Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[sfrench/cifs-2.6.git] / mm / memory.c
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *              Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *              (Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 #include <linux/dax.h>
67
68 #include <asm/io.h>
69 #include <asm/mmu_context.h>
70 #include <asm/pgalloc.h>
71 #include <linux/uaccess.h>
72 #include <asm/tlb.h>
73 #include <asm/tlbflush.h>
74 #include <asm/pgtable.h>
75
76 #include "internal.h"
77
78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
80 #endif
81
82 #ifndef CONFIG_NEED_MULTIPLE_NODES
83 /* use the per-pgdat data instead for discontigmem - mbligh */
84 unsigned long max_mapnr;
85 EXPORT_SYMBOL(max_mapnr);
86
87 struct page *mem_map;
88 EXPORT_SYMBOL(mem_map);
89 #endif
90
91 /*
92  * A number of key systems in x86 including ioremap() rely on the assumption
93  * that high_memory defines the upper bound on direct map memory, then end
94  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
95  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
96  * and ZONE_HIGHMEM.
97  */
98 void *high_memory;
99 EXPORT_SYMBOL(high_memory);
100
101 /*
102  * Randomize the address space (stacks, mmaps, brk, etc.).
103  *
104  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105  *   as ancient (libc5 based) binaries can segfault. )
106  */
107 int randomize_va_space __read_mostly =
108 #ifdef CONFIG_COMPAT_BRK
109                                         1;
110 #else
111                                         2;
112 #endif
113
114 static int __init disable_randmaps(char *s)
115 {
116         randomize_va_space = 0;
117         return 1;
118 }
119 __setup("norandmaps", disable_randmaps);
120
121 unsigned long zero_pfn __read_mostly;
122 EXPORT_SYMBOL(zero_pfn);
123
124 unsigned long highest_memmap_pfn __read_mostly;
125
126 /*
127  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128  */
129 static int __init init_zero_pfn(void)
130 {
131         zero_pfn = page_to_pfn(ZERO_PAGE(0));
132         return 0;
133 }
134 core_initcall(init_zero_pfn);
135
136
137 #if defined(SPLIT_RSS_COUNTING)
138
139 void sync_mm_rss(struct mm_struct *mm)
140 {
141         int i;
142
143         for (i = 0; i < NR_MM_COUNTERS; i++) {
144                 if (current->rss_stat.count[i]) {
145                         add_mm_counter(mm, i, current->rss_stat.count[i]);
146                         current->rss_stat.count[i] = 0;
147                 }
148         }
149         current->rss_stat.events = 0;
150 }
151
152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153 {
154         struct task_struct *task = current;
155
156         if (likely(task->mm == mm))
157                 task->rss_stat.count[member] += val;
158         else
159                 add_mm_counter(mm, member, val);
160 }
161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163
164 /* sync counter once per 64 page faults */
165 #define TASK_RSS_EVENTS_THRESH  (64)
166 static void check_sync_rss_stat(struct task_struct *task)
167 {
168         if (unlikely(task != current))
169                 return;
170         if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171                 sync_mm_rss(task->mm);
172 }
173 #else /* SPLIT_RSS_COUNTING */
174
175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177
178 static void check_sync_rss_stat(struct task_struct *task)
179 {
180 }
181
182 #endif /* SPLIT_RSS_COUNTING */
183
184 #ifdef HAVE_GENERIC_MMU_GATHER
185
186 static bool tlb_next_batch(struct mmu_gather *tlb)
187 {
188         struct mmu_gather_batch *batch;
189
190         batch = tlb->active;
191         if (batch->next) {
192                 tlb->active = batch->next;
193                 return true;
194         }
195
196         if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197                 return false;
198
199         batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200         if (!batch)
201                 return false;
202
203         tlb->batch_count++;
204         batch->next = NULL;
205         batch->nr   = 0;
206         batch->max  = MAX_GATHER_BATCH;
207
208         tlb->active->next = batch;
209         tlb->active = batch;
210
211         return true;
212 }
213
214 /* tlb_gather_mmu
215  *      Called to initialize an (on-stack) mmu_gather structure for page-table
216  *      tear-down from @mm. The @fullmm argument is used when @mm is without
217  *      users and we're going to destroy the full address space (exit/execve).
218  */
219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220 {
221         tlb->mm = mm;
222
223         /* Is it from 0 to ~0? */
224         tlb->fullmm     = !(start | (end+1));
225         tlb->need_flush_all = 0;
226         tlb->local.next = NULL;
227         tlb->local.nr   = 0;
228         tlb->local.max  = ARRAY_SIZE(tlb->__pages);
229         tlb->active     = &tlb->local;
230         tlb->batch_count = 0;
231
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233         tlb->batch = NULL;
234 #endif
235         tlb->page_size = 0;
236
237         __tlb_reset_range(tlb);
238 }
239
240 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
241 {
242         if (!tlb->end)
243                 return;
244
245         tlb_flush(tlb);
246         mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
247 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
248         tlb_table_flush(tlb);
249 #endif
250         __tlb_reset_range(tlb);
251 }
252
253 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
254 {
255         struct mmu_gather_batch *batch;
256
257         for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
258                 free_pages_and_swap_cache(batch->pages, batch->nr);
259                 batch->nr = 0;
260         }
261         tlb->active = &tlb->local;
262 }
263
264 void tlb_flush_mmu(struct mmu_gather *tlb)
265 {
266         tlb_flush_mmu_tlbonly(tlb);
267         tlb_flush_mmu_free(tlb);
268 }
269
270 /* tlb_finish_mmu
271  *      Called at the end of the shootdown operation to free up any resources
272  *      that were required.
273  */
274 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
275 {
276         struct mmu_gather_batch *batch, *next;
277
278         tlb_flush_mmu(tlb);
279
280         /* keep the page table cache within bounds */
281         check_pgt_cache();
282
283         for (batch = tlb->local.next; batch; batch = next) {
284                 next = batch->next;
285                 free_pages((unsigned long)batch, 0);
286         }
287         tlb->local.next = NULL;
288 }
289
290 /* __tlb_remove_page
291  *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
292  *      handling the additional races in SMP caused by other CPUs caching valid
293  *      mappings in their TLBs. Returns the number of free page slots left.
294  *      When out of page slots we must call tlb_flush_mmu().
295  *returns true if the caller should flush.
296  */
297 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
298 {
299         struct mmu_gather_batch *batch;
300
301         VM_BUG_ON(!tlb->end);
302         VM_WARN_ON(tlb->page_size != page_size);
303
304         batch = tlb->active;
305         /*
306          * Add the page and check if we are full. If so
307          * force a flush.
308          */
309         batch->pages[batch->nr++] = page;
310         if (batch->nr == batch->max) {
311                 if (!tlb_next_batch(tlb))
312                         return true;
313                 batch = tlb->active;
314         }
315         VM_BUG_ON_PAGE(batch->nr > batch->max, page);
316
317         return false;
318 }
319
320 #endif /* HAVE_GENERIC_MMU_GATHER */
321
322 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
323
324 /*
325  * See the comment near struct mmu_table_batch.
326  */
327
328 static void tlb_remove_table_smp_sync(void *arg)
329 {
330         /* Simply deliver the interrupt */
331 }
332
333 static void tlb_remove_table_one(void *table)
334 {
335         /*
336          * This isn't an RCU grace period and hence the page-tables cannot be
337          * assumed to be actually RCU-freed.
338          *
339          * It is however sufficient for software page-table walkers that rely on
340          * IRQ disabling. See the comment near struct mmu_table_batch.
341          */
342         smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
343         __tlb_remove_table(table);
344 }
345
346 static void tlb_remove_table_rcu(struct rcu_head *head)
347 {
348         struct mmu_table_batch *batch;
349         int i;
350
351         batch = container_of(head, struct mmu_table_batch, rcu);
352
353         for (i = 0; i < batch->nr; i++)
354                 __tlb_remove_table(batch->tables[i]);
355
356         free_page((unsigned long)batch);
357 }
358
359 void tlb_table_flush(struct mmu_gather *tlb)
360 {
361         struct mmu_table_batch **batch = &tlb->batch;
362
363         if (*batch) {
364                 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
365                 *batch = NULL;
366         }
367 }
368
369 void tlb_remove_table(struct mmu_gather *tlb, void *table)
370 {
371         struct mmu_table_batch **batch = &tlb->batch;
372
373         /*
374          * When there's less then two users of this mm there cannot be a
375          * concurrent page-table walk.
376          */
377         if (atomic_read(&tlb->mm->mm_users) < 2) {
378                 __tlb_remove_table(table);
379                 return;
380         }
381
382         if (*batch == NULL) {
383                 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
384                 if (*batch == NULL) {
385                         tlb_remove_table_one(table);
386                         return;
387                 }
388                 (*batch)->nr = 0;
389         }
390         (*batch)->tables[(*batch)->nr++] = table;
391         if ((*batch)->nr == MAX_TABLE_BATCH)
392                 tlb_table_flush(tlb);
393 }
394
395 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
396
397 /*
398  * Note: this doesn't free the actual pages themselves. That
399  * has been handled earlier when unmapping all the memory regions.
400  */
401 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
402                            unsigned long addr)
403 {
404         pgtable_t token = pmd_pgtable(*pmd);
405         pmd_clear(pmd);
406         pte_free_tlb(tlb, token, addr);
407         atomic_long_dec(&tlb->mm->nr_ptes);
408 }
409
410 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
411                                 unsigned long addr, unsigned long end,
412                                 unsigned long floor, unsigned long ceiling)
413 {
414         pmd_t *pmd;
415         unsigned long next;
416         unsigned long start;
417
418         start = addr;
419         pmd = pmd_offset(pud, addr);
420         do {
421                 next = pmd_addr_end(addr, end);
422                 if (pmd_none_or_clear_bad(pmd))
423                         continue;
424                 free_pte_range(tlb, pmd, addr);
425         } while (pmd++, addr = next, addr != end);
426
427         start &= PUD_MASK;
428         if (start < floor)
429                 return;
430         if (ceiling) {
431                 ceiling &= PUD_MASK;
432                 if (!ceiling)
433                         return;
434         }
435         if (end - 1 > ceiling - 1)
436                 return;
437
438         pmd = pmd_offset(pud, start);
439         pud_clear(pud);
440         pmd_free_tlb(tlb, pmd, start);
441         mm_dec_nr_pmds(tlb->mm);
442 }
443
444 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
445                                 unsigned long addr, unsigned long end,
446                                 unsigned long floor, unsigned long ceiling)
447 {
448         pud_t *pud;
449         unsigned long next;
450         unsigned long start;
451
452         start = addr;
453         pud = pud_offset(pgd, addr);
454         do {
455                 next = pud_addr_end(addr, end);
456                 if (pud_none_or_clear_bad(pud))
457                         continue;
458                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
459         } while (pud++, addr = next, addr != end);
460
461         start &= PGDIR_MASK;
462         if (start < floor)
463                 return;
464         if (ceiling) {
465                 ceiling &= PGDIR_MASK;
466                 if (!ceiling)
467                         return;
468         }
469         if (end - 1 > ceiling - 1)
470                 return;
471
472         pud = pud_offset(pgd, start);
473         pgd_clear(pgd);
474         pud_free_tlb(tlb, pud, start);
475 }
476
477 /*
478  * This function frees user-level page tables of a process.
479  */
480 void free_pgd_range(struct mmu_gather *tlb,
481                         unsigned long addr, unsigned long end,
482                         unsigned long floor, unsigned long ceiling)
483 {
484         pgd_t *pgd;
485         unsigned long next;
486
487         /*
488          * The next few lines have given us lots of grief...
489          *
490          * Why are we testing PMD* at this top level?  Because often
491          * there will be no work to do at all, and we'd prefer not to
492          * go all the way down to the bottom just to discover that.
493          *
494          * Why all these "- 1"s?  Because 0 represents both the bottom
495          * of the address space and the top of it (using -1 for the
496          * top wouldn't help much: the masks would do the wrong thing).
497          * The rule is that addr 0 and floor 0 refer to the bottom of
498          * the address space, but end 0 and ceiling 0 refer to the top
499          * Comparisons need to use "end - 1" and "ceiling - 1" (though
500          * that end 0 case should be mythical).
501          *
502          * Wherever addr is brought up or ceiling brought down, we must
503          * be careful to reject "the opposite 0" before it confuses the
504          * subsequent tests.  But what about where end is brought down
505          * by PMD_SIZE below? no, end can't go down to 0 there.
506          *
507          * Whereas we round start (addr) and ceiling down, by different
508          * masks at different levels, in order to test whether a table
509          * now has no other vmas using it, so can be freed, we don't
510          * bother to round floor or end up - the tests don't need that.
511          */
512
513         addr &= PMD_MASK;
514         if (addr < floor) {
515                 addr += PMD_SIZE;
516                 if (!addr)
517                         return;
518         }
519         if (ceiling) {
520                 ceiling &= PMD_MASK;
521                 if (!ceiling)
522                         return;
523         }
524         if (end - 1 > ceiling - 1)
525                 end -= PMD_SIZE;
526         if (addr > end - 1)
527                 return;
528         /*
529          * We add page table cache pages with PAGE_SIZE,
530          * (see pte_free_tlb()), flush the tlb if we need
531          */
532         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
533         pgd = pgd_offset(tlb->mm, addr);
534         do {
535                 next = pgd_addr_end(addr, end);
536                 if (pgd_none_or_clear_bad(pgd))
537                         continue;
538                 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
539         } while (pgd++, addr = next, addr != end);
540 }
541
542 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
543                 unsigned long floor, unsigned long ceiling)
544 {
545         while (vma) {
546                 struct vm_area_struct *next = vma->vm_next;
547                 unsigned long addr = vma->vm_start;
548
549                 /*
550                  * Hide vma from rmap and truncate_pagecache before freeing
551                  * pgtables
552                  */
553                 unlink_anon_vmas(vma);
554                 unlink_file_vma(vma);
555
556                 if (is_vm_hugetlb_page(vma)) {
557                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
558                                 floor, next ? next->vm_start : ceiling);
559                 } else {
560                         /*
561                          * Optimization: gather nearby vmas into one call down
562                          */
563                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
564                                && !is_vm_hugetlb_page(next)) {
565                                 vma = next;
566                                 next = vma->vm_next;
567                                 unlink_anon_vmas(vma);
568                                 unlink_file_vma(vma);
569                         }
570                         free_pgd_range(tlb, addr, vma->vm_end,
571                                 floor, next ? next->vm_start : ceiling);
572                 }
573                 vma = next;
574         }
575 }
576
577 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
578 {
579         spinlock_t *ptl;
580         pgtable_t new = pte_alloc_one(mm, address);
581         if (!new)
582                 return -ENOMEM;
583
584         /*
585          * Ensure all pte setup (eg. pte page lock and page clearing) are
586          * visible before the pte is made visible to other CPUs by being
587          * put into page tables.
588          *
589          * The other side of the story is the pointer chasing in the page
590          * table walking code (when walking the page table without locking;
591          * ie. most of the time). Fortunately, these data accesses consist
592          * of a chain of data-dependent loads, meaning most CPUs (alpha
593          * being the notable exception) will already guarantee loads are
594          * seen in-order. See the alpha page table accessors for the
595          * smp_read_barrier_depends() barriers in page table walking code.
596          */
597         smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598
599         ptl = pmd_lock(mm, pmd);
600         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
601                 atomic_long_inc(&mm->nr_ptes);
602                 pmd_populate(mm, pmd, new);
603                 new = NULL;
604         }
605         spin_unlock(ptl);
606         if (new)
607                 pte_free(mm, new);
608         return 0;
609 }
610
611 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
612 {
613         pte_t *new = pte_alloc_one_kernel(&init_mm, address);
614         if (!new)
615                 return -ENOMEM;
616
617         smp_wmb(); /* See comment in __pte_alloc */
618
619         spin_lock(&init_mm.page_table_lock);
620         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
621                 pmd_populate_kernel(&init_mm, pmd, new);
622                 new = NULL;
623         }
624         spin_unlock(&init_mm.page_table_lock);
625         if (new)
626                 pte_free_kernel(&init_mm, new);
627         return 0;
628 }
629
630 static inline void init_rss_vec(int *rss)
631 {
632         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
633 }
634
635 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
636 {
637         int i;
638
639         if (current->mm == mm)
640                 sync_mm_rss(mm);
641         for (i = 0; i < NR_MM_COUNTERS; i++)
642                 if (rss[i])
643                         add_mm_counter(mm, i, rss[i]);
644 }
645
646 /*
647  * This function is called to print an error when a bad pte
648  * is found. For example, we might have a PFN-mapped pte in
649  * a region that doesn't allow it.
650  *
651  * The calling function must still handle the error.
652  */
653 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
654                           pte_t pte, struct page *page)
655 {
656         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
657         pud_t *pud = pud_offset(pgd, addr);
658         pmd_t *pmd = pmd_offset(pud, addr);
659         struct address_space *mapping;
660         pgoff_t index;
661         static unsigned long resume;
662         static unsigned long nr_shown;
663         static unsigned long nr_unshown;
664
665         /*
666          * Allow a burst of 60 reports, then keep quiet for that minute;
667          * or allow a steady drip of one report per second.
668          */
669         if (nr_shown == 60) {
670                 if (time_before(jiffies, resume)) {
671                         nr_unshown++;
672                         return;
673                 }
674                 if (nr_unshown) {
675                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
676                                  nr_unshown);
677                         nr_unshown = 0;
678                 }
679                 nr_shown = 0;
680         }
681         if (nr_shown++ == 0)
682                 resume = jiffies + 60 * HZ;
683
684         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
685         index = linear_page_index(vma, addr);
686
687         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
688                  current->comm,
689                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
690         if (page)
691                 dump_page(page, "bad pte");
692         pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
693                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
694         /*
695          * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
696          */
697         pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
698                  vma->vm_file,
699                  vma->vm_ops ? vma->vm_ops->fault : NULL,
700                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
701                  mapping ? mapping->a_ops->readpage : NULL);
702         dump_stack();
703         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
704 }
705
706 /*
707  * vm_normal_page -- This function gets the "struct page" associated with a pte.
708  *
709  * "Special" mappings do not wish to be associated with a "struct page" (either
710  * it doesn't exist, or it exists but they don't want to touch it). In this
711  * case, NULL is returned here. "Normal" mappings do have a struct page.
712  *
713  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
714  * pte bit, in which case this function is trivial. Secondly, an architecture
715  * may not have a spare pte bit, which requires a more complicated scheme,
716  * described below.
717  *
718  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
719  * special mapping (even if there are underlying and valid "struct pages").
720  * COWed pages of a VM_PFNMAP are always normal.
721  *
722  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
723  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
724  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
725  * mapping will always honor the rule
726  *
727  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
728  *
729  * And for normal mappings this is false.
730  *
731  * This restricts such mappings to be a linear translation from virtual address
732  * to pfn. To get around this restriction, we allow arbitrary mappings so long
733  * as the vma is not a COW mapping; in that case, we know that all ptes are
734  * special (because none can have been COWed).
735  *
736  *
737  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
738  *
739  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
740  * page" backing, however the difference is that _all_ pages with a struct
741  * page (that is, those where pfn_valid is true) are refcounted and considered
742  * normal pages by the VM. The disadvantage is that pages are refcounted
743  * (which can be slower and simply not an option for some PFNMAP users). The
744  * advantage is that we don't have to follow the strict linearity rule of
745  * PFNMAP mappings in order to support COWable mappings.
746  *
747  */
748 #ifdef __HAVE_ARCH_PTE_SPECIAL
749 # define HAVE_PTE_SPECIAL 1
750 #else
751 # define HAVE_PTE_SPECIAL 0
752 #endif
753 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
754                                 pte_t pte)
755 {
756         unsigned long pfn = pte_pfn(pte);
757
758         if (HAVE_PTE_SPECIAL) {
759                 if (likely(!pte_special(pte)))
760                         goto check_pfn;
761                 if (vma->vm_ops && vma->vm_ops->find_special_page)
762                         return vma->vm_ops->find_special_page(vma, addr);
763                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
764                         return NULL;
765                 if (!is_zero_pfn(pfn))
766                         print_bad_pte(vma, addr, pte, NULL);
767                 return NULL;
768         }
769
770         /* !HAVE_PTE_SPECIAL case follows: */
771
772         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
773                 if (vma->vm_flags & VM_MIXEDMAP) {
774                         if (!pfn_valid(pfn))
775                                 return NULL;
776                         goto out;
777                 } else {
778                         unsigned long off;
779                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
780                         if (pfn == vma->vm_pgoff + off)
781                                 return NULL;
782                         if (!is_cow_mapping(vma->vm_flags))
783                                 return NULL;
784                 }
785         }
786
787         if (is_zero_pfn(pfn))
788                 return NULL;
789 check_pfn:
790         if (unlikely(pfn > highest_memmap_pfn)) {
791                 print_bad_pte(vma, addr, pte, NULL);
792                 return NULL;
793         }
794
795         /*
796          * NOTE! We still have PageReserved() pages in the page tables.
797          * eg. VDSO mappings can cause them to exist.
798          */
799 out:
800         return pfn_to_page(pfn);
801 }
802
803 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
804 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
805                                 pmd_t pmd)
806 {
807         unsigned long pfn = pmd_pfn(pmd);
808
809         /*
810          * There is no pmd_special() but there may be special pmds, e.g.
811          * in a direct-access (dax) mapping, so let's just replicate the
812          * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
813          */
814         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
815                 if (vma->vm_flags & VM_MIXEDMAP) {
816                         if (!pfn_valid(pfn))
817                                 return NULL;
818                         goto out;
819                 } else {
820                         unsigned long off;
821                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
822                         if (pfn == vma->vm_pgoff + off)
823                                 return NULL;
824                         if (!is_cow_mapping(vma->vm_flags))
825                                 return NULL;
826                 }
827         }
828
829         if (is_zero_pfn(pfn))
830                 return NULL;
831         if (unlikely(pfn > highest_memmap_pfn))
832                 return NULL;
833
834         /*
835          * NOTE! We still have PageReserved() pages in the page tables.
836          * eg. VDSO mappings can cause them to exist.
837          */
838 out:
839         return pfn_to_page(pfn);
840 }
841 #endif
842
843 /*
844  * copy one vm_area from one task to the other. Assumes the page tables
845  * already present in the new task to be cleared in the whole range
846  * covered by this vma.
847  */
848
849 static inline unsigned long
850 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
851                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
852                 unsigned long addr, int *rss)
853 {
854         unsigned long vm_flags = vma->vm_flags;
855         pte_t pte = *src_pte;
856         struct page *page;
857
858         /* pte contains position in swap or file, so copy. */
859         if (unlikely(!pte_present(pte))) {
860                 swp_entry_t entry = pte_to_swp_entry(pte);
861
862                 if (likely(!non_swap_entry(entry))) {
863                         if (swap_duplicate(entry) < 0)
864                                 return entry.val;
865
866                         /* make sure dst_mm is on swapoff's mmlist. */
867                         if (unlikely(list_empty(&dst_mm->mmlist))) {
868                                 spin_lock(&mmlist_lock);
869                                 if (list_empty(&dst_mm->mmlist))
870                                         list_add(&dst_mm->mmlist,
871                                                         &src_mm->mmlist);
872                                 spin_unlock(&mmlist_lock);
873                         }
874                         rss[MM_SWAPENTS]++;
875                 } else if (is_migration_entry(entry)) {
876                         page = migration_entry_to_page(entry);
877
878                         rss[mm_counter(page)]++;
879
880                         if (is_write_migration_entry(entry) &&
881                                         is_cow_mapping(vm_flags)) {
882                                 /*
883                                  * COW mappings require pages in both
884                                  * parent and child to be set to read.
885                                  */
886                                 make_migration_entry_read(&entry);
887                                 pte = swp_entry_to_pte(entry);
888                                 if (pte_swp_soft_dirty(*src_pte))
889                                         pte = pte_swp_mksoft_dirty(pte);
890                                 set_pte_at(src_mm, addr, src_pte, pte);
891                         }
892                 }
893                 goto out_set_pte;
894         }
895
896         /*
897          * If it's a COW mapping, write protect it both
898          * in the parent and the child
899          */
900         if (is_cow_mapping(vm_flags)) {
901                 ptep_set_wrprotect(src_mm, addr, src_pte);
902                 pte = pte_wrprotect(pte);
903         }
904
905         /*
906          * If it's a shared mapping, mark it clean in
907          * the child
908          */
909         if (vm_flags & VM_SHARED)
910                 pte = pte_mkclean(pte);
911         pte = pte_mkold(pte);
912
913         page = vm_normal_page(vma, addr, pte);
914         if (page) {
915                 get_page(page);
916                 page_dup_rmap(page, false);
917                 rss[mm_counter(page)]++;
918         }
919
920 out_set_pte:
921         set_pte_at(dst_mm, addr, dst_pte, pte);
922         return 0;
923 }
924
925 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
926                    pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
927                    unsigned long addr, unsigned long end)
928 {
929         pte_t *orig_src_pte, *orig_dst_pte;
930         pte_t *src_pte, *dst_pte;
931         spinlock_t *src_ptl, *dst_ptl;
932         int progress = 0;
933         int rss[NR_MM_COUNTERS];
934         swp_entry_t entry = (swp_entry_t){0};
935
936 again:
937         init_rss_vec(rss);
938
939         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
940         if (!dst_pte)
941                 return -ENOMEM;
942         src_pte = pte_offset_map(src_pmd, addr);
943         src_ptl = pte_lockptr(src_mm, src_pmd);
944         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
945         orig_src_pte = src_pte;
946         orig_dst_pte = dst_pte;
947         arch_enter_lazy_mmu_mode();
948
949         do {
950                 /*
951                  * We are holding two locks at this point - either of them
952                  * could generate latencies in another task on another CPU.
953                  */
954                 if (progress >= 32) {
955                         progress = 0;
956                         if (need_resched() ||
957                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
958                                 break;
959                 }
960                 if (pte_none(*src_pte)) {
961                         progress++;
962                         continue;
963                 }
964                 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
965                                                         vma, addr, rss);
966                 if (entry.val)
967                         break;
968                 progress += 8;
969         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
970
971         arch_leave_lazy_mmu_mode();
972         spin_unlock(src_ptl);
973         pte_unmap(orig_src_pte);
974         add_mm_rss_vec(dst_mm, rss);
975         pte_unmap_unlock(orig_dst_pte, dst_ptl);
976         cond_resched();
977
978         if (entry.val) {
979                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
980                         return -ENOMEM;
981                 progress = 0;
982         }
983         if (addr != end)
984                 goto again;
985         return 0;
986 }
987
988 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
989                 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
990                 unsigned long addr, unsigned long end)
991 {
992         pmd_t *src_pmd, *dst_pmd;
993         unsigned long next;
994
995         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
996         if (!dst_pmd)
997                 return -ENOMEM;
998         src_pmd = pmd_offset(src_pud, addr);
999         do {
1000                 next = pmd_addr_end(addr, end);
1001                 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1002                         int err;
1003                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1004                         err = copy_huge_pmd(dst_mm, src_mm,
1005                                             dst_pmd, src_pmd, addr, vma);
1006                         if (err == -ENOMEM)
1007                                 return -ENOMEM;
1008                         if (!err)
1009                                 continue;
1010                         /* fall through */
1011                 }
1012                 if (pmd_none_or_clear_bad(src_pmd))
1013                         continue;
1014                 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1015                                                 vma, addr, next))
1016                         return -ENOMEM;
1017         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1018         return 0;
1019 }
1020
1021 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1022                 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1023                 unsigned long addr, unsigned long end)
1024 {
1025         pud_t *src_pud, *dst_pud;
1026         unsigned long next;
1027
1028         dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1029         if (!dst_pud)
1030                 return -ENOMEM;
1031         src_pud = pud_offset(src_pgd, addr);
1032         do {
1033                 next = pud_addr_end(addr, end);
1034                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1035                         int err;
1036
1037                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1038                         err = copy_huge_pud(dst_mm, src_mm,
1039                                             dst_pud, src_pud, addr, vma);
1040                         if (err == -ENOMEM)
1041                                 return -ENOMEM;
1042                         if (!err)
1043                                 continue;
1044                         /* fall through */
1045                 }
1046                 if (pud_none_or_clear_bad(src_pud))
1047                         continue;
1048                 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1049                                                 vma, addr, next))
1050                         return -ENOMEM;
1051         } while (dst_pud++, src_pud++, addr = next, addr != end);
1052         return 0;
1053 }
1054
1055 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1056                 struct vm_area_struct *vma)
1057 {
1058         pgd_t *src_pgd, *dst_pgd;
1059         unsigned long next;
1060         unsigned long addr = vma->vm_start;
1061         unsigned long end = vma->vm_end;
1062         unsigned long mmun_start;       /* For mmu_notifiers */
1063         unsigned long mmun_end;         /* For mmu_notifiers */
1064         bool is_cow;
1065         int ret;
1066
1067         /*
1068          * Don't copy ptes where a page fault will fill them correctly.
1069          * Fork becomes much lighter when there are big shared or private
1070          * readonly mappings. The tradeoff is that copy_page_range is more
1071          * efficient than faulting.
1072          */
1073         if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1074                         !vma->anon_vma)
1075                 return 0;
1076
1077         if (is_vm_hugetlb_page(vma))
1078                 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1079
1080         if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1081                 /*
1082                  * We do not free on error cases below as remove_vma
1083                  * gets called on error from higher level routine
1084                  */
1085                 ret = track_pfn_copy(vma);
1086                 if (ret)
1087                         return ret;
1088         }
1089
1090         /*
1091          * We need to invalidate the secondary MMU mappings only when
1092          * there could be a permission downgrade on the ptes of the
1093          * parent mm. And a permission downgrade will only happen if
1094          * is_cow_mapping() returns true.
1095          */
1096         is_cow = is_cow_mapping(vma->vm_flags);
1097         mmun_start = addr;
1098         mmun_end   = end;
1099         if (is_cow)
1100                 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1101                                                     mmun_end);
1102
1103         ret = 0;
1104         dst_pgd = pgd_offset(dst_mm, addr);
1105         src_pgd = pgd_offset(src_mm, addr);
1106         do {
1107                 next = pgd_addr_end(addr, end);
1108                 if (pgd_none_or_clear_bad(src_pgd))
1109                         continue;
1110                 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1111                                             vma, addr, next))) {
1112                         ret = -ENOMEM;
1113                         break;
1114                 }
1115         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1116
1117         if (is_cow)
1118                 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1119         return ret;
1120 }
1121
1122 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1123                                 struct vm_area_struct *vma, pmd_t *pmd,
1124                                 unsigned long addr, unsigned long end,
1125                                 struct zap_details *details)
1126 {
1127         struct mm_struct *mm = tlb->mm;
1128         int force_flush = 0;
1129         int rss[NR_MM_COUNTERS];
1130         spinlock_t *ptl;
1131         pte_t *start_pte;
1132         pte_t *pte;
1133         swp_entry_t entry;
1134
1135         tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1136 again:
1137         init_rss_vec(rss);
1138         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1139         pte = start_pte;
1140         arch_enter_lazy_mmu_mode();
1141         do {
1142                 pte_t ptent = *pte;
1143                 if (pte_none(ptent))
1144                         continue;
1145
1146                 if (pte_present(ptent)) {
1147                         struct page *page;
1148
1149                         page = vm_normal_page(vma, addr, ptent);
1150                         if (unlikely(details) && page) {
1151                                 /*
1152                                  * unmap_shared_mapping_pages() wants to
1153                                  * invalidate cache without truncating:
1154                                  * unmap shared but keep private pages.
1155                                  */
1156                                 if (details->check_mapping &&
1157                                     details->check_mapping != page_rmapping(page))
1158                                         continue;
1159                         }
1160                         ptent = ptep_get_and_clear_full(mm, addr, pte,
1161                                                         tlb->fullmm);
1162                         tlb_remove_tlb_entry(tlb, pte, addr);
1163                         if (unlikely(!page))
1164                                 continue;
1165
1166                         if (!PageAnon(page)) {
1167                                 if (pte_dirty(ptent)) {
1168                                         force_flush = 1;
1169                                         set_page_dirty(page);
1170                                 }
1171                                 if (pte_young(ptent) &&
1172                                     likely(!(vma->vm_flags & VM_SEQ_READ)))
1173                                         mark_page_accessed(page);
1174                         }
1175                         rss[mm_counter(page)]--;
1176                         page_remove_rmap(page, false);
1177                         if (unlikely(page_mapcount(page) < 0))
1178                                 print_bad_pte(vma, addr, ptent, page);
1179                         if (unlikely(__tlb_remove_page(tlb, page))) {
1180                                 force_flush = 1;
1181                                 addr += PAGE_SIZE;
1182                                 break;
1183                         }
1184                         continue;
1185                 }
1186                 /* If details->check_mapping, we leave swap entries. */
1187                 if (unlikely(details))
1188                         continue;
1189
1190                 entry = pte_to_swp_entry(ptent);
1191                 if (!non_swap_entry(entry))
1192                         rss[MM_SWAPENTS]--;
1193                 else if (is_migration_entry(entry)) {
1194                         struct page *page;
1195
1196                         page = migration_entry_to_page(entry);
1197                         rss[mm_counter(page)]--;
1198                 }
1199                 if (unlikely(!free_swap_and_cache(entry)))
1200                         print_bad_pte(vma, addr, ptent, NULL);
1201                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1202         } while (pte++, addr += PAGE_SIZE, addr != end);
1203
1204         add_mm_rss_vec(mm, rss);
1205         arch_leave_lazy_mmu_mode();
1206
1207         /* Do the actual TLB flush before dropping ptl */
1208         if (force_flush)
1209                 tlb_flush_mmu_tlbonly(tlb);
1210         pte_unmap_unlock(start_pte, ptl);
1211
1212         /*
1213          * If we forced a TLB flush (either due to running out of
1214          * batch buffers or because we needed to flush dirty TLB
1215          * entries before releasing the ptl), free the batched
1216          * memory too. Restart if we didn't do everything.
1217          */
1218         if (force_flush) {
1219                 force_flush = 0;
1220                 tlb_flush_mmu_free(tlb);
1221                 if (addr != end)
1222                         goto again;
1223         }
1224
1225         return addr;
1226 }
1227
1228 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1229                                 struct vm_area_struct *vma, pud_t *pud,
1230                                 unsigned long addr, unsigned long end,
1231                                 struct zap_details *details)
1232 {
1233         pmd_t *pmd;
1234         unsigned long next;
1235
1236         pmd = pmd_offset(pud, addr);
1237         do {
1238                 next = pmd_addr_end(addr, end);
1239                 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1240                         if (next - addr != HPAGE_PMD_SIZE) {
1241                                 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1242                                     !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1243                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
1244                         } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1245                                 goto next;
1246                         /* fall through */
1247                 }
1248                 /*
1249                  * Here there can be other concurrent MADV_DONTNEED or
1250                  * trans huge page faults running, and if the pmd is
1251                  * none or trans huge it can change under us. This is
1252                  * because MADV_DONTNEED holds the mmap_sem in read
1253                  * mode.
1254                  */
1255                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1256                         goto next;
1257                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1258 next:
1259                 cond_resched();
1260         } while (pmd++, addr = next, addr != end);
1261
1262         return addr;
1263 }
1264
1265 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1266                                 struct vm_area_struct *vma, pgd_t *pgd,
1267                                 unsigned long addr, unsigned long end,
1268                                 struct zap_details *details)
1269 {
1270         pud_t *pud;
1271         unsigned long next;
1272
1273         pud = pud_offset(pgd, addr);
1274         do {
1275                 next = pud_addr_end(addr, end);
1276                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1277                         if (next - addr != HPAGE_PUD_SIZE) {
1278                                 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1279                                 split_huge_pud(vma, pud, addr);
1280                         } else if (zap_huge_pud(tlb, vma, pud, addr))
1281                                 goto next;
1282                         /* fall through */
1283                 }
1284                 if (pud_none_or_clear_bad(pud))
1285                         continue;
1286                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1287 next:
1288                 cond_resched();
1289         } while (pud++, addr = next, addr != end);
1290
1291         return addr;
1292 }
1293
1294 void unmap_page_range(struct mmu_gather *tlb,
1295                              struct vm_area_struct *vma,
1296                              unsigned long addr, unsigned long end,
1297                              struct zap_details *details)
1298 {
1299         pgd_t *pgd;
1300         unsigned long next;
1301
1302         BUG_ON(addr >= end);
1303         tlb_start_vma(tlb, vma);
1304         pgd = pgd_offset(vma->vm_mm, addr);
1305         do {
1306                 next = pgd_addr_end(addr, end);
1307                 if (pgd_none_or_clear_bad(pgd))
1308                         continue;
1309                 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1310         } while (pgd++, addr = next, addr != end);
1311         tlb_end_vma(tlb, vma);
1312 }
1313
1314
1315 static void unmap_single_vma(struct mmu_gather *tlb,
1316                 struct vm_area_struct *vma, unsigned long start_addr,
1317                 unsigned long end_addr,
1318                 struct zap_details *details)
1319 {
1320         unsigned long start = max(vma->vm_start, start_addr);
1321         unsigned long end;
1322
1323         if (start >= vma->vm_end)
1324                 return;
1325         end = min(vma->vm_end, end_addr);
1326         if (end <= vma->vm_start)
1327                 return;
1328
1329         if (vma->vm_file)
1330                 uprobe_munmap(vma, start, end);
1331
1332         if (unlikely(vma->vm_flags & VM_PFNMAP))
1333                 untrack_pfn(vma, 0, 0);
1334
1335         if (start != end) {
1336                 if (unlikely(is_vm_hugetlb_page(vma))) {
1337                         /*
1338                          * It is undesirable to test vma->vm_file as it
1339                          * should be non-null for valid hugetlb area.
1340                          * However, vm_file will be NULL in the error
1341                          * cleanup path of mmap_region. When
1342                          * hugetlbfs ->mmap method fails,
1343                          * mmap_region() nullifies vma->vm_file
1344                          * before calling this function to clean up.
1345                          * Since no pte has actually been setup, it is
1346                          * safe to do nothing in this case.
1347                          */
1348                         if (vma->vm_file) {
1349                                 i_mmap_lock_write(vma->vm_file->f_mapping);
1350                                 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1351                                 i_mmap_unlock_write(vma->vm_file->f_mapping);
1352                         }
1353                 } else
1354                         unmap_page_range(tlb, vma, start, end, details);
1355         }
1356 }
1357
1358 /**
1359  * unmap_vmas - unmap a range of memory covered by a list of vma's
1360  * @tlb: address of the caller's struct mmu_gather
1361  * @vma: the starting vma
1362  * @start_addr: virtual address at which to start unmapping
1363  * @end_addr: virtual address at which to end unmapping
1364  *
1365  * Unmap all pages in the vma list.
1366  *
1367  * Only addresses between `start' and `end' will be unmapped.
1368  *
1369  * The VMA list must be sorted in ascending virtual address order.
1370  *
1371  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1372  * range after unmap_vmas() returns.  So the only responsibility here is to
1373  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1374  * drops the lock and schedules.
1375  */
1376 void unmap_vmas(struct mmu_gather *tlb,
1377                 struct vm_area_struct *vma, unsigned long start_addr,
1378                 unsigned long end_addr)
1379 {
1380         struct mm_struct *mm = vma->vm_mm;
1381
1382         mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1383         for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1384                 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1385         mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1386 }
1387
1388 /**
1389  * zap_page_range - remove user pages in a given range
1390  * @vma: vm_area_struct holding the applicable pages
1391  * @start: starting address of pages to zap
1392  * @size: number of bytes to zap
1393  *
1394  * Caller must protect the VMA list
1395  */
1396 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1397                 unsigned long size)
1398 {
1399         struct mm_struct *mm = vma->vm_mm;
1400         struct mmu_gather tlb;
1401         unsigned long end = start + size;
1402
1403         lru_add_drain();
1404         tlb_gather_mmu(&tlb, mm, start, end);
1405         update_hiwater_rss(mm);
1406         mmu_notifier_invalidate_range_start(mm, start, end);
1407         for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1408                 unmap_single_vma(&tlb, vma, start, end, NULL);
1409         mmu_notifier_invalidate_range_end(mm, start, end);
1410         tlb_finish_mmu(&tlb, start, end);
1411 }
1412
1413 /**
1414  * zap_page_range_single - remove user pages in a given range
1415  * @vma: vm_area_struct holding the applicable pages
1416  * @address: starting address of pages to zap
1417  * @size: number of bytes to zap
1418  * @details: details of shared cache invalidation
1419  *
1420  * The range must fit into one VMA.
1421  */
1422 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1423                 unsigned long size, struct zap_details *details)
1424 {
1425         struct mm_struct *mm = vma->vm_mm;
1426         struct mmu_gather tlb;
1427         unsigned long end = address + size;
1428
1429         lru_add_drain();
1430         tlb_gather_mmu(&tlb, mm, address, end);
1431         update_hiwater_rss(mm);
1432         mmu_notifier_invalidate_range_start(mm, address, end);
1433         unmap_single_vma(&tlb, vma, address, end, details);
1434         mmu_notifier_invalidate_range_end(mm, address, end);
1435         tlb_finish_mmu(&tlb, address, end);
1436 }
1437
1438 /**
1439  * zap_vma_ptes - remove ptes mapping the vma
1440  * @vma: vm_area_struct holding ptes to be zapped
1441  * @address: starting address of pages to zap
1442  * @size: number of bytes to zap
1443  *
1444  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1445  *
1446  * The entire address range must be fully contained within the vma.
1447  *
1448  * Returns 0 if successful.
1449  */
1450 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1451                 unsigned long size)
1452 {
1453         if (address < vma->vm_start || address + size > vma->vm_end ||
1454                         !(vma->vm_flags & VM_PFNMAP))
1455                 return -1;
1456         zap_page_range_single(vma, address, size, NULL);
1457         return 0;
1458 }
1459 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1460
1461 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1462                         spinlock_t **ptl)
1463 {
1464         pgd_t *pgd = pgd_offset(mm, addr);
1465         pud_t *pud = pud_alloc(mm, pgd, addr);
1466         if (pud) {
1467                 pmd_t *pmd = pmd_alloc(mm, pud, addr);
1468                 if (pmd) {
1469                         VM_BUG_ON(pmd_trans_huge(*pmd));
1470                         return pte_alloc_map_lock(mm, pmd, addr, ptl);
1471                 }
1472         }
1473         return NULL;
1474 }
1475
1476 /*
1477  * This is the old fallback for page remapping.
1478  *
1479  * For historical reasons, it only allows reserved pages. Only
1480  * old drivers should use this, and they needed to mark their
1481  * pages reserved for the old functions anyway.
1482  */
1483 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1484                         struct page *page, pgprot_t prot)
1485 {
1486         struct mm_struct *mm = vma->vm_mm;
1487         int retval;
1488         pte_t *pte;
1489         spinlock_t *ptl;
1490
1491         retval = -EINVAL;
1492         if (PageAnon(page))
1493                 goto out;
1494         retval = -ENOMEM;
1495         flush_dcache_page(page);
1496         pte = get_locked_pte(mm, addr, &ptl);
1497         if (!pte)
1498                 goto out;
1499         retval = -EBUSY;
1500         if (!pte_none(*pte))
1501                 goto out_unlock;
1502
1503         /* Ok, finally just insert the thing.. */
1504         get_page(page);
1505         inc_mm_counter_fast(mm, mm_counter_file(page));
1506         page_add_file_rmap(page, false);
1507         set_pte_at(mm, addr, pte, mk_pte(page, prot));
1508
1509         retval = 0;
1510         pte_unmap_unlock(pte, ptl);
1511         return retval;
1512 out_unlock:
1513         pte_unmap_unlock(pte, ptl);
1514 out:
1515         return retval;
1516 }
1517
1518 /**
1519  * vm_insert_page - insert single page into user vma
1520  * @vma: user vma to map to
1521  * @addr: target user address of this page
1522  * @page: source kernel page
1523  *
1524  * This allows drivers to insert individual pages they've allocated
1525  * into a user vma.
1526  *
1527  * The page has to be a nice clean _individual_ kernel allocation.
1528  * If you allocate a compound page, you need to have marked it as
1529  * such (__GFP_COMP), or manually just split the page up yourself
1530  * (see split_page()).
1531  *
1532  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1533  * took an arbitrary page protection parameter. This doesn't allow
1534  * that. Your vma protection will have to be set up correctly, which
1535  * means that if you want a shared writable mapping, you'd better
1536  * ask for a shared writable mapping!
1537  *
1538  * The page does not need to be reserved.
1539  *
1540  * Usually this function is called from f_op->mmap() handler
1541  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1542  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1543  * function from other places, for example from page-fault handler.
1544  */
1545 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1546                         struct page *page)
1547 {
1548         if (addr < vma->vm_start || addr >= vma->vm_end)
1549                 return -EFAULT;
1550         if (!page_count(page))
1551                 return -EINVAL;
1552         if (!(vma->vm_flags & VM_MIXEDMAP)) {
1553                 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1554                 BUG_ON(vma->vm_flags & VM_PFNMAP);
1555                 vma->vm_flags |= VM_MIXEDMAP;
1556         }
1557         return insert_page(vma, addr, page, vma->vm_page_prot);
1558 }
1559 EXPORT_SYMBOL(vm_insert_page);
1560
1561 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1562                         pfn_t pfn, pgprot_t prot)
1563 {
1564         struct mm_struct *mm = vma->vm_mm;
1565         int retval;
1566         pte_t *pte, entry;
1567         spinlock_t *ptl;
1568
1569         retval = -ENOMEM;
1570         pte = get_locked_pte(mm, addr, &ptl);
1571         if (!pte)
1572                 goto out;
1573         retval = -EBUSY;
1574         if (!pte_none(*pte))
1575                 goto out_unlock;
1576
1577         /* Ok, finally just insert the thing.. */
1578         if (pfn_t_devmap(pfn))
1579                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1580         else
1581                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1582         set_pte_at(mm, addr, pte, entry);
1583         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1584
1585         retval = 0;
1586 out_unlock:
1587         pte_unmap_unlock(pte, ptl);
1588 out:
1589         return retval;
1590 }
1591
1592 /**
1593  * vm_insert_pfn - insert single pfn into user vma
1594  * @vma: user vma to map to
1595  * @addr: target user address of this page
1596  * @pfn: source kernel pfn
1597  *
1598  * Similar to vm_insert_page, this allows drivers to insert individual pages
1599  * they've allocated into a user vma. Same comments apply.
1600  *
1601  * This function should only be called from a vm_ops->fault handler, and
1602  * in that case the handler should return NULL.
1603  *
1604  * vma cannot be a COW mapping.
1605  *
1606  * As this is called only for pages that do not currently exist, we
1607  * do not need to flush old virtual caches or the TLB.
1608  */
1609 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1610                         unsigned long pfn)
1611 {
1612         return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1613 }
1614 EXPORT_SYMBOL(vm_insert_pfn);
1615
1616 /**
1617  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1618  * @vma: user vma to map to
1619  * @addr: target user address of this page
1620  * @pfn: source kernel pfn
1621  * @pgprot: pgprot flags for the inserted page
1622  *
1623  * This is exactly like vm_insert_pfn, except that it allows drivers to
1624  * to override pgprot on a per-page basis.
1625  *
1626  * This only makes sense for IO mappings, and it makes no sense for
1627  * cow mappings.  In general, using multiple vmas is preferable;
1628  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1629  * impractical.
1630  */
1631 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1632                         unsigned long pfn, pgprot_t pgprot)
1633 {
1634         int ret;
1635         /*
1636          * Technically, architectures with pte_special can avoid all these
1637          * restrictions (same for remap_pfn_range).  However we would like
1638          * consistency in testing and feature parity among all, so we should
1639          * try to keep these invariants in place for everybody.
1640          */
1641         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1642         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1643                                                 (VM_PFNMAP|VM_MIXEDMAP));
1644         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1645         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1646
1647         if (addr < vma->vm_start || addr >= vma->vm_end)
1648                 return -EFAULT;
1649
1650         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1651
1652         ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1653
1654         return ret;
1655 }
1656 EXPORT_SYMBOL(vm_insert_pfn_prot);
1657
1658 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1659                         pfn_t pfn)
1660 {
1661         pgprot_t pgprot = vma->vm_page_prot;
1662
1663         BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1664
1665         if (addr < vma->vm_start || addr >= vma->vm_end)
1666                 return -EFAULT;
1667
1668         track_pfn_insert(vma, &pgprot, pfn);
1669
1670         /*
1671          * If we don't have pte special, then we have to use the pfn_valid()
1672          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1673          * refcount the page if pfn_valid is true (hence insert_page rather
1674          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1675          * without pte special, it would there be refcounted as a normal page.
1676          */
1677         if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1678                 struct page *page;
1679
1680                 /*
1681                  * At this point we are committed to insert_page()
1682                  * regardless of whether the caller specified flags that
1683                  * result in pfn_t_has_page() == false.
1684                  */
1685                 page = pfn_to_page(pfn_t_to_pfn(pfn));
1686                 return insert_page(vma, addr, page, pgprot);
1687         }
1688         return insert_pfn(vma, addr, pfn, pgprot);
1689 }
1690 EXPORT_SYMBOL(vm_insert_mixed);
1691
1692 /*
1693  * maps a range of physical memory into the requested pages. the old
1694  * mappings are removed. any references to nonexistent pages results
1695  * in null mappings (currently treated as "copy-on-access")
1696  */
1697 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1698                         unsigned long addr, unsigned long end,
1699                         unsigned long pfn, pgprot_t prot)
1700 {
1701         pte_t *pte;
1702         spinlock_t *ptl;
1703
1704         pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1705         if (!pte)
1706                 return -ENOMEM;
1707         arch_enter_lazy_mmu_mode();
1708         do {
1709                 BUG_ON(!pte_none(*pte));
1710                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1711                 pfn++;
1712         } while (pte++, addr += PAGE_SIZE, addr != end);
1713         arch_leave_lazy_mmu_mode();
1714         pte_unmap_unlock(pte - 1, ptl);
1715         return 0;
1716 }
1717
1718 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1719                         unsigned long addr, unsigned long end,
1720                         unsigned long pfn, pgprot_t prot)
1721 {
1722         pmd_t *pmd;
1723         unsigned long next;
1724
1725         pfn -= addr >> PAGE_SHIFT;
1726         pmd = pmd_alloc(mm, pud, addr);
1727         if (!pmd)
1728                 return -ENOMEM;
1729         VM_BUG_ON(pmd_trans_huge(*pmd));
1730         do {
1731                 next = pmd_addr_end(addr, end);
1732                 if (remap_pte_range(mm, pmd, addr, next,
1733                                 pfn + (addr >> PAGE_SHIFT), prot))
1734                         return -ENOMEM;
1735         } while (pmd++, addr = next, addr != end);
1736         return 0;
1737 }
1738
1739 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1740                         unsigned long addr, unsigned long end,
1741                         unsigned long pfn, pgprot_t prot)
1742 {
1743         pud_t *pud;
1744         unsigned long next;
1745
1746         pfn -= addr >> PAGE_SHIFT;
1747         pud = pud_alloc(mm, pgd, addr);
1748         if (!pud)
1749                 return -ENOMEM;
1750         do {
1751                 next = pud_addr_end(addr, end);
1752                 if (remap_pmd_range(mm, pud, addr, next,
1753                                 pfn + (addr >> PAGE_SHIFT), prot))
1754                         return -ENOMEM;
1755         } while (pud++, addr = next, addr != end);
1756         return 0;
1757 }
1758
1759 /**
1760  * remap_pfn_range - remap kernel memory to userspace
1761  * @vma: user vma to map to
1762  * @addr: target user address to start at
1763  * @pfn: physical address of kernel memory
1764  * @size: size of map area
1765  * @prot: page protection flags for this mapping
1766  *
1767  *  Note: this is only safe if the mm semaphore is held when called.
1768  */
1769 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1770                     unsigned long pfn, unsigned long size, pgprot_t prot)
1771 {
1772         pgd_t *pgd;
1773         unsigned long next;
1774         unsigned long end = addr + PAGE_ALIGN(size);
1775         struct mm_struct *mm = vma->vm_mm;
1776         unsigned long remap_pfn = pfn;
1777         int err;
1778
1779         /*
1780          * Physically remapped pages are special. Tell the
1781          * rest of the world about it:
1782          *   VM_IO tells people not to look at these pages
1783          *      (accesses can have side effects).
1784          *   VM_PFNMAP tells the core MM that the base pages are just
1785          *      raw PFN mappings, and do not have a "struct page" associated
1786          *      with them.
1787          *   VM_DONTEXPAND
1788          *      Disable vma merging and expanding with mremap().
1789          *   VM_DONTDUMP
1790          *      Omit vma from core dump, even when VM_IO turned off.
1791          *
1792          * There's a horrible special case to handle copy-on-write
1793          * behaviour that some programs depend on. We mark the "original"
1794          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1795          * See vm_normal_page() for details.
1796          */
1797         if (is_cow_mapping(vma->vm_flags)) {
1798                 if (addr != vma->vm_start || end != vma->vm_end)
1799                         return -EINVAL;
1800                 vma->vm_pgoff = pfn;
1801         }
1802
1803         err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1804         if (err)
1805                 return -EINVAL;
1806
1807         vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1808
1809         BUG_ON(addr >= end);
1810         pfn -= addr >> PAGE_SHIFT;
1811         pgd = pgd_offset(mm, addr);
1812         flush_cache_range(vma, addr, end);
1813         do {
1814                 next = pgd_addr_end(addr, end);
1815                 err = remap_pud_range(mm, pgd, addr, next,
1816                                 pfn + (addr >> PAGE_SHIFT), prot);
1817                 if (err)
1818                         break;
1819         } while (pgd++, addr = next, addr != end);
1820
1821         if (err)
1822                 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1823
1824         return err;
1825 }
1826 EXPORT_SYMBOL(remap_pfn_range);
1827
1828 /**
1829  * vm_iomap_memory - remap memory to userspace
1830  * @vma: user vma to map to
1831  * @start: start of area
1832  * @len: size of area
1833  *
1834  * This is a simplified io_remap_pfn_range() for common driver use. The
1835  * driver just needs to give us the physical memory range to be mapped,
1836  * we'll figure out the rest from the vma information.
1837  *
1838  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1839  * whatever write-combining details or similar.
1840  */
1841 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1842 {
1843         unsigned long vm_len, pfn, pages;
1844
1845         /* Check that the physical memory area passed in looks valid */
1846         if (start + len < start)
1847                 return -EINVAL;
1848         /*
1849          * You *really* shouldn't map things that aren't page-aligned,
1850          * but we've historically allowed it because IO memory might
1851          * just have smaller alignment.
1852          */
1853         len += start & ~PAGE_MASK;
1854         pfn = start >> PAGE_SHIFT;
1855         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1856         if (pfn + pages < pfn)
1857                 return -EINVAL;
1858
1859         /* We start the mapping 'vm_pgoff' pages into the area */
1860         if (vma->vm_pgoff > pages)
1861                 return -EINVAL;
1862         pfn += vma->vm_pgoff;
1863         pages -= vma->vm_pgoff;
1864
1865         /* Can we fit all of the mapping? */
1866         vm_len = vma->vm_end - vma->vm_start;
1867         if (vm_len >> PAGE_SHIFT > pages)
1868                 return -EINVAL;
1869
1870         /* Ok, let it rip */
1871         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1872 }
1873 EXPORT_SYMBOL(vm_iomap_memory);
1874
1875 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1876                                      unsigned long addr, unsigned long end,
1877                                      pte_fn_t fn, void *data)
1878 {
1879         pte_t *pte;
1880         int err;
1881         pgtable_t token;
1882         spinlock_t *uninitialized_var(ptl);
1883
1884         pte = (mm == &init_mm) ?
1885                 pte_alloc_kernel(pmd, addr) :
1886                 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1887         if (!pte)
1888                 return -ENOMEM;
1889
1890         BUG_ON(pmd_huge(*pmd));
1891
1892         arch_enter_lazy_mmu_mode();
1893
1894         token = pmd_pgtable(*pmd);
1895
1896         do {
1897                 err = fn(pte++, token, addr, data);
1898                 if (err)
1899                         break;
1900         } while (addr += PAGE_SIZE, addr != end);
1901
1902         arch_leave_lazy_mmu_mode();
1903
1904         if (mm != &init_mm)
1905                 pte_unmap_unlock(pte-1, ptl);
1906         return err;
1907 }
1908
1909 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1910                                      unsigned long addr, unsigned long end,
1911                                      pte_fn_t fn, void *data)
1912 {
1913         pmd_t *pmd;
1914         unsigned long next;
1915         int err;
1916
1917         BUG_ON(pud_huge(*pud));
1918
1919         pmd = pmd_alloc(mm, pud, addr);
1920         if (!pmd)
1921                 return -ENOMEM;
1922         do {
1923                 next = pmd_addr_end(addr, end);
1924                 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1925                 if (err)
1926                         break;
1927         } while (pmd++, addr = next, addr != end);
1928         return err;
1929 }
1930
1931 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1932                                      unsigned long addr, unsigned long end,
1933                                      pte_fn_t fn, void *data)
1934 {
1935         pud_t *pud;
1936         unsigned long next;
1937         int err;
1938
1939         pud = pud_alloc(mm, pgd, addr);
1940         if (!pud)
1941                 return -ENOMEM;
1942         do {
1943                 next = pud_addr_end(addr, end);
1944                 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1945                 if (err)
1946                         break;
1947         } while (pud++, addr = next, addr != end);
1948         return err;
1949 }
1950
1951 /*
1952  * Scan a region of virtual memory, filling in page tables as necessary
1953  * and calling a provided function on each leaf page table.
1954  */
1955 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1956                         unsigned long size, pte_fn_t fn, void *data)
1957 {
1958         pgd_t *pgd;
1959         unsigned long next;
1960         unsigned long end = addr + size;
1961         int err;
1962
1963         if (WARN_ON(addr >= end))
1964                 return -EINVAL;
1965
1966         pgd = pgd_offset(mm, addr);
1967         do {
1968                 next = pgd_addr_end(addr, end);
1969                 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1970                 if (err)
1971                         break;
1972         } while (pgd++, addr = next, addr != end);
1973
1974         return err;
1975 }
1976 EXPORT_SYMBOL_GPL(apply_to_page_range);
1977
1978 /*
1979  * handle_pte_fault chooses page fault handler according to an entry which was
1980  * read non-atomically.  Before making any commitment, on those architectures
1981  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1982  * parts, do_swap_page must check under lock before unmapping the pte and
1983  * proceeding (but do_wp_page is only called after already making such a check;
1984  * and do_anonymous_page can safely check later on).
1985  */
1986 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1987                                 pte_t *page_table, pte_t orig_pte)
1988 {
1989         int same = 1;
1990 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1991         if (sizeof(pte_t) > sizeof(unsigned long)) {
1992                 spinlock_t *ptl = pte_lockptr(mm, pmd);
1993                 spin_lock(ptl);
1994                 same = pte_same(*page_table, orig_pte);
1995                 spin_unlock(ptl);
1996         }
1997 #endif
1998         pte_unmap(page_table);
1999         return same;
2000 }
2001
2002 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2003 {
2004         debug_dma_assert_idle(src);
2005
2006         /*
2007          * If the source page was a PFN mapping, we don't have
2008          * a "struct page" for it. We do a best-effort copy by
2009          * just copying from the original user address. If that
2010          * fails, we just zero-fill it. Live with it.
2011          */
2012         if (unlikely(!src)) {
2013                 void *kaddr = kmap_atomic(dst);
2014                 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2015
2016                 /*
2017                  * This really shouldn't fail, because the page is there
2018                  * in the page tables. But it might just be unreadable,
2019                  * in which case we just give up and fill the result with
2020                  * zeroes.
2021                  */
2022                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2023                         clear_page(kaddr);
2024                 kunmap_atomic(kaddr);
2025                 flush_dcache_page(dst);
2026         } else
2027                 copy_user_highpage(dst, src, va, vma);
2028 }
2029
2030 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2031 {
2032         struct file *vm_file = vma->vm_file;
2033
2034         if (vm_file)
2035                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2036
2037         /*
2038          * Special mappings (e.g. VDSO) do not have any file so fake
2039          * a default GFP_KERNEL for them.
2040          */
2041         return GFP_KERNEL;
2042 }
2043
2044 /*
2045  * Notify the address space that the page is about to become writable so that
2046  * it can prohibit this or wait for the page to get into an appropriate state.
2047  *
2048  * We do this without the lock held, so that it can sleep if it needs to.
2049  */
2050 static int do_page_mkwrite(struct vm_fault *vmf)
2051 {
2052         int ret;
2053         struct page *page = vmf->page;
2054         unsigned int old_flags = vmf->flags;
2055
2056         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2057
2058         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2059         /* Restore original flags so that caller is not surprised */
2060         vmf->flags = old_flags;
2061         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2062                 return ret;
2063         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2064                 lock_page(page);
2065                 if (!page->mapping) {
2066                         unlock_page(page);
2067                         return 0; /* retry */
2068                 }
2069                 ret |= VM_FAULT_LOCKED;
2070         } else
2071                 VM_BUG_ON_PAGE(!PageLocked(page), page);
2072         return ret;
2073 }
2074
2075 /*
2076  * Handle dirtying of a page in shared file mapping on a write fault.
2077  *
2078  * The function expects the page to be locked and unlocks it.
2079  */
2080 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2081                                     struct page *page)
2082 {
2083         struct address_space *mapping;
2084         bool dirtied;
2085         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2086
2087         dirtied = set_page_dirty(page);
2088         VM_BUG_ON_PAGE(PageAnon(page), page);
2089         /*
2090          * Take a local copy of the address_space - page.mapping may be zeroed
2091          * by truncate after unlock_page().   The address_space itself remains
2092          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2093          * release semantics to prevent the compiler from undoing this copying.
2094          */
2095         mapping = page_rmapping(page);
2096         unlock_page(page);
2097
2098         if ((dirtied || page_mkwrite) && mapping) {
2099                 /*
2100                  * Some device drivers do not set page.mapping
2101                  * but still dirty their pages
2102                  */
2103                 balance_dirty_pages_ratelimited(mapping);
2104         }
2105
2106         if (!page_mkwrite)
2107                 file_update_time(vma->vm_file);
2108 }
2109
2110 /*
2111  * Handle write page faults for pages that can be reused in the current vma
2112  *
2113  * This can happen either due to the mapping being with the VM_SHARED flag,
2114  * or due to us being the last reference standing to the page. In either
2115  * case, all we need to do here is to mark the page as writable and update
2116  * any related book-keeping.
2117  */
2118 static inline void wp_page_reuse(struct vm_fault *vmf)
2119         __releases(vmf->ptl)
2120 {
2121         struct vm_area_struct *vma = vmf->vma;
2122         struct page *page = vmf->page;
2123         pte_t entry;
2124         /*
2125          * Clear the pages cpupid information as the existing
2126          * information potentially belongs to a now completely
2127          * unrelated process.
2128          */
2129         if (page)
2130                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2131
2132         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2133         entry = pte_mkyoung(vmf->orig_pte);
2134         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2135         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2136                 update_mmu_cache(vma, vmf->address, vmf->pte);
2137         pte_unmap_unlock(vmf->pte, vmf->ptl);
2138 }
2139
2140 /*
2141  * Handle the case of a page which we actually need to copy to a new page.
2142  *
2143  * Called with mmap_sem locked and the old page referenced, but
2144  * without the ptl held.
2145  *
2146  * High level logic flow:
2147  *
2148  * - Allocate a page, copy the content of the old page to the new one.
2149  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2150  * - Take the PTL. If the pte changed, bail out and release the allocated page
2151  * - If the pte is still the way we remember it, update the page table and all
2152  *   relevant references. This includes dropping the reference the page-table
2153  *   held to the old page, as well as updating the rmap.
2154  * - In any case, unlock the PTL and drop the reference we took to the old page.
2155  */
2156 static int wp_page_copy(struct vm_fault *vmf)
2157 {
2158         struct vm_area_struct *vma = vmf->vma;
2159         struct mm_struct *mm = vma->vm_mm;
2160         struct page *old_page = vmf->page;
2161         struct page *new_page = NULL;
2162         pte_t entry;
2163         int page_copied = 0;
2164         const unsigned long mmun_start = vmf->address & PAGE_MASK;
2165         const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2166         struct mem_cgroup *memcg;
2167
2168         if (unlikely(anon_vma_prepare(vma)))
2169                 goto oom;
2170
2171         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2172                 new_page = alloc_zeroed_user_highpage_movable(vma,
2173                                                               vmf->address);
2174                 if (!new_page)
2175                         goto oom;
2176         } else {
2177                 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2178                                 vmf->address);
2179                 if (!new_page)
2180                         goto oom;
2181                 cow_user_page(new_page, old_page, vmf->address, vma);
2182         }
2183
2184         if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2185                 goto oom_free_new;
2186
2187         __SetPageUptodate(new_page);
2188
2189         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2190
2191         /*
2192          * Re-check the pte - we dropped the lock
2193          */
2194         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2195         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2196                 if (old_page) {
2197                         if (!PageAnon(old_page)) {
2198                                 dec_mm_counter_fast(mm,
2199                                                 mm_counter_file(old_page));
2200                                 inc_mm_counter_fast(mm, MM_ANONPAGES);
2201                         }
2202                 } else {
2203                         inc_mm_counter_fast(mm, MM_ANONPAGES);
2204                 }
2205                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2206                 entry = mk_pte(new_page, vma->vm_page_prot);
2207                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2208                 /*
2209                  * Clear the pte entry and flush it first, before updating the
2210                  * pte with the new entry. This will avoid a race condition
2211                  * seen in the presence of one thread doing SMC and another
2212                  * thread doing COW.
2213                  */
2214                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2215                 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2216                 mem_cgroup_commit_charge(new_page, memcg, false, false);
2217                 lru_cache_add_active_or_unevictable(new_page, vma);
2218                 /*
2219                  * We call the notify macro here because, when using secondary
2220                  * mmu page tables (such as kvm shadow page tables), we want the
2221                  * new page to be mapped directly into the secondary page table.
2222                  */
2223                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2224                 update_mmu_cache(vma, vmf->address, vmf->pte);
2225                 if (old_page) {
2226                         /*
2227                          * Only after switching the pte to the new page may
2228                          * we remove the mapcount here. Otherwise another
2229                          * process may come and find the rmap count decremented
2230                          * before the pte is switched to the new page, and
2231                          * "reuse" the old page writing into it while our pte
2232                          * here still points into it and can be read by other
2233                          * threads.
2234                          *
2235                          * The critical issue is to order this
2236                          * page_remove_rmap with the ptp_clear_flush above.
2237                          * Those stores are ordered by (if nothing else,)
2238                          * the barrier present in the atomic_add_negative
2239                          * in page_remove_rmap.
2240                          *
2241                          * Then the TLB flush in ptep_clear_flush ensures that
2242                          * no process can access the old page before the
2243                          * decremented mapcount is visible. And the old page
2244                          * cannot be reused until after the decremented
2245                          * mapcount is visible. So transitively, TLBs to
2246                          * old page will be flushed before it can be reused.
2247                          */
2248                         page_remove_rmap(old_page, false);
2249                 }
2250
2251                 /* Free the old page.. */
2252                 new_page = old_page;
2253                 page_copied = 1;
2254         } else {
2255                 mem_cgroup_cancel_charge(new_page, memcg, false);
2256         }
2257
2258         if (new_page)
2259                 put_page(new_page);
2260
2261         pte_unmap_unlock(vmf->pte, vmf->ptl);
2262         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2263         if (old_page) {
2264                 /*
2265                  * Don't let another task, with possibly unlocked vma,
2266                  * keep the mlocked page.
2267                  */
2268                 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2269                         lock_page(old_page);    /* LRU manipulation */
2270                         if (PageMlocked(old_page))
2271                                 munlock_vma_page(old_page);
2272                         unlock_page(old_page);
2273                 }
2274                 put_page(old_page);
2275         }
2276         return page_copied ? VM_FAULT_WRITE : 0;
2277 oom_free_new:
2278         put_page(new_page);
2279 oom:
2280         if (old_page)
2281                 put_page(old_page);
2282         return VM_FAULT_OOM;
2283 }
2284
2285 /**
2286  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2287  *                        writeable once the page is prepared
2288  *
2289  * @vmf: structure describing the fault
2290  *
2291  * This function handles all that is needed to finish a write page fault in a
2292  * shared mapping due to PTE being read-only once the mapped page is prepared.
2293  * It handles locking of PTE and modifying it. The function returns
2294  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2295  * lock.
2296  *
2297  * The function expects the page to be locked or other protection against
2298  * concurrent faults / writeback (such as DAX radix tree locks).
2299  */
2300 int finish_mkwrite_fault(struct vm_fault *vmf)
2301 {
2302         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2303         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2304                                        &vmf->ptl);
2305         /*
2306          * We might have raced with another page fault while we released the
2307          * pte_offset_map_lock.
2308          */
2309         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2310                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2311                 return VM_FAULT_NOPAGE;
2312         }
2313         wp_page_reuse(vmf);
2314         return 0;
2315 }
2316
2317 /*
2318  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2319  * mapping
2320  */
2321 static int wp_pfn_shared(struct vm_fault *vmf)
2322 {
2323         struct vm_area_struct *vma = vmf->vma;
2324
2325         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2326                 int ret;
2327
2328                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2329                 vmf->flags |= FAULT_FLAG_MKWRITE;
2330                 ret = vma->vm_ops->pfn_mkwrite(vmf);
2331                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2332                         return ret;
2333                 return finish_mkwrite_fault(vmf);
2334         }
2335         wp_page_reuse(vmf);
2336         return VM_FAULT_WRITE;
2337 }
2338
2339 static int wp_page_shared(struct vm_fault *vmf)
2340         __releases(vmf->ptl)
2341 {
2342         struct vm_area_struct *vma = vmf->vma;
2343
2344         get_page(vmf->page);
2345
2346         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2347                 int tmp;
2348
2349                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2350                 tmp = do_page_mkwrite(vmf);
2351                 if (unlikely(!tmp || (tmp &
2352                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2353                         put_page(vmf->page);
2354                         return tmp;
2355                 }
2356                 tmp = finish_mkwrite_fault(vmf);
2357                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2358                         unlock_page(vmf->page);
2359                         put_page(vmf->page);
2360                         return tmp;
2361                 }
2362         } else {
2363                 wp_page_reuse(vmf);
2364                 lock_page(vmf->page);
2365         }
2366         fault_dirty_shared_page(vma, vmf->page);
2367         put_page(vmf->page);
2368
2369         return VM_FAULT_WRITE;
2370 }
2371
2372 /*
2373  * This routine handles present pages, when users try to write
2374  * to a shared page. It is done by copying the page to a new address
2375  * and decrementing the shared-page counter for the old page.
2376  *
2377  * Note that this routine assumes that the protection checks have been
2378  * done by the caller (the low-level page fault routine in most cases).
2379  * Thus we can safely just mark it writable once we've done any necessary
2380  * COW.
2381  *
2382  * We also mark the page dirty at this point even though the page will
2383  * change only once the write actually happens. This avoids a few races,
2384  * and potentially makes it more efficient.
2385  *
2386  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2387  * but allow concurrent faults), with pte both mapped and locked.
2388  * We return with mmap_sem still held, but pte unmapped and unlocked.
2389  */
2390 static int do_wp_page(struct vm_fault *vmf)
2391         __releases(vmf->ptl)
2392 {
2393         struct vm_area_struct *vma = vmf->vma;
2394
2395         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2396         if (!vmf->page) {
2397                 /*
2398                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2399                  * VM_PFNMAP VMA.
2400                  *
2401                  * We should not cow pages in a shared writeable mapping.
2402                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
2403                  */
2404                 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2405                                      (VM_WRITE|VM_SHARED))
2406                         return wp_pfn_shared(vmf);
2407
2408                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2409                 return wp_page_copy(vmf);
2410         }
2411
2412         /*
2413          * Take out anonymous pages first, anonymous shared vmas are
2414          * not dirty accountable.
2415          */
2416         if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2417                 int total_mapcount;
2418                 if (!trylock_page(vmf->page)) {
2419                         get_page(vmf->page);
2420                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2421                         lock_page(vmf->page);
2422                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2423                                         vmf->address, &vmf->ptl);
2424                         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2425                                 unlock_page(vmf->page);
2426                                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2427                                 put_page(vmf->page);
2428                                 return 0;
2429                         }
2430                         put_page(vmf->page);
2431                 }
2432                 if (reuse_swap_page(vmf->page, &total_mapcount)) {
2433                         if (total_mapcount == 1) {
2434                                 /*
2435                                  * The page is all ours. Move it to
2436                                  * our anon_vma so the rmap code will
2437                                  * not search our parent or siblings.
2438                                  * Protected against the rmap code by
2439                                  * the page lock.
2440                                  */
2441                                 page_move_anon_rmap(vmf->page, vma);
2442                         }
2443                         unlock_page(vmf->page);
2444                         wp_page_reuse(vmf);
2445                         return VM_FAULT_WRITE;
2446                 }
2447                 unlock_page(vmf->page);
2448         } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2449                                         (VM_WRITE|VM_SHARED))) {
2450                 return wp_page_shared(vmf);
2451         }
2452
2453         /*
2454          * Ok, we need to copy. Oh, well..
2455          */
2456         get_page(vmf->page);
2457
2458         pte_unmap_unlock(vmf->pte, vmf->ptl);
2459         return wp_page_copy(vmf);
2460 }
2461
2462 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2463                 unsigned long start_addr, unsigned long end_addr,
2464                 struct zap_details *details)
2465 {
2466         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2467 }
2468
2469 static inline void unmap_mapping_range_tree(struct rb_root *root,
2470                                             struct zap_details *details)
2471 {
2472         struct vm_area_struct *vma;
2473         pgoff_t vba, vea, zba, zea;
2474
2475         vma_interval_tree_foreach(vma, root,
2476                         details->first_index, details->last_index) {
2477
2478                 vba = vma->vm_pgoff;
2479                 vea = vba + vma_pages(vma) - 1;
2480                 zba = details->first_index;
2481                 if (zba < vba)
2482                         zba = vba;
2483                 zea = details->last_index;
2484                 if (zea > vea)
2485                         zea = vea;
2486
2487                 unmap_mapping_range_vma(vma,
2488                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2489                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2490                                 details);
2491         }
2492 }
2493
2494 /**
2495  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2496  * address_space corresponding to the specified page range in the underlying
2497  * file.
2498  *
2499  * @mapping: the address space containing mmaps to be unmapped.
2500  * @holebegin: byte in first page to unmap, relative to the start of
2501  * the underlying file.  This will be rounded down to a PAGE_SIZE
2502  * boundary.  Note that this is different from truncate_pagecache(), which
2503  * must keep the partial page.  In contrast, we must get rid of
2504  * partial pages.
2505  * @holelen: size of prospective hole in bytes.  This will be rounded
2506  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2507  * end of the file.
2508  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2509  * but 0 when invalidating pagecache, don't throw away private data.
2510  */
2511 void unmap_mapping_range(struct address_space *mapping,
2512                 loff_t const holebegin, loff_t const holelen, int even_cows)
2513 {
2514         struct zap_details details = { };
2515         pgoff_t hba = holebegin >> PAGE_SHIFT;
2516         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2517
2518         /* Check for overflow. */
2519         if (sizeof(holelen) > sizeof(hlen)) {
2520                 long long holeend =
2521                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2522                 if (holeend & ~(long long)ULONG_MAX)
2523                         hlen = ULONG_MAX - hba + 1;
2524         }
2525
2526         details.check_mapping = even_cows ? NULL : mapping;
2527         details.first_index = hba;
2528         details.last_index = hba + hlen - 1;
2529         if (details.last_index < details.first_index)
2530                 details.last_index = ULONG_MAX;
2531
2532         i_mmap_lock_write(mapping);
2533         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2534                 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2535         i_mmap_unlock_write(mapping);
2536 }
2537 EXPORT_SYMBOL(unmap_mapping_range);
2538
2539 /*
2540  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2541  * but allow concurrent faults), and pte mapped but not yet locked.
2542  * We return with pte unmapped and unlocked.
2543  *
2544  * We return with the mmap_sem locked or unlocked in the same cases
2545  * as does filemap_fault().
2546  */
2547 int do_swap_page(struct vm_fault *vmf)
2548 {
2549         struct vm_area_struct *vma = vmf->vma;
2550         struct page *page, *swapcache;
2551         struct mem_cgroup *memcg;
2552         swp_entry_t entry;
2553         pte_t pte;
2554         int locked;
2555         int exclusive = 0;
2556         int ret = 0;
2557
2558         if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2559                 goto out;
2560
2561         entry = pte_to_swp_entry(vmf->orig_pte);
2562         if (unlikely(non_swap_entry(entry))) {
2563                 if (is_migration_entry(entry)) {
2564                         migration_entry_wait(vma->vm_mm, vmf->pmd,
2565                                              vmf->address);
2566                 } else if (is_hwpoison_entry(entry)) {
2567                         ret = VM_FAULT_HWPOISON;
2568                 } else {
2569                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2570                         ret = VM_FAULT_SIGBUS;
2571                 }
2572                 goto out;
2573         }
2574         delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2575         page = lookup_swap_cache(entry);
2576         if (!page) {
2577                 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2578                                         vmf->address);
2579                 if (!page) {
2580                         /*
2581                          * Back out if somebody else faulted in this pte
2582                          * while we released the pte lock.
2583                          */
2584                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2585                                         vmf->address, &vmf->ptl);
2586                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2587                                 ret = VM_FAULT_OOM;
2588                         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2589                         goto unlock;
2590                 }
2591
2592                 /* Had to read the page from swap area: Major fault */
2593                 ret = VM_FAULT_MAJOR;
2594                 count_vm_event(PGMAJFAULT);
2595                 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2596         } else if (PageHWPoison(page)) {
2597                 /*
2598                  * hwpoisoned dirty swapcache pages are kept for killing
2599                  * owner processes (which may be unknown at hwpoison time)
2600                  */
2601                 ret = VM_FAULT_HWPOISON;
2602                 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2603                 swapcache = page;
2604                 goto out_release;
2605         }
2606
2607         swapcache = page;
2608         locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2609
2610         delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2611         if (!locked) {
2612                 ret |= VM_FAULT_RETRY;
2613                 goto out_release;
2614         }
2615
2616         /*
2617          * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2618          * release the swapcache from under us.  The page pin, and pte_same
2619          * test below, are not enough to exclude that.  Even if it is still
2620          * swapcache, we need to check that the page's swap has not changed.
2621          */
2622         if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2623                 goto out_page;
2624
2625         page = ksm_might_need_to_copy(page, vma, vmf->address);
2626         if (unlikely(!page)) {
2627                 ret = VM_FAULT_OOM;
2628                 page = swapcache;
2629                 goto out_page;
2630         }
2631
2632         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2633                                 &memcg, false)) {
2634                 ret = VM_FAULT_OOM;
2635                 goto out_page;
2636         }
2637
2638         /*
2639          * Back out if somebody else already faulted in this pte.
2640          */
2641         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2642                         &vmf->ptl);
2643         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2644                 goto out_nomap;
2645
2646         if (unlikely(!PageUptodate(page))) {
2647                 ret = VM_FAULT_SIGBUS;
2648                 goto out_nomap;
2649         }
2650
2651         /*
2652          * The page isn't present yet, go ahead with the fault.
2653          *
2654          * Be careful about the sequence of operations here.
2655          * To get its accounting right, reuse_swap_page() must be called
2656          * while the page is counted on swap but not yet in mapcount i.e.
2657          * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2658          * must be called after the swap_free(), or it will never succeed.
2659          */
2660
2661         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2662         dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2663         pte = mk_pte(page, vma->vm_page_prot);
2664         if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2665                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2666                 vmf->flags &= ~FAULT_FLAG_WRITE;
2667                 ret |= VM_FAULT_WRITE;
2668                 exclusive = RMAP_EXCLUSIVE;
2669         }
2670         flush_icache_page(vma, page);
2671         if (pte_swp_soft_dirty(vmf->orig_pte))
2672                 pte = pte_mksoft_dirty(pte);
2673         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2674         vmf->orig_pte = pte;
2675         if (page == swapcache) {
2676                 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2677                 mem_cgroup_commit_charge(page, memcg, true, false);
2678                 activate_page(page);
2679         } else { /* ksm created a completely new copy */
2680                 page_add_new_anon_rmap(page, vma, vmf->address, false);
2681                 mem_cgroup_commit_charge(page, memcg, false, false);
2682                 lru_cache_add_active_or_unevictable(page, vma);
2683         }
2684
2685         swap_free(entry);
2686         if (mem_cgroup_swap_full(page) ||
2687             (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2688                 try_to_free_swap(page);
2689         unlock_page(page);
2690         if (page != swapcache) {
2691                 /*
2692                  * Hold the lock to avoid the swap entry to be reused
2693                  * until we take the PT lock for the pte_same() check
2694                  * (to avoid false positives from pte_same). For
2695                  * further safety release the lock after the swap_free
2696                  * so that the swap count won't change under a
2697                  * parallel locked swapcache.
2698                  */
2699                 unlock_page(swapcache);
2700                 put_page(swapcache);
2701         }
2702
2703         if (vmf->flags & FAULT_FLAG_WRITE) {
2704                 ret |= do_wp_page(vmf);
2705                 if (ret & VM_FAULT_ERROR)
2706                         ret &= VM_FAULT_ERROR;
2707                 goto out;
2708         }
2709
2710         /* No need to invalidate - it was non-present before */
2711         update_mmu_cache(vma, vmf->address, vmf->pte);
2712 unlock:
2713         pte_unmap_unlock(vmf->pte, vmf->ptl);
2714 out:
2715         return ret;
2716 out_nomap:
2717         mem_cgroup_cancel_charge(page, memcg, false);
2718         pte_unmap_unlock(vmf->pte, vmf->ptl);
2719 out_page:
2720         unlock_page(page);
2721 out_release:
2722         put_page(page);
2723         if (page != swapcache) {
2724                 unlock_page(swapcache);
2725                 put_page(swapcache);
2726         }
2727         return ret;
2728 }
2729
2730 /*
2731  * This is like a special single-page "expand_{down|up}wards()",
2732  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2733  * doesn't hit another vma.
2734  */
2735 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2736 {
2737         address &= PAGE_MASK;
2738         if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2739                 struct vm_area_struct *prev = vma->vm_prev;
2740
2741                 /*
2742                  * Is there a mapping abutting this one below?
2743                  *
2744                  * That's only ok if it's the same stack mapping
2745                  * that has gotten split..
2746                  */
2747                 if (prev && prev->vm_end == address)
2748                         return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2749
2750                 return expand_downwards(vma, address - PAGE_SIZE);
2751         }
2752         if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2753                 struct vm_area_struct *next = vma->vm_next;
2754
2755                 /* As VM_GROWSDOWN but s/below/above/ */
2756                 if (next && next->vm_start == address + PAGE_SIZE)
2757                         return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2758
2759                 return expand_upwards(vma, address + PAGE_SIZE);
2760         }
2761         return 0;
2762 }
2763
2764 /*
2765  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2766  * but allow concurrent faults), and pte mapped but not yet locked.
2767  * We return with mmap_sem still held, but pte unmapped and unlocked.
2768  */
2769 static int do_anonymous_page(struct vm_fault *vmf)
2770 {
2771         struct vm_area_struct *vma = vmf->vma;
2772         struct mem_cgroup *memcg;
2773         struct page *page;
2774         pte_t entry;
2775
2776         /* File mapping without ->vm_ops ? */
2777         if (vma->vm_flags & VM_SHARED)
2778                 return VM_FAULT_SIGBUS;
2779
2780         /* Check if we need to add a guard page to the stack */
2781         if (check_stack_guard_page(vma, vmf->address) < 0)
2782                 return VM_FAULT_SIGSEGV;
2783
2784         /*
2785          * Use pte_alloc() instead of pte_alloc_map().  We can't run
2786          * pte_offset_map() on pmds where a huge pmd might be created
2787          * from a different thread.
2788          *
2789          * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2790          * parallel threads are excluded by other means.
2791          *
2792          * Here we only have down_read(mmap_sem).
2793          */
2794         if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2795                 return VM_FAULT_OOM;
2796
2797         /* See the comment in pte_alloc_one_map() */
2798         if (unlikely(pmd_trans_unstable(vmf->pmd)))
2799                 return 0;
2800
2801         /* Use the zero-page for reads */
2802         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2803                         !mm_forbids_zeropage(vma->vm_mm)) {
2804                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2805                                                 vma->vm_page_prot));
2806                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2807                                 vmf->address, &vmf->ptl);
2808                 if (!pte_none(*vmf->pte))
2809                         goto unlock;
2810                 /* Deliver the page fault to userland, check inside PT lock */
2811                 if (userfaultfd_missing(vma)) {
2812                         pte_unmap_unlock(vmf->pte, vmf->ptl);
2813                         return handle_userfault(vmf, VM_UFFD_MISSING);
2814                 }
2815                 goto setpte;
2816         }
2817
2818         /* Allocate our own private page. */
2819         if (unlikely(anon_vma_prepare(vma)))
2820                 goto oom;
2821         page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2822         if (!page)
2823                 goto oom;
2824
2825         if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2826                 goto oom_free_page;
2827
2828         /*
2829          * The memory barrier inside __SetPageUptodate makes sure that
2830          * preceeding stores to the page contents become visible before
2831          * the set_pte_at() write.
2832          */
2833         __SetPageUptodate(page);
2834
2835         entry = mk_pte(page, vma->vm_page_prot);
2836         if (vma->vm_flags & VM_WRITE)
2837                 entry = pte_mkwrite(pte_mkdirty(entry));
2838
2839         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2840                         &vmf->ptl);
2841         if (!pte_none(*vmf->pte))
2842                 goto release;
2843
2844         /* Deliver the page fault to userland, check inside PT lock */
2845         if (userfaultfd_missing(vma)) {
2846                 pte_unmap_unlock(vmf->pte, vmf->ptl);
2847                 mem_cgroup_cancel_charge(page, memcg, false);
2848                 put_page(page);
2849                 return handle_userfault(vmf, VM_UFFD_MISSING);
2850         }
2851
2852         inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2853         page_add_new_anon_rmap(page, vma, vmf->address, false);
2854         mem_cgroup_commit_charge(page, memcg, false, false);
2855         lru_cache_add_active_or_unevictable(page, vma);
2856 setpte:
2857         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2858
2859         /* No need to invalidate - it was non-present before */
2860         update_mmu_cache(vma, vmf->address, vmf->pte);
2861 unlock:
2862         pte_unmap_unlock(vmf->pte, vmf->ptl);
2863         return 0;
2864 release:
2865         mem_cgroup_cancel_charge(page, memcg, false);
2866         put_page(page);
2867         goto unlock;
2868 oom_free_page:
2869         put_page(page);
2870 oom:
2871         return VM_FAULT_OOM;
2872 }
2873
2874 /*
2875  * The mmap_sem must have been held on entry, and may have been
2876  * released depending on flags and vma->vm_ops->fault() return value.
2877  * See filemap_fault() and __lock_page_retry().
2878  */
2879 static int __do_fault(struct vm_fault *vmf)
2880 {
2881         struct vm_area_struct *vma = vmf->vma;
2882         int ret;
2883
2884         ret = vma->vm_ops->fault(vmf);
2885         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2886                             VM_FAULT_DONE_COW)))
2887                 return ret;
2888
2889         if (unlikely(PageHWPoison(vmf->page))) {
2890                 if (ret & VM_FAULT_LOCKED)
2891                         unlock_page(vmf->page);
2892                 put_page(vmf->page);
2893                 vmf->page = NULL;
2894                 return VM_FAULT_HWPOISON;
2895         }
2896
2897         if (unlikely(!(ret & VM_FAULT_LOCKED)))
2898                 lock_page(vmf->page);
2899         else
2900                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2901
2902         return ret;
2903 }
2904
2905 static int pte_alloc_one_map(struct vm_fault *vmf)
2906 {
2907         struct vm_area_struct *vma = vmf->vma;
2908
2909         if (!pmd_none(*vmf->pmd))
2910                 goto map_pte;
2911         if (vmf->prealloc_pte) {
2912                 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2913                 if (unlikely(!pmd_none(*vmf->pmd))) {
2914                         spin_unlock(vmf->ptl);
2915                         goto map_pte;
2916                 }
2917
2918                 atomic_long_inc(&vma->vm_mm->nr_ptes);
2919                 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2920                 spin_unlock(vmf->ptl);
2921                 vmf->prealloc_pte = NULL;
2922         } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
2923                 return VM_FAULT_OOM;
2924         }
2925 map_pte:
2926         /*
2927          * If a huge pmd materialized under us just retry later.  Use
2928          * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2929          * didn't become pmd_trans_huge under us and then back to pmd_none, as
2930          * a result of MADV_DONTNEED running immediately after a huge pmd fault
2931          * in a different thread of this mm, in turn leading to a misleading
2932          * pmd_trans_huge() retval.  All we have to ensure is that it is a
2933          * regular pmd that we can walk with pte_offset_map() and we can do that
2934          * through an atomic read in C, which is what pmd_trans_unstable()
2935          * provides.
2936          */
2937         if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
2938                 return VM_FAULT_NOPAGE;
2939
2940         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2941                         &vmf->ptl);
2942         return 0;
2943 }
2944
2945 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2946
2947 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2948 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2949                 unsigned long haddr)
2950 {
2951         if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2952                         (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2953                 return false;
2954         if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2955                 return false;
2956         return true;
2957 }
2958
2959 static void deposit_prealloc_pte(struct vm_fault *vmf)
2960 {
2961         struct vm_area_struct *vma = vmf->vma;
2962
2963         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2964         /*
2965          * We are going to consume the prealloc table,
2966          * count that as nr_ptes.
2967          */
2968         atomic_long_inc(&vma->vm_mm->nr_ptes);
2969         vmf->prealloc_pte = NULL;
2970 }
2971
2972 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
2973 {
2974         struct vm_area_struct *vma = vmf->vma;
2975         bool write = vmf->flags & FAULT_FLAG_WRITE;
2976         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2977         pmd_t entry;
2978         int i, ret;
2979
2980         if (!transhuge_vma_suitable(vma, haddr))
2981                 return VM_FAULT_FALLBACK;
2982
2983         ret = VM_FAULT_FALLBACK;
2984         page = compound_head(page);
2985
2986         /*
2987          * Archs like ppc64 need additonal space to store information
2988          * related to pte entry. Use the preallocated table for that.
2989          */
2990         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2991                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2992                 if (!vmf->prealloc_pte)
2993                         return VM_FAULT_OOM;
2994                 smp_wmb(); /* See comment in __pte_alloc() */
2995         }
2996
2997         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2998         if (unlikely(!pmd_none(*vmf->pmd)))
2999                 goto out;
3000
3001         for (i = 0; i < HPAGE_PMD_NR; i++)
3002                 flush_icache_page(vma, page + i);
3003
3004         entry = mk_huge_pmd(page, vma->vm_page_prot);
3005         if (write)
3006                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3007
3008         add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3009         page_add_file_rmap(page, true);
3010         /*
3011          * deposit and withdraw with pmd lock held
3012          */
3013         if (arch_needs_pgtable_deposit())
3014                 deposit_prealloc_pte(vmf);
3015
3016         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3017
3018         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3019
3020         /* fault is handled */
3021         ret = 0;
3022         count_vm_event(THP_FILE_MAPPED);
3023 out:
3024         spin_unlock(vmf->ptl);
3025         return ret;
3026 }
3027 #else
3028 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3029 {
3030         BUILD_BUG();
3031         return 0;
3032 }
3033 #endif
3034
3035 /**
3036  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3037  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3038  *
3039  * @vmf: fault environment
3040  * @memcg: memcg to charge page (only for private mappings)
3041  * @page: page to map
3042  *
3043  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3044  * return.
3045  *
3046  * Target users are page handler itself and implementations of
3047  * vm_ops->map_pages.
3048  */
3049 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3050                 struct page *page)
3051 {
3052         struct vm_area_struct *vma = vmf->vma;
3053         bool write = vmf->flags & FAULT_FLAG_WRITE;
3054         pte_t entry;
3055         int ret;
3056
3057         if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3058                         IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3059                 /* THP on COW? */
3060                 VM_BUG_ON_PAGE(memcg, page);
3061
3062                 ret = do_set_pmd(vmf, page);
3063                 if (ret != VM_FAULT_FALLBACK)
3064                         return ret;
3065         }
3066
3067         if (!vmf->pte) {
3068                 ret = pte_alloc_one_map(vmf);
3069                 if (ret)
3070                         return ret;
3071         }
3072
3073         /* Re-check under ptl */
3074         if (unlikely(!pte_none(*vmf->pte)))
3075                 return VM_FAULT_NOPAGE;
3076
3077         flush_icache_page(vma, page);
3078         entry = mk_pte(page, vma->vm_page_prot);
3079         if (write)
3080                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3081         /* copy-on-write page */
3082         if (write && !(vma->vm_flags & VM_SHARED)) {
3083                 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3084                 page_add_new_anon_rmap(page, vma, vmf->address, false);
3085                 mem_cgroup_commit_charge(page, memcg, false, false);
3086                 lru_cache_add_active_or_unevictable(page, vma);
3087         } else {
3088                 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3089                 page_add_file_rmap(page, false);
3090         }
3091         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3092
3093         /* no need to invalidate: a not-present page won't be cached */
3094         update_mmu_cache(vma, vmf->address, vmf->pte);
3095
3096         return 0;
3097 }
3098
3099
3100 /**
3101  * finish_fault - finish page fault once we have prepared the page to fault
3102  *
3103  * @vmf: structure describing the fault
3104  *
3105  * This function handles all that is needed to finish a page fault once the
3106  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3107  * given page, adds reverse page mapping, handles memcg charges and LRU
3108  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3109  * error.
3110  *
3111  * The function expects the page to be locked and on success it consumes a
3112  * reference of a page being mapped (for the PTE which maps it).
3113  */
3114 int finish_fault(struct vm_fault *vmf)
3115 {
3116         struct page *page;
3117         int ret;
3118
3119         /* Did we COW the page? */
3120         if ((vmf->flags & FAULT_FLAG_WRITE) &&
3121             !(vmf->vma->vm_flags & VM_SHARED))
3122                 page = vmf->cow_page;
3123         else
3124                 page = vmf->page;
3125         ret = alloc_set_pte(vmf, vmf->memcg, page);
3126         if (vmf->pte)
3127                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3128         return ret;
3129 }
3130
3131 static unsigned long fault_around_bytes __read_mostly =
3132         rounddown_pow_of_two(65536);
3133
3134 #ifdef CONFIG_DEBUG_FS
3135 static int fault_around_bytes_get(void *data, u64 *val)
3136 {
3137         *val = fault_around_bytes;
3138         return 0;
3139 }
3140
3141 /*
3142  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3143  * rounded down to nearest page order. It's what do_fault_around() expects to
3144  * see.
3145  */
3146 static int fault_around_bytes_set(void *data, u64 val)
3147 {
3148         if (val / PAGE_SIZE > PTRS_PER_PTE)
3149                 return -EINVAL;
3150         if (val > PAGE_SIZE)
3151                 fault_around_bytes = rounddown_pow_of_two(val);
3152         else
3153                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3154         return 0;
3155 }
3156 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3157                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3158
3159 static int __init fault_around_debugfs(void)
3160 {
3161         void *ret;
3162
3163         ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3164                         &fault_around_bytes_fops);
3165         if (!ret)
3166                 pr_warn("Failed to create fault_around_bytes in debugfs");
3167         return 0;
3168 }
3169 late_initcall(fault_around_debugfs);
3170 #endif
3171
3172 /*
3173  * do_fault_around() tries to map few pages around the fault address. The hope
3174  * is that the pages will be needed soon and this will lower the number of
3175  * faults to handle.
3176  *
3177  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3178  * not ready to be mapped: not up-to-date, locked, etc.
3179  *
3180  * This function is called with the page table lock taken. In the split ptlock
3181  * case the page table lock only protects only those entries which belong to
3182  * the page table corresponding to the fault address.
3183  *
3184  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3185  * only once.
3186  *
3187  * fault_around_pages() defines how many pages we'll try to map.
3188  * do_fault_around() expects it to return a power of two less than or equal to
3189  * PTRS_PER_PTE.
3190  *
3191  * The virtual address of the area that we map is naturally aligned to the
3192  * fault_around_pages() value (and therefore to page order).  This way it's
3193  * easier to guarantee that we don't cross page table boundaries.
3194  */
3195 static int do_fault_around(struct vm_fault *vmf)
3196 {
3197         unsigned long address = vmf->address, nr_pages, mask;
3198         pgoff_t start_pgoff = vmf->pgoff;
3199         pgoff_t end_pgoff;
3200         int off, ret = 0;
3201
3202         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3203         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3204
3205         vmf->address = max(address & mask, vmf->vma->vm_start);
3206         off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3207         start_pgoff -= off;
3208
3209         /*
3210          *  end_pgoff is either end of page table or end of vma
3211          *  or fault_around_pages() from start_pgoff, depending what is nearest.
3212          */
3213         end_pgoff = start_pgoff -
3214                 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3215                 PTRS_PER_PTE - 1;
3216         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3217                         start_pgoff + nr_pages - 1);
3218
3219         if (pmd_none(*vmf->pmd)) {
3220                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3221                                                   vmf->address);
3222                 if (!vmf->prealloc_pte)
3223                         goto out;
3224                 smp_wmb(); /* See comment in __pte_alloc() */
3225         }
3226
3227         vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3228
3229         /* Huge page is mapped? Page fault is solved */
3230         if (pmd_trans_huge(*vmf->pmd)) {
3231                 ret = VM_FAULT_NOPAGE;
3232                 goto out;
3233         }
3234
3235         /* ->map_pages() haven't done anything useful. Cold page cache? */
3236         if (!vmf->pte)
3237                 goto out;
3238
3239         /* check if the page fault is solved */
3240         vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3241         if (!pte_none(*vmf->pte))
3242                 ret = VM_FAULT_NOPAGE;
3243         pte_unmap_unlock(vmf->pte, vmf->ptl);
3244 out:
3245         vmf->address = address;
3246         vmf->pte = NULL;
3247         return ret;
3248 }
3249
3250 static int do_read_fault(struct vm_fault *vmf)
3251 {
3252         struct vm_area_struct *vma = vmf->vma;
3253         int ret = 0;
3254
3255         /*
3256          * Let's call ->map_pages() first and use ->fault() as fallback
3257          * if page by the offset is not ready to be mapped (cold cache or
3258          * something).
3259          */
3260         if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3261                 ret = do_fault_around(vmf);
3262                 if (ret)
3263                         return ret;
3264         }
3265
3266         ret = __do_fault(vmf);
3267         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3268                 return ret;
3269
3270         ret |= finish_fault(vmf);
3271         unlock_page(vmf->page);
3272         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3273                 put_page(vmf->page);
3274         return ret;
3275 }
3276
3277 static int do_cow_fault(struct vm_fault *vmf)
3278 {
3279         struct vm_area_struct *vma = vmf->vma;
3280         int ret;
3281
3282         if (unlikely(anon_vma_prepare(vma)))
3283                 return VM_FAULT_OOM;
3284
3285         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3286         if (!vmf->cow_page)
3287                 return VM_FAULT_OOM;
3288
3289         if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3290                                 &vmf->memcg, false)) {
3291                 put_page(vmf->cow_page);
3292                 return VM_FAULT_OOM;
3293         }
3294
3295         ret = __do_fault(vmf);
3296         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3297                 goto uncharge_out;
3298         if (ret & VM_FAULT_DONE_COW)
3299                 return ret;
3300
3301         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3302         __SetPageUptodate(vmf->cow_page);
3303
3304         ret |= finish_fault(vmf);
3305         unlock_page(vmf->page);
3306         put_page(vmf->page);
3307         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3308                 goto uncharge_out;
3309         return ret;
3310 uncharge_out:
3311         mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3312         put_page(vmf->cow_page);
3313         return ret;
3314 }
3315
3316 static int do_shared_fault(struct vm_fault *vmf)
3317 {
3318         struct vm_area_struct *vma = vmf->vma;
3319         int ret, tmp;
3320
3321         ret = __do_fault(vmf);
3322         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3323                 return ret;
3324
3325         /*
3326          * Check if the backing address space wants to know that the page is
3327          * about to become writable
3328          */
3329         if (vma->vm_ops->page_mkwrite) {
3330                 unlock_page(vmf->page);
3331                 tmp = do_page_mkwrite(vmf);
3332                 if (unlikely(!tmp ||
3333                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3334                         put_page(vmf->page);
3335                         return tmp;
3336                 }
3337         }
3338
3339         ret |= finish_fault(vmf);
3340         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3341                                         VM_FAULT_RETRY))) {
3342                 unlock_page(vmf->page);
3343                 put_page(vmf->page);
3344                 return ret;
3345         }
3346
3347         fault_dirty_shared_page(vma, vmf->page);
3348         return ret;
3349 }
3350
3351 /*
3352  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3353  * but allow concurrent faults).
3354  * The mmap_sem may have been released depending on flags and our
3355  * return value.  See filemap_fault() and __lock_page_or_retry().
3356  */
3357 static int do_fault(struct vm_fault *vmf)
3358 {
3359         struct vm_area_struct *vma = vmf->vma;
3360         int ret;
3361
3362         /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3363         if (!vma->vm_ops->fault)
3364                 ret = VM_FAULT_SIGBUS;
3365         else if (!(vmf->flags & FAULT_FLAG_WRITE))
3366                 ret = do_read_fault(vmf);
3367         else if (!(vma->vm_flags & VM_SHARED))
3368                 ret = do_cow_fault(vmf);
3369         else
3370                 ret = do_shared_fault(vmf);
3371
3372         /* preallocated pagetable is unused: free it */
3373         if (vmf->prealloc_pte) {
3374                 pte_free(vma->vm_mm, vmf->prealloc_pte);
3375                 vmf->prealloc_pte = NULL;
3376         }
3377         return ret;
3378 }
3379
3380 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3381                                 unsigned long addr, int page_nid,
3382                                 int *flags)
3383 {
3384         get_page(page);
3385
3386         count_vm_numa_event(NUMA_HINT_FAULTS);
3387         if (page_nid == numa_node_id()) {
3388                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3389                 *flags |= TNF_FAULT_LOCAL;
3390         }
3391
3392         return mpol_misplaced(page, vma, addr);
3393 }
3394
3395 static int do_numa_page(struct vm_fault *vmf)
3396 {
3397         struct vm_area_struct *vma = vmf->vma;
3398         struct page *page = NULL;
3399         int page_nid = -1;
3400         int last_cpupid;
3401         int target_nid;
3402         bool migrated = false;
3403         pte_t pte;
3404         bool was_writable = pte_savedwrite(vmf->orig_pte);
3405         int flags = 0;
3406
3407         /*
3408          * The "pte" at this point cannot be used safely without
3409          * validation through pte_unmap_same(). It's of NUMA type but
3410          * the pfn may be screwed if the read is non atomic.
3411          */
3412         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3413         spin_lock(vmf->ptl);
3414         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3415                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3416                 goto out;
3417         }
3418
3419         /*
3420          * Make it present again, Depending on how arch implementes non
3421          * accessible ptes, some can allow access by kernel mode.
3422          */
3423         pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3424         pte = pte_modify(pte, vma->vm_page_prot);
3425         pte = pte_mkyoung(pte);
3426         if (was_writable)
3427                 pte = pte_mkwrite(pte);
3428         ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3429         update_mmu_cache(vma, vmf->address, vmf->pte);
3430
3431         page = vm_normal_page(vma, vmf->address, pte);
3432         if (!page) {
3433                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3434                 return 0;
3435         }
3436
3437         /* TODO: handle PTE-mapped THP */
3438         if (PageCompound(page)) {
3439                 pte_unmap_unlock(vmf->pte, vmf->ptl);
3440                 return 0;
3441         }
3442
3443         /*
3444          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3445          * much anyway since they can be in shared cache state. This misses
3446          * the case where a mapping is writable but the process never writes
3447          * to it but pte_write gets cleared during protection updates and
3448          * pte_dirty has unpredictable behaviour between PTE scan updates,
3449          * background writeback, dirty balancing and application behaviour.
3450          */
3451         if (!pte_write(pte))
3452                 flags |= TNF_NO_GROUP;
3453
3454         /*
3455          * Flag if the page is shared between multiple address spaces. This
3456          * is later used when determining whether to group tasks together
3457          */
3458         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3459                 flags |= TNF_SHARED;
3460
3461         last_cpupid = page_cpupid_last(page);
3462         page_nid = page_to_nid(page);
3463         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3464                         &flags);
3465         pte_unmap_unlock(vmf->pte, vmf->ptl);
3466         if (target_nid == -1) {
3467                 put_page(page);
3468                 goto out;
3469         }
3470
3471         /* Migrate to the requested node */
3472         migrated = migrate_misplaced_page(page, vma, target_nid);
3473         if (migrated) {
3474                 page_nid = target_nid;
3475                 flags |= TNF_MIGRATED;
3476         } else
3477                 flags |= TNF_MIGRATE_FAIL;
3478
3479 out:
3480         if (page_nid != -1)
3481                 task_numa_fault(last_cpupid, page_nid, 1, flags);
3482         return 0;
3483 }
3484
3485 static int create_huge_pmd(struct vm_fault *vmf)
3486 {
3487         if (vma_is_anonymous(vmf->vma))
3488                 return do_huge_pmd_anonymous_page(vmf);
3489         if (vmf->vma->vm_ops->huge_fault)
3490                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3491         return VM_FAULT_FALLBACK;
3492 }
3493
3494 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3495 {
3496         if (vma_is_anonymous(vmf->vma))
3497                 return do_huge_pmd_wp_page(vmf, orig_pmd);
3498         if (vmf->vma->vm_ops->huge_fault)
3499                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3500
3501         /* COW handled on pte level: split pmd */
3502         VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3503         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3504
3505         return VM_FAULT_FALLBACK;
3506 }
3507
3508 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3509 {
3510         return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3511 }
3512
3513 static int create_huge_pud(struct vm_fault *vmf)
3514 {
3515 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3516         /* No support for anonymous transparent PUD pages yet */
3517         if (vma_is_anonymous(vmf->vma))
3518                 return VM_FAULT_FALLBACK;
3519         if (vmf->vma->vm_ops->huge_fault)
3520                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3521 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3522         return VM_FAULT_FALLBACK;
3523 }
3524
3525 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3526 {
3527 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3528         /* No support for anonymous transparent PUD pages yet */
3529         if (vma_is_anonymous(vmf->vma))
3530                 return VM_FAULT_FALLBACK;
3531         if (vmf->vma->vm_ops->huge_fault)
3532                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3533 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3534         return VM_FAULT_FALLBACK;
3535 }
3536
3537 /*
3538  * These routines also need to handle stuff like marking pages dirty
3539  * and/or accessed for architectures that don't do it in hardware (most
3540  * RISC architectures).  The early dirtying is also good on the i386.
3541  *
3542  * There is also a hook called "update_mmu_cache()" that architectures
3543  * with external mmu caches can use to update those (ie the Sparc or
3544  * PowerPC hashed page tables that act as extended TLBs).
3545  *
3546  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3547  * concurrent faults).
3548  *
3549  * The mmap_sem may have been released depending on flags and our return value.
3550  * See filemap_fault() and __lock_page_or_retry().
3551  */
3552 static int handle_pte_fault(struct vm_fault *vmf)
3553 {
3554         pte_t entry;
3555
3556         if (unlikely(pmd_none(*vmf->pmd))) {
3557                 /*
3558                  * Leave __pte_alloc() until later: because vm_ops->fault may
3559                  * want to allocate huge page, and if we expose page table
3560                  * for an instant, it will be difficult to retract from
3561                  * concurrent faults and from rmap lookups.
3562                  */
3563                 vmf->pte = NULL;
3564         } else {
3565                 /* See comment in pte_alloc_one_map() */
3566                 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3567                         return 0;
3568                 /*
3569                  * A regular pmd is established and it can't morph into a huge
3570                  * pmd from under us anymore at this point because we hold the
3571                  * mmap_sem read mode and khugepaged takes it in write mode.
3572                  * So now it's safe to run pte_offset_map().
3573                  */
3574                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3575                 vmf->orig_pte = *vmf->pte;
3576
3577                 /*
3578                  * some architectures can have larger ptes than wordsize,
3579                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3580                  * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3581                  * atomic accesses.  The code below just needs a consistent
3582                  * view for the ifs and we later double check anyway with the
3583                  * ptl lock held. So here a barrier will do.
3584                  */
3585                 barrier();
3586                 if (pte_none(vmf->orig_pte)) {
3587                         pte_unmap(vmf->pte);
3588                         vmf->pte = NULL;
3589                 }
3590         }
3591
3592         if (!vmf->pte) {
3593                 if (vma_is_anonymous(vmf->vma))
3594                         return do_anonymous_page(vmf);
3595                 else
3596                         return do_fault(vmf);
3597         }
3598
3599         if (!pte_present(vmf->orig_pte))
3600                 return do_swap_page(vmf);
3601
3602         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3603                 return do_numa_page(vmf);
3604
3605         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3606         spin_lock(vmf->ptl);
3607         entry = vmf->orig_pte;
3608         if (unlikely(!pte_same(*vmf->pte, entry)))
3609                 goto unlock;
3610         if (vmf->flags & FAULT_FLAG_WRITE) {
3611                 if (!pte_write(entry))
3612                         return do_wp_page(vmf);
3613                 entry = pte_mkdirty(entry);
3614         }
3615         entry = pte_mkyoung(entry);
3616         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3617                                 vmf->flags & FAULT_FLAG_WRITE)) {
3618                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3619         } else {
3620                 /*
3621                  * This is needed only for protection faults but the arch code
3622                  * is not yet telling us if this is a protection fault or not.
3623                  * This still avoids useless tlb flushes for .text page faults
3624                  * with threads.
3625                  */
3626                 if (vmf->flags & FAULT_FLAG_WRITE)
3627                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3628         }
3629 unlock:
3630         pte_unmap_unlock(vmf->pte, vmf->ptl);
3631         return 0;
3632 }
3633
3634 /*
3635  * By the time we get here, we already hold the mm semaphore
3636  *
3637  * The mmap_sem may have been released depending on flags and our
3638  * return value.  See filemap_fault() and __lock_page_or_retry().
3639  */
3640 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3641                 unsigned int flags)
3642 {
3643         struct vm_fault vmf = {
3644                 .vma = vma,
3645                 .address = address & PAGE_MASK,
3646                 .flags = flags,
3647                 .pgoff = linear_page_index(vma, address),
3648                 .gfp_mask = __get_fault_gfp_mask(vma),
3649         };
3650         struct mm_struct *mm = vma->vm_mm;
3651         pgd_t *pgd;
3652         int ret;
3653
3654         pgd = pgd_offset(mm, address);
3655
3656         vmf.pud = pud_alloc(mm, pgd, address);
3657         if (!vmf.pud)
3658                 return VM_FAULT_OOM;
3659         if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3660                 ret = create_huge_pud(&vmf);
3661                 if (!(ret & VM_FAULT_FALLBACK))
3662                         return ret;
3663         } else {
3664                 pud_t orig_pud = *vmf.pud;
3665
3666                 barrier();
3667                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3668                         unsigned int dirty = flags & FAULT_FLAG_WRITE;
3669
3670                         /* NUMA case for anonymous PUDs would go here */
3671
3672                         if (dirty && !pud_write(orig_pud)) {
3673                                 ret = wp_huge_pud(&vmf, orig_pud);
3674                                 if (!(ret & VM_FAULT_FALLBACK))
3675                                         return ret;
3676                         } else {
3677                                 huge_pud_set_accessed(&vmf, orig_pud);
3678                                 return 0;
3679                         }
3680                 }
3681         }
3682
3683         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3684         if (!vmf.pmd)
3685                 return VM_FAULT_OOM;
3686         if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3687                 ret = create_huge_pmd(&vmf);
3688                 if (!(ret & VM_FAULT_FALLBACK))
3689                         return ret;
3690         } else {
3691                 pmd_t orig_pmd = *vmf.pmd;
3692
3693                 barrier();
3694                 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3695                         if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3696                                 return do_huge_pmd_numa_page(&vmf, orig_pmd);
3697
3698                         if ((vmf.flags & FAULT_FLAG_WRITE) &&
3699                                         !pmd_write(orig_pmd)) {
3700                                 ret = wp_huge_pmd(&vmf, orig_pmd);
3701                                 if (!(ret & VM_FAULT_FALLBACK))
3702                                         return ret;
3703                         } else {
3704                                 huge_pmd_set_accessed(&vmf, orig_pmd);
3705                                 return 0;
3706                         }
3707                 }
3708         }
3709
3710         return handle_pte_fault(&vmf);
3711 }
3712
3713 /*
3714  * By the time we get here, we already hold the mm semaphore
3715  *
3716  * The mmap_sem may have been released depending on flags and our
3717  * return value.  See filemap_fault() and __lock_page_or_retry().
3718  */
3719 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3720                 unsigned int flags)
3721 {
3722         int ret;
3723
3724         __set_current_state(TASK_RUNNING);
3725
3726         count_vm_event(PGFAULT);
3727         mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3728
3729         /* do counter updates before entering really critical section. */
3730         check_sync_rss_stat(current);
3731
3732         /*
3733          * Enable the memcg OOM handling for faults triggered in user
3734          * space.  Kernel faults are handled more gracefully.
3735          */
3736         if (flags & FAULT_FLAG_USER)
3737                 mem_cgroup_oom_enable();
3738
3739         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3740                                             flags & FAULT_FLAG_INSTRUCTION,
3741                                             flags & FAULT_FLAG_REMOTE))
3742                 return VM_FAULT_SIGSEGV;
3743
3744         if (unlikely(is_vm_hugetlb_page(vma)))
3745                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3746         else
3747                 ret = __handle_mm_fault(vma, address, flags);
3748
3749         if (flags & FAULT_FLAG_USER) {
3750                 mem_cgroup_oom_disable();
3751                 /*
3752                  * The task may have entered a memcg OOM situation but
3753                  * if the allocation error was handled gracefully (no
3754                  * VM_FAULT_OOM), there is no need to kill anything.
3755                  * Just clean up the OOM state peacefully.
3756                  */
3757                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3758                         mem_cgroup_oom_synchronize(false);
3759         }
3760
3761         /*
3762          * This mm has been already reaped by the oom reaper and so the
3763          * refault cannot be trusted in general. Anonymous refaults would
3764          * lose data and give a zero page instead e.g. This is especially
3765          * problem for use_mm() because regular tasks will just die and
3766          * the corrupted data will not be visible anywhere while kthread
3767          * will outlive the oom victim and potentially propagate the date
3768          * further.
3769          */
3770         if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3771                                 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3772                 ret = VM_FAULT_SIGBUS;
3773
3774         return ret;
3775 }
3776 EXPORT_SYMBOL_GPL(handle_mm_fault);
3777
3778 #ifndef __PAGETABLE_PUD_FOLDED
3779 /*
3780  * Allocate page upper directory.
3781  * We've already handled the fast-path in-line.
3782  */
3783 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3784 {
3785         pud_t *new = pud_alloc_one(mm, address);
3786         if (!new)
3787                 return -ENOMEM;
3788
3789         smp_wmb(); /* See comment in __pte_alloc */
3790
3791         spin_lock(&mm->page_table_lock);
3792         if (pgd_present(*pgd))          /* Another has populated it */
3793                 pud_free(mm, new);
3794         else
3795                 pgd_populate(mm, pgd, new);
3796         spin_unlock(&mm->page_table_lock);
3797         return 0;
3798 }
3799 #endif /* __PAGETABLE_PUD_FOLDED */
3800
3801 #ifndef __PAGETABLE_PMD_FOLDED
3802 /*
3803  * Allocate page middle directory.
3804  * We've already handled the fast-path in-line.
3805  */
3806 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3807 {
3808         spinlock_t *ptl;
3809         pmd_t *new = pmd_alloc_one(mm, address);
3810         if (!new)
3811                 return -ENOMEM;
3812
3813         smp_wmb(); /* See comment in __pte_alloc */
3814
3815         ptl = pud_lock(mm, pud);
3816 #ifndef __ARCH_HAS_4LEVEL_HACK
3817         if (!pud_present(*pud)) {
3818                 mm_inc_nr_pmds(mm);
3819                 pud_populate(mm, pud, new);
3820         } else  /* Another has populated it */
3821                 pmd_free(mm, new);
3822 #else
3823         if (!pgd_present(*pud)) {
3824                 mm_inc_nr_pmds(mm);
3825                 pgd_populate(mm, pud, new);
3826         } else /* Another has populated it */
3827                 pmd_free(mm, new);
3828 #endif /* __ARCH_HAS_4LEVEL_HACK */
3829         spin_unlock(ptl);
3830         return 0;
3831 }
3832 #endif /* __PAGETABLE_PMD_FOLDED */
3833
3834 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3835                 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3836 {
3837         pgd_t *pgd;
3838         pud_t *pud;
3839         pmd_t *pmd;
3840         pte_t *ptep;
3841
3842         pgd = pgd_offset(mm, address);
3843         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3844                 goto out;
3845
3846         pud = pud_offset(pgd, address);
3847         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3848                 goto out;
3849
3850         pmd = pmd_offset(pud, address);
3851         VM_BUG_ON(pmd_trans_huge(*pmd));
3852
3853         if (pmd_huge(*pmd)) {
3854                 if (!pmdpp)
3855                         goto out;
3856
3857                 *ptlp = pmd_lock(mm, pmd);
3858                 if (pmd_huge(*pmd)) {
3859                         *pmdpp = pmd;
3860                         return 0;
3861                 }
3862                 spin_unlock(*ptlp);
3863         }
3864
3865         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3866                 goto out;
3867
3868         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3869         if (!ptep)
3870                 goto out;
3871         if (!pte_present(*ptep))
3872                 goto unlock;
3873         *ptepp = ptep;
3874         return 0;
3875 unlock:
3876         pte_unmap_unlock(ptep, *ptlp);
3877 out:
3878         return -EINVAL;
3879 }
3880
3881 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3882                              pte_t **ptepp, spinlock_t **ptlp)
3883 {
3884         int res;
3885
3886         /* (void) is needed to make gcc happy */
3887         (void) __cond_lock(*ptlp,
3888                            !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3889                                            ptlp)));
3890         return res;
3891 }
3892
3893 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3894                              pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3895 {
3896         int res;
3897
3898         /* (void) is needed to make gcc happy */
3899         (void) __cond_lock(*ptlp,
3900                            !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3901                                            ptlp)));
3902         return res;
3903 }
3904 EXPORT_SYMBOL(follow_pte_pmd);
3905
3906 /**
3907  * follow_pfn - look up PFN at a user virtual address
3908  * @vma: memory mapping
3909  * @address: user virtual address
3910  * @pfn: location to store found PFN
3911  *
3912  * Only IO mappings and raw PFN mappings are allowed.
3913  *
3914  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3915  */
3916 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3917         unsigned long *pfn)
3918 {
3919         int ret = -EINVAL;
3920         spinlock_t *ptl;
3921         pte_t *ptep;
3922
3923         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3924                 return ret;
3925
3926         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3927         if (ret)
3928                 return ret;
3929         *pfn = pte_pfn(*ptep);
3930         pte_unmap_unlock(ptep, ptl);
3931         return 0;
3932 }
3933 EXPORT_SYMBOL(follow_pfn);
3934
3935 #ifdef CONFIG_HAVE_IOREMAP_PROT
3936 int follow_phys(struct vm_area_struct *vma,
3937                 unsigned long address, unsigned int flags,
3938                 unsigned long *prot, resource_size_t *phys)
3939 {
3940         int ret = -EINVAL;
3941         pte_t *ptep, pte;
3942         spinlock_t *ptl;
3943
3944         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3945                 goto out;
3946
3947         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3948                 goto out;
3949         pte = *ptep;
3950
3951         if ((flags & FOLL_WRITE) && !pte_write(pte))
3952                 goto unlock;
3953
3954         *prot = pgprot_val(pte_pgprot(pte));
3955         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3956
3957         ret = 0;
3958 unlock:
3959         pte_unmap_unlock(ptep, ptl);
3960 out:
3961         return ret;
3962 }
3963
3964 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3965                         void *buf, int len, int write)
3966 {
3967         resource_size_t phys_addr;
3968         unsigned long prot = 0;
3969         void __iomem *maddr;
3970         int offset = addr & (PAGE_SIZE-1);
3971
3972         if (follow_phys(vma, addr, write, &prot, &phys_addr))
3973                 return -EINVAL;
3974
3975         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3976         if (write)
3977                 memcpy_toio(maddr + offset, buf, len);
3978         else
3979                 memcpy_fromio(buf, maddr + offset, len);
3980         iounmap(maddr);
3981
3982         return len;
3983 }
3984 EXPORT_SYMBOL_GPL(generic_access_phys);
3985 #endif
3986
3987 /*
3988  * Access another process' address space as given in mm.  If non-NULL, use the
3989  * given task for page fault accounting.
3990  */
3991 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3992                 unsigned long addr, void *buf, int len, unsigned int gup_flags)
3993 {
3994         struct vm_area_struct *vma;
3995         void *old_buf = buf;
3996         int write = gup_flags & FOLL_WRITE;
3997
3998         down_read(&mm->mmap_sem);
3999         /* ignore errors, just check how much was successfully transferred */
4000         while (len) {
4001                 int bytes, ret, offset;
4002                 void *maddr;
4003                 struct page *page = NULL;
4004
4005                 ret = get_user_pages_remote(tsk, mm, addr, 1,
4006                                 gup_flags, &page, &vma, NULL);
4007                 if (ret <= 0) {
4008 #ifndef CONFIG_HAVE_IOREMAP_PROT
4009                         break;
4010 #else
4011                         /*
4012                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
4013                          * we can access using slightly different code.
4014                          */
4015                         vma = find_vma(mm, addr);
4016                         if (!vma || vma->vm_start > addr)
4017                                 break;
4018                         if (vma->vm_ops && vma->vm_ops->access)
4019                                 ret = vma->vm_ops->access(vma, addr, buf,
4020                                                           len, write);
4021                         if (ret <= 0)
4022                                 break;
4023                         bytes = ret;
4024 #endif
4025                 } else {
4026                         bytes = len;
4027                         offset = addr & (PAGE_SIZE-1);
4028                         if (bytes > PAGE_SIZE-offset)
4029                                 bytes = PAGE_SIZE-offset;
4030
4031                         maddr = kmap(page);
4032                         if (write) {
4033                                 copy_to_user_page(vma, page, addr,
4034                                                   maddr + offset, buf, bytes);
4035                                 set_page_dirty_lock(page);
4036                         } else {
4037                                 copy_from_user_page(vma, page, addr,
4038                                                     buf, maddr + offset, bytes);
4039                         }
4040                         kunmap(page);
4041                         put_page(page);
4042                 }
4043                 len -= bytes;
4044                 buf += bytes;
4045                 addr += bytes;
4046         }
4047         up_read(&mm->mmap_sem);
4048
4049         return buf - old_buf;
4050 }
4051
4052 /**
4053  * access_remote_vm - access another process' address space
4054  * @mm:         the mm_struct of the target address space
4055  * @addr:       start address to access
4056  * @buf:        source or destination buffer
4057  * @len:        number of bytes to transfer
4058  * @gup_flags:  flags modifying lookup behaviour
4059  *
4060  * The caller must hold a reference on @mm.
4061  */
4062 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4063                 void *buf, int len, unsigned int gup_flags)
4064 {
4065         return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4066 }
4067
4068 /*
4069  * Access another process' address space.
4070  * Source/target buffer must be kernel space,
4071  * Do not walk the page table directly, use get_user_pages
4072  */
4073 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4074                 void *buf, int len, unsigned int gup_flags)
4075 {
4076         struct mm_struct *mm;
4077         int ret;
4078
4079         mm = get_task_mm(tsk);
4080         if (!mm)
4081                 return 0;
4082
4083         ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4084
4085         mmput(mm);
4086
4087         return ret;
4088 }
4089 EXPORT_SYMBOL_GPL(access_process_vm);
4090
4091 /*
4092  * Print the name of a VMA.
4093  */
4094 void print_vma_addr(char *prefix, unsigned long ip)
4095 {
4096         struct mm_struct *mm = current->mm;
4097         struct vm_area_struct *vma;
4098
4099         /*
4100          * Do not print if we are in atomic
4101          * contexts (in exception stacks, etc.):
4102          */
4103         if (preempt_count())
4104                 return;
4105
4106         down_read(&mm->mmap_sem);
4107         vma = find_vma(mm, ip);
4108         if (vma && vma->vm_file) {
4109                 struct file *f = vma->vm_file;
4110                 char *buf = (char *)__get_free_page(GFP_KERNEL);
4111                 if (buf) {
4112                         char *p;
4113
4114                         p = file_path(f, buf, PAGE_SIZE);
4115                         if (IS_ERR(p))
4116                                 p = "?";
4117                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4118                                         vma->vm_start,
4119                                         vma->vm_end - vma->vm_start);
4120                         free_page((unsigned long)buf);
4121                 }
4122         }
4123         up_read(&mm->mmap_sem);
4124 }
4125
4126 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4127 void __might_fault(const char *file, int line)
4128 {
4129         /*
4130          * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4131          * holding the mmap_sem, this is safe because kernel memory doesn't
4132          * get paged out, therefore we'll never actually fault, and the
4133          * below annotations will generate false positives.
4134          */
4135         if (segment_eq(get_fs(), KERNEL_DS))
4136                 return;
4137         if (pagefault_disabled())
4138                 return;
4139         __might_sleep(file, line, 0);
4140 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4141         if (current->mm)
4142                 might_lock_read(&current->mm->mmap_sem);
4143 #endif
4144 }
4145 EXPORT_SYMBOL(__might_fault);
4146 #endif
4147
4148 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4149 static void clear_gigantic_page(struct page *page,
4150                                 unsigned long addr,
4151                                 unsigned int pages_per_huge_page)
4152 {
4153         int i;
4154         struct page *p = page;
4155
4156         might_sleep();
4157         for (i = 0; i < pages_per_huge_page;
4158              i++, p = mem_map_next(p, page, i)) {
4159                 cond_resched();
4160                 clear_user_highpage(p, addr + i * PAGE_SIZE);
4161         }
4162 }
4163 void clear_huge_page(struct page *page,
4164                      unsigned long addr, unsigned int pages_per_huge_page)
4165 {
4166         int i;
4167
4168         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4169                 clear_gigantic_page(page, addr, pages_per_huge_page);
4170                 return;
4171         }
4172
4173         might_sleep();
4174         for (i = 0; i < pages_per_huge_page; i++) {
4175                 cond_resched();
4176                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4177         }
4178 }
4179
4180 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4181                                     unsigned long addr,
4182                                     struct vm_area_struct *vma,
4183                                     unsigned int pages_per_huge_page)
4184 {
4185         int i;
4186         struct page *dst_base = dst;
4187         struct page *src_base = src;
4188
4189         for (i = 0; i < pages_per_huge_page; ) {
4190                 cond_resched();
4191                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4192
4193                 i++;
4194                 dst = mem_map_next(dst, dst_base, i);
4195                 src = mem_map_next(src, src_base, i);
4196         }
4197 }
4198
4199 void copy_user_huge_page(struct page *dst, struct page *src,
4200                          unsigned long addr, struct vm_area_struct *vma,
4201                          unsigned int pages_per_huge_page)
4202 {
4203         int i;
4204
4205         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4206                 copy_user_gigantic_page(dst, src, addr, vma,
4207                                         pages_per_huge_page);
4208                 return;
4209         }
4210
4211         might_sleep();
4212         for (i = 0; i < pages_per_huge_page; i++) {
4213                 cond_resched();
4214                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4215         }
4216 }
4217
4218 long copy_huge_page_from_user(struct page *dst_page,
4219                                 const void __user *usr_src,
4220                                 unsigned int pages_per_huge_page,
4221                                 bool allow_pagefault)
4222 {
4223         void *src = (void *)usr_src;
4224         void *page_kaddr;
4225         unsigned long i, rc = 0;
4226         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4227
4228         for (i = 0; i < pages_per_huge_page; i++) {
4229                 if (allow_pagefault)
4230                         page_kaddr = kmap(dst_page + i);
4231                 else
4232                         page_kaddr = kmap_atomic(dst_page + i);
4233                 rc = copy_from_user(page_kaddr,
4234                                 (const void __user *)(src + i * PAGE_SIZE),
4235                                 PAGE_SIZE);
4236                 if (allow_pagefault)
4237                         kunmap(dst_page + i);
4238                 else
4239                         kunmap_atomic(page_kaddr);
4240
4241                 ret_val -= (PAGE_SIZE - rc);
4242                 if (rc)
4243                         break;
4244
4245                 cond_resched();
4246         }
4247         return ret_val;
4248 }
4249 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4250
4251 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4252
4253 static struct kmem_cache *page_ptl_cachep;
4254
4255 void __init ptlock_cache_init(void)
4256 {
4257         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4258                         SLAB_PANIC, NULL);
4259 }
4260
4261 bool ptlock_alloc(struct page *page)
4262 {
4263         spinlock_t *ptl;
4264
4265         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4266         if (!ptl)
4267                 return false;
4268         page->ptl = ptl;
4269         return true;
4270 }
4271
4272 void ptlock_free(struct page *page)
4273 {
4274         kmem_cache_free(page_ptl_cachep, page->ptl);
4275 }
4276 #endif