Merge branch 'fixes-jgarzik' of git://git.kernel.org/pub/scm/linux/kernel/git/linvill...
[sfrench/cifs-2.6.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
59
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
67
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
71
72 unsigned long num_physpages;
73 /*
74  * A number of key systems in x86 including ioremap() rely on the assumption
75  * that high_memory defines the upper bound on direct map memory, then end
76  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78  * and ZONE_HIGHMEM.
79  */
80 void * high_memory;
81
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
84
85 int randomize_va_space __read_mostly = 1;
86
87 static int __init disable_randmaps(char *s)
88 {
89         randomize_va_space = 0;
90         return 1;
91 }
92 __setup("norandmaps", disable_randmaps);
93
94
95 /*
96  * If a p?d_bad entry is found while walking page tables, report
97  * the error, before resetting entry to p?d_none.  Usually (but
98  * very seldom) called out from the p?d_none_or_clear_bad macros.
99  */
100
101 void pgd_clear_bad(pgd_t *pgd)
102 {
103         pgd_ERROR(*pgd);
104         pgd_clear(pgd);
105 }
106
107 void pud_clear_bad(pud_t *pud)
108 {
109         pud_ERROR(*pud);
110         pud_clear(pud);
111 }
112
113 void pmd_clear_bad(pmd_t *pmd)
114 {
115         pmd_ERROR(*pmd);
116         pmd_clear(pmd);
117 }
118
119 /*
120  * Note: this doesn't free the actual pages themselves. That
121  * has been handled earlier when unmapping all the memory regions.
122  */
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124 {
125         struct page *page = pmd_page(*pmd);
126         pmd_clear(pmd);
127         pte_lock_deinit(page);
128         pte_free_tlb(tlb, page);
129         dec_zone_page_state(page, NR_PAGETABLE);
130         tlb->mm->nr_ptes--;
131 }
132
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134                                 unsigned long addr, unsigned long end,
135                                 unsigned long floor, unsigned long ceiling)
136 {
137         pmd_t *pmd;
138         unsigned long next;
139         unsigned long start;
140
141         start = addr;
142         pmd = pmd_offset(pud, addr);
143         do {
144                 next = pmd_addr_end(addr, end);
145                 if (pmd_none_or_clear_bad(pmd))
146                         continue;
147                 free_pte_range(tlb, pmd);
148         } while (pmd++, addr = next, addr != end);
149
150         start &= PUD_MASK;
151         if (start < floor)
152                 return;
153         if (ceiling) {
154                 ceiling &= PUD_MASK;
155                 if (!ceiling)
156                         return;
157         }
158         if (end - 1 > ceiling - 1)
159                 return;
160
161         pmd = pmd_offset(pud, start);
162         pud_clear(pud);
163         pmd_free_tlb(tlb, pmd);
164 }
165
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167                                 unsigned long addr, unsigned long end,
168                                 unsigned long floor, unsigned long ceiling)
169 {
170         pud_t *pud;
171         unsigned long next;
172         unsigned long start;
173
174         start = addr;
175         pud = pud_offset(pgd, addr);
176         do {
177                 next = pud_addr_end(addr, end);
178                 if (pud_none_or_clear_bad(pud))
179                         continue;
180                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181         } while (pud++, addr = next, addr != end);
182
183         start &= PGDIR_MASK;
184         if (start < floor)
185                 return;
186         if (ceiling) {
187                 ceiling &= PGDIR_MASK;
188                 if (!ceiling)
189                         return;
190         }
191         if (end - 1 > ceiling - 1)
192                 return;
193
194         pud = pud_offset(pgd, start);
195         pgd_clear(pgd);
196         pud_free_tlb(tlb, pud);
197 }
198
199 /*
200  * This function frees user-level page tables of a process.
201  *
202  * Must be called with pagetable lock held.
203  */
204 void free_pgd_range(struct mmu_gather **tlb,
205                         unsigned long addr, unsigned long end,
206                         unsigned long floor, unsigned long ceiling)
207 {
208         pgd_t *pgd;
209         unsigned long next;
210         unsigned long start;
211
212         /*
213          * The next few lines have given us lots of grief...
214          *
215          * Why are we testing PMD* at this top level?  Because often
216          * there will be no work to do at all, and we'd prefer not to
217          * go all the way down to the bottom just to discover that.
218          *
219          * Why all these "- 1"s?  Because 0 represents both the bottom
220          * of the address space and the top of it (using -1 for the
221          * top wouldn't help much: the masks would do the wrong thing).
222          * The rule is that addr 0 and floor 0 refer to the bottom of
223          * the address space, but end 0 and ceiling 0 refer to the top
224          * Comparisons need to use "end - 1" and "ceiling - 1" (though
225          * that end 0 case should be mythical).
226          *
227          * Wherever addr is brought up or ceiling brought down, we must
228          * be careful to reject "the opposite 0" before it confuses the
229          * subsequent tests.  But what about where end is brought down
230          * by PMD_SIZE below? no, end can't go down to 0 there.
231          *
232          * Whereas we round start (addr) and ceiling down, by different
233          * masks at different levels, in order to test whether a table
234          * now has no other vmas using it, so can be freed, we don't
235          * bother to round floor or end up - the tests don't need that.
236          */
237
238         addr &= PMD_MASK;
239         if (addr < floor) {
240                 addr += PMD_SIZE;
241                 if (!addr)
242                         return;
243         }
244         if (ceiling) {
245                 ceiling &= PMD_MASK;
246                 if (!ceiling)
247                         return;
248         }
249         if (end - 1 > ceiling - 1)
250                 end -= PMD_SIZE;
251         if (addr > end - 1)
252                 return;
253
254         start = addr;
255         pgd = pgd_offset((*tlb)->mm, addr);
256         do {
257                 next = pgd_addr_end(addr, end);
258                 if (pgd_none_or_clear_bad(pgd))
259                         continue;
260                 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261         } while (pgd++, addr = next, addr != end);
262 }
263
264 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
265                 unsigned long floor, unsigned long ceiling)
266 {
267         while (vma) {
268                 struct vm_area_struct *next = vma->vm_next;
269                 unsigned long addr = vma->vm_start;
270
271                 /*
272                  * Hide vma from rmap and vmtruncate before freeing pgtables
273                  */
274                 anon_vma_unlink(vma);
275                 unlink_file_vma(vma);
276
277                 if (is_vm_hugetlb_page(vma)) {
278                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
279                                 floor, next? next->vm_start: ceiling);
280                 } else {
281                         /*
282                          * Optimization: gather nearby vmas into one call down
283                          */
284                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
285                                && !is_vm_hugetlb_page(next)) {
286                                 vma = next;
287                                 next = vma->vm_next;
288                                 anon_vma_unlink(vma);
289                                 unlink_file_vma(vma);
290                         }
291                         free_pgd_range(tlb, addr, vma->vm_end,
292                                 floor, next? next->vm_start: ceiling);
293                 }
294                 vma = next;
295         }
296 }
297
298 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
299 {
300         struct page *new = pte_alloc_one(mm, address);
301         if (!new)
302                 return -ENOMEM;
303
304         pte_lock_init(new);
305         spin_lock(&mm->page_table_lock);
306         if (pmd_present(*pmd)) {        /* Another has populated it */
307                 pte_lock_deinit(new);
308                 pte_free(new);
309         } else {
310                 mm->nr_ptes++;
311                 inc_zone_page_state(new, NR_PAGETABLE);
312                 pmd_populate(mm, pmd, new);
313         }
314         spin_unlock(&mm->page_table_lock);
315         return 0;
316 }
317
318 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
319 {
320         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
321         if (!new)
322                 return -ENOMEM;
323
324         spin_lock(&init_mm.page_table_lock);
325         if (pmd_present(*pmd))          /* Another has populated it */
326                 pte_free_kernel(new);
327         else
328                 pmd_populate_kernel(&init_mm, pmd, new);
329         spin_unlock(&init_mm.page_table_lock);
330         return 0;
331 }
332
333 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
334 {
335         if (file_rss)
336                 add_mm_counter(mm, file_rss, file_rss);
337         if (anon_rss)
338                 add_mm_counter(mm, anon_rss, anon_rss);
339 }
340
341 /*
342  * This function is called to print an error when a bad pte
343  * is found. For example, we might have a PFN-mapped pte in
344  * a region that doesn't allow it.
345  *
346  * The calling function must still handle the error.
347  */
348 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
349 {
350         printk(KERN_ERR "Bad pte = %08llx, process = %s, "
351                         "vm_flags = %lx, vaddr = %lx\n",
352                 (long long)pte_val(pte),
353                 (vma->vm_mm == current->mm ? current->comm : "???"),
354                 vma->vm_flags, vaddr);
355         dump_stack();
356 }
357
358 static inline int is_cow_mapping(unsigned int flags)
359 {
360         return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
361 }
362
363 /*
364  * This function gets the "struct page" associated with a pte.
365  *
366  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
367  * will have each page table entry just pointing to a raw page frame
368  * number, and as far as the VM layer is concerned, those do not have
369  * pages associated with them - even if the PFN might point to memory
370  * that otherwise is perfectly fine and has a "struct page".
371  *
372  * The way we recognize those mappings is through the rules set up
373  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
374  * and the vm_pgoff will point to the first PFN mapped: thus every
375  * page that is a raw mapping will always honor the rule
376  *
377  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
378  *
379  * and if that isn't true, the page has been COW'ed (in which case it
380  * _does_ have a "struct page" associated with it even if it is in a
381  * VM_PFNMAP range).
382  */
383 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
384 {
385         unsigned long pfn = pte_pfn(pte);
386
387         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
388                 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
389                 if (pfn == vma->vm_pgoff + off)
390                         return NULL;
391                 if (!is_cow_mapping(vma->vm_flags))
392                         return NULL;
393         }
394
395 #ifdef CONFIG_DEBUG_VM
396         /*
397          * Add some anal sanity checks for now. Eventually,
398          * we should just do "return pfn_to_page(pfn)", but
399          * in the meantime we check that we get a valid pfn,
400          * and that the resulting page looks ok.
401          */
402         if (unlikely(!pfn_valid(pfn))) {
403                 print_bad_pte(vma, pte, addr);
404                 return NULL;
405         }
406 #endif
407
408         /*
409          * NOTE! We still have PageReserved() pages in the page 
410          * tables. 
411          *
412          * The PAGE_ZERO() pages and various VDSO mappings can
413          * cause them to exist.
414          */
415         return pfn_to_page(pfn);
416 }
417
418 /*
419  * copy one vm_area from one task to the other. Assumes the page tables
420  * already present in the new task to be cleared in the whole range
421  * covered by this vma.
422  */
423
424 static inline void
425 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
426                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
427                 unsigned long addr, int *rss)
428 {
429         unsigned long vm_flags = vma->vm_flags;
430         pte_t pte = *src_pte;
431         struct page *page;
432
433         /* pte contains position in swap or file, so copy. */
434         if (unlikely(!pte_present(pte))) {
435                 if (!pte_file(pte)) {
436                         swp_entry_t entry = pte_to_swp_entry(pte);
437
438                         swap_duplicate(entry);
439                         /* make sure dst_mm is on swapoff's mmlist. */
440                         if (unlikely(list_empty(&dst_mm->mmlist))) {
441                                 spin_lock(&mmlist_lock);
442                                 if (list_empty(&dst_mm->mmlist))
443                                         list_add(&dst_mm->mmlist,
444                                                  &src_mm->mmlist);
445                                 spin_unlock(&mmlist_lock);
446                         }
447                         if (is_write_migration_entry(entry) &&
448                                         is_cow_mapping(vm_flags)) {
449                                 /*
450                                  * COW mappings require pages in both parent
451                                  * and child to be set to read.
452                                  */
453                                 make_migration_entry_read(&entry);
454                                 pte = swp_entry_to_pte(entry);
455                                 set_pte_at(src_mm, addr, src_pte, pte);
456                         }
457                 }
458                 goto out_set_pte;
459         }
460
461         /*
462          * If it's a COW mapping, write protect it both
463          * in the parent and the child
464          */
465         if (is_cow_mapping(vm_flags)) {
466                 ptep_set_wrprotect(src_mm, addr, src_pte);
467                 pte = pte_wrprotect(pte);
468         }
469
470         /*
471          * If it's a shared mapping, mark it clean in
472          * the child
473          */
474         if (vm_flags & VM_SHARED)
475                 pte = pte_mkclean(pte);
476         pte = pte_mkold(pte);
477
478         page = vm_normal_page(vma, addr, pte);
479         if (page) {
480                 get_page(page);
481                 page_dup_rmap(page, vma, addr);
482                 rss[!!PageAnon(page)]++;
483         }
484
485 out_set_pte:
486         set_pte_at(dst_mm, addr, dst_pte, pte);
487 }
488
489 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
490                 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
491                 unsigned long addr, unsigned long end)
492 {
493         pte_t *src_pte, *dst_pte;
494         spinlock_t *src_ptl, *dst_ptl;
495         int progress = 0;
496         int rss[2];
497
498 again:
499         rss[1] = rss[0] = 0;
500         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
501         if (!dst_pte)
502                 return -ENOMEM;
503         src_pte = pte_offset_map_nested(src_pmd, addr);
504         src_ptl = pte_lockptr(src_mm, src_pmd);
505         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
506         arch_enter_lazy_mmu_mode();
507
508         do {
509                 /*
510                  * We are holding two locks at this point - either of them
511                  * could generate latencies in another task on another CPU.
512                  */
513                 if (progress >= 32) {
514                         progress = 0;
515                         if (need_resched() ||
516                             need_lockbreak(src_ptl) ||
517                             need_lockbreak(dst_ptl))
518                                 break;
519                 }
520                 if (pte_none(*src_pte)) {
521                         progress++;
522                         continue;
523                 }
524                 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
525                 progress += 8;
526         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
527
528         arch_leave_lazy_mmu_mode();
529         spin_unlock(src_ptl);
530         pte_unmap_nested(src_pte - 1);
531         add_mm_rss(dst_mm, rss[0], rss[1]);
532         pte_unmap_unlock(dst_pte - 1, dst_ptl);
533         cond_resched();
534         if (addr != end)
535                 goto again;
536         return 0;
537 }
538
539 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
540                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
541                 unsigned long addr, unsigned long end)
542 {
543         pmd_t *src_pmd, *dst_pmd;
544         unsigned long next;
545
546         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
547         if (!dst_pmd)
548                 return -ENOMEM;
549         src_pmd = pmd_offset(src_pud, addr);
550         do {
551                 next = pmd_addr_end(addr, end);
552                 if (pmd_none_or_clear_bad(src_pmd))
553                         continue;
554                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
555                                                 vma, addr, next))
556                         return -ENOMEM;
557         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
558         return 0;
559 }
560
561 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
562                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
563                 unsigned long addr, unsigned long end)
564 {
565         pud_t *src_pud, *dst_pud;
566         unsigned long next;
567
568         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
569         if (!dst_pud)
570                 return -ENOMEM;
571         src_pud = pud_offset(src_pgd, addr);
572         do {
573                 next = pud_addr_end(addr, end);
574                 if (pud_none_or_clear_bad(src_pud))
575                         continue;
576                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
577                                                 vma, addr, next))
578                         return -ENOMEM;
579         } while (dst_pud++, src_pud++, addr = next, addr != end);
580         return 0;
581 }
582
583 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
584                 struct vm_area_struct *vma)
585 {
586         pgd_t *src_pgd, *dst_pgd;
587         unsigned long next;
588         unsigned long addr = vma->vm_start;
589         unsigned long end = vma->vm_end;
590
591         /*
592          * Don't copy ptes where a page fault will fill them correctly.
593          * Fork becomes much lighter when there are big shared or private
594          * readonly mappings. The tradeoff is that copy_page_range is more
595          * efficient than faulting.
596          */
597         if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
598                 if (!vma->anon_vma)
599                         return 0;
600         }
601
602         if (is_vm_hugetlb_page(vma))
603                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
604
605         dst_pgd = pgd_offset(dst_mm, addr);
606         src_pgd = pgd_offset(src_mm, addr);
607         do {
608                 next = pgd_addr_end(addr, end);
609                 if (pgd_none_or_clear_bad(src_pgd))
610                         continue;
611                 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
612                                                 vma, addr, next))
613                         return -ENOMEM;
614         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
615         return 0;
616 }
617
618 static unsigned long zap_pte_range(struct mmu_gather *tlb,
619                                 struct vm_area_struct *vma, pmd_t *pmd,
620                                 unsigned long addr, unsigned long end,
621                                 long *zap_work, struct zap_details *details)
622 {
623         struct mm_struct *mm = tlb->mm;
624         pte_t *pte;
625         spinlock_t *ptl;
626         int file_rss = 0;
627         int anon_rss = 0;
628
629         pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
630         arch_enter_lazy_mmu_mode();
631         do {
632                 pte_t ptent = *pte;
633                 if (pte_none(ptent)) {
634                         (*zap_work)--;
635                         continue;
636                 }
637
638                 (*zap_work) -= PAGE_SIZE;
639
640                 if (pte_present(ptent)) {
641                         struct page *page;
642
643                         page = vm_normal_page(vma, addr, ptent);
644                         if (unlikely(details) && page) {
645                                 /*
646                                  * unmap_shared_mapping_pages() wants to
647                                  * invalidate cache without truncating:
648                                  * unmap shared but keep private pages.
649                                  */
650                                 if (details->check_mapping &&
651                                     details->check_mapping != page->mapping)
652                                         continue;
653                                 /*
654                                  * Each page->index must be checked when
655                                  * invalidating or truncating nonlinear.
656                                  */
657                                 if (details->nonlinear_vma &&
658                                     (page->index < details->first_index ||
659                                      page->index > details->last_index))
660                                         continue;
661                         }
662                         ptent = ptep_get_and_clear_full(mm, addr, pte,
663                                                         tlb->fullmm);
664                         tlb_remove_tlb_entry(tlb, pte, addr);
665                         if (unlikely(!page))
666                                 continue;
667                         if (unlikely(details) && details->nonlinear_vma
668                             && linear_page_index(details->nonlinear_vma,
669                                                 addr) != page->index)
670                                 set_pte_at(mm, addr, pte,
671                                            pgoff_to_pte(page->index));
672                         if (PageAnon(page))
673                                 anon_rss--;
674                         else {
675                                 if (pte_dirty(ptent))
676                                         set_page_dirty(page);
677                                 if (pte_young(ptent))
678                                         SetPageReferenced(page);
679                                 file_rss--;
680                         }
681                         page_remove_rmap(page, vma);
682                         tlb_remove_page(tlb, page);
683                         continue;
684                 }
685                 /*
686                  * If details->check_mapping, we leave swap entries;
687                  * if details->nonlinear_vma, we leave file entries.
688                  */
689                 if (unlikely(details))
690                         continue;
691                 if (!pte_file(ptent))
692                         free_swap_and_cache(pte_to_swp_entry(ptent));
693                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
694         } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
695
696         add_mm_rss(mm, file_rss, anon_rss);
697         arch_leave_lazy_mmu_mode();
698         pte_unmap_unlock(pte - 1, ptl);
699
700         return addr;
701 }
702
703 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
704                                 struct vm_area_struct *vma, pud_t *pud,
705                                 unsigned long addr, unsigned long end,
706                                 long *zap_work, struct zap_details *details)
707 {
708         pmd_t *pmd;
709         unsigned long next;
710
711         pmd = pmd_offset(pud, addr);
712         do {
713                 next = pmd_addr_end(addr, end);
714                 if (pmd_none_or_clear_bad(pmd)) {
715                         (*zap_work)--;
716                         continue;
717                 }
718                 next = zap_pte_range(tlb, vma, pmd, addr, next,
719                                                 zap_work, details);
720         } while (pmd++, addr = next, (addr != end && *zap_work > 0));
721
722         return addr;
723 }
724
725 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
726                                 struct vm_area_struct *vma, pgd_t *pgd,
727                                 unsigned long addr, unsigned long end,
728                                 long *zap_work, struct zap_details *details)
729 {
730         pud_t *pud;
731         unsigned long next;
732
733         pud = pud_offset(pgd, addr);
734         do {
735                 next = pud_addr_end(addr, end);
736                 if (pud_none_or_clear_bad(pud)) {
737                         (*zap_work)--;
738                         continue;
739                 }
740                 next = zap_pmd_range(tlb, vma, pud, addr, next,
741                                                 zap_work, details);
742         } while (pud++, addr = next, (addr != end && *zap_work > 0));
743
744         return addr;
745 }
746
747 static unsigned long unmap_page_range(struct mmu_gather *tlb,
748                                 struct vm_area_struct *vma,
749                                 unsigned long addr, unsigned long end,
750                                 long *zap_work, struct zap_details *details)
751 {
752         pgd_t *pgd;
753         unsigned long next;
754
755         if (details && !details->check_mapping && !details->nonlinear_vma)
756                 details = NULL;
757
758         BUG_ON(addr >= end);
759         tlb_start_vma(tlb, vma);
760         pgd = pgd_offset(vma->vm_mm, addr);
761         do {
762                 next = pgd_addr_end(addr, end);
763                 if (pgd_none_or_clear_bad(pgd)) {
764                         (*zap_work)--;
765                         continue;
766                 }
767                 next = zap_pud_range(tlb, vma, pgd, addr, next,
768                                                 zap_work, details);
769         } while (pgd++, addr = next, (addr != end && *zap_work > 0));
770         tlb_end_vma(tlb, vma);
771
772         return addr;
773 }
774
775 #ifdef CONFIG_PREEMPT
776 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
777 #else
778 /* No preempt: go for improved straight-line efficiency */
779 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
780 #endif
781
782 /**
783  * unmap_vmas - unmap a range of memory covered by a list of vma's
784  * @tlbp: address of the caller's struct mmu_gather
785  * @vma: the starting vma
786  * @start_addr: virtual address at which to start unmapping
787  * @end_addr: virtual address at which to end unmapping
788  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
789  * @details: details of nonlinear truncation or shared cache invalidation
790  *
791  * Returns the end address of the unmapping (restart addr if interrupted).
792  *
793  * Unmap all pages in the vma list.
794  *
795  * We aim to not hold locks for too long (for scheduling latency reasons).
796  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
797  * return the ending mmu_gather to the caller.
798  *
799  * Only addresses between `start' and `end' will be unmapped.
800  *
801  * The VMA list must be sorted in ascending virtual address order.
802  *
803  * unmap_vmas() assumes that the caller will flush the whole unmapped address
804  * range after unmap_vmas() returns.  So the only responsibility here is to
805  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
806  * drops the lock and schedules.
807  */
808 unsigned long unmap_vmas(struct mmu_gather **tlbp,
809                 struct vm_area_struct *vma, unsigned long start_addr,
810                 unsigned long end_addr, unsigned long *nr_accounted,
811                 struct zap_details *details)
812 {
813         long zap_work = ZAP_BLOCK_SIZE;
814         unsigned long tlb_start = 0;    /* For tlb_finish_mmu */
815         int tlb_start_valid = 0;
816         unsigned long start = start_addr;
817         spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
818         int fullmm = (*tlbp)->fullmm;
819
820         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
821                 unsigned long end;
822
823                 start = max(vma->vm_start, start_addr);
824                 if (start >= vma->vm_end)
825                         continue;
826                 end = min(vma->vm_end, end_addr);
827                 if (end <= vma->vm_start)
828                         continue;
829
830                 if (vma->vm_flags & VM_ACCOUNT)
831                         *nr_accounted += (end - start) >> PAGE_SHIFT;
832
833                 while (start != end) {
834                         if (!tlb_start_valid) {
835                                 tlb_start = start;
836                                 tlb_start_valid = 1;
837                         }
838
839                         if (unlikely(is_vm_hugetlb_page(vma))) {
840                                 unmap_hugepage_range(vma, start, end);
841                                 zap_work -= (end - start) /
842                                                 (HPAGE_SIZE / PAGE_SIZE);
843                                 start = end;
844                         } else
845                                 start = unmap_page_range(*tlbp, vma,
846                                                 start, end, &zap_work, details);
847
848                         if (zap_work > 0) {
849                                 BUG_ON(start != end);
850                                 break;
851                         }
852
853                         tlb_finish_mmu(*tlbp, tlb_start, start);
854
855                         if (need_resched() ||
856                                 (i_mmap_lock && need_lockbreak(i_mmap_lock))) {
857                                 if (i_mmap_lock) {
858                                         *tlbp = NULL;
859                                         goto out;
860                                 }
861                                 cond_resched();
862                         }
863
864                         *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
865                         tlb_start_valid = 0;
866                         zap_work = ZAP_BLOCK_SIZE;
867                 }
868         }
869 out:
870         return start;   /* which is now the end (or restart) address */
871 }
872
873 /**
874  * zap_page_range - remove user pages in a given range
875  * @vma: vm_area_struct holding the applicable pages
876  * @address: starting address of pages to zap
877  * @size: number of bytes to zap
878  * @details: details of nonlinear truncation or shared cache invalidation
879  */
880 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
881                 unsigned long size, struct zap_details *details)
882 {
883         struct mm_struct *mm = vma->vm_mm;
884         struct mmu_gather *tlb;
885         unsigned long end = address + size;
886         unsigned long nr_accounted = 0;
887
888         lru_add_drain();
889         tlb = tlb_gather_mmu(mm, 0);
890         update_hiwater_rss(mm);
891         end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
892         if (tlb)
893                 tlb_finish_mmu(tlb, address, end);
894         return end;
895 }
896
897 /*
898  * Do a quick page-table lookup for a single page.
899  */
900 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
901                         unsigned int flags)
902 {
903         pgd_t *pgd;
904         pud_t *pud;
905         pmd_t *pmd;
906         pte_t *ptep, pte;
907         spinlock_t *ptl;
908         struct page *page;
909         struct mm_struct *mm = vma->vm_mm;
910
911         page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
912         if (!IS_ERR(page)) {
913                 BUG_ON(flags & FOLL_GET);
914                 goto out;
915         }
916
917         page = NULL;
918         pgd = pgd_offset(mm, address);
919         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
920                 goto no_page_table;
921
922         pud = pud_offset(pgd, address);
923         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
924                 goto no_page_table;
925         
926         pmd = pmd_offset(pud, address);
927         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
928                 goto no_page_table;
929
930         if (pmd_huge(*pmd)) {
931                 BUG_ON(flags & FOLL_GET);
932                 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
933                 goto out;
934         }
935
936         ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
937         if (!ptep)
938                 goto out;
939
940         pte = *ptep;
941         if (!pte_present(pte))
942                 goto unlock;
943         if ((flags & FOLL_WRITE) && !pte_write(pte))
944                 goto unlock;
945         page = vm_normal_page(vma, address, pte);
946         if (unlikely(!page))
947                 goto unlock;
948
949         if (flags & FOLL_GET)
950                 get_page(page);
951         if (flags & FOLL_TOUCH) {
952                 if ((flags & FOLL_WRITE) &&
953                     !pte_dirty(pte) && !PageDirty(page))
954                         set_page_dirty(page);
955                 mark_page_accessed(page);
956         }
957 unlock:
958         pte_unmap_unlock(ptep, ptl);
959 out:
960         return page;
961
962 no_page_table:
963         /*
964          * When core dumping an enormous anonymous area that nobody
965          * has touched so far, we don't want to allocate page tables.
966          */
967         if (flags & FOLL_ANON) {
968                 page = ZERO_PAGE(0);
969                 if (flags & FOLL_GET)
970                         get_page(page);
971                 BUG_ON(flags & FOLL_WRITE);
972         }
973         return page;
974 }
975
976 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
977                 unsigned long start, int len, int write, int force,
978                 struct page **pages, struct vm_area_struct **vmas)
979 {
980         int i;
981         unsigned int vm_flags;
982
983         /* 
984          * Require read or write permissions.
985          * If 'force' is set, we only require the "MAY" flags.
986          */
987         vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
988         vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
989         i = 0;
990
991         do {
992                 struct vm_area_struct *vma;
993                 unsigned int foll_flags;
994
995                 vma = find_extend_vma(mm, start);
996                 if (!vma && in_gate_area(tsk, start)) {
997                         unsigned long pg = start & PAGE_MASK;
998                         struct vm_area_struct *gate_vma = get_gate_vma(tsk);
999                         pgd_t *pgd;
1000                         pud_t *pud;
1001                         pmd_t *pmd;
1002                         pte_t *pte;
1003                         if (write) /* user gate pages are read-only */
1004                                 return i ? : -EFAULT;
1005                         if (pg > TASK_SIZE)
1006                                 pgd = pgd_offset_k(pg);
1007                         else
1008                                 pgd = pgd_offset_gate(mm, pg);
1009                         BUG_ON(pgd_none(*pgd));
1010                         pud = pud_offset(pgd, pg);
1011                         BUG_ON(pud_none(*pud));
1012                         pmd = pmd_offset(pud, pg);
1013                         if (pmd_none(*pmd))
1014                                 return i ? : -EFAULT;
1015                         pte = pte_offset_map(pmd, pg);
1016                         if (pte_none(*pte)) {
1017                                 pte_unmap(pte);
1018                                 return i ? : -EFAULT;
1019                         }
1020                         if (pages) {
1021                                 struct page *page = vm_normal_page(gate_vma, start, *pte);
1022                                 pages[i] = page;
1023                                 if (page)
1024                                         get_page(page);
1025                         }
1026                         pte_unmap(pte);
1027                         if (vmas)
1028                                 vmas[i] = gate_vma;
1029                         i++;
1030                         start += PAGE_SIZE;
1031                         len--;
1032                         continue;
1033                 }
1034
1035                 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1036                                 || !(vm_flags & vma->vm_flags))
1037                         return i ? : -EFAULT;
1038
1039                 if (is_vm_hugetlb_page(vma)) {
1040                         i = follow_hugetlb_page(mm, vma, pages, vmas,
1041                                                 &start, &len, i, write);
1042                         continue;
1043                 }
1044
1045                 foll_flags = FOLL_TOUCH;
1046                 if (pages)
1047                         foll_flags |= FOLL_GET;
1048                 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1049                     (!vma->vm_ops || (!vma->vm_ops->nopage &&
1050                                         !vma->vm_ops->fault)))
1051                         foll_flags |= FOLL_ANON;
1052
1053                 do {
1054                         struct page *page;
1055
1056                         /*
1057                          * If tsk is ooming, cut off its access to large memory
1058                          * allocations. It has a pending SIGKILL, but it can't
1059                          * be processed until returning to user space.
1060                          */
1061                         if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1062                                 return -ENOMEM;
1063
1064                         if (write)
1065                                 foll_flags |= FOLL_WRITE;
1066
1067                         cond_resched();
1068                         while (!(page = follow_page(vma, start, foll_flags))) {
1069                                 int ret;
1070                                 ret = handle_mm_fault(mm, vma, start,
1071                                                 foll_flags & FOLL_WRITE);
1072                                 if (ret & VM_FAULT_ERROR) {
1073                                         if (ret & VM_FAULT_OOM)
1074                                                 return i ? i : -ENOMEM;
1075                                         else if (ret & VM_FAULT_SIGBUS)
1076                                                 return i ? i : -EFAULT;
1077                                         BUG();
1078                                 }
1079                                 if (ret & VM_FAULT_MAJOR)
1080                                         tsk->maj_flt++;
1081                                 else
1082                                         tsk->min_flt++;
1083
1084                                 /*
1085                                  * The VM_FAULT_WRITE bit tells us that
1086                                  * do_wp_page has broken COW when necessary,
1087                                  * even if maybe_mkwrite decided not to set
1088                                  * pte_write. We can thus safely do subsequent
1089                                  * page lookups as if they were reads.
1090                                  */
1091                                 if (ret & VM_FAULT_WRITE)
1092                                         foll_flags &= ~FOLL_WRITE;
1093
1094                                 cond_resched();
1095                         }
1096                         if (pages) {
1097                                 pages[i] = page;
1098
1099                                 flush_anon_page(vma, page, start);
1100                                 flush_dcache_page(page);
1101                         }
1102                         if (vmas)
1103                                 vmas[i] = vma;
1104                         i++;
1105                         start += PAGE_SIZE;
1106                         len--;
1107                 } while (len && start < vma->vm_end);
1108         } while (len);
1109         return i;
1110 }
1111 EXPORT_SYMBOL(get_user_pages);
1112
1113 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1114 {
1115         pgd_t * pgd = pgd_offset(mm, addr);
1116         pud_t * pud = pud_alloc(mm, pgd, addr);
1117         if (pud) {
1118                 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1119                 if (pmd)
1120                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1121         }
1122         return NULL;
1123 }
1124
1125 /*
1126  * This is the old fallback for page remapping.
1127  *
1128  * For historical reasons, it only allows reserved pages. Only
1129  * old drivers should use this, and they needed to mark their
1130  * pages reserved for the old functions anyway.
1131  */
1132 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1133 {
1134         int retval;
1135         pte_t *pte;
1136         spinlock_t *ptl;  
1137
1138         retval = -EINVAL;
1139         if (PageAnon(page))
1140                 goto out;
1141         retval = -ENOMEM;
1142         flush_dcache_page(page);
1143         pte = get_locked_pte(mm, addr, &ptl);
1144         if (!pte)
1145                 goto out;
1146         retval = -EBUSY;
1147         if (!pte_none(*pte))
1148                 goto out_unlock;
1149
1150         /* Ok, finally just insert the thing.. */
1151         get_page(page);
1152         inc_mm_counter(mm, file_rss);
1153         page_add_file_rmap(page);
1154         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1155
1156         retval = 0;
1157 out_unlock:
1158         pte_unmap_unlock(pte, ptl);
1159 out:
1160         return retval;
1161 }
1162
1163 /**
1164  * vm_insert_page - insert single page into user vma
1165  * @vma: user vma to map to
1166  * @addr: target user address of this page
1167  * @page: source kernel page
1168  *
1169  * This allows drivers to insert individual pages they've allocated
1170  * into a user vma.
1171  *
1172  * The page has to be a nice clean _individual_ kernel allocation.
1173  * If you allocate a compound page, you need to have marked it as
1174  * such (__GFP_COMP), or manually just split the page up yourself
1175  * (see split_page()).
1176  *
1177  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1178  * took an arbitrary page protection parameter. This doesn't allow
1179  * that. Your vma protection will have to be set up correctly, which
1180  * means that if you want a shared writable mapping, you'd better
1181  * ask for a shared writable mapping!
1182  *
1183  * The page does not need to be reserved.
1184  */
1185 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1186 {
1187         if (addr < vma->vm_start || addr >= vma->vm_end)
1188                 return -EFAULT;
1189         if (!page_count(page))
1190                 return -EINVAL;
1191         vma->vm_flags |= VM_INSERTPAGE;
1192         return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1193 }
1194 EXPORT_SYMBOL(vm_insert_page);
1195
1196 /**
1197  * vm_insert_pfn - insert single pfn into user vma
1198  * @vma: user vma to map to
1199  * @addr: target user address of this page
1200  * @pfn: source kernel pfn
1201  *
1202  * Similar to vm_inert_page, this allows drivers to insert individual pages
1203  * they've allocated into a user vma. Same comments apply.
1204  *
1205  * This function should only be called from a vm_ops->fault handler, and
1206  * in that case the handler should return NULL.
1207  */
1208 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1209                 unsigned long pfn)
1210 {
1211         struct mm_struct *mm = vma->vm_mm;
1212         int retval;
1213         pte_t *pte, entry;
1214         spinlock_t *ptl;
1215
1216         BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1217         BUG_ON(is_cow_mapping(vma->vm_flags));
1218
1219         retval = -ENOMEM;
1220         pte = get_locked_pte(mm, addr, &ptl);
1221         if (!pte)
1222                 goto out;
1223         retval = -EBUSY;
1224         if (!pte_none(*pte))
1225                 goto out_unlock;
1226
1227         /* Ok, finally just insert the thing.. */
1228         entry = pfn_pte(pfn, vma->vm_page_prot);
1229         set_pte_at(mm, addr, pte, entry);
1230         update_mmu_cache(vma, addr, entry);
1231
1232         retval = 0;
1233 out_unlock:
1234         pte_unmap_unlock(pte, ptl);
1235
1236 out:
1237         return retval;
1238 }
1239 EXPORT_SYMBOL(vm_insert_pfn);
1240
1241 /*
1242  * maps a range of physical memory into the requested pages. the old
1243  * mappings are removed. any references to nonexistent pages results
1244  * in null mappings (currently treated as "copy-on-access")
1245  */
1246 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1247                         unsigned long addr, unsigned long end,
1248                         unsigned long pfn, pgprot_t prot)
1249 {
1250         pte_t *pte;
1251         spinlock_t *ptl;
1252
1253         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1254         if (!pte)
1255                 return -ENOMEM;
1256         arch_enter_lazy_mmu_mode();
1257         do {
1258                 BUG_ON(!pte_none(*pte));
1259                 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1260                 pfn++;
1261         } while (pte++, addr += PAGE_SIZE, addr != end);
1262         arch_leave_lazy_mmu_mode();
1263         pte_unmap_unlock(pte - 1, ptl);
1264         return 0;
1265 }
1266
1267 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1268                         unsigned long addr, unsigned long end,
1269                         unsigned long pfn, pgprot_t prot)
1270 {
1271         pmd_t *pmd;
1272         unsigned long next;
1273
1274         pfn -= addr >> PAGE_SHIFT;
1275         pmd = pmd_alloc(mm, pud, addr);
1276         if (!pmd)
1277                 return -ENOMEM;
1278         do {
1279                 next = pmd_addr_end(addr, end);
1280                 if (remap_pte_range(mm, pmd, addr, next,
1281                                 pfn + (addr >> PAGE_SHIFT), prot))
1282                         return -ENOMEM;
1283         } while (pmd++, addr = next, addr != end);
1284         return 0;
1285 }
1286
1287 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1288                         unsigned long addr, unsigned long end,
1289                         unsigned long pfn, pgprot_t prot)
1290 {
1291         pud_t *pud;
1292         unsigned long next;
1293
1294         pfn -= addr >> PAGE_SHIFT;
1295         pud = pud_alloc(mm, pgd, addr);
1296         if (!pud)
1297                 return -ENOMEM;
1298         do {
1299                 next = pud_addr_end(addr, end);
1300                 if (remap_pmd_range(mm, pud, addr, next,
1301                                 pfn + (addr >> PAGE_SHIFT), prot))
1302                         return -ENOMEM;
1303         } while (pud++, addr = next, addr != end);
1304         return 0;
1305 }
1306
1307 /**
1308  * remap_pfn_range - remap kernel memory to userspace
1309  * @vma: user vma to map to
1310  * @addr: target user address to start at
1311  * @pfn: physical address of kernel memory
1312  * @size: size of map area
1313  * @prot: page protection flags for this mapping
1314  *
1315  *  Note: this is only safe if the mm semaphore is held when called.
1316  */
1317 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1318                     unsigned long pfn, unsigned long size, pgprot_t prot)
1319 {
1320         pgd_t *pgd;
1321         unsigned long next;
1322         unsigned long end = addr + PAGE_ALIGN(size);
1323         struct mm_struct *mm = vma->vm_mm;
1324         int err;
1325
1326         /*
1327          * Physically remapped pages are special. Tell the
1328          * rest of the world about it:
1329          *   VM_IO tells people not to look at these pages
1330          *      (accesses can have side effects).
1331          *   VM_RESERVED is specified all over the place, because
1332          *      in 2.4 it kept swapout's vma scan off this vma; but
1333          *      in 2.6 the LRU scan won't even find its pages, so this
1334          *      flag means no more than count its pages in reserved_vm,
1335          *      and omit it from core dump, even when VM_IO turned off.
1336          *   VM_PFNMAP tells the core MM that the base pages are just
1337          *      raw PFN mappings, and do not have a "struct page" associated
1338          *      with them.
1339          *
1340          * There's a horrible special case to handle copy-on-write
1341          * behaviour that some programs depend on. We mark the "original"
1342          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1343          */
1344         if (is_cow_mapping(vma->vm_flags)) {
1345                 if (addr != vma->vm_start || end != vma->vm_end)
1346                         return -EINVAL;
1347                 vma->vm_pgoff = pfn;
1348         }
1349
1350         vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1351
1352         BUG_ON(addr >= end);
1353         pfn -= addr >> PAGE_SHIFT;
1354         pgd = pgd_offset(mm, addr);
1355         flush_cache_range(vma, addr, end);
1356         do {
1357                 next = pgd_addr_end(addr, end);
1358                 err = remap_pud_range(mm, pgd, addr, next,
1359                                 pfn + (addr >> PAGE_SHIFT), prot);
1360                 if (err)
1361                         break;
1362         } while (pgd++, addr = next, addr != end);
1363         return err;
1364 }
1365 EXPORT_SYMBOL(remap_pfn_range);
1366
1367 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1368                                      unsigned long addr, unsigned long end,
1369                                      pte_fn_t fn, void *data)
1370 {
1371         pte_t *pte;
1372         int err;
1373         struct page *pmd_page;
1374         spinlock_t *uninitialized_var(ptl);
1375
1376         pte = (mm == &init_mm) ?
1377                 pte_alloc_kernel(pmd, addr) :
1378                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1379         if (!pte)
1380                 return -ENOMEM;
1381
1382         BUG_ON(pmd_huge(*pmd));
1383
1384         pmd_page = pmd_page(*pmd);
1385
1386         do {
1387                 err = fn(pte, pmd_page, addr, data);
1388                 if (err)
1389                         break;
1390         } while (pte++, addr += PAGE_SIZE, addr != end);
1391
1392         if (mm != &init_mm)
1393                 pte_unmap_unlock(pte-1, ptl);
1394         return err;
1395 }
1396
1397 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1398                                      unsigned long addr, unsigned long end,
1399                                      pte_fn_t fn, void *data)
1400 {
1401         pmd_t *pmd;
1402         unsigned long next;
1403         int err;
1404
1405         pmd = pmd_alloc(mm, pud, addr);
1406         if (!pmd)
1407                 return -ENOMEM;
1408         do {
1409                 next = pmd_addr_end(addr, end);
1410                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1411                 if (err)
1412                         break;
1413         } while (pmd++, addr = next, addr != end);
1414         return err;
1415 }
1416
1417 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1418                                      unsigned long addr, unsigned long end,
1419                                      pte_fn_t fn, void *data)
1420 {
1421         pud_t *pud;
1422         unsigned long next;
1423         int err;
1424
1425         pud = pud_alloc(mm, pgd, addr);
1426         if (!pud)
1427                 return -ENOMEM;
1428         do {
1429                 next = pud_addr_end(addr, end);
1430                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1431                 if (err)
1432                         break;
1433         } while (pud++, addr = next, addr != end);
1434         return err;
1435 }
1436
1437 /*
1438  * Scan a region of virtual memory, filling in page tables as necessary
1439  * and calling a provided function on each leaf page table.
1440  */
1441 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1442                         unsigned long size, pte_fn_t fn, void *data)
1443 {
1444         pgd_t *pgd;
1445         unsigned long next;
1446         unsigned long end = addr + size;
1447         int err;
1448
1449         BUG_ON(addr >= end);
1450         pgd = pgd_offset(mm, addr);
1451         do {
1452                 next = pgd_addr_end(addr, end);
1453                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1454                 if (err)
1455                         break;
1456         } while (pgd++, addr = next, addr != end);
1457         return err;
1458 }
1459 EXPORT_SYMBOL_GPL(apply_to_page_range);
1460
1461 /*
1462  * handle_pte_fault chooses page fault handler according to an entry
1463  * which was read non-atomically.  Before making any commitment, on
1464  * those architectures or configurations (e.g. i386 with PAE) which
1465  * might give a mix of unmatched parts, do_swap_page and do_file_page
1466  * must check under lock before unmapping the pte and proceeding
1467  * (but do_wp_page is only called after already making such a check;
1468  * and do_anonymous_page and do_no_page can safely check later on).
1469  */
1470 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1471                                 pte_t *page_table, pte_t orig_pte)
1472 {
1473         int same = 1;
1474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1475         if (sizeof(pte_t) > sizeof(unsigned long)) {
1476                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1477                 spin_lock(ptl);
1478                 same = pte_same(*page_table, orig_pte);
1479                 spin_unlock(ptl);
1480         }
1481 #endif
1482         pte_unmap(page_table);
1483         return same;
1484 }
1485
1486 /*
1487  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1488  * servicing faults for write access.  In the normal case, do always want
1489  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1490  * that do not have writing enabled, when used by access_process_vm.
1491  */
1492 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1493 {
1494         if (likely(vma->vm_flags & VM_WRITE))
1495                 pte = pte_mkwrite(pte);
1496         return pte;
1497 }
1498
1499 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1500 {
1501         /*
1502          * If the source page was a PFN mapping, we don't have
1503          * a "struct page" for it. We do a best-effort copy by
1504          * just copying from the original user address. If that
1505          * fails, we just zero-fill it. Live with it.
1506          */
1507         if (unlikely(!src)) {
1508                 void *kaddr = kmap_atomic(dst, KM_USER0);
1509                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1510
1511                 /*
1512                  * This really shouldn't fail, because the page is there
1513                  * in the page tables. But it might just be unreadable,
1514                  * in which case we just give up and fill the result with
1515                  * zeroes.
1516                  */
1517                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1518                         memset(kaddr, 0, PAGE_SIZE);
1519                 kunmap_atomic(kaddr, KM_USER0);
1520                 flush_dcache_page(dst);
1521                 return;
1522
1523         }
1524         copy_user_highpage(dst, src, va, vma);
1525 }
1526
1527 /*
1528  * This routine handles present pages, when users try to write
1529  * to a shared page. It is done by copying the page to a new address
1530  * and decrementing the shared-page counter for the old page.
1531  *
1532  * Note that this routine assumes that the protection checks have been
1533  * done by the caller (the low-level page fault routine in most cases).
1534  * Thus we can safely just mark it writable once we've done any necessary
1535  * COW.
1536  *
1537  * We also mark the page dirty at this point even though the page will
1538  * change only once the write actually happens. This avoids a few races,
1539  * and potentially makes it more efficient.
1540  *
1541  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1542  * but allow concurrent faults), with pte both mapped and locked.
1543  * We return with mmap_sem still held, but pte unmapped and unlocked.
1544  */
1545 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1546                 unsigned long address, pte_t *page_table, pmd_t *pmd,
1547                 spinlock_t *ptl, pte_t orig_pte)
1548 {
1549         struct page *old_page, *new_page;
1550         pte_t entry;
1551         int reuse = 0, ret = 0;
1552         int page_mkwrite = 0;
1553         struct page *dirty_page = NULL;
1554
1555         old_page = vm_normal_page(vma, address, orig_pte);
1556         if (!old_page)
1557                 goto gotten;
1558
1559         /*
1560          * Take out anonymous pages first, anonymous shared vmas are
1561          * not dirty accountable.
1562          */
1563         if (PageAnon(old_page)) {
1564                 if (!TestSetPageLocked(old_page)) {
1565                         reuse = can_share_swap_page(old_page);
1566                         unlock_page(old_page);
1567                 }
1568         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1569                                         (VM_WRITE|VM_SHARED))) {
1570                 /*
1571                  * Only catch write-faults on shared writable pages,
1572                  * read-only shared pages can get COWed by
1573                  * get_user_pages(.write=1, .force=1).
1574                  */
1575                 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1576                         /*
1577                          * Notify the address space that the page is about to
1578                          * become writable so that it can prohibit this or wait
1579                          * for the page to get into an appropriate state.
1580                          *
1581                          * We do this without the lock held, so that it can
1582                          * sleep if it needs to.
1583                          */
1584                         page_cache_get(old_page);
1585                         pte_unmap_unlock(page_table, ptl);
1586
1587                         if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1588                                 goto unwritable_page;
1589
1590                         /*
1591                          * Since we dropped the lock we need to revalidate
1592                          * the PTE as someone else may have changed it.  If
1593                          * they did, we just return, as we can count on the
1594                          * MMU to tell us if they didn't also make it writable.
1595                          */
1596                         page_table = pte_offset_map_lock(mm, pmd, address,
1597                                                          &ptl);
1598                         page_cache_release(old_page);
1599                         if (!pte_same(*page_table, orig_pte))
1600                                 goto unlock;
1601
1602                         page_mkwrite = 1;
1603                 }
1604                 dirty_page = old_page;
1605                 get_page(dirty_page);
1606                 reuse = 1;
1607         }
1608
1609         if (reuse) {
1610                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1611                 entry = pte_mkyoung(orig_pte);
1612                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1613                 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1614                         update_mmu_cache(vma, address, entry);
1615                 ret |= VM_FAULT_WRITE;
1616                 goto unlock;
1617         }
1618
1619         /*
1620          * Ok, we need to copy. Oh, well..
1621          */
1622         page_cache_get(old_page);
1623 gotten:
1624         pte_unmap_unlock(page_table, ptl);
1625
1626         if (unlikely(anon_vma_prepare(vma)))
1627                 goto oom;
1628         VM_BUG_ON(old_page == ZERO_PAGE(0));
1629         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1630         if (!new_page)
1631                 goto oom;
1632         cow_user_page(new_page, old_page, address, vma);
1633
1634         /*
1635          * Re-check the pte - we dropped the lock
1636          */
1637         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1638         if (likely(pte_same(*page_table, orig_pte))) {
1639                 if (old_page) {
1640                         page_remove_rmap(old_page, vma);
1641                         if (!PageAnon(old_page)) {
1642                                 dec_mm_counter(mm, file_rss);
1643                                 inc_mm_counter(mm, anon_rss);
1644                         }
1645                 } else
1646                         inc_mm_counter(mm, anon_rss);
1647                 flush_cache_page(vma, address, pte_pfn(orig_pte));
1648                 entry = mk_pte(new_page, vma->vm_page_prot);
1649                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1650                 /*
1651                  * Clear the pte entry and flush it first, before updating the
1652                  * pte with the new entry. This will avoid a race condition
1653                  * seen in the presence of one thread doing SMC and another
1654                  * thread doing COW.
1655                  */
1656                 ptep_clear_flush(vma, address, page_table);
1657                 set_pte_at(mm, address, page_table, entry);
1658                 update_mmu_cache(vma, address, entry);
1659                 lru_cache_add_active(new_page);
1660                 page_add_new_anon_rmap(new_page, vma, address);
1661
1662                 /* Free the old page.. */
1663                 new_page = old_page;
1664                 ret |= VM_FAULT_WRITE;
1665         }
1666         if (new_page)
1667                 page_cache_release(new_page);
1668         if (old_page)
1669                 page_cache_release(old_page);
1670 unlock:
1671         pte_unmap_unlock(page_table, ptl);
1672         if (dirty_page) {
1673                 /*
1674                  * Yes, Virginia, this is actually required to prevent a race
1675                  * with clear_page_dirty_for_io() from clearing the page dirty
1676                  * bit after it clear all dirty ptes, but before a racing
1677                  * do_wp_page installs a dirty pte.
1678                  *
1679                  * do_no_page is protected similarly.
1680                  */
1681                 wait_on_page_locked(dirty_page);
1682                 set_page_dirty_balance(dirty_page, page_mkwrite);
1683                 put_page(dirty_page);
1684         }
1685         return ret;
1686 oom:
1687         if (old_page)
1688                 page_cache_release(old_page);
1689         return VM_FAULT_OOM;
1690
1691 unwritable_page:
1692         page_cache_release(old_page);
1693         return VM_FAULT_SIGBUS;
1694 }
1695
1696 /*
1697  * Helper functions for unmap_mapping_range().
1698  *
1699  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1700  *
1701  * We have to restart searching the prio_tree whenever we drop the lock,
1702  * since the iterator is only valid while the lock is held, and anyway
1703  * a later vma might be split and reinserted earlier while lock dropped.
1704  *
1705  * The list of nonlinear vmas could be handled more efficiently, using
1706  * a placeholder, but handle it in the same way until a need is shown.
1707  * It is important to search the prio_tree before nonlinear list: a vma
1708  * may become nonlinear and be shifted from prio_tree to nonlinear list
1709  * while the lock is dropped; but never shifted from list to prio_tree.
1710  *
1711  * In order to make forward progress despite restarting the search,
1712  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1713  * quickly skip it next time around.  Since the prio_tree search only
1714  * shows us those vmas affected by unmapping the range in question, we
1715  * can't efficiently keep all vmas in step with mapping->truncate_count:
1716  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1717  * mapping->truncate_count and vma->vm_truncate_count are protected by
1718  * i_mmap_lock.
1719  *
1720  * In order to make forward progress despite repeatedly restarting some
1721  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1722  * and restart from that address when we reach that vma again.  It might
1723  * have been split or merged, shrunk or extended, but never shifted: so
1724  * restart_addr remains valid so long as it remains in the vma's range.
1725  * unmap_mapping_range forces truncate_count to leap over page-aligned
1726  * values so we can save vma's restart_addr in its truncate_count field.
1727  */
1728 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1729
1730 static void reset_vma_truncate_counts(struct address_space *mapping)
1731 {
1732         struct vm_area_struct *vma;
1733         struct prio_tree_iter iter;
1734
1735         vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1736                 vma->vm_truncate_count = 0;
1737         list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1738                 vma->vm_truncate_count = 0;
1739 }
1740
1741 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1742                 unsigned long start_addr, unsigned long end_addr,
1743                 struct zap_details *details)
1744 {
1745         unsigned long restart_addr;
1746         int need_break;
1747
1748         /*
1749          * files that support invalidating or truncating portions of the
1750          * file from under mmaped areas must have their ->fault function
1751          * return a locked page (and set VM_FAULT_LOCKED in the return).
1752          * This provides synchronisation against concurrent unmapping here.
1753          */
1754
1755 again:
1756         restart_addr = vma->vm_truncate_count;
1757         if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1758                 start_addr = restart_addr;
1759                 if (start_addr >= end_addr) {
1760                         /* Top of vma has been split off since last time */
1761                         vma->vm_truncate_count = details->truncate_count;
1762                         return 0;
1763                 }
1764         }
1765
1766         restart_addr = zap_page_range(vma, start_addr,
1767                                         end_addr - start_addr, details);
1768         need_break = need_resched() ||
1769                         need_lockbreak(details->i_mmap_lock);
1770
1771         if (restart_addr >= end_addr) {
1772                 /* We have now completed this vma: mark it so */
1773                 vma->vm_truncate_count = details->truncate_count;
1774                 if (!need_break)
1775                         return 0;
1776         } else {
1777                 /* Note restart_addr in vma's truncate_count field */
1778                 vma->vm_truncate_count = restart_addr;
1779                 if (!need_break)
1780                         goto again;
1781         }
1782
1783         spin_unlock(details->i_mmap_lock);
1784         cond_resched();
1785         spin_lock(details->i_mmap_lock);
1786         return -EINTR;
1787 }
1788
1789 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1790                                             struct zap_details *details)
1791 {
1792         struct vm_area_struct *vma;
1793         struct prio_tree_iter iter;
1794         pgoff_t vba, vea, zba, zea;
1795
1796 restart:
1797         vma_prio_tree_foreach(vma, &iter, root,
1798                         details->first_index, details->last_index) {
1799                 /* Skip quickly over those we have already dealt with */
1800                 if (vma->vm_truncate_count == details->truncate_count)
1801                         continue;
1802
1803                 vba = vma->vm_pgoff;
1804                 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1805                 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1806                 zba = details->first_index;
1807                 if (zba < vba)
1808                         zba = vba;
1809                 zea = details->last_index;
1810                 if (zea > vea)
1811                         zea = vea;
1812
1813                 if (unmap_mapping_range_vma(vma,
1814                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1815                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1816                                 details) < 0)
1817                         goto restart;
1818         }
1819 }
1820
1821 static inline void unmap_mapping_range_list(struct list_head *head,
1822                                             struct zap_details *details)
1823 {
1824         struct vm_area_struct *vma;
1825
1826         /*
1827          * In nonlinear VMAs there is no correspondence between virtual address
1828          * offset and file offset.  So we must perform an exhaustive search
1829          * across *all* the pages in each nonlinear VMA, not just the pages
1830          * whose virtual address lies outside the file truncation point.
1831          */
1832 restart:
1833         list_for_each_entry(vma, head, shared.vm_set.list) {
1834                 /* Skip quickly over those we have already dealt with */
1835                 if (vma->vm_truncate_count == details->truncate_count)
1836                         continue;
1837                 details->nonlinear_vma = vma;
1838                 if (unmap_mapping_range_vma(vma, vma->vm_start,
1839                                         vma->vm_end, details) < 0)
1840                         goto restart;
1841         }
1842 }
1843
1844 /**
1845  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1846  * @mapping: the address space containing mmaps to be unmapped.
1847  * @holebegin: byte in first page to unmap, relative to the start of
1848  * the underlying file.  This will be rounded down to a PAGE_SIZE
1849  * boundary.  Note that this is different from vmtruncate(), which
1850  * must keep the partial page.  In contrast, we must get rid of
1851  * partial pages.
1852  * @holelen: size of prospective hole in bytes.  This will be rounded
1853  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1854  * end of the file.
1855  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1856  * but 0 when invalidating pagecache, don't throw away private data.
1857  */
1858 void unmap_mapping_range(struct address_space *mapping,
1859                 loff_t const holebegin, loff_t const holelen, int even_cows)
1860 {
1861         struct zap_details details;
1862         pgoff_t hba = holebegin >> PAGE_SHIFT;
1863         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1864
1865         /* Check for overflow. */
1866         if (sizeof(holelen) > sizeof(hlen)) {
1867                 long long holeend =
1868                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1869                 if (holeend & ~(long long)ULONG_MAX)
1870                         hlen = ULONG_MAX - hba + 1;
1871         }
1872
1873         details.check_mapping = even_cows? NULL: mapping;
1874         details.nonlinear_vma = NULL;
1875         details.first_index = hba;
1876         details.last_index = hba + hlen - 1;
1877         if (details.last_index < details.first_index)
1878                 details.last_index = ULONG_MAX;
1879         details.i_mmap_lock = &mapping->i_mmap_lock;
1880
1881         spin_lock(&mapping->i_mmap_lock);
1882
1883         /* Protect against endless unmapping loops */
1884         mapping->truncate_count++;
1885         if (unlikely(is_restart_addr(mapping->truncate_count))) {
1886                 if (mapping->truncate_count == 0)
1887                         reset_vma_truncate_counts(mapping);
1888                 mapping->truncate_count++;
1889         }
1890         details.truncate_count = mapping->truncate_count;
1891
1892         if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1893                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1894         if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1895                 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1896         spin_unlock(&mapping->i_mmap_lock);
1897 }
1898 EXPORT_SYMBOL(unmap_mapping_range);
1899
1900 /**
1901  * vmtruncate - unmap mappings "freed" by truncate() syscall
1902  * @inode: inode of the file used
1903  * @offset: file offset to start truncating
1904  *
1905  * NOTE! We have to be ready to update the memory sharing
1906  * between the file and the memory map for a potential last
1907  * incomplete page.  Ugly, but necessary.
1908  */
1909 int vmtruncate(struct inode * inode, loff_t offset)
1910 {
1911         struct address_space *mapping = inode->i_mapping;
1912         unsigned long limit;
1913
1914         if (inode->i_size < offset)
1915                 goto do_expand;
1916         /*
1917          * truncation of in-use swapfiles is disallowed - it would cause
1918          * subsequent swapout to scribble on the now-freed blocks.
1919          */
1920         if (IS_SWAPFILE(inode))
1921                 goto out_busy;
1922         i_size_write(inode, offset);
1923
1924         /*
1925          * unmap_mapping_range is called twice, first simply for efficiency
1926          * so that truncate_inode_pages does fewer single-page unmaps. However
1927          * after this first call, and before truncate_inode_pages finishes,
1928          * it is possible for private pages to be COWed, which remain after
1929          * truncate_inode_pages finishes, hence the second unmap_mapping_range
1930          * call must be made for correctness.
1931          */
1932         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1933         truncate_inode_pages(mapping, offset);
1934         unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1935         goto out_truncate;
1936
1937 do_expand:
1938         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1939         if (limit != RLIM_INFINITY && offset > limit)
1940                 goto out_sig;
1941         if (offset > inode->i_sb->s_maxbytes)
1942                 goto out_big;
1943         i_size_write(inode, offset);
1944
1945 out_truncate:
1946         if (inode->i_op && inode->i_op->truncate)
1947                 inode->i_op->truncate(inode);
1948         return 0;
1949 out_sig:
1950         send_sig(SIGXFSZ, current, 0);
1951 out_big:
1952         return -EFBIG;
1953 out_busy:
1954         return -ETXTBSY;
1955 }
1956 EXPORT_SYMBOL(vmtruncate);
1957
1958 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1959 {
1960         struct address_space *mapping = inode->i_mapping;
1961
1962         /*
1963          * If the underlying filesystem is not going to provide
1964          * a way to truncate a range of blocks (punch a hole) -
1965          * we should return failure right now.
1966          */
1967         if (!inode->i_op || !inode->i_op->truncate_range)
1968                 return -ENOSYS;
1969
1970         mutex_lock(&inode->i_mutex);
1971         down_write(&inode->i_alloc_sem);
1972         unmap_mapping_range(mapping, offset, (end - offset), 1);
1973         truncate_inode_pages_range(mapping, offset, end);
1974         unmap_mapping_range(mapping, offset, (end - offset), 1);
1975         inode->i_op->truncate_range(inode, offset, end);
1976         up_write(&inode->i_alloc_sem);
1977         mutex_unlock(&inode->i_mutex);
1978
1979         return 0;
1980 }
1981
1982 /**
1983  * swapin_readahead - swap in pages in hope we need them soon
1984  * @entry: swap entry of this memory
1985  * @addr: address to start
1986  * @vma: user vma this addresses belong to
1987  *
1988  * Primitive swap readahead code. We simply read an aligned block of
1989  * (1 << page_cluster) entries in the swap area. This method is chosen
1990  * because it doesn't cost us any seek time.  We also make sure to queue
1991  * the 'original' request together with the readahead ones...
1992  *
1993  * This has been extended to use the NUMA policies from the mm triggering
1994  * the readahead.
1995  *
1996  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1997  */
1998 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1999 {
2000 #ifdef CONFIG_NUMA
2001         struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2002 #endif
2003         int i, num;
2004         struct page *new_page;
2005         unsigned long offset;
2006
2007         /*
2008          * Get the number of handles we should do readahead io to.
2009          */
2010         num = valid_swaphandles(entry, &offset);
2011         for (i = 0; i < num; offset++, i++) {
2012                 /* Ok, do the async read-ahead now */
2013                 new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2014                                                            offset), vma, addr);
2015                 if (!new_page)
2016                         break;
2017                 page_cache_release(new_page);
2018 #ifdef CONFIG_NUMA
2019                 /*
2020                  * Find the next applicable VMA for the NUMA policy.
2021                  */
2022                 addr += PAGE_SIZE;
2023                 if (addr == 0)
2024                         vma = NULL;
2025                 if (vma) {
2026                         if (addr >= vma->vm_end) {
2027                                 vma = next_vma;
2028                                 next_vma = vma ? vma->vm_next : NULL;
2029                         }
2030                         if (vma && addr < vma->vm_start)
2031                                 vma = NULL;
2032                 } else {
2033                         if (next_vma && addr >= next_vma->vm_start) {
2034                                 vma = next_vma;
2035                                 next_vma = vma->vm_next;
2036                         }
2037                 }
2038 #endif
2039         }
2040         lru_add_drain();        /* Push any new pages onto the LRU now */
2041 }
2042
2043 /*
2044  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2045  * but allow concurrent faults), and pte mapped but not yet locked.
2046  * We return with mmap_sem still held, but pte unmapped and unlocked.
2047  */
2048 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2049                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2050                 int write_access, pte_t orig_pte)
2051 {
2052         spinlock_t *ptl;
2053         struct page *page;
2054         swp_entry_t entry;
2055         pte_t pte;
2056         int ret = 0;
2057
2058         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2059                 goto out;
2060
2061         entry = pte_to_swp_entry(orig_pte);
2062         if (is_migration_entry(entry)) {
2063                 migration_entry_wait(mm, pmd, address);
2064                 goto out;
2065         }
2066         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2067         page = lookup_swap_cache(entry);
2068         if (!page) {
2069                 grab_swap_token(); /* Contend for token _before_ read-in */
2070                 swapin_readahead(entry, address, vma);
2071                 page = read_swap_cache_async(entry, vma, address);
2072                 if (!page) {
2073                         /*
2074                          * Back out if somebody else faulted in this pte
2075                          * while we released the pte lock.
2076                          */
2077                         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2078                         if (likely(pte_same(*page_table, orig_pte)))
2079                                 ret = VM_FAULT_OOM;
2080                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2081                         goto unlock;
2082                 }
2083
2084                 /* Had to read the page from swap area: Major fault */
2085                 ret = VM_FAULT_MAJOR;
2086                 count_vm_event(PGMAJFAULT);
2087         }
2088
2089         mark_page_accessed(page);
2090         lock_page(page);
2091         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2092
2093         /*
2094          * Back out if somebody else already faulted in this pte.
2095          */
2096         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2097         if (unlikely(!pte_same(*page_table, orig_pte)))
2098                 goto out_nomap;
2099
2100         if (unlikely(!PageUptodate(page))) {
2101                 ret = VM_FAULT_SIGBUS;
2102                 goto out_nomap;
2103         }
2104
2105         /* The page isn't present yet, go ahead with the fault. */
2106
2107         inc_mm_counter(mm, anon_rss);
2108         pte = mk_pte(page, vma->vm_page_prot);
2109         if (write_access && can_share_swap_page(page)) {
2110                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2111                 write_access = 0;
2112         }
2113
2114         flush_icache_page(vma, page);
2115         set_pte_at(mm, address, page_table, pte);
2116         page_add_anon_rmap(page, vma, address);
2117
2118         swap_free(entry);
2119         if (vm_swap_full())
2120                 remove_exclusive_swap_page(page);
2121         unlock_page(page);
2122
2123         if (write_access) {
2124                 /* XXX: We could OR the do_wp_page code with this one? */
2125                 if (do_wp_page(mm, vma, address,
2126                                 page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2127                         ret = VM_FAULT_OOM;
2128                 goto out;
2129         }
2130
2131         /* No need to invalidate - it was non-present before */
2132         update_mmu_cache(vma, address, pte);
2133 unlock:
2134         pte_unmap_unlock(page_table, ptl);
2135 out:
2136         return ret;
2137 out_nomap:
2138         pte_unmap_unlock(page_table, ptl);
2139         unlock_page(page);
2140         page_cache_release(page);
2141         return ret;
2142 }
2143
2144 /*
2145  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2146  * but allow concurrent faults), and pte mapped but not yet locked.
2147  * We return with mmap_sem still held, but pte unmapped and unlocked.
2148  */
2149 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2150                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2151                 int write_access)
2152 {
2153         struct page *page;
2154         spinlock_t *ptl;
2155         pte_t entry;
2156
2157         /* Allocate our own private page. */
2158         pte_unmap(page_table);
2159
2160         if (unlikely(anon_vma_prepare(vma)))
2161                 goto oom;
2162         page = alloc_zeroed_user_highpage_movable(vma, address);
2163         if (!page)
2164                 goto oom;
2165
2166         entry = mk_pte(page, vma->vm_page_prot);
2167         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2168
2169         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2170         if (!pte_none(*page_table))
2171                 goto release;
2172         inc_mm_counter(mm, anon_rss);
2173         lru_cache_add_active(page);
2174         page_add_new_anon_rmap(page, vma, address);
2175         set_pte_at(mm, address, page_table, entry);
2176
2177         /* No need to invalidate - it was non-present before */
2178         update_mmu_cache(vma, address, entry);
2179 unlock:
2180         pte_unmap_unlock(page_table, ptl);
2181         return 0;
2182 release:
2183         page_cache_release(page);
2184         goto unlock;
2185 oom:
2186         return VM_FAULT_OOM;
2187 }
2188
2189 /*
2190  * __do_fault() tries to create a new page mapping. It aggressively
2191  * tries to share with existing pages, but makes a separate copy if
2192  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2193  * the next page fault.
2194  *
2195  * As this is called only for pages that do not currently exist, we
2196  * do not need to flush old virtual caches or the TLB.
2197  *
2198  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2199  * but allow concurrent faults), and pte neither mapped nor locked.
2200  * We return with mmap_sem still held, but pte unmapped and unlocked.
2201  */
2202 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2203                 unsigned long address, pmd_t *pmd,
2204                 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2205 {
2206         pte_t *page_table;
2207         spinlock_t *ptl;
2208         struct page *page;
2209         pte_t entry;
2210         int anon = 0;
2211         struct page *dirty_page = NULL;
2212         struct vm_fault vmf;
2213         int ret;
2214         int page_mkwrite = 0;
2215
2216         vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2217         vmf.pgoff = pgoff;
2218         vmf.flags = flags;
2219         vmf.page = NULL;
2220
2221         BUG_ON(vma->vm_flags & VM_PFNMAP);
2222
2223         if (likely(vma->vm_ops->fault)) {
2224                 ret = vma->vm_ops->fault(vma, &vmf);
2225                 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2226                         return ret;
2227         } else {
2228                 /* Legacy ->nopage path */
2229                 ret = 0;
2230                 vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2231                 /* no page was available -- either SIGBUS or OOM */
2232                 if (unlikely(vmf.page == NOPAGE_SIGBUS))
2233                         return VM_FAULT_SIGBUS;
2234                 else if (unlikely(vmf.page == NOPAGE_OOM))
2235                         return VM_FAULT_OOM;
2236         }
2237
2238         /*
2239          * For consistency in subsequent calls, make the faulted page always
2240          * locked.
2241          */
2242         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2243                 lock_page(vmf.page);
2244         else
2245                 VM_BUG_ON(!PageLocked(vmf.page));
2246
2247         /*
2248          * Should we do an early C-O-W break?
2249          */
2250         page = vmf.page;
2251         if (flags & FAULT_FLAG_WRITE) {
2252                 if (!(vma->vm_flags & VM_SHARED)) {
2253                         anon = 1;
2254                         if (unlikely(anon_vma_prepare(vma))) {
2255                                 ret = VM_FAULT_OOM;
2256                                 goto out;
2257                         }
2258                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2259                                                 vma, address);
2260                         if (!page) {
2261                                 ret = VM_FAULT_OOM;
2262                                 goto out;
2263                         }
2264                         copy_user_highpage(page, vmf.page, address, vma);
2265                 } else {
2266                         /*
2267                          * If the page will be shareable, see if the backing
2268                          * address space wants to know that the page is about
2269                          * to become writable
2270                          */
2271                         if (vma->vm_ops->page_mkwrite) {
2272                                 unlock_page(page);
2273                                 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2274                                         ret = VM_FAULT_SIGBUS;
2275                                         anon = 1; /* no anon but release vmf.page */
2276                                         goto out_unlocked;
2277                                 }
2278                                 lock_page(page);
2279                                 /*
2280                                  * XXX: this is not quite right (racy vs
2281                                  * invalidate) to unlock and relock the page
2282                                  * like this, however a better fix requires
2283                                  * reworking page_mkwrite locking API, which
2284                                  * is better done later.
2285                                  */
2286                                 if (!page->mapping) {
2287                                         ret = 0;
2288                                         anon = 1; /* no anon but release vmf.page */
2289                                         goto out;
2290                                 }
2291                                 page_mkwrite = 1;
2292                         }
2293                 }
2294
2295         }
2296
2297         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2298
2299         /*
2300          * This silly early PAGE_DIRTY setting removes a race
2301          * due to the bad i386 page protection. But it's valid
2302          * for other architectures too.
2303          *
2304          * Note that if write_access is true, we either now have
2305          * an exclusive copy of the page, or this is a shared mapping,
2306          * so we can make it writable and dirty to avoid having to
2307          * handle that later.
2308          */
2309         /* Only go through if we didn't race with anybody else... */
2310         if (likely(pte_same(*page_table, orig_pte))) {
2311                 flush_icache_page(vma, page);
2312                 entry = mk_pte(page, vma->vm_page_prot);
2313                 if (flags & FAULT_FLAG_WRITE)
2314                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2315                 set_pte_at(mm, address, page_table, entry);
2316                 if (anon) {
2317                         inc_mm_counter(mm, anon_rss);
2318                         lru_cache_add_active(page);
2319                         page_add_new_anon_rmap(page, vma, address);
2320                 } else {
2321                         inc_mm_counter(mm, file_rss);
2322                         page_add_file_rmap(page);
2323                         if (flags & FAULT_FLAG_WRITE) {
2324                                 dirty_page = page;
2325                                 get_page(dirty_page);
2326                         }
2327                 }
2328
2329                 /* no need to invalidate: a not-present page won't be cached */
2330                 update_mmu_cache(vma, address, entry);
2331         } else {
2332                 if (anon)
2333                         page_cache_release(page);
2334                 else
2335                         anon = 1; /* no anon but release faulted_page */
2336         }
2337
2338         pte_unmap_unlock(page_table, ptl);
2339
2340 out:
2341         unlock_page(vmf.page);
2342 out_unlocked:
2343         if (anon)
2344                 page_cache_release(vmf.page);
2345         else if (dirty_page) {
2346                 set_page_dirty_balance(dirty_page, page_mkwrite);
2347                 put_page(dirty_page);
2348         }
2349
2350         return ret;
2351 }
2352
2353 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2354                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2355                 int write_access, pte_t orig_pte)
2356 {
2357         pgoff_t pgoff = (((address & PAGE_MASK)
2358                         - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2359         unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2360
2361         pte_unmap(page_table);
2362         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2363 }
2364
2365
2366 /*
2367  * do_no_pfn() tries to create a new page mapping for a page without
2368  * a struct_page backing it
2369  *
2370  * As this is called only for pages that do not currently exist, we
2371  * do not need to flush old virtual caches or the TLB.
2372  *
2373  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2374  * but allow concurrent faults), and pte mapped but not yet locked.
2375  * We return with mmap_sem still held, but pte unmapped and unlocked.
2376  *
2377  * It is expected that the ->nopfn handler always returns the same pfn
2378  * for a given virtual mapping.
2379  *
2380  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2381  */
2382 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2383                      unsigned long address, pte_t *page_table, pmd_t *pmd,
2384                      int write_access)
2385 {
2386         spinlock_t *ptl;
2387         pte_t entry;
2388         unsigned long pfn;
2389
2390         pte_unmap(page_table);
2391         BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2392         BUG_ON(is_cow_mapping(vma->vm_flags));
2393
2394         pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2395         if (unlikely(pfn == NOPFN_OOM))
2396                 return VM_FAULT_OOM;
2397         else if (unlikely(pfn == NOPFN_SIGBUS))
2398                 return VM_FAULT_SIGBUS;
2399         else if (unlikely(pfn == NOPFN_REFAULT))
2400                 return 0;
2401
2402         page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2403
2404         /* Only go through if we didn't race with anybody else... */
2405         if (pte_none(*page_table)) {
2406                 entry = pfn_pte(pfn, vma->vm_page_prot);
2407                 if (write_access)
2408                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2409                 set_pte_at(mm, address, page_table, entry);
2410         }
2411         pte_unmap_unlock(page_table, ptl);
2412         return 0;
2413 }
2414
2415 /*
2416  * Fault of a previously existing named mapping. Repopulate the pte
2417  * from the encoded file_pte if possible. This enables swappable
2418  * nonlinear vmas.
2419  *
2420  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2421  * but allow concurrent faults), and pte mapped but not yet locked.
2422  * We return with mmap_sem still held, but pte unmapped and unlocked.
2423  */
2424 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2425                 unsigned long address, pte_t *page_table, pmd_t *pmd,
2426                 int write_access, pte_t orig_pte)
2427 {
2428         unsigned int flags = FAULT_FLAG_NONLINEAR |
2429                                 (write_access ? FAULT_FLAG_WRITE : 0);
2430         pgoff_t pgoff;
2431
2432         if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2433                 return 0;
2434
2435         if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2436                         !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2437                 /*
2438                  * Page table corrupted: show pte and kill process.
2439                  */
2440                 print_bad_pte(vma, orig_pte, address);
2441                 return VM_FAULT_OOM;
2442         }
2443
2444         pgoff = pte_to_pgoff(orig_pte);
2445         return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2446 }
2447
2448 /*
2449  * These routines also need to handle stuff like marking pages dirty
2450  * and/or accessed for architectures that don't do it in hardware (most
2451  * RISC architectures).  The early dirtying is also good on the i386.
2452  *
2453  * There is also a hook called "update_mmu_cache()" that architectures
2454  * with external mmu caches can use to update those (ie the Sparc or
2455  * PowerPC hashed page tables that act as extended TLBs).
2456  *
2457  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2458  * but allow concurrent faults), and pte mapped but not yet locked.
2459  * We return with mmap_sem still held, but pte unmapped and unlocked.
2460  */
2461 static inline int handle_pte_fault(struct mm_struct *mm,
2462                 struct vm_area_struct *vma, unsigned long address,
2463                 pte_t *pte, pmd_t *pmd, int write_access)
2464 {
2465         pte_t entry;
2466         spinlock_t *ptl;
2467
2468         entry = *pte;
2469         if (!pte_present(entry)) {
2470                 if (pte_none(entry)) {
2471                         if (vma->vm_ops) {
2472                                 if (vma->vm_ops->fault || vma->vm_ops->nopage)
2473                                         return do_linear_fault(mm, vma, address,
2474                                                 pte, pmd, write_access, entry);
2475                                 if (unlikely(vma->vm_ops->nopfn))
2476                                         return do_no_pfn(mm, vma, address, pte,
2477                                                          pmd, write_access);
2478                         }
2479                         return do_anonymous_page(mm, vma, address,
2480                                                  pte, pmd, write_access);
2481                 }
2482                 if (pte_file(entry))
2483                         return do_nonlinear_fault(mm, vma, address,
2484                                         pte, pmd, write_access, entry);
2485                 return do_swap_page(mm, vma, address,
2486                                         pte, pmd, write_access, entry);
2487         }
2488
2489         ptl = pte_lockptr(mm, pmd);
2490         spin_lock(ptl);
2491         if (unlikely(!pte_same(*pte, entry)))
2492                 goto unlock;
2493         if (write_access) {
2494                 if (!pte_write(entry))
2495                         return do_wp_page(mm, vma, address,
2496                                         pte, pmd, ptl, entry);
2497                 entry = pte_mkdirty(entry);
2498         }
2499         entry = pte_mkyoung(entry);
2500         if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2501                 update_mmu_cache(vma, address, entry);
2502         } else {
2503                 /*
2504                  * This is needed only for protection faults but the arch code
2505                  * is not yet telling us if this is a protection fault or not.
2506                  * This still avoids useless tlb flushes for .text page faults
2507                  * with threads.
2508                  */
2509                 if (write_access)
2510                         flush_tlb_page(vma, address);
2511         }
2512 unlock:
2513         pte_unmap_unlock(pte, ptl);
2514         return 0;
2515 }
2516
2517 /*
2518  * By the time we get here, we already hold the mm semaphore
2519  */
2520 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2521                 unsigned long address, int write_access)
2522 {
2523         pgd_t *pgd;
2524         pud_t *pud;
2525         pmd_t *pmd;
2526         pte_t *pte;
2527
2528         __set_current_state(TASK_RUNNING);
2529
2530         count_vm_event(PGFAULT);
2531
2532         if (unlikely(is_vm_hugetlb_page(vma)))
2533                 return hugetlb_fault(mm, vma, address, write_access);
2534
2535         pgd = pgd_offset(mm, address);
2536         pud = pud_alloc(mm, pgd, address);
2537         if (!pud)
2538                 return VM_FAULT_OOM;
2539         pmd = pmd_alloc(mm, pud, address);
2540         if (!pmd)
2541                 return VM_FAULT_OOM;
2542         pte = pte_alloc_map(mm, pmd, address);
2543         if (!pte)
2544                 return VM_FAULT_OOM;
2545
2546         return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2547 }
2548
2549 #ifndef __PAGETABLE_PUD_FOLDED
2550 /*
2551  * Allocate page upper directory.
2552  * We've already handled the fast-path in-line.
2553  */
2554 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2555 {
2556         pud_t *new = pud_alloc_one(mm, address);
2557         if (!new)
2558                 return -ENOMEM;
2559
2560         spin_lock(&mm->page_table_lock);
2561         if (pgd_present(*pgd))          /* Another has populated it */
2562                 pud_free(new);
2563         else
2564                 pgd_populate(mm, pgd, new);
2565         spin_unlock(&mm->page_table_lock);
2566         return 0;
2567 }
2568 #endif /* __PAGETABLE_PUD_FOLDED */
2569
2570 #ifndef __PAGETABLE_PMD_FOLDED
2571 /*
2572  * Allocate page middle directory.
2573  * We've already handled the fast-path in-line.
2574  */
2575 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2576 {
2577         pmd_t *new = pmd_alloc_one(mm, address);
2578         if (!new)
2579                 return -ENOMEM;
2580
2581         spin_lock(&mm->page_table_lock);
2582 #ifndef __ARCH_HAS_4LEVEL_HACK
2583         if (pud_present(*pud))          /* Another has populated it */
2584                 pmd_free(new);
2585         else
2586                 pud_populate(mm, pud, new);
2587 #else
2588         if (pgd_present(*pud))          /* Another has populated it */
2589                 pmd_free(new);
2590         else
2591                 pgd_populate(mm, pud, new);
2592 #endif /* __ARCH_HAS_4LEVEL_HACK */
2593         spin_unlock(&mm->page_table_lock);
2594         return 0;
2595 }
2596 #endif /* __PAGETABLE_PMD_FOLDED */
2597
2598 int make_pages_present(unsigned long addr, unsigned long end)
2599 {
2600         int ret, len, write;
2601         struct vm_area_struct * vma;
2602
2603         vma = find_vma(current->mm, addr);
2604         if (!vma)
2605                 return -1;
2606         write = (vma->vm_flags & VM_WRITE) != 0;
2607         BUG_ON(addr >= end);
2608         BUG_ON(end > vma->vm_end);
2609         len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2610         ret = get_user_pages(current, current->mm, addr,
2611                         len, write, 0, NULL, NULL);
2612         if (ret < 0)
2613                 return ret;
2614         return ret == len ? 0 : -1;
2615 }
2616
2617 /* 
2618  * Map a vmalloc()-space virtual address to the physical page.
2619  */
2620 struct page * vmalloc_to_page(void * vmalloc_addr)
2621 {
2622         unsigned long addr = (unsigned long) vmalloc_addr;
2623         struct page *page = NULL;
2624         pgd_t *pgd = pgd_offset_k(addr);
2625         pud_t *pud;
2626         pmd_t *pmd;
2627         pte_t *ptep, pte;
2628   
2629         if (!pgd_none(*pgd)) {
2630                 pud = pud_offset(pgd, addr);
2631                 if (!pud_none(*pud)) {
2632                         pmd = pmd_offset(pud, addr);
2633                         if (!pmd_none(*pmd)) {
2634                                 ptep = pte_offset_map(pmd, addr);
2635                                 pte = *ptep;
2636                                 if (pte_present(pte))
2637                                         page = pte_page(pte);
2638                                 pte_unmap(ptep);
2639                         }
2640                 }
2641         }
2642         return page;
2643 }
2644
2645 EXPORT_SYMBOL(vmalloc_to_page);
2646
2647 /*
2648  * Map a vmalloc()-space virtual address to the physical page frame number.
2649  */
2650 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2651 {
2652         return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2653 }
2654
2655 EXPORT_SYMBOL(vmalloc_to_pfn);
2656
2657 #if !defined(__HAVE_ARCH_GATE_AREA)
2658
2659 #if defined(AT_SYSINFO_EHDR)
2660 static struct vm_area_struct gate_vma;
2661
2662 static int __init gate_vma_init(void)
2663 {
2664         gate_vma.vm_mm = NULL;
2665         gate_vma.vm_start = FIXADDR_USER_START;
2666         gate_vma.vm_end = FIXADDR_USER_END;
2667         gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2668         gate_vma.vm_page_prot = __P101;
2669         /*
2670          * Make sure the vDSO gets into every core dump.
2671          * Dumping its contents makes post-mortem fully interpretable later
2672          * without matching up the same kernel and hardware config to see
2673          * what PC values meant.
2674          */
2675         gate_vma.vm_flags |= VM_ALWAYSDUMP;
2676         return 0;
2677 }
2678 __initcall(gate_vma_init);
2679 #endif
2680
2681 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2682 {
2683 #ifdef AT_SYSINFO_EHDR
2684         return &gate_vma;
2685 #else
2686         return NULL;
2687 #endif
2688 }
2689
2690 int in_gate_area_no_task(unsigned long addr)
2691 {
2692 #ifdef AT_SYSINFO_EHDR
2693         if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2694                 return 1;
2695 #endif
2696         return 0;
2697 }
2698
2699 #endif  /* __HAVE_ARCH_GATE_AREA */
2700
2701 /*
2702  * Access another process' address space.
2703  * Source/target buffer must be kernel space,
2704  * Do not walk the page table directly, use get_user_pages
2705  */
2706 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2707 {
2708         struct mm_struct *mm;
2709         struct vm_area_struct *vma;
2710         struct page *page;
2711         void *old_buf = buf;
2712
2713         mm = get_task_mm(tsk);
2714         if (!mm)
2715                 return 0;
2716
2717         down_read(&mm->mmap_sem);
2718         /* ignore errors, just check how much was successfully transferred */
2719         while (len) {
2720                 int bytes, ret, offset;
2721                 void *maddr;
2722
2723                 ret = get_user_pages(tsk, mm, addr, 1,
2724                                 write, 1, &page, &vma);
2725                 if (ret <= 0)
2726                         break;
2727
2728                 bytes = len;
2729                 offset = addr & (PAGE_SIZE-1);
2730                 if (bytes > PAGE_SIZE-offset)
2731                         bytes = PAGE_SIZE-offset;
2732
2733                 maddr = kmap(page);
2734                 if (write) {
2735                         copy_to_user_page(vma, page, addr,
2736                                           maddr + offset, buf, bytes);
2737                         set_page_dirty_lock(page);
2738                 } else {
2739                         copy_from_user_page(vma, page, addr,
2740                                             buf, maddr + offset, bytes);
2741                 }
2742                 kunmap(page);
2743                 page_cache_release(page);
2744                 len -= bytes;
2745                 buf += bytes;
2746                 addr += bytes;
2747         }
2748         up_read(&mm->mmap_sem);
2749         mmput(mm);
2750
2751         return buf - old_buf;
2752 }