memcg: change try_to_free_pages to hierarchical_reclaim
[sfrench/cifs-2.6.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
34 #include <linux/fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
39 #include "internal.h"
40
41 #include <asm/uaccess.h>
42
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
44 #define MEM_CGROUP_RECLAIM_RETRIES      5
45
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly;
49 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50 #else
51 #define do_swap_account         (0)
52 #endif
53
54 static DEFINE_MUTEX(memcg_tasklist);    /* can be hold under cgroup_mutex */
55
56 /*
57  * Statistics for memory cgroup.
58  */
59 enum mem_cgroup_stat_index {
60         /*
61          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62          */
63         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
64         MEM_CGROUP_STAT_RSS,       /* # of pages charged as rss */
65         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
66         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
67
68         MEM_CGROUP_STAT_NSTATS,
69 };
70
71 struct mem_cgroup_stat_cpu {
72         s64 count[MEM_CGROUP_STAT_NSTATS];
73 } ____cacheline_aligned_in_smp;
74
75 struct mem_cgroup_stat {
76         struct mem_cgroup_stat_cpu cpustat[0];
77 };
78
79 /*
80  * For accounting under irq disable, no need for increment preempt count.
81  */
82 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
83                 enum mem_cgroup_stat_index idx, int val)
84 {
85         stat->count[idx] += val;
86 }
87
88 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89                 enum mem_cgroup_stat_index idx)
90 {
91         int cpu;
92         s64 ret = 0;
93         for_each_possible_cpu(cpu)
94                 ret += stat->cpustat[cpu].count[idx];
95         return ret;
96 }
97
98 /*
99  * per-zone information in memory controller.
100  */
101 struct mem_cgroup_per_zone {
102         /*
103          * spin_lock to protect the per cgroup LRU
104          */
105         struct list_head        lists[NR_LRU_LISTS];
106         unsigned long           count[NR_LRU_LISTS];
107
108         struct zone_reclaim_stat reclaim_stat;
109 };
110 /* Macro for accessing counter */
111 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
112
113 struct mem_cgroup_per_node {
114         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115 };
116
117 struct mem_cgroup_lru_info {
118         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119 };
120
121 /*
122  * The memory controller data structure. The memory controller controls both
123  * page cache and RSS per cgroup. We would eventually like to provide
124  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125  * to help the administrator determine what knobs to tune.
126  *
127  * TODO: Add a water mark for the memory controller. Reclaim will begin when
128  * we hit the water mark. May be even add a low water mark, such that
129  * no reclaim occurs from a cgroup at it's low water mark, this is
130  * a feature that will be implemented much later in the future.
131  */
132 struct mem_cgroup {
133         struct cgroup_subsys_state css;
134         /*
135          * the counter to account for memory usage
136          */
137         struct res_counter res;
138         /*
139          * the counter to account for mem+swap usage.
140          */
141         struct res_counter memsw;
142         /*
143          * Per cgroup active and inactive list, similar to the
144          * per zone LRU lists.
145          */
146         struct mem_cgroup_lru_info info;
147
148         /*
149           protect against reclaim related member.
150         */
151         spinlock_t reclaim_param_lock;
152
153         int     prev_priority;  /* for recording reclaim priority */
154
155         /*
156          * While reclaiming in a hiearchy, we cache the last child we
157          * reclaimed from. Protected by cgroup_lock()
158          */
159         struct mem_cgroup *last_scanned_child;
160         /*
161          * Should the accounting and control be hierarchical, per subtree?
162          */
163         bool use_hierarchy;
164         unsigned long   last_oom_jiffies;
165         int             obsolete;
166         atomic_t        refcnt;
167
168         unsigned int    swappiness;
169
170         /*
171          * statistics. This must be placed at the end of memcg.
172          */
173         struct mem_cgroup_stat stat;
174 };
175
176 enum charge_type {
177         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
178         MEM_CGROUP_CHARGE_TYPE_MAPPED,
179         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
180         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
181         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
182         NR_CHARGE_TYPE,
183 };
184
185 /* only for here (for easy reading.) */
186 #define PCGF_CACHE      (1UL << PCG_CACHE)
187 #define PCGF_USED       (1UL << PCG_USED)
188 #define PCGF_LOCK       (1UL << PCG_LOCK)
189 static const unsigned long
190 pcg_default_flags[NR_CHARGE_TYPE] = {
191         PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
192         PCGF_USED | PCGF_LOCK, /* Anon */
193         PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
194         0, /* FORCE */
195 };
196
197 /* for encoding cft->private value on file */
198 #define _MEM                    (0)
199 #define _MEMSWAP                (1)
200 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
201 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
202 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
203
204 static void mem_cgroup_get(struct mem_cgroup *mem);
205 static void mem_cgroup_put(struct mem_cgroup *mem);
206
207 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
208                                          struct page_cgroup *pc,
209                                          bool charge)
210 {
211         int val = (charge)? 1 : -1;
212         struct mem_cgroup_stat *stat = &mem->stat;
213         struct mem_cgroup_stat_cpu *cpustat;
214         int cpu = get_cpu();
215
216         cpustat = &stat->cpustat[cpu];
217         if (PageCgroupCache(pc))
218                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
219         else
220                 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
221
222         if (charge)
223                 __mem_cgroup_stat_add_safe(cpustat,
224                                 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
225         else
226                 __mem_cgroup_stat_add_safe(cpustat,
227                                 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
228         put_cpu();
229 }
230
231 static struct mem_cgroup_per_zone *
232 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
233 {
234         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
235 }
236
237 static struct mem_cgroup_per_zone *
238 page_cgroup_zoneinfo(struct page_cgroup *pc)
239 {
240         struct mem_cgroup *mem = pc->mem_cgroup;
241         int nid = page_cgroup_nid(pc);
242         int zid = page_cgroup_zid(pc);
243
244         if (!mem)
245                 return NULL;
246
247         return mem_cgroup_zoneinfo(mem, nid, zid);
248 }
249
250 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
251                                         enum lru_list idx)
252 {
253         int nid, zid;
254         struct mem_cgroup_per_zone *mz;
255         u64 total = 0;
256
257         for_each_online_node(nid)
258                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
259                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
260                         total += MEM_CGROUP_ZSTAT(mz, idx);
261                 }
262         return total;
263 }
264
265 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
266 {
267         return container_of(cgroup_subsys_state(cont,
268                                 mem_cgroup_subsys_id), struct mem_cgroup,
269                                 css);
270 }
271
272 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
273 {
274         /*
275          * mm_update_next_owner() may clear mm->owner to NULL
276          * if it races with swapoff, page migration, etc.
277          * So this can be called with p == NULL.
278          */
279         if (unlikely(!p))
280                 return NULL;
281
282         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
283                                 struct mem_cgroup, css);
284 }
285
286 /*
287  * Following LRU functions are allowed to be used without PCG_LOCK.
288  * Operations are called by routine of global LRU independently from memcg.
289  * What we have to take care of here is validness of pc->mem_cgroup.
290  *
291  * Changes to pc->mem_cgroup happens when
292  * 1. charge
293  * 2. moving account
294  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
295  * It is added to LRU before charge.
296  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
297  * When moving account, the page is not on LRU. It's isolated.
298  */
299
300 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
301 {
302         struct page_cgroup *pc;
303         struct mem_cgroup *mem;
304         struct mem_cgroup_per_zone *mz;
305
306         if (mem_cgroup_disabled())
307                 return;
308         pc = lookup_page_cgroup(page);
309         /* can happen while we handle swapcache. */
310         if (list_empty(&pc->lru))
311                 return;
312         mz = page_cgroup_zoneinfo(pc);
313         mem = pc->mem_cgroup;
314         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
315         list_del_init(&pc->lru);
316         return;
317 }
318
319 void mem_cgroup_del_lru(struct page *page)
320 {
321         mem_cgroup_del_lru_list(page, page_lru(page));
322 }
323
324 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
325 {
326         struct mem_cgroup_per_zone *mz;
327         struct page_cgroup *pc;
328
329         if (mem_cgroup_disabled())
330                 return;
331
332         pc = lookup_page_cgroup(page);
333         smp_rmb();
334         /* unused page is not rotated. */
335         if (!PageCgroupUsed(pc))
336                 return;
337         mz = page_cgroup_zoneinfo(pc);
338         list_move(&pc->lru, &mz->lists[lru]);
339 }
340
341 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
342 {
343         struct page_cgroup *pc;
344         struct mem_cgroup_per_zone *mz;
345
346         if (mem_cgroup_disabled())
347                 return;
348         pc = lookup_page_cgroup(page);
349         /* barrier to sync with "charge" */
350         smp_rmb();
351         if (!PageCgroupUsed(pc))
352                 return;
353
354         mz = page_cgroup_zoneinfo(pc);
355         MEM_CGROUP_ZSTAT(mz, lru) += 1;
356         list_add(&pc->lru, &mz->lists[lru]);
357 }
358 /*
359  * To add swapcache into LRU. Be careful to all this function.
360  * zone->lru_lock shouldn't be held and irq must not be disabled.
361  */
362 static void mem_cgroup_lru_fixup(struct page *page)
363 {
364         if (!isolate_lru_page(page))
365                 putback_lru_page(page);
366 }
367
368 void mem_cgroup_move_lists(struct page *page,
369                            enum lru_list from, enum lru_list to)
370 {
371         if (mem_cgroup_disabled())
372                 return;
373         mem_cgroup_del_lru_list(page, from);
374         mem_cgroup_add_lru_list(page, to);
375 }
376
377 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
378 {
379         int ret;
380
381         task_lock(task);
382         ret = task->mm && mm_match_cgroup(task->mm, mem);
383         task_unlock(task);
384         return ret;
385 }
386
387 /*
388  * Calculate mapped_ratio under memory controller. This will be used in
389  * vmscan.c for deteremining we have to reclaim mapped pages.
390  */
391 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
392 {
393         long total, rss;
394
395         /*
396          * usage is recorded in bytes. But, here, we assume the number of
397          * physical pages can be represented by "long" on any arch.
398          */
399         total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
400         rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
401         return (int)((rss * 100L) / total);
402 }
403
404 /*
405  * prev_priority control...this will be used in memory reclaim path.
406  */
407 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
408 {
409         int prev_priority;
410
411         spin_lock(&mem->reclaim_param_lock);
412         prev_priority = mem->prev_priority;
413         spin_unlock(&mem->reclaim_param_lock);
414
415         return prev_priority;
416 }
417
418 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
419 {
420         spin_lock(&mem->reclaim_param_lock);
421         if (priority < mem->prev_priority)
422                 mem->prev_priority = priority;
423         spin_unlock(&mem->reclaim_param_lock);
424 }
425
426 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
427 {
428         spin_lock(&mem->reclaim_param_lock);
429         mem->prev_priority = priority;
430         spin_unlock(&mem->reclaim_param_lock);
431 }
432
433 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
434 {
435         unsigned long active;
436         unsigned long inactive;
437         unsigned long gb;
438         unsigned long inactive_ratio;
439
440         inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
441         active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
442
443         gb = (inactive + active) >> (30 - PAGE_SHIFT);
444         if (gb)
445                 inactive_ratio = int_sqrt(10 * gb);
446         else
447                 inactive_ratio = 1;
448
449         if (present_pages) {
450                 present_pages[0] = inactive;
451                 present_pages[1] = active;
452         }
453
454         return inactive_ratio;
455 }
456
457 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
458 {
459         unsigned long active;
460         unsigned long inactive;
461         unsigned long present_pages[2];
462         unsigned long inactive_ratio;
463
464         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
465
466         inactive = present_pages[0];
467         active = present_pages[1];
468
469         if (inactive * inactive_ratio < active)
470                 return 1;
471
472         return 0;
473 }
474
475 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
476                                        struct zone *zone,
477                                        enum lru_list lru)
478 {
479         int nid = zone->zone_pgdat->node_id;
480         int zid = zone_idx(zone);
481         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
482
483         return MEM_CGROUP_ZSTAT(mz, lru);
484 }
485
486 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
487                                                       struct zone *zone)
488 {
489         int nid = zone->zone_pgdat->node_id;
490         int zid = zone_idx(zone);
491         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
492
493         return &mz->reclaim_stat;
494 }
495
496 struct zone_reclaim_stat *
497 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
498 {
499         struct page_cgroup *pc;
500         struct mem_cgroup_per_zone *mz;
501
502         if (mem_cgroup_disabled())
503                 return NULL;
504
505         pc = lookup_page_cgroup(page);
506         mz = page_cgroup_zoneinfo(pc);
507         if (!mz)
508                 return NULL;
509
510         return &mz->reclaim_stat;
511 }
512
513 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
514                                         struct list_head *dst,
515                                         unsigned long *scanned, int order,
516                                         int mode, struct zone *z,
517                                         struct mem_cgroup *mem_cont,
518                                         int active, int file)
519 {
520         unsigned long nr_taken = 0;
521         struct page *page;
522         unsigned long scan;
523         LIST_HEAD(pc_list);
524         struct list_head *src;
525         struct page_cgroup *pc, *tmp;
526         int nid = z->zone_pgdat->node_id;
527         int zid = zone_idx(z);
528         struct mem_cgroup_per_zone *mz;
529         int lru = LRU_FILE * !!file + !!active;
530
531         BUG_ON(!mem_cont);
532         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
533         src = &mz->lists[lru];
534
535         scan = 0;
536         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
537                 if (scan >= nr_to_scan)
538                         break;
539
540                 page = pc->page;
541                 if (unlikely(!PageCgroupUsed(pc)))
542                         continue;
543                 if (unlikely(!PageLRU(page)))
544                         continue;
545
546                 scan++;
547                 if (__isolate_lru_page(page, mode, file) == 0) {
548                         list_move(&page->lru, dst);
549                         nr_taken++;
550                 }
551         }
552
553         *scanned = scan;
554         return nr_taken;
555 }
556
557 #define mem_cgroup_from_res_counter(counter, member)    \
558         container_of(counter, struct mem_cgroup, member)
559
560 /*
561  * This routine finds the DFS walk successor. This routine should be
562  * called with cgroup_mutex held
563  */
564 static struct mem_cgroup *
565 mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
566 {
567         struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
568
569         curr_cgroup = curr->css.cgroup;
570         root_cgroup = root_mem->css.cgroup;
571
572         if (!list_empty(&curr_cgroup->children)) {
573                 /*
574                  * Walk down to children
575                  */
576                 mem_cgroup_put(curr);
577                 cgroup = list_entry(curr_cgroup->children.next,
578                                                 struct cgroup, sibling);
579                 curr = mem_cgroup_from_cont(cgroup);
580                 mem_cgroup_get(curr);
581                 goto done;
582         }
583
584 visit_parent:
585         if (curr_cgroup == root_cgroup) {
586                 mem_cgroup_put(curr);
587                 curr = root_mem;
588                 mem_cgroup_get(curr);
589                 goto done;
590         }
591
592         /*
593          * Goto next sibling
594          */
595         if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
596                 mem_cgroup_put(curr);
597                 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
598                                                 sibling);
599                 curr = mem_cgroup_from_cont(cgroup);
600                 mem_cgroup_get(curr);
601                 goto done;
602         }
603
604         /*
605          * Go up to next parent and next parent's sibling if need be
606          */
607         curr_cgroup = curr_cgroup->parent;
608         goto visit_parent;
609
610 done:
611         root_mem->last_scanned_child = curr;
612         return curr;
613 }
614
615 /*
616  * Visit the first child (need not be the first child as per the ordering
617  * of the cgroup list, since we track last_scanned_child) of @mem and use
618  * that to reclaim free pages from.
619  */
620 static struct mem_cgroup *
621 mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
622 {
623         struct cgroup *cgroup;
624         struct mem_cgroup *ret;
625         bool obsolete = (root_mem->last_scanned_child &&
626                                 root_mem->last_scanned_child->obsolete);
627
628         /*
629          * Scan all children under the mem_cgroup mem
630          */
631         cgroup_lock();
632         if (list_empty(&root_mem->css.cgroup->children)) {
633                 ret = root_mem;
634                 goto done;
635         }
636
637         if (!root_mem->last_scanned_child || obsolete) {
638
639                 if (obsolete)
640                         mem_cgroup_put(root_mem->last_scanned_child);
641
642                 cgroup = list_first_entry(&root_mem->css.cgroup->children,
643                                 struct cgroup, sibling);
644                 ret = mem_cgroup_from_cont(cgroup);
645                 mem_cgroup_get(ret);
646         } else
647                 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
648                                                 root_mem);
649
650 done:
651         root_mem->last_scanned_child = ret;
652         cgroup_unlock();
653         return ret;
654 }
655
656 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
657 {
658         if (do_swap_account) {
659                 if (res_counter_check_under_limit(&mem->res) &&
660                         res_counter_check_under_limit(&mem->memsw))
661                         return true;
662         } else
663                 if (res_counter_check_under_limit(&mem->res))
664                         return true;
665         return false;
666 }
667
668 static unsigned int get_swappiness(struct mem_cgroup *memcg)
669 {
670         struct cgroup *cgrp = memcg->css.cgroup;
671         unsigned int swappiness;
672
673         /* root ? */
674         if (cgrp->parent == NULL)
675                 return vm_swappiness;
676
677         spin_lock(&memcg->reclaim_param_lock);
678         swappiness = memcg->swappiness;
679         spin_unlock(&memcg->reclaim_param_lock);
680
681         return swappiness;
682 }
683
684 /*
685  * Dance down the hierarchy if needed to reclaim memory. We remember the
686  * last child we reclaimed from, so that we don't end up penalizing
687  * one child extensively based on its position in the children list.
688  *
689  * root_mem is the original ancestor that we've been reclaim from.
690  */
691 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
692                                                 gfp_t gfp_mask, bool noswap)
693 {
694         struct mem_cgroup *next_mem;
695         int ret = 0;
696
697         /*
698          * Reclaim unconditionally and don't check for return value.
699          * We need to reclaim in the current group and down the tree.
700          * One might think about checking for children before reclaiming,
701          * but there might be left over accounting, even after children
702          * have left.
703          */
704         ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
705                                            get_swappiness(root_mem));
706         if (mem_cgroup_check_under_limit(root_mem))
707                 return 0;
708         if (!root_mem->use_hierarchy)
709                 return ret;
710
711         next_mem = mem_cgroup_get_first_node(root_mem);
712
713         while (next_mem != root_mem) {
714                 if (next_mem->obsolete) {
715                         mem_cgroup_put(next_mem);
716                         cgroup_lock();
717                         next_mem = mem_cgroup_get_first_node(root_mem);
718                         cgroup_unlock();
719                         continue;
720                 }
721                 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
722                                                    get_swappiness(next_mem));
723                 if (mem_cgroup_check_under_limit(root_mem))
724                         return 0;
725                 cgroup_lock();
726                 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
727                 cgroup_unlock();
728         }
729         return ret;
730 }
731
732 bool mem_cgroup_oom_called(struct task_struct *task)
733 {
734         bool ret = false;
735         struct mem_cgroup *mem;
736         struct mm_struct *mm;
737
738         rcu_read_lock();
739         mm = task->mm;
740         if (!mm)
741                 mm = &init_mm;
742         mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
743         if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
744                 ret = true;
745         rcu_read_unlock();
746         return ret;
747 }
748 /*
749  * Unlike exported interface, "oom" parameter is added. if oom==true,
750  * oom-killer can be invoked.
751  */
752 static int __mem_cgroup_try_charge(struct mm_struct *mm,
753                         gfp_t gfp_mask, struct mem_cgroup **memcg,
754                         bool oom)
755 {
756         struct mem_cgroup *mem, *mem_over_limit;
757         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
758         struct res_counter *fail_res;
759
760         if (unlikely(test_thread_flag(TIF_MEMDIE))) {
761                 /* Don't account this! */
762                 *memcg = NULL;
763                 return 0;
764         }
765
766         /*
767          * We always charge the cgroup the mm_struct belongs to.
768          * The mm_struct's mem_cgroup changes on task migration if the
769          * thread group leader migrates. It's possible that mm is not
770          * set, if so charge the init_mm (happens for pagecache usage).
771          */
772         if (likely(!*memcg)) {
773                 rcu_read_lock();
774                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
775                 if (unlikely(!mem)) {
776                         rcu_read_unlock();
777                         return 0;
778                 }
779                 /*
780                  * For every charge from the cgroup, increment reference count
781                  */
782                 css_get(&mem->css);
783                 *memcg = mem;
784                 rcu_read_unlock();
785         } else {
786                 mem = *memcg;
787                 css_get(&mem->css);
788         }
789
790         while (1) {
791                 int ret;
792                 bool noswap = false;
793
794                 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
795                 if (likely(!ret)) {
796                         if (!do_swap_account)
797                                 break;
798                         ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
799                                                         &fail_res);
800                         if (likely(!ret))
801                                 break;
802                         /* mem+swap counter fails */
803                         res_counter_uncharge(&mem->res, PAGE_SIZE);
804                         noswap = true;
805                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
806                                                                         memsw);
807                 } else
808                         /* mem counter fails */
809                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
810                                                                         res);
811
812                 if (!(gfp_mask & __GFP_WAIT))
813                         goto nomem;
814
815                 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
816                                                         noswap);
817
818                 /*
819                  * try_to_free_mem_cgroup_pages() might not give us a full
820                  * picture of reclaim. Some pages are reclaimed and might be
821                  * moved to swap cache or just unmapped from the cgroup.
822                  * Check the limit again to see if the reclaim reduced the
823                  * current usage of the cgroup before giving up
824                  *
825                  */
826                 if (mem_cgroup_check_under_limit(mem_over_limit))
827                         continue;
828
829                 if (!nr_retries--) {
830                         if (oom) {
831                                 mutex_lock(&memcg_tasklist);
832                                 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
833                                 mutex_unlock(&memcg_tasklist);
834                                 mem_over_limit->last_oom_jiffies = jiffies;
835                         }
836                         goto nomem;
837                 }
838         }
839         return 0;
840 nomem:
841         css_put(&mem->css);
842         return -ENOMEM;
843 }
844
845 /*
846  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
847  * USED state. If already USED, uncharge and return.
848  */
849
850 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
851                                      struct page_cgroup *pc,
852                                      enum charge_type ctype)
853 {
854         /* try_charge() can return NULL to *memcg, taking care of it. */
855         if (!mem)
856                 return;
857
858         lock_page_cgroup(pc);
859         if (unlikely(PageCgroupUsed(pc))) {
860                 unlock_page_cgroup(pc);
861                 res_counter_uncharge(&mem->res, PAGE_SIZE);
862                 if (do_swap_account)
863                         res_counter_uncharge(&mem->memsw, PAGE_SIZE);
864                 css_put(&mem->css);
865                 return;
866         }
867         pc->mem_cgroup = mem;
868         smp_wmb();
869         pc->flags = pcg_default_flags[ctype];
870
871         mem_cgroup_charge_statistics(mem, pc, true);
872
873         unlock_page_cgroup(pc);
874 }
875
876 /**
877  * mem_cgroup_move_account - move account of the page
878  * @pc: page_cgroup of the page.
879  * @from: mem_cgroup which the page is moved from.
880  * @to: mem_cgroup which the page is moved to. @from != @to.
881  *
882  * The caller must confirm following.
883  * - page is not on LRU (isolate_page() is useful.)
884  *
885  * returns 0 at success,
886  * returns -EBUSY when lock is busy or "pc" is unstable.
887  *
888  * This function does "uncharge" from old cgroup but doesn't do "charge" to
889  * new cgroup. It should be done by a caller.
890  */
891
892 static int mem_cgroup_move_account(struct page_cgroup *pc,
893         struct mem_cgroup *from, struct mem_cgroup *to)
894 {
895         struct mem_cgroup_per_zone *from_mz, *to_mz;
896         int nid, zid;
897         int ret = -EBUSY;
898
899         VM_BUG_ON(from == to);
900         VM_BUG_ON(PageLRU(pc->page));
901
902         nid = page_cgroup_nid(pc);
903         zid = page_cgroup_zid(pc);
904         from_mz =  mem_cgroup_zoneinfo(from, nid, zid);
905         to_mz =  mem_cgroup_zoneinfo(to, nid, zid);
906
907         if (!trylock_page_cgroup(pc))
908                 return ret;
909
910         if (!PageCgroupUsed(pc))
911                 goto out;
912
913         if (pc->mem_cgroup != from)
914                 goto out;
915
916         css_put(&from->css);
917         res_counter_uncharge(&from->res, PAGE_SIZE);
918         mem_cgroup_charge_statistics(from, pc, false);
919         if (do_swap_account)
920                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
921         pc->mem_cgroup = to;
922         mem_cgroup_charge_statistics(to, pc, true);
923         css_get(&to->css);
924         ret = 0;
925 out:
926         unlock_page_cgroup(pc);
927         return ret;
928 }
929
930 /*
931  * move charges to its parent.
932  */
933
934 static int mem_cgroup_move_parent(struct page_cgroup *pc,
935                                   struct mem_cgroup *child,
936                                   gfp_t gfp_mask)
937 {
938         struct page *page = pc->page;
939         struct cgroup *cg = child->css.cgroup;
940         struct cgroup *pcg = cg->parent;
941         struct mem_cgroup *parent;
942         int ret;
943
944         /* Is ROOT ? */
945         if (!pcg)
946                 return -EINVAL;
947
948
949         parent = mem_cgroup_from_cont(pcg);
950
951
952         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
953         if (ret || !parent)
954                 return ret;
955
956         if (!get_page_unless_zero(page))
957                 return -EBUSY;
958
959         ret = isolate_lru_page(page);
960
961         if (ret)
962                 goto cancel;
963
964         ret = mem_cgroup_move_account(pc, child, parent);
965
966         /* drop extra refcnt by try_charge() (move_account increment one) */
967         css_put(&parent->css);
968         putback_lru_page(page);
969         if (!ret) {
970                 put_page(page);
971                 return 0;
972         }
973         /* uncharge if move fails */
974 cancel:
975         res_counter_uncharge(&parent->res, PAGE_SIZE);
976         if (do_swap_account)
977                 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
978         put_page(page);
979         return ret;
980 }
981
982 /*
983  * Charge the memory controller for page usage.
984  * Return
985  * 0 if the charge was successful
986  * < 0 if the cgroup is over its limit
987  */
988 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
989                                 gfp_t gfp_mask, enum charge_type ctype,
990                                 struct mem_cgroup *memcg)
991 {
992         struct mem_cgroup *mem;
993         struct page_cgroup *pc;
994         int ret;
995
996         pc = lookup_page_cgroup(page);
997         /* can happen at boot */
998         if (unlikely(!pc))
999                 return 0;
1000         prefetchw(pc);
1001
1002         mem = memcg;
1003         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1004         if (ret || !mem)
1005                 return ret;
1006
1007         __mem_cgroup_commit_charge(mem, pc, ctype);
1008         return 0;
1009 }
1010
1011 int mem_cgroup_newpage_charge(struct page *page,
1012                               struct mm_struct *mm, gfp_t gfp_mask)
1013 {
1014         if (mem_cgroup_disabled())
1015                 return 0;
1016         if (PageCompound(page))
1017                 return 0;
1018         /*
1019          * If already mapped, we don't have to account.
1020          * If page cache, page->mapping has address_space.
1021          * But page->mapping may have out-of-use anon_vma pointer,
1022          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1023          * is NULL.
1024          */
1025         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1026                 return 0;
1027         if (unlikely(!mm))
1028                 mm = &init_mm;
1029         return mem_cgroup_charge_common(page, mm, gfp_mask,
1030                                 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1031 }
1032
1033 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1034                                 gfp_t gfp_mask)
1035 {
1036         if (mem_cgroup_disabled())
1037                 return 0;
1038         if (PageCompound(page))
1039                 return 0;
1040         /*
1041          * Corner case handling. This is called from add_to_page_cache()
1042          * in usual. But some FS (shmem) precharges this page before calling it
1043          * and call add_to_page_cache() with GFP_NOWAIT.
1044          *
1045          * For GFP_NOWAIT case, the page may be pre-charged before calling
1046          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1047          * charge twice. (It works but has to pay a bit larger cost.)
1048          */
1049         if (!(gfp_mask & __GFP_WAIT)) {
1050                 struct page_cgroup *pc;
1051
1052
1053                 pc = lookup_page_cgroup(page);
1054                 if (!pc)
1055                         return 0;
1056                 lock_page_cgroup(pc);
1057                 if (PageCgroupUsed(pc)) {
1058                         unlock_page_cgroup(pc);
1059                         return 0;
1060                 }
1061                 unlock_page_cgroup(pc);
1062         }
1063
1064         if (unlikely(!mm))
1065                 mm = &init_mm;
1066
1067         if (page_is_file_cache(page))
1068                 return mem_cgroup_charge_common(page, mm, gfp_mask,
1069                                 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1070         else
1071                 return mem_cgroup_charge_common(page, mm, gfp_mask,
1072                                 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
1073 }
1074
1075 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1076                                  struct page *page,
1077                                  gfp_t mask, struct mem_cgroup **ptr)
1078 {
1079         struct mem_cgroup *mem;
1080         swp_entry_t     ent;
1081
1082         if (mem_cgroup_disabled())
1083                 return 0;
1084
1085         if (!do_swap_account)
1086                 goto charge_cur_mm;
1087
1088         /*
1089          * A racing thread's fault, or swapoff, may have already updated
1090          * the pte, and even removed page from swap cache: return success
1091          * to go on to do_swap_page()'s pte_same() test, which should fail.
1092          */
1093         if (!PageSwapCache(page))
1094                 return 0;
1095
1096         ent.val = page_private(page);
1097
1098         mem = lookup_swap_cgroup(ent);
1099         if (!mem || mem->obsolete)
1100                 goto charge_cur_mm;
1101         *ptr = mem;
1102         return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1103 charge_cur_mm:
1104         if (unlikely(!mm))
1105                 mm = &init_mm;
1106         return __mem_cgroup_try_charge(mm, mask, ptr, true);
1107 }
1108
1109 #ifdef CONFIG_SWAP
1110
1111 int mem_cgroup_cache_charge_swapin(struct page *page,
1112                         struct mm_struct *mm, gfp_t mask, bool locked)
1113 {
1114         int ret = 0;
1115
1116         if (mem_cgroup_disabled())
1117                 return 0;
1118         if (unlikely(!mm))
1119                 mm = &init_mm;
1120         if (!locked)
1121                 lock_page(page);
1122         /*
1123          * If not locked, the page can be dropped from SwapCache until
1124          * we reach here.
1125          */
1126         if (PageSwapCache(page)) {
1127                 struct mem_cgroup *mem = NULL;
1128                 swp_entry_t ent;
1129
1130                 ent.val = page_private(page);
1131                 if (do_swap_account) {
1132                         mem = lookup_swap_cgroup(ent);
1133                         if (mem && mem->obsolete)
1134                                 mem = NULL;
1135                         if (mem)
1136                                 mm = NULL;
1137                 }
1138                 ret = mem_cgroup_charge_common(page, mm, mask,
1139                                 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1140
1141                 if (!ret && do_swap_account) {
1142                         /* avoid double counting */
1143                         mem = swap_cgroup_record(ent, NULL);
1144                         if (mem) {
1145                                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1146                                 mem_cgroup_put(mem);
1147                         }
1148                 }
1149         }
1150         if (!locked)
1151                 unlock_page(page);
1152         /* add this page(page_cgroup) to the LRU we want. */
1153         mem_cgroup_lru_fixup(page);
1154
1155         return ret;
1156 }
1157 #endif
1158
1159 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1160 {
1161         struct page_cgroup *pc;
1162
1163         if (mem_cgroup_disabled())
1164                 return;
1165         if (!ptr)
1166                 return;
1167         pc = lookup_page_cgroup(page);
1168         __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1169         /*
1170          * Now swap is on-memory. This means this page may be
1171          * counted both as mem and swap....double count.
1172          * Fix it by uncharging from memsw. This SwapCache is stable
1173          * because we're still under lock_page().
1174          */
1175         if (do_swap_account) {
1176                 swp_entry_t ent = {.val = page_private(page)};
1177                 struct mem_cgroup *memcg;
1178                 memcg = swap_cgroup_record(ent, NULL);
1179                 if (memcg) {
1180                         /* If memcg is obsolete, memcg can be != ptr */
1181                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1182                         mem_cgroup_put(memcg);
1183                 }
1184
1185         }
1186         /* add this page(page_cgroup) to the LRU we want. */
1187         mem_cgroup_lru_fixup(page);
1188 }
1189
1190 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1191 {
1192         if (mem_cgroup_disabled())
1193                 return;
1194         if (!mem)
1195                 return;
1196         res_counter_uncharge(&mem->res, PAGE_SIZE);
1197         if (do_swap_account)
1198                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1199         css_put(&mem->css);
1200 }
1201
1202
1203 /*
1204  * uncharge if !page_mapped(page)
1205  */
1206 static struct mem_cgroup *
1207 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1208 {
1209         struct page_cgroup *pc;
1210         struct mem_cgroup *mem = NULL;
1211         struct mem_cgroup_per_zone *mz;
1212
1213         if (mem_cgroup_disabled())
1214                 return NULL;
1215
1216         if (PageSwapCache(page))
1217                 return NULL;
1218
1219         /*
1220          * Check if our page_cgroup is valid
1221          */
1222         pc = lookup_page_cgroup(page);
1223         if (unlikely(!pc || !PageCgroupUsed(pc)))
1224                 return NULL;
1225
1226         lock_page_cgroup(pc);
1227
1228         mem = pc->mem_cgroup;
1229
1230         if (!PageCgroupUsed(pc))
1231                 goto unlock_out;
1232
1233         switch (ctype) {
1234         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1235                 if (page_mapped(page))
1236                         goto unlock_out;
1237                 break;
1238         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1239                 if (!PageAnon(page)) {  /* Shared memory */
1240                         if (page->mapping && !page_is_file_cache(page))
1241                                 goto unlock_out;
1242                 } else if (page_mapped(page)) /* Anon */
1243                                 goto unlock_out;
1244                 break;
1245         default:
1246                 break;
1247         }
1248
1249         res_counter_uncharge(&mem->res, PAGE_SIZE);
1250         if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1251                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1252
1253         mem_cgroup_charge_statistics(mem, pc, false);
1254         ClearPageCgroupUsed(pc);
1255
1256         mz = page_cgroup_zoneinfo(pc);
1257         unlock_page_cgroup(pc);
1258
1259         /* at swapout, this memcg will be accessed to record to swap */
1260         if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1261                 css_put(&mem->css);
1262
1263         return mem;
1264
1265 unlock_out:
1266         unlock_page_cgroup(pc);
1267         return NULL;
1268 }
1269
1270 void mem_cgroup_uncharge_page(struct page *page)
1271 {
1272         /* early check. */
1273         if (page_mapped(page))
1274                 return;
1275         if (page->mapping && !PageAnon(page))
1276                 return;
1277         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1278 }
1279
1280 void mem_cgroup_uncharge_cache_page(struct page *page)
1281 {
1282         VM_BUG_ON(page_mapped(page));
1283         VM_BUG_ON(page->mapping);
1284         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1285 }
1286
1287 /*
1288  * called from __delete_from_swap_cache() and drop "page" account.
1289  * memcg information is recorded to swap_cgroup of "ent"
1290  */
1291 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1292 {
1293         struct mem_cgroup *memcg;
1294
1295         memcg = __mem_cgroup_uncharge_common(page,
1296                                         MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1297         /* record memcg information */
1298         if (do_swap_account && memcg) {
1299                 swap_cgroup_record(ent, memcg);
1300                 mem_cgroup_get(memcg);
1301         }
1302         if (memcg)
1303                 css_put(&memcg->css);
1304 }
1305
1306 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1307 /*
1308  * called from swap_entry_free(). remove record in swap_cgroup and
1309  * uncharge "memsw" account.
1310  */
1311 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1312 {
1313         struct mem_cgroup *memcg;
1314
1315         if (!do_swap_account)
1316                 return;
1317
1318         memcg = swap_cgroup_record(ent, NULL);
1319         if (memcg) {
1320                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1321                 mem_cgroup_put(memcg);
1322         }
1323 }
1324 #endif
1325
1326 /*
1327  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1328  * page belongs to.
1329  */
1330 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1331 {
1332         struct page_cgroup *pc;
1333         struct mem_cgroup *mem = NULL;
1334         int ret = 0;
1335
1336         if (mem_cgroup_disabled())
1337                 return 0;
1338
1339         pc = lookup_page_cgroup(page);
1340         lock_page_cgroup(pc);
1341         if (PageCgroupUsed(pc)) {
1342                 mem = pc->mem_cgroup;
1343                 css_get(&mem->css);
1344         }
1345         unlock_page_cgroup(pc);
1346
1347         if (mem) {
1348                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1349                 css_put(&mem->css);
1350         }
1351         *ptr = mem;
1352         return ret;
1353 }
1354
1355 /* remove redundant charge if migration failed*/
1356 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1357                 struct page *oldpage, struct page *newpage)
1358 {
1359         struct page *target, *unused;
1360         struct page_cgroup *pc;
1361         enum charge_type ctype;
1362
1363         if (!mem)
1364                 return;
1365
1366         /* at migration success, oldpage->mapping is NULL. */
1367         if (oldpage->mapping) {
1368                 target = oldpage;
1369                 unused = NULL;
1370         } else {
1371                 target = newpage;
1372                 unused = oldpage;
1373         }
1374
1375         if (PageAnon(target))
1376                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1377         else if (page_is_file_cache(target))
1378                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1379         else
1380                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1381
1382         /* unused page is not on radix-tree now. */
1383         if (unused)
1384                 __mem_cgroup_uncharge_common(unused, ctype);
1385
1386         pc = lookup_page_cgroup(target);
1387         /*
1388          * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1389          * So, double-counting is effectively avoided.
1390          */
1391         __mem_cgroup_commit_charge(mem, pc, ctype);
1392
1393         /*
1394          * Both of oldpage and newpage are still under lock_page().
1395          * Then, we don't have to care about race in radix-tree.
1396          * But we have to be careful that this page is unmapped or not.
1397          *
1398          * There is a case for !page_mapped(). At the start of
1399          * migration, oldpage was mapped. But now, it's zapped.
1400          * But we know *target* page is not freed/reused under us.
1401          * mem_cgroup_uncharge_page() does all necessary checks.
1402          */
1403         if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1404                 mem_cgroup_uncharge_page(target);
1405 }
1406
1407 /*
1408  * A call to try to shrink memory usage under specified resource controller.
1409  * This is typically used for page reclaiming for shmem for reducing side
1410  * effect of page allocation from shmem, which is used by some mem_cgroup.
1411  */
1412 int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1413 {
1414         struct mem_cgroup *mem;
1415         int progress = 0;
1416         int retry = MEM_CGROUP_RECLAIM_RETRIES;
1417
1418         if (mem_cgroup_disabled())
1419                 return 0;
1420         if (!mm)
1421                 return 0;
1422
1423         rcu_read_lock();
1424         mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1425         if (unlikely(!mem)) {
1426                 rcu_read_unlock();
1427                 return 0;
1428         }
1429         css_get(&mem->css);
1430         rcu_read_unlock();
1431
1432         do {
1433                 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
1434                 progress += mem_cgroup_check_under_limit(mem);
1435         } while (!progress && --retry);
1436
1437         css_put(&mem->css);
1438         if (!retry)
1439                 return -ENOMEM;
1440         return 0;
1441 }
1442
1443 static DEFINE_MUTEX(set_limit_mutex);
1444
1445 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1446                                 unsigned long long val)
1447 {
1448
1449         int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1450         int progress;
1451         u64 memswlimit;
1452         int ret = 0;
1453
1454         while (retry_count) {
1455                 if (signal_pending(current)) {
1456                         ret = -EINTR;
1457                         break;
1458                 }
1459                 /*
1460                  * Rather than hide all in some function, I do this in
1461                  * open coded manner. You see what this really does.
1462                  * We have to guarantee mem->res.limit < mem->memsw.limit.
1463                  */
1464                 mutex_lock(&set_limit_mutex);
1465                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466                 if (memswlimit < val) {
1467                         ret = -EINVAL;
1468                         mutex_unlock(&set_limit_mutex);
1469                         break;
1470                 }
1471                 ret = res_counter_set_limit(&memcg->res, val);
1472                 mutex_unlock(&set_limit_mutex);
1473
1474                 if (!ret)
1475                         break;
1476
1477                 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1478                                                            false);
1479                 if (!progress)                  retry_count--;
1480         }
1481
1482         return ret;
1483 }
1484
1485 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1486                                 unsigned long long val)
1487 {
1488         int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1489         u64 memlimit, oldusage, curusage;
1490         int ret;
1491
1492         if (!do_swap_account)
1493                 return -EINVAL;
1494
1495         while (retry_count) {
1496                 if (signal_pending(current)) {
1497                         ret = -EINTR;
1498                         break;
1499                 }
1500                 /*
1501                  * Rather than hide all in some function, I do this in
1502                  * open coded manner. You see what this really does.
1503                  * We have to guarantee mem->res.limit < mem->memsw.limit.
1504                  */
1505                 mutex_lock(&set_limit_mutex);
1506                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1507                 if (memlimit > val) {
1508                         ret = -EINVAL;
1509                         mutex_unlock(&set_limit_mutex);
1510                         break;
1511                 }
1512                 ret = res_counter_set_limit(&memcg->memsw, val);
1513                 mutex_unlock(&set_limit_mutex);
1514
1515                 if (!ret)
1516                         break;
1517
1518                 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1519                 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
1520                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1521                 if (curusage >= oldusage)
1522                         retry_count--;
1523         }
1524         return ret;
1525 }
1526
1527 /*
1528  * This routine traverse page_cgroup in given list and drop them all.
1529  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1530  */
1531 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1532                                 int node, int zid, enum lru_list lru)
1533 {
1534         struct zone *zone;
1535         struct mem_cgroup_per_zone *mz;
1536         struct page_cgroup *pc, *busy;
1537         unsigned long flags, loop;
1538         struct list_head *list;
1539         int ret = 0;
1540
1541         zone = &NODE_DATA(node)->node_zones[zid];
1542         mz = mem_cgroup_zoneinfo(mem, node, zid);
1543         list = &mz->lists[lru];
1544
1545         loop = MEM_CGROUP_ZSTAT(mz, lru);
1546         /* give some margin against EBUSY etc...*/
1547         loop += 256;
1548         busy = NULL;
1549         while (loop--) {
1550                 ret = 0;
1551                 spin_lock_irqsave(&zone->lru_lock, flags);
1552                 if (list_empty(list)) {
1553                         spin_unlock_irqrestore(&zone->lru_lock, flags);
1554                         break;
1555                 }
1556                 pc = list_entry(list->prev, struct page_cgroup, lru);
1557                 if (busy == pc) {
1558                         list_move(&pc->lru, list);
1559                         busy = 0;
1560                         spin_unlock_irqrestore(&zone->lru_lock, flags);
1561                         continue;
1562                 }
1563                 spin_unlock_irqrestore(&zone->lru_lock, flags);
1564
1565                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1566                 if (ret == -ENOMEM)
1567                         break;
1568
1569                 if (ret == -EBUSY || ret == -EINVAL) {
1570                         /* found lock contention or "pc" is obsolete. */
1571                         busy = pc;
1572                         cond_resched();
1573                 } else
1574                         busy = NULL;
1575         }
1576
1577         if (!ret && !list_empty(list))
1578                 return -EBUSY;
1579         return ret;
1580 }
1581
1582 /*
1583  * make mem_cgroup's charge to be 0 if there is no task.
1584  * This enables deleting this mem_cgroup.
1585  */
1586 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1587 {
1588         int ret;
1589         int node, zid, shrink;
1590         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1591         struct cgroup *cgrp = mem->css.cgroup;
1592
1593         css_get(&mem->css);
1594
1595         shrink = 0;
1596         /* should free all ? */
1597         if (free_all)
1598                 goto try_to_free;
1599 move_account:
1600         while (mem->res.usage > 0) {
1601                 ret = -EBUSY;
1602                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1603                         goto out;
1604                 ret = -EINTR;
1605                 if (signal_pending(current))
1606                         goto out;
1607                 /* This is for making all *used* pages to be on LRU. */
1608                 lru_add_drain_all();
1609                 ret = 0;
1610                 for_each_node_state(node, N_POSSIBLE) {
1611                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1612                                 enum lru_list l;
1613                                 for_each_lru(l) {
1614                                         ret = mem_cgroup_force_empty_list(mem,
1615                                                         node, zid, l);
1616                                         if (ret)
1617                                                 break;
1618                                 }
1619                         }
1620                         if (ret)
1621                                 break;
1622                 }
1623                 /* it seems parent cgroup doesn't have enough mem */
1624                 if (ret == -ENOMEM)
1625                         goto try_to_free;
1626                 cond_resched();
1627         }
1628         ret = 0;
1629 out:
1630         css_put(&mem->css);
1631         return ret;
1632
1633 try_to_free:
1634         /* returns EBUSY if there is a task or if we come here twice. */
1635         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1636                 ret = -EBUSY;
1637                 goto out;
1638         }
1639         /* we call try-to-free pages for make this cgroup empty */
1640         lru_add_drain_all();
1641         /* try to free all pages in this cgroup */
1642         shrink = 1;
1643         while (nr_retries && mem->res.usage > 0) {
1644                 int progress;
1645
1646                 if (signal_pending(current)) {
1647                         ret = -EINTR;
1648                         goto out;
1649                 }
1650                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1651                                                 false, get_swappiness(mem));
1652                 if (!progress) {
1653                         nr_retries--;
1654                         /* maybe some writeback is necessary */
1655                         congestion_wait(WRITE, HZ/10);
1656                 }
1657
1658         }
1659         lru_add_drain();
1660         /* try move_account...there may be some *locked* pages. */
1661         if (mem->res.usage)
1662                 goto move_account;
1663         ret = 0;
1664         goto out;
1665 }
1666
1667 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1668 {
1669         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1670 }
1671
1672
1673 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1674 {
1675         return mem_cgroup_from_cont(cont)->use_hierarchy;
1676 }
1677
1678 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1679                                         u64 val)
1680 {
1681         int retval = 0;
1682         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1683         struct cgroup *parent = cont->parent;
1684         struct mem_cgroup *parent_mem = NULL;
1685
1686         if (parent)
1687                 parent_mem = mem_cgroup_from_cont(parent);
1688
1689         cgroup_lock();
1690         /*
1691          * If parent's use_hiearchy is set, we can't make any modifications
1692          * in the child subtrees. If it is unset, then the change can
1693          * occur, provided the current cgroup has no children.
1694          *
1695          * For the root cgroup, parent_mem is NULL, we allow value to be
1696          * set if there are no children.
1697          */
1698         if ((!parent_mem || !parent_mem->use_hierarchy) &&
1699                                 (val == 1 || val == 0)) {
1700                 if (list_empty(&cont->children))
1701                         mem->use_hierarchy = val;
1702                 else
1703                         retval = -EBUSY;
1704         } else
1705                 retval = -EINVAL;
1706         cgroup_unlock();
1707
1708         return retval;
1709 }
1710
1711 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1712 {
1713         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1714         u64 val = 0;
1715         int type, name;
1716
1717         type = MEMFILE_TYPE(cft->private);
1718         name = MEMFILE_ATTR(cft->private);
1719         switch (type) {
1720         case _MEM:
1721                 val = res_counter_read_u64(&mem->res, name);
1722                 break;
1723         case _MEMSWAP:
1724                 if (do_swap_account)
1725                         val = res_counter_read_u64(&mem->memsw, name);
1726                 break;
1727         default:
1728                 BUG();
1729                 break;
1730         }
1731         return val;
1732 }
1733 /*
1734  * The user of this function is...
1735  * RES_LIMIT.
1736  */
1737 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1738                             const char *buffer)
1739 {
1740         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1741         int type, name;
1742         unsigned long long val;
1743         int ret;
1744
1745         type = MEMFILE_TYPE(cft->private);
1746         name = MEMFILE_ATTR(cft->private);
1747         switch (name) {
1748         case RES_LIMIT:
1749                 /* This function does all necessary parse...reuse it */
1750                 ret = res_counter_memparse_write_strategy(buffer, &val);
1751                 if (ret)
1752                         break;
1753                 if (type == _MEM)
1754                         ret = mem_cgroup_resize_limit(memcg, val);
1755                 else
1756                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
1757                 break;
1758         default:
1759                 ret = -EINVAL; /* should be BUG() ? */
1760                 break;
1761         }
1762         return ret;
1763 }
1764
1765 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1766                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1767 {
1768         struct cgroup *cgroup;
1769         unsigned long long min_limit, min_memsw_limit, tmp;
1770
1771         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1772         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1773         cgroup = memcg->css.cgroup;
1774         if (!memcg->use_hierarchy)
1775                 goto out;
1776
1777         while (cgroup->parent) {
1778                 cgroup = cgroup->parent;
1779                 memcg = mem_cgroup_from_cont(cgroup);
1780                 if (!memcg->use_hierarchy)
1781                         break;
1782                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1783                 min_limit = min(min_limit, tmp);
1784                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1785                 min_memsw_limit = min(min_memsw_limit, tmp);
1786         }
1787 out:
1788         *mem_limit = min_limit;
1789         *memsw_limit = min_memsw_limit;
1790         return;
1791 }
1792
1793 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
1794 {
1795         struct mem_cgroup *mem;
1796         int type, name;
1797
1798         mem = mem_cgroup_from_cont(cont);
1799         type = MEMFILE_TYPE(event);
1800         name = MEMFILE_ATTR(event);
1801         switch (name) {
1802         case RES_MAX_USAGE:
1803                 if (type == _MEM)
1804                         res_counter_reset_max(&mem->res);
1805                 else
1806                         res_counter_reset_max(&mem->memsw);
1807                 break;
1808         case RES_FAILCNT:
1809                 if (type == _MEM)
1810                         res_counter_reset_failcnt(&mem->res);
1811                 else
1812                         res_counter_reset_failcnt(&mem->memsw);
1813                 break;
1814         }
1815         return 0;
1816 }
1817
1818 static const struct mem_cgroup_stat_desc {
1819         const char *msg;
1820         u64 unit;
1821 } mem_cgroup_stat_desc[] = {
1822         [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1823         [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
1824         [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1825         [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
1826 };
1827
1828 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1829                                  struct cgroup_map_cb *cb)
1830 {
1831         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1832         struct mem_cgroup_stat *stat = &mem_cont->stat;
1833         int i;
1834
1835         for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1836                 s64 val;
1837
1838                 val = mem_cgroup_read_stat(stat, i);
1839                 val *= mem_cgroup_stat_desc[i].unit;
1840                 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
1841         }
1842         /* showing # of active pages */
1843         {
1844                 unsigned long active_anon, inactive_anon;
1845                 unsigned long active_file, inactive_file;
1846                 unsigned long unevictable;
1847
1848                 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1849                                                 LRU_INACTIVE_ANON);
1850                 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1851                                                 LRU_ACTIVE_ANON);
1852                 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1853                                                 LRU_INACTIVE_FILE);
1854                 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1855                                                 LRU_ACTIVE_FILE);
1856                 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1857                                                         LRU_UNEVICTABLE);
1858
1859                 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1860                 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1861                 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1862                 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
1863                 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1864
1865         }
1866         {
1867                 unsigned long long limit, memsw_limit;
1868                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1869                 cb->fill(cb, "hierarchical_memory_limit", limit);
1870                 if (do_swap_account)
1871                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1872         }
1873
1874 #ifdef CONFIG_DEBUG_VM
1875         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
1876
1877         {
1878                 int nid, zid;
1879                 struct mem_cgroup_per_zone *mz;
1880                 unsigned long recent_rotated[2] = {0, 0};
1881                 unsigned long recent_scanned[2] = {0, 0};
1882
1883                 for_each_online_node(nid)
1884                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1885                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1886
1887                                 recent_rotated[0] +=
1888                                         mz->reclaim_stat.recent_rotated[0];
1889                                 recent_rotated[1] +=
1890                                         mz->reclaim_stat.recent_rotated[1];
1891                                 recent_scanned[0] +=
1892                                         mz->reclaim_stat.recent_scanned[0];
1893                                 recent_scanned[1] +=
1894                                         mz->reclaim_stat.recent_scanned[1];
1895                         }
1896                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1897                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1898                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1899                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1900         }
1901 #endif
1902
1903         return 0;
1904 }
1905
1906 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1907 {
1908         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1909
1910         return get_swappiness(memcg);
1911 }
1912
1913 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1914                                        u64 val)
1915 {
1916         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1917         struct mem_cgroup *parent;
1918         if (val > 100)
1919                 return -EINVAL;
1920
1921         if (cgrp->parent == NULL)
1922                 return -EINVAL;
1923
1924         parent = mem_cgroup_from_cont(cgrp->parent);
1925         /* If under hierarchy, only empty-root can set this value */
1926         if ((parent->use_hierarchy) ||
1927             (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1928                 return -EINVAL;
1929
1930         spin_lock(&memcg->reclaim_param_lock);
1931         memcg->swappiness = val;
1932         spin_unlock(&memcg->reclaim_param_lock);
1933
1934         return 0;
1935 }
1936
1937
1938 static struct cftype mem_cgroup_files[] = {
1939         {
1940                 .name = "usage_in_bytes",
1941                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1942                 .read_u64 = mem_cgroup_read,
1943         },
1944         {
1945                 .name = "max_usage_in_bytes",
1946                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1947                 .trigger = mem_cgroup_reset,
1948                 .read_u64 = mem_cgroup_read,
1949         },
1950         {
1951                 .name = "limit_in_bytes",
1952                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1953                 .write_string = mem_cgroup_write,
1954                 .read_u64 = mem_cgroup_read,
1955         },
1956         {
1957                 .name = "failcnt",
1958                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1959                 .trigger = mem_cgroup_reset,
1960                 .read_u64 = mem_cgroup_read,
1961         },
1962         {
1963                 .name = "stat",
1964                 .read_map = mem_control_stat_show,
1965         },
1966         {
1967                 .name = "force_empty",
1968                 .trigger = mem_cgroup_force_empty_write,
1969         },
1970         {
1971                 .name = "use_hierarchy",
1972                 .write_u64 = mem_cgroup_hierarchy_write,
1973                 .read_u64 = mem_cgroup_hierarchy_read,
1974         },
1975         {
1976                 .name = "swappiness",
1977                 .read_u64 = mem_cgroup_swappiness_read,
1978                 .write_u64 = mem_cgroup_swappiness_write,
1979         },
1980 };
1981
1982 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1983 static struct cftype memsw_cgroup_files[] = {
1984         {
1985                 .name = "memsw.usage_in_bytes",
1986                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1987                 .read_u64 = mem_cgroup_read,
1988         },
1989         {
1990                 .name = "memsw.max_usage_in_bytes",
1991                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1992                 .trigger = mem_cgroup_reset,
1993                 .read_u64 = mem_cgroup_read,
1994         },
1995         {
1996                 .name = "memsw.limit_in_bytes",
1997                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1998                 .write_string = mem_cgroup_write,
1999                 .read_u64 = mem_cgroup_read,
2000         },
2001         {
2002                 .name = "memsw.failcnt",
2003                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2004                 .trigger = mem_cgroup_reset,
2005                 .read_u64 = mem_cgroup_read,
2006         },
2007 };
2008
2009 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2010 {
2011         if (!do_swap_account)
2012                 return 0;
2013         return cgroup_add_files(cont, ss, memsw_cgroup_files,
2014                                 ARRAY_SIZE(memsw_cgroup_files));
2015 };
2016 #else
2017 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2018 {
2019         return 0;
2020 }
2021 #endif
2022
2023 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2024 {
2025         struct mem_cgroup_per_node *pn;
2026         struct mem_cgroup_per_zone *mz;
2027         enum lru_list l;
2028         int zone, tmp = node;
2029         /*
2030          * This routine is called against possible nodes.
2031          * But it's BUG to call kmalloc() against offline node.
2032          *
2033          * TODO: this routine can waste much memory for nodes which will
2034          *       never be onlined. It's better to use memory hotplug callback
2035          *       function.
2036          */
2037         if (!node_state(node, N_NORMAL_MEMORY))
2038                 tmp = -1;
2039         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2040         if (!pn)
2041                 return 1;
2042
2043         mem->info.nodeinfo[node] = pn;
2044         memset(pn, 0, sizeof(*pn));
2045
2046         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2047                 mz = &pn->zoneinfo[zone];
2048                 for_each_lru(l)
2049                         INIT_LIST_HEAD(&mz->lists[l]);
2050         }
2051         return 0;
2052 }
2053
2054 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2055 {
2056         kfree(mem->info.nodeinfo[node]);
2057 }
2058
2059 static int mem_cgroup_size(void)
2060 {
2061         int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2062         return sizeof(struct mem_cgroup) + cpustat_size;
2063 }
2064
2065 static struct mem_cgroup *mem_cgroup_alloc(void)
2066 {
2067         struct mem_cgroup *mem;
2068         int size = mem_cgroup_size();
2069
2070         if (size < PAGE_SIZE)
2071                 mem = kmalloc(size, GFP_KERNEL);
2072         else
2073                 mem = vmalloc(size);
2074
2075         if (mem)
2076                 memset(mem, 0, size);
2077         return mem;
2078 }
2079
2080 /*
2081  * At destroying mem_cgroup, references from swap_cgroup can remain.
2082  * (scanning all at force_empty is too costly...)
2083  *
2084  * Instead of clearing all references at force_empty, we remember
2085  * the number of reference from swap_cgroup and free mem_cgroup when
2086  * it goes down to 0.
2087  *
2088  * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
2089  * entry which points to this memcg will be ignore at swapin.
2090  *
2091  * Removal of cgroup itself succeeds regardless of refs from swap.
2092  */
2093
2094 static void mem_cgroup_free(struct mem_cgroup *mem)
2095 {
2096         int node;
2097
2098         if (atomic_read(&mem->refcnt) > 0)
2099                 return;
2100
2101
2102         for_each_node_state(node, N_POSSIBLE)
2103                 free_mem_cgroup_per_zone_info(mem, node);
2104
2105         if (mem_cgroup_size() < PAGE_SIZE)
2106                 kfree(mem);
2107         else
2108                 vfree(mem);
2109 }
2110
2111 static void mem_cgroup_get(struct mem_cgroup *mem)
2112 {
2113         atomic_inc(&mem->refcnt);
2114 }
2115
2116 static void mem_cgroup_put(struct mem_cgroup *mem)
2117 {
2118         if (atomic_dec_and_test(&mem->refcnt)) {
2119                 if (!mem->obsolete)
2120                         return;
2121                 mem_cgroup_free(mem);
2122         }
2123 }
2124
2125
2126 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2127 static void __init enable_swap_cgroup(void)
2128 {
2129         if (!mem_cgroup_disabled() && really_do_swap_account)
2130                 do_swap_account = 1;
2131 }
2132 #else
2133 static void __init enable_swap_cgroup(void)
2134 {
2135 }
2136 #endif
2137
2138 static struct cgroup_subsys_state *
2139 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2140 {
2141         struct mem_cgroup *mem, *parent;
2142         int node;
2143
2144         mem = mem_cgroup_alloc();
2145         if (!mem)
2146                 return ERR_PTR(-ENOMEM);
2147
2148         for_each_node_state(node, N_POSSIBLE)
2149                 if (alloc_mem_cgroup_per_zone_info(mem, node))
2150                         goto free_out;
2151         /* root ? */
2152         if (cont->parent == NULL) {
2153                 enable_swap_cgroup();
2154                 parent = NULL;
2155         } else {
2156                 parent = mem_cgroup_from_cont(cont->parent);
2157                 mem->use_hierarchy = parent->use_hierarchy;
2158         }
2159
2160         if (parent && parent->use_hierarchy) {
2161                 res_counter_init(&mem->res, &parent->res);
2162                 res_counter_init(&mem->memsw, &parent->memsw);
2163         } else {
2164                 res_counter_init(&mem->res, NULL);
2165                 res_counter_init(&mem->memsw, NULL);
2166         }
2167         mem->last_scanned_child = NULL;
2168         spin_lock_init(&mem->reclaim_param_lock);
2169
2170         if (parent)
2171                 mem->swappiness = get_swappiness(parent);
2172
2173         return &mem->css;
2174 free_out:
2175         for_each_node_state(node, N_POSSIBLE)
2176                 free_mem_cgroup_per_zone_info(mem, node);
2177         mem_cgroup_free(mem);
2178         return ERR_PTR(-ENOMEM);
2179 }
2180
2181 static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2182                                         struct cgroup *cont)
2183 {
2184         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2185         mem->obsolete = 1;
2186         mem_cgroup_force_empty(mem, false);
2187 }
2188
2189 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2190                                 struct cgroup *cont)
2191 {
2192         mem_cgroup_free(mem_cgroup_from_cont(cont));
2193 }
2194
2195 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2196                                 struct cgroup *cont)
2197 {
2198         int ret;
2199
2200         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2201                                 ARRAY_SIZE(mem_cgroup_files));
2202
2203         if (!ret)
2204                 ret = register_memsw_files(cont, ss);
2205         return ret;
2206 }
2207
2208 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2209                                 struct cgroup *cont,
2210                                 struct cgroup *old_cont,
2211                                 struct task_struct *p)
2212 {
2213         mutex_lock(&memcg_tasklist);
2214         /*
2215          * FIXME: It's better to move charges of this process from old
2216          * memcg to new memcg. But it's just on TODO-List now.
2217          */
2218         mutex_unlock(&memcg_tasklist);
2219 }
2220
2221 struct cgroup_subsys mem_cgroup_subsys = {
2222         .name = "memory",
2223         .subsys_id = mem_cgroup_subsys_id,
2224         .create = mem_cgroup_create,
2225         .pre_destroy = mem_cgroup_pre_destroy,
2226         .destroy = mem_cgroup_destroy,
2227         .populate = mem_cgroup_populate,
2228         .attach = mem_cgroup_move_task,
2229         .early_init = 0,
2230 };
2231
2232 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2233
2234 static int __init disable_swap_account(char *s)
2235 {
2236         really_do_swap_account = 0;
2237         return 1;
2238 }
2239 __setup("noswapaccount", disable_swap_account);
2240 #endif