Merge branch 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux...
[sfrench/cifs-2.6.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES      5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
65 #else
66 #define do_swap_account         (0)
67 #endif
68
69 /*
70  * Per memcg event counter is incremented at every pagein/pageout. This counter
71  * is used for trigger some periodic events. This is straightforward and better
72  * than using jiffies etc. to handle periodic memcg event.
73  *
74  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
75  */
76 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
77 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
78
79 /*
80  * Statistics for memory cgroup.
81  */
82 enum mem_cgroup_stat_index {
83         /*
84          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
85          */
86         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
87         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
88         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
89         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
90         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
91         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
92         MEM_CGROUP_EVENTS,      /* incremented at every  pagein/pageout */
93
94         MEM_CGROUP_STAT_NSTATS,
95 };
96
97 struct mem_cgroup_stat_cpu {
98         s64 count[MEM_CGROUP_STAT_NSTATS];
99 };
100
101 /*
102  * per-zone information in memory controller.
103  */
104 struct mem_cgroup_per_zone {
105         /*
106          * spin_lock to protect the per cgroup LRU
107          */
108         struct list_head        lists[NR_LRU_LISTS];
109         unsigned long           count[NR_LRU_LISTS];
110
111         struct zone_reclaim_stat reclaim_stat;
112         struct rb_node          tree_node;      /* RB tree node */
113         unsigned long long      usage_in_excess;/* Set to the value by which */
114                                                 /* the soft limit is exceeded*/
115         bool                    on_tree;
116         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
117                                                 /* use container_of        */
118 };
119 /* Macro for accessing counter */
120 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
121
122 struct mem_cgroup_per_node {
123         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
124 };
125
126 struct mem_cgroup_lru_info {
127         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
128 };
129
130 /*
131  * Cgroups above their limits are maintained in a RB-Tree, independent of
132  * their hierarchy representation
133  */
134
135 struct mem_cgroup_tree_per_zone {
136         struct rb_root rb_root;
137         spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 struct mem_cgroup_threshold {
151         struct eventfd_ctx *eventfd;
152         u64 threshold;
153 };
154
155 /* For threshold */
156 struct mem_cgroup_threshold_ary {
157         /* An array index points to threshold just below usage. */
158         int current_threshold;
159         /* Size of entries[] */
160         unsigned int size;
161         /* Array of thresholds */
162         struct mem_cgroup_threshold entries[0];
163 };
164
165 struct mem_cgroup_thresholds {
166         /* Primary thresholds array */
167         struct mem_cgroup_threshold_ary *primary;
168         /*
169          * Spare threshold array.
170          * This is needed to make mem_cgroup_unregister_event() "never fail".
171          * It must be able to store at least primary->size - 1 entries.
172          */
173         struct mem_cgroup_threshold_ary *spare;
174 };
175
176 /* for OOM */
177 struct mem_cgroup_eventfd_list {
178         struct list_head list;
179         struct eventfd_ctx *eventfd;
180 };
181
182 static void mem_cgroup_threshold(struct mem_cgroup *mem);
183 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
184
185 /*
186  * The memory controller data structure. The memory controller controls both
187  * page cache and RSS per cgroup. We would eventually like to provide
188  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
189  * to help the administrator determine what knobs to tune.
190  *
191  * TODO: Add a water mark for the memory controller. Reclaim will begin when
192  * we hit the water mark. May be even add a low water mark, such that
193  * no reclaim occurs from a cgroup at it's low water mark, this is
194  * a feature that will be implemented much later in the future.
195  */
196 struct mem_cgroup {
197         struct cgroup_subsys_state css;
198         /*
199          * the counter to account for memory usage
200          */
201         struct res_counter res;
202         /*
203          * the counter to account for mem+swap usage.
204          */
205         struct res_counter memsw;
206         /*
207          * Per cgroup active and inactive list, similar to the
208          * per zone LRU lists.
209          */
210         struct mem_cgroup_lru_info info;
211
212         /*
213           protect against reclaim related member.
214         */
215         spinlock_t reclaim_param_lock;
216
217         /*
218          * While reclaiming in a hierarchy, we cache the last child we
219          * reclaimed from.
220          */
221         int last_scanned_child;
222         /*
223          * Should the accounting and control be hierarchical, per subtree?
224          */
225         bool use_hierarchy;
226         atomic_t        oom_lock;
227         atomic_t        refcnt;
228
229         unsigned int    swappiness;
230         /* OOM-Killer disable */
231         int             oom_kill_disable;
232
233         /* set when res.limit == memsw.limit */
234         bool            memsw_is_minimum;
235
236         /* protect arrays of thresholds */
237         struct mutex thresholds_lock;
238
239         /* thresholds for memory usage. RCU-protected */
240         struct mem_cgroup_thresholds thresholds;
241
242         /* thresholds for mem+swap usage. RCU-protected */
243         struct mem_cgroup_thresholds memsw_thresholds;
244
245         /* For oom notifier event fd */
246         struct list_head oom_notify;
247
248         /*
249          * Should we move charges of a task when a task is moved into this
250          * mem_cgroup ? And what type of charges should we move ?
251          */
252         unsigned long   move_charge_at_immigrate;
253         /*
254          * percpu counter.
255          */
256         struct mem_cgroup_stat_cpu *stat;
257 };
258
259 /* Stuffs for move charges at task migration. */
260 /*
261  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
262  * left-shifted bitmap of these types.
263  */
264 enum move_type {
265         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
266         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
267         NR_MOVE_TYPE,
268 };
269
270 /* "mc" and its members are protected by cgroup_mutex */
271 static struct move_charge_struct {
272         spinlock_t        lock; /* for from, to, moving_task */
273         struct mem_cgroup *from;
274         struct mem_cgroup *to;
275         unsigned long precharge;
276         unsigned long moved_charge;
277         unsigned long moved_swap;
278         struct task_struct *moving_task;        /* a task moving charges */
279         wait_queue_head_t waitq;                /* a waitq for other context */
280 } mc = {
281         .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
282         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
283 };
284
285 static bool move_anon(void)
286 {
287         return test_bit(MOVE_CHARGE_TYPE_ANON,
288                                         &mc.to->move_charge_at_immigrate);
289 }
290
291 static bool move_file(void)
292 {
293         return test_bit(MOVE_CHARGE_TYPE_FILE,
294                                         &mc.to->move_charge_at_immigrate);
295 }
296
297 /*
298  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
299  * limit reclaim to prevent infinite loops, if they ever occur.
300  */
301 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
302 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
303
304 enum charge_type {
305         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
306         MEM_CGROUP_CHARGE_TYPE_MAPPED,
307         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
308         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
309         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
310         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
311         NR_CHARGE_TYPE,
312 };
313
314 /* only for here (for easy reading.) */
315 #define PCGF_CACHE      (1UL << PCG_CACHE)
316 #define PCGF_USED       (1UL << PCG_USED)
317 #define PCGF_LOCK       (1UL << PCG_LOCK)
318 /* Not used, but added here for completeness */
319 #define PCGF_ACCT       (1UL << PCG_ACCT)
320
321 /* for encoding cft->private value on file */
322 #define _MEM                    (0)
323 #define _MEMSWAP                (1)
324 #define _OOM_TYPE               (2)
325 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
326 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
327 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
328 /* Used for OOM nofiier */
329 #define OOM_CONTROL             (0)
330
331 /*
332  * Reclaim flags for mem_cgroup_hierarchical_reclaim
333  */
334 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
335 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
336 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
337 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
338 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
339 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
340
341 static void mem_cgroup_get(struct mem_cgroup *mem);
342 static void mem_cgroup_put(struct mem_cgroup *mem);
343 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
344 static void drain_all_stock_async(void);
345
346 static struct mem_cgroup_per_zone *
347 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
348 {
349         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
350 }
351
352 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
353 {
354         return &mem->css;
355 }
356
357 static struct mem_cgroup_per_zone *
358 page_cgroup_zoneinfo(struct page_cgroup *pc)
359 {
360         struct mem_cgroup *mem = pc->mem_cgroup;
361         int nid = page_cgroup_nid(pc);
362         int zid = page_cgroup_zid(pc);
363
364         if (!mem)
365                 return NULL;
366
367         return mem_cgroup_zoneinfo(mem, nid, zid);
368 }
369
370 static struct mem_cgroup_tree_per_zone *
371 soft_limit_tree_node_zone(int nid, int zid)
372 {
373         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
374 }
375
376 static struct mem_cgroup_tree_per_zone *
377 soft_limit_tree_from_page(struct page *page)
378 {
379         int nid = page_to_nid(page);
380         int zid = page_zonenum(page);
381
382         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
383 }
384
385 static void
386 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
387                                 struct mem_cgroup_per_zone *mz,
388                                 struct mem_cgroup_tree_per_zone *mctz,
389                                 unsigned long long new_usage_in_excess)
390 {
391         struct rb_node **p = &mctz->rb_root.rb_node;
392         struct rb_node *parent = NULL;
393         struct mem_cgroup_per_zone *mz_node;
394
395         if (mz->on_tree)
396                 return;
397
398         mz->usage_in_excess = new_usage_in_excess;
399         if (!mz->usage_in_excess)
400                 return;
401         while (*p) {
402                 parent = *p;
403                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
404                                         tree_node);
405                 if (mz->usage_in_excess < mz_node->usage_in_excess)
406                         p = &(*p)->rb_left;
407                 /*
408                  * We can't avoid mem cgroups that are over their soft
409                  * limit by the same amount
410                  */
411                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412                         p = &(*p)->rb_right;
413         }
414         rb_link_node(&mz->tree_node, parent, p);
415         rb_insert_color(&mz->tree_node, &mctz->rb_root);
416         mz->on_tree = true;
417 }
418
419 static void
420 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
421                                 struct mem_cgroup_per_zone *mz,
422                                 struct mem_cgroup_tree_per_zone *mctz)
423 {
424         if (!mz->on_tree)
425                 return;
426         rb_erase(&mz->tree_node, &mctz->rb_root);
427         mz->on_tree = false;
428 }
429
430 static void
431 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
432                                 struct mem_cgroup_per_zone *mz,
433                                 struct mem_cgroup_tree_per_zone *mctz)
434 {
435         spin_lock(&mctz->lock);
436         __mem_cgroup_remove_exceeded(mem, mz, mctz);
437         spin_unlock(&mctz->lock);
438 }
439
440
441 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
442 {
443         unsigned long long excess;
444         struct mem_cgroup_per_zone *mz;
445         struct mem_cgroup_tree_per_zone *mctz;
446         int nid = page_to_nid(page);
447         int zid = page_zonenum(page);
448         mctz = soft_limit_tree_from_page(page);
449
450         /*
451          * Necessary to update all ancestors when hierarchy is used.
452          * because their event counter is not touched.
453          */
454         for (; mem; mem = parent_mem_cgroup(mem)) {
455                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
456                 excess = res_counter_soft_limit_excess(&mem->res);
457                 /*
458                  * We have to update the tree if mz is on RB-tree or
459                  * mem is over its softlimit.
460                  */
461                 if (excess || mz->on_tree) {
462                         spin_lock(&mctz->lock);
463                         /* if on-tree, remove it */
464                         if (mz->on_tree)
465                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
466                         /*
467                          * Insert again. mz->usage_in_excess will be updated.
468                          * If excess is 0, no tree ops.
469                          */
470                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
471                         spin_unlock(&mctz->lock);
472                 }
473         }
474 }
475
476 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
477 {
478         int node, zone;
479         struct mem_cgroup_per_zone *mz;
480         struct mem_cgroup_tree_per_zone *mctz;
481
482         for_each_node_state(node, N_POSSIBLE) {
483                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
484                         mz = mem_cgroup_zoneinfo(mem, node, zone);
485                         mctz = soft_limit_tree_node_zone(node, zone);
486                         mem_cgroup_remove_exceeded(mem, mz, mctz);
487                 }
488         }
489 }
490
491 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
492 {
493         return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
494 }
495
496 static struct mem_cgroup_per_zone *
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
498 {
499         struct rb_node *rightmost = NULL;
500         struct mem_cgroup_per_zone *mz;
501
502 retry:
503         mz = NULL;
504         rightmost = rb_last(&mctz->rb_root);
505         if (!rightmost)
506                 goto done;              /* Nothing to reclaim from */
507
508         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
509         /*
510          * Remove the node now but someone else can add it back,
511          * we will to add it back at the end of reclaim to its correct
512          * position in the tree.
513          */
514         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
515         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
516                 !css_tryget(&mz->mem->css))
517                 goto retry;
518 done:
519         return mz;
520 }
521
522 static struct mem_cgroup_per_zone *
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525         struct mem_cgroup_per_zone *mz;
526
527         spin_lock(&mctz->lock);
528         mz = __mem_cgroup_largest_soft_limit_node(mctz);
529         spin_unlock(&mctz->lock);
530         return mz;
531 }
532
533 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
534                 enum mem_cgroup_stat_index idx)
535 {
536         int cpu;
537         s64 val = 0;
538
539         for_each_possible_cpu(cpu)
540                 val += per_cpu(mem->stat->count[idx], cpu);
541         return val;
542 }
543
544 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
545 {
546         s64 ret;
547
548         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
549         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
550         return ret;
551 }
552
553 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
554                                          bool charge)
555 {
556         int val = (charge) ? 1 : -1;
557         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
558 }
559
560 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
561                                          struct page_cgroup *pc,
562                                          bool charge)
563 {
564         int val = (charge) ? 1 : -1;
565
566         preempt_disable();
567
568         if (PageCgroupCache(pc))
569                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
570         else
571                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
572
573         if (charge)
574                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
575         else
576                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
577         __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
578
579         preempt_enable();
580 }
581
582 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
583                                         enum lru_list idx)
584 {
585         int nid, zid;
586         struct mem_cgroup_per_zone *mz;
587         u64 total = 0;
588
589         for_each_online_node(nid)
590                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
591                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
592                         total += MEM_CGROUP_ZSTAT(mz, idx);
593                 }
594         return total;
595 }
596
597 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
598 {
599         s64 val;
600
601         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
602
603         return !(val & ((1 << event_mask_shift) - 1));
604 }
605
606 /*
607  * Check events in order.
608  *
609  */
610 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
611 {
612         /* threshold event is triggered in finer grain than soft limit */
613         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
614                 mem_cgroup_threshold(mem);
615                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
616                         mem_cgroup_update_tree(mem, page);
617         }
618 }
619
620 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
621 {
622         return container_of(cgroup_subsys_state(cont,
623                                 mem_cgroup_subsys_id), struct mem_cgroup,
624                                 css);
625 }
626
627 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
628 {
629         /*
630          * mm_update_next_owner() may clear mm->owner to NULL
631          * if it races with swapoff, page migration, etc.
632          * So this can be called with p == NULL.
633          */
634         if (unlikely(!p))
635                 return NULL;
636
637         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
638                                 struct mem_cgroup, css);
639 }
640
641 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
642 {
643         struct mem_cgroup *mem = NULL;
644
645         if (!mm)
646                 return NULL;
647         /*
648          * Because we have no locks, mm->owner's may be being moved to other
649          * cgroup. We use css_tryget() here even if this looks
650          * pessimistic (rather than adding locks here).
651          */
652         rcu_read_lock();
653         do {
654                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
655                 if (unlikely(!mem))
656                         break;
657         } while (!css_tryget(&mem->css));
658         rcu_read_unlock();
659         return mem;
660 }
661
662 /*
663  * Call callback function against all cgroup under hierarchy tree.
664  */
665 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
666                           int (*func)(struct mem_cgroup *, void *))
667 {
668         int found, ret, nextid;
669         struct cgroup_subsys_state *css;
670         struct mem_cgroup *mem;
671
672         if (!root->use_hierarchy)
673                 return (*func)(root, data);
674
675         nextid = 1;
676         do {
677                 ret = 0;
678                 mem = NULL;
679
680                 rcu_read_lock();
681                 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
682                                    &found);
683                 if (css && css_tryget(css))
684                         mem = container_of(css, struct mem_cgroup, css);
685                 rcu_read_unlock();
686
687                 if (mem) {
688                         ret = (*func)(mem, data);
689                         css_put(&mem->css);
690                 }
691                 nextid = found + 1;
692         } while (!ret && css);
693
694         return ret;
695 }
696
697 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
698 {
699         return (mem == root_mem_cgroup);
700 }
701
702 /*
703  * Following LRU functions are allowed to be used without PCG_LOCK.
704  * Operations are called by routine of global LRU independently from memcg.
705  * What we have to take care of here is validness of pc->mem_cgroup.
706  *
707  * Changes to pc->mem_cgroup happens when
708  * 1. charge
709  * 2. moving account
710  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
711  * It is added to LRU before charge.
712  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
713  * When moving account, the page is not on LRU. It's isolated.
714  */
715
716 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
717 {
718         struct page_cgroup *pc;
719         struct mem_cgroup_per_zone *mz;
720
721         if (mem_cgroup_disabled())
722                 return;
723         pc = lookup_page_cgroup(page);
724         /* can happen while we handle swapcache. */
725         if (!TestClearPageCgroupAcctLRU(pc))
726                 return;
727         VM_BUG_ON(!pc->mem_cgroup);
728         /*
729          * We don't check PCG_USED bit. It's cleared when the "page" is finally
730          * removed from global LRU.
731          */
732         mz = page_cgroup_zoneinfo(pc);
733         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
734         if (mem_cgroup_is_root(pc->mem_cgroup))
735                 return;
736         VM_BUG_ON(list_empty(&pc->lru));
737         list_del_init(&pc->lru);
738         return;
739 }
740
741 void mem_cgroup_del_lru(struct page *page)
742 {
743         mem_cgroup_del_lru_list(page, page_lru(page));
744 }
745
746 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
747 {
748         struct mem_cgroup_per_zone *mz;
749         struct page_cgroup *pc;
750
751         if (mem_cgroup_disabled())
752                 return;
753
754         pc = lookup_page_cgroup(page);
755         /*
756          * Used bit is set without atomic ops but after smp_wmb().
757          * For making pc->mem_cgroup visible, insert smp_rmb() here.
758          */
759         smp_rmb();
760         /* unused or root page is not rotated. */
761         if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
762                 return;
763         mz = page_cgroup_zoneinfo(pc);
764         list_move(&pc->lru, &mz->lists[lru]);
765 }
766
767 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
768 {
769         struct page_cgroup *pc;
770         struct mem_cgroup_per_zone *mz;
771
772         if (mem_cgroup_disabled())
773                 return;
774         pc = lookup_page_cgroup(page);
775         VM_BUG_ON(PageCgroupAcctLRU(pc));
776         /*
777          * Used bit is set without atomic ops but after smp_wmb().
778          * For making pc->mem_cgroup visible, insert smp_rmb() here.
779          */
780         smp_rmb();
781         if (!PageCgroupUsed(pc))
782                 return;
783
784         mz = page_cgroup_zoneinfo(pc);
785         MEM_CGROUP_ZSTAT(mz, lru) += 1;
786         SetPageCgroupAcctLRU(pc);
787         if (mem_cgroup_is_root(pc->mem_cgroup))
788                 return;
789         list_add(&pc->lru, &mz->lists[lru]);
790 }
791
792 /*
793  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
794  * lru because the page may.be reused after it's fully uncharged (because of
795  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
796  * it again. This function is only used to charge SwapCache. It's done under
797  * lock_page and expected that zone->lru_lock is never held.
798  */
799 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
800 {
801         unsigned long flags;
802         struct zone *zone = page_zone(page);
803         struct page_cgroup *pc = lookup_page_cgroup(page);
804
805         spin_lock_irqsave(&zone->lru_lock, flags);
806         /*
807          * Forget old LRU when this page_cgroup is *not* used. This Used bit
808          * is guarded by lock_page() because the page is SwapCache.
809          */
810         if (!PageCgroupUsed(pc))
811                 mem_cgroup_del_lru_list(page, page_lru(page));
812         spin_unlock_irqrestore(&zone->lru_lock, flags);
813 }
814
815 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
816 {
817         unsigned long flags;
818         struct zone *zone = page_zone(page);
819         struct page_cgroup *pc = lookup_page_cgroup(page);
820
821         spin_lock_irqsave(&zone->lru_lock, flags);
822         /* link when the page is linked to LRU but page_cgroup isn't */
823         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
824                 mem_cgroup_add_lru_list(page, page_lru(page));
825         spin_unlock_irqrestore(&zone->lru_lock, flags);
826 }
827
828
829 void mem_cgroup_move_lists(struct page *page,
830                            enum lru_list from, enum lru_list to)
831 {
832         if (mem_cgroup_disabled())
833                 return;
834         mem_cgroup_del_lru_list(page, from);
835         mem_cgroup_add_lru_list(page, to);
836 }
837
838 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
839 {
840         int ret;
841         struct mem_cgroup *curr = NULL;
842         struct task_struct *p;
843
844         p = find_lock_task_mm(task);
845         if (!p)
846                 return 0;
847         curr = try_get_mem_cgroup_from_mm(p->mm);
848         task_unlock(p);
849         if (!curr)
850                 return 0;
851         /*
852          * We should check use_hierarchy of "mem" not "curr". Because checking
853          * use_hierarchy of "curr" here make this function true if hierarchy is
854          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
855          * hierarchy(even if use_hierarchy is disabled in "mem").
856          */
857         if (mem->use_hierarchy)
858                 ret = css_is_ancestor(&curr->css, &mem->css);
859         else
860                 ret = (curr == mem);
861         css_put(&curr->css);
862         return ret;
863 }
864
865 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
866 {
867         unsigned long active;
868         unsigned long inactive;
869         unsigned long gb;
870         unsigned long inactive_ratio;
871
872         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
873         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
874
875         gb = (inactive + active) >> (30 - PAGE_SHIFT);
876         if (gb)
877                 inactive_ratio = int_sqrt(10 * gb);
878         else
879                 inactive_ratio = 1;
880
881         if (present_pages) {
882                 present_pages[0] = inactive;
883                 present_pages[1] = active;
884         }
885
886         return inactive_ratio;
887 }
888
889 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
890 {
891         unsigned long active;
892         unsigned long inactive;
893         unsigned long present_pages[2];
894         unsigned long inactive_ratio;
895
896         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
897
898         inactive = present_pages[0];
899         active = present_pages[1];
900
901         if (inactive * inactive_ratio < active)
902                 return 1;
903
904         return 0;
905 }
906
907 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
908 {
909         unsigned long active;
910         unsigned long inactive;
911
912         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
913         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
914
915         return (active > inactive);
916 }
917
918 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
919                                        struct zone *zone,
920                                        enum lru_list lru)
921 {
922         int nid = zone_to_nid(zone);
923         int zid = zone_idx(zone);
924         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
925
926         return MEM_CGROUP_ZSTAT(mz, lru);
927 }
928
929 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
930                                                       struct zone *zone)
931 {
932         int nid = zone_to_nid(zone);
933         int zid = zone_idx(zone);
934         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
935
936         return &mz->reclaim_stat;
937 }
938
939 struct zone_reclaim_stat *
940 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
941 {
942         struct page_cgroup *pc;
943         struct mem_cgroup_per_zone *mz;
944
945         if (mem_cgroup_disabled())
946                 return NULL;
947
948         pc = lookup_page_cgroup(page);
949         /*
950          * Used bit is set without atomic ops but after smp_wmb().
951          * For making pc->mem_cgroup visible, insert smp_rmb() here.
952          */
953         smp_rmb();
954         if (!PageCgroupUsed(pc))
955                 return NULL;
956
957         mz = page_cgroup_zoneinfo(pc);
958         if (!mz)
959                 return NULL;
960
961         return &mz->reclaim_stat;
962 }
963
964 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
965                                         struct list_head *dst,
966                                         unsigned long *scanned, int order,
967                                         int mode, struct zone *z,
968                                         struct mem_cgroup *mem_cont,
969                                         int active, int file)
970 {
971         unsigned long nr_taken = 0;
972         struct page *page;
973         unsigned long scan;
974         LIST_HEAD(pc_list);
975         struct list_head *src;
976         struct page_cgroup *pc, *tmp;
977         int nid = zone_to_nid(z);
978         int zid = zone_idx(z);
979         struct mem_cgroup_per_zone *mz;
980         int lru = LRU_FILE * file + active;
981         int ret;
982
983         BUG_ON(!mem_cont);
984         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
985         src = &mz->lists[lru];
986
987         scan = 0;
988         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
989                 if (scan >= nr_to_scan)
990                         break;
991
992                 page = pc->page;
993                 if (unlikely(!PageCgroupUsed(pc)))
994                         continue;
995                 if (unlikely(!PageLRU(page)))
996                         continue;
997
998                 scan++;
999                 ret = __isolate_lru_page(page, mode, file);
1000                 switch (ret) {
1001                 case 0:
1002                         list_move(&page->lru, dst);
1003                         mem_cgroup_del_lru(page);
1004                         nr_taken++;
1005                         break;
1006                 case -EBUSY:
1007                         /* we don't affect global LRU but rotate in our LRU */
1008                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1009                         break;
1010                 default:
1011                         break;
1012                 }
1013         }
1014
1015         *scanned = scan;
1016
1017         trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1018                                       0, 0, 0, mode);
1019
1020         return nr_taken;
1021 }
1022
1023 #define mem_cgroup_from_res_counter(counter, member)    \
1024         container_of(counter, struct mem_cgroup, member)
1025
1026 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1027 {
1028         if (do_swap_account) {
1029                 if (res_counter_check_under_limit(&mem->res) &&
1030                         res_counter_check_under_limit(&mem->memsw))
1031                         return true;
1032         } else
1033                 if (res_counter_check_under_limit(&mem->res))
1034                         return true;
1035         return false;
1036 }
1037
1038 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1039 {
1040         struct cgroup *cgrp = memcg->css.cgroup;
1041         unsigned int swappiness;
1042
1043         /* root ? */
1044         if (cgrp->parent == NULL)
1045                 return vm_swappiness;
1046
1047         spin_lock(&memcg->reclaim_param_lock);
1048         swappiness = memcg->swappiness;
1049         spin_unlock(&memcg->reclaim_param_lock);
1050
1051         return swappiness;
1052 }
1053
1054 /* A routine for testing mem is not under move_account */
1055
1056 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1057 {
1058         struct mem_cgroup *from;
1059         struct mem_cgroup *to;
1060         bool ret = false;
1061         /*
1062          * Unlike task_move routines, we access mc.to, mc.from not under
1063          * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1064          */
1065         spin_lock(&mc.lock);
1066         from = mc.from;
1067         to = mc.to;
1068         if (!from)
1069                 goto unlock;
1070         if (from == mem || to == mem
1071             || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1072             || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1073                 ret = true;
1074 unlock:
1075         spin_unlock(&mc.lock);
1076         return ret;
1077 }
1078
1079 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1080 {
1081         if (mc.moving_task && current != mc.moving_task) {
1082                 if (mem_cgroup_under_move(mem)) {
1083                         DEFINE_WAIT(wait);
1084                         prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1085                         /* moving charge context might have finished. */
1086                         if (mc.moving_task)
1087                                 schedule();
1088                         finish_wait(&mc.waitq, &wait);
1089                         return true;
1090                 }
1091         }
1092         return false;
1093 }
1094
1095 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1096 {
1097         int *val = data;
1098         (*val)++;
1099         return 0;
1100 }
1101
1102 /**
1103  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1104  * @memcg: The memory cgroup that went over limit
1105  * @p: Task that is going to be killed
1106  *
1107  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1108  * enabled
1109  */
1110 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1111 {
1112         struct cgroup *task_cgrp;
1113         struct cgroup *mem_cgrp;
1114         /*
1115          * Need a buffer in BSS, can't rely on allocations. The code relies
1116          * on the assumption that OOM is serialized for memory controller.
1117          * If this assumption is broken, revisit this code.
1118          */
1119         static char memcg_name[PATH_MAX];
1120         int ret;
1121
1122         if (!memcg || !p)
1123                 return;
1124
1125
1126         rcu_read_lock();
1127
1128         mem_cgrp = memcg->css.cgroup;
1129         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1130
1131         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1132         if (ret < 0) {
1133                 /*
1134                  * Unfortunately, we are unable to convert to a useful name
1135                  * But we'll still print out the usage information
1136                  */
1137                 rcu_read_unlock();
1138                 goto done;
1139         }
1140         rcu_read_unlock();
1141
1142         printk(KERN_INFO "Task in %s killed", memcg_name);
1143
1144         rcu_read_lock();
1145         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1146         if (ret < 0) {
1147                 rcu_read_unlock();
1148                 goto done;
1149         }
1150         rcu_read_unlock();
1151
1152         /*
1153          * Continues from above, so we don't need an KERN_ level
1154          */
1155         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1156 done:
1157
1158         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1159                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1160                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1161                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1162         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1163                 "failcnt %llu\n",
1164                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1165                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1166                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1167 }
1168
1169 /*
1170  * This function returns the number of memcg under hierarchy tree. Returns
1171  * 1(self count) if no children.
1172  */
1173 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1174 {
1175         int num = 0;
1176         mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1177         return num;
1178 }
1179
1180 /*
1181  * Return the memory (and swap, if configured) limit for a memcg.
1182  */
1183 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1184 {
1185         u64 limit;
1186         u64 memsw;
1187
1188         limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1189                         total_swap_pages;
1190         memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1191         /*
1192          * If memsw is finite and limits the amount of swap space available
1193          * to this memcg, return that limit.
1194          */
1195         return min(limit, memsw);
1196 }
1197
1198 /*
1199  * Visit the first child (need not be the first child as per the ordering
1200  * of the cgroup list, since we track last_scanned_child) of @mem and use
1201  * that to reclaim free pages from.
1202  */
1203 static struct mem_cgroup *
1204 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1205 {
1206         struct mem_cgroup *ret = NULL;
1207         struct cgroup_subsys_state *css;
1208         int nextid, found;
1209
1210         if (!root_mem->use_hierarchy) {
1211                 css_get(&root_mem->css);
1212                 ret = root_mem;
1213         }
1214
1215         while (!ret) {
1216                 rcu_read_lock();
1217                 nextid = root_mem->last_scanned_child + 1;
1218                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1219                                    &found);
1220                 if (css && css_tryget(css))
1221                         ret = container_of(css, struct mem_cgroup, css);
1222
1223                 rcu_read_unlock();
1224                 /* Updates scanning parameter */
1225                 spin_lock(&root_mem->reclaim_param_lock);
1226                 if (!css) {
1227                         /* this means start scan from ID:1 */
1228                         root_mem->last_scanned_child = 0;
1229                 } else
1230                         root_mem->last_scanned_child = found;
1231                 spin_unlock(&root_mem->reclaim_param_lock);
1232         }
1233
1234         return ret;
1235 }
1236
1237 /*
1238  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1239  * we reclaimed from, so that we don't end up penalizing one child extensively
1240  * based on its position in the children list.
1241  *
1242  * root_mem is the original ancestor that we've been reclaim from.
1243  *
1244  * We give up and return to the caller when we visit root_mem twice.
1245  * (other groups can be removed while we're walking....)
1246  *
1247  * If shrink==true, for avoiding to free too much, this returns immedieately.
1248  */
1249 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1250                                                 struct zone *zone,
1251                                                 gfp_t gfp_mask,
1252                                                 unsigned long reclaim_options)
1253 {
1254         struct mem_cgroup *victim;
1255         int ret, total = 0;
1256         int loop = 0;
1257         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1258         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1259         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1260         unsigned long excess = mem_cgroup_get_excess(root_mem);
1261
1262         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1263         if (root_mem->memsw_is_minimum)
1264                 noswap = true;
1265
1266         while (1) {
1267                 victim = mem_cgroup_select_victim(root_mem);
1268                 if (victim == root_mem) {
1269                         loop++;
1270                         if (loop >= 1)
1271                                 drain_all_stock_async();
1272                         if (loop >= 2) {
1273                                 /*
1274                                  * If we have not been able to reclaim
1275                                  * anything, it might because there are
1276                                  * no reclaimable pages under this hierarchy
1277                                  */
1278                                 if (!check_soft || !total) {
1279                                         css_put(&victim->css);
1280                                         break;
1281                                 }
1282                                 /*
1283                                  * We want to do more targetted reclaim.
1284                                  * excess >> 2 is not to excessive so as to
1285                                  * reclaim too much, nor too less that we keep
1286                                  * coming back to reclaim from this cgroup
1287                                  */
1288                                 if (total >= (excess >> 2) ||
1289                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1290                                         css_put(&victim->css);
1291                                         break;
1292                                 }
1293                         }
1294                 }
1295                 if (!mem_cgroup_local_usage(victim)) {
1296                         /* this cgroup's local usage == 0 */
1297                         css_put(&victim->css);
1298                         continue;
1299                 }
1300                 /* we use swappiness of local cgroup */
1301                 if (check_soft)
1302                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1303                                 noswap, get_swappiness(victim), zone);
1304                 else
1305                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1306                                                 noswap, get_swappiness(victim));
1307                 css_put(&victim->css);
1308                 /*
1309                  * At shrinking usage, we can't check we should stop here or
1310                  * reclaim more. It's depends on callers. last_scanned_child
1311                  * will work enough for keeping fairness under tree.
1312                  */
1313                 if (shrink)
1314                         return ret;
1315                 total += ret;
1316                 if (check_soft) {
1317                         if (res_counter_check_under_soft_limit(&root_mem->res))
1318                                 return total;
1319                 } else if (mem_cgroup_check_under_limit(root_mem))
1320                         return 1 + total;
1321         }
1322         return total;
1323 }
1324
1325 static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1326 {
1327         int *val = (int *)data;
1328         int x;
1329         /*
1330          * Logically, we can stop scanning immediately when we find
1331          * a memcg is already locked. But condidering unlock ops and
1332          * creation/removal of memcg, scan-all is simple operation.
1333          */
1334         x = atomic_inc_return(&mem->oom_lock);
1335         *val = max(x, *val);
1336         return 0;
1337 }
1338 /*
1339  * Check OOM-Killer is already running under our hierarchy.
1340  * If someone is running, return false.
1341  */
1342 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1343 {
1344         int lock_count = 0;
1345
1346         mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1347
1348         if (lock_count == 1)
1349                 return true;
1350         return false;
1351 }
1352
1353 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1354 {
1355         /*
1356          * When a new child is created while the hierarchy is under oom,
1357          * mem_cgroup_oom_lock() may not be called. We have to use
1358          * atomic_add_unless() here.
1359          */
1360         atomic_add_unless(&mem->oom_lock, -1, 0);
1361         return 0;
1362 }
1363
1364 static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1365 {
1366         mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1367 }
1368
1369 static DEFINE_MUTEX(memcg_oom_mutex);
1370 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1371
1372 struct oom_wait_info {
1373         struct mem_cgroup *mem;
1374         wait_queue_t    wait;
1375 };
1376
1377 static int memcg_oom_wake_function(wait_queue_t *wait,
1378         unsigned mode, int sync, void *arg)
1379 {
1380         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1381         struct oom_wait_info *oom_wait_info;
1382
1383         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1384
1385         if (oom_wait_info->mem == wake_mem)
1386                 goto wakeup;
1387         /* if no hierarchy, no match */
1388         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1389                 return 0;
1390         /*
1391          * Both of oom_wait_info->mem and wake_mem are stable under us.
1392          * Then we can use css_is_ancestor without taking care of RCU.
1393          */
1394         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1395             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1396                 return 0;
1397
1398 wakeup:
1399         return autoremove_wake_function(wait, mode, sync, arg);
1400 }
1401
1402 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1403 {
1404         /* for filtering, pass "mem" as argument. */
1405         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1406 }
1407
1408 static void memcg_oom_recover(struct mem_cgroup *mem)
1409 {
1410         if (mem && atomic_read(&mem->oom_lock))
1411                 memcg_wakeup_oom(mem);
1412 }
1413
1414 /*
1415  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1416  */
1417 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1418 {
1419         struct oom_wait_info owait;
1420         bool locked, need_to_kill;
1421
1422         owait.mem = mem;
1423         owait.wait.flags = 0;
1424         owait.wait.func = memcg_oom_wake_function;
1425         owait.wait.private = current;
1426         INIT_LIST_HEAD(&owait.wait.task_list);
1427         need_to_kill = true;
1428         /* At first, try to OOM lock hierarchy under mem.*/
1429         mutex_lock(&memcg_oom_mutex);
1430         locked = mem_cgroup_oom_lock(mem);
1431         /*
1432          * Even if signal_pending(), we can't quit charge() loop without
1433          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1434          * under OOM is always welcomed, use TASK_KILLABLE here.
1435          */
1436         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1437         if (!locked || mem->oom_kill_disable)
1438                 need_to_kill = false;
1439         if (locked)
1440                 mem_cgroup_oom_notify(mem);
1441         mutex_unlock(&memcg_oom_mutex);
1442
1443         if (need_to_kill) {
1444                 finish_wait(&memcg_oom_waitq, &owait.wait);
1445                 mem_cgroup_out_of_memory(mem, mask);
1446         } else {
1447                 schedule();
1448                 finish_wait(&memcg_oom_waitq, &owait.wait);
1449         }
1450         mutex_lock(&memcg_oom_mutex);
1451         mem_cgroup_oom_unlock(mem);
1452         memcg_wakeup_oom(mem);
1453         mutex_unlock(&memcg_oom_mutex);
1454
1455         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1456                 return false;
1457         /* Give chance to dying process */
1458         schedule_timeout(1);
1459         return true;
1460 }
1461
1462 /*
1463  * Currently used to update mapped file statistics, but the routine can be
1464  * generalized to update other statistics as well.
1465  */
1466 void mem_cgroup_update_file_mapped(struct page *page, int val)
1467 {
1468         struct mem_cgroup *mem;
1469         struct page_cgroup *pc;
1470
1471         pc = lookup_page_cgroup(page);
1472         if (unlikely(!pc))
1473                 return;
1474
1475         lock_page_cgroup(pc);
1476         mem = pc->mem_cgroup;
1477         if (!mem || !PageCgroupUsed(pc))
1478                 goto done;
1479
1480         /*
1481          * Preemption is already disabled. We can use __this_cpu_xxx
1482          */
1483         if (val > 0) {
1484                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1485                 SetPageCgroupFileMapped(pc);
1486         } else {
1487                 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1488                 ClearPageCgroupFileMapped(pc);
1489         }
1490
1491 done:
1492         unlock_page_cgroup(pc);
1493 }
1494
1495 /*
1496  * size of first charge trial. "32" comes from vmscan.c's magic value.
1497  * TODO: maybe necessary to use big numbers in big irons.
1498  */
1499 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1500 struct memcg_stock_pcp {
1501         struct mem_cgroup *cached; /* this never be root cgroup */
1502         int charge;
1503         struct work_struct work;
1504 };
1505 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1506 static atomic_t memcg_drain_count;
1507
1508 /*
1509  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1510  * from local stock and true is returned. If the stock is 0 or charges from a
1511  * cgroup which is not current target, returns false. This stock will be
1512  * refilled.
1513  */
1514 static bool consume_stock(struct mem_cgroup *mem)
1515 {
1516         struct memcg_stock_pcp *stock;
1517         bool ret = true;
1518
1519         stock = &get_cpu_var(memcg_stock);
1520         if (mem == stock->cached && stock->charge)
1521                 stock->charge -= PAGE_SIZE;
1522         else /* need to call res_counter_charge */
1523                 ret = false;
1524         put_cpu_var(memcg_stock);
1525         return ret;
1526 }
1527
1528 /*
1529  * Returns stocks cached in percpu to res_counter and reset cached information.
1530  */
1531 static void drain_stock(struct memcg_stock_pcp *stock)
1532 {
1533         struct mem_cgroup *old = stock->cached;
1534
1535         if (stock->charge) {
1536                 res_counter_uncharge(&old->res, stock->charge);
1537                 if (do_swap_account)
1538                         res_counter_uncharge(&old->memsw, stock->charge);
1539         }
1540         stock->cached = NULL;
1541         stock->charge = 0;
1542 }
1543
1544 /*
1545  * This must be called under preempt disabled or must be called by
1546  * a thread which is pinned to local cpu.
1547  */
1548 static void drain_local_stock(struct work_struct *dummy)
1549 {
1550         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1551         drain_stock(stock);
1552 }
1553
1554 /*
1555  * Cache charges(val) which is from res_counter, to local per_cpu area.
1556  * This will be consumed by consume_stock() function, later.
1557  */
1558 static void refill_stock(struct mem_cgroup *mem, int val)
1559 {
1560         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1561
1562         if (stock->cached != mem) { /* reset if necessary */
1563                 drain_stock(stock);
1564                 stock->cached = mem;
1565         }
1566         stock->charge += val;
1567         put_cpu_var(memcg_stock);
1568 }
1569
1570 /*
1571  * Tries to drain stocked charges in other cpus. This function is asynchronous
1572  * and just put a work per cpu for draining localy on each cpu. Caller can
1573  * expects some charges will be back to res_counter later but cannot wait for
1574  * it.
1575  */
1576 static void drain_all_stock_async(void)
1577 {
1578         int cpu;
1579         /* This function is for scheduling "drain" in asynchronous way.
1580          * The result of "drain" is not directly handled by callers. Then,
1581          * if someone is calling drain, we don't have to call drain more.
1582          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1583          * there is a race. We just do loose check here.
1584          */
1585         if (atomic_read(&memcg_drain_count))
1586                 return;
1587         /* Notify other cpus that system-wide "drain" is running */
1588         atomic_inc(&memcg_drain_count);
1589         get_online_cpus();
1590         for_each_online_cpu(cpu) {
1591                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1592                 schedule_work_on(cpu, &stock->work);
1593         }
1594         put_online_cpus();
1595         atomic_dec(&memcg_drain_count);
1596         /* We don't wait for flush_work */
1597 }
1598
1599 /* This is a synchronous drain interface. */
1600 static void drain_all_stock_sync(void)
1601 {
1602         /* called when force_empty is called */
1603         atomic_inc(&memcg_drain_count);
1604         schedule_on_each_cpu(drain_local_stock);
1605         atomic_dec(&memcg_drain_count);
1606 }
1607
1608 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1609                                         unsigned long action,
1610                                         void *hcpu)
1611 {
1612         int cpu = (unsigned long)hcpu;
1613         struct memcg_stock_pcp *stock;
1614
1615         if (action != CPU_DEAD)
1616                 return NOTIFY_OK;
1617         stock = &per_cpu(memcg_stock, cpu);
1618         drain_stock(stock);
1619         return NOTIFY_OK;
1620 }
1621
1622
1623 /* See __mem_cgroup_try_charge() for details */
1624 enum {
1625         CHARGE_OK,              /* success */
1626         CHARGE_RETRY,           /* need to retry but retry is not bad */
1627         CHARGE_NOMEM,           /* we can't do more. return -ENOMEM */
1628         CHARGE_WOULDBLOCK,      /* GFP_WAIT wasn't set and no enough res. */
1629         CHARGE_OOM_DIE,         /* the current is killed because of OOM */
1630 };
1631
1632 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1633                                 int csize, bool oom_check)
1634 {
1635         struct mem_cgroup *mem_over_limit;
1636         struct res_counter *fail_res;
1637         unsigned long flags = 0;
1638         int ret;
1639
1640         ret = res_counter_charge(&mem->res, csize, &fail_res);
1641
1642         if (likely(!ret)) {
1643                 if (!do_swap_account)
1644                         return CHARGE_OK;
1645                 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1646                 if (likely(!ret))
1647                         return CHARGE_OK;
1648
1649                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1650                 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1651         } else
1652                 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1653
1654         if (csize > PAGE_SIZE) /* change csize and retry */
1655                 return CHARGE_RETRY;
1656
1657         if (!(gfp_mask & __GFP_WAIT))
1658                 return CHARGE_WOULDBLOCK;
1659
1660         ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1661                                         gfp_mask, flags);
1662         /*
1663          * try_to_free_mem_cgroup_pages() might not give us a full
1664          * picture of reclaim. Some pages are reclaimed and might be
1665          * moved to swap cache or just unmapped from the cgroup.
1666          * Check the limit again to see if the reclaim reduced the
1667          * current usage of the cgroup before giving up
1668          */
1669         if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1670                 return CHARGE_RETRY;
1671
1672         /*
1673          * At task move, charge accounts can be doubly counted. So, it's
1674          * better to wait until the end of task_move if something is going on.
1675          */
1676         if (mem_cgroup_wait_acct_move(mem_over_limit))
1677                 return CHARGE_RETRY;
1678
1679         /* If we don't need to call oom-killer at el, return immediately */
1680         if (!oom_check)
1681                 return CHARGE_NOMEM;
1682         /* check OOM */
1683         if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1684                 return CHARGE_OOM_DIE;
1685
1686         return CHARGE_RETRY;
1687 }
1688
1689 /*
1690  * Unlike exported interface, "oom" parameter is added. if oom==true,
1691  * oom-killer can be invoked.
1692  */
1693 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1694                 gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1695 {
1696         int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1697         struct mem_cgroup *mem = NULL;
1698         int ret;
1699         int csize = CHARGE_SIZE;
1700
1701         /*
1702          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1703          * in system level. So, allow to go ahead dying process in addition to
1704          * MEMDIE process.
1705          */
1706         if (unlikely(test_thread_flag(TIF_MEMDIE)
1707                      || fatal_signal_pending(current)))
1708                 goto bypass;
1709
1710         /*
1711          * We always charge the cgroup the mm_struct belongs to.
1712          * The mm_struct's mem_cgroup changes on task migration if the
1713          * thread group leader migrates. It's possible that mm is not
1714          * set, if so charge the init_mm (happens for pagecache usage).
1715          */
1716         if (!*memcg && !mm)
1717                 goto bypass;
1718 again:
1719         if (*memcg) { /* css should be a valid one */
1720                 mem = *memcg;
1721                 VM_BUG_ON(css_is_removed(&mem->css));
1722                 if (mem_cgroup_is_root(mem))
1723                         goto done;
1724                 if (consume_stock(mem))
1725                         goto done;
1726                 css_get(&mem->css);
1727         } else {
1728                 struct task_struct *p;
1729
1730                 rcu_read_lock();
1731                 p = rcu_dereference(mm->owner);
1732                 VM_BUG_ON(!p);
1733                 /*
1734                  * because we don't have task_lock(), "p" can exit while
1735                  * we're here. In that case, "mem" can point to root
1736                  * cgroup but never be NULL. (and task_struct itself is freed
1737                  * by RCU, cgroup itself is RCU safe.) Then, we have small
1738                  * risk here to get wrong cgroup. But such kind of mis-account
1739                  * by race always happens because we don't have cgroup_mutex().
1740                  * It's overkill and we allow that small race, here.
1741                  */
1742                 mem = mem_cgroup_from_task(p);
1743                 VM_BUG_ON(!mem);
1744                 if (mem_cgroup_is_root(mem)) {
1745                         rcu_read_unlock();
1746                         goto done;
1747                 }
1748                 if (consume_stock(mem)) {
1749                         /*
1750                          * It seems dagerous to access memcg without css_get().
1751                          * But considering how consume_stok works, it's not
1752                          * necessary. If consume_stock success, some charges
1753                          * from this memcg are cached on this cpu. So, we
1754                          * don't need to call css_get()/css_tryget() before
1755                          * calling consume_stock().
1756                          */
1757                         rcu_read_unlock();
1758                         goto done;
1759                 }
1760                 /* after here, we may be blocked. we need to get refcnt */
1761                 if (!css_tryget(&mem->css)) {
1762                         rcu_read_unlock();
1763                         goto again;
1764                 }
1765                 rcu_read_unlock();
1766         }
1767
1768         do {
1769                 bool oom_check;
1770
1771                 /* If killed, bypass charge */
1772                 if (fatal_signal_pending(current)) {
1773                         css_put(&mem->css);
1774                         goto bypass;
1775                 }
1776
1777                 oom_check = false;
1778                 if (oom && !nr_oom_retries) {
1779                         oom_check = true;
1780                         nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1781                 }
1782
1783                 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1784
1785                 switch (ret) {
1786                 case CHARGE_OK:
1787                         break;
1788                 case CHARGE_RETRY: /* not in OOM situation but retry */
1789                         csize = PAGE_SIZE;
1790                         css_put(&mem->css);
1791                         mem = NULL;
1792                         goto again;
1793                 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1794                         css_put(&mem->css);
1795                         goto nomem;
1796                 case CHARGE_NOMEM: /* OOM routine works */
1797                         if (!oom) {
1798                                 css_put(&mem->css);
1799                                 goto nomem;
1800                         }
1801                         /* If oom, we never return -ENOMEM */
1802                         nr_oom_retries--;
1803                         break;
1804                 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
1805                         css_put(&mem->css);
1806                         goto bypass;
1807                 }
1808         } while (ret != CHARGE_OK);
1809
1810         if (csize > PAGE_SIZE)
1811                 refill_stock(mem, csize - PAGE_SIZE);
1812         css_put(&mem->css);
1813 done:
1814         *memcg = mem;
1815         return 0;
1816 nomem:
1817         *memcg = NULL;
1818         return -ENOMEM;
1819 bypass:
1820         *memcg = NULL;
1821         return 0;
1822 }
1823
1824 /*
1825  * Somemtimes we have to undo a charge we got by try_charge().
1826  * This function is for that and do uncharge, put css's refcnt.
1827  * gotten by try_charge().
1828  */
1829 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1830                                                         unsigned long count)
1831 {
1832         if (!mem_cgroup_is_root(mem)) {
1833                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1834                 if (do_swap_account)
1835                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1836         }
1837 }
1838
1839 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1840 {
1841         __mem_cgroup_cancel_charge(mem, 1);
1842 }
1843
1844 /*
1845  * A helper function to get mem_cgroup from ID. must be called under
1846  * rcu_read_lock(). The caller must check css_is_removed() or some if
1847  * it's concern. (dropping refcnt from swap can be called against removed
1848  * memcg.)
1849  */
1850 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1851 {
1852         struct cgroup_subsys_state *css;
1853
1854         /* ID 0 is unused ID */
1855         if (!id)
1856                 return NULL;
1857         css = css_lookup(&mem_cgroup_subsys, id);
1858         if (!css)
1859                 return NULL;
1860         return container_of(css, struct mem_cgroup, css);
1861 }
1862
1863 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1864 {
1865         struct mem_cgroup *mem = NULL;
1866         struct page_cgroup *pc;
1867         unsigned short id;
1868         swp_entry_t ent;
1869
1870         VM_BUG_ON(!PageLocked(page));
1871
1872         pc = lookup_page_cgroup(page);
1873         lock_page_cgroup(pc);
1874         if (PageCgroupUsed(pc)) {
1875                 mem = pc->mem_cgroup;
1876                 if (mem && !css_tryget(&mem->css))
1877                         mem = NULL;
1878         } else if (PageSwapCache(page)) {
1879                 ent.val = page_private(page);
1880                 id = lookup_swap_cgroup(ent);
1881                 rcu_read_lock();
1882                 mem = mem_cgroup_lookup(id);
1883                 if (mem && !css_tryget(&mem->css))
1884                         mem = NULL;
1885                 rcu_read_unlock();
1886         }
1887         unlock_page_cgroup(pc);
1888         return mem;
1889 }
1890
1891 /*
1892  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1893  * USED state. If already USED, uncharge and return.
1894  */
1895
1896 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1897                                      struct page_cgroup *pc,
1898                                      enum charge_type ctype)
1899 {
1900         /* try_charge() can return NULL to *memcg, taking care of it. */
1901         if (!mem)
1902                 return;
1903
1904         lock_page_cgroup(pc);
1905         if (unlikely(PageCgroupUsed(pc))) {
1906                 unlock_page_cgroup(pc);
1907                 mem_cgroup_cancel_charge(mem);
1908                 return;
1909         }
1910
1911         pc->mem_cgroup = mem;
1912         /*
1913          * We access a page_cgroup asynchronously without lock_page_cgroup().
1914          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1915          * is accessed after testing USED bit. To make pc->mem_cgroup visible
1916          * before USED bit, we need memory barrier here.
1917          * See mem_cgroup_add_lru_list(), etc.
1918          */
1919         smp_wmb();
1920         switch (ctype) {
1921         case MEM_CGROUP_CHARGE_TYPE_CACHE:
1922         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1923                 SetPageCgroupCache(pc);
1924                 SetPageCgroupUsed(pc);
1925                 break;
1926         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1927                 ClearPageCgroupCache(pc);
1928                 SetPageCgroupUsed(pc);
1929                 break;
1930         default:
1931                 break;
1932         }
1933
1934         mem_cgroup_charge_statistics(mem, pc, true);
1935
1936         unlock_page_cgroup(pc);
1937         /*
1938          * "charge_statistics" updated event counter. Then, check it.
1939          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1940          * if they exceeds softlimit.
1941          */
1942         memcg_check_events(mem, pc->page);
1943 }
1944
1945 /**
1946  * __mem_cgroup_move_account - move account of the page
1947  * @pc: page_cgroup of the page.
1948  * @from: mem_cgroup which the page is moved from.
1949  * @to: mem_cgroup which the page is moved to. @from != @to.
1950  * @uncharge: whether we should call uncharge and css_put against @from.
1951  *
1952  * The caller must confirm following.
1953  * - page is not on LRU (isolate_page() is useful.)
1954  * - the pc is locked, used, and ->mem_cgroup points to @from.
1955  *
1956  * This function doesn't do "charge" nor css_get to new cgroup. It should be
1957  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1958  * true, this function does "uncharge" from old cgroup, but it doesn't if
1959  * @uncharge is false, so a caller should do "uncharge".
1960  */
1961
1962 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1963         struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1964 {
1965         VM_BUG_ON(from == to);
1966         VM_BUG_ON(PageLRU(pc->page));
1967         VM_BUG_ON(!PageCgroupLocked(pc));
1968         VM_BUG_ON(!PageCgroupUsed(pc));
1969         VM_BUG_ON(pc->mem_cgroup != from);
1970
1971         if (PageCgroupFileMapped(pc)) {
1972                 /* Update mapped_file data for mem_cgroup */
1973                 preempt_disable();
1974                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1975                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1976                 preempt_enable();
1977         }
1978         mem_cgroup_charge_statistics(from, pc, false);
1979         if (uncharge)
1980                 /* This is not "cancel", but cancel_charge does all we need. */
1981                 mem_cgroup_cancel_charge(from);
1982
1983         /* caller should have done css_get */
1984         pc->mem_cgroup = to;
1985         mem_cgroup_charge_statistics(to, pc, true);
1986         /*
1987          * We charges against "to" which may not have any tasks. Then, "to"
1988          * can be under rmdir(). But in current implementation, caller of
1989          * this function is just force_empty() and move charge, so it's
1990          * garanteed that "to" is never removed. So, we don't check rmdir
1991          * status here.
1992          */
1993 }
1994
1995 /*
1996  * check whether the @pc is valid for moving account and call
1997  * __mem_cgroup_move_account()
1998  */
1999 static int mem_cgroup_move_account(struct page_cgroup *pc,
2000                 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2001 {
2002         int ret = -EINVAL;
2003         lock_page_cgroup(pc);
2004         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2005                 __mem_cgroup_move_account(pc, from, to, uncharge);
2006                 ret = 0;
2007         }
2008         unlock_page_cgroup(pc);
2009         /*
2010          * check events
2011          */
2012         memcg_check_events(to, pc->page);
2013         memcg_check_events(from, pc->page);
2014         return ret;
2015 }
2016
2017 /*
2018  * move charges to its parent.
2019  */
2020
2021 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2022                                   struct mem_cgroup *child,
2023                                   gfp_t gfp_mask)
2024 {
2025         struct page *page = pc->page;
2026         struct cgroup *cg = child->css.cgroup;
2027         struct cgroup *pcg = cg->parent;
2028         struct mem_cgroup *parent;
2029         int ret;
2030
2031         /* Is ROOT ? */
2032         if (!pcg)
2033                 return -EINVAL;
2034
2035         ret = -EBUSY;
2036         if (!get_page_unless_zero(page))
2037                 goto out;
2038         if (isolate_lru_page(page))
2039                 goto put;
2040
2041         parent = mem_cgroup_from_cont(pcg);
2042         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
2043         if (ret || !parent)
2044                 goto put_back;
2045
2046         ret = mem_cgroup_move_account(pc, child, parent, true);
2047         if (ret)
2048                 mem_cgroup_cancel_charge(parent);
2049 put_back:
2050         putback_lru_page(page);
2051 put:
2052         put_page(page);
2053 out:
2054         return ret;
2055 }
2056
2057 /*
2058  * Charge the memory controller for page usage.
2059  * Return
2060  * 0 if the charge was successful
2061  * < 0 if the cgroup is over its limit
2062  */
2063 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2064                                 gfp_t gfp_mask, enum charge_type ctype)
2065 {
2066         struct mem_cgroup *mem = NULL;
2067         struct page_cgroup *pc;
2068         int ret;
2069
2070         pc = lookup_page_cgroup(page);
2071         /* can happen at boot */
2072         if (unlikely(!pc))
2073                 return 0;
2074         prefetchw(pc);
2075
2076         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
2077         if (ret || !mem)
2078                 return ret;
2079
2080         __mem_cgroup_commit_charge(mem, pc, ctype);
2081         return 0;
2082 }
2083
2084 int mem_cgroup_newpage_charge(struct page *page,
2085                               struct mm_struct *mm, gfp_t gfp_mask)
2086 {
2087         if (mem_cgroup_disabled())
2088                 return 0;
2089         if (PageCompound(page))
2090                 return 0;
2091         /*
2092          * If already mapped, we don't have to account.
2093          * If page cache, page->mapping has address_space.
2094          * But page->mapping may have out-of-use anon_vma pointer,
2095          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2096          * is NULL.
2097          */
2098         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2099                 return 0;
2100         if (unlikely(!mm))
2101                 mm = &init_mm;
2102         return mem_cgroup_charge_common(page, mm, gfp_mask,
2103                                 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2104 }
2105
2106 static void
2107 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2108                                         enum charge_type ctype);
2109
2110 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2111                                 gfp_t gfp_mask)
2112 {
2113         int ret;
2114
2115         if (mem_cgroup_disabled())
2116                 return 0;
2117         if (PageCompound(page))
2118                 return 0;
2119         /*
2120          * Corner case handling. This is called from add_to_page_cache()
2121          * in usual. But some FS (shmem) precharges this page before calling it
2122          * and call add_to_page_cache() with GFP_NOWAIT.
2123          *
2124          * For GFP_NOWAIT case, the page may be pre-charged before calling
2125          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2126          * charge twice. (It works but has to pay a bit larger cost.)
2127          * And when the page is SwapCache, it should take swap information
2128          * into account. This is under lock_page() now.
2129          */
2130         if (!(gfp_mask & __GFP_WAIT)) {
2131                 struct page_cgroup *pc;
2132
2133                 pc = lookup_page_cgroup(page);
2134                 if (!pc)
2135                         return 0;
2136                 lock_page_cgroup(pc);
2137                 if (PageCgroupUsed(pc)) {
2138                         unlock_page_cgroup(pc);
2139                         return 0;
2140                 }
2141                 unlock_page_cgroup(pc);
2142         }
2143
2144         if (unlikely(!mm))
2145                 mm = &init_mm;
2146
2147         if (page_is_file_cache(page))
2148                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2149                                 MEM_CGROUP_CHARGE_TYPE_CACHE);
2150
2151         /* shmem */
2152         if (PageSwapCache(page)) {
2153                 struct mem_cgroup *mem = NULL;
2154
2155                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2156                 if (!ret)
2157                         __mem_cgroup_commit_charge_swapin(page, mem,
2158                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2159         } else
2160                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2161                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2162
2163         return ret;
2164 }
2165
2166 /*
2167  * While swap-in, try_charge -> commit or cancel, the page is locked.
2168  * And when try_charge() successfully returns, one refcnt to memcg without
2169  * struct page_cgroup is acquired. This refcnt will be consumed by
2170  * "commit()" or removed by "cancel()"
2171  */
2172 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2173                                  struct page *page,
2174                                  gfp_t mask, struct mem_cgroup **ptr)
2175 {
2176         struct mem_cgroup *mem;
2177         int ret;
2178
2179         if (mem_cgroup_disabled())
2180                 return 0;
2181
2182         if (!do_swap_account)
2183                 goto charge_cur_mm;
2184         /*
2185          * A racing thread's fault, or swapoff, may have already updated
2186          * the pte, and even removed page from swap cache: in those cases
2187          * do_swap_page()'s pte_same() test will fail; but there's also a
2188          * KSM case which does need to charge the page.
2189          */
2190         if (!PageSwapCache(page))
2191                 goto charge_cur_mm;
2192         mem = try_get_mem_cgroup_from_page(page);
2193         if (!mem)
2194                 goto charge_cur_mm;
2195         *ptr = mem;
2196         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2197         css_put(&mem->css);
2198         return ret;
2199 charge_cur_mm:
2200         if (unlikely(!mm))
2201                 mm = &init_mm;
2202         return __mem_cgroup_try_charge(mm, mask, ptr, true);
2203 }
2204
2205 static void
2206 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2207                                         enum charge_type ctype)
2208 {
2209         struct page_cgroup *pc;
2210
2211         if (mem_cgroup_disabled())
2212                 return;
2213         if (!ptr)
2214                 return;
2215         cgroup_exclude_rmdir(&ptr->css);
2216         pc = lookup_page_cgroup(page);
2217         mem_cgroup_lru_del_before_commit_swapcache(page);
2218         __mem_cgroup_commit_charge(ptr, pc, ctype);
2219         mem_cgroup_lru_add_after_commit_swapcache(page);
2220         /*
2221          * Now swap is on-memory. This means this page may be
2222          * counted both as mem and swap....double count.
2223          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2224          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2225          * may call delete_from_swap_cache() before reach here.
2226          */
2227         if (do_swap_account && PageSwapCache(page)) {
2228                 swp_entry_t ent = {.val = page_private(page)};
2229                 unsigned short id;
2230                 struct mem_cgroup *memcg;
2231
2232                 id = swap_cgroup_record(ent, 0);
2233                 rcu_read_lock();
2234                 memcg = mem_cgroup_lookup(id);
2235                 if (memcg) {
2236                         /*
2237                          * This recorded memcg can be obsolete one. So, avoid
2238                          * calling css_tryget
2239                          */
2240                         if (!mem_cgroup_is_root(memcg))
2241                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2242                         mem_cgroup_swap_statistics(memcg, false);
2243                         mem_cgroup_put(memcg);
2244                 }
2245                 rcu_read_unlock();
2246         }
2247         /*
2248          * At swapin, we may charge account against cgroup which has no tasks.
2249          * So, rmdir()->pre_destroy() can be called while we do this charge.
2250          * In that case, we need to call pre_destroy() again. check it here.
2251          */
2252         cgroup_release_and_wakeup_rmdir(&ptr->css);
2253 }
2254
2255 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2256 {
2257         __mem_cgroup_commit_charge_swapin(page, ptr,
2258                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2259 }
2260
2261 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2262 {
2263         if (mem_cgroup_disabled())
2264                 return;
2265         if (!mem)
2266                 return;
2267         mem_cgroup_cancel_charge(mem);
2268 }
2269
2270 static void
2271 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2272 {
2273         struct memcg_batch_info *batch = NULL;
2274         bool uncharge_memsw = true;
2275         /* If swapout, usage of swap doesn't decrease */
2276         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2277                 uncharge_memsw = false;
2278
2279         batch = &current->memcg_batch;
2280         /*
2281          * In usual, we do css_get() when we remember memcg pointer.
2282          * But in this case, we keep res->usage until end of a series of
2283          * uncharges. Then, it's ok to ignore memcg's refcnt.
2284          */
2285         if (!batch->memcg)
2286                 batch->memcg = mem;
2287         /*
2288          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2289          * In those cases, all pages freed continously can be expected to be in
2290          * the same cgroup and we have chance to coalesce uncharges.
2291          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2292          * because we want to do uncharge as soon as possible.
2293          */
2294
2295         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2296                 goto direct_uncharge;
2297
2298         /*
2299          * In typical case, batch->memcg == mem. This means we can
2300          * merge a series of uncharges to an uncharge of res_counter.
2301          * If not, we uncharge res_counter ony by one.
2302          */
2303         if (batch->memcg != mem)
2304                 goto direct_uncharge;
2305         /* remember freed charge and uncharge it later */
2306         batch->bytes += PAGE_SIZE;
2307         if (uncharge_memsw)
2308                 batch->memsw_bytes += PAGE_SIZE;
2309         return;
2310 direct_uncharge:
2311         res_counter_uncharge(&mem->res, PAGE_SIZE);
2312         if (uncharge_memsw)
2313                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2314         if (unlikely(batch->memcg != mem))
2315                 memcg_oom_recover(mem);
2316         return;
2317 }
2318
2319 /*
2320  * uncharge if !page_mapped(page)
2321  */
2322 static struct mem_cgroup *
2323 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2324 {
2325         struct page_cgroup *pc;
2326         struct mem_cgroup *mem = NULL;
2327
2328         if (mem_cgroup_disabled())
2329                 return NULL;
2330
2331         if (PageSwapCache(page))
2332                 return NULL;
2333
2334         /*
2335          * Check if our page_cgroup is valid
2336          */
2337         pc = lookup_page_cgroup(page);
2338         if (unlikely(!pc || !PageCgroupUsed(pc)))
2339                 return NULL;
2340
2341         lock_page_cgroup(pc);
2342
2343         mem = pc->mem_cgroup;
2344
2345         if (!PageCgroupUsed(pc))
2346                 goto unlock_out;
2347
2348         switch (ctype) {
2349         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2350         case MEM_CGROUP_CHARGE_TYPE_DROP:
2351                 /* See mem_cgroup_prepare_migration() */
2352                 if (page_mapped(page) || PageCgroupMigration(pc))
2353                         goto unlock_out;
2354                 break;
2355         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2356                 if (!PageAnon(page)) {  /* Shared memory */
2357                         if (page->mapping && !page_is_file_cache(page))
2358                                 goto unlock_out;
2359                 } else if (page_mapped(page)) /* Anon */
2360                                 goto unlock_out;
2361                 break;
2362         default:
2363                 break;
2364         }
2365
2366         mem_cgroup_charge_statistics(mem, pc, false);
2367
2368         ClearPageCgroupUsed(pc);
2369         /*
2370          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2371          * freed from LRU. This is safe because uncharged page is expected not
2372          * to be reused (freed soon). Exception is SwapCache, it's handled by
2373          * special functions.
2374          */
2375
2376         unlock_page_cgroup(pc);
2377         /*
2378          * even after unlock, we have mem->res.usage here and this memcg
2379          * will never be freed.
2380          */
2381         memcg_check_events(mem, page);
2382         if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2383                 mem_cgroup_swap_statistics(mem, true);
2384                 mem_cgroup_get(mem);
2385         }
2386         if (!mem_cgroup_is_root(mem))
2387                 __do_uncharge(mem, ctype);
2388
2389         return mem;
2390
2391 unlock_out:
2392         unlock_page_cgroup(pc);
2393         return NULL;
2394 }
2395
2396 void mem_cgroup_uncharge_page(struct page *page)
2397 {
2398         /* early check. */
2399         if (page_mapped(page))
2400                 return;
2401         if (page->mapping && !PageAnon(page))
2402                 return;
2403         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2404 }
2405
2406 void mem_cgroup_uncharge_cache_page(struct page *page)
2407 {
2408         VM_BUG_ON(page_mapped(page));
2409         VM_BUG_ON(page->mapping);
2410         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2411 }
2412
2413 /*
2414  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2415  * In that cases, pages are freed continuously and we can expect pages
2416  * are in the same memcg. All these calls itself limits the number of
2417  * pages freed at once, then uncharge_start/end() is called properly.
2418  * This may be called prural(2) times in a context,
2419  */
2420
2421 void mem_cgroup_uncharge_start(void)
2422 {
2423         current->memcg_batch.do_batch++;
2424         /* We can do nest. */
2425         if (current->memcg_batch.do_batch == 1) {
2426                 current->memcg_batch.memcg = NULL;
2427                 current->memcg_batch.bytes = 0;
2428                 current->memcg_batch.memsw_bytes = 0;
2429         }
2430 }
2431
2432 void mem_cgroup_uncharge_end(void)
2433 {
2434         struct memcg_batch_info *batch = &current->memcg_batch;
2435
2436         if (!batch->do_batch)
2437                 return;
2438
2439         batch->do_batch--;
2440         if (batch->do_batch) /* If stacked, do nothing. */
2441                 return;
2442
2443         if (!batch->memcg)
2444                 return;
2445         /*
2446          * This "batch->memcg" is valid without any css_get/put etc...
2447          * bacause we hide charges behind us.
2448          */
2449         if (batch->bytes)
2450                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2451         if (batch->memsw_bytes)
2452                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2453         memcg_oom_recover(batch->memcg);
2454         /* forget this pointer (for sanity check) */
2455         batch->memcg = NULL;
2456 }
2457
2458 #ifdef CONFIG_SWAP
2459 /*
2460  * called after __delete_from_swap_cache() and drop "page" account.
2461  * memcg information is recorded to swap_cgroup of "ent"
2462  */
2463 void
2464 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2465 {
2466         struct mem_cgroup *memcg;
2467         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2468
2469         if (!swapout) /* this was a swap cache but the swap is unused ! */
2470                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2471
2472         memcg = __mem_cgroup_uncharge_common(page, ctype);
2473
2474         /*
2475          * record memcg information,  if swapout && memcg != NULL,
2476          * mem_cgroup_get() was called in uncharge().
2477          */
2478         if (do_swap_account && swapout && memcg)
2479                 swap_cgroup_record(ent, css_id(&memcg->css));
2480 }
2481 #endif
2482
2483 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2484 /*
2485  * called from swap_entry_free(). remove record in swap_cgroup and
2486  * uncharge "memsw" account.
2487  */
2488 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2489 {
2490         struct mem_cgroup *memcg;
2491         unsigned short id;
2492
2493         if (!do_swap_account)
2494                 return;
2495
2496         id = swap_cgroup_record(ent, 0);
2497         rcu_read_lock();
2498         memcg = mem_cgroup_lookup(id);
2499         if (memcg) {
2500                 /*
2501                  * We uncharge this because swap is freed.
2502                  * This memcg can be obsolete one. We avoid calling css_tryget
2503                  */
2504                 if (!mem_cgroup_is_root(memcg))
2505                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2506                 mem_cgroup_swap_statistics(memcg, false);
2507                 mem_cgroup_put(memcg);
2508         }
2509         rcu_read_unlock();
2510 }
2511
2512 /**
2513  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2514  * @entry: swap entry to be moved
2515  * @from:  mem_cgroup which the entry is moved from
2516  * @to:  mem_cgroup which the entry is moved to
2517  * @need_fixup: whether we should fixup res_counters and refcounts.
2518  *
2519  * It succeeds only when the swap_cgroup's record for this entry is the same
2520  * as the mem_cgroup's id of @from.
2521  *
2522  * Returns 0 on success, -EINVAL on failure.
2523  *
2524  * The caller must have charged to @to, IOW, called res_counter_charge() about
2525  * both res and memsw, and called css_get().
2526  */
2527 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2528                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2529 {
2530         unsigned short old_id, new_id;
2531
2532         old_id = css_id(&from->css);
2533         new_id = css_id(&to->css);
2534
2535         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2536                 mem_cgroup_swap_statistics(from, false);
2537                 mem_cgroup_swap_statistics(to, true);
2538                 /*
2539                  * This function is only called from task migration context now.
2540                  * It postpones res_counter and refcount handling till the end
2541                  * of task migration(mem_cgroup_clear_mc()) for performance
2542                  * improvement. But we cannot postpone mem_cgroup_get(to)
2543                  * because if the process that has been moved to @to does
2544                  * swap-in, the refcount of @to might be decreased to 0.
2545                  */
2546                 mem_cgroup_get(to);
2547                 if (need_fixup) {
2548                         if (!mem_cgroup_is_root(from))
2549                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2550                         mem_cgroup_put(from);
2551                         /*
2552                          * we charged both to->res and to->memsw, so we should
2553                          * uncharge to->res.
2554                          */
2555                         if (!mem_cgroup_is_root(to))
2556                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2557                 }
2558                 return 0;
2559         }
2560         return -EINVAL;
2561 }
2562 #else
2563 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2564                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2565 {
2566         return -EINVAL;
2567 }
2568 #endif
2569
2570 /*
2571  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2572  * page belongs to.
2573  */
2574 int mem_cgroup_prepare_migration(struct page *page,
2575         struct page *newpage, struct mem_cgroup **ptr)
2576 {
2577         struct page_cgroup *pc;
2578         struct mem_cgroup *mem = NULL;
2579         enum charge_type ctype;
2580         int ret = 0;
2581
2582         if (mem_cgroup_disabled())
2583                 return 0;
2584
2585         pc = lookup_page_cgroup(page);
2586         lock_page_cgroup(pc);
2587         if (PageCgroupUsed(pc)) {
2588                 mem = pc->mem_cgroup;
2589                 css_get(&mem->css);
2590                 /*
2591                  * At migrating an anonymous page, its mapcount goes down
2592                  * to 0 and uncharge() will be called. But, even if it's fully
2593                  * unmapped, migration may fail and this page has to be
2594                  * charged again. We set MIGRATION flag here and delay uncharge
2595                  * until end_migration() is called
2596                  *
2597                  * Corner Case Thinking
2598                  * A)
2599                  * When the old page was mapped as Anon and it's unmap-and-freed
2600                  * while migration was ongoing.
2601                  * If unmap finds the old page, uncharge() of it will be delayed
2602                  * until end_migration(). If unmap finds a new page, it's
2603                  * uncharged when it make mapcount to be 1->0. If unmap code
2604                  * finds swap_migration_entry, the new page will not be mapped
2605                  * and end_migration() will find it(mapcount==0).
2606                  *
2607                  * B)
2608                  * When the old page was mapped but migraion fails, the kernel
2609                  * remaps it. A charge for it is kept by MIGRATION flag even
2610                  * if mapcount goes down to 0. We can do remap successfully
2611                  * without charging it again.
2612                  *
2613                  * C)
2614                  * The "old" page is under lock_page() until the end of
2615                  * migration, so, the old page itself will not be swapped-out.
2616                  * If the new page is swapped out before end_migraton, our
2617                  * hook to usual swap-out path will catch the event.
2618                  */
2619                 if (PageAnon(page))
2620                         SetPageCgroupMigration(pc);
2621         }
2622         unlock_page_cgroup(pc);
2623         /*
2624          * If the page is not charged at this point,
2625          * we return here.
2626          */
2627         if (!mem)
2628                 return 0;
2629
2630         *ptr = mem;
2631         ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2632         css_put(&mem->css);/* drop extra refcnt */
2633         if (ret || *ptr == NULL) {
2634                 if (PageAnon(page)) {
2635                         lock_page_cgroup(pc);
2636                         ClearPageCgroupMigration(pc);
2637                         unlock_page_cgroup(pc);
2638                         /*
2639                          * The old page may be fully unmapped while we kept it.
2640                          */
2641                         mem_cgroup_uncharge_page(page);
2642                 }
2643                 return -ENOMEM;
2644         }
2645         /*
2646          * We charge new page before it's used/mapped. So, even if unlock_page()
2647          * is called before end_migration, we can catch all events on this new
2648          * page. In the case new page is migrated but not remapped, new page's
2649          * mapcount will be finally 0 and we call uncharge in end_migration().
2650          */
2651         pc = lookup_page_cgroup(newpage);
2652         if (PageAnon(page))
2653                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2654         else if (page_is_file_cache(page))
2655                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2656         else
2657                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2658         __mem_cgroup_commit_charge(mem, pc, ctype);
2659         return ret;
2660 }
2661
2662 /* remove redundant charge if migration failed*/
2663 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2664         struct page *oldpage, struct page *newpage)
2665 {
2666         struct page *used, *unused;
2667         struct page_cgroup *pc;
2668
2669         if (!mem)
2670                 return;
2671         /* blocks rmdir() */
2672         cgroup_exclude_rmdir(&mem->css);
2673         /* at migration success, oldpage->mapping is NULL. */
2674         if (oldpage->mapping) {
2675                 used = oldpage;
2676                 unused = newpage;
2677         } else {
2678                 used = newpage;
2679                 unused = oldpage;
2680         }
2681         /*
2682          * We disallowed uncharge of pages under migration because mapcount
2683          * of the page goes down to zero, temporarly.
2684          * Clear the flag and check the page should be charged.
2685          */
2686         pc = lookup_page_cgroup(oldpage);
2687         lock_page_cgroup(pc);
2688         ClearPageCgroupMigration(pc);
2689         unlock_page_cgroup(pc);
2690
2691         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2692
2693         /*
2694          * If a page is a file cache, radix-tree replacement is very atomic
2695          * and we can skip this check. When it was an Anon page, its mapcount
2696          * goes down to 0. But because we added MIGRATION flage, it's not
2697          * uncharged yet. There are several case but page->mapcount check
2698          * and USED bit check in mem_cgroup_uncharge_page() will do enough
2699          * check. (see prepare_charge() also)
2700          */
2701         if (PageAnon(used))
2702                 mem_cgroup_uncharge_page(used);
2703         /*
2704          * At migration, we may charge account against cgroup which has no
2705          * tasks.
2706          * So, rmdir()->pre_destroy() can be called while we do this charge.
2707          * In that case, we need to call pre_destroy() again. check it here.
2708          */
2709         cgroup_release_and_wakeup_rmdir(&mem->css);
2710 }
2711
2712 /*
2713  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2714  * Calling hierarchical_reclaim is not enough because we should update
2715  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2716  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2717  * not from the memcg which this page would be charged to.
2718  * try_charge_swapin does all of these works properly.
2719  */
2720 int mem_cgroup_shmem_charge_fallback(struct page *page,
2721                             struct mm_struct *mm,
2722                             gfp_t gfp_mask)
2723 {
2724         struct mem_cgroup *mem = NULL;
2725         int ret;
2726
2727         if (mem_cgroup_disabled())
2728                 return 0;
2729
2730         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2731         if (!ret)
2732                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2733
2734         return ret;
2735 }
2736
2737 static DEFINE_MUTEX(set_limit_mutex);
2738
2739 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2740                                 unsigned long long val)
2741 {
2742         int retry_count;
2743         u64 memswlimit, memlimit;
2744         int ret = 0;
2745         int children = mem_cgroup_count_children(memcg);
2746         u64 curusage, oldusage;
2747         int enlarge;
2748
2749         /*
2750          * For keeping hierarchical_reclaim simple, how long we should retry
2751          * is depends on callers. We set our retry-count to be function
2752          * of # of children which we should visit in this loop.
2753          */
2754         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2755
2756         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2757
2758         enlarge = 0;
2759         while (retry_count) {
2760                 if (signal_pending(current)) {
2761                         ret = -EINTR;
2762                         break;
2763                 }
2764                 /*
2765                  * Rather than hide all in some function, I do this in
2766                  * open coded manner. You see what this really does.
2767                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2768                  */
2769                 mutex_lock(&set_limit_mutex);
2770                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2771                 if (memswlimit < val) {
2772                         ret = -EINVAL;
2773                         mutex_unlock(&set_limit_mutex);
2774                         break;
2775                 }
2776
2777                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2778                 if (memlimit < val)
2779                         enlarge = 1;
2780
2781                 ret = res_counter_set_limit(&memcg->res, val);
2782                 if (!ret) {
2783                         if (memswlimit == val)
2784                                 memcg->memsw_is_minimum = true;
2785                         else
2786                                 memcg->memsw_is_minimum = false;
2787                 }
2788                 mutex_unlock(&set_limit_mutex);
2789
2790                 if (!ret)
2791                         break;
2792
2793                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2794                                                 MEM_CGROUP_RECLAIM_SHRINK);
2795                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2796                 /* Usage is reduced ? */
2797                 if (curusage >= oldusage)
2798                         retry_count--;
2799                 else
2800                         oldusage = curusage;
2801         }
2802         if (!ret && enlarge)
2803                 memcg_oom_recover(memcg);
2804
2805         return ret;
2806 }
2807
2808 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2809                                         unsigned long long val)
2810 {
2811         int retry_count;
2812         u64 memlimit, memswlimit, oldusage, curusage;
2813         int children = mem_cgroup_count_children(memcg);
2814         int ret = -EBUSY;
2815         int enlarge = 0;
2816
2817         /* see mem_cgroup_resize_res_limit */
2818         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2819         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2820         while (retry_count) {
2821                 if (signal_pending(current)) {
2822                         ret = -EINTR;
2823                         break;
2824                 }
2825                 /*
2826                  * Rather than hide all in some function, I do this in
2827                  * open coded manner. You see what this really does.
2828                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2829                  */
2830                 mutex_lock(&set_limit_mutex);
2831                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2832                 if (memlimit > val) {
2833                         ret = -EINVAL;
2834                         mutex_unlock(&set_limit_mutex);
2835                         break;
2836                 }
2837                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2838                 if (memswlimit < val)
2839                         enlarge = 1;
2840                 ret = res_counter_set_limit(&memcg->memsw, val);
2841                 if (!ret) {
2842                         if (memlimit == val)
2843                                 memcg->memsw_is_minimum = true;
2844                         else
2845                                 memcg->memsw_is_minimum = false;
2846                 }
2847                 mutex_unlock(&set_limit_mutex);
2848
2849                 if (!ret)
2850                         break;
2851
2852                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2853                                                 MEM_CGROUP_RECLAIM_NOSWAP |
2854                                                 MEM_CGROUP_RECLAIM_SHRINK);
2855                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2856                 /* Usage is reduced ? */
2857                 if (curusage >= oldusage)
2858                         retry_count--;
2859                 else
2860                         oldusage = curusage;
2861         }
2862         if (!ret && enlarge)
2863                 memcg_oom_recover(memcg);
2864         return ret;
2865 }
2866
2867 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2868                                             gfp_t gfp_mask)
2869 {
2870         unsigned long nr_reclaimed = 0;
2871         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2872         unsigned long reclaimed;
2873         int loop = 0;
2874         struct mem_cgroup_tree_per_zone *mctz;
2875         unsigned long long excess;
2876
2877         if (order > 0)
2878                 return 0;
2879
2880         mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2881         /*
2882          * This loop can run a while, specially if mem_cgroup's continuously
2883          * keep exceeding their soft limit and putting the system under
2884          * pressure
2885          */
2886         do {
2887                 if (next_mz)
2888                         mz = next_mz;
2889                 else
2890                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2891                 if (!mz)
2892                         break;
2893
2894                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2895                                                 gfp_mask,
2896                                                 MEM_CGROUP_RECLAIM_SOFT);
2897                 nr_reclaimed += reclaimed;
2898                 spin_lock(&mctz->lock);
2899
2900                 /*
2901                  * If we failed to reclaim anything from this memory cgroup
2902                  * it is time to move on to the next cgroup
2903                  */
2904                 next_mz = NULL;
2905                 if (!reclaimed) {
2906                         do {
2907                                 /*
2908                                  * Loop until we find yet another one.
2909                                  *
2910                                  * By the time we get the soft_limit lock
2911                                  * again, someone might have aded the
2912                                  * group back on the RB tree. Iterate to
2913                                  * make sure we get a different mem.
2914                                  * mem_cgroup_largest_soft_limit_node returns
2915                                  * NULL if no other cgroup is present on
2916                                  * the tree
2917                                  */
2918                                 next_mz =
2919                                 __mem_cgroup_largest_soft_limit_node(mctz);
2920                                 if (next_mz == mz) {
2921                                         css_put(&next_mz->mem->css);
2922                                         next_mz = NULL;
2923                                 } else /* next_mz == NULL or other memcg */
2924                                         break;
2925                         } while (1);
2926                 }
2927                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2928                 excess = res_counter_soft_limit_excess(&mz->mem->res);
2929                 /*
2930                  * One school of thought says that we should not add
2931                  * back the node to the tree if reclaim returns 0.
2932                  * But our reclaim could return 0, simply because due
2933                  * to priority we are exposing a smaller subset of
2934                  * memory to reclaim from. Consider this as a longer
2935                  * term TODO.
2936                  */
2937                 /* If excess == 0, no tree ops */
2938                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2939                 spin_unlock(&mctz->lock);
2940                 css_put(&mz->mem->css);
2941                 loop++;
2942                 /*
2943                  * Could not reclaim anything and there are no more
2944                  * mem cgroups to try or we seem to be looping without
2945                  * reclaiming anything.
2946                  */
2947                 if (!nr_reclaimed &&
2948                         (next_mz == NULL ||
2949                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2950                         break;
2951         } while (!nr_reclaimed);
2952         if (next_mz)
2953                 css_put(&next_mz->mem->css);
2954         return nr_reclaimed;
2955 }
2956
2957 /*
2958  * This routine traverse page_cgroup in given list and drop them all.
2959  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2960  */
2961 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2962                                 int node, int zid, enum lru_list lru)
2963 {
2964         struct zone *zone;
2965         struct mem_cgroup_per_zone *mz;
2966         struct page_cgroup *pc, *busy;
2967         unsigned long flags, loop;
2968         struct list_head *list;
2969         int ret = 0;
2970
2971         zone = &NODE_DATA(node)->node_zones[zid];
2972         mz = mem_cgroup_zoneinfo(mem, node, zid);
2973         list = &mz->lists[lru];
2974
2975         loop = MEM_CGROUP_ZSTAT(mz, lru);
2976         /* give some margin against EBUSY etc...*/
2977         loop += 256;
2978         busy = NULL;
2979         while (loop--) {
2980                 ret = 0;
2981                 spin_lock_irqsave(&zone->lru_lock, flags);
2982                 if (list_empty(list)) {
2983                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2984                         break;
2985                 }
2986                 pc = list_entry(list->prev, struct page_cgroup, lru);
2987                 if (busy == pc) {
2988                         list_move(&pc->lru, list);
2989                         busy = NULL;
2990                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2991                         continue;
2992                 }
2993                 spin_unlock_irqrestore(&zone->lru_lock, flags);
2994
2995                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2996                 if (ret == -ENOMEM)
2997                         break;
2998
2999                 if (ret == -EBUSY || ret == -EINVAL) {
3000                         /* found lock contention or "pc" is obsolete. */
3001                         busy = pc;
3002                         cond_resched();
3003                 } else
3004                         busy = NULL;
3005         }
3006
3007         if (!ret && !list_empty(list))
3008                 return -EBUSY;
3009         return ret;
3010 }
3011
3012 /*
3013  * make mem_cgroup's charge to be 0 if there is no task.
3014  * This enables deleting this mem_cgroup.
3015  */
3016 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3017 {
3018         int ret;
3019         int node, zid, shrink;
3020         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3021         struct cgroup *cgrp = mem->css.cgroup;
3022
3023         css_get(&mem->css);
3024
3025         shrink = 0;
3026         /* should free all ? */
3027         if (free_all)
3028                 goto try_to_free;
3029 move_account:
3030         do {
3031                 ret = -EBUSY;
3032                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3033                         goto out;
3034                 ret = -EINTR;
3035                 if (signal_pending(current))
3036                         goto out;
3037                 /* This is for making all *used* pages to be on LRU. */
3038                 lru_add_drain_all();
3039                 drain_all_stock_sync();
3040                 ret = 0;
3041                 for_each_node_state(node, N_HIGH_MEMORY) {
3042                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3043                                 enum lru_list l;
3044                                 for_each_lru(l) {
3045                                         ret = mem_cgroup_force_empty_list(mem,
3046                                                         node, zid, l);
3047                                         if (ret)
3048                                                 break;
3049                                 }
3050                         }
3051                         if (ret)
3052                                 break;
3053                 }
3054                 memcg_oom_recover(mem);
3055                 /* it seems parent cgroup doesn't have enough mem */
3056                 if (ret == -ENOMEM)
3057                         goto try_to_free;
3058                 cond_resched();
3059         /* "ret" should also be checked to ensure all lists are empty. */
3060         } while (mem->res.usage > 0 || ret);
3061 out:
3062         css_put(&mem->css);
3063         return ret;
3064
3065 try_to_free:
3066         /* returns EBUSY if there is a task or if we come here twice. */
3067         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3068                 ret = -EBUSY;
3069                 goto out;
3070         }
3071         /* we call try-to-free pages for make this cgroup empty */
3072         lru_add_drain_all();
3073         /* try to free all pages in this cgroup */
3074         shrink = 1;
3075         while (nr_retries && mem->res.usage > 0) {
3076                 int progress;
3077
3078                 if (signal_pending(current)) {
3079                         ret = -EINTR;
3080                         goto out;
3081                 }
3082                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3083                                                 false, get_swappiness(mem));
3084                 if (!progress) {
3085                         nr_retries--;
3086                         /* maybe some writeback is necessary */
3087                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3088                 }
3089
3090         }
3091         lru_add_drain();
3092         /* try move_account...there may be some *locked* pages. */
3093         goto move_account;
3094 }
3095
3096 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3097 {
3098         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3099 }
3100
3101
3102 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3103 {
3104         return mem_cgroup_from_cont(cont)->use_hierarchy;
3105 }
3106
3107 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3108                                         u64 val)
3109 {
3110         int retval = 0;
3111         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3112         struct cgroup *parent = cont->parent;
3113         struct mem_cgroup *parent_mem = NULL;
3114
3115         if (parent)
3116                 parent_mem = mem_cgroup_from_cont(parent);
3117
3118         cgroup_lock();
3119         /*
3120          * If parent's use_hierarchy is set, we can't make any modifications
3121          * in the child subtrees. If it is unset, then the change can
3122          * occur, provided the current cgroup has no children.
3123          *
3124          * For the root cgroup, parent_mem is NULL, we allow value to be
3125          * set if there are no children.
3126          */
3127         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3128                                 (val == 1 || val == 0)) {
3129                 if (list_empty(&cont->children))
3130                         mem->use_hierarchy = val;
3131                 else
3132                         retval = -EBUSY;
3133         } else
3134                 retval = -EINVAL;
3135         cgroup_unlock();
3136
3137         return retval;
3138 }
3139
3140 struct mem_cgroup_idx_data {
3141         s64 val;
3142         enum mem_cgroup_stat_index idx;
3143 };
3144
3145 static int
3146 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3147 {
3148         struct mem_cgroup_idx_data *d = data;
3149         d->val += mem_cgroup_read_stat(mem, d->idx);
3150         return 0;
3151 }
3152
3153 static void
3154 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3155                                 enum mem_cgroup_stat_index idx, s64 *val)
3156 {
3157         struct mem_cgroup_idx_data d;
3158         d.idx = idx;
3159         d.val = 0;
3160         mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3161         *val = d.val;
3162 }
3163
3164 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3165 {
3166         u64 idx_val, val;
3167
3168         if (!mem_cgroup_is_root(mem)) {
3169                 if (!swap)
3170                         return res_counter_read_u64(&mem->res, RES_USAGE);
3171                 else
3172                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3173         }
3174
3175         mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3176         val = idx_val;
3177         mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3178         val += idx_val;
3179
3180         if (swap) {
3181                 mem_cgroup_get_recursive_idx_stat(mem,
3182                                 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3183                 val += idx_val;
3184         }
3185
3186         return val << PAGE_SHIFT;
3187 }
3188
3189 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3190 {
3191         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3192         u64 val;
3193         int type, name;
3194
3195         type = MEMFILE_TYPE(cft->private);
3196         name = MEMFILE_ATTR(cft->private);
3197         switch (type) {
3198         case _MEM:
3199                 if (name == RES_USAGE)
3200                         val = mem_cgroup_usage(mem, false);
3201                 else
3202                         val = res_counter_read_u64(&mem->res, name);
3203                 break;
3204         case _MEMSWAP:
3205                 if (name == RES_USAGE)
3206                         val = mem_cgroup_usage(mem, true);
3207                 else
3208                         val = res_counter_read_u64(&mem->memsw, name);
3209                 break;
3210         default:
3211                 BUG();
3212                 break;
3213         }
3214         return val;
3215 }
3216 /*
3217  * The user of this function is...
3218  * RES_LIMIT.
3219  */
3220 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3221                             const char *buffer)
3222 {
3223         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3224         int type, name;
3225         unsigned long long val;
3226         int ret;
3227
3228         type = MEMFILE_TYPE(cft->private);
3229         name = MEMFILE_ATTR(cft->private);
3230         switch (name) {
3231         case RES_LIMIT:
3232                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3233                         ret = -EINVAL;
3234                         break;
3235                 }
3236                 /* This function does all necessary parse...reuse it */
3237                 ret = res_counter_memparse_write_strategy(buffer, &val);
3238                 if (ret)
3239                         break;
3240                 if (type == _MEM)
3241                         ret = mem_cgroup_resize_limit(memcg, val);
3242                 else
3243                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3244                 break;
3245         case RES_SOFT_LIMIT:
3246                 ret = res_counter_memparse_write_strategy(buffer, &val);
3247                 if (ret)
3248                         break;
3249                 /*
3250                  * For memsw, soft limits are hard to implement in terms
3251                  * of semantics, for now, we support soft limits for
3252                  * control without swap
3253                  */
3254                 if (type == _MEM)
3255                         ret = res_counter_set_soft_limit(&memcg->res, val);
3256                 else
3257                         ret = -EINVAL;
3258                 break;
3259         default:
3260                 ret = -EINVAL; /* should be BUG() ? */
3261                 break;
3262         }
3263         return ret;
3264 }
3265
3266 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3267                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3268 {
3269         struct cgroup *cgroup;
3270         unsigned long long min_limit, min_memsw_limit, tmp;
3271
3272         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3273         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3274         cgroup = memcg->css.cgroup;
3275         if (!memcg->use_hierarchy)
3276                 goto out;
3277
3278         while (cgroup->parent) {
3279                 cgroup = cgroup->parent;
3280                 memcg = mem_cgroup_from_cont(cgroup);
3281                 if (!memcg->use_hierarchy)
3282                         break;
3283                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3284                 min_limit = min(min_limit, tmp);
3285                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3286                 min_memsw_limit = min(min_memsw_limit, tmp);
3287         }
3288 out:
3289         *mem_limit = min_limit;
3290         *memsw_limit = min_memsw_limit;
3291         return;
3292 }
3293
3294 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3295 {
3296         struct mem_cgroup *mem;
3297         int type, name;
3298
3299         mem = mem_cgroup_from_cont(cont);
3300         type = MEMFILE_TYPE(event);
3301         name = MEMFILE_ATTR(event);
3302         switch (name) {
3303         case RES_MAX_USAGE:
3304                 if (type == _MEM)
3305                         res_counter_reset_max(&mem->res);
3306                 else
3307                         res_counter_reset_max(&mem->memsw);
3308                 break;
3309         case RES_FAILCNT:
3310                 if (type == _MEM)
3311                         res_counter_reset_failcnt(&mem->res);
3312                 else
3313                         res_counter_reset_failcnt(&mem->memsw);
3314                 break;
3315         }
3316
3317         return 0;
3318 }
3319
3320 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3321                                         struct cftype *cft)
3322 {
3323         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3324 }
3325
3326 #ifdef CONFIG_MMU
3327 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3328                                         struct cftype *cft, u64 val)
3329 {
3330         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3331
3332         if (val >= (1 << NR_MOVE_TYPE))
3333                 return -EINVAL;
3334         /*
3335          * We check this value several times in both in can_attach() and
3336          * attach(), so we need cgroup lock to prevent this value from being
3337          * inconsistent.
3338          */
3339         cgroup_lock();
3340         mem->move_charge_at_immigrate = val;
3341         cgroup_unlock();
3342
3343         return 0;
3344 }
3345 #else
3346 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3347                                         struct cftype *cft, u64 val)
3348 {
3349         return -ENOSYS;
3350 }
3351 #endif
3352
3353
3354 /* For read statistics */
3355 enum {
3356         MCS_CACHE,
3357         MCS_RSS,
3358         MCS_FILE_MAPPED,
3359         MCS_PGPGIN,
3360         MCS_PGPGOUT,
3361         MCS_SWAP,
3362         MCS_INACTIVE_ANON,
3363         MCS_ACTIVE_ANON,
3364         MCS_INACTIVE_FILE,
3365         MCS_ACTIVE_FILE,
3366         MCS_UNEVICTABLE,
3367         NR_MCS_STAT,
3368 };
3369
3370 struct mcs_total_stat {
3371         s64 stat[NR_MCS_STAT];
3372 };
3373
3374 struct {
3375         char *local_name;
3376         char *total_name;
3377 } memcg_stat_strings[NR_MCS_STAT] = {
3378         {"cache", "total_cache"},
3379         {"rss", "total_rss"},
3380         {"mapped_file", "total_mapped_file"},
3381         {"pgpgin", "total_pgpgin"},
3382         {"pgpgout", "total_pgpgout"},
3383         {"swap", "total_swap"},
3384         {"inactive_anon", "total_inactive_anon"},
3385         {"active_anon", "total_active_anon"},
3386         {"inactive_file", "total_inactive_file"},
3387         {"active_file", "total_active_file"},
3388         {"unevictable", "total_unevictable"}
3389 };
3390
3391
3392 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3393 {
3394         struct mcs_total_stat *s = data;
3395         s64 val;
3396
3397         /* per cpu stat */
3398         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3399         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3400         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3401         s->stat[MCS_RSS] += val * PAGE_SIZE;
3402         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3403         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3404         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3405         s->stat[MCS_PGPGIN] += val;
3406         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3407         s->stat[MCS_PGPGOUT] += val;
3408         if (do_swap_account) {
3409                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3410                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3411         }
3412
3413         /* per zone stat */
3414         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3415         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3416         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3417         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3418         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3419         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3420         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3421         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3422         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3423         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3424         return 0;
3425 }
3426
3427 static void
3428 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3429 {
3430         mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3431 }
3432
3433 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3434                                  struct cgroup_map_cb *cb)
3435 {
3436         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3437         struct mcs_total_stat mystat;
3438         int i;
3439
3440         memset(&mystat, 0, sizeof(mystat));
3441         mem_cgroup_get_local_stat(mem_cont, &mystat);
3442
3443         for (i = 0; i < NR_MCS_STAT; i++) {
3444                 if (i == MCS_SWAP && !do_swap_account)
3445                         continue;
3446                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3447         }
3448
3449         /* Hierarchical information */
3450         {
3451                 unsigned long long limit, memsw_limit;
3452                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3453                 cb->fill(cb, "hierarchical_memory_limit", limit);
3454                 if (do_swap_account)
3455                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3456         }
3457
3458         memset(&mystat, 0, sizeof(mystat));
3459         mem_cgroup_get_total_stat(mem_cont, &mystat);
3460         for (i = 0; i < NR_MCS_STAT; i++) {
3461                 if (i == MCS_SWAP && !do_swap_account)
3462                         continue;
3463                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3464         }
3465
3466 #ifdef CONFIG_DEBUG_VM
3467         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3468
3469         {
3470                 int nid, zid;
3471                 struct mem_cgroup_per_zone *mz;
3472                 unsigned long recent_rotated[2] = {0, 0};
3473                 unsigned long recent_scanned[2] = {0, 0};
3474
3475                 for_each_online_node(nid)
3476                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3477                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3478
3479                                 recent_rotated[0] +=
3480                                         mz->reclaim_stat.recent_rotated[0];
3481                                 recent_rotated[1] +=
3482                                         mz->reclaim_stat.recent_rotated[1];
3483                                 recent_scanned[0] +=
3484                                         mz->reclaim_stat.recent_scanned[0];
3485                                 recent_scanned[1] +=
3486                                         mz->reclaim_stat.recent_scanned[1];
3487                         }
3488                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3489                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3490                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3491                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3492         }
3493 #endif
3494
3495         return 0;
3496 }
3497
3498 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3499 {
3500         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3501
3502         return get_swappiness(memcg);
3503 }
3504
3505 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3506                                        u64 val)
3507 {
3508         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3509         struct mem_cgroup *parent;
3510
3511         if (val > 100)
3512                 return -EINVAL;
3513
3514         if (cgrp->parent == NULL)
3515                 return -EINVAL;
3516
3517         parent = mem_cgroup_from_cont(cgrp->parent);
3518
3519         cgroup_lock();
3520
3521         /* If under hierarchy, only empty-root can set this value */
3522         if ((parent->use_hierarchy) ||
3523             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3524                 cgroup_unlock();
3525                 return -EINVAL;
3526         }
3527
3528         spin_lock(&memcg->reclaim_param_lock);
3529         memcg->swappiness = val;
3530         spin_unlock(&memcg->reclaim_param_lock);
3531
3532         cgroup_unlock();
3533
3534         return 0;
3535 }
3536
3537 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3538 {
3539         struct mem_cgroup_threshold_ary *t;
3540         u64 usage;
3541         int i;
3542
3543         rcu_read_lock();
3544         if (!swap)
3545                 t = rcu_dereference(memcg->thresholds.primary);
3546         else
3547                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3548
3549         if (!t)
3550                 goto unlock;
3551
3552         usage = mem_cgroup_usage(memcg, swap);
3553
3554         /*
3555          * current_threshold points to threshold just below usage.
3556          * If it's not true, a threshold was crossed after last
3557          * call of __mem_cgroup_threshold().
3558          */
3559         i = t->current_threshold;
3560
3561         /*
3562          * Iterate backward over array of thresholds starting from
3563          * current_threshold and check if a threshold is crossed.
3564          * If none of thresholds below usage is crossed, we read
3565          * only one element of the array here.
3566          */
3567         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3568                 eventfd_signal(t->entries[i].eventfd, 1);
3569
3570         /* i = current_threshold + 1 */
3571         i++;
3572
3573         /*
3574          * Iterate forward over array of thresholds starting from
3575          * current_threshold+1 and check if a threshold is crossed.
3576          * If none of thresholds above usage is crossed, we read
3577          * only one element of the array here.
3578          */
3579         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3580                 eventfd_signal(t->entries[i].eventfd, 1);
3581
3582         /* Update current_threshold */
3583         t->current_threshold = i - 1;
3584 unlock:
3585         rcu_read_unlock();
3586 }
3587
3588 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3589 {
3590         __mem_cgroup_threshold(memcg, false);
3591         if (do_swap_account)
3592                 __mem_cgroup_threshold(memcg, true);
3593 }
3594
3595 static int compare_thresholds(const void *a, const void *b)
3596 {
3597         const struct mem_cgroup_threshold *_a = a;
3598         const struct mem_cgroup_threshold *_b = b;
3599
3600         return _a->threshold - _b->threshold;
3601 }
3602
3603 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3604 {
3605         struct mem_cgroup_eventfd_list *ev;
3606
3607         list_for_each_entry(ev, &mem->oom_notify, list)
3608                 eventfd_signal(ev->eventfd, 1);
3609         return 0;
3610 }
3611
3612 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3613 {
3614         mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3615 }
3616
3617 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3618         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3619 {
3620         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3621         struct mem_cgroup_thresholds *thresholds;
3622         struct mem_cgroup_threshold_ary *new;
3623         int type = MEMFILE_TYPE(cft->private);
3624         u64 threshold, usage;
3625         int i, size, ret;
3626
3627         ret = res_counter_memparse_write_strategy(args, &threshold);
3628         if (ret)
3629                 return ret;
3630
3631         mutex_lock(&memcg->thresholds_lock);
3632
3633         if (type == _MEM)
3634                 thresholds = &memcg->thresholds;
3635         else if (type == _MEMSWAP)
3636                 thresholds = &memcg->memsw_thresholds;
3637         else
3638                 BUG();
3639
3640         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3641
3642         /* Check if a threshold crossed before adding a new one */
3643         if (thresholds->primary)
3644                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3645
3646         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3647
3648         /* Allocate memory for new array of thresholds */
3649         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3650                         GFP_KERNEL);
3651         if (!new) {
3652                 ret = -ENOMEM;
3653                 goto unlock;
3654         }
3655         new->size = size;
3656
3657         /* Copy thresholds (if any) to new array */
3658         if (thresholds->primary) {
3659                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3660                                 sizeof(struct mem_cgroup_threshold));
3661         }
3662
3663         /* Add new threshold */
3664         new->entries[size - 1].eventfd = eventfd;
3665         new->entries[size - 1].threshold = threshold;
3666
3667         /* Sort thresholds. Registering of new threshold isn't time-critical */
3668         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3669                         compare_thresholds, NULL);
3670
3671         /* Find current threshold */
3672         new->current_threshold = -1;
3673         for (i = 0; i < size; i++) {
3674                 if (new->entries[i].threshold < usage) {
3675                         /*
3676                          * new->current_threshold will not be used until
3677                          * rcu_assign_pointer(), so it's safe to increment
3678                          * it here.
3679                          */
3680                         ++new->current_threshold;
3681                 }
3682         }
3683
3684         /* Free old spare buffer and save old primary buffer as spare */
3685         kfree(thresholds->spare);
3686         thresholds->spare = thresholds->primary;
3687
3688         rcu_assign_pointer(thresholds->primary, new);
3689
3690         /* To be sure that nobody uses thresholds */
3691         synchronize_rcu();
3692
3693 unlock:
3694         mutex_unlock(&memcg->thresholds_lock);
3695
3696         return ret;
3697 }
3698
3699 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3700         struct cftype *cft, struct eventfd_ctx *eventfd)
3701 {
3702         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3703         struct mem_cgroup_thresholds *thresholds;
3704         struct mem_cgroup_threshold_ary *new;
3705         int type = MEMFILE_TYPE(cft->private);
3706         u64 usage;
3707         int i, j, size;
3708
3709         mutex_lock(&memcg->thresholds_lock);
3710         if (type == _MEM)
3711                 thresholds = &memcg->thresholds;
3712         else if (type == _MEMSWAP)
3713                 thresholds = &memcg->memsw_thresholds;
3714         else
3715                 BUG();
3716
3717         /*
3718          * Something went wrong if we trying to unregister a threshold
3719          * if we don't have thresholds
3720          */
3721         BUG_ON(!thresholds);
3722
3723         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3724
3725         /* Check if a threshold crossed before removing */
3726         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3727
3728         /* Calculate new number of threshold */
3729         size = 0;
3730         for (i = 0; i < thresholds->primary->size; i++) {
3731                 if (thresholds->primary->entries[i].eventfd != eventfd)
3732                         size++;
3733         }
3734
3735         new = thresholds->spare;
3736
3737         /* Set thresholds array to NULL if we don't have thresholds */
3738         if (!size) {
3739                 kfree(new);
3740                 new = NULL;
3741                 goto swap_buffers;
3742         }
3743
3744         new->size = size;
3745
3746         /* Copy thresholds and find current threshold */
3747         new->current_threshold = -1;
3748         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3749                 if (thresholds->primary->entries[i].eventfd == eventfd)
3750                         continue;
3751
3752                 new->entries[j] = thresholds->primary->entries[i];
3753                 if (new->entries[j].threshold < usage) {
3754                         /*
3755                          * new->current_threshold will not be used
3756                          * until rcu_assign_pointer(), so it's safe to increment
3757                          * it here.
3758                          */
3759                         ++new->current_threshold;
3760                 }
3761                 j++;
3762         }
3763
3764 swap_buffers:
3765         /* Swap primary and spare array */
3766         thresholds->spare = thresholds->primary;
3767         rcu_assign_pointer(thresholds->primary, new);
3768
3769         /* To be sure that nobody uses thresholds */
3770         synchronize_rcu();
3771
3772         mutex_unlock(&memcg->thresholds_lock);
3773 }
3774
3775 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3776         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3777 {
3778         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3779         struct mem_cgroup_eventfd_list *event;
3780         int type = MEMFILE_TYPE(cft->private);
3781
3782         BUG_ON(type != _OOM_TYPE);
3783         event = kmalloc(sizeof(*event), GFP_KERNEL);
3784         if (!event)
3785                 return -ENOMEM;
3786
3787         mutex_lock(&memcg_oom_mutex);
3788
3789         event->eventfd = eventfd;
3790         list_add(&event->list, &memcg->oom_notify);
3791
3792         /* already in OOM ? */
3793         if (atomic_read(&memcg->oom_lock))
3794                 eventfd_signal(eventfd, 1);
3795         mutex_unlock(&memcg_oom_mutex);
3796
3797         return 0;
3798 }
3799
3800 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3801         struct cftype *cft, struct eventfd_ctx *eventfd)
3802 {
3803         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3804         struct mem_cgroup_eventfd_list *ev, *tmp;
3805         int type = MEMFILE_TYPE(cft->private);
3806
3807         BUG_ON(type != _OOM_TYPE);
3808
3809         mutex_lock(&memcg_oom_mutex);
3810
3811         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3812                 if (ev->eventfd == eventfd) {
3813                         list_del(&ev->list);
3814                         kfree(ev);
3815                 }
3816         }
3817
3818         mutex_unlock(&memcg_oom_mutex);
3819 }
3820
3821 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3822         struct cftype *cft,  struct cgroup_map_cb *cb)
3823 {
3824         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3825
3826         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3827
3828         if (atomic_read(&mem->oom_lock))
3829                 cb->fill(cb, "under_oom", 1);
3830         else
3831                 cb->fill(cb, "under_oom", 0);
3832         return 0;
3833 }
3834
3835 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3836         struct cftype *cft, u64 val)
3837 {
3838         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3839         struct mem_cgroup *parent;
3840
3841         /* cannot set to root cgroup and only 0 and 1 are allowed */
3842         if (!cgrp->parent || !((val == 0) || (val == 1)))
3843                 return -EINVAL;
3844
3845         parent = mem_cgroup_from_cont(cgrp->parent);
3846
3847         cgroup_lock();
3848         /* oom-kill-disable is a flag for subhierarchy. */
3849         if ((parent->use_hierarchy) ||
3850             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3851                 cgroup_unlock();
3852                 return -EINVAL;
3853         }
3854         mem->oom_kill_disable = val;
3855         if (!val)
3856                 memcg_oom_recover(mem);
3857         cgroup_unlock();
3858         return 0;
3859 }
3860
3861 static struct cftype mem_cgroup_files[] = {
3862         {
3863                 .name = "usage_in_bytes",
3864                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3865                 .read_u64 = mem_cgroup_read,
3866                 .register_event = mem_cgroup_usage_register_event,
3867                 .unregister_event = mem_cgroup_usage_unregister_event,
3868         },
3869         {
3870                 .name = "max_usage_in_bytes",
3871                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3872                 .trigger = mem_cgroup_reset,
3873                 .read_u64 = mem_cgroup_read,
3874         },
3875         {
3876                 .name = "limit_in_bytes",
3877                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3878                 .write_string = mem_cgroup_write,
3879                 .read_u64 = mem_cgroup_read,
3880         },
3881         {
3882                 .name = "soft_limit_in_bytes",
3883                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3884                 .write_string = mem_cgroup_write,
3885                 .read_u64 = mem_cgroup_read,
3886         },
3887         {
3888                 .name = "failcnt",
3889                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3890                 .trigger = mem_cgroup_reset,
3891                 .read_u64 = mem_cgroup_read,
3892         },
3893         {
3894                 .name = "stat",
3895                 .read_map = mem_control_stat_show,
3896         },
3897         {
3898                 .name = "force_empty",
3899                 .trigger = mem_cgroup_force_empty_write,
3900         },
3901         {
3902                 .name = "use_hierarchy",
3903                 .write_u64 = mem_cgroup_hierarchy_write,
3904                 .read_u64 = mem_cgroup_hierarchy_read,
3905         },
3906         {
3907                 .name = "swappiness",
3908                 .read_u64 = mem_cgroup_swappiness_read,
3909                 .write_u64 = mem_cgroup_swappiness_write,
3910         },
3911         {
3912                 .name = "move_charge_at_immigrate",
3913                 .read_u64 = mem_cgroup_move_charge_read,
3914                 .write_u64 = mem_cgroup_move_charge_write,
3915         },
3916         {
3917                 .name = "oom_control",
3918                 .read_map = mem_cgroup_oom_control_read,
3919                 .write_u64 = mem_cgroup_oom_control_write,
3920                 .register_event = mem_cgroup_oom_register_event,
3921                 .unregister_event = mem_cgroup_oom_unregister_event,
3922                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3923         },
3924 };
3925
3926 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3927 static struct cftype memsw_cgroup_files[] = {
3928         {
3929                 .name = "memsw.usage_in_bytes",
3930                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3931                 .read_u64 = mem_cgroup_read,
3932                 .register_event = mem_cgroup_usage_register_event,
3933                 .unregister_event = mem_cgroup_usage_unregister_event,
3934         },
3935         {
3936                 .name = "memsw.max_usage_in_bytes",
3937                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3938                 .trigger = mem_cgroup_reset,
3939                 .read_u64 = mem_cgroup_read,
3940         },
3941         {
3942                 .name = "memsw.limit_in_bytes",
3943                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3944                 .write_string = mem_cgroup_write,
3945                 .read_u64 = mem_cgroup_read,
3946         },
3947         {
3948                 .name = "memsw.failcnt",
3949                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3950                 .trigger = mem_cgroup_reset,
3951                 .read_u64 = mem_cgroup_read,
3952         },
3953 };
3954
3955 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3956 {
3957         if (!do_swap_account)
3958                 return 0;
3959         return cgroup_add_files(cont, ss, memsw_cgroup_files,
3960                                 ARRAY_SIZE(memsw_cgroup_files));
3961 };
3962 #else
3963 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3964 {
3965         return 0;
3966 }
3967 #endif
3968
3969 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3970 {
3971         struct mem_cgroup_per_node *pn;
3972         struct mem_cgroup_per_zone *mz;
3973         enum lru_list l;
3974         int zone, tmp = node;
3975         /*
3976          * This routine is called against possible nodes.
3977          * But it's BUG to call kmalloc() against offline node.
3978          *
3979          * TODO: this routine can waste much memory for nodes which will
3980          *       never be onlined. It's better to use memory hotplug callback
3981          *       function.
3982          */
3983         if (!node_state(node, N_NORMAL_MEMORY))
3984                 tmp = -1;
3985         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3986         if (!pn)
3987                 return 1;
3988
3989         mem->info.nodeinfo[node] = pn;
3990         memset(pn, 0, sizeof(*pn));
3991
3992         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3993                 mz = &pn->zoneinfo[zone];
3994                 for_each_lru(l)
3995                         INIT_LIST_HEAD(&mz->lists[l]);
3996                 mz->usage_in_excess = 0;
3997                 mz->on_tree = false;
3998                 mz->mem = mem;
3999         }
4000         return 0;
4001 }
4002
4003 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4004 {
4005         kfree(mem->info.nodeinfo[node]);
4006 }
4007
4008 static struct mem_cgroup *mem_cgroup_alloc(void)
4009 {
4010         struct mem_cgroup *mem;
4011         int size = sizeof(struct mem_cgroup);
4012
4013         /* Can be very big if MAX_NUMNODES is very big */
4014         if (size < PAGE_SIZE)
4015                 mem = kmalloc(size, GFP_KERNEL);
4016         else
4017                 mem = vmalloc(size);
4018
4019         if (!mem)
4020                 return NULL;
4021
4022         memset(mem, 0, size);
4023         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4024         if (!mem->stat) {
4025                 if (size < PAGE_SIZE)
4026                         kfree(mem);
4027                 else
4028                         vfree(mem);
4029                 mem = NULL;
4030         }
4031         return mem;
4032 }
4033
4034 /*
4035  * At destroying mem_cgroup, references from swap_cgroup can remain.
4036  * (scanning all at force_empty is too costly...)
4037  *
4038  * Instead of clearing all references at force_empty, we remember
4039  * the number of reference from swap_cgroup and free mem_cgroup when
4040  * it goes down to 0.
4041  *
4042  * Removal of cgroup itself succeeds regardless of refs from swap.
4043  */
4044
4045 static void __mem_cgroup_free(struct mem_cgroup *mem)
4046 {
4047         int node;
4048
4049         mem_cgroup_remove_from_trees(mem);
4050         free_css_id(&mem_cgroup_subsys, &mem->css);
4051
4052         for_each_node_state(node, N_POSSIBLE)
4053                 free_mem_cgroup_per_zone_info(mem, node);
4054
4055         free_percpu(mem->stat);
4056         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4057                 kfree(mem);
4058         else
4059                 vfree(mem);
4060 }
4061
4062 static void mem_cgroup_get(struct mem_cgroup *mem)
4063 {
4064         atomic_inc(&mem->refcnt);
4065 }
4066
4067 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4068 {
4069         if (atomic_sub_and_test(count, &mem->refcnt)) {
4070                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4071                 __mem_cgroup_free(mem);
4072                 if (parent)
4073                         mem_cgroup_put(parent);
4074         }
4075 }
4076
4077 static void mem_cgroup_put(struct mem_cgroup *mem)
4078 {
4079         __mem_cgroup_put(mem, 1);
4080 }
4081
4082 /*
4083  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4084  */
4085 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4086 {
4087         if (!mem->res.parent)
4088                 return NULL;
4089         return mem_cgroup_from_res_counter(mem->res.parent, res);
4090 }
4091
4092 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4093 static void __init enable_swap_cgroup(void)
4094 {
4095         if (!mem_cgroup_disabled() && really_do_swap_account)
4096                 do_swap_account = 1;
4097 }
4098 #else
4099 static void __init enable_swap_cgroup(void)
4100 {
4101 }
4102 #endif
4103
4104 static int mem_cgroup_soft_limit_tree_init(void)
4105 {
4106         struct mem_cgroup_tree_per_node *rtpn;
4107         struct mem_cgroup_tree_per_zone *rtpz;
4108         int tmp, node, zone;
4109
4110         for_each_node_state(node, N_POSSIBLE) {
4111                 tmp = node;
4112                 if (!node_state(node, N_NORMAL_MEMORY))
4113                         tmp = -1;
4114                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4115                 if (!rtpn)
4116                         return 1;
4117
4118                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4119
4120                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4121                         rtpz = &rtpn->rb_tree_per_zone[zone];
4122                         rtpz->rb_root = RB_ROOT;
4123                         spin_lock_init(&rtpz->lock);
4124                 }
4125         }
4126         return 0;
4127 }
4128
4129 static struct cgroup_subsys_state * __ref
4130 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4131 {
4132         struct mem_cgroup *mem, *parent;
4133         long error = -ENOMEM;
4134         int node;
4135
4136         mem = mem_cgroup_alloc();
4137         if (!mem)
4138                 return ERR_PTR(error);
4139
4140         for_each_node_state(node, N_POSSIBLE)
4141                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4142                         goto free_out;
4143
4144         /* root ? */
4145         if (cont->parent == NULL) {
4146                 int cpu;
4147                 enable_swap_cgroup();
4148                 parent = NULL;
4149                 root_mem_cgroup = mem;
4150                 if (mem_cgroup_soft_limit_tree_init())
4151                         goto free_out;
4152                 for_each_possible_cpu(cpu) {
4153                         struct memcg_stock_pcp *stock =
4154                                                 &per_cpu(memcg_stock, cpu);
4155                         INIT_WORK(&stock->work, drain_local_stock);
4156                 }
4157                 hotcpu_notifier(memcg_stock_cpu_callback, 0);
4158         } else {
4159                 parent = mem_cgroup_from_cont(cont->parent);
4160                 mem->use_hierarchy = parent->use_hierarchy;
4161                 mem->oom_kill_disable = parent->oom_kill_disable;
4162         }
4163
4164         if (parent && parent->use_hierarchy) {
4165                 res_counter_init(&mem->res, &parent->res);
4166                 res_counter_init(&mem->memsw, &parent->memsw);
4167                 /*
4168                  * We increment refcnt of the parent to ensure that we can
4169                  * safely access it on res_counter_charge/uncharge.
4170                  * This refcnt will be decremented when freeing this
4171                  * mem_cgroup(see mem_cgroup_put).
4172                  */
4173                 mem_cgroup_get(parent);
4174         } else {
4175                 res_counter_init(&mem->res, NULL);
4176                 res_counter_init(&mem->memsw, NULL);
4177         }
4178         mem->last_scanned_child = 0;
4179         spin_lock_init(&mem->reclaim_param_lock);
4180         INIT_LIST_HEAD(&mem->oom_notify);
4181
4182         if (parent)
4183                 mem->swappiness = get_swappiness(parent);
4184         atomic_set(&mem->refcnt, 1);
4185         mem->move_charge_at_immigrate = 0;
4186         mutex_init(&mem->thresholds_lock);
4187         return &mem->css;
4188 free_out:
4189         __mem_cgroup_free(mem);
4190         root_mem_cgroup = NULL;
4191         return ERR_PTR(error);
4192 }
4193
4194 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4195                                         struct cgroup *cont)
4196 {
4197         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4198
4199         return mem_cgroup_force_empty(mem, false);
4200 }
4201
4202 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4203                                 struct cgroup *cont)
4204 {
4205         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4206
4207         mem_cgroup_put(mem);
4208 }
4209
4210 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4211                                 struct cgroup *cont)
4212 {
4213         int ret;
4214
4215         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4216                                 ARRAY_SIZE(mem_cgroup_files));
4217
4218         if (!ret)
4219                 ret = register_memsw_files(cont, ss);
4220         return ret;
4221 }
4222
4223 #ifdef CONFIG_MMU
4224 /* Handlers for move charge at task migration. */
4225 #define PRECHARGE_COUNT_AT_ONCE 256
4226 static int mem_cgroup_do_precharge(unsigned long count)
4227 {
4228         int ret = 0;
4229         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4230         struct mem_cgroup *mem = mc.to;
4231
4232         if (mem_cgroup_is_root(mem)) {
4233                 mc.precharge += count;
4234                 /* we don't need css_get for root */
4235                 return ret;
4236         }
4237         /* try to charge at once */
4238         if (count > 1) {
4239                 struct res_counter *dummy;
4240                 /*
4241                  * "mem" cannot be under rmdir() because we've already checked
4242                  * by cgroup_lock_live_cgroup() that it is not removed and we
4243                  * are still under the same cgroup_mutex. So we can postpone
4244                  * css_get().
4245                  */
4246                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4247                         goto one_by_one;
4248                 if (do_swap_account && res_counter_charge(&mem->memsw,
4249                                                 PAGE_SIZE * count, &dummy)) {
4250                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4251                         goto one_by_one;
4252                 }
4253                 mc.precharge += count;
4254                 return ret;
4255         }
4256 one_by_one:
4257         /* fall back to one by one charge */
4258         while (count--) {
4259                 if (signal_pending(current)) {
4260                         ret = -EINTR;
4261                         break;
4262                 }
4263                 if (!batch_count--) {
4264                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4265                         cond_resched();
4266                 }
4267                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4268                 if (ret || !mem)
4269                         /* mem_cgroup_clear_mc() will do uncharge later */
4270                         return -ENOMEM;
4271                 mc.precharge++;
4272         }
4273         return ret;
4274 }
4275
4276 /**
4277  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4278  * @vma: the vma the pte to be checked belongs
4279  * @addr: the address corresponding to the pte to be checked
4280  * @ptent: the pte to be checked
4281  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4282  *
4283  * Returns
4284  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4285  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4286  *     move charge. if @target is not NULL, the page is stored in target->page
4287  *     with extra refcnt got(Callers should handle it).
4288  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4289  *     target for charge migration. if @target is not NULL, the entry is stored
4290  *     in target->ent.
4291  *
4292  * Called with pte lock held.
4293  */
4294 union mc_target {
4295         struct page     *page;
4296         swp_entry_t     ent;
4297 };
4298
4299 enum mc_target_type {
4300         MC_TARGET_NONE, /* not used */
4301         MC_TARGET_PAGE,
4302         MC_TARGET_SWAP,
4303 };
4304
4305 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4306                                                 unsigned long addr, pte_t ptent)
4307 {
4308         struct page *page = vm_normal_page(vma, addr, ptent);
4309
4310         if (!page || !page_mapped(page))
4311                 return NULL;
4312         if (PageAnon(page)) {
4313                 /* we don't move shared anon */
4314                 if (!move_anon() || page_mapcount(page) > 2)
4315                         return NULL;
4316         } else if (!move_file())
4317                 /* we ignore mapcount for file pages */
4318                 return NULL;
4319         if (!get_page_unless_zero(page))
4320                 return NULL;
4321
4322         return page;
4323 }
4324
4325 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4326                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4327 {
4328         int usage_count;
4329         struct page *page = NULL;
4330         swp_entry_t ent = pte_to_swp_entry(ptent);
4331
4332         if (!move_anon() || non_swap_entry(ent))
4333                 return NULL;
4334         usage_count = mem_cgroup_count_swap_user(ent, &page);
4335         if (usage_count > 1) { /* we don't move shared anon */
4336                 if (page)
4337                         put_page(page);
4338                 return NULL;
4339         }
4340         if (do_swap_account)
4341                 entry->val = ent.val;
4342
4343         return page;
4344 }
4345
4346 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4347                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4348 {
4349         struct page *page = NULL;
4350         struct inode *inode;
4351         struct address_space *mapping;
4352         pgoff_t pgoff;
4353
4354         if (!vma->vm_file) /* anonymous vma */
4355                 return NULL;
4356         if (!move_file())
4357                 return NULL;
4358
4359         inode = vma->vm_file->f_path.dentry->d_inode;
4360         mapping = vma->vm_file->f_mapping;
4361         if (pte_none(ptent))
4362                 pgoff = linear_page_index(vma, addr);
4363         else /* pte_file(ptent) is true */
4364                 pgoff = pte_to_pgoff(ptent);
4365
4366         /* page is moved even if it's not RSS of this task(page-faulted). */
4367         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4368                 page = find_get_page(mapping, pgoff);
4369         } else { /* shmem/tmpfs file. we should take account of swap too. */
4370                 swp_entry_t ent;
4371                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4372                 if (do_swap_account)
4373                         entry->val = ent.val;
4374         }
4375
4376         return page;
4377 }
4378
4379 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4380                 unsigned long addr, pte_t ptent, union mc_target *target)
4381 {
4382         struct page *page = NULL;
4383         struct page_cgroup *pc;
4384         int ret = 0;
4385         swp_entry_t ent = { .val = 0 };
4386
4387         if (pte_present(ptent))
4388                 page = mc_handle_present_pte(vma, addr, ptent);
4389         else if (is_swap_pte(ptent))
4390                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4391         else if (pte_none(ptent) || pte_file(ptent))
4392                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4393
4394         if (!page && !ent.val)
4395                 return 0;
4396         if (page) {
4397                 pc = lookup_page_cgroup(page);
4398                 /*
4399                  * Do only loose check w/o page_cgroup lock.
4400                  * mem_cgroup_move_account() checks the pc is valid or not under
4401                  * the lock.
4402                  */
4403                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4404                         ret = MC_TARGET_PAGE;
4405                         if (target)
4406                                 target->page = page;
4407                 }
4408                 if (!ret || !target)
4409                         put_page(page);
4410         }
4411         /* There is a swap entry and a page doesn't exist or isn't charged */
4412         if (ent.val && !ret &&
4413                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4414                 ret = MC_TARGET_SWAP;
4415                 if (target)
4416                         target->ent = ent;
4417         }
4418         return ret;
4419 }
4420
4421 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4422                                         unsigned long addr, unsigned long end,
4423                                         struct mm_walk *walk)
4424 {
4425         struct vm_area_struct *vma = walk->private;
4426         pte_t *pte;
4427         spinlock_t *ptl;
4428
4429         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4430         for (; addr != end; pte++, addr += PAGE_SIZE)
4431                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4432                         mc.precharge++; /* increment precharge temporarily */
4433         pte_unmap_unlock(pte - 1, ptl);
4434         cond_resched();
4435
4436         return 0;
4437 }
4438
4439 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4440 {
4441         unsigned long precharge;
4442         struct vm_area_struct *vma;
4443
4444         down_read(&mm->mmap_sem);
4445         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4446                 struct mm_walk mem_cgroup_count_precharge_walk = {
4447                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4448                         .mm = mm,
4449                         .private = vma,
4450                 };
4451                 if (is_vm_hugetlb_page(vma))
4452                         continue;
4453                 walk_page_range(vma->vm_start, vma->vm_end,
4454                                         &mem_cgroup_count_precharge_walk);
4455         }
4456         up_read(&mm->mmap_sem);
4457
4458         precharge = mc.precharge;
4459         mc.precharge = 0;
4460
4461         return precharge;
4462 }
4463
4464 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4465 {
4466         return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4467 }
4468
4469 static void mem_cgroup_clear_mc(void)
4470 {
4471         struct mem_cgroup *from = mc.from;
4472         struct mem_cgroup *to = mc.to;
4473
4474         /* we must uncharge all the leftover precharges from mc.to */
4475         if (mc.precharge) {
4476                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4477                 mc.precharge = 0;
4478         }
4479         /*
4480          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4481          * we must uncharge here.
4482          */
4483         if (mc.moved_charge) {
4484                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4485                 mc.moved_charge = 0;
4486         }
4487         /* we must fixup refcnts and charges */
4488         if (mc.moved_swap) {
4489                 /* uncharge swap account from the old cgroup */
4490                 if (!mem_cgroup_is_root(mc.from))
4491                         res_counter_uncharge(&mc.from->memsw,
4492                                                 PAGE_SIZE * mc.moved_swap);
4493                 __mem_cgroup_put(mc.from, mc.moved_swap);
4494
4495                 if (!mem_cgroup_is_root(mc.to)) {
4496                         /*
4497                          * we charged both to->res and to->memsw, so we should
4498                          * uncharge to->res.
4499                          */
4500                         res_counter_uncharge(&mc.to->res,
4501                                                 PAGE_SIZE * mc.moved_swap);
4502                 }
4503                 /* we've already done mem_cgroup_get(mc.to) */
4504
4505                 mc.moved_swap = 0;
4506         }
4507         spin_lock(&mc.lock);
4508         mc.from = NULL;
4509         mc.to = NULL;
4510         mc.moving_task = NULL;
4511         spin_unlock(&mc.lock);
4512         memcg_oom_recover(from);
4513         memcg_oom_recover(to);
4514         wake_up_all(&mc.waitq);
4515 }
4516
4517 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4518                                 struct cgroup *cgroup,
4519                                 struct task_struct *p,
4520                                 bool threadgroup)
4521 {
4522         int ret = 0;
4523         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4524
4525         if (mem->move_charge_at_immigrate) {
4526                 struct mm_struct *mm;
4527                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4528
4529                 VM_BUG_ON(from == mem);
4530
4531                 mm = get_task_mm(p);
4532                 if (!mm)
4533                         return 0;
4534                 /* We move charges only when we move a owner of the mm */
4535                 if (mm->owner == p) {
4536                         VM_BUG_ON(mc.from);
4537                         VM_BUG_ON(mc.to);
4538                         VM_BUG_ON(mc.precharge);
4539                         VM_BUG_ON(mc.moved_charge);
4540                         VM_BUG_ON(mc.moved_swap);
4541                         VM_BUG_ON(mc.moving_task);
4542                         spin_lock(&mc.lock);
4543                         mc.from = from;
4544                         mc.to = mem;
4545                         mc.precharge = 0;
4546                         mc.moved_charge = 0;
4547                         mc.moved_swap = 0;
4548                         mc.moving_task = current;
4549                         spin_unlock(&mc.lock);
4550
4551                         ret = mem_cgroup_precharge_mc(mm);
4552                         if (ret)
4553                                 mem_cgroup_clear_mc();
4554                 }
4555                 mmput(mm);
4556         }
4557         return ret;
4558 }
4559
4560 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4561                                 struct cgroup *cgroup,
4562                                 struct task_struct *p,
4563                                 bool threadgroup)
4564 {
4565         mem_cgroup_clear_mc();
4566 }
4567
4568 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4569                                 unsigned long addr, unsigned long end,
4570                                 struct mm_walk *walk)
4571 {
4572         int ret = 0;
4573         struct vm_area_struct *vma = walk->private;
4574         pte_t *pte;
4575         spinlock_t *ptl;
4576
4577 retry:
4578         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4579         for (; addr != end; addr += PAGE_SIZE) {
4580                 pte_t ptent = *(pte++);
4581                 union mc_target target;
4582                 int type;
4583                 struct page *page;
4584                 struct page_cgroup *pc;
4585                 swp_entry_t ent;
4586
4587                 if (!mc.precharge)
4588                         break;
4589
4590                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4591                 switch (type) {
4592                 case MC_TARGET_PAGE:
4593                         page = target.page;
4594                         if (isolate_lru_page(page))
4595                                 goto put;
4596                         pc = lookup_page_cgroup(page);
4597                         if (!mem_cgroup_move_account(pc,
4598                                                 mc.from, mc.to, false)) {
4599                                 mc.precharge--;
4600                                 /* we uncharge from mc.from later. */
4601                                 mc.moved_charge++;
4602                         }
4603                         putback_lru_page(page);
4604 put:                    /* is_target_pte_for_mc() gets the page */
4605                         put_page(page);
4606                         break;
4607                 case MC_TARGET_SWAP:
4608                         ent = target.ent;
4609                         if (!mem_cgroup_move_swap_account(ent,
4610                                                 mc.from, mc.to, false)) {
4611                                 mc.precharge--;
4612                                 /* we fixup refcnts and charges later. */
4613                                 mc.moved_swap++;
4614                         }
4615                         break;
4616                 default:
4617                         break;
4618                 }
4619         }
4620         pte_unmap_unlock(pte - 1, ptl);
4621         cond_resched();
4622
4623         if (addr != end) {
4624                 /*
4625                  * We have consumed all precharges we got in can_attach().
4626                  * We try charge one by one, but don't do any additional
4627                  * charges to mc.to if we have failed in charge once in attach()
4628                  * phase.
4629                  */
4630                 ret = mem_cgroup_do_precharge(1);
4631                 if (!ret)
4632                         goto retry;
4633         }
4634
4635         return ret;
4636 }
4637
4638 static void mem_cgroup_move_charge(struct mm_struct *mm)
4639 {
4640         struct vm_area_struct *vma;
4641
4642         lru_add_drain_all();
4643         down_read(&mm->mmap_sem);
4644         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4645                 int ret;
4646                 struct mm_walk mem_cgroup_move_charge_walk = {
4647                         .pmd_entry = mem_cgroup_move_charge_pte_range,
4648                         .mm = mm,
4649                         .private = vma,
4650                 };
4651                 if (is_vm_hugetlb_page(vma))
4652                         continue;
4653                 ret = walk_page_range(vma->vm_start, vma->vm_end,
4654                                                 &mem_cgroup_move_charge_walk);
4655                 if (ret)
4656                         /*
4657                          * means we have consumed all precharges and failed in
4658                          * doing additional charge. Just abandon here.
4659                          */
4660                         break;
4661         }
4662         up_read(&mm->mmap_sem);
4663 }
4664
4665 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4666                                 struct cgroup *cont,
4667                                 struct cgroup *old_cont,
4668                                 struct task_struct *p,
4669                                 bool threadgroup)
4670 {
4671         struct mm_struct *mm;
4672
4673         if (!mc.to)
4674                 /* no need to move charge */
4675                 return;
4676
4677         mm = get_task_mm(p);
4678         if (mm) {
4679                 mem_cgroup_move_charge(mm);
4680                 mmput(mm);
4681         }
4682         mem_cgroup_clear_mc();
4683 }
4684 #else   /* !CONFIG_MMU */
4685 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4686                                 struct cgroup *cgroup,
4687                                 struct task_struct *p,
4688                                 bool threadgroup)
4689 {
4690         return 0;
4691 }
4692 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4693                                 struct cgroup *cgroup,
4694                                 struct task_struct *p,
4695                                 bool threadgroup)
4696 {
4697 }
4698 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4699                                 struct cgroup *cont,
4700                                 struct cgroup *old_cont,
4701                                 struct task_struct *p,
4702                                 bool threadgroup)
4703 {
4704 }
4705 #endif
4706
4707 struct cgroup_subsys mem_cgroup_subsys = {
4708         .name = "memory",
4709         .subsys_id = mem_cgroup_subsys_id,
4710         .create = mem_cgroup_create,
4711         .pre_destroy = mem_cgroup_pre_destroy,
4712         .destroy = mem_cgroup_destroy,
4713         .populate = mem_cgroup_populate,
4714         .can_attach = mem_cgroup_can_attach,
4715         .cancel_attach = mem_cgroup_cancel_attach,
4716         .attach = mem_cgroup_move_task,
4717         .early_init = 0,
4718         .use_id = 1,
4719 };
4720
4721 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4722
4723 static int __init disable_swap_account(char *s)
4724 {
4725         really_do_swap_account = 0;
4726         return 1;
4727 }
4728 __setup("noswapaccount", disable_swap_account);
4729 #endif