Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 #include <linux/gfp.h>
65 #include <linux/migrate.h>
66 #include <linux/string.h>
67 #include <linux/dma-debug.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72
73 #include <asm/io.h>
74 #include <asm/mmu_context.h>
75 #include <asm/pgalloc.h>
76 #include <linux/uaccess.h>
77 #include <asm/tlb.h>
78 #include <asm/tlbflush.h>
79 #include <asm/pgtable.h>
80
81 #include "internal.h"
82
83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
85 #endif
86
87 #ifndef CONFIG_NEED_MULTIPLE_NODES
88 /* use the per-pgdat data instead for discontigmem - mbligh */
89 unsigned long max_mapnr;
90 EXPORT_SYMBOL(max_mapnr);
91
92 struct page *mem_map;
93 EXPORT_SYMBOL(mem_map);
94 #endif
95
96 /*
97  * A number of key systems in x86 including ioremap() rely on the assumption
98  * that high_memory defines the upper bound on direct map memory, then end
99  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
100  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101  * and ZONE_HIGHMEM.
102  */
103 void *high_memory;
104 EXPORT_SYMBOL(high_memory);
105
106 /*
107  * Randomize the address space (stacks, mmaps, brk, etc.).
108  *
109  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110  *   as ancient (libc5 based) binaries can segfault. )
111  */
112 int randomize_va_space __read_mostly =
113 #ifdef CONFIG_COMPAT_BRK
114                                         1;
115 #else
116                                         2;
117 #endif
118
119 static int __init disable_randmaps(char *s)
120 {
121         randomize_va_space = 0;
122         return 1;
123 }
124 __setup("norandmaps", disable_randmaps);
125
126 unsigned long zero_pfn __read_mostly;
127 EXPORT_SYMBOL(zero_pfn);
128
129 unsigned long highest_memmap_pfn __read_mostly;
130
131 /*
132  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133  */
134 static int __init init_zero_pfn(void)
135 {
136         zero_pfn = page_to_pfn(ZERO_PAGE(0));
137         return 0;
138 }
139 core_initcall(init_zero_pfn);
140
141
142 #if defined(SPLIT_RSS_COUNTING)
143
144 void sync_mm_rss(struct mm_struct *mm)
145 {
146         int i;
147
148         for (i = 0; i < NR_MM_COUNTERS; i++) {
149                 if (current->rss_stat.count[i]) {
150                         add_mm_counter(mm, i, current->rss_stat.count[i]);
151                         current->rss_stat.count[i] = 0;
152                 }
153         }
154         current->rss_stat.events = 0;
155 }
156
157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158 {
159         struct task_struct *task = current;
160
161         if (likely(task->mm == mm))
162                 task->rss_stat.count[member] += val;
163         else
164                 add_mm_counter(mm, member, val);
165 }
166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169 /* sync counter once per 64 page faults */
170 #define TASK_RSS_EVENTS_THRESH  (64)
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173         if (unlikely(task != current))
174                 return;
175         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
176                 sync_mm_rss(task->mm);
177 }
178 #else /* SPLIT_RSS_COUNTING */
179
180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183 static void check_sync_rss_stat(struct task_struct *task)
184 {
185 }
186
187 #endif /* SPLIT_RSS_COUNTING */
188
189 /*
190  * Note: this doesn't free the actual pages themselves. That
191  * has been handled earlier when unmapping all the memory regions.
192  */
193 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
194                            unsigned long addr)
195 {
196         pgtable_t token = pmd_pgtable(*pmd);
197         pmd_clear(pmd);
198         pte_free_tlb(tlb, token, addr);
199         mm_dec_nr_ptes(tlb->mm);
200 }
201
202 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
203                                 unsigned long addr, unsigned long end,
204                                 unsigned long floor, unsigned long ceiling)
205 {
206         pmd_t *pmd;
207         unsigned long next;
208         unsigned long start;
209
210         start = addr;
211         pmd = pmd_offset(pud, addr);
212         do {
213                 next = pmd_addr_end(addr, end);
214                 if (pmd_none_or_clear_bad(pmd))
215                         continue;
216                 free_pte_range(tlb, pmd, addr);
217         } while (pmd++, addr = next, addr != end);
218
219         start &= PUD_MASK;
220         if (start < floor)
221                 return;
222         if (ceiling) {
223                 ceiling &= PUD_MASK;
224                 if (!ceiling)
225                         return;
226         }
227         if (end - 1 > ceiling - 1)
228                 return;
229
230         pmd = pmd_offset(pud, start);
231         pud_clear(pud);
232         pmd_free_tlb(tlb, pmd, start);
233         mm_dec_nr_pmds(tlb->mm);
234 }
235
236 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
237                                 unsigned long addr, unsigned long end,
238                                 unsigned long floor, unsigned long ceiling)
239 {
240         pud_t *pud;
241         unsigned long next;
242         unsigned long start;
243
244         start = addr;
245         pud = pud_offset(p4d, addr);
246         do {
247                 next = pud_addr_end(addr, end);
248                 if (pud_none_or_clear_bad(pud))
249                         continue;
250                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
251         } while (pud++, addr = next, addr != end);
252
253         start &= P4D_MASK;
254         if (start < floor)
255                 return;
256         if (ceiling) {
257                 ceiling &= P4D_MASK;
258                 if (!ceiling)
259                         return;
260         }
261         if (end - 1 > ceiling - 1)
262                 return;
263
264         pud = pud_offset(p4d, start);
265         p4d_clear(p4d);
266         pud_free_tlb(tlb, pud, start);
267         mm_dec_nr_puds(tlb->mm);
268 }
269
270 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
271                                 unsigned long addr, unsigned long end,
272                                 unsigned long floor, unsigned long ceiling)
273 {
274         p4d_t *p4d;
275         unsigned long next;
276         unsigned long start;
277
278         start = addr;
279         p4d = p4d_offset(pgd, addr);
280         do {
281                 next = p4d_addr_end(addr, end);
282                 if (p4d_none_or_clear_bad(p4d))
283                         continue;
284                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
285         } while (p4d++, addr = next, addr != end);
286
287         start &= PGDIR_MASK;
288         if (start < floor)
289                 return;
290         if (ceiling) {
291                 ceiling &= PGDIR_MASK;
292                 if (!ceiling)
293                         return;
294         }
295         if (end - 1 > ceiling - 1)
296                 return;
297
298         p4d = p4d_offset(pgd, start);
299         pgd_clear(pgd);
300         p4d_free_tlb(tlb, p4d, start);
301 }
302
303 /*
304  * This function frees user-level page tables of a process.
305  */
306 void free_pgd_range(struct mmu_gather *tlb,
307                         unsigned long addr, unsigned long end,
308                         unsigned long floor, unsigned long ceiling)
309 {
310         pgd_t *pgd;
311         unsigned long next;
312
313         /*
314          * The next few lines have given us lots of grief...
315          *
316          * Why are we testing PMD* at this top level?  Because often
317          * there will be no work to do at all, and we'd prefer not to
318          * go all the way down to the bottom just to discover that.
319          *
320          * Why all these "- 1"s?  Because 0 represents both the bottom
321          * of the address space and the top of it (using -1 for the
322          * top wouldn't help much: the masks would do the wrong thing).
323          * The rule is that addr 0 and floor 0 refer to the bottom of
324          * the address space, but end 0 and ceiling 0 refer to the top
325          * Comparisons need to use "end - 1" and "ceiling - 1" (though
326          * that end 0 case should be mythical).
327          *
328          * Wherever addr is brought up or ceiling brought down, we must
329          * be careful to reject "the opposite 0" before it confuses the
330          * subsequent tests.  But what about where end is brought down
331          * by PMD_SIZE below? no, end can't go down to 0 there.
332          *
333          * Whereas we round start (addr) and ceiling down, by different
334          * masks at different levels, in order to test whether a table
335          * now has no other vmas using it, so can be freed, we don't
336          * bother to round floor or end up - the tests don't need that.
337          */
338
339         addr &= PMD_MASK;
340         if (addr < floor) {
341                 addr += PMD_SIZE;
342                 if (!addr)
343                         return;
344         }
345         if (ceiling) {
346                 ceiling &= PMD_MASK;
347                 if (!ceiling)
348                         return;
349         }
350         if (end - 1 > ceiling - 1)
351                 end -= PMD_SIZE;
352         if (addr > end - 1)
353                 return;
354         /*
355          * We add page table cache pages with PAGE_SIZE,
356          * (see pte_free_tlb()), flush the tlb if we need
357          */
358         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
359         pgd = pgd_offset(tlb->mm, addr);
360         do {
361                 next = pgd_addr_end(addr, end);
362                 if (pgd_none_or_clear_bad(pgd))
363                         continue;
364                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
365         } while (pgd++, addr = next, addr != end);
366 }
367
368 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
369                 unsigned long floor, unsigned long ceiling)
370 {
371         while (vma) {
372                 struct vm_area_struct *next = vma->vm_next;
373                 unsigned long addr = vma->vm_start;
374
375                 /*
376                  * Hide vma from rmap and truncate_pagecache before freeing
377                  * pgtables
378                  */
379                 unlink_anon_vmas(vma);
380                 unlink_file_vma(vma);
381
382                 if (is_vm_hugetlb_page(vma)) {
383                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
384                                 floor, next ? next->vm_start : ceiling);
385                 } else {
386                         /*
387                          * Optimization: gather nearby vmas into one call down
388                          */
389                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
390                                && !is_vm_hugetlb_page(next)) {
391                                 vma = next;
392                                 next = vma->vm_next;
393                                 unlink_anon_vmas(vma);
394                                 unlink_file_vma(vma);
395                         }
396                         free_pgd_range(tlb, addr, vma->vm_end,
397                                 floor, next ? next->vm_start : ceiling);
398                 }
399                 vma = next;
400         }
401 }
402
403 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
404 {
405         spinlock_t *ptl;
406         pgtable_t new = pte_alloc_one(mm);
407         if (!new)
408                 return -ENOMEM;
409
410         /*
411          * Ensure all pte setup (eg. pte page lock and page clearing) are
412          * visible before the pte is made visible to other CPUs by being
413          * put into page tables.
414          *
415          * The other side of the story is the pointer chasing in the page
416          * table walking code (when walking the page table without locking;
417          * ie. most of the time). Fortunately, these data accesses consist
418          * of a chain of data-dependent loads, meaning most CPUs (alpha
419          * being the notable exception) will already guarantee loads are
420          * seen in-order. See the alpha page table accessors for the
421          * smp_read_barrier_depends() barriers in page table walking code.
422          */
423         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
424
425         ptl = pmd_lock(mm, pmd);
426         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
427                 mm_inc_nr_ptes(mm);
428                 pmd_populate(mm, pmd, new);
429                 new = NULL;
430         }
431         spin_unlock(ptl);
432         if (new)
433                 pte_free(mm, new);
434         return 0;
435 }
436
437 int __pte_alloc_kernel(pmd_t *pmd)
438 {
439         pte_t *new = pte_alloc_one_kernel(&init_mm);
440         if (!new)
441                 return -ENOMEM;
442
443         smp_wmb(); /* See comment in __pte_alloc */
444
445         spin_lock(&init_mm.page_table_lock);
446         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
447                 pmd_populate_kernel(&init_mm, pmd, new);
448                 new = NULL;
449         }
450         spin_unlock(&init_mm.page_table_lock);
451         if (new)
452                 pte_free_kernel(&init_mm, new);
453         return 0;
454 }
455
456 static inline void init_rss_vec(int *rss)
457 {
458         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
459 }
460
461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
462 {
463         int i;
464
465         if (current->mm == mm)
466                 sync_mm_rss(mm);
467         for (i = 0; i < NR_MM_COUNTERS; i++)
468                 if (rss[i])
469                         add_mm_counter(mm, i, rss[i]);
470 }
471
472 /*
473  * This function is called to print an error when a bad pte
474  * is found. For example, we might have a PFN-mapped pte in
475  * a region that doesn't allow it.
476  *
477  * The calling function must still handle the error.
478  */
479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
480                           pte_t pte, struct page *page)
481 {
482         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
483         p4d_t *p4d = p4d_offset(pgd, addr);
484         pud_t *pud = pud_offset(p4d, addr);
485         pmd_t *pmd = pmd_offset(pud, addr);
486         struct address_space *mapping;
487         pgoff_t index;
488         static unsigned long resume;
489         static unsigned long nr_shown;
490         static unsigned long nr_unshown;
491
492         /*
493          * Allow a burst of 60 reports, then keep quiet for that minute;
494          * or allow a steady drip of one report per second.
495          */
496         if (nr_shown == 60) {
497                 if (time_before(jiffies, resume)) {
498                         nr_unshown++;
499                         return;
500                 }
501                 if (nr_unshown) {
502                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
503                                  nr_unshown);
504                         nr_unshown = 0;
505                 }
506                 nr_shown = 0;
507         }
508         if (nr_shown++ == 0)
509                 resume = jiffies + 60 * HZ;
510
511         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
512         index = linear_page_index(vma, addr);
513
514         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
515                  current->comm,
516                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
517         if (page)
518                 dump_page(page, "bad pte");
519         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
520                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
521         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
522                  vma->vm_file,
523                  vma->vm_ops ? vma->vm_ops->fault : NULL,
524                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
525                  mapping ? mapping->a_ops->readpage : NULL);
526         dump_stack();
527         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
528 }
529
530 /*
531  * vm_normal_page -- This function gets the "struct page" associated with a pte.
532  *
533  * "Special" mappings do not wish to be associated with a "struct page" (either
534  * it doesn't exist, or it exists but they don't want to touch it). In this
535  * case, NULL is returned here. "Normal" mappings do have a struct page.
536  *
537  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
538  * pte bit, in which case this function is trivial. Secondly, an architecture
539  * may not have a spare pte bit, which requires a more complicated scheme,
540  * described below.
541  *
542  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
543  * special mapping (even if there are underlying and valid "struct pages").
544  * COWed pages of a VM_PFNMAP are always normal.
545  *
546  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
547  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
548  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
549  * mapping will always honor the rule
550  *
551  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
552  *
553  * And for normal mappings this is false.
554  *
555  * This restricts such mappings to be a linear translation from virtual address
556  * to pfn. To get around this restriction, we allow arbitrary mappings so long
557  * as the vma is not a COW mapping; in that case, we know that all ptes are
558  * special (because none can have been COWed).
559  *
560  *
561  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
562  *
563  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
564  * page" backing, however the difference is that _all_ pages with a struct
565  * page (that is, those where pfn_valid is true) are refcounted and considered
566  * normal pages by the VM. The disadvantage is that pages are refcounted
567  * (which can be slower and simply not an option for some PFNMAP users). The
568  * advantage is that we don't have to follow the strict linearity rule of
569  * PFNMAP mappings in order to support COWable mappings.
570  *
571  */
572 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
573                              pte_t pte, bool with_public_device)
574 {
575         unsigned long pfn = pte_pfn(pte);
576
577         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
578                 if (likely(!pte_special(pte)))
579                         goto check_pfn;
580                 if (vma->vm_ops && vma->vm_ops->find_special_page)
581                         return vma->vm_ops->find_special_page(vma, addr);
582                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
583                         return NULL;
584                 if (is_zero_pfn(pfn))
585                         return NULL;
586
587                 /*
588                  * Device public pages are special pages (they are ZONE_DEVICE
589                  * pages but different from persistent memory). They behave
590                  * allmost like normal pages. The difference is that they are
591                  * not on the lru and thus should never be involve with any-
592                  * thing that involve lru manipulation (mlock, numa balancing,
593                  * ...).
594                  *
595                  * This is why we still want to return NULL for such page from
596                  * vm_normal_page() so that we do not have to special case all
597                  * call site of vm_normal_page().
598                  */
599                 if (likely(pfn <= highest_memmap_pfn)) {
600                         struct page *page = pfn_to_page(pfn);
601
602                         if (is_device_public_page(page)) {
603                                 if (with_public_device)
604                                         return page;
605                                 return NULL;
606                         }
607                 }
608
609                 if (pte_devmap(pte))
610                         return NULL;
611
612                 print_bad_pte(vma, addr, pte, NULL);
613                 return NULL;
614         }
615
616         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
617
618         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
619                 if (vma->vm_flags & VM_MIXEDMAP) {
620                         if (!pfn_valid(pfn))
621                                 return NULL;
622                         goto out;
623                 } else {
624                         unsigned long off;
625                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
626                         if (pfn == vma->vm_pgoff + off)
627                                 return NULL;
628                         if (!is_cow_mapping(vma->vm_flags))
629                                 return NULL;
630                 }
631         }
632
633         if (is_zero_pfn(pfn))
634                 return NULL;
635
636 check_pfn:
637         if (unlikely(pfn > highest_memmap_pfn)) {
638                 print_bad_pte(vma, addr, pte, NULL);
639                 return NULL;
640         }
641
642         /*
643          * NOTE! We still have PageReserved() pages in the page tables.
644          * eg. VDSO mappings can cause them to exist.
645          */
646 out:
647         return pfn_to_page(pfn);
648 }
649
650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
652                                 pmd_t pmd)
653 {
654         unsigned long pfn = pmd_pfn(pmd);
655
656         /*
657          * There is no pmd_special() but there may be special pmds, e.g.
658          * in a direct-access (dax) mapping, so let's just replicate the
659          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
660          */
661         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
662                 if (vma->vm_flags & VM_MIXEDMAP) {
663                         if (!pfn_valid(pfn))
664                                 return NULL;
665                         goto out;
666                 } else {
667                         unsigned long off;
668                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
669                         if (pfn == vma->vm_pgoff + off)
670                                 return NULL;
671                         if (!is_cow_mapping(vma->vm_flags))
672                                 return NULL;
673                 }
674         }
675
676         if (pmd_devmap(pmd))
677                 return NULL;
678         if (is_zero_pfn(pfn))
679                 return NULL;
680         if (unlikely(pfn > highest_memmap_pfn))
681                 return NULL;
682
683         /*
684          * NOTE! We still have PageReserved() pages in the page tables.
685          * eg. VDSO mappings can cause them to exist.
686          */
687 out:
688         return pfn_to_page(pfn);
689 }
690 #endif
691
692 /*
693  * copy one vm_area from one task to the other. Assumes the page tables
694  * already present in the new task to be cleared in the whole range
695  * covered by this vma.
696  */
697
698 static inline unsigned long
699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
701                 unsigned long addr, int *rss)
702 {
703         unsigned long vm_flags = vma->vm_flags;
704         pte_t pte = *src_pte;
705         struct page *page;
706
707         /* pte contains position in swap or file, so copy. */
708         if (unlikely(!pte_present(pte))) {
709                 swp_entry_t entry = pte_to_swp_entry(pte);
710
711                 if (likely(!non_swap_entry(entry))) {
712                         if (swap_duplicate(entry) < 0)
713                                 return entry.val;
714
715                         /* make sure dst_mm is on swapoff's mmlist. */
716                         if (unlikely(list_empty(&dst_mm->mmlist))) {
717                                 spin_lock(&mmlist_lock);
718                                 if (list_empty(&dst_mm->mmlist))
719                                         list_add(&dst_mm->mmlist,
720                                                         &src_mm->mmlist);
721                                 spin_unlock(&mmlist_lock);
722                         }
723                         rss[MM_SWAPENTS]++;
724                 } else if (is_migration_entry(entry)) {
725                         page = migration_entry_to_page(entry);
726
727                         rss[mm_counter(page)]++;
728
729                         if (is_write_migration_entry(entry) &&
730                                         is_cow_mapping(vm_flags)) {
731                                 /*
732                                  * COW mappings require pages in both
733                                  * parent and child to be set to read.
734                                  */
735                                 make_migration_entry_read(&entry);
736                                 pte = swp_entry_to_pte(entry);
737                                 if (pte_swp_soft_dirty(*src_pte))
738                                         pte = pte_swp_mksoft_dirty(pte);
739                                 set_pte_at(src_mm, addr, src_pte, pte);
740                         }
741                 } else if (is_device_private_entry(entry)) {
742                         page = device_private_entry_to_page(entry);
743
744                         /*
745                          * Update rss count even for unaddressable pages, as
746                          * they should treated just like normal pages in this
747                          * respect.
748                          *
749                          * We will likely want to have some new rss counters
750                          * for unaddressable pages, at some point. But for now
751                          * keep things as they are.
752                          */
753                         get_page(page);
754                         rss[mm_counter(page)]++;
755                         page_dup_rmap(page, false);
756
757                         /*
758                          * We do not preserve soft-dirty information, because so
759                          * far, checkpoint/restore is the only feature that
760                          * requires that. And checkpoint/restore does not work
761                          * when a device driver is involved (you cannot easily
762                          * save and restore device driver state).
763                          */
764                         if (is_write_device_private_entry(entry) &&
765                             is_cow_mapping(vm_flags)) {
766                                 make_device_private_entry_read(&entry);
767                                 pte = swp_entry_to_pte(entry);
768                                 set_pte_at(src_mm, addr, src_pte, pte);
769                         }
770                 }
771                 goto out_set_pte;
772         }
773
774         /*
775          * If it's a COW mapping, write protect it both
776          * in the parent and the child
777          */
778         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779                 ptep_set_wrprotect(src_mm, addr, src_pte);
780                 pte = pte_wrprotect(pte);
781         }
782
783         /*
784          * If it's a shared mapping, mark it clean in
785          * the child
786          */
787         if (vm_flags & VM_SHARED)
788                 pte = pte_mkclean(pte);
789         pte = pte_mkold(pte);
790
791         page = vm_normal_page(vma, addr, pte);
792         if (page) {
793                 get_page(page);
794                 page_dup_rmap(page, false);
795                 rss[mm_counter(page)]++;
796         } else if (pte_devmap(pte)) {
797                 page = pte_page(pte);
798
799                 /*
800                  * Cache coherent device memory behave like regular page and
801                  * not like persistent memory page. For more informations see
802                  * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
803                  */
804                 if (is_device_public_page(page)) {
805                         get_page(page);
806                         page_dup_rmap(page, false);
807                         rss[mm_counter(page)]++;
808                 }
809         }
810
811 out_set_pte:
812         set_pte_at(dst_mm, addr, dst_pte, pte);
813         return 0;
814 }
815
816 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
817                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
818                    unsigned long addr, unsigned long end)
819 {
820         pte_t *orig_src_pte, *orig_dst_pte;
821         pte_t *src_pte, *dst_pte;
822         spinlock_t *src_ptl, *dst_ptl;
823         int progress = 0;
824         int rss[NR_MM_COUNTERS];
825         swp_entry_t entry = (swp_entry_t){0};
826
827 again:
828         init_rss_vec(rss);
829
830         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
831         if (!dst_pte)
832                 return -ENOMEM;
833         src_pte = pte_offset_map(src_pmd, addr);
834         src_ptl = pte_lockptr(src_mm, src_pmd);
835         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
836         orig_src_pte = src_pte;
837         orig_dst_pte = dst_pte;
838         arch_enter_lazy_mmu_mode();
839
840         do {
841                 /*
842                  * We are holding two locks at this point - either of them
843                  * could generate latencies in another task on another CPU.
844                  */
845                 if (progress >= 32) {
846                         progress = 0;
847                         if (need_resched() ||
848                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
849                                 break;
850                 }
851                 if (pte_none(*src_pte)) {
852                         progress++;
853                         continue;
854                 }
855                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
856                                                         vma, addr, rss);
857                 if (entry.val)
858                         break;
859                 progress += 8;
860         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
861
862         arch_leave_lazy_mmu_mode();
863         spin_unlock(src_ptl);
864         pte_unmap(orig_src_pte);
865         add_mm_rss_vec(dst_mm, rss);
866         pte_unmap_unlock(orig_dst_pte, dst_ptl);
867         cond_resched();
868
869         if (entry.val) {
870                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
871                         return -ENOMEM;
872                 progress = 0;
873         }
874         if (addr != end)
875                 goto again;
876         return 0;
877 }
878
879 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
881                 unsigned long addr, unsigned long end)
882 {
883         pmd_t *src_pmd, *dst_pmd;
884         unsigned long next;
885
886         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
887         if (!dst_pmd)
888                 return -ENOMEM;
889         src_pmd = pmd_offset(src_pud, addr);
890         do {
891                 next = pmd_addr_end(addr, end);
892                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
893                         || pmd_devmap(*src_pmd)) {
894                         int err;
895                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
896                         err = copy_huge_pmd(dst_mm, src_mm,
897                                             dst_pmd, src_pmd, addr, vma);
898                         if (err == -ENOMEM)
899                                 return -ENOMEM;
900                         if (!err)
901                                 continue;
902                         /* fall through */
903                 }
904                 if (pmd_none_or_clear_bad(src_pmd))
905                         continue;
906                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
907                                                 vma, addr, next))
908                         return -ENOMEM;
909         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
910         return 0;
911 }
912
913 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
914                 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
915                 unsigned long addr, unsigned long end)
916 {
917         pud_t *src_pud, *dst_pud;
918         unsigned long next;
919
920         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
921         if (!dst_pud)
922                 return -ENOMEM;
923         src_pud = pud_offset(src_p4d, addr);
924         do {
925                 next = pud_addr_end(addr, end);
926                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
927                         int err;
928
929                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
930                         err = copy_huge_pud(dst_mm, src_mm,
931                                             dst_pud, src_pud, addr, vma);
932                         if (err == -ENOMEM)
933                                 return -ENOMEM;
934                         if (!err)
935                                 continue;
936                         /* fall through */
937                 }
938                 if (pud_none_or_clear_bad(src_pud))
939                         continue;
940                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
941                                                 vma, addr, next))
942                         return -ENOMEM;
943         } while (dst_pud++, src_pud++, addr = next, addr != end);
944         return 0;
945 }
946
947 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
948                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
949                 unsigned long addr, unsigned long end)
950 {
951         p4d_t *src_p4d, *dst_p4d;
952         unsigned long next;
953
954         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
955         if (!dst_p4d)
956                 return -ENOMEM;
957         src_p4d = p4d_offset(src_pgd, addr);
958         do {
959                 next = p4d_addr_end(addr, end);
960                 if (p4d_none_or_clear_bad(src_p4d))
961                         continue;
962                 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
963                                                 vma, addr, next))
964                         return -ENOMEM;
965         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
966         return 0;
967 }
968
969 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970                 struct vm_area_struct *vma)
971 {
972         pgd_t *src_pgd, *dst_pgd;
973         unsigned long next;
974         unsigned long addr = vma->vm_start;
975         unsigned long end = vma->vm_end;
976         struct mmu_notifier_range range;
977         bool is_cow;
978         int ret;
979
980         /*
981          * Don't copy ptes where a page fault will fill them correctly.
982          * Fork becomes much lighter when there are big shared or private
983          * readonly mappings. The tradeoff is that copy_page_range is more
984          * efficient than faulting.
985          */
986         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
987                         !vma->anon_vma)
988                 return 0;
989
990         if (is_vm_hugetlb_page(vma))
991                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
992
993         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
994                 /*
995                  * We do not free on error cases below as remove_vma
996                  * gets called on error from higher level routine
997                  */
998                 ret = track_pfn_copy(vma);
999                 if (ret)
1000                         return ret;
1001         }
1002
1003         /*
1004          * We need to invalidate the secondary MMU mappings only when
1005          * there could be a permission downgrade on the ptes of the
1006          * parent mm. And a permission downgrade will only happen if
1007          * is_cow_mapping() returns true.
1008          */
1009         is_cow = is_cow_mapping(vma->vm_flags);
1010
1011         if (is_cow) {
1012                 mmu_notifier_range_init(&range, src_mm, addr, end);
1013                 mmu_notifier_invalidate_range_start(&range);
1014         }
1015
1016         ret = 0;
1017         dst_pgd = pgd_offset(dst_mm, addr);
1018         src_pgd = pgd_offset(src_mm, addr);
1019         do {
1020                 next = pgd_addr_end(addr, end);
1021                 if (pgd_none_or_clear_bad(src_pgd))
1022                         continue;
1023                 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1024                                             vma, addr, next))) {
1025                         ret = -ENOMEM;
1026                         break;
1027                 }
1028         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1029
1030         if (is_cow)
1031                 mmu_notifier_invalidate_range_end(&range);
1032         return ret;
1033 }
1034
1035 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1036                                 struct vm_area_struct *vma, pmd_t *pmd,
1037                                 unsigned long addr, unsigned long end,
1038                                 struct zap_details *details)
1039 {
1040         struct mm_struct *mm = tlb->mm;
1041         int force_flush = 0;
1042         int rss[NR_MM_COUNTERS];
1043         spinlock_t *ptl;
1044         pte_t *start_pte;
1045         pte_t *pte;
1046         swp_entry_t entry;
1047
1048         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1049 again:
1050         init_rss_vec(rss);
1051         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1052         pte = start_pte;
1053         flush_tlb_batched_pending(mm);
1054         arch_enter_lazy_mmu_mode();
1055         do {
1056                 pte_t ptent = *pte;
1057                 if (pte_none(ptent))
1058                         continue;
1059
1060                 if (pte_present(ptent)) {
1061                         struct page *page;
1062
1063                         page = _vm_normal_page(vma, addr, ptent, true);
1064                         if (unlikely(details) && page) {
1065                                 /*
1066                                  * unmap_shared_mapping_pages() wants to
1067                                  * invalidate cache without truncating:
1068                                  * unmap shared but keep private pages.
1069                                  */
1070                                 if (details->check_mapping &&
1071                                     details->check_mapping != page_rmapping(page))
1072                                         continue;
1073                         }
1074                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1075                                                         tlb->fullmm);
1076                         tlb_remove_tlb_entry(tlb, pte, addr);
1077                         if (unlikely(!page))
1078                                 continue;
1079
1080                         if (!PageAnon(page)) {
1081                                 if (pte_dirty(ptent)) {
1082                                         force_flush = 1;
1083                                         set_page_dirty(page);
1084                                 }
1085                                 if (pte_young(ptent) &&
1086                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1087                                         mark_page_accessed(page);
1088                         }
1089                         rss[mm_counter(page)]--;
1090                         page_remove_rmap(page, false);
1091                         if (unlikely(page_mapcount(page) < 0))
1092                                 print_bad_pte(vma, addr, ptent, page);
1093                         if (unlikely(__tlb_remove_page(tlb, page))) {
1094                                 force_flush = 1;
1095                                 addr += PAGE_SIZE;
1096                                 break;
1097                         }
1098                         continue;
1099                 }
1100
1101                 entry = pte_to_swp_entry(ptent);
1102                 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1103                         struct page *page = device_private_entry_to_page(entry);
1104
1105                         if (unlikely(details && details->check_mapping)) {
1106                                 /*
1107                                  * unmap_shared_mapping_pages() wants to
1108                                  * invalidate cache without truncating:
1109                                  * unmap shared but keep private pages.
1110                                  */
1111                                 if (details->check_mapping !=
1112                                     page_rmapping(page))
1113                                         continue;
1114                         }
1115
1116                         pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1117                         rss[mm_counter(page)]--;
1118                         page_remove_rmap(page, false);
1119                         put_page(page);
1120                         continue;
1121                 }
1122
1123                 /* If details->check_mapping, we leave swap entries. */
1124                 if (unlikely(details))
1125                         continue;
1126
1127                 entry = pte_to_swp_entry(ptent);
1128                 if (!non_swap_entry(entry))
1129                         rss[MM_SWAPENTS]--;
1130                 else if (is_migration_entry(entry)) {
1131                         struct page *page;
1132
1133                         page = migration_entry_to_page(entry);
1134                         rss[mm_counter(page)]--;
1135                 }
1136                 if (unlikely(!free_swap_and_cache(entry)))
1137                         print_bad_pte(vma, addr, ptent, NULL);
1138                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1139         } while (pte++, addr += PAGE_SIZE, addr != end);
1140
1141         add_mm_rss_vec(mm, rss);
1142         arch_leave_lazy_mmu_mode();
1143
1144         /* Do the actual TLB flush before dropping ptl */
1145         if (force_flush)
1146                 tlb_flush_mmu_tlbonly(tlb);
1147         pte_unmap_unlock(start_pte, ptl);
1148
1149         /*
1150          * If we forced a TLB flush (either due to running out of
1151          * batch buffers or because we needed to flush dirty TLB
1152          * entries before releasing the ptl), free the batched
1153          * memory too. Restart if we didn't do everything.
1154          */
1155         if (force_flush) {
1156                 force_flush = 0;
1157                 tlb_flush_mmu_free(tlb);
1158                 if (addr != end)
1159                         goto again;
1160         }
1161
1162         return addr;
1163 }
1164
1165 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1166                                 struct vm_area_struct *vma, pud_t *pud,
1167                                 unsigned long addr, unsigned long end,
1168                                 struct zap_details *details)
1169 {
1170         pmd_t *pmd;
1171         unsigned long next;
1172
1173         pmd = pmd_offset(pud, addr);
1174         do {
1175                 next = pmd_addr_end(addr, end);
1176                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1177                         if (next - addr != HPAGE_PMD_SIZE)
1178                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1179                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
1180                                 goto next;
1181                         /* fall through */
1182                 }
1183                 /*
1184                  * Here there can be other concurrent MADV_DONTNEED or
1185                  * trans huge page faults running, and if the pmd is
1186                  * none or trans huge it can change under us. This is
1187                  * because MADV_DONTNEED holds the mmap_sem in read
1188                  * mode.
1189                  */
1190                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1191                         goto next;
1192                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1193 next:
1194                 cond_resched();
1195         } while (pmd++, addr = next, addr != end);
1196
1197         return addr;
1198 }
1199
1200 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1201                                 struct vm_area_struct *vma, p4d_t *p4d,
1202                                 unsigned long addr, unsigned long end,
1203                                 struct zap_details *details)
1204 {
1205         pud_t *pud;
1206         unsigned long next;
1207
1208         pud = pud_offset(p4d, addr);
1209         do {
1210                 next = pud_addr_end(addr, end);
1211                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1212                         if (next - addr != HPAGE_PUD_SIZE) {
1213                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1214                                 split_huge_pud(vma, pud, addr);
1215                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1216                                 goto next;
1217                         /* fall through */
1218                 }
1219                 if (pud_none_or_clear_bad(pud))
1220                         continue;
1221                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1222 next:
1223                 cond_resched();
1224         } while (pud++, addr = next, addr != end);
1225
1226         return addr;
1227 }
1228
1229 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1230                                 struct vm_area_struct *vma, pgd_t *pgd,
1231                                 unsigned long addr, unsigned long end,
1232                                 struct zap_details *details)
1233 {
1234         p4d_t *p4d;
1235         unsigned long next;
1236
1237         p4d = p4d_offset(pgd, addr);
1238         do {
1239                 next = p4d_addr_end(addr, end);
1240                 if (p4d_none_or_clear_bad(p4d))
1241                         continue;
1242                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1243         } while (p4d++, addr = next, addr != end);
1244
1245         return addr;
1246 }
1247
1248 void unmap_page_range(struct mmu_gather *tlb,
1249                              struct vm_area_struct *vma,
1250                              unsigned long addr, unsigned long end,
1251                              struct zap_details *details)
1252 {
1253         pgd_t *pgd;
1254         unsigned long next;
1255
1256         BUG_ON(addr >= end);
1257         tlb_start_vma(tlb, vma);
1258         pgd = pgd_offset(vma->vm_mm, addr);
1259         do {
1260                 next = pgd_addr_end(addr, end);
1261                 if (pgd_none_or_clear_bad(pgd))
1262                         continue;
1263                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1264         } while (pgd++, addr = next, addr != end);
1265         tlb_end_vma(tlb, vma);
1266 }
1267
1268
1269 static void unmap_single_vma(struct mmu_gather *tlb,
1270                 struct vm_area_struct *vma, unsigned long start_addr,
1271                 unsigned long end_addr,
1272                 struct zap_details *details)
1273 {
1274         unsigned long start = max(vma->vm_start, start_addr);
1275         unsigned long end;
1276
1277         if (start >= vma->vm_end)
1278                 return;
1279         end = min(vma->vm_end, end_addr);
1280         if (end <= vma->vm_start)
1281                 return;
1282
1283         if (vma->vm_file)
1284                 uprobe_munmap(vma, start, end);
1285
1286         if (unlikely(vma->vm_flags & VM_PFNMAP))
1287                 untrack_pfn(vma, 0, 0);
1288
1289         if (start != end) {
1290                 if (unlikely(is_vm_hugetlb_page(vma))) {
1291                         /*
1292                          * It is undesirable to test vma->vm_file as it
1293                          * should be non-null for valid hugetlb area.
1294                          * However, vm_file will be NULL in the error
1295                          * cleanup path of mmap_region. When
1296                          * hugetlbfs ->mmap method fails,
1297                          * mmap_region() nullifies vma->vm_file
1298                          * before calling this function to clean up.
1299                          * Since no pte has actually been setup, it is
1300                          * safe to do nothing in this case.
1301                          */
1302                         if (vma->vm_file) {
1303                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1304                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1305                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1306                         }
1307                 } else
1308                         unmap_page_range(tlb, vma, start, end, details);
1309         }
1310 }
1311
1312 /**
1313  * unmap_vmas - unmap a range of memory covered by a list of vma's
1314  * @tlb: address of the caller's struct mmu_gather
1315  * @vma: the starting vma
1316  * @start_addr: virtual address at which to start unmapping
1317  * @end_addr: virtual address at which to end unmapping
1318  *
1319  * Unmap all pages in the vma list.
1320  *
1321  * Only addresses between `start' and `end' will be unmapped.
1322  *
1323  * The VMA list must be sorted in ascending virtual address order.
1324  *
1325  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1326  * range after unmap_vmas() returns.  So the only responsibility here is to
1327  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1328  * drops the lock and schedules.
1329  */
1330 void unmap_vmas(struct mmu_gather *tlb,
1331                 struct vm_area_struct *vma, unsigned long start_addr,
1332                 unsigned long end_addr)
1333 {
1334         struct mmu_notifier_range range;
1335
1336         mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr);
1337         mmu_notifier_invalidate_range_start(&range);
1338         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1339                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1340         mmu_notifier_invalidate_range_end(&range);
1341 }
1342
1343 /**
1344  * zap_page_range - remove user pages in a given range
1345  * @vma: vm_area_struct holding the applicable pages
1346  * @start: starting address of pages to zap
1347  * @size: number of bytes to zap
1348  *
1349  * Caller must protect the VMA list
1350  */
1351 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1352                 unsigned long size)
1353 {
1354         struct mmu_notifier_range range;
1355         struct mmu_gather tlb;
1356
1357         lru_add_drain();
1358         mmu_notifier_range_init(&range, vma->vm_mm, start, start + size);
1359         tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1360         update_hiwater_rss(vma->vm_mm);
1361         mmu_notifier_invalidate_range_start(&range);
1362         for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1363                 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1364         mmu_notifier_invalidate_range_end(&range);
1365         tlb_finish_mmu(&tlb, start, range.end);
1366 }
1367
1368 /**
1369  * zap_page_range_single - remove user pages in a given range
1370  * @vma: vm_area_struct holding the applicable pages
1371  * @address: starting address of pages to zap
1372  * @size: number of bytes to zap
1373  * @details: details of shared cache invalidation
1374  *
1375  * The range must fit into one VMA.
1376  */
1377 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1378                 unsigned long size, struct zap_details *details)
1379 {
1380         struct mmu_notifier_range range;
1381         struct mmu_gather tlb;
1382
1383         lru_add_drain();
1384         mmu_notifier_range_init(&range, vma->vm_mm, address, address + size);
1385         tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1386         update_hiwater_rss(vma->vm_mm);
1387         mmu_notifier_invalidate_range_start(&range);
1388         unmap_single_vma(&tlb, vma, address, range.end, details);
1389         mmu_notifier_invalidate_range_end(&range);
1390         tlb_finish_mmu(&tlb, address, range.end);
1391 }
1392
1393 /**
1394  * zap_vma_ptes - remove ptes mapping the vma
1395  * @vma: vm_area_struct holding ptes to be zapped
1396  * @address: starting address of pages to zap
1397  * @size: number of bytes to zap
1398  *
1399  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1400  *
1401  * The entire address range must be fully contained within the vma.
1402  *
1403  */
1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1405                 unsigned long size)
1406 {
1407         if (address < vma->vm_start || address + size > vma->vm_end ||
1408                         !(vma->vm_flags & VM_PFNMAP))
1409                 return;
1410
1411         zap_page_range_single(vma, address, size, NULL);
1412 }
1413 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1414
1415 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1416                         spinlock_t **ptl)
1417 {
1418         pgd_t *pgd;
1419         p4d_t *p4d;
1420         pud_t *pud;
1421         pmd_t *pmd;
1422
1423         pgd = pgd_offset(mm, addr);
1424         p4d = p4d_alloc(mm, pgd, addr);
1425         if (!p4d)
1426                 return NULL;
1427         pud = pud_alloc(mm, p4d, addr);
1428         if (!pud)
1429                 return NULL;
1430         pmd = pmd_alloc(mm, pud, addr);
1431         if (!pmd)
1432                 return NULL;
1433
1434         VM_BUG_ON(pmd_trans_huge(*pmd));
1435         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1436 }
1437
1438 /*
1439  * This is the old fallback for page remapping.
1440  *
1441  * For historical reasons, it only allows reserved pages. Only
1442  * old drivers should use this, and they needed to mark their
1443  * pages reserved for the old functions anyway.
1444  */
1445 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1446                         struct page *page, pgprot_t prot)
1447 {
1448         struct mm_struct *mm = vma->vm_mm;
1449         int retval;
1450         pte_t *pte;
1451         spinlock_t *ptl;
1452
1453         retval = -EINVAL;
1454         if (PageAnon(page))
1455                 goto out;
1456         retval = -ENOMEM;
1457         flush_dcache_page(page);
1458         pte = get_locked_pte(mm, addr, &ptl);
1459         if (!pte)
1460                 goto out;
1461         retval = -EBUSY;
1462         if (!pte_none(*pte))
1463                 goto out_unlock;
1464
1465         /* Ok, finally just insert the thing.. */
1466         get_page(page);
1467         inc_mm_counter_fast(mm, mm_counter_file(page));
1468         page_add_file_rmap(page, false);
1469         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1470
1471         retval = 0;
1472         pte_unmap_unlock(pte, ptl);
1473         return retval;
1474 out_unlock:
1475         pte_unmap_unlock(pte, ptl);
1476 out:
1477         return retval;
1478 }
1479
1480 /**
1481  * vm_insert_page - insert single page into user vma
1482  * @vma: user vma to map to
1483  * @addr: target user address of this page
1484  * @page: source kernel page
1485  *
1486  * This allows drivers to insert individual pages they've allocated
1487  * into a user vma.
1488  *
1489  * The page has to be a nice clean _individual_ kernel allocation.
1490  * If you allocate a compound page, you need to have marked it as
1491  * such (__GFP_COMP), or manually just split the page up yourself
1492  * (see split_page()).
1493  *
1494  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1495  * took an arbitrary page protection parameter. This doesn't allow
1496  * that. Your vma protection will have to be set up correctly, which
1497  * means that if you want a shared writable mapping, you'd better
1498  * ask for a shared writable mapping!
1499  *
1500  * The page does not need to be reserved.
1501  *
1502  * Usually this function is called from f_op->mmap() handler
1503  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1504  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1505  * function from other places, for example from page-fault handler.
1506  */
1507 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1508                         struct page *page)
1509 {
1510         if (addr < vma->vm_start || addr >= vma->vm_end)
1511                 return -EFAULT;
1512         if (!page_count(page))
1513                 return -EINVAL;
1514         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1515                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1516                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1517                 vma->vm_flags |= VM_MIXEDMAP;
1518         }
1519         return insert_page(vma, addr, page, vma->vm_page_prot);
1520 }
1521 EXPORT_SYMBOL(vm_insert_page);
1522
1523 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1524                         pfn_t pfn, pgprot_t prot, bool mkwrite)
1525 {
1526         struct mm_struct *mm = vma->vm_mm;
1527         pte_t *pte, entry;
1528         spinlock_t *ptl;
1529
1530         pte = get_locked_pte(mm, addr, &ptl);
1531         if (!pte)
1532                 return VM_FAULT_OOM;
1533         if (!pte_none(*pte)) {
1534                 if (mkwrite) {
1535                         /*
1536                          * For read faults on private mappings the PFN passed
1537                          * in may not match the PFN we have mapped if the
1538                          * mapped PFN is a writeable COW page.  In the mkwrite
1539                          * case we are creating a writable PTE for a shared
1540                          * mapping and we expect the PFNs to match. If they
1541                          * don't match, we are likely racing with block
1542                          * allocation and mapping invalidation so just skip the
1543                          * update.
1544                          */
1545                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1546                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1547                                 goto out_unlock;
1548                         }
1549                         entry = *pte;
1550                         goto out_mkwrite;
1551                 } else
1552                         goto out_unlock;
1553         }
1554
1555         /* Ok, finally just insert the thing.. */
1556         if (pfn_t_devmap(pfn))
1557                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1558         else
1559                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1560
1561 out_mkwrite:
1562         if (mkwrite) {
1563                 entry = pte_mkyoung(entry);
1564                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1565         }
1566
1567         set_pte_at(mm, addr, pte, entry);
1568         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1569
1570 out_unlock:
1571         pte_unmap_unlock(pte, ptl);
1572         return VM_FAULT_NOPAGE;
1573 }
1574
1575 /**
1576  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1577  * @vma: user vma to map to
1578  * @addr: target user address of this page
1579  * @pfn: source kernel pfn
1580  * @pgprot: pgprot flags for the inserted page
1581  *
1582  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1583  * to override pgprot on a per-page basis.
1584  *
1585  * This only makes sense for IO mappings, and it makes no sense for
1586  * COW mappings.  In general, using multiple vmas is preferable;
1587  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1588  * impractical.
1589  *
1590  * Context: Process context.  May allocate using %GFP_KERNEL.
1591  * Return: vm_fault_t value.
1592  */
1593 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1594                         unsigned long pfn, pgprot_t pgprot)
1595 {
1596         /*
1597          * Technically, architectures with pte_special can avoid all these
1598          * restrictions (same for remap_pfn_range).  However we would like
1599          * consistency in testing and feature parity among all, so we should
1600          * try to keep these invariants in place for everybody.
1601          */
1602         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1603         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1604                                                 (VM_PFNMAP|VM_MIXEDMAP));
1605         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1606         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1607
1608         if (addr < vma->vm_start || addr >= vma->vm_end)
1609                 return VM_FAULT_SIGBUS;
1610
1611         if (!pfn_modify_allowed(pfn, pgprot))
1612                 return VM_FAULT_SIGBUS;
1613
1614         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1615
1616         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1617                         false);
1618 }
1619 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1620
1621 /**
1622  * vmf_insert_pfn - insert single pfn into user vma
1623  * @vma: user vma to map to
1624  * @addr: target user address of this page
1625  * @pfn: source kernel pfn
1626  *
1627  * Similar to vm_insert_page, this allows drivers to insert individual pages
1628  * they've allocated into a user vma. Same comments apply.
1629  *
1630  * This function should only be called from a vm_ops->fault handler, and
1631  * in that case the handler should return the result of this function.
1632  *
1633  * vma cannot be a COW mapping.
1634  *
1635  * As this is called only for pages that do not currently exist, we
1636  * do not need to flush old virtual caches or the TLB.
1637  *
1638  * Context: Process context.  May allocate using %GFP_KERNEL.
1639  * Return: vm_fault_t value.
1640  */
1641 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1642                         unsigned long pfn)
1643 {
1644         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1645 }
1646 EXPORT_SYMBOL(vmf_insert_pfn);
1647
1648 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1649 {
1650         /* these checks mirror the abort conditions in vm_normal_page */
1651         if (vma->vm_flags & VM_MIXEDMAP)
1652                 return true;
1653         if (pfn_t_devmap(pfn))
1654                 return true;
1655         if (pfn_t_special(pfn))
1656                 return true;
1657         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1658                 return true;
1659         return false;
1660 }
1661
1662 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1663                 unsigned long addr, pfn_t pfn, bool mkwrite)
1664 {
1665         pgprot_t pgprot = vma->vm_page_prot;
1666         int err;
1667
1668         BUG_ON(!vm_mixed_ok(vma, pfn));
1669
1670         if (addr < vma->vm_start || addr >= vma->vm_end)
1671                 return VM_FAULT_SIGBUS;
1672
1673         track_pfn_insert(vma, &pgprot, pfn);
1674
1675         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1676                 return VM_FAULT_SIGBUS;
1677
1678         /*
1679          * If we don't have pte special, then we have to use the pfn_valid()
1680          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1681          * refcount the page if pfn_valid is true (hence insert_page rather
1682          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1683          * without pte special, it would there be refcounted as a normal page.
1684          */
1685         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1686             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1687                 struct page *page;
1688
1689                 /*
1690                  * At this point we are committed to insert_page()
1691                  * regardless of whether the caller specified flags that
1692                  * result in pfn_t_has_page() == false.
1693                  */
1694                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1695                 err = insert_page(vma, addr, page, pgprot);
1696         } else {
1697                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1698         }
1699
1700         if (err == -ENOMEM)
1701                 return VM_FAULT_OOM;
1702         if (err < 0 && err != -EBUSY)
1703                 return VM_FAULT_SIGBUS;
1704
1705         return VM_FAULT_NOPAGE;
1706 }
1707
1708 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1709                 pfn_t pfn)
1710 {
1711         return __vm_insert_mixed(vma, addr, pfn, false);
1712 }
1713 EXPORT_SYMBOL(vmf_insert_mixed);
1714
1715 /*
1716  *  If the insertion of PTE failed because someone else already added a
1717  *  different entry in the mean time, we treat that as success as we assume
1718  *  the same entry was actually inserted.
1719  */
1720 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1721                 unsigned long addr, pfn_t pfn)
1722 {
1723         return __vm_insert_mixed(vma, addr, pfn, true);
1724 }
1725 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1726
1727 /*
1728  * maps a range of physical memory into the requested pages. the old
1729  * mappings are removed. any references to nonexistent pages results
1730  * in null mappings (currently treated as "copy-on-access")
1731  */
1732 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1733                         unsigned long addr, unsigned long end,
1734                         unsigned long pfn, pgprot_t prot)
1735 {
1736         pte_t *pte;
1737         spinlock_t *ptl;
1738         int err = 0;
1739
1740         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1741         if (!pte)
1742                 return -ENOMEM;
1743         arch_enter_lazy_mmu_mode();
1744         do {
1745                 BUG_ON(!pte_none(*pte));
1746                 if (!pfn_modify_allowed(pfn, prot)) {
1747                         err = -EACCES;
1748                         break;
1749                 }
1750                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1751                 pfn++;
1752         } while (pte++, addr += PAGE_SIZE, addr != end);
1753         arch_leave_lazy_mmu_mode();
1754         pte_unmap_unlock(pte - 1, ptl);
1755         return err;
1756 }
1757
1758 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1759                         unsigned long addr, unsigned long end,
1760                         unsigned long pfn, pgprot_t prot)
1761 {
1762         pmd_t *pmd;
1763         unsigned long next;
1764         int err;
1765
1766         pfn -= addr >> PAGE_SHIFT;
1767         pmd = pmd_alloc(mm, pud, addr);
1768         if (!pmd)
1769                 return -ENOMEM;
1770         VM_BUG_ON(pmd_trans_huge(*pmd));
1771         do {
1772                 next = pmd_addr_end(addr, end);
1773                 err = remap_pte_range(mm, pmd, addr, next,
1774                                 pfn + (addr >> PAGE_SHIFT), prot);
1775                 if (err)
1776                         return err;
1777         } while (pmd++, addr = next, addr != end);
1778         return 0;
1779 }
1780
1781 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1782                         unsigned long addr, unsigned long end,
1783                         unsigned long pfn, pgprot_t prot)
1784 {
1785         pud_t *pud;
1786         unsigned long next;
1787         int err;
1788
1789         pfn -= addr >> PAGE_SHIFT;
1790         pud = pud_alloc(mm, p4d, addr);
1791         if (!pud)
1792                 return -ENOMEM;
1793         do {
1794                 next = pud_addr_end(addr, end);
1795                 err = remap_pmd_range(mm, pud, addr, next,
1796                                 pfn + (addr >> PAGE_SHIFT), prot);
1797                 if (err)
1798                         return err;
1799         } while (pud++, addr = next, addr != end);
1800         return 0;
1801 }
1802
1803 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1804                         unsigned long addr, unsigned long end,
1805                         unsigned long pfn, pgprot_t prot)
1806 {
1807         p4d_t *p4d;
1808         unsigned long next;
1809         int err;
1810
1811         pfn -= addr >> PAGE_SHIFT;
1812         p4d = p4d_alloc(mm, pgd, addr);
1813         if (!p4d)
1814                 return -ENOMEM;
1815         do {
1816                 next = p4d_addr_end(addr, end);
1817                 err = remap_pud_range(mm, p4d, addr, next,
1818                                 pfn + (addr >> PAGE_SHIFT), prot);
1819                 if (err)
1820                         return err;
1821         } while (p4d++, addr = next, addr != end);
1822         return 0;
1823 }
1824
1825 /**
1826  * remap_pfn_range - remap kernel memory to userspace
1827  * @vma: user vma to map to
1828  * @addr: target user address to start at
1829  * @pfn: physical address of kernel memory
1830  * @size: size of map area
1831  * @prot: page protection flags for this mapping
1832  *
1833  *  Note: this is only safe if the mm semaphore is held when called.
1834  */
1835 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1836                     unsigned long pfn, unsigned long size, pgprot_t prot)
1837 {
1838         pgd_t *pgd;
1839         unsigned long next;
1840         unsigned long end = addr + PAGE_ALIGN(size);
1841         struct mm_struct *mm = vma->vm_mm;
1842         unsigned long remap_pfn = pfn;
1843         int err;
1844
1845         /*
1846          * Physically remapped pages are special. Tell the
1847          * rest of the world about it:
1848          *   VM_IO tells people not to look at these pages
1849          *      (accesses can have side effects).
1850          *   VM_PFNMAP tells the core MM that the base pages are just
1851          *      raw PFN mappings, and do not have a "struct page" associated
1852          *      with them.
1853          *   VM_DONTEXPAND
1854          *      Disable vma merging and expanding with mremap().
1855          *   VM_DONTDUMP
1856          *      Omit vma from core dump, even when VM_IO turned off.
1857          *
1858          * There's a horrible special case to handle copy-on-write
1859          * behaviour that some programs depend on. We mark the "original"
1860          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1861          * See vm_normal_page() for details.
1862          */
1863         if (is_cow_mapping(vma->vm_flags)) {
1864                 if (addr != vma->vm_start || end != vma->vm_end)
1865                         return -EINVAL;
1866                 vma->vm_pgoff = pfn;
1867         }
1868
1869         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1870         if (err)
1871                 return -EINVAL;
1872
1873         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1874
1875         BUG_ON(addr >= end);
1876         pfn -= addr >> PAGE_SHIFT;
1877         pgd = pgd_offset(mm, addr);
1878         flush_cache_range(vma, addr, end);
1879         do {
1880                 next = pgd_addr_end(addr, end);
1881                 err = remap_p4d_range(mm, pgd, addr, next,
1882                                 pfn + (addr >> PAGE_SHIFT), prot);
1883                 if (err)
1884                         break;
1885         } while (pgd++, addr = next, addr != end);
1886
1887         if (err)
1888                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1889
1890         return err;
1891 }
1892 EXPORT_SYMBOL(remap_pfn_range);
1893
1894 /**
1895  * vm_iomap_memory - remap memory to userspace
1896  * @vma: user vma to map to
1897  * @start: start of area
1898  * @len: size of area
1899  *
1900  * This is a simplified io_remap_pfn_range() for common driver use. The
1901  * driver just needs to give us the physical memory range to be mapped,
1902  * we'll figure out the rest from the vma information.
1903  *
1904  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1905  * whatever write-combining details or similar.
1906  */
1907 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1908 {
1909         unsigned long vm_len, pfn, pages;
1910
1911         /* Check that the physical memory area passed in looks valid */
1912         if (start + len < start)
1913                 return -EINVAL;
1914         /*
1915          * You *really* shouldn't map things that aren't page-aligned,
1916          * but we've historically allowed it because IO memory might
1917          * just have smaller alignment.
1918          */
1919         len += start & ~PAGE_MASK;
1920         pfn = start >> PAGE_SHIFT;
1921         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1922         if (pfn + pages < pfn)
1923                 return -EINVAL;
1924
1925         /* We start the mapping 'vm_pgoff' pages into the area */
1926         if (vma->vm_pgoff > pages)
1927                 return -EINVAL;
1928         pfn += vma->vm_pgoff;
1929         pages -= vma->vm_pgoff;
1930
1931         /* Can we fit all of the mapping? */
1932         vm_len = vma->vm_end - vma->vm_start;
1933         if (vm_len >> PAGE_SHIFT > pages)
1934                 return -EINVAL;
1935
1936         /* Ok, let it rip */
1937         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1938 }
1939 EXPORT_SYMBOL(vm_iomap_memory);
1940
1941 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1942                                      unsigned long addr, unsigned long end,
1943                                      pte_fn_t fn, void *data)
1944 {
1945         pte_t *pte;
1946         int err;
1947         pgtable_t token;
1948         spinlock_t *uninitialized_var(ptl);
1949
1950         pte = (mm == &init_mm) ?
1951                 pte_alloc_kernel(pmd, addr) :
1952                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1953         if (!pte)
1954                 return -ENOMEM;
1955
1956         BUG_ON(pmd_huge(*pmd));
1957
1958         arch_enter_lazy_mmu_mode();
1959
1960         token = pmd_pgtable(*pmd);
1961
1962         do {
1963                 err = fn(pte++, token, addr, data);
1964                 if (err)
1965                         break;
1966         } while (addr += PAGE_SIZE, addr != end);
1967
1968         arch_leave_lazy_mmu_mode();
1969
1970         if (mm != &init_mm)
1971                 pte_unmap_unlock(pte-1, ptl);
1972         return err;
1973 }
1974
1975 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1976                                      unsigned long addr, unsigned long end,
1977                                      pte_fn_t fn, void *data)
1978 {
1979         pmd_t *pmd;
1980         unsigned long next;
1981         int err;
1982
1983         BUG_ON(pud_huge(*pud));
1984
1985         pmd = pmd_alloc(mm, pud, addr);
1986         if (!pmd)
1987                 return -ENOMEM;
1988         do {
1989                 next = pmd_addr_end(addr, end);
1990                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1991                 if (err)
1992                         break;
1993         } while (pmd++, addr = next, addr != end);
1994         return err;
1995 }
1996
1997 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
1998                                      unsigned long addr, unsigned long end,
1999                                      pte_fn_t fn, void *data)
2000 {
2001         pud_t *pud;
2002         unsigned long next;
2003         int err;
2004
2005         pud = pud_alloc(mm, p4d, addr);
2006         if (!pud)
2007                 return -ENOMEM;
2008         do {
2009                 next = pud_addr_end(addr, end);
2010                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2011                 if (err)
2012                         break;
2013         } while (pud++, addr = next, addr != end);
2014         return err;
2015 }
2016
2017 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2018                                      unsigned long addr, unsigned long end,
2019                                      pte_fn_t fn, void *data)
2020 {
2021         p4d_t *p4d;
2022         unsigned long next;
2023         int err;
2024
2025         p4d = p4d_alloc(mm, pgd, addr);
2026         if (!p4d)
2027                 return -ENOMEM;
2028         do {
2029                 next = p4d_addr_end(addr, end);
2030                 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2031                 if (err)
2032                         break;
2033         } while (p4d++, addr = next, addr != end);
2034         return err;
2035 }
2036
2037 /*
2038  * Scan a region of virtual memory, filling in page tables as necessary
2039  * and calling a provided function on each leaf page table.
2040  */
2041 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2042                         unsigned long size, pte_fn_t fn, void *data)
2043 {
2044         pgd_t *pgd;
2045         unsigned long next;
2046         unsigned long end = addr + size;
2047         int err;
2048
2049         if (WARN_ON(addr >= end))
2050                 return -EINVAL;
2051
2052         pgd = pgd_offset(mm, addr);
2053         do {
2054                 next = pgd_addr_end(addr, end);
2055                 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2056                 if (err)
2057                         break;
2058         } while (pgd++, addr = next, addr != end);
2059
2060         return err;
2061 }
2062 EXPORT_SYMBOL_GPL(apply_to_page_range);
2063
2064 /*
2065  * handle_pte_fault chooses page fault handler according to an entry which was
2066  * read non-atomically.  Before making any commitment, on those architectures
2067  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2068  * parts, do_swap_page must check under lock before unmapping the pte and
2069  * proceeding (but do_wp_page is only called after already making such a check;
2070  * and do_anonymous_page can safely check later on).
2071  */
2072 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2073                                 pte_t *page_table, pte_t orig_pte)
2074 {
2075         int same = 1;
2076 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2077         if (sizeof(pte_t) > sizeof(unsigned long)) {
2078                 spinlock_t *ptl = pte_lockptr(mm, pmd);
2079                 spin_lock(ptl);
2080                 same = pte_same(*page_table, orig_pte);
2081                 spin_unlock(ptl);
2082         }
2083 #endif
2084         pte_unmap(page_table);
2085         return same;
2086 }
2087
2088 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2089 {
2090         debug_dma_assert_idle(src);
2091
2092         /*
2093          * If the source page was a PFN mapping, we don't have
2094          * a "struct page" for it. We do a best-effort copy by
2095          * just copying from the original user address. If that
2096          * fails, we just zero-fill it. Live with it.
2097          */
2098         if (unlikely(!src)) {
2099                 void *kaddr = kmap_atomic(dst);
2100                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2101
2102                 /*
2103                  * This really shouldn't fail, because the page is there
2104                  * in the page tables. But it might just be unreadable,
2105                  * in which case we just give up and fill the result with
2106                  * zeroes.
2107                  */
2108                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2109                         clear_page(kaddr);
2110                 kunmap_atomic(kaddr);
2111                 flush_dcache_page(dst);
2112         } else
2113                 copy_user_highpage(dst, src, va, vma);
2114 }
2115
2116 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2117 {
2118         struct file *vm_file = vma->vm_file;
2119
2120         if (vm_file)
2121                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2122
2123         /*
2124          * Special mappings (e.g. VDSO) do not have any file so fake
2125          * a default GFP_KERNEL for them.
2126          */
2127         return GFP_KERNEL;
2128 }
2129
2130 /*
2131  * Notify the address space that the page is about to become writable so that
2132  * it can prohibit this or wait for the page to get into an appropriate state.
2133  *
2134  * We do this without the lock held, so that it can sleep if it needs to.
2135  */
2136 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2137 {
2138         vm_fault_t ret;
2139         struct page *page = vmf->page;
2140         unsigned int old_flags = vmf->flags;
2141
2142         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2143
2144         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2145         /* Restore original flags so that caller is not surprised */
2146         vmf->flags = old_flags;
2147         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2148                 return ret;
2149         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2150                 lock_page(page);
2151                 if (!page->mapping) {
2152                         unlock_page(page);
2153                         return 0; /* retry */
2154                 }
2155                 ret |= VM_FAULT_LOCKED;
2156         } else
2157                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2158         return ret;
2159 }
2160
2161 /*
2162  * Handle dirtying of a page in shared file mapping on a write fault.
2163  *
2164  * The function expects the page to be locked and unlocks it.
2165  */
2166 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2167                                     struct page *page)
2168 {
2169         struct address_space *mapping;
2170         bool dirtied;
2171         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2172
2173         dirtied = set_page_dirty(page);
2174         VM_BUG_ON_PAGE(PageAnon(page), page);
2175         /*
2176          * Take a local copy of the address_space - page.mapping may be zeroed
2177          * by truncate after unlock_page().   The address_space itself remains
2178          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2179          * release semantics to prevent the compiler from undoing this copying.
2180          */
2181         mapping = page_rmapping(page);
2182         unlock_page(page);
2183
2184         if ((dirtied || page_mkwrite) && mapping) {
2185                 /*
2186                  * Some device drivers do not set page.mapping
2187                  * but still dirty their pages
2188                  */
2189                 balance_dirty_pages_ratelimited(mapping);
2190         }
2191
2192         if (!page_mkwrite)
2193                 file_update_time(vma->vm_file);
2194 }
2195
2196 /*
2197  * Handle write page faults for pages that can be reused in the current vma
2198  *
2199  * This can happen either due to the mapping being with the VM_SHARED flag,
2200  * or due to us being the last reference standing to the page. In either
2201  * case, all we need to do here is to mark the page as writable and update
2202  * any related book-keeping.
2203  */
2204 static inline void wp_page_reuse(struct vm_fault *vmf)
2205         __releases(vmf->ptl)
2206 {
2207         struct vm_area_struct *vma = vmf->vma;
2208         struct page *page = vmf->page;
2209         pte_t entry;
2210         /*
2211          * Clear the pages cpupid information as the existing
2212          * information potentially belongs to a now completely
2213          * unrelated process.
2214          */
2215         if (page)
2216                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2217
2218         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2219         entry = pte_mkyoung(vmf->orig_pte);
2220         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2221         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2222                 update_mmu_cache(vma, vmf->address, vmf->pte);
2223         pte_unmap_unlock(vmf->pte, vmf->ptl);
2224 }
2225
2226 /*
2227  * Handle the case of a page which we actually need to copy to a new page.
2228  *
2229  * Called with mmap_sem locked and the old page referenced, but
2230  * without the ptl held.
2231  *
2232  * High level logic flow:
2233  *
2234  * - Allocate a page, copy the content of the old page to the new one.
2235  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2236  * - Take the PTL. If the pte changed, bail out and release the allocated page
2237  * - If the pte is still the way we remember it, update the page table and all
2238  *   relevant references. This includes dropping the reference the page-table
2239  *   held to the old page, as well as updating the rmap.
2240  * - In any case, unlock the PTL and drop the reference we took to the old page.
2241  */
2242 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2243 {
2244         struct vm_area_struct *vma = vmf->vma;
2245         struct mm_struct *mm = vma->vm_mm;
2246         struct page *old_page = vmf->page;
2247         struct page *new_page = NULL;
2248         pte_t entry;
2249         int page_copied = 0;
2250         struct mem_cgroup *memcg;
2251         struct mmu_notifier_range range;
2252
2253         if (unlikely(anon_vma_prepare(vma)))
2254                 goto oom;
2255
2256         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2257                 new_page = alloc_zeroed_user_highpage_movable(vma,
2258                                                               vmf->address);
2259                 if (!new_page)
2260                         goto oom;
2261         } else {
2262                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2263                                 vmf->address);
2264                 if (!new_page)
2265                         goto oom;
2266                 cow_user_page(new_page, old_page, vmf->address, vma);
2267         }
2268
2269         if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2270                 goto oom_free_new;
2271
2272         __SetPageUptodate(new_page);
2273
2274         mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK,
2275                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2276         mmu_notifier_invalidate_range_start(&range);
2277
2278         /*
2279          * Re-check the pte - we dropped the lock
2280          */
2281         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2282         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2283                 if (old_page) {
2284                         if (!PageAnon(old_page)) {
2285                                 dec_mm_counter_fast(mm,
2286                                                 mm_counter_file(old_page));
2287                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2288                         }
2289                 } else {
2290                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2291                 }
2292                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2293                 entry = mk_pte(new_page, vma->vm_page_prot);
2294                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2295                 /*
2296                  * Clear the pte entry and flush it first, before updating the
2297                  * pte with the new entry. This will avoid a race condition
2298                  * seen in the presence of one thread doing SMC and another
2299                  * thread doing COW.
2300                  */
2301                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2302                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2303                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2304                 lru_cache_add_active_or_unevictable(new_page, vma);
2305                 /*
2306                  * We call the notify macro here because, when using secondary
2307                  * mmu page tables (such as kvm shadow page tables), we want the
2308                  * new page to be mapped directly into the secondary page table.
2309                  */
2310                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2311                 update_mmu_cache(vma, vmf->address, vmf->pte);
2312                 if (old_page) {
2313                         /*
2314                          * Only after switching the pte to the new page may
2315                          * we remove the mapcount here. Otherwise another
2316                          * process may come and find the rmap count decremented
2317                          * before the pte is switched to the new page, and
2318                          * "reuse" the old page writing into it while our pte
2319                          * here still points into it and can be read by other
2320                          * threads.
2321                          *
2322                          * The critical issue is to order this
2323                          * page_remove_rmap with the ptp_clear_flush above.
2324                          * Those stores are ordered by (if nothing else,)
2325                          * the barrier present in the atomic_add_negative
2326                          * in page_remove_rmap.
2327                          *
2328                          * Then the TLB flush in ptep_clear_flush ensures that
2329                          * no process can access the old page before the
2330                          * decremented mapcount is visible. And the old page
2331                          * cannot be reused until after the decremented
2332                          * mapcount is visible. So transitively, TLBs to
2333                          * old page will be flushed before it can be reused.
2334                          */
2335                         page_remove_rmap(old_page, false);
2336                 }
2337
2338                 /* Free the old page.. */
2339                 new_page = old_page;
2340                 page_copied = 1;
2341         } else {
2342                 mem_cgroup_cancel_charge(new_page, memcg, false);
2343         }
2344
2345         if (new_page)
2346                 put_page(new_page);
2347
2348         pte_unmap_unlock(vmf->pte, vmf->ptl);
2349         /*
2350          * No need to double call mmu_notifier->invalidate_range() callback as
2351          * the above ptep_clear_flush_notify() did already call it.
2352          */
2353         mmu_notifier_invalidate_range_only_end(&range);
2354         if (old_page) {
2355                 /*
2356                  * Don't let another task, with possibly unlocked vma,
2357                  * keep the mlocked page.
2358                  */
2359                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2360                         lock_page(old_page);    /* LRU manipulation */
2361                         if (PageMlocked(old_page))
2362                                 munlock_vma_page(old_page);
2363                         unlock_page(old_page);
2364                 }
2365                 put_page(old_page);
2366         }
2367         return page_copied ? VM_FAULT_WRITE : 0;
2368 oom_free_new:
2369         put_page(new_page);
2370 oom:
2371         if (old_page)
2372                 put_page(old_page);
2373         return VM_FAULT_OOM;
2374 }
2375
2376 /**
2377  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2378  *                        writeable once the page is prepared
2379  *
2380  * @vmf: structure describing the fault
2381  *
2382  * This function handles all that is needed to finish a write page fault in a
2383  * shared mapping due to PTE being read-only once the mapped page is prepared.
2384  * It handles locking of PTE and modifying it. The function returns
2385  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2386  * lock.
2387  *
2388  * The function expects the page to be locked or other protection against
2389  * concurrent faults / writeback (such as DAX radix tree locks).
2390  */
2391 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2392 {
2393         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2394         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2395                                        &vmf->ptl);
2396         /*
2397          * We might have raced with another page fault while we released the
2398          * pte_offset_map_lock.
2399          */
2400         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2401                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2402                 return VM_FAULT_NOPAGE;
2403         }
2404         wp_page_reuse(vmf);
2405         return 0;
2406 }
2407
2408 /*
2409  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2410  * mapping
2411  */
2412 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2413 {
2414         struct vm_area_struct *vma = vmf->vma;
2415
2416         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2417                 vm_fault_t ret;
2418
2419                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2420                 vmf->flags |= FAULT_FLAG_MKWRITE;
2421                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2422                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2423                         return ret;
2424                 return finish_mkwrite_fault(vmf);
2425         }
2426         wp_page_reuse(vmf);
2427         return VM_FAULT_WRITE;
2428 }
2429
2430 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2431         __releases(vmf->ptl)
2432 {
2433         struct vm_area_struct *vma = vmf->vma;
2434
2435         get_page(vmf->page);
2436
2437         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2438                 vm_fault_t tmp;
2439
2440                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2441                 tmp = do_page_mkwrite(vmf);
2442                 if (unlikely(!tmp || (tmp &
2443                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2444                         put_page(vmf->page);
2445                         return tmp;
2446                 }
2447                 tmp = finish_mkwrite_fault(vmf);
2448                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2449                         unlock_page(vmf->page);
2450                         put_page(vmf->page);
2451                         return tmp;
2452                 }
2453         } else {
2454                 wp_page_reuse(vmf);
2455                 lock_page(vmf->page);
2456         }
2457         fault_dirty_shared_page(vma, vmf->page);
2458         put_page(vmf->page);
2459
2460         return VM_FAULT_WRITE;
2461 }
2462
2463 /*
2464  * This routine handles present pages, when users try to write
2465  * to a shared page. It is done by copying the page to a new address
2466  * and decrementing the shared-page counter for the old page.
2467  *
2468  * Note that this routine assumes that the protection checks have been
2469  * done by the caller (the low-level page fault routine in most cases).
2470  * Thus we can safely just mark it writable once we've done any necessary
2471  * COW.
2472  *
2473  * We also mark the page dirty at this point even though the page will
2474  * change only once the write actually happens. This avoids a few races,
2475  * and potentially makes it more efficient.
2476  *
2477  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2478  * but allow concurrent faults), with pte both mapped and locked.
2479  * We return with mmap_sem still held, but pte unmapped and unlocked.
2480  */
2481 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2482         __releases(vmf->ptl)
2483 {
2484         struct vm_area_struct *vma = vmf->vma;
2485
2486         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2487         if (!vmf->page) {
2488                 /*
2489                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2490                  * VM_PFNMAP VMA.
2491                  *
2492                  * We should not cow pages in a shared writeable mapping.
2493                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2494                  */
2495                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2496                                      (VM_WRITE|VM_SHARED))
2497                         return wp_pfn_shared(vmf);
2498
2499                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2500                 return wp_page_copy(vmf);
2501         }
2502
2503         /*
2504          * Take out anonymous pages first, anonymous shared vmas are
2505          * not dirty accountable.
2506          */
2507         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2508                 int total_map_swapcount;
2509                 if (!trylock_page(vmf->page)) {
2510                         get_page(vmf->page);
2511                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2512                         lock_page(vmf->page);
2513                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2514                                         vmf->address, &vmf->ptl);
2515                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2516                                 unlock_page(vmf->page);
2517                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2518                                 put_page(vmf->page);
2519                                 return 0;
2520                         }
2521                         put_page(vmf->page);
2522                 }
2523                 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2524                         if (total_map_swapcount == 1) {
2525                                 /*
2526                                  * The page is all ours. Move it to
2527                                  * our anon_vma so the rmap code will
2528                                  * not search our parent or siblings.
2529                                  * Protected against the rmap code by
2530                                  * the page lock.
2531                                  */
2532                                 page_move_anon_rmap(vmf->page, vma);
2533                         }
2534                         unlock_page(vmf->page);
2535                         wp_page_reuse(vmf);
2536                         return VM_FAULT_WRITE;
2537                 }
2538                 unlock_page(vmf->page);
2539         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2540                                         (VM_WRITE|VM_SHARED))) {
2541                 return wp_page_shared(vmf);
2542         }
2543
2544         /*
2545          * Ok, we need to copy. Oh, well..
2546          */
2547         get_page(vmf->page);
2548
2549         pte_unmap_unlock(vmf->pte, vmf->ptl);
2550         return wp_page_copy(vmf);
2551 }
2552
2553 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2554                 unsigned long start_addr, unsigned long end_addr,
2555                 struct zap_details *details)
2556 {
2557         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2558 }
2559
2560 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2561                                             struct zap_details *details)
2562 {
2563         struct vm_area_struct *vma;
2564         pgoff_t vba, vea, zba, zea;
2565
2566         vma_interval_tree_foreach(vma, root,
2567                         details->first_index, details->last_index) {
2568
2569                 vba = vma->vm_pgoff;
2570                 vea = vba + vma_pages(vma) - 1;
2571                 zba = details->first_index;
2572                 if (zba < vba)
2573                         zba = vba;
2574                 zea = details->last_index;
2575                 if (zea > vea)
2576                         zea = vea;
2577
2578                 unmap_mapping_range_vma(vma,
2579                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2580                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2581                                 details);
2582         }
2583 }
2584
2585 /**
2586  * unmap_mapping_pages() - Unmap pages from processes.
2587  * @mapping: The address space containing pages to be unmapped.
2588  * @start: Index of first page to be unmapped.
2589  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2590  * @even_cows: Whether to unmap even private COWed pages.
2591  *
2592  * Unmap the pages in this address space from any userspace process which
2593  * has them mmaped.  Generally, you want to remove COWed pages as well when
2594  * a file is being truncated, but not when invalidating pages from the page
2595  * cache.
2596  */
2597 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2598                 pgoff_t nr, bool even_cows)
2599 {
2600         struct zap_details details = { };
2601
2602         details.check_mapping = even_cows ? NULL : mapping;
2603         details.first_index = start;
2604         details.last_index = start + nr - 1;
2605         if (details.last_index < details.first_index)
2606                 details.last_index = ULONG_MAX;
2607
2608         i_mmap_lock_write(mapping);
2609         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2610                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2611         i_mmap_unlock_write(mapping);
2612 }
2613
2614 /**
2615  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2616  * address_space corresponding to the specified byte range in the underlying
2617  * file.
2618  *
2619  * @mapping: the address space containing mmaps to be unmapped.
2620  * @holebegin: byte in first page to unmap, relative to the start of
2621  * the underlying file.  This will be rounded down to a PAGE_SIZE
2622  * boundary.  Note that this is different from truncate_pagecache(), which
2623  * must keep the partial page.  In contrast, we must get rid of
2624  * partial pages.
2625  * @holelen: size of prospective hole in bytes.  This will be rounded
2626  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2627  * end of the file.
2628  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2629  * but 0 when invalidating pagecache, don't throw away private data.
2630  */
2631 void unmap_mapping_range(struct address_space *mapping,
2632                 loff_t const holebegin, loff_t const holelen, int even_cows)
2633 {
2634         pgoff_t hba = holebegin >> PAGE_SHIFT;
2635         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2636
2637         /* Check for overflow. */
2638         if (sizeof(holelen) > sizeof(hlen)) {
2639                 long long holeend =
2640                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2641                 if (holeend & ~(long long)ULONG_MAX)
2642                         hlen = ULONG_MAX - hba + 1;
2643         }
2644
2645         unmap_mapping_pages(mapping, hba, hlen, even_cows);
2646 }
2647 EXPORT_SYMBOL(unmap_mapping_range);
2648
2649 /*
2650  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2651  * but allow concurrent faults), and pte mapped but not yet locked.
2652  * We return with pte unmapped and unlocked.
2653  *
2654  * We return with the mmap_sem locked or unlocked in the same cases
2655  * as does filemap_fault().
2656  */
2657 vm_fault_t do_swap_page(struct vm_fault *vmf)
2658 {
2659         struct vm_area_struct *vma = vmf->vma;
2660         struct page *page = NULL, *swapcache;
2661         struct mem_cgroup *memcg;
2662         swp_entry_t entry;
2663         pte_t pte;
2664         int locked;
2665         int exclusive = 0;
2666         vm_fault_t ret = 0;
2667
2668         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2669                 goto out;
2670
2671         entry = pte_to_swp_entry(vmf->orig_pte);
2672         if (unlikely(non_swap_entry(entry))) {
2673                 if (is_migration_entry(entry)) {
2674                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2675                                              vmf->address);
2676                 } else if (is_device_private_entry(entry)) {
2677                         /*
2678                          * For un-addressable device memory we call the pgmap
2679                          * fault handler callback. The callback must migrate
2680                          * the page back to some CPU accessible page.
2681                          */
2682                         ret = device_private_entry_fault(vma, vmf->address, entry,
2683                                                  vmf->flags, vmf->pmd);
2684                 } else if (is_hwpoison_entry(entry)) {
2685                         ret = VM_FAULT_HWPOISON;
2686                 } else {
2687                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2688                         ret = VM_FAULT_SIGBUS;
2689                 }
2690                 goto out;
2691         }
2692
2693
2694         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2695         page = lookup_swap_cache(entry, vma, vmf->address);
2696         swapcache = page;
2697
2698         if (!page) {
2699                 struct swap_info_struct *si = swp_swap_info(entry);
2700
2701                 if (si->flags & SWP_SYNCHRONOUS_IO &&
2702                                 __swap_count(si, entry) == 1) {
2703                         /* skip swapcache */
2704                         page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2705                                                         vmf->address);
2706                         if (page) {
2707                                 __SetPageLocked(page);
2708                                 __SetPageSwapBacked(page);
2709                                 set_page_private(page, entry.val);
2710                                 lru_cache_add_anon(page);
2711                                 swap_readpage(page, true);
2712                         }
2713                 } else {
2714                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2715                                                 vmf);
2716                         swapcache = page;
2717                 }
2718
2719                 if (!page) {
2720                         /*
2721                          * Back out if somebody else faulted in this pte
2722                          * while we released the pte lock.
2723                          */
2724                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2725                                         vmf->address, &vmf->ptl);
2726                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2727                                 ret = VM_FAULT_OOM;
2728                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2729                         goto unlock;
2730                 }
2731
2732                 /* Had to read the page from swap area: Major fault */
2733                 ret = VM_FAULT_MAJOR;
2734                 count_vm_event(PGMAJFAULT);
2735                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2736         } else if (PageHWPoison(page)) {
2737                 /*
2738                  * hwpoisoned dirty swapcache pages are kept for killing
2739                  * owner processes (which may be unknown at hwpoison time)
2740                  */
2741                 ret = VM_FAULT_HWPOISON;
2742                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2743                 goto out_release;
2744         }
2745
2746         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2747
2748         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2749         if (!locked) {
2750                 ret |= VM_FAULT_RETRY;
2751                 goto out_release;
2752         }
2753
2754         /*
2755          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2756          * release the swapcache from under us.  The page pin, and pte_same
2757          * test below, are not enough to exclude that.  Even if it is still
2758          * swapcache, we need to check that the page's swap has not changed.
2759          */
2760         if (unlikely((!PageSwapCache(page) ||
2761                         page_private(page) != entry.val)) && swapcache)
2762                 goto out_page;
2763
2764         page = ksm_might_need_to_copy(page, vma, vmf->address);
2765         if (unlikely(!page)) {
2766                 ret = VM_FAULT_OOM;
2767                 page = swapcache;
2768                 goto out_page;
2769         }
2770
2771         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2772                                         &memcg, false)) {
2773                 ret = VM_FAULT_OOM;
2774                 goto out_page;
2775         }
2776
2777         /*
2778          * Back out if somebody else already faulted in this pte.
2779          */
2780         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2781                         &vmf->ptl);
2782         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2783                 goto out_nomap;
2784
2785         if (unlikely(!PageUptodate(page))) {
2786                 ret = VM_FAULT_SIGBUS;
2787                 goto out_nomap;
2788         }
2789
2790         /*
2791          * The page isn't present yet, go ahead with the fault.
2792          *
2793          * Be careful about the sequence of operations here.
2794          * To get its accounting right, reuse_swap_page() must be called
2795          * while the page is counted on swap but not yet in mapcount i.e.
2796          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2797          * must be called after the swap_free(), or it will never succeed.
2798          */
2799
2800         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2801         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2802         pte = mk_pte(page, vma->vm_page_prot);
2803         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2804                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2805                 vmf->flags &= ~FAULT_FLAG_WRITE;
2806                 ret |= VM_FAULT_WRITE;
2807                 exclusive = RMAP_EXCLUSIVE;
2808         }
2809         flush_icache_page(vma, page);
2810         if (pte_swp_soft_dirty(vmf->orig_pte))
2811                 pte = pte_mksoft_dirty(pte);
2812         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2813         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2814         vmf->orig_pte = pte;
2815
2816         /* ksm created a completely new copy */
2817         if (unlikely(page != swapcache && swapcache)) {
2818                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2819                 mem_cgroup_commit_charge(page, memcg, false, false);
2820                 lru_cache_add_active_or_unevictable(page, vma);
2821         } else {
2822                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2823                 mem_cgroup_commit_charge(page, memcg, true, false);
2824                 activate_page(page);
2825         }
2826
2827         swap_free(entry);
2828         if (mem_cgroup_swap_full(page) ||
2829             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2830                 try_to_free_swap(page);
2831         unlock_page(page);
2832         if (page != swapcache && swapcache) {
2833                 /*
2834                  * Hold the lock to avoid the swap entry to be reused
2835                  * until we take the PT lock for the pte_same() check
2836                  * (to avoid false positives from pte_same). For
2837                  * further safety release the lock after the swap_free
2838                  * so that the swap count won't change under a
2839                  * parallel locked swapcache.
2840                  */
2841                 unlock_page(swapcache);
2842                 put_page(swapcache);
2843         }
2844
2845         if (vmf->flags & FAULT_FLAG_WRITE) {
2846                 ret |= do_wp_page(vmf);
2847                 if (ret & VM_FAULT_ERROR)
2848                         ret &= VM_FAULT_ERROR;
2849                 goto out;
2850         }
2851
2852         /* No need to invalidate - it was non-present before */
2853         update_mmu_cache(vma, vmf->address, vmf->pte);
2854 unlock:
2855         pte_unmap_unlock(vmf->pte, vmf->ptl);
2856 out:
2857         return ret;
2858 out_nomap:
2859         mem_cgroup_cancel_charge(page, memcg, false);
2860         pte_unmap_unlock(vmf->pte, vmf->ptl);
2861 out_page:
2862         unlock_page(page);
2863 out_release:
2864         put_page(page);
2865         if (page != swapcache && swapcache) {
2866                 unlock_page(swapcache);
2867                 put_page(swapcache);
2868         }
2869         return ret;
2870 }
2871
2872 /*
2873  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2874  * but allow concurrent faults), and pte mapped but not yet locked.
2875  * We return with mmap_sem still held, but pte unmapped and unlocked.
2876  */
2877 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2878 {
2879         struct vm_area_struct *vma = vmf->vma;
2880         struct mem_cgroup *memcg;
2881         struct page *page;
2882         vm_fault_t ret = 0;
2883         pte_t entry;
2884
2885         /* File mapping without ->vm_ops ? */
2886         if (vma->vm_flags & VM_SHARED)
2887                 return VM_FAULT_SIGBUS;
2888
2889         /*
2890          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2891          * pte_offset_map() on pmds where a huge pmd might be created
2892          * from a different thread.
2893          *
2894          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2895          * parallel threads are excluded by other means.
2896          *
2897          * Here we only have down_read(mmap_sem).
2898          */
2899         if (pte_alloc(vma->vm_mm, vmf->pmd))
2900                 return VM_FAULT_OOM;
2901
2902         /* See the comment in pte_alloc_one_map() */
2903         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2904                 return 0;
2905
2906         /* Use the zero-page for reads */
2907         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2908                         !mm_forbids_zeropage(vma->vm_mm)) {
2909                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2910                                                 vma->vm_page_prot));
2911                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2912                                 vmf->address, &vmf->ptl);
2913                 if (!pte_none(*vmf->pte))
2914                         goto unlock;
2915                 ret = check_stable_address_space(vma->vm_mm);
2916                 if (ret)
2917                         goto unlock;
2918                 /* Deliver the page fault to userland, check inside PT lock */
2919                 if (userfaultfd_missing(vma)) {
2920                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2921                         return handle_userfault(vmf, VM_UFFD_MISSING);
2922                 }
2923                 goto setpte;
2924         }
2925
2926         /* Allocate our own private page. */
2927         if (unlikely(anon_vma_prepare(vma)))
2928                 goto oom;
2929         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2930         if (!page)
2931                 goto oom;
2932
2933         if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2934                                         false))
2935                 goto oom_free_page;
2936
2937         /*
2938          * The memory barrier inside __SetPageUptodate makes sure that
2939          * preceeding stores to the page contents become visible before
2940          * the set_pte_at() write.
2941          */
2942         __SetPageUptodate(page);
2943
2944         entry = mk_pte(page, vma->vm_page_prot);
2945         if (vma->vm_flags & VM_WRITE)
2946                 entry = pte_mkwrite(pte_mkdirty(entry));
2947
2948         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2949                         &vmf->ptl);
2950         if (!pte_none(*vmf->pte))
2951                 goto release;
2952
2953         ret = check_stable_address_space(vma->vm_mm);
2954         if (ret)
2955                 goto release;
2956
2957         /* Deliver the page fault to userland, check inside PT lock */
2958         if (userfaultfd_missing(vma)) {
2959                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2960                 mem_cgroup_cancel_charge(page, memcg, false);
2961                 put_page(page);
2962                 return handle_userfault(vmf, VM_UFFD_MISSING);
2963         }
2964
2965         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2966         page_add_new_anon_rmap(page, vma, vmf->address, false);
2967         mem_cgroup_commit_charge(page, memcg, false, false);
2968         lru_cache_add_active_or_unevictable(page, vma);
2969 setpte:
2970         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2971
2972         /* No need to invalidate - it was non-present before */
2973         update_mmu_cache(vma, vmf->address, vmf->pte);
2974 unlock:
2975         pte_unmap_unlock(vmf->pte, vmf->ptl);
2976         return ret;
2977 release:
2978         mem_cgroup_cancel_charge(page, memcg, false);
2979         put_page(page);
2980         goto unlock;
2981 oom_free_page:
2982         put_page(page);
2983 oom:
2984         return VM_FAULT_OOM;
2985 }
2986
2987 /*
2988  * The mmap_sem must have been held on entry, and may have been
2989  * released depending on flags and vma->vm_ops->fault() return value.
2990  * See filemap_fault() and __lock_page_retry().
2991  */
2992 static vm_fault_t __do_fault(struct vm_fault *vmf)
2993 {
2994         struct vm_area_struct *vma = vmf->vma;
2995         vm_fault_t ret;
2996
2997         /*
2998          * Preallocate pte before we take page_lock because this might lead to
2999          * deadlocks for memcg reclaim which waits for pages under writeback:
3000          *                              lock_page(A)
3001          *                              SetPageWriteback(A)
3002          *                              unlock_page(A)
3003          * lock_page(B)
3004          *                              lock_page(B)
3005          * pte_alloc_pne
3006          *   shrink_page_list
3007          *     wait_on_page_writeback(A)
3008          *                              SetPageWriteback(B)
3009          *                              unlock_page(B)
3010          *                              # flush A, B to clear the writeback
3011          */
3012         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3013                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3014                 if (!vmf->prealloc_pte)
3015                         return VM_FAULT_OOM;
3016                 smp_wmb(); /* See comment in __pte_alloc() */
3017         }
3018
3019         ret = vma->vm_ops->fault(vmf);
3020         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3021                             VM_FAULT_DONE_COW)))
3022                 return ret;
3023
3024         if (unlikely(PageHWPoison(vmf->page))) {
3025                 if (ret & VM_FAULT_LOCKED)
3026                         unlock_page(vmf->page);
3027                 put_page(vmf->page);
3028                 vmf->page = NULL;
3029                 return VM_FAULT_HWPOISON;
3030         }
3031
3032         if (unlikely(!(ret & VM_FAULT_LOCKED)))
3033                 lock_page(vmf->page);
3034         else
3035                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3036
3037         return ret;
3038 }
3039
3040 /*
3041  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3042  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3043  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3044  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3045  */
3046 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3047 {
3048         return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3049 }
3050
3051 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3052 {
3053         struct vm_area_struct *vma = vmf->vma;
3054
3055         if (!pmd_none(*vmf->pmd))
3056                 goto map_pte;
3057         if (vmf->prealloc_pte) {
3058                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3059                 if (unlikely(!pmd_none(*vmf->pmd))) {
3060                         spin_unlock(vmf->ptl);
3061                         goto map_pte;
3062                 }
3063
3064                 mm_inc_nr_ptes(vma->vm_mm);
3065                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3066                 spin_unlock(vmf->ptl);
3067                 vmf->prealloc_pte = NULL;
3068         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3069                 return VM_FAULT_OOM;
3070         }
3071 map_pte:
3072         /*
3073          * If a huge pmd materialized under us just retry later.  Use
3074          * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3075          * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3076          * under us and then back to pmd_none, as a result of MADV_DONTNEED
3077          * running immediately after a huge pmd fault in a different thread of
3078          * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3079          * All we have to ensure is that it is a regular pmd that we can walk
3080          * with pte_offset_map() and we can do that through an atomic read in
3081          * C, which is what pmd_trans_unstable() provides.
3082          */
3083         if (pmd_devmap_trans_unstable(vmf->pmd))
3084                 return VM_FAULT_NOPAGE;
3085
3086         /*
3087          * At this point we know that our vmf->pmd points to a page of ptes
3088          * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3089          * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3090          * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3091          * be valid and we will re-check to make sure the vmf->pte isn't
3092          * pte_none() under vmf->ptl protection when we return to
3093          * alloc_set_pte().
3094          */
3095         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3096                         &vmf->ptl);
3097         return 0;
3098 }
3099
3100 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3101
3102 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3103 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3104                 unsigned long haddr)
3105 {
3106         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3107                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3108                 return false;
3109         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3110                 return false;
3111         return true;
3112 }
3113
3114 static void deposit_prealloc_pte(struct vm_fault *vmf)
3115 {
3116         struct vm_area_struct *vma = vmf->vma;
3117
3118         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3119         /*
3120          * We are going to consume the prealloc table,
3121          * count that as nr_ptes.
3122          */
3123         mm_inc_nr_ptes(vma->vm_mm);
3124         vmf->prealloc_pte = NULL;
3125 }
3126
3127 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3128 {
3129         struct vm_area_struct *vma = vmf->vma;
3130         bool write = vmf->flags & FAULT_FLAG_WRITE;
3131         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3132         pmd_t entry;
3133         int i;
3134         vm_fault_t ret;
3135
3136         if (!transhuge_vma_suitable(vma, haddr))
3137                 return VM_FAULT_FALLBACK;
3138
3139         ret = VM_FAULT_FALLBACK;
3140         page = compound_head(page);
3141
3142         /*
3143          * Archs like ppc64 need additonal space to store information
3144          * related to pte entry. Use the preallocated table for that.
3145          */
3146         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3147                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3148                 if (!vmf->prealloc_pte)
3149                         return VM_FAULT_OOM;
3150                 smp_wmb(); /* See comment in __pte_alloc() */
3151         }
3152
3153         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3154         if (unlikely(!pmd_none(*vmf->pmd)))
3155                 goto out;
3156
3157         for (i = 0; i < HPAGE_PMD_NR; i++)
3158                 flush_icache_page(vma, page + i);
3159
3160         entry = mk_huge_pmd(page, vma->vm_page_prot);
3161         if (write)
3162                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3163
3164         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3165         page_add_file_rmap(page, true);
3166         /*
3167          * deposit and withdraw with pmd lock held
3168          */
3169         if (arch_needs_pgtable_deposit())
3170                 deposit_prealloc_pte(vmf);
3171
3172         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3173
3174         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3175
3176         /* fault is handled */
3177         ret = 0;
3178         count_vm_event(THP_FILE_MAPPED);
3179 out:
3180         spin_unlock(vmf->ptl);
3181         return ret;
3182 }
3183 #else
3184 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3185 {
3186         BUILD_BUG();
3187         return 0;
3188 }
3189 #endif
3190
3191 /**
3192  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3193  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3194  *
3195  * @vmf: fault environment
3196  * @memcg: memcg to charge page (only for private mappings)
3197  * @page: page to map
3198  *
3199  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3200  * return.
3201  *
3202  * Target users are page handler itself and implementations of
3203  * vm_ops->map_pages.
3204  */
3205 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3206                 struct page *page)
3207 {
3208         struct vm_area_struct *vma = vmf->vma;
3209         bool write = vmf->flags & FAULT_FLAG_WRITE;
3210         pte_t entry;
3211         vm_fault_t ret;
3212
3213         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3214                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3215                 /* THP on COW? */
3216                 VM_BUG_ON_PAGE(memcg, page);
3217
3218                 ret = do_set_pmd(vmf, page);
3219                 if (ret != VM_FAULT_FALLBACK)
3220                         return ret;
3221         }
3222
3223         if (!vmf->pte) {
3224                 ret = pte_alloc_one_map(vmf);
3225                 if (ret)
3226                         return ret;
3227         }
3228
3229         /* Re-check under ptl */
3230         if (unlikely(!pte_none(*vmf->pte)))
3231                 return VM_FAULT_NOPAGE;
3232
3233         flush_icache_page(vma, page);
3234         entry = mk_pte(page, vma->vm_page_prot);
3235         if (write)
3236                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3237         /* copy-on-write page */
3238         if (write && !(vma->vm_flags & VM_SHARED)) {
3239                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3240                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3241                 mem_cgroup_commit_charge(page, memcg, false, false);
3242                 lru_cache_add_active_or_unevictable(page, vma);
3243         } else {
3244                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3245                 page_add_file_rmap(page, false);
3246         }
3247         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3248
3249         /* no need to invalidate: a not-present page won't be cached */
3250         update_mmu_cache(vma, vmf->address, vmf->pte);
3251
3252         return 0;
3253 }
3254
3255
3256 /**
3257  * finish_fault - finish page fault once we have prepared the page to fault
3258  *
3259  * @vmf: structure describing the fault
3260  *
3261  * This function handles all that is needed to finish a page fault once the
3262  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3263  * given page, adds reverse page mapping, handles memcg charges and LRU
3264  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3265  * error.
3266  *
3267  * The function expects the page to be locked and on success it consumes a
3268  * reference of a page being mapped (for the PTE which maps it).
3269  */
3270 vm_fault_t finish_fault(struct vm_fault *vmf)
3271 {
3272         struct page *page;
3273         vm_fault_t ret = 0;
3274
3275         /* Did we COW the page? */
3276         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3277             !(vmf->vma->vm_flags & VM_SHARED))
3278                 page = vmf->cow_page;
3279         else
3280                 page = vmf->page;
3281
3282         /*
3283          * check even for read faults because we might have lost our CoWed
3284          * page
3285          */
3286         if (!(vmf->vma->vm_flags & VM_SHARED))
3287                 ret = check_stable_address_space(vmf->vma->vm_mm);
3288         if (!ret)
3289                 ret = alloc_set_pte(vmf, vmf->memcg, page);
3290         if (vmf->pte)
3291                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3292         return ret;
3293 }
3294
3295 static unsigned long fault_around_bytes __read_mostly =
3296         rounddown_pow_of_two(65536);
3297
3298 #ifdef CONFIG_DEBUG_FS
3299 static int fault_around_bytes_get(void *data, u64 *val)
3300 {
3301         *val = fault_around_bytes;
3302         return 0;
3303 }
3304
3305 /*
3306  * fault_around_bytes must be rounded down to the nearest page order as it's
3307  * what do_fault_around() expects to see.
3308  */
3309 static int fault_around_bytes_set(void *data, u64 val)
3310 {
3311         if (val / PAGE_SIZE > PTRS_PER_PTE)
3312                 return -EINVAL;
3313         if (val > PAGE_SIZE)
3314                 fault_around_bytes = rounddown_pow_of_two(val);
3315         else
3316                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3317         return 0;
3318 }
3319 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3320                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3321
3322 static int __init fault_around_debugfs(void)
3323 {
3324         void *ret;
3325
3326         ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3327                         &fault_around_bytes_fops);
3328         if (!ret)
3329                 pr_warn("Failed to create fault_around_bytes in debugfs");
3330         return 0;
3331 }
3332 late_initcall(fault_around_debugfs);
3333 #endif
3334
3335 /*
3336  * do_fault_around() tries to map few pages around the fault address. The hope
3337  * is that the pages will be needed soon and this will lower the number of
3338  * faults to handle.
3339  *
3340  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3341  * not ready to be mapped: not up-to-date, locked, etc.
3342  *
3343  * This function is called with the page table lock taken. In the split ptlock
3344  * case the page table lock only protects only those entries which belong to
3345  * the page table corresponding to the fault address.
3346  *
3347  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3348  * only once.
3349  *
3350  * fault_around_bytes defines how many bytes we'll try to map.
3351  * do_fault_around() expects it to be set to a power of two less than or equal
3352  * to PTRS_PER_PTE.
3353  *
3354  * The virtual address of the area that we map is naturally aligned to
3355  * fault_around_bytes rounded down to the machine page size
3356  * (and therefore to page order).  This way it's easier to guarantee
3357  * that we don't cross page table boundaries.
3358  */
3359 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3360 {
3361         unsigned long address = vmf->address, nr_pages, mask;
3362         pgoff_t start_pgoff = vmf->pgoff;
3363         pgoff_t end_pgoff;
3364         int off;
3365         vm_fault_t ret = 0;
3366
3367         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3368         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3369
3370         vmf->address = max(address & mask, vmf->vma->vm_start);
3371         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3372         start_pgoff -= off;
3373
3374         /*
3375          *  end_pgoff is either the end of the page table, the end of
3376          *  the vma or nr_pages from start_pgoff, depending what is nearest.
3377          */
3378         end_pgoff = start_pgoff -
3379                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3380                 PTRS_PER_PTE - 1;
3381         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3382                         start_pgoff + nr_pages - 1);
3383
3384         if (pmd_none(*vmf->pmd)) {
3385                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3386                 if (!vmf->prealloc_pte)
3387                         goto out;
3388                 smp_wmb(); /* See comment in __pte_alloc() */
3389         }
3390
3391         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3392
3393         /* Huge page is mapped? Page fault is solved */
3394         if (pmd_trans_huge(*vmf->pmd)) {
3395                 ret = VM_FAULT_NOPAGE;
3396                 goto out;
3397         }
3398
3399         /* ->map_pages() haven't done anything useful. Cold page cache? */
3400         if (!vmf->pte)
3401                 goto out;
3402
3403         /* check if the page fault is solved */
3404         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3405         if (!pte_none(*vmf->pte))
3406                 ret = VM_FAULT_NOPAGE;
3407         pte_unmap_unlock(vmf->pte, vmf->ptl);
3408 out:
3409         vmf->address = address;
3410         vmf->pte = NULL;
3411         return ret;
3412 }
3413
3414 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3415 {
3416         struct vm_area_struct *vma = vmf->vma;
3417         vm_fault_t ret = 0;
3418
3419         /*
3420          * Let's call ->map_pages() first and use ->fault() as fallback
3421          * if page by the offset is not ready to be mapped (cold cache or
3422          * something).
3423          */
3424         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3425                 ret = do_fault_around(vmf);
3426                 if (ret)
3427                         return ret;
3428         }
3429
3430         ret = __do_fault(vmf);
3431         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3432                 return ret;
3433
3434         ret |= finish_fault(vmf);
3435         unlock_page(vmf->page);
3436         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3437                 put_page(vmf->page);
3438         return ret;
3439 }
3440
3441 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3442 {
3443         struct vm_area_struct *vma = vmf->vma;
3444         vm_fault_t ret;
3445
3446         if (unlikely(anon_vma_prepare(vma)))
3447                 return VM_FAULT_OOM;
3448
3449         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3450         if (!vmf->cow_page)
3451                 return VM_FAULT_OOM;
3452
3453         if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3454                                 &vmf->memcg, false)) {
3455                 put_page(vmf->cow_page);
3456                 return VM_FAULT_OOM;
3457         }
3458
3459         ret = __do_fault(vmf);
3460         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3461                 goto uncharge_out;
3462         if (ret & VM_FAULT_DONE_COW)
3463                 return ret;
3464
3465         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3466         __SetPageUptodate(vmf->cow_page);
3467
3468         ret |= finish_fault(vmf);
3469         unlock_page(vmf->page);
3470         put_page(vmf->page);
3471         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3472                 goto uncharge_out;
3473         return ret;
3474 uncharge_out:
3475         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3476         put_page(vmf->cow_page);
3477         return ret;
3478 }
3479
3480 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3481 {
3482         struct vm_area_struct *vma = vmf->vma;
3483         vm_fault_t ret, tmp;
3484
3485         ret = __do_fault(vmf);
3486         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3487                 return ret;
3488
3489         /*
3490          * Check if the backing address space wants to know that the page is
3491          * about to become writable
3492          */
3493         if (vma->vm_ops->page_mkwrite) {
3494                 unlock_page(vmf->page);
3495                 tmp = do_page_mkwrite(vmf);
3496                 if (unlikely(!tmp ||
3497                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3498                         put_page(vmf->page);
3499                         return tmp;
3500                 }
3501         }
3502
3503         ret |= finish_fault(vmf);
3504         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3505                                         VM_FAULT_RETRY))) {
3506                 unlock_page(vmf->page);
3507                 put_page(vmf->page);
3508                 return ret;
3509         }
3510
3511         fault_dirty_shared_page(vma, vmf->page);
3512         return ret;
3513 }
3514
3515 /*
3516  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3517  * but allow concurrent faults).
3518  * The mmap_sem may have been released depending on flags and our
3519  * return value.  See filemap_fault() and __lock_page_or_retry().
3520  */
3521 static vm_fault_t do_fault(struct vm_fault *vmf)
3522 {
3523         struct vm_area_struct *vma = vmf->vma;
3524         vm_fault_t ret;
3525
3526         /*
3527          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3528          */
3529         if (!vma->vm_ops->fault) {
3530                 /*
3531                  * If we find a migration pmd entry or a none pmd entry, which
3532                  * should never happen, return SIGBUS
3533                  */
3534                 if (unlikely(!pmd_present(*vmf->pmd)))
3535                         ret = VM_FAULT_SIGBUS;
3536                 else {
3537                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3538                                                        vmf->pmd,
3539                                                        vmf->address,
3540                                                        &vmf->ptl);
3541                         /*
3542                          * Make sure this is not a temporary clearing of pte
3543                          * by holding ptl and checking again. A R/M/W update
3544                          * of pte involves: take ptl, clearing the pte so that
3545                          * we don't have concurrent modification by hardware
3546                          * followed by an update.
3547                          */
3548                         if (unlikely(pte_none(*vmf->pte)))
3549                                 ret = VM_FAULT_SIGBUS;
3550                         else
3551                                 ret = VM_FAULT_NOPAGE;
3552
3553                         pte_unmap_unlock(vmf->pte, vmf->ptl);
3554                 }
3555         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3556                 ret = do_read_fault(vmf);
3557         else if (!(vma->vm_flags & VM_SHARED))
3558                 ret = do_cow_fault(vmf);
3559         else
3560                 ret = do_shared_fault(vmf);
3561
3562         /* preallocated pagetable is unused: free it */
3563         if (vmf->prealloc_pte) {
3564                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3565                 vmf->prealloc_pte = NULL;
3566         }
3567         return ret;
3568 }
3569
3570 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3571                                 unsigned long addr, int page_nid,
3572                                 int *flags)
3573 {
3574         get_page(page);
3575
3576         count_vm_numa_event(NUMA_HINT_FAULTS);
3577         if (page_nid == numa_node_id()) {
3578                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3579                 *flags |= TNF_FAULT_LOCAL;
3580         }
3581
3582         return mpol_misplaced(page, vma, addr);
3583 }
3584
3585 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3586 {
3587         struct vm_area_struct *vma = vmf->vma;
3588         struct page *page = NULL;
3589         int page_nid = -1;
3590         int last_cpupid;
3591         int target_nid;
3592         bool migrated = false;
3593         pte_t pte;
3594         bool was_writable = pte_savedwrite(vmf->orig_pte);
3595         int flags = 0;
3596
3597         /*
3598          * The "pte" at this point cannot be used safely without
3599          * validation through pte_unmap_same(). It's of NUMA type but
3600          * the pfn may be screwed if the read is non atomic.
3601          */
3602         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3603         spin_lock(vmf->ptl);
3604         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3605                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3606                 goto out;
3607         }
3608
3609         /*
3610          * Make it present again, Depending on how arch implementes non
3611          * accessible ptes, some can allow access by kernel mode.
3612          */
3613         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3614         pte = pte_modify(pte, vma->vm_page_prot);
3615         pte = pte_mkyoung(pte);
3616         if (was_writable)
3617                 pte = pte_mkwrite(pte);
3618         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3619         update_mmu_cache(vma, vmf->address, vmf->pte);
3620
3621         page = vm_normal_page(vma, vmf->address, pte);
3622         if (!page) {
3623                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3624                 return 0;
3625         }
3626
3627         /* TODO: handle PTE-mapped THP */
3628         if (PageCompound(page)) {
3629                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3630                 return 0;
3631         }
3632
3633         /*
3634          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3635          * much anyway since they can be in shared cache state. This misses
3636          * the case where a mapping is writable but the process never writes
3637          * to it but pte_write gets cleared during protection updates and
3638          * pte_dirty has unpredictable behaviour between PTE scan updates,
3639          * background writeback, dirty balancing and application behaviour.
3640          */
3641         if (!pte_write(pte))
3642                 flags |= TNF_NO_GROUP;
3643
3644         /*
3645          * Flag if the page is shared between multiple address spaces. This
3646          * is later used when determining whether to group tasks together
3647          */
3648         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3649                 flags |= TNF_SHARED;
3650
3651         last_cpupid = page_cpupid_last(page);
3652         page_nid = page_to_nid(page);
3653         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3654                         &flags);
3655         pte_unmap_unlock(vmf->pte, vmf->ptl);
3656         if (target_nid == -1) {
3657                 put_page(page);
3658                 goto out;
3659         }
3660
3661         /* Migrate to the requested node */
3662         migrated = migrate_misplaced_page(page, vma, target_nid);
3663         if (migrated) {
3664                 page_nid = target_nid;
3665                 flags |= TNF_MIGRATED;
3666         } else
3667                 flags |= TNF_MIGRATE_FAIL;
3668
3669 out:
3670         if (page_nid != -1)
3671                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3672         return 0;
3673 }
3674
3675 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3676 {
3677         if (vma_is_anonymous(vmf->vma))
3678                 return do_huge_pmd_anonymous_page(vmf);
3679         if (vmf->vma->vm_ops->huge_fault)
3680                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3681         return VM_FAULT_FALLBACK;
3682 }
3683
3684 /* `inline' is required to avoid gcc 4.1.2 build error */
3685 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3686 {
3687         if (vma_is_anonymous(vmf->vma))
3688                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3689         if (vmf->vma->vm_ops->huge_fault)
3690                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3691
3692         /* COW handled on pte level: split pmd */
3693         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3694         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3695
3696         return VM_FAULT_FALLBACK;
3697 }
3698
3699 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3700 {
3701         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3702 }
3703
3704 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3705 {
3706 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3707         /* No support for anonymous transparent PUD pages yet */
3708         if (vma_is_anonymous(vmf->vma))
3709                 return VM_FAULT_FALLBACK;
3710         if (vmf->vma->vm_ops->huge_fault)
3711                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3713         return VM_FAULT_FALLBACK;
3714 }
3715
3716 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3717 {
3718 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3719         /* No support for anonymous transparent PUD pages yet */
3720         if (vma_is_anonymous(vmf->vma))
3721                 return VM_FAULT_FALLBACK;
3722         if (vmf->vma->vm_ops->huge_fault)
3723                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3724 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3725         return VM_FAULT_FALLBACK;
3726 }
3727
3728 /*
3729  * These routines also need to handle stuff like marking pages dirty
3730  * and/or accessed for architectures that don't do it in hardware (most
3731  * RISC architectures).  The early dirtying is also good on the i386.
3732  *
3733  * There is also a hook called "update_mmu_cache()" that architectures
3734  * with external mmu caches can use to update those (ie the Sparc or
3735  * PowerPC hashed page tables that act as extended TLBs).
3736  *
3737  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3738  * concurrent faults).
3739  *
3740  * The mmap_sem may have been released depending on flags and our return value.
3741  * See filemap_fault() and __lock_page_or_retry().
3742  */
3743 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3744 {
3745         pte_t entry;
3746
3747         if (unlikely(pmd_none(*vmf->pmd))) {
3748                 /*
3749                  * Leave __pte_alloc() until later: because vm_ops->fault may
3750                  * want to allocate huge page, and if we expose page table
3751                  * for an instant, it will be difficult to retract from
3752                  * concurrent faults and from rmap lookups.
3753                  */
3754                 vmf->pte = NULL;
3755         } else {
3756                 /* See comment in pte_alloc_one_map() */
3757                 if (pmd_devmap_trans_unstable(vmf->pmd))
3758                         return 0;
3759                 /*
3760                  * A regular pmd is established and it can't morph into a huge
3761                  * pmd from under us anymore at this point because we hold the
3762                  * mmap_sem read mode and khugepaged takes it in write mode.
3763                  * So now it's safe to run pte_offset_map().
3764                  */
3765                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3766                 vmf->orig_pte = *vmf->pte;
3767
3768                 /*
3769                  * some architectures can have larger ptes than wordsize,
3770                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3771                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3772                  * accesses.  The code below just needs a consistent view
3773                  * for the ifs and we later double check anyway with the
3774                  * ptl lock held. So here a barrier will do.
3775                  */
3776                 barrier();
3777                 if (pte_none(vmf->orig_pte)) {
3778                         pte_unmap(vmf->pte);
3779                         vmf->pte = NULL;
3780                 }
3781         }
3782
3783         if (!vmf->pte) {
3784                 if (vma_is_anonymous(vmf->vma))
3785                         return do_anonymous_page(vmf);
3786                 else
3787                         return do_fault(vmf);
3788         }
3789
3790         if (!pte_present(vmf->orig_pte))
3791                 return do_swap_page(vmf);
3792
3793         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3794                 return do_numa_page(vmf);
3795
3796         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3797         spin_lock(vmf->ptl);
3798         entry = vmf->orig_pte;
3799         if (unlikely(!pte_same(*vmf->pte, entry)))
3800                 goto unlock;
3801         if (vmf->flags & FAULT_FLAG_WRITE) {
3802                 if (!pte_write(entry))
3803                         return do_wp_page(vmf);
3804                 entry = pte_mkdirty(entry);
3805         }
3806         entry = pte_mkyoung(entry);
3807         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3808                                 vmf->flags & FAULT_FLAG_WRITE)) {
3809                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3810         } else {
3811                 /*
3812                  * This is needed only for protection faults but the arch code
3813                  * is not yet telling us if this is a protection fault or not.
3814                  * This still avoids useless tlb flushes for .text page faults
3815                  * with threads.
3816                  */
3817                 if (vmf->flags & FAULT_FLAG_WRITE)
3818                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3819         }
3820 unlock:
3821         pte_unmap_unlock(vmf->pte, vmf->ptl);
3822         return 0;
3823 }
3824
3825 /*
3826  * By the time we get here, we already hold the mm semaphore
3827  *
3828  * The mmap_sem may have been released depending on flags and our
3829  * return value.  See filemap_fault() and __lock_page_or_retry().
3830  */
3831 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3832                 unsigned long address, unsigned int flags)
3833 {
3834         struct vm_fault vmf = {
3835                 .vma = vma,
3836                 .address = address & PAGE_MASK,
3837                 .flags = flags,
3838                 .pgoff = linear_page_index(vma, address),
3839                 .gfp_mask = __get_fault_gfp_mask(vma),
3840         };
3841         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3842         struct mm_struct *mm = vma->vm_mm;
3843         pgd_t *pgd;
3844         p4d_t *p4d;
3845         vm_fault_t ret;
3846
3847         pgd = pgd_offset(mm, address);
3848         p4d = p4d_alloc(mm, pgd, address);
3849         if (!p4d)
3850                 return VM_FAULT_OOM;
3851
3852         vmf.pud = pud_alloc(mm, p4d, address);
3853         if (!vmf.pud)
3854                 return VM_FAULT_OOM;
3855         if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3856                 ret = create_huge_pud(&vmf);
3857                 if (!(ret & VM_FAULT_FALLBACK))
3858                         return ret;
3859         } else {
3860                 pud_t orig_pud = *vmf.pud;
3861
3862                 barrier();
3863                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3864
3865                         /* NUMA case for anonymous PUDs would go here */
3866
3867                         if (dirty && !pud_write(orig_pud)) {
3868                                 ret = wp_huge_pud(&vmf, orig_pud);
3869                                 if (!(ret & VM_FAULT_FALLBACK))
3870                                         return ret;
3871                         } else {
3872                                 huge_pud_set_accessed(&vmf, orig_pud);
3873                                 return 0;
3874                         }
3875                 }
3876         }
3877
3878         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3879         if (!vmf.pmd)
3880                 return VM_FAULT_OOM;
3881         if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3882                 ret = create_huge_pmd(&vmf);
3883                 if (!(ret & VM_FAULT_FALLBACK))
3884                         return ret;
3885         } else {
3886                 pmd_t orig_pmd = *vmf.pmd;
3887
3888                 barrier();
3889                 if (unlikely(is_swap_pmd(orig_pmd))) {
3890                         VM_BUG_ON(thp_migration_supported() &&
3891                                           !is_pmd_migration_entry(orig_pmd));
3892                         if (is_pmd_migration_entry(orig_pmd))
3893                                 pmd_migration_entry_wait(mm, vmf.pmd);
3894                         return 0;
3895                 }
3896                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3897                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3898                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3899
3900                         if (dirty && !pmd_write(orig_pmd)) {
3901                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3902                                 if (!(ret & VM_FAULT_FALLBACK))
3903                                         return ret;
3904                         } else {
3905                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3906                                 return 0;
3907                         }
3908                 }
3909         }
3910
3911         return handle_pte_fault(&vmf);
3912 }
3913
3914 /*
3915  * By the time we get here, we already hold the mm semaphore
3916  *
3917  * The mmap_sem may have been released depending on flags and our
3918  * return value.  See filemap_fault() and __lock_page_or_retry().
3919  */
3920 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3921                 unsigned int flags)
3922 {
3923         vm_fault_t ret;
3924
3925         __set_current_state(TASK_RUNNING);
3926
3927         count_vm_event(PGFAULT);
3928         count_memcg_event_mm(vma->vm_mm, PGFAULT);
3929
3930         /* do counter updates before entering really critical section. */
3931         check_sync_rss_stat(current);
3932
3933         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3934                                             flags & FAULT_FLAG_INSTRUCTION,
3935                                             flags & FAULT_FLAG_REMOTE))
3936                 return VM_FAULT_SIGSEGV;
3937
3938         /*
3939          * Enable the memcg OOM handling for faults triggered in user
3940          * space.  Kernel faults are handled more gracefully.
3941          */
3942         if (flags & FAULT_FLAG_USER)
3943                 mem_cgroup_enter_user_fault();
3944
3945         if (unlikely(is_vm_hugetlb_page(vma)))
3946                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3947         else
3948                 ret = __handle_mm_fault(vma, address, flags);
3949
3950         if (flags & FAULT_FLAG_USER) {
3951                 mem_cgroup_exit_user_fault();
3952                 /*
3953                  * The task may have entered a memcg OOM situation but
3954                  * if the allocation error was handled gracefully (no
3955                  * VM_FAULT_OOM), there is no need to kill anything.
3956                  * Just clean up the OOM state peacefully.
3957                  */
3958                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3959                         mem_cgroup_oom_synchronize(false);
3960         }
3961
3962         return ret;
3963 }
3964 EXPORT_SYMBOL_GPL(handle_mm_fault);
3965
3966 #ifndef __PAGETABLE_P4D_FOLDED
3967 /*
3968  * Allocate p4d page table.
3969  * We've already handled the fast-path in-line.
3970  */
3971 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3972 {
3973         p4d_t *new = p4d_alloc_one(mm, address);
3974         if (!new)
3975                 return -ENOMEM;
3976
3977         smp_wmb(); /* See comment in __pte_alloc */
3978
3979         spin_lock(&mm->page_table_lock);
3980         if (pgd_present(*pgd))          /* Another has populated it */
3981                 p4d_free(mm, new);
3982         else
3983                 pgd_populate(mm, pgd, new);
3984         spin_unlock(&mm->page_table_lock);
3985         return 0;
3986 }
3987 #endif /* __PAGETABLE_P4D_FOLDED */
3988
3989 #ifndef __PAGETABLE_PUD_FOLDED
3990 /*
3991  * Allocate page upper directory.
3992  * We've already handled the fast-path in-line.
3993  */
3994 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
3995 {
3996         pud_t *new = pud_alloc_one(mm, address);
3997         if (!new)
3998                 return -ENOMEM;
3999
4000         smp_wmb(); /* See comment in __pte_alloc */
4001
4002         spin_lock(&mm->page_table_lock);
4003 #ifndef __ARCH_HAS_5LEVEL_HACK
4004         if (!p4d_present(*p4d)) {
4005                 mm_inc_nr_puds(mm);
4006                 p4d_populate(mm, p4d, new);
4007         } else  /* Another has populated it */
4008                 pud_free(mm, new);
4009 #else
4010         if (!pgd_present(*p4d)) {
4011                 mm_inc_nr_puds(mm);
4012                 pgd_populate(mm, p4d, new);
4013         } else  /* Another has populated it */
4014                 pud_free(mm, new);
4015 #endif /* __ARCH_HAS_5LEVEL_HACK */
4016         spin_unlock(&mm->page_table_lock);
4017         return 0;
4018 }
4019 #endif /* __PAGETABLE_PUD_FOLDED */
4020
4021 #ifndef __PAGETABLE_PMD_FOLDED
4022 /*
4023  * Allocate page middle directory.
4024  * We've already handled the fast-path in-line.
4025  */
4026 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4027 {
4028         spinlock_t *ptl;
4029         pmd_t *new = pmd_alloc_one(mm, address);
4030         if (!new)
4031                 return -ENOMEM;
4032
4033         smp_wmb(); /* See comment in __pte_alloc */
4034
4035         ptl = pud_lock(mm, pud);
4036 #ifndef __ARCH_HAS_4LEVEL_HACK
4037         if (!pud_present(*pud)) {
4038                 mm_inc_nr_pmds(mm);
4039                 pud_populate(mm, pud, new);
4040         } else  /* Another has populated it */
4041                 pmd_free(mm, new);
4042 #else
4043         if (!pgd_present(*pud)) {
4044                 mm_inc_nr_pmds(mm);
4045                 pgd_populate(mm, pud, new);
4046         } else /* Another has populated it */
4047                 pmd_free(mm, new);
4048 #endif /* __ARCH_HAS_4LEVEL_HACK */
4049         spin_unlock(ptl);
4050         return 0;
4051 }
4052 #endif /* __PAGETABLE_PMD_FOLDED */
4053
4054 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4055                             struct mmu_notifier_range *range,
4056                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4057 {
4058         pgd_t *pgd;
4059         p4d_t *p4d;
4060         pud_t *pud;
4061         pmd_t *pmd;
4062         pte_t *ptep;
4063
4064         pgd = pgd_offset(mm, address);
4065         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4066                 goto out;
4067
4068         p4d = p4d_offset(pgd, address);
4069         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4070                 goto out;
4071
4072         pud = pud_offset(p4d, address);
4073         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4074                 goto out;
4075
4076         pmd = pmd_offset(pud, address);
4077         VM_BUG_ON(pmd_trans_huge(*pmd));
4078
4079         if (pmd_huge(*pmd)) {
4080                 if (!pmdpp)
4081                         goto out;
4082
4083                 if (range) {
4084                         mmu_notifier_range_init(range, mm, address & PMD_MASK,
4085                                              (address & PMD_MASK) + PMD_SIZE);
4086                         mmu_notifier_invalidate_range_start(range);
4087                 }
4088                 *ptlp = pmd_lock(mm, pmd);
4089                 if (pmd_huge(*pmd)) {
4090                         *pmdpp = pmd;
4091                         return 0;
4092                 }
4093                 spin_unlock(*ptlp);
4094                 if (range)
4095                         mmu_notifier_invalidate_range_end(range);
4096         }
4097
4098         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4099                 goto out;
4100
4101         if (range) {
4102                 mmu_notifier_range_init(range, mm, address & PAGE_MASK,
4103                                      (address & PAGE_MASK) + PAGE_SIZE);
4104                 mmu_notifier_invalidate_range_start(range);
4105         }
4106         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4107         if (!pte_present(*ptep))
4108                 goto unlock;
4109         *ptepp = ptep;
4110         return 0;
4111 unlock:
4112         pte_unmap_unlock(ptep, *ptlp);
4113         if (range)
4114                 mmu_notifier_invalidate_range_end(range);
4115 out:
4116         return -EINVAL;
4117 }
4118
4119 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4120                              pte_t **ptepp, spinlock_t **ptlp)
4121 {
4122         int res;
4123
4124         /* (void) is needed to make gcc happy */
4125         (void) __cond_lock(*ptlp,
4126                            !(res = __follow_pte_pmd(mm, address, NULL,
4127                                                     ptepp, NULL, ptlp)));
4128         return res;
4129 }
4130
4131 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4132                    struct mmu_notifier_range *range,
4133                    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4134 {
4135         int res;
4136
4137         /* (void) is needed to make gcc happy */
4138         (void) __cond_lock(*ptlp,
4139                            !(res = __follow_pte_pmd(mm, address, range,
4140                                                     ptepp, pmdpp, ptlp)));
4141         return res;
4142 }
4143 EXPORT_SYMBOL(follow_pte_pmd);
4144
4145 /**
4146  * follow_pfn - look up PFN at a user virtual address
4147  * @vma: memory mapping
4148  * @address: user virtual address
4149  * @pfn: location to store found PFN
4150  *
4151  * Only IO mappings and raw PFN mappings are allowed.
4152  *
4153  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4154  */
4155 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4156         unsigned long *pfn)
4157 {
4158         int ret = -EINVAL;
4159         spinlock_t *ptl;
4160         pte_t *ptep;
4161
4162         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4163                 return ret;
4164
4165         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4166         if (ret)
4167                 return ret;
4168         *pfn = pte_pfn(*ptep);
4169         pte_unmap_unlock(ptep, ptl);
4170         return 0;
4171 }
4172 EXPORT_SYMBOL(follow_pfn);
4173
4174 #ifdef CONFIG_HAVE_IOREMAP_PROT
4175 int follow_phys(struct vm_area_struct *vma,
4176                 unsigned long address, unsigned int flags,
4177                 unsigned long *prot, resource_size_t *phys)
4178 {
4179         int ret = -EINVAL;
4180         pte_t *ptep, pte;
4181         spinlock_t *ptl;
4182
4183         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4184                 goto out;
4185
4186         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4187                 goto out;
4188         pte = *ptep;
4189
4190         if ((flags & FOLL_WRITE) && !pte_write(pte))
4191                 goto unlock;
4192
4193         *prot = pgprot_val(pte_pgprot(pte));
4194         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4195
4196         ret = 0;
4197 unlock:
4198         pte_unmap_unlock(ptep, ptl);
4199 out:
4200         return ret;
4201 }
4202
4203 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4204                         void *buf, int len, int write)
4205 {
4206         resource_size_t phys_addr;
4207         unsigned long prot = 0;
4208         void __iomem *maddr;
4209         int offset = addr & (PAGE_SIZE-1);
4210
4211         if (follow_phys(vma, addr, write, &prot, &phys_addr))
4212                 return -EINVAL;
4213
4214         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4215         if (!maddr)
4216                 return -ENOMEM;
4217
4218         if (write)
4219                 memcpy_toio(maddr + offset, buf, len);
4220         else
4221                 memcpy_fromio(buf, maddr + offset, len);
4222         iounmap(maddr);
4223
4224         return len;
4225 }
4226 EXPORT_SYMBOL_GPL(generic_access_phys);
4227 #endif
4228
4229 /*
4230  * Access another process' address space as given in mm.  If non-NULL, use the
4231  * given task for page fault accounting.
4232  */
4233 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4234                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4235 {
4236         struct vm_area_struct *vma;
4237         void *old_buf = buf;
4238         int write = gup_flags & FOLL_WRITE;
4239
4240         down_read(&mm->mmap_sem);
4241         /* ignore errors, just check how much was successfully transferred */
4242         while (len) {
4243                 int bytes, ret, offset;
4244                 void *maddr;
4245                 struct page *page = NULL;
4246
4247                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4248                                 gup_flags, &page, &vma, NULL);
4249                 if (ret <= 0) {
4250 #ifndef CONFIG_HAVE_IOREMAP_PROT
4251                         break;
4252 #else
4253                         /*
4254                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4255                          * we can access using slightly different code.
4256                          */
4257                         vma = find_vma(mm, addr);
4258                         if (!vma || vma->vm_start > addr)
4259                                 break;
4260                         if (vma->vm_ops && vma->vm_ops->access)
4261                                 ret = vma->vm_ops->access(vma, addr, buf,
4262                                                           len, write);
4263                         if (ret <= 0)
4264                                 break;
4265                         bytes = ret;
4266 #endif
4267                 } else {
4268                         bytes = len;
4269                         offset = addr & (PAGE_SIZE-1);
4270                         if (bytes > PAGE_SIZE-offset)
4271                                 bytes = PAGE_SIZE-offset;
4272
4273                         maddr = kmap(page);
4274                         if (write) {
4275                                 copy_to_user_page(vma, page, addr,
4276                                                   maddr + offset, buf, bytes);
4277                                 set_page_dirty_lock(page);
4278                         } else {
4279                                 copy_from_user_page(vma, page, addr,
4280                                                     buf, maddr + offset, bytes);
4281                         }
4282                         kunmap(page);
4283                         put_page(page);
4284                 }
4285                 len -= bytes;
4286                 buf += bytes;
4287                 addr += bytes;
4288         }
4289         up_read(&mm->mmap_sem);
4290
4291         return buf - old_buf;
4292 }
4293
4294 /**
4295  * access_remote_vm - access another process' address space
4296  * @mm:         the mm_struct of the target address space
4297  * @addr:       start address to access
4298  * @buf:        source or destination buffer
4299  * @len:        number of bytes to transfer
4300  * @gup_flags:  flags modifying lookup behaviour
4301  *
4302  * The caller must hold a reference on @mm.
4303  */
4304 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4305                 void *buf, int len, unsigned int gup_flags)
4306 {
4307         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4308 }
4309
4310 /*
4311  * Access another process' address space.
4312  * Source/target buffer must be kernel space,
4313  * Do not walk the page table directly, use get_user_pages
4314  */
4315 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4316                 void *buf, int len, unsigned int gup_flags)
4317 {
4318         struct mm_struct *mm;
4319         int ret;
4320
4321         mm = get_task_mm(tsk);
4322         if (!mm)
4323                 return 0;
4324
4325         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4326
4327         mmput(mm);
4328
4329         return ret;
4330 }
4331 EXPORT_SYMBOL_GPL(access_process_vm);
4332
4333 /*
4334  * Print the name of a VMA.
4335  */
4336 void print_vma_addr(char *prefix, unsigned long ip)
4337 {
4338         struct mm_struct *mm = current->mm;
4339         struct vm_area_struct *vma;
4340
4341         /*
4342          * we might be running from an atomic context so we cannot sleep
4343          */
4344         if (!down_read_trylock(&mm->mmap_sem))
4345                 return;
4346
4347         vma = find_vma(mm, ip);
4348         if (vma && vma->vm_file) {
4349                 struct file *f = vma->vm_file;
4350                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4351                 if (buf) {
4352                         char *p;
4353
4354                         p = file_path(f, buf, PAGE_SIZE);
4355                         if (IS_ERR(p))
4356                                 p = "?";
4357                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4358                                         vma->vm_start,
4359                                         vma->vm_end - vma->vm_start);
4360                         free_page((unsigned long)buf);
4361                 }
4362         }
4363         up_read(&mm->mmap_sem);
4364 }
4365
4366 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4367 void __might_fault(const char *file, int line)
4368 {
4369         /*
4370          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4371          * holding the mmap_sem, this is safe because kernel memory doesn't
4372          * get paged out, therefore we'll never actually fault, and the
4373          * below annotations will generate false positives.
4374          */
4375         if (uaccess_kernel())
4376                 return;
4377         if (pagefault_disabled())
4378                 return;
4379         __might_sleep(file, line, 0);
4380 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4381         if (current->mm)
4382                 might_lock_read(&current->mm->mmap_sem);
4383 #endif
4384 }
4385 EXPORT_SYMBOL(__might_fault);
4386 #endif
4387
4388 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4389 /*
4390  * Process all subpages of the specified huge page with the specified
4391  * operation.  The target subpage will be processed last to keep its
4392  * cache lines hot.
4393  */
4394 static inline void process_huge_page(
4395         unsigned long addr_hint, unsigned int pages_per_huge_page,
4396         void (*process_subpage)(unsigned long addr, int idx, void *arg),
4397         void *arg)
4398 {
4399         int i, n, base, l;
4400         unsigned long addr = addr_hint &
4401                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4402
4403         /* Process target subpage last to keep its cache lines hot */
4404         might_sleep();
4405         n = (addr_hint - addr) / PAGE_SIZE;
4406         if (2 * n <= pages_per_huge_page) {
4407                 /* If target subpage in first half of huge page */
4408                 base = 0;
4409                 l = n;
4410                 /* Process subpages at the end of huge page */
4411                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4412                         cond_resched();
4413                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4414                 }
4415         } else {
4416                 /* If target subpage in second half of huge page */
4417                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4418                 l = pages_per_huge_page - n;
4419                 /* Process subpages at the begin of huge page */
4420                 for (i = 0; i < base; i++) {
4421                         cond_resched();
4422                         process_subpage(addr + i * PAGE_SIZE, i, arg);
4423                 }
4424         }
4425         /*
4426          * Process remaining subpages in left-right-left-right pattern
4427          * towards the target subpage
4428          */
4429         for (i = 0; i < l; i++) {
4430                 int left_idx = base + i;
4431                 int right_idx = base + 2 * l - 1 - i;
4432
4433                 cond_resched();
4434                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4435                 cond_resched();
4436                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4437         }
4438 }
4439
4440 static void clear_gigantic_page(struct page *page,
4441                                 unsigned long addr,
4442                                 unsigned int pages_per_huge_page)
4443 {
4444         int i;
4445         struct page *p = page;
4446
4447         might_sleep();
4448         for (i = 0; i < pages_per_huge_page;
4449              i++, p = mem_map_next(p, page, i)) {
4450                 cond_resched();
4451                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4452         }
4453 }
4454
4455 static void clear_subpage(unsigned long addr, int idx, void *arg)
4456 {
4457         struct page *page = arg;
4458
4459         clear_user_highpage(page + idx, addr);
4460 }
4461
4462 void clear_huge_page(struct page *page,
4463                      unsigned long addr_hint, unsigned int pages_per_huge_page)
4464 {
4465         unsigned long addr = addr_hint &
4466                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4467
4468         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4469                 clear_gigantic_page(page, addr, pages_per_huge_page);
4470                 return;
4471         }
4472
4473         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4474 }
4475
4476 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4477                                     unsigned long addr,
4478                                     struct vm_area_struct *vma,
4479                                     unsigned int pages_per_huge_page)
4480 {
4481         int i;
4482         struct page *dst_base = dst;
4483         struct page *src_base = src;
4484
4485         for (i = 0; i < pages_per_huge_page; ) {
4486                 cond_resched();
4487                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4488
4489                 i++;
4490                 dst = mem_map_next(dst, dst_base, i);
4491                 src = mem_map_next(src, src_base, i);
4492         }
4493 }
4494
4495 struct copy_subpage_arg {
4496         struct page *dst;
4497         struct page *src;
4498         struct vm_area_struct *vma;
4499 };
4500
4501 static void copy_subpage(unsigned long addr, int idx, void *arg)
4502 {
4503         struct copy_subpage_arg *copy_arg = arg;
4504
4505         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4506                            addr, copy_arg->vma);
4507 }
4508
4509 void copy_user_huge_page(struct page *dst, struct page *src,
4510                          unsigned long addr_hint, struct vm_area_struct *vma,
4511                          unsigned int pages_per_huge_page)
4512 {
4513         unsigned long addr = addr_hint &
4514                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4515         struct copy_subpage_arg arg = {
4516                 .dst = dst,
4517                 .src = src,
4518                 .vma = vma,
4519         };
4520
4521         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4522                 copy_user_gigantic_page(dst, src, addr, vma,
4523                                         pages_per_huge_page);
4524                 return;
4525         }
4526
4527         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4528 }
4529
4530 long copy_huge_page_from_user(struct page *dst_page,
4531                                 const void __user *usr_src,
4532                                 unsigned int pages_per_huge_page,
4533                                 bool allow_pagefault)
4534 {
4535         void *src = (void *)usr_src;
4536         void *page_kaddr;
4537         unsigned long i, rc = 0;
4538         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4539
4540         for (i = 0; i < pages_per_huge_page; i++) {
4541                 if (allow_pagefault)
4542                         page_kaddr = kmap(dst_page + i);
4543                 else
4544                         page_kaddr = kmap_atomic(dst_page + i);
4545                 rc = copy_from_user(page_kaddr,
4546                                 (const void __user *)(src + i * PAGE_SIZE),
4547                                 PAGE_SIZE);
4548                 if (allow_pagefault)
4549                         kunmap(dst_page + i);
4550                 else
4551                         kunmap_atomic(page_kaddr);
4552
4553                 ret_val -= (PAGE_SIZE - rc);
4554                 if (rc)
4555                         break;
4556
4557                 cond_resched();
4558         }
4559         return ret_val;
4560 }
4561 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4562
4563 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4564
4565 static struct kmem_cache *page_ptl_cachep;
4566
4567 void __init ptlock_cache_init(void)
4568 {
4569         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4570                         SLAB_PANIC, NULL);
4571 }
4572
4573 bool ptlock_alloc(struct page *page)
4574 {
4575         spinlock_t *ptl;
4576
4577         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4578         if (!ptl)
4579                 return false;
4580         page->ptl = ptl;
4581         return true;
4582 }
4583
4584 void ptlock_free(struct page *page)
4585 {
4586         kmem_cache_free(page_ptl_cachep, page->ptl);
4587 }
4588 #endif