_flags)
4270 {
4271         struct mm_struct *mm;
4272         int ret;
4273
4274         mm = get_task_mm(tsk);
4275         if (!mm)
4276                 return 0;
4277
4278         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4279
4280         mmput(mm);
4281
4282         return ret;
4283 }
4284 EXPORT_SYMBOL_GPL(access_process_vm);
4285
4286 /*
4287  * Print the name of a VMA.
4288  */
4289 void print_vma_addr(char *prefix, unsigned long ip)
4290 {
4291         struct mm_struct *mm = current->mm;
4292         struct vm_area_struct *vma;
4293
4294         /*
4295          * Do not print if we are in atomic
4296          * contexts (in exception stacks, etc.):
4297          */
4298         if (preempt_count())
4299                 return;
4300
4301         down_read(&mm->mmap_sem);
4302         vma = find_vma(mm, ip);
4303         if (vma && vma->vm_file) {
4304                 struct file *f = vma->vm_file;
4305                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4306                 if (buf) {
4307                         char *p;
4308
4309                         p = file_path(f, buf, PAGE_SIZE);
4310                         if (IS_ERR(p))
4311                                 p = "?";
4312                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4313                                         vma->vm_start,
4314                                         vma->vm_end - vma->vm_start);
4315                         free_page((unsigned long)buf);
4316                 }
4317         }
4318         up_read(&mm->mmap_sem);
4319 }
4320
4321 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4322 void __might_fault(const char *file, int line)
4323 {
4324         /*
4325          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4326          * holding the mmap_sem, this is safe because kernel memory doesn't
4327          * get paged out, therefore we'll never actually fault, and the
4328          * below annotations will generate false positives.
4329          */
4330         if (uaccess_kernel())
4331                 return;
4332         if (pagefault_disabled())
4333                 return;
4334         __might_sleep(file, line, 0);
4335 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4336         if (current->mm)
4337                 might_lock_read(&current->mm->mmap_sem);
4338 #endif
4339 }
4340 EXPORT_SYMBOL(__might_fault);
4341 #endif
4342
4343 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4344 static void clear_gigantic_page(struct page *page,
4345                                 unsigned long addr,
4346                                 unsigned int pages_per_huge_page)
4347 {
4348         int i;
4349         struct page *p = page;
4350
4351         might_sleep();
4352         for (i = 0; i < pages_per_huge_page;
4353              i++, p = mem_map_next(p, page, i)) {
4354                 cond_resched();
4355                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4356         }
4357 }
4358 void clear_huge_page(struct page *page,
4359                      unsigned long addr, unsigned int pages_per_huge_page)
4360 {
4361         int i;
4362
4363         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4364                 clear_gigantic_page(page, addr, pages_per_huge_page);
4365                 return;
4366         }
4367
4368         might_sleep();
4369         for (i = 0; i < pages_per_huge_page; i++) {
4370                 cond_resched();
4371                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4372         }
4373 }
4374
4375 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4376                                     unsigned long addr,
4377                                     struct vm_area_struct *vma,
4378                                     unsigned int pages_per_huge_page)
4379 {
4380         int i;
4381         struct page *dst_base = dst;
4382         struct page *src_base = src;
4383
4384         for (i = 0; i < pages_per_huge_page; ) {
4385                 cond_resched();
4386                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4387
4388                 i++;
4389                 dst = mem_map_next(dst, dst_base, i);
4390                 src = mem_map_next(src, src_base, i);
4391         }
4392 }
4393
4394 void copy_user_huge_page(struct page *dst, struct page *src,
4395                          unsigned long addr, struct vm_area_struct *vma,
4396                          unsigned int pages_per_huge_page)
4397 {
4398         int i;
4399
4400         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4401                 copy_user_gigantic_page(dst, src, addr, vma,
4402                                         pages_per_huge_page);
4403                 return;
4404         }
4405
4406         might_sleep();
4407         for (i = 0; i < pages_per_huge_page; i++) {
4408                 cond_resched();
4409                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4410         }
4411 }
4412
4413 long copy_huge_page_from_user(struct page *dst_page,
4414                                 const void __user *usr_src,
4415                                 unsigned int pages_per_huge_page,
4416                                 bool allow_pagefault)
4417 {
4418         void *src = (void *)usr_src;
4419         void *page_kaddr;
4420         unsigned long i, rc = 0;
4421         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4422
4423         for (i = 0; i < pages_per_huge_page; i++) {
4424                 if (allow_pagefault)
4425                         page_kaddr = kmap(dst_page + i);
4426                 else
4427                         page_kaddr = kmap_atomic(dst_page + i);
4428                 rc = copy_from_user(page_kaddr,
4429                                 (const void __user *)(src + i * PAGE_SIZE),
4430                                 PAGE_SIZE);
4431                 if (allow_pagefault)
4432                         kunmap(dst_page + i);
4433                 else
4434                         kunmap_atomic(page_kaddr);
4435
4436                 ret_val -= (PAGE_SIZE - rc);
4437                 if (rc)
4438                         break;
4439
4440                 cond_resched();
4441         }
4442         return ret_val;
4443 }
4444 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4445
4446 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4447
4448 static struct kmem_cache *page_ptl_cachep;
4449
4450 void __init ptlock_cache_init(void)
4451 {
4452         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4453                         SLAB_PANIC, NULL);
4454 }
4455
4456 bool ptlock_alloc(struct page *page)
4457 {
4458         spinlock_t *ptl;
4459
4460         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4461         if (!ptl)
4462                 return false;
4463         page->ptl = ptl;
4464         return true;
4465 }
4466
4467 void ptlock_free(struct page *page)
4468 {
4469         kmem_cache_free(page_ptl_cachep, page->ptl);
4470 }
4471 #endif