Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next-2.6
[sfrench/cifs-2.6.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2  *
3  * Copyright IBM Corporation, 2007
4  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5  *
6  * Copyright 2007 OpenVZ SWsoft Inc
7  * Author: Pavel Emelianov <xemul@openvz.org>
8  *
9  * Memory thresholds
10  * Copyright (C) 2009 Nokia Corporation
11  * Author: Kirill A. Shutemov
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2 of the License, or
16  * (at your option) any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21  * GNU General Public License for more details.
22  */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include "internal.h"
51
52 #include <asm/uaccess.h>
53
54 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
55 #define MEM_CGROUP_RECLAIM_RETRIES      5
56 struct mem_cgroup *root_mem_cgroup __read_mostly;
57
58 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
59 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
60 int do_swap_account __read_mostly;
61 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
62 #else
63 #define do_swap_account         (0)
64 #endif
65
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. This counter
68  * is used for trigger some periodic events. This is straightforward and better
69  * than using jiffies etc. to handle periodic memcg event.
70  *
71  * These values will be used as !((event) & ((1 <<(thresh)) - 1))
72  */
73 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
74 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
75
76 /*
77  * Statistics for memory cgroup.
78  */
79 enum mem_cgroup_stat_index {
80         /*
81          * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
82          */
83         MEM_CGROUP_STAT_CACHE,     /* # of pages charged as cache */
84         MEM_CGROUP_STAT_RSS,       /* # of pages charged as anon rss */
85         MEM_CGROUP_STAT_FILE_MAPPED,  /* # of pages charged as file rss */
86         MEM_CGROUP_STAT_PGPGIN_COUNT,   /* # of pages paged in */
87         MEM_CGROUP_STAT_PGPGOUT_COUNT,  /* # of pages paged out */
88         MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
89         MEM_CGROUP_EVENTS,      /* incremented at every  pagein/pageout */
90
91         MEM_CGROUP_STAT_NSTATS,
92 };
93
94 struct mem_cgroup_stat_cpu {
95         s64 count[MEM_CGROUP_STAT_NSTATS];
96 };
97
98 /*
99  * per-zone information in memory controller.
100  */
101 struct mem_cgroup_per_zone {
102         /*
103          * spin_lock to protect the per cgroup LRU
104          */
105         struct list_head        lists[NR_LRU_LISTS];
106         unsigned long           count[NR_LRU_LISTS];
107
108         struct zone_reclaim_stat reclaim_stat;
109         struct rb_node          tree_node;      /* RB tree node */
110         unsigned long long      usage_in_excess;/* Set to the value by which */
111                                                 /* the soft limit is exceeded*/
112         bool                    on_tree;
113         struct mem_cgroup       *mem;           /* Back pointer, we cannot */
114                                                 /* use container_of        */
115 };
116 /* Macro for accessing counter */
117 #define MEM_CGROUP_ZSTAT(mz, idx)       ((mz)->count[(idx)])
118
119 struct mem_cgroup_per_node {
120         struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
121 };
122
123 struct mem_cgroup_lru_info {
124         struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
125 };
126
127 /*
128  * Cgroups above their limits are maintained in a RB-Tree, independent of
129  * their hierarchy representation
130  */
131
132 struct mem_cgroup_tree_per_zone {
133         struct rb_root rb_root;
134         spinlock_t lock;
135 };
136
137 struct mem_cgroup_tree_per_node {
138         struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
139 };
140
141 struct mem_cgroup_tree {
142         struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143 };
144
145 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146
147 struct mem_cgroup_threshold {
148         struct eventfd_ctx *eventfd;
149         u64 threshold;
150 };
151
152 /* For threshold */
153 struct mem_cgroup_threshold_ary {
154         /* An array index points to threshold just below usage. */
155         int current_threshold;
156         /* Size of entries[] */
157         unsigned int size;
158         /* Array of thresholds */
159         struct mem_cgroup_threshold entries[0];
160 };
161
162 struct mem_cgroup_thresholds {
163         /* Primary thresholds array */
164         struct mem_cgroup_threshold_ary *primary;
165         /*
166          * Spare threshold array.
167          * This is needed to make mem_cgroup_unregister_event() "never fail".
168          * It must be able to store at least primary->size - 1 entries.
169          */
170         struct mem_cgroup_threshold_ary *spare;
171 };
172
173 /* for OOM */
174 struct mem_cgroup_eventfd_list {
175         struct list_head list;
176         struct eventfd_ctx *eventfd;
177 };
178
179 static void mem_cgroup_threshold(struct mem_cgroup *mem);
180 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
181
182 /*
183  * The memory controller data structure. The memory controller controls both
184  * page cache and RSS per cgroup. We would eventually like to provide
185  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
186  * to help the administrator determine what knobs to tune.
187  *
188  * TODO: Add a water mark for the memory controller. Reclaim will begin when
189  * we hit the water mark. May be even add a low water mark, such that
190  * no reclaim occurs from a cgroup at it's low water mark, this is
191  * a feature that will be implemented much later in the future.
192  */
193 struct mem_cgroup {
194         struct cgroup_subsys_state css;
195         /*
196          * the counter to account for memory usage
197          */
198         struct res_counter res;
199         /*
200          * the counter to account for mem+swap usage.
201          */
202         struct res_counter memsw;
203         /*
204          * Per cgroup active and inactive list, similar to the
205          * per zone LRU lists.
206          */
207         struct mem_cgroup_lru_info info;
208
209         /*
210           protect against reclaim related member.
211         */
212         spinlock_t reclaim_param_lock;
213
214         int     prev_priority;  /* for recording reclaim priority */
215
216         /*
217          * While reclaiming in a hierarchy, we cache the last child we
218          * reclaimed from.
219          */
220         int last_scanned_child;
221         /*
222          * Should the accounting and control be hierarchical, per subtree?
223          */
224         bool use_hierarchy;
225         atomic_t        oom_lock;
226         atomic_t        refcnt;
227
228         unsigned int    swappiness;
229         /* OOM-Killer disable */
230         int             oom_kill_disable;
231
232         /* set when res.limit == memsw.limit */
233         bool            memsw_is_minimum;
234
235         /* protect arrays of thresholds */
236         struct mutex thresholds_lock;
237
238         /* thresholds for memory usage. RCU-protected */
239         struct mem_cgroup_thresholds thresholds;
240
241         /* thresholds for mem+swap usage. RCU-protected */
242         struct mem_cgroup_thresholds memsw_thresholds;
243
244         /* For oom notifier event fd */
245         struct list_head oom_notify;
246
247         /*
248          * Should we move charges of a task when a task is moved into this
249          * mem_cgroup ? And what type of charges should we move ?
250          */
251         unsigned long   move_charge_at_immigrate;
252         /*
253          * percpu counter.
254          */
255         struct mem_cgroup_stat_cpu *stat;
256 };
257
258 /* Stuffs for move charges at task migration. */
259 /*
260  * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
261  * left-shifted bitmap of these types.
262  */
263 enum move_type {
264         MOVE_CHARGE_TYPE_ANON,  /* private anonymous page and swap of it */
265         MOVE_CHARGE_TYPE_FILE,  /* file page(including tmpfs) and swap of it */
266         NR_MOVE_TYPE,
267 };
268
269 /* "mc" and its members are protected by cgroup_mutex */
270 static struct move_charge_struct {
271         struct mem_cgroup *from;
272         struct mem_cgroup *to;
273         unsigned long precharge;
274         unsigned long moved_charge;
275         unsigned long moved_swap;
276         struct task_struct *moving_task;        /* a task moving charges */
277         wait_queue_head_t waitq;                /* a waitq for other context */
278 } mc = {
279         .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
280 };
281
282 static bool move_anon(void)
283 {
284         return test_bit(MOVE_CHARGE_TYPE_ANON,
285                                         &mc.to->move_charge_at_immigrate);
286 }
287
288 static bool move_file(void)
289 {
290         return test_bit(MOVE_CHARGE_TYPE_FILE,
291                                         &mc.to->move_charge_at_immigrate);
292 }
293
294 /*
295  * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
296  * limit reclaim to prevent infinite loops, if they ever occur.
297  */
298 #define MEM_CGROUP_MAX_RECLAIM_LOOPS            (100)
299 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
300
301 enum charge_type {
302         MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
303         MEM_CGROUP_CHARGE_TYPE_MAPPED,
304         MEM_CGROUP_CHARGE_TYPE_SHMEM,   /* used by page migration of shmem */
305         MEM_CGROUP_CHARGE_TYPE_FORCE,   /* used by force_empty */
306         MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
307         MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
308         NR_CHARGE_TYPE,
309 };
310
311 /* only for here (for easy reading.) */
312 #define PCGF_CACHE      (1UL << PCG_CACHE)
313 #define PCGF_USED       (1UL << PCG_USED)
314 #define PCGF_LOCK       (1UL << PCG_LOCK)
315 /* Not used, but added here for completeness */
316 #define PCGF_ACCT       (1UL << PCG_ACCT)
317
318 /* for encoding cft->private value on file */
319 #define _MEM                    (0)
320 #define _MEMSWAP                (1)
321 #define _OOM_TYPE               (2)
322 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
323 #define MEMFILE_TYPE(val)       (((val) >> 16) & 0xffff)
324 #define MEMFILE_ATTR(val)       ((val) & 0xffff)
325 /* Used for OOM nofiier */
326 #define OOM_CONTROL             (0)
327
328 /*
329  * Reclaim flags for mem_cgroup_hierarchical_reclaim
330  */
331 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT   0x0
332 #define MEM_CGROUP_RECLAIM_NOSWAP       (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
333 #define MEM_CGROUP_RECLAIM_SHRINK_BIT   0x1
334 #define MEM_CGROUP_RECLAIM_SHRINK       (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
335 #define MEM_CGROUP_RECLAIM_SOFT_BIT     0x2
336 #define MEM_CGROUP_RECLAIM_SOFT         (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
337
338 static void mem_cgroup_get(struct mem_cgroup *mem);
339 static void mem_cgroup_put(struct mem_cgroup *mem);
340 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
341 static void drain_all_stock_async(void);
342
343 static struct mem_cgroup_per_zone *
344 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
345 {
346         return &mem->info.nodeinfo[nid]->zoneinfo[zid];
347 }
348
349 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
350 {
351         return &mem->css;
352 }
353
354 static struct mem_cgroup_per_zone *
355 page_cgroup_zoneinfo(struct page_cgroup *pc)
356 {
357         struct mem_cgroup *mem = pc->mem_cgroup;
358         int nid = page_cgroup_nid(pc);
359         int zid = page_cgroup_zid(pc);
360
361         if (!mem)
362                 return NULL;
363
364         return mem_cgroup_zoneinfo(mem, nid, zid);
365 }
366
367 static struct mem_cgroup_tree_per_zone *
368 soft_limit_tree_node_zone(int nid, int zid)
369 {
370         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
371 }
372
373 static struct mem_cgroup_tree_per_zone *
374 soft_limit_tree_from_page(struct page *page)
375 {
376         int nid = page_to_nid(page);
377         int zid = page_zonenum(page);
378
379         return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
380 }
381
382 static void
383 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
384                                 struct mem_cgroup_per_zone *mz,
385                                 struct mem_cgroup_tree_per_zone *mctz,
386                                 unsigned long long new_usage_in_excess)
387 {
388         struct rb_node **p = &mctz->rb_root.rb_node;
389         struct rb_node *parent = NULL;
390         struct mem_cgroup_per_zone *mz_node;
391
392         if (mz->on_tree)
393                 return;
394
395         mz->usage_in_excess = new_usage_in_excess;
396         if (!mz->usage_in_excess)
397                 return;
398         while (*p) {
399                 parent = *p;
400                 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
401                                         tree_node);
402                 if (mz->usage_in_excess < mz_node->usage_in_excess)
403                         p = &(*p)->rb_left;
404                 /*
405                  * We can't avoid mem cgroups that are over their soft
406                  * limit by the same amount
407                  */
408                 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
409                         p = &(*p)->rb_right;
410         }
411         rb_link_node(&mz->tree_node, parent, p);
412         rb_insert_color(&mz->tree_node, &mctz->rb_root);
413         mz->on_tree = true;
414 }
415
416 static void
417 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
418                                 struct mem_cgroup_per_zone *mz,
419                                 struct mem_cgroup_tree_per_zone *mctz)
420 {
421         if (!mz->on_tree)
422                 return;
423         rb_erase(&mz->tree_node, &mctz->rb_root);
424         mz->on_tree = false;
425 }
426
427 static void
428 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
429                                 struct mem_cgroup_per_zone *mz,
430                                 struct mem_cgroup_tree_per_zone *mctz)
431 {
432         spin_lock(&mctz->lock);
433         __mem_cgroup_remove_exceeded(mem, mz, mctz);
434         spin_unlock(&mctz->lock);
435 }
436
437
438 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
439 {
440         unsigned long long excess;
441         struct mem_cgroup_per_zone *mz;
442         struct mem_cgroup_tree_per_zone *mctz;
443         int nid = page_to_nid(page);
444         int zid = page_zonenum(page);
445         mctz = soft_limit_tree_from_page(page);
446
447         /*
448          * Necessary to update all ancestors when hierarchy is used.
449          * because their event counter is not touched.
450          */
451         for (; mem; mem = parent_mem_cgroup(mem)) {
452                 mz = mem_cgroup_zoneinfo(mem, nid, zid);
453                 excess = res_counter_soft_limit_excess(&mem->res);
454                 /*
455                  * We have to update the tree if mz is on RB-tree or
456                  * mem is over its softlimit.
457                  */
458                 if (excess || mz->on_tree) {
459                         spin_lock(&mctz->lock);
460                         /* if on-tree, remove it */
461                         if (mz->on_tree)
462                                 __mem_cgroup_remove_exceeded(mem, mz, mctz);
463                         /*
464                          * Insert again. mz->usage_in_excess will be updated.
465                          * If excess is 0, no tree ops.
466                          */
467                         __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
468                         spin_unlock(&mctz->lock);
469                 }
470         }
471 }
472
473 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
474 {
475         int node, zone;
476         struct mem_cgroup_per_zone *mz;
477         struct mem_cgroup_tree_per_zone *mctz;
478
479         for_each_node_state(node, N_POSSIBLE) {
480                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
481                         mz = mem_cgroup_zoneinfo(mem, node, zone);
482                         mctz = soft_limit_tree_node_zone(node, zone);
483                         mem_cgroup_remove_exceeded(mem, mz, mctz);
484                 }
485         }
486 }
487
488 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
489 {
490         return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
491 }
492
493 static struct mem_cgroup_per_zone *
494 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
495 {
496         struct rb_node *rightmost = NULL;
497         struct mem_cgroup_per_zone *mz;
498
499 retry:
500         mz = NULL;
501         rightmost = rb_last(&mctz->rb_root);
502         if (!rightmost)
503                 goto done;              /* Nothing to reclaim from */
504
505         mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
506         /*
507          * Remove the node now but someone else can add it back,
508          * we will to add it back at the end of reclaim to its correct
509          * position in the tree.
510          */
511         __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
512         if (!res_counter_soft_limit_excess(&mz->mem->res) ||
513                 !css_tryget(&mz->mem->css))
514                 goto retry;
515 done:
516         return mz;
517 }
518
519 static struct mem_cgroup_per_zone *
520 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
521 {
522         struct mem_cgroup_per_zone *mz;
523
524         spin_lock(&mctz->lock);
525         mz = __mem_cgroup_largest_soft_limit_node(mctz);
526         spin_unlock(&mctz->lock);
527         return mz;
528 }
529
530 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
531                 enum mem_cgroup_stat_index idx)
532 {
533         int cpu;
534         s64 val = 0;
535
536         for_each_possible_cpu(cpu)
537                 val += per_cpu(mem->stat->count[idx], cpu);
538         return val;
539 }
540
541 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
542 {
543         s64 ret;
544
545         ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
546         ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
547         return ret;
548 }
549
550 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
551                                          bool charge)
552 {
553         int val = (charge) ? 1 : -1;
554         this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
555 }
556
557 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
558                                          struct page_cgroup *pc,
559                                          bool charge)
560 {
561         int val = (charge) ? 1 : -1;
562
563         preempt_disable();
564
565         if (PageCgroupCache(pc))
566                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
567         else
568                 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
569
570         if (charge)
571                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
572         else
573                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
574         __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
575
576         preempt_enable();
577 }
578
579 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
580                                         enum lru_list idx)
581 {
582         int nid, zid;
583         struct mem_cgroup_per_zone *mz;
584         u64 total = 0;
585
586         for_each_online_node(nid)
587                 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
588                         mz = mem_cgroup_zoneinfo(mem, nid, zid);
589                         total += MEM_CGROUP_ZSTAT(mz, idx);
590                 }
591         return total;
592 }
593
594 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
595 {
596         s64 val;
597
598         val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
599
600         return !(val & ((1 << event_mask_shift) - 1));
601 }
602
603 /*
604  * Check events in order.
605  *
606  */
607 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
608 {
609         /* threshold event is triggered in finer grain than soft limit */
610         if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
611                 mem_cgroup_threshold(mem);
612                 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
613                         mem_cgroup_update_tree(mem, page);
614         }
615 }
616
617 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
618 {
619         return container_of(cgroup_subsys_state(cont,
620                                 mem_cgroup_subsys_id), struct mem_cgroup,
621                                 css);
622 }
623
624 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
625 {
626         /*
627          * mm_update_next_owner() may clear mm->owner to NULL
628          * if it races with swapoff, page migration, etc.
629          * So this can be called with p == NULL.
630          */
631         if (unlikely(!p))
632                 return NULL;
633
634         return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
635                                 struct mem_cgroup, css);
636 }
637
638 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
639 {
640         struct mem_cgroup *mem = NULL;
641
642         if (!mm)
643                 return NULL;
644         /*
645          * Because we have no locks, mm->owner's may be being moved to other
646          * cgroup. We use css_tryget() here even if this looks
647          * pessimistic (rather than adding locks here).
648          */
649         rcu_read_lock();
650         do {
651                 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
652                 if (unlikely(!mem))
653                         break;
654         } while (!css_tryget(&mem->css));
655         rcu_read_unlock();
656         return mem;
657 }
658
659 /*
660  * Call callback function against all cgroup under hierarchy tree.
661  */
662 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
663                           int (*func)(struct mem_cgroup *, void *))
664 {
665         int found, ret, nextid;
666         struct cgroup_subsys_state *css;
667         struct mem_cgroup *mem;
668
669         if (!root->use_hierarchy)
670                 return (*func)(root, data);
671
672         nextid = 1;
673         do {
674                 ret = 0;
675                 mem = NULL;
676
677                 rcu_read_lock();
678                 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
679                                    &found);
680                 if (css && css_tryget(css))
681                         mem = container_of(css, struct mem_cgroup, css);
682                 rcu_read_unlock();
683
684                 if (mem) {
685                         ret = (*func)(mem, data);
686                         css_put(&mem->css);
687                 }
688                 nextid = found + 1;
689         } while (!ret && css);
690
691         return ret;
692 }
693
694 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
695 {
696         return (mem == root_mem_cgroup);
697 }
698
699 /*
700  * Following LRU functions are allowed to be used without PCG_LOCK.
701  * Operations are called by routine of global LRU independently from memcg.
702  * What we have to take care of here is validness of pc->mem_cgroup.
703  *
704  * Changes to pc->mem_cgroup happens when
705  * 1. charge
706  * 2. moving account
707  * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
708  * It is added to LRU before charge.
709  * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
710  * When moving account, the page is not on LRU. It's isolated.
711  */
712
713 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
714 {
715         struct page_cgroup *pc;
716         struct mem_cgroup_per_zone *mz;
717
718         if (mem_cgroup_disabled())
719                 return;
720         pc = lookup_page_cgroup(page);
721         /* can happen while we handle swapcache. */
722         if (!TestClearPageCgroupAcctLRU(pc))
723                 return;
724         VM_BUG_ON(!pc->mem_cgroup);
725         /*
726          * We don't check PCG_USED bit. It's cleared when the "page" is finally
727          * removed from global LRU.
728          */
729         mz = page_cgroup_zoneinfo(pc);
730         MEM_CGROUP_ZSTAT(mz, lru) -= 1;
731         if (mem_cgroup_is_root(pc->mem_cgroup))
732                 return;
733         VM_BUG_ON(list_empty(&pc->lru));
734         list_del_init(&pc->lru);
735         return;
736 }
737
738 void mem_cgroup_del_lru(struct page *page)
739 {
740         mem_cgroup_del_lru_list(page, page_lru(page));
741 }
742
743 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
744 {
745         struct mem_cgroup_per_zone *mz;
746         struct page_cgroup *pc;
747
748         if (mem_cgroup_disabled())
749                 return;
750
751         pc = lookup_page_cgroup(page);
752         /*
753          * Used bit is set without atomic ops but after smp_wmb().
754          * For making pc->mem_cgroup visible, insert smp_rmb() here.
755          */
756         smp_rmb();
757         /* unused or root page is not rotated. */
758         if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
759                 return;
760         mz = page_cgroup_zoneinfo(pc);
761         list_move(&pc->lru, &mz->lists[lru]);
762 }
763
764 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
765 {
766         struct page_cgroup *pc;
767         struct mem_cgroup_per_zone *mz;
768
769         if (mem_cgroup_disabled())
770                 return;
771         pc = lookup_page_cgroup(page);
772         VM_BUG_ON(PageCgroupAcctLRU(pc));
773         /*
774          * Used bit is set without atomic ops but after smp_wmb().
775          * For making pc->mem_cgroup visible, insert smp_rmb() here.
776          */
777         smp_rmb();
778         if (!PageCgroupUsed(pc))
779                 return;
780
781         mz = page_cgroup_zoneinfo(pc);
782         MEM_CGROUP_ZSTAT(mz, lru) += 1;
783         SetPageCgroupAcctLRU(pc);
784         if (mem_cgroup_is_root(pc->mem_cgroup))
785                 return;
786         list_add(&pc->lru, &mz->lists[lru]);
787 }
788
789 /*
790  * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
791  * lru because the page may.be reused after it's fully uncharged (because of
792  * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
793  * it again. This function is only used to charge SwapCache. It's done under
794  * lock_page and expected that zone->lru_lock is never held.
795  */
796 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
797 {
798         unsigned long flags;
799         struct zone *zone = page_zone(page);
800         struct page_cgroup *pc = lookup_page_cgroup(page);
801
802         spin_lock_irqsave(&zone->lru_lock, flags);
803         /*
804          * Forget old LRU when this page_cgroup is *not* used. This Used bit
805          * is guarded by lock_page() because the page is SwapCache.
806          */
807         if (!PageCgroupUsed(pc))
808                 mem_cgroup_del_lru_list(page, page_lru(page));
809         spin_unlock_irqrestore(&zone->lru_lock, flags);
810 }
811
812 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
813 {
814         unsigned long flags;
815         struct zone *zone = page_zone(page);
816         struct page_cgroup *pc = lookup_page_cgroup(page);
817
818         spin_lock_irqsave(&zone->lru_lock, flags);
819         /* link when the page is linked to LRU but page_cgroup isn't */
820         if (PageLRU(page) && !PageCgroupAcctLRU(pc))
821                 mem_cgroup_add_lru_list(page, page_lru(page));
822         spin_unlock_irqrestore(&zone->lru_lock, flags);
823 }
824
825
826 void mem_cgroup_move_lists(struct page *page,
827                            enum lru_list from, enum lru_list to)
828 {
829         if (mem_cgroup_disabled())
830                 return;
831         mem_cgroup_del_lru_list(page, from);
832         mem_cgroup_add_lru_list(page, to);
833 }
834
835 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
836 {
837         int ret;
838         struct mem_cgroup *curr = NULL;
839
840         task_lock(task);
841         rcu_read_lock();
842         curr = try_get_mem_cgroup_from_mm(task->mm);
843         rcu_read_unlock();
844         task_unlock(task);
845         if (!curr)
846                 return 0;
847         /*
848          * We should check use_hierarchy of "mem" not "curr". Because checking
849          * use_hierarchy of "curr" here make this function true if hierarchy is
850          * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
851          * hierarchy(even if use_hierarchy is disabled in "mem").
852          */
853         if (mem->use_hierarchy)
854                 ret = css_is_ancestor(&curr->css, &mem->css);
855         else
856                 ret = (curr == mem);
857         css_put(&curr->css);
858         return ret;
859 }
860
861 /*
862  * prev_priority control...this will be used in memory reclaim path.
863  */
864 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
865 {
866         int prev_priority;
867
868         spin_lock(&mem->reclaim_param_lock);
869         prev_priority = mem->prev_priority;
870         spin_unlock(&mem->reclaim_param_lock);
871
872         return prev_priority;
873 }
874
875 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
876 {
877         spin_lock(&mem->reclaim_param_lock);
878         if (priority < mem->prev_priority)
879                 mem->prev_priority = priority;
880         spin_unlock(&mem->reclaim_param_lock);
881 }
882
883 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
884 {
885         spin_lock(&mem->reclaim_param_lock);
886         mem->prev_priority = priority;
887         spin_unlock(&mem->reclaim_param_lock);
888 }
889
890 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
891 {
892         unsigned long active;
893         unsigned long inactive;
894         unsigned long gb;
895         unsigned long inactive_ratio;
896
897         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
898         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
899
900         gb = (inactive + active) >> (30 - PAGE_SHIFT);
901         if (gb)
902                 inactive_ratio = int_sqrt(10 * gb);
903         else
904                 inactive_ratio = 1;
905
906         if (present_pages) {
907                 present_pages[0] = inactive;
908                 present_pages[1] = active;
909         }
910
911         return inactive_ratio;
912 }
913
914 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
915 {
916         unsigned long active;
917         unsigned long inactive;
918         unsigned long present_pages[2];
919         unsigned long inactive_ratio;
920
921         inactive_ratio = calc_inactive_ratio(memcg, present_pages);
922
923         inactive = present_pages[0];
924         active = present_pages[1];
925
926         if (inactive * inactive_ratio < active)
927                 return 1;
928
929         return 0;
930 }
931
932 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
933 {
934         unsigned long active;
935         unsigned long inactive;
936
937         inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
938         active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
939
940         return (active > inactive);
941 }
942
943 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
944                                        struct zone *zone,
945                                        enum lru_list lru)
946 {
947         int nid = zone->zone_pgdat->node_id;
948         int zid = zone_idx(zone);
949         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
950
951         return MEM_CGROUP_ZSTAT(mz, lru);
952 }
953
954 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
955                                                       struct zone *zone)
956 {
957         int nid = zone->zone_pgdat->node_id;
958         int zid = zone_idx(zone);
959         struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
960
961         return &mz->reclaim_stat;
962 }
963
964 struct zone_reclaim_stat *
965 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
966 {
967         struct page_cgroup *pc;
968         struct mem_cgroup_per_zone *mz;
969
970         if (mem_cgroup_disabled())
971                 return NULL;
972
973         pc = lookup_page_cgroup(page);
974         /*
975          * Used bit is set without atomic ops but after smp_wmb().
976          * For making pc->mem_cgroup visible, insert smp_rmb() here.
977          */
978         smp_rmb();
979         if (!PageCgroupUsed(pc))
980                 return NULL;
981
982         mz = page_cgroup_zoneinfo(pc);
983         if (!mz)
984                 return NULL;
985
986         return &mz->reclaim_stat;
987 }
988
989 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
990                                         struct list_head *dst,
991                                         unsigned long *scanned, int order,
992                                         int mode, struct zone *z,
993                                         struct mem_cgroup *mem_cont,
994                                         int active, int file)
995 {
996         unsigned long nr_taken = 0;
997         struct page *page;
998         unsigned long scan;
999         LIST_HEAD(pc_list);
1000         struct list_head *src;
1001         struct page_cgroup *pc, *tmp;
1002         int nid = z->zone_pgdat->node_id;
1003         int zid = zone_idx(z);
1004         struct mem_cgroup_per_zone *mz;
1005         int lru = LRU_FILE * file + active;
1006         int ret;
1007
1008         BUG_ON(!mem_cont);
1009         mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1010         src = &mz->lists[lru];
1011
1012         scan = 0;
1013         list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1014                 if (scan >= nr_to_scan)
1015                         break;
1016
1017                 page = pc->page;
1018                 if (unlikely(!PageCgroupUsed(pc)))
1019                         continue;
1020                 if (unlikely(!PageLRU(page)))
1021                         continue;
1022
1023                 scan++;
1024                 ret = __isolate_lru_page(page, mode, file);
1025                 switch (ret) {
1026                 case 0:
1027                         list_move(&page->lru, dst);
1028                         mem_cgroup_del_lru(page);
1029                         nr_taken++;
1030                         break;
1031                 case -EBUSY:
1032                         /* we don't affect global LRU but rotate in our LRU */
1033                         mem_cgroup_rotate_lru_list(page, page_lru(page));
1034                         break;
1035                 default:
1036                         break;
1037                 }
1038         }
1039
1040         *scanned = scan;
1041         return nr_taken;
1042 }
1043
1044 #define mem_cgroup_from_res_counter(counter, member)    \
1045         container_of(counter, struct mem_cgroup, member)
1046
1047 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1048 {
1049         if (do_swap_account) {
1050                 if (res_counter_check_under_limit(&mem->res) &&
1051                         res_counter_check_under_limit(&mem->memsw))
1052                         return true;
1053         } else
1054                 if (res_counter_check_under_limit(&mem->res))
1055                         return true;
1056         return false;
1057 }
1058
1059 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1060 {
1061         struct cgroup *cgrp = memcg->css.cgroup;
1062         unsigned int swappiness;
1063
1064         /* root ? */
1065         if (cgrp->parent == NULL)
1066                 return vm_swappiness;
1067
1068         spin_lock(&memcg->reclaim_param_lock);
1069         swappiness = memcg->swappiness;
1070         spin_unlock(&memcg->reclaim_param_lock);
1071
1072         return swappiness;
1073 }
1074
1075 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
1076 {
1077         int *val = data;
1078         (*val)++;
1079         return 0;
1080 }
1081
1082 /**
1083  * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1084  * @memcg: The memory cgroup that went over limit
1085  * @p: Task that is going to be killed
1086  *
1087  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1088  * enabled
1089  */
1090 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1091 {
1092         struct cgroup *task_cgrp;
1093         struct cgroup *mem_cgrp;
1094         /*
1095          * Need a buffer in BSS, can't rely on allocations. The code relies
1096          * on the assumption that OOM is serialized for memory controller.
1097          * If this assumption is broken, revisit this code.
1098          */
1099         static char memcg_name[PATH_MAX];
1100         int ret;
1101
1102         if (!memcg || !p)
1103                 return;
1104
1105
1106         rcu_read_lock();
1107
1108         mem_cgrp = memcg->css.cgroup;
1109         task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1110
1111         ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1112         if (ret < 0) {
1113                 /*
1114                  * Unfortunately, we are unable to convert to a useful name
1115                  * But we'll still print out the usage information
1116                  */
1117                 rcu_read_unlock();
1118                 goto done;
1119         }
1120         rcu_read_unlock();
1121
1122         printk(KERN_INFO "Task in %s killed", memcg_name);
1123
1124         rcu_read_lock();
1125         ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1126         if (ret < 0) {
1127                 rcu_read_unlock();
1128                 goto done;
1129         }
1130         rcu_read_unlock();
1131
1132         /*
1133          * Continues from above, so we don't need an KERN_ level
1134          */
1135         printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1136 done:
1137
1138         printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1139                 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1140                 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1141                 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1142         printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1143                 "failcnt %llu\n",
1144                 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1145                 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1146                 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1147 }
1148
1149 /*
1150  * This function returns the number of memcg under hierarchy tree. Returns
1151  * 1(self count) if no children.
1152  */
1153 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1154 {
1155         int num = 0;
1156         mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1157         return num;
1158 }
1159
1160 /*
1161  * Visit the first child (need not be the first child as per the ordering
1162  * of the cgroup list, since we track last_scanned_child) of @mem and use
1163  * that to reclaim free pages from.
1164  */
1165 static struct mem_cgroup *
1166 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1167 {
1168         struct mem_cgroup *ret = NULL;
1169         struct cgroup_subsys_state *css;
1170         int nextid, found;
1171
1172         if (!root_mem->use_hierarchy) {
1173                 css_get(&root_mem->css);
1174                 ret = root_mem;
1175         }
1176
1177         while (!ret) {
1178                 rcu_read_lock();
1179                 nextid = root_mem->last_scanned_child + 1;
1180                 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1181                                    &found);
1182                 if (css && css_tryget(css))
1183                         ret = container_of(css, struct mem_cgroup, css);
1184
1185                 rcu_read_unlock();
1186                 /* Updates scanning parameter */
1187                 spin_lock(&root_mem->reclaim_param_lock);
1188                 if (!css) {
1189                         /* this means start scan from ID:1 */
1190                         root_mem->last_scanned_child = 0;
1191                 } else
1192                         root_mem->last_scanned_child = found;
1193                 spin_unlock(&root_mem->reclaim_param_lock);
1194         }
1195
1196         return ret;
1197 }
1198
1199 /*
1200  * Scan the hierarchy if needed to reclaim memory. We remember the last child
1201  * we reclaimed from, so that we don't end up penalizing one child extensively
1202  * based on its position in the children list.
1203  *
1204  * root_mem is the original ancestor that we've been reclaim from.
1205  *
1206  * We give up and return to the caller when we visit root_mem twice.
1207  * (other groups can be removed while we're walking....)
1208  *
1209  * If shrink==true, for avoiding to free too much, this returns immedieately.
1210  */
1211 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1212                                                 struct zone *zone,
1213                                                 gfp_t gfp_mask,
1214                                                 unsigned long reclaim_options)
1215 {
1216         struct mem_cgroup *victim;
1217         int ret, total = 0;
1218         int loop = 0;
1219         bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1220         bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1221         bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1222         unsigned long excess = mem_cgroup_get_excess(root_mem);
1223
1224         /* If memsw_is_minimum==1, swap-out is of-no-use. */
1225         if (root_mem->memsw_is_minimum)
1226                 noswap = true;
1227
1228         while (1) {
1229                 victim = mem_cgroup_select_victim(root_mem);
1230                 if (victim == root_mem) {
1231                         loop++;
1232                         if (loop >= 1)
1233                                 drain_all_stock_async();
1234                         if (loop >= 2) {
1235                                 /*
1236                                  * If we have not been able to reclaim
1237                                  * anything, it might because there are
1238                                  * no reclaimable pages under this hierarchy
1239                                  */
1240                                 if (!check_soft || !total) {
1241                                         css_put(&victim->css);
1242                                         break;
1243                                 }
1244                                 /*
1245                                  * We want to do more targetted reclaim.
1246                                  * excess >> 2 is not to excessive so as to
1247                                  * reclaim too much, nor too less that we keep
1248                                  * coming back to reclaim from this cgroup
1249                                  */
1250                                 if (total >= (excess >> 2) ||
1251                                         (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1252                                         css_put(&victim->css);
1253                                         break;
1254                                 }
1255                         }
1256                 }
1257                 if (!mem_cgroup_local_usage(victim)) {
1258                         /* this cgroup's local usage == 0 */
1259                         css_put(&victim->css);
1260                         continue;
1261                 }
1262                 /* we use swappiness of local cgroup */
1263                 if (check_soft)
1264                         ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1265                                 noswap, get_swappiness(victim), zone,
1266                                 zone->zone_pgdat->node_id);
1267                 else
1268                         ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1269                                                 noswap, get_swappiness(victim));
1270                 css_put(&victim->css);
1271                 /*
1272                  * At shrinking usage, we can't check we should stop here or
1273                  * reclaim more. It's depends on callers. last_scanned_child
1274                  * will work enough for keeping fairness under tree.
1275                  */
1276                 if (shrink)
1277                         return ret;
1278                 total += ret;
1279                 if (check_soft) {
1280                         if (res_counter_check_under_soft_limit(&root_mem->res))
1281                                 return total;
1282                 } else if (mem_cgroup_check_under_limit(root_mem))
1283                         return 1 + total;
1284         }
1285         return total;
1286 }
1287
1288 static int mem_cgroup_oom_lock_cb(struct mem_cgroup *mem, void *data)
1289 {
1290         int *val = (int *)data;
1291         int x;
1292         /*
1293          * Logically, we can stop scanning immediately when we find
1294          * a memcg is already locked. But condidering unlock ops and
1295          * creation/removal of memcg, scan-all is simple operation.
1296          */
1297         x = atomic_inc_return(&mem->oom_lock);
1298         *val = max(x, *val);
1299         return 0;
1300 }
1301 /*
1302  * Check OOM-Killer is already running under our hierarchy.
1303  * If someone is running, return false.
1304  */
1305 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1306 {
1307         int lock_count = 0;
1308
1309         mem_cgroup_walk_tree(mem, &lock_count, mem_cgroup_oom_lock_cb);
1310
1311         if (lock_count == 1)
1312                 return true;
1313         return false;
1314 }
1315
1316 static int mem_cgroup_oom_unlock_cb(struct mem_cgroup *mem, void *data)
1317 {
1318         /*
1319          * When a new child is created while the hierarchy is under oom,
1320          * mem_cgroup_oom_lock() may not be called. We have to use
1321          * atomic_add_unless() here.
1322          */
1323         atomic_add_unless(&mem->oom_lock, -1, 0);
1324         return 0;
1325 }
1326
1327 static void mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1328 {
1329         mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_unlock_cb);
1330 }
1331
1332 static DEFINE_MUTEX(memcg_oom_mutex);
1333 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1334
1335 struct oom_wait_info {
1336         struct mem_cgroup *mem;
1337         wait_queue_t    wait;
1338 };
1339
1340 static int memcg_oom_wake_function(wait_queue_t *wait,
1341         unsigned mode, int sync, void *arg)
1342 {
1343         struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1344         struct oom_wait_info *oom_wait_info;
1345
1346         oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1347
1348         if (oom_wait_info->mem == wake_mem)
1349                 goto wakeup;
1350         /* if no hierarchy, no match */
1351         if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1352                 return 0;
1353         /*
1354          * Both of oom_wait_info->mem and wake_mem are stable under us.
1355          * Then we can use css_is_ancestor without taking care of RCU.
1356          */
1357         if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1358             !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1359                 return 0;
1360
1361 wakeup:
1362         return autoremove_wake_function(wait, mode, sync, arg);
1363 }
1364
1365 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1366 {
1367         /* for filtering, pass "mem" as argument. */
1368         __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1369 }
1370
1371 static void memcg_oom_recover(struct mem_cgroup *mem)
1372 {
1373         if (atomic_read(&mem->oom_lock))
1374                 memcg_wakeup_oom(mem);
1375 }
1376
1377 /*
1378  * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1379  */
1380 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1381 {
1382         struct oom_wait_info owait;
1383         bool locked, need_to_kill;
1384
1385         owait.mem = mem;
1386         owait.wait.flags = 0;
1387         owait.wait.func = memcg_oom_wake_function;
1388         owait.wait.private = current;
1389         INIT_LIST_HEAD(&owait.wait.task_list);
1390         need_to_kill = true;
1391         /* At first, try to OOM lock hierarchy under mem.*/
1392         mutex_lock(&memcg_oom_mutex);
1393         locked = mem_cgroup_oom_lock(mem);
1394         /*
1395          * Even if signal_pending(), we can't quit charge() loop without
1396          * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1397          * under OOM is always welcomed, use TASK_KILLABLE here.
1398          */
1399         prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1400         if (!locked || mem->oom_kill_disable)
1401                 need_to_kill = false;
1402         if (locked)
1403                 mem_cgroup_oom_notify(mem);
1404         mutex_unlock(&memcg_oom_mutex);
1405
1406         if (need_to_kill) {
1407                 finish_wait(&memcg_oom_waitq, &owait.wait);
1408                 mem_cgroup_out_of_memory(mem, mask);
1409         } else {
1410                 schedule();
1411                 finish_wait(&memcg_oom_waitq, &owait.wait);
1412         }
1413         mutex_lock(&memcg_oom_mutex);
1414         mem_cgroup_oom_unlock(mem);
1415         memcg_wakeup_oom(mem);
1416         mutex_unlock(&memcg_oom_mutex);
1417
1418         if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1419                 return false;
1420         /* Give chance to dying process */
1421         schedule_timeout(1);
1422         return true;
1423 }
1424
1425 /*
1426  * Currently used to update mapped file statistics, but the routine can be
1427  * generalized to update other statistics as well.
1428  */
1429 void mem_cgroup_update_file_mapped(struct page *page, int val)
1430 {
1431         struct mem_cgroup *mem;
1432         struct page_cgroup *pc;
1433
1434         pc = lookup_page_cgroup(page);
1435         if (unlikely(!pc))
1436                 return;
1437
1438         lock_page_cgroup(pc);
1439         mem = pc->mem_cgroup;
1440         if (!mem || !PageCgroupUsed(pc))
1441                 goto done;
1442
1443         /*
1444          * Preemption is already disabled. We can use __this_cpu_xxx
1445          */
1446         if (val > 0) {
1447                 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1448                 SetPageCgroupFileMapped(pc);
1449         } else {
1450                 __this_cpu_dec(mem->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1451                 ClearPageCgroupFileMapped(pc);
1452         }
1453
1454 done:
1455         unlock_page_cgroup(pc);
1456 }
1457
1458 /*
1459  * size of first charge trial. "32" comes from vmscan.c's magic value.
1460  * TODO: maybe necessary to use big numbers in big irons.
1461  */
1462 #define CHARGE_SIZE     (32 * PAGE_SIZE)
1463 struct memcg_stock_pcp {
1464         struct mem_cgroup *cached; /* this never be root cgroup */
1465         int charge;
1466         struct work_struct work;
1467 };
1468 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1469 static atomic_t memcg_drain_count;
1470
1471 /*
1472  * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1473  * from local stock and true is returned. If the stock is 0 or charges from a
1474  * cgroup which is not current target, returns false. This stock will be
1475  * refilled.
1476  */
1477 static bool consume_stock(struct mem_cgroup *mem)
1478 {
1479         struct memcg_stock_pcp *stock;
1480         bool ret = true;
1481
1482         stock = &get_cpu_var(memcg_stock);
1483         if (mem == stock->cached && stock->charge)
1484                 stock->charge -= PAGE_SIZE;
1485         else /* need to call res_counter_charge */
1486                 ret = false;
1487         put_cpu_var(memcg_stock);
1488         return ret;
1489 }
1490
1491 /*
1492  * Returns stocks cached in percpu to res_counter and reset cached information.
1493  */
1494 static void drain_stock(struct memcg_stock_pcp *stock)
1495 {
1496         struct mem_cgroup *old = stock->cached;
1497
1498         if (stock->charge) {
1499                 res_counter_uncharge(&old->res, stock->charge);
1500                 if (do_swap_account)
1501                         res_counter_uncharge(&old->memsw, stock->charge);
1502         }
1503         stock->cached = NULL;
1504         stock->charge = 0;
1505 }
1506
1507 /*
1508  * This must be called under preempt disabled or must be called by
1509  * a thread which is pinned to local cpu.
1510  */
1511 static void drain_local_stock(struct work_struct *dummy)
1512 {
1513         struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1514         drain_stock(stock);
1515 }
1516
1517 /*
1518  * Cache charges(val) which is from res_counter, to local per_cpu area.
1519  * This will be consumed by consume_stock() function, later.
1520  */
1521 static void refill_stock(struct mem_cgroup *mem, int val)
1522 {
1523         struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1524
1525         if (stock->cached != mem) { /* reset if necessary */
1526                 drain_stock(stock);
1527                 stock->cached = mem;
1528         }
1529         stock->charge += val;
1530         put_cpu_var(memcg_stock);
1531 }
1532
1533 /*
1534  * Tries to drain stocked charges in other cpus. This function is asynchronous
1535  * and just put a work per cpu for draining localy on each cpu. Caller can
1536  * expects some charges will be back to res_counter later but cannot wait for
1537  * it.
1538  */
1539 static void drain_all_stock_async(void)
1540 {
1541         int cpu;
1542         /* This function is for scheduling "drain" in asynchronous way.
1543          * The result of "drain" is not directly handled by callers. Then,
1544          * if someone is calling drain, we don't have to call drain more.
1545          * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1546          * there is a race. We just do loose check here.
1547          */
1548         if (atomic_read(&memcg_drain_count))
1549                 return;
1550         /* Notify other cpus that system-wide "drain" is running */
1551         atomic_inc(&memcg_drain_count);
1552         get_online_cpus();
1553         for_each_online_cpu(cpu) {
1554                 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1555                 schedule_work_on(cpu, &stock->work);
1556         }
1557         put_online_cpus();
1558         atomic_dec(&memcg_drain_count);
1559         /* We don't wait for flush_work */
1560 }
1561
1562 /* This is a synchronous drain interface. */
1563 static void drain_all_stock_sync(void)
1564 {
1565         /* called when force_empty is called */
1566         atomic_inc(&memcg_drain_count);
1567         schedule_on_each_cpu(drain_local_stock);
1568         atomic_dec(&memcg_drain_count);
1569 }
1570
1571 static int __cpuinit memcg_stock_cpu_callback(struct notifier_block *nb,
1572                                         unsigned long action,
1573                                         void *hcpu)
1574 {
1575         int cpu = (unsigned long)hcpu;
1576         struct memcg_stock_pcp *stock;
1577
1578         if (action != CPU_DEAD)
1579                 return NOTIFY_OK;
1580         stock = &per_cpu(memcg_stock, cpu);
1581         drain_stock(stock);
1582         return NOTIFY_OK;
1583 }
1584
1585 /*
1586  * Unlike exported interface, "oom" parameter is added. if oom==true,
1587  * oom-killer can be invoked.
1588  */
1589 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1590                         gfp_t gfp_mask, struct mem_cgroup **memcg, bool oom)
1591 {
1592         struct mem_cgroup *mem, *mem_over_limit;
1593         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1594         struct res_counter *fail_res;
1595         int csize = CHARGE_SIZE;
1596
1597         /*
1598          * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1599          * in system level. So, allow to go ahead dying process in addition to
1600          * MEMDIE process.
1601          */
1602         if (unlikely(test_thread_flag(TIF_MEMDIE)
1603                      || fatal_signal_pending(current)))
1604                 goto bypass;
1605
1606         /*
1607          * We always charge the cgroup the mm_struct belongs to.
1608          * The mm_struct's mem_cgroup changes on task migration if the
1609          * thread group leader migrates. It's possible that mm is not
1610          * set, if so charge the init_mm (happens for pagecache usage).
1611          */
1612         mem = *memcg;
1613         if (likely(!mem)) {
1614                 mem = try_get_mem_cgroup_from_mm(mm);
1615                 *memcg = mem;
1616         } else {
1617                 css_get(&mem->css);
1618         }
1619         if (unlikely(!mem))
1620                 return 0;
1621
1622         VM_BUG_ON(css_is_removed(&mem->css));
1623         if (mem_cgroup_is_root(mem))
1624                 goto done;
1625
1626         while (1) {
1627                 int ret = 0;
1628                 unsigned long flags = 0;
1629
1630                 if (consume_stock(mem))
1631                         goto done;
1632
1633                 ret = res_counter_charge(&mem->res, csize, &fail_res);
1634                 if (likely(!ret)) {
1635                         if (!do_swap_account)
1636                                 break;
1637                         ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1638                         if (likely(!ret))
1639                                 break;
1640                         /* mem+swap counter fails */
1641                         res_counter_uncharge(&mem->res, csize);
1642                         flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1643                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1644                                                                         memsw);
1645                 } else
1646                         /* mem counter fails */
1647                         mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1648                                                                         res);
1649
1650                 /* reduce request size and retry */
1651                 if (csize > PAGE_SIZE) {
1652                         csize = PAGE_SIZE;
1653                         continue;
1654                 }
1655                 if (!(gfp_mask & __GFP_WAIT))
1656                         goto nomem;
1657
1658                 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1659                                                 gfp_mask, flags);
1660                 if (ret)
1661                         continue;
1662
1663                 /*
1664                  * try_to_free_mem_cgroup_pages() might not give us a full
1665                  * picture of reclaim. Some pages are reclaimed and might be
1666                  * moved to swap cache or just unmapped from the cgroup.
1667                  * Check the limit again to see if the reclaim reduced the
1668                  * current usage of the cgroup before giving up
1669                  *
1670                  */
1671                 if (mem_cgroup_check_under_limit(mem_over_limit))
1672                         continue;
1673
1674                 /* try to avoid oom while someone is moving charge */
1675                 if (mc.moving_task && current != mc.moving_task) {
1676                         struct mem_cgroup *from, *to;
1677                         bool do_continue = false;
1678                         /*
1679                          * There is a small race that "from" or "to" can be
1680                          * freed by rmdir, so we use css_tryget().
1681                          */
1682                         from = mc.from;
1683                         to = mc.to;
1684                         if (from && css_tryget(&from->css)) {
1685                                 if (mem_over_limit->use_hierarchy)
1686                                         do_continue = css_is_ancestor(
1687                                                         &from->css,
1688                                                         &mem_over_limit->css);
1689                                 else
1690                                         do_continue = (from == mem_over_limit);
1691                                 css_put(&from->css);
1692                         }
1693                         if (!do_continue && to && css_tryget(&to->css)) {
1694                                 if (mem_over_limit->use_hierarchy)
1695                                         do_continue = css_is_ancestor(
1696                                                         &to->css,
1697                                                         &mem_over_limit->css);
1698                                 else
1699                                         do_continue = (to == mem_over_limit);
1700                                 css_put(&to->css);
1701                         }
1702                         if (do_continue) {
1703                                 DEFINE_WAIT(wait);
1704                                 prepare_to_wait(&mc.waitq, &wait,
1705                                                         TASK_INTERRUPTIBLE);
1706                                 /* moving charge context might have finished. */
1707                                 if (mc.moving_task)
1708                                         schedule();
1709                                 finish_wait(&mc.waitq, &wait);
1710                                 continue;
1711                         }
1712                 }
1713
1714                 if (!nr_retries--) {
1715                         if (!oom)
1716                                 goto nomem;
1717                         if (mem_cgroup_handle_oom(mem_over_limit, gfp_mask)) {
1718                                 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1719                                 continue;
1720                         }
1721                         /* When we reach here, current task is dying .*/
1722                         css_put(&mem->css);
1723                         goto bypass;
1724                 }
1725         }
1726         if (csize > PAGE_SIZE)
1727                 refill_stock(mem, csize - PAGE_SIZE);
1728 done:
1729         return 0;
1730 nomem:
1731         css_put(&mem->css);
1732         return -ENOMEM;
1733 bypass:
1734         *memcg = NULL;
1735         return 0;
1736 }
1737
1738 /*
1739  * Somemtimes we have to undo a charge we got by try_charge().
1740  * This function is for that and do uncharge, put css's refcnt.
1741  * gotten by try_charge().
1742  */
1743 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
1744                                                         unsigned long count)
1745 {
1746         if (!mem_cgroup_is_root(mem)) {
1747                 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
1748                 if (do_swap_account)
1749                         res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
1750                 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
1751                 WARN_ON_ONCE(count > INT_MAX);
1752                 __css_put(&mem->css, (int)count);
1753         }
1754         /* we don't need css_put for root */
1755 }
1756
1757 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem)
1758 {
1759         __mem_cgroup_cancel_charge(mem, 1);
1760 }
1761
1762 /*
1763  * A helper function to get mem_cgroup from ID. must be called under
1764  * rcu_read_lock(). The caller must check css_is_removed() or some if
1765  * it's concern. (dropping refcnt from swap can be called against removed
1766  * memcg.)
1767  */
1768 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1769 {
1770         struct cgroup_subsys_state *css;
1771
1772         /* ID 0 is unused ID */
1773         if (!id)
1774                 return NULL;
1775         css = css_lookup(&mem_cgroup_subsys, id);
1776         if (!css)
1777                 return NULL;
1778         return container_of(css, struct mem_cgroup, css);
1779 }
1780
1781 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
1782 {
1783         struct mem_cgroup *mem = NULL;
1784         struct page_cgroup *pc;
1785         unsigned short id;
1786         swp_entry_t ent;
1787
1788         VM_BUG_ON(!PageLocked(page));
1789
1790         pc = lookup_page_cgroup(page);
1791         lock_page_cgroup(pc);
1792         if (PageCgroupUsed(pc)) {
1793                 mem = pc->mem_cgroup;
1794                 if (mem && !css_tryget(&mem->css))
1795                         mem = NULL;
1796         } else if (PageSwapCache(page)) {
1797                 ent.val = page_private(page);
1798                 id = lookup_swap_cgroup(ent);
1799                 rcu_read_lock();
1800                 mem = mem_cgroup_lookup(id);
1801                 if (mem && !css_tryget(&mem->css))
1802                         mem = NULL;
1803                 rcu_read_unlock();
1804         }
1805         unlock_page_cgroup(pc);
1806         return mem;
1807 }
1808
1809 /*
1810  * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1811  * USED state. If already USED, uncharge and return.
1812  */
1813
1814 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1815                                      struct page_cgroup *pc,
1816                                      enum charge_type ctype)
1817 {
1818         /* try_charge() can return NULL to *memcg, taking care of it. */
1819         if (!mem)
1820                 return;
1821
1822         lock_page_cgroup(pc);
1823         if (unlikely(PageCgroupUsed(pc))) {
1824                 unlock_page_cgroup(pc);
1825                 mem_cgroup_cancel_charge(mem);
1826                 return;
1827         }
1828
1829         pc->mem_cgroup = mem;
1830         /*
1831          * We access a page_cgroup asynchronously without lock_page_cgroup().
1832          * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1833          * is accessed after testing USED bit. To make pc->mem_cgroup visible
1834          * before USED bit, we need memory barrier here.
1835          * See mem_cgroup_add_lru_list(), etc.
1836          */
1837         smp_wmb();
1838         switch (ctype) {
1839         case MEM_CGROUP_CHARGE_TYPE_CACHE:
1840         case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1841                 SetPageCgroupCache(pc);
1842                 SetPageCgroupUsed(pc);
1843                 break;
1844         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1845                 ClearPageCgroupCache(pc);
1846                 SetPageCgroupUsed(pc);
1847                 break;
1848         default:
1849                 break;
1850         }
1851
1852         mem_cgroup_charge_statistics(mem, pc, true);
1853
1854         unlock_page_cgroup(pc);
1855         /*
1856          * "charge_statistics" updated event counter. Then, check it.
1857          * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1858          * if they exceeds softlimit.
1859          */
1860         memcg_check_events(mem, pc->page);
1861 }
1862
1863 /**
1864  * __mem_cgroup_move_account - move account of the page
1865  * @pc: page_cgroup of the page.
1866  * @from: mem_cgroup which the page is moved from.
1867  * @to: mem_cgroup which the page is moved to. @from != @to.
1868  * @uncharge: whether we should call uncharge and css_put against @from.
1869  *
1870  * The caller must confirm following.
1871  * - page is not on LRU (isolate_page() is useful.)
1872  * - the pc is locked, used, and ->mem_cgroup points to @from.
1873  *
1874  * This function doesn't do "charge" nor css_get to new cgroup. It should be
1875  * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
1876  * true, this function does "uncharge" from old cgroup, but it doesn't if
1877  * @uncharge is false, so a caller should do "uncharge".
1878  */
1879
1880 static void __mem_cgroup_move_account(struct page_cgroup *pc,
1881         struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1882 {
1883         VM_BUG_ON(from == to);
1884         VM_BUG_ON(PageLRU(pc->page));
1885         VM_BUG_ON(!PageCgroupLocked(pc));
1886         VM_BUG_ON(!PageCgroupUsed(pc));
1887         VM_BUG_ON(pc->mem_cgroup != from);
1888
1889         if (PageCgroupFileMapped(pc)) {
1890                 /* Update mapped_file data for mem_cgroup */
1891                 preempt_disable();
1892                 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1893                 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
1894                 preempt_enable();
1895         }
1896         mem_cgroup_charge_statistics(from, pc, false);
1897         if (uncharge)
1898                 /* This is not "cancel", but cancel_charge does all we need. */
1899                 mem_cgroup_cancel_charge(from);
1900
1901         /* caller should have done css_get */
1902         pc->mem_cgroup = to;
1903         mem_cgroup_charge_statistics(to, pc, true);
1904         /*
1905          * We charges against "to" which may not have any tasks. Then, "to"
1906          * can be under rmdir(). But in current implementation, caller of
1907          * this function is just force_empty() and move charge, so it's
1908          * garanteed that "to" is never removed. So, we don't check rmdir
1909          * status here.
1910          */
1911 }
1912
1913 /*
1914  * check whether the @pc is valid for moving account and call
1915  * __mem_cgroup_move_account()
1916  */
1917 static int mem_cgroup_move_account(struct page_cgroup *pc,
1918                 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
1919 {
1920         int ret = -EINVAL;
1921         lock_page_cgroup(pc);
1922         if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
1923                 __mem_cgroup_move_account(pc, from, to, uncharge);
1924                 ret = 0;
1925         }
1926         unlock_page_cgroup(pc);
1927         /*
1928          * check events
1929          */
1930         memcg_check_events(to, pc->page);
1931         memcg_check_events(from, pc->page);
1932         return ret;
1933 }
1934
1935 /*
1936  * move charges to its parent.
1937  */
1938
1939 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1940                                   struct mem_cgroup *child,
1941                                   gfp_t gfp_mask)
1942 {
1943         struct page *page = pc->page;
1944         struct cgroup *cg = child->css.cgroup;
1945         struct cgroup *pcg = cg->parent;
1946         struct mem_cgroup *parent;
1947         int ret;
1948
1949         /* Is ROOT ? */
1950         if (!pcg)
1951                 return -EINVAL;
1952
1953         ret = -EBUSY;
1954         if (!get_page_unless_zero(page))
1955                 goto out;
1956         if (isolate_lru_page(page))
1957                 goto put;
1958
1959         parent = mem_cgroup_from_cont(pcg);
1960         ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1961         if (ret || !parent)
1962                 goto put_back;
1963
1964         ret = mem_cgroup_move_account(pc, child, parent, true);
1965         if (ret)
1966                 mem_cgroup_cancel_charge(parent);
1967 put_back:
1968         putback_lru_page(page);
1969 put:
1970         put_page(page);
1971 out:
1972         return ret;
1973 }
1974
1975 /*
1976  * Charge the memory controller for page usage.
1977  * Return
1978  * 0 if the charge was successful
1979  * < 0 if the cgroup is over its limit
1980  */
1981 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1982                                 gfp_t gfp_mask, enum charge_type ctype,
1983                                 struct mem_cgroup *memcg)
1984 {
1985         struct mem_cgroup *mem;
1986         struct page_cgroup *pc;
1987         int ret;
1988
1989         pc = lookup_page_cgroup(page);
1990         /* can happen at boot */
1991         if (unlikely(!pc))
1992                 return 0;
1993         prefetchw(pc);
1994
1995         mem = memcg;
1996         ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1997         if (ret || !mem)
1998                 return ret;
1999
2000         __mem_cgroup_commit_charge(mem, pc, ctype);
2001         return 0;
2002 }
2003
2004 int mem_cgroup_newpage_charge(struct page *page,
2005                               struct mm_struct *mm, gfp_t gfp_mask)
2006 {
2007         if (mem_cgroup_disabled())
2008                 return 0;
2009         if (PageCompound(page))
2010                 return 0;
2011         /*
2012          * If already mapped, we don't have to account.
2013          * If page cache, page->mapping has address_space.
2014          * But page->mapping may have out-of-use anon_vma pointer,
2015          * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2016          * is NULL.
2017          */
2018         if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2019                 return 0;
2020         if (unlikely(!mm))
2021                 mm = &init_mm;
2022         return mem_cgroup_charge_common(page, mm, gfp_mask,
2023                                 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
2024 }
2025
2026 static void
2027 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2028                                         enum charge_type ctype);
2029
2030 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2031                                 gfp_t gfp_mask)
2032 {
2033         struct mem_cgroup *mem = NULL;
2034         int ret;
2035
2036         if (mem_cgroup_disabled())
2037                 return 0;
2038         if (PageCompound(page))
2039                 return 0;
2040         /*
2041          * Corner case handling. This is called from add_to_page_cache()
2042          * in usual. But some FS (shmem) precharges this page before calling it
2043          * and call add_to_page_cache() with GFP_NOWAIT.
2044          *
2045          * For GFP_NOWAIT case, the page may be pre-charged before calling
2046          * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2047          * charge twice. (It works but has to pay a bit larger cost.)
2048          * And when the page is SwapCache, it should take swap information
2049          * into account. This is under lock_page() now.
2050          */
2051         if (!(gfp_mask & __GFP_WAIT)) {
2052                 struct page_cgroup *pc;
2053
2054
2055                 pc = lookup_page_cgroup(page);
2056                 if (!pc)
2057                         return 0;
2058                 lock_page_cgroup(pc);
2059                 if (PageCgroupUsed(pc)) {
2060                         unlock_page_cgroup(pc);
2061                         return 0;
2062                 }
2063                 unlock_page_cgroup(pc);
2064         }
2065
2066         if (unlikely(!mm && !mem))
2067                 mm = &init_mm;
2068
2069         if (page_is_file_cache(page))
2070                 return mem_cgroup_charge_common(page, mm, gfp_mask,
2071                                 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
2072
2073         /* shmem */
2074         if (PageSwapCache(page)) {
2075                 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2076                 if (!ret)
2077                         __mem_cgroup_commit_charge_swapin(page, mem,
2078                                         MEM_CGROUP_CHARGE_TYPE_SHMEM);
2079         } else
2080                 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2081                                         MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
2082
2083         return ret;
2084 }
2085
2086 /*
2087  * While swap-in, try_charge -> commit or cancel, the page is locked.
2088  * And when try_charge() successfully returns, one refcnt to memcg without
2089  * struct page_cgroup is acquired. This refcnt will be consumed by
2090  * "commit()" or removed by "cancel()"
2091  */
2092 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2093                                  struct page *page,
2094                                  gfp_t mask, struct mem_cgroup **ptr)
2095 {
2096         struct mem_cgroup *mem;
2097         int ret;
2098
2099         if (mem_cgroup_disabled())
2100                 return 0;
2101
2102         if (!do_swap_account)
2103                 goto charge_cur_mm;
2104         /*
2105          * A racing thread's fault, or swapoff, may have already updated
2106          * the pte, and even removed page from swap cache: in those cases
2107          * do_swap_page()'s pte_same() test will fail; but there's also a
2108          * KSM case which does need to charge the page.
2109          */
2110         if (!PageSwapCache(page))
2111                 goto charge_cur_mm;
2112         mem = try_get_mem_cgroup_from_page(page);
2113         if (!mem)
2114                 goto charge_cur_mm;
2115         *ptr = mem;
2116         ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
2117         /* drop extra refcnt from tryget */
2118         css_put(&mem->css);
2119         return ret;
2120 charge_cur_mm:
2121         if (unlikely(!mm))
2122                 mm = &init_mm;
2123         return __mem_cgroup_try_charge(mm, mask, ptr, true);
2124 }
2125
2126 static void
2127 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2128                                         enum charge_type ctype)
2129 {
2130         struct page_cgroup *pc;
2131
2132         if (mem_cgroup_disabled())
2133                 return;
2134         if (!ptr)
2135                 return;
2136         cgroup_exclude_rmdir(&ptr->css);
2137         pc = lookup_page_cgroup(page);
2138         mem_cgroup_lru_del_before_commit_swapcache(page);
2139         __mem_cgroup_commit_charge(ptr, pc, ctype);
2140         mem_cgroup_lru_add_after_commit_swapcache(page);
2141         /*
2142          * Now swap is on-memory. This means this page may be
2143          * counted both as mem and swap....double count.
2144          * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2145          * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2146          * may call delete_from_swap_cache() before reach here.
2147          */
2148         if (do_swap_account && PageSwapCache(page)) {
2149                 swp_entry_t ent = {.val = page_private(page)};
2150                 unsigned short id;
2151                 struct mem_cgroup *memcg;
2152
2153                 id = swap_cgroup_record(ent, 0);
2154                 rcu_read_lock();
2155                 memcg = mem_cgroup_lookup(id);
2156                 if (memcg) {
2157                         /*
2158                          * This recorded memcg can be obsolete one. So, avoid
2159                          * calling css_tryget
2160                          */
2161                         if (!mem_cgroup_is_root(memcg))
2162                                 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2163                         mem_cgroup_swap_statistics(memcg, false);
2164                         mem_cgroup_put(memcg);
2165                 }
2166                 rcu_read_unlock();
2167         }
2168         /*
2169          * At swapin, we may charge account against cgroup which has no tasks.
2170          * So, rmdir()->pre_destroy() can be called while we do this charge.
2171          * In that case, we need to call pre_destroy() again. check it here.
2172          */
2173         cgroup_release_and_wakeup_rmdir(&ptr->css);
2174 }
2175
2176 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2177 {
2178         __mem_cgroup_commit_charge_swapin(page, ptr,
2179                                         MEM_CGROUP_CHARGE_TYPE_MAPPED);
2180 }
2181
2182 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2183 {
2184         if (mem_cgroup_disabled())
2185                 return;
2186         if (!mem)
2187                 return;
2188         mem_cgroup_cancel_charge(mem);
2189 }
2190
2191 static void
2192 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype)
2193 {
2194         struct memcg_batch_info *batch = NULL;
2195         bool uncharge_memsw = true;
2196         /* If swapout, usage of swap doesn't decrease */
2197         if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2198                 uncharge_memsw = false;
2199
2200         batch = &current->memcg_batch;
2201         /*
2202          * In usual, we do css_get() when we remember memcg pointer.
2203          * But in this case, we keep res->usage until end of a series of
2204          * uncharges. Then, it's ok to ignore memcg's refcnt.
2205          */
2206         if (!batch->memcg)
2207                 batch->memcg = mem;
2208         /*
2209          * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2210          * In those cases, all pages freed continously can be expected to be in
2211          * the same cgroup and we have chance to coalesce uncharges.
2212          * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2213          * because we want to do uncharge as soon as possible.
2214          */
2215
2216         if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2217                 goto direct_uncharge;
2218
2219         /*
2220          * In typical case, batch->memcg == mem. This means we can
2221          * merge a series of uncharges to an uncharge of res_counter.
2222          * If not, we uncharge res_counter ony by one.
2223          */
2224         if (batch->memcg != mem)
2225                 goto direct_uncharge;
2226         /* remember freed charge and uncharge it later */
2227         batch->bytes += PAGE_SIZE;
2228         if (uncharge_memsw)
2229                 batch->memsw_bytes += PAGE_SIZE;
2230         return;
2231 direct_uncharge:
2232         res_counter_uncharge(&mem->res, PAGE_SIZE);
2233         if (uncharge_memsw)
2234                 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
2235         if (unlikely(batch->memcg != mem))
2236                 memcg_oom_recover(mem);
2237         return;
2238 }
2239
2240 /*
2241  * uncharge if !page_mapped(page)
2242  */
2243 static struct mem_cgroup *
2244 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2245 {
2246         struct page_cgroup *pc;
2247         struct mem_cgroup *mem = NULL;
2248         struct mem_cgroup_per_zone *mz;
2249
2250         if (mem_cgroup_disabled())
2251                 return NULL;
2252
2253         if (PageSwapCache(page))
2254                 return NULL;
2255
2256         /*
2257          * Check if our page_cgroup is valid
2258          */
2259         pc = lookup_page_cgroup(page);
2260         if (unlikely(!pc || !PageCgroupUsed(pc)))
2261                 return NULL;
2262
2263         lock_page_cgroup(pc);
2264
2265         mem = pc->mem_cgroup;
2266
2267         if (!PageCgroupUsed(pc))
2268                 goto unlock_out;
2269
2270         switch (ctype) {
2271         case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2272         case MEM_CGROUP_CHARGE_TYPE_DROP:
2273                 /* See mem_cgroup_prepare_migration() */
2274                 if (page_mapped(page) || PageCgroupMigration(pc))
2275                         goto unlock_out;
2276                 break;
2277         case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2278                 if (!PageAnon(page)) {  /* Shared memory */
2279                         if (page->mapping && !page_is_file_cache(page))
2280                                 goto unlock_out;
2281                 } else if (page_mapped(page)) /* Anon */
2282                                 goto unlock_out;
2283                 break;
2284         default:
2285                 break;
2286         }
2287
2288         if (!mem_cgroup_is_root(mem))
2289                 __do_uncharge(mem, ctype);
2290         if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2291                 mem_cgroup_swap_statistics(mem, true);
2292         mem_cgroup_charge_statistics(mem, pc, false);
2293
2294         ClearPageCgroupUsed(pc);
2295         /*
2296          * pc->mem_cgroup is not cleared here. It will be accessed when it's
2297          * freed from LRU. This is safe because uncharged page is expected not
2298          * to be reused (freed soon). Exception is SwapCache, it's handled by
2299          * special functions.
2300          */
2301
2302         mz = page_cgroup_zoneinfo(pc);
2303         unlock_page_cgroup(pc);
2304
2305         memcg_check_events(mem, page);
2306         /* at swapout, this memcg will be accessed to record to swap */
2307         if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2308                 css_put(&mem->css);
2309
2310         return mem;
2311
2312 unlock_out:
2313         unlock_page_cgroup(pc);
2314         return NULL;
2315 }
2316
2317 void mem_cgroup_uncharge_page(struct page *page)
2318 {
2319         /* early check. */
2320         if (page_mapped(page))
2321                 return;
2322         if (page->mapping && !PageAnon(page))
2323                 return;
2324         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2325 }
2326
2327 void mem_cgroup_uncharge_cache_page(struct page *page)
2328 {
2329         VM_BUG_ON(page_mapped(page));
2330         VM_BUG_ON(page->mapping);
2331         __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2332 }
2333
2334 /*
2335  * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2336  * In that cases, pages are freed continuously and we can expect pages
2337  * are in the same memcg. All these calls itself limits the number of
2338  * pages freed at once, then uncharge_start/end() is called properly.
2339  * This may be called prural(2) times in a context,
2340  */
2341
2342 void mem_cgroup_uncharge_start(void)
2343 {
2344         current->memcg_batch.do_batch++;
2345         /* We can do nest. */
2346         if (current->memcg_batch.do_batch == 1) {
2347                 current->memcg_batch.memcg = NULL;
2348                 current->memcg_batch.bytes = 0;
2349                 current->memcg_batch.memsw_bytes = 0;
2350         }
2351 }
2352
2353 void mem_cgroup_uncharge_end(void)
2354 {
2355         struct memcg_batch_info *batch = &current->memcg_batch;
2356
2357         if (!batch->do_batch)
2358                 return;
2359
2360         batch->do_batch--;
2361         if (batch->do_batch) /* If stacked, do nothing. */
2362                 return;
2363
2364         if (!batch->memcg)
2365                 return;
2366         /*
2367          * This "batch->memcg" is valid without any css_get/put etc...
2368          * bacause we hide charges behind us.
2369          */
2370         if (batch->bytes)
2371                 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2372         if (batch->memsw_bytes)
2373                 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2374         memcg_oom_recover(batch->memcg);
2375         /* forget this pointer (for sanity check) */
2376         batch->memcg = NULL;
2377 }
2378
2379 #ifdef CONFIG_SWAP
2380 /*
2381  * called after __delete_from_swap_cache() and drop "page" account.
2382  * memcg information is recorded to swap_cgroup of "ent"
2383  */
2384 void
2385 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2386 {
2387         struct mem_cgroup *memcg;
2388         int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2389
2390         if (!swapout) /* this was a swap cache but the swap is unused ! */
2391                 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2392
2393         memcg = __mem_cgroup_uncharge_common(page, ctype);
2394
2395         /* record memcg information */
2396         if (do_swap_account && swapout && memcg) {
2397                 swap_cgroup_record(ent, css_id(&memcg->css));
2398                 mem_cgroup_get(memcg);
2399         }
2400         if (swapout && memcg)
2401                 css_put(&memcg->css);
2402 }
2403 #endif
2404
2405 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2406 /*
2407  * called from swap_entry_free(). remove record in swap_cgroup and
2408  * uncharge "memsw" account.
2409  */
2410 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2411 {
2412         struct mem_cgroup *memcg;
2413         unsigned short id;
2414
2415         if (!do_swap_account)
2416                 return;
2417
2418         id = swap_cgroup_record(ent, 0);
2419         rcu_read_lock();
2420         memcg = mem_cgroup_lookup(id);
2421         if (memcg) {
2422                 /*
2423                  * We uncharge this because swap is freed.
2424                  * This memcg can be obsolete one. We avoid calling css_tryget
2425                  */
2426                 if (!mem_cgroup_is_root(memcg))
2427                         res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2428                 mem_cgroup_swap_statistics(memcg, false);
2429                 mem_cgroup_put(memcg);
2430         }
2431         rcu_read_unlock();
2432 }
2433
2434 /**
2435  * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2436  * @entry: swap entry to be moved
2437  * @from:  mem_cgroup which the entry is moved from
2438  * @to:  mem_cgroup which the entry is moved to
2439  * @need_fixup: whether we should fixup res_counters and refcounts.
2440  *
2441  * It succeeds only when the swap_cgroup's record for this entry is the same
2442  * as the mem_cgroup's id of @from.
2443  *
2444  * Returns 0 on success, -EINVAL on failure.
2445  *
2446  * The caller must have charged to @to, IOW, called res_counter_charge() about
2447  * both res and memsw, and called css_get().
2448  */
2449 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2450                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2451 {
2452         unsigned short old_id, new_id;
2453
2454         old_id = css_id(&from->css);
2455         new_id = css_id(&to->css);
2456
2457         if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2458                 mem_cgroup_swap_statistics(from, false);
2459                 mem_cgroup_swap_statistics(to, true);
2460                 /*
2461                  * This function is only called from task migration context now.
2462                  * It postpones res_counter and refcount handling till the end
2463                  * of task migration(mem_cgroup_clear_mc()) for performance
2464                  * improvement. But we cannot postpone mem_cgroup_get(to)
2465                  * because if the process that has been moved to @to does
2466                  * swap-in, the refcount of @to might be decreased to 0.
2467                  */
2468                 mem_cgroup_get(to);
2469                 if (need_fixup) {
2470                         if (!mem_cgroup_is_root(from))
2471                                 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2472                         mem_cgroup_put(from);
2473                         /*
2474                          * we charged both to->res and to->memsw, so we should
2475                          * uncharge to->res.
2476                          */
2477                         if (!mem_cgroup_is_root(to))
2478                                 res_counter_uncharge(&to->res, PAGE_SIZE);
2479                         css_put(&to->css);
2480                 }
2481                 return 0;
2482         }
2483         return -EINVAL;
2484 }
2485 #else
2486 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2487                 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2488 {
2489         return -EINVAL;
2490 }
2491 #endif
2492
2493 /*
2494  * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2495  * page belongs to.
2496  */
2497 int mem_cgroup_prepare_migration(struct page *page,
2498         struct page *newpage, struct mem_cgroup **ptr)
2499 {
2500         struct page_cgroup *pc;
2501         struct mem_cgroup *mem = NULL;
2502         enum charge_type ctype;
2503         int ret = 0;
2504
2505         if (mem_cgroup_disabled())
2506                 return 0;
2507
2508         pc = lookup_page_cgroup(page);
2509         lock_page_cgroup(pc);
2510         if (PageCgroupUsed(pc)) {
2511                 mem = pc->mem_cgroup;
2512                 css_get(&mem->css);
2513                 /*
2514                  * At migrating an anonymous page, its mapcount goes down
2515                  * to 0 and uncharge() will be called. But, even if it's fully
2516                  * unmapped, migration may fail and this page has to be
2517                  * charged again. We set MIGRATION flag here and delay uncharge
2518                  * until end_migration() is called
2519                  *
2520                  * Corner Case Thinking
2521                  * A)
2522                  * When the old page was mapped as Anon and it's unmap-and-freed
2523                  * while migration was ongoing.
2524                  * If unmap finds the old page, uncharge() of it will be delayed
2525                  * until end_migration(). If unmap finds a new page, it's
2526                  * uncharged when it make mapcount to be 1->0. If unmap code
2527                  * finds swap_migration_entry, the new page will not be mapped
2528                  * and end_migration() will find it(mapcount==0).
2529                  *
2530                  * B)
2531                  * When the old page was mapped but migraion fails, the kernel
2532                  * remaps it. A charge for it is kept by MIGRATION flag even
2533                  * if mapcount goes down to 0. We can do remap successfully
2534                  * without charging it again.
2535                  *
2536                  * C)
2537                  * The "old" page is under lock_page() until the end of
2538                  * migration, so, the old page itself will not be swapped-out.
2539                  * If the new page is swapped out before end_migraton, our
2540                  * hook to usual swap-out path will catch the event.
2541                  */
2542                 if (PageAnon(page))
2543                         SetPageCgroupMigration(pc);
2544         }
2545         unlock_page_cgroup(pc);
2546         /*
2547          * If the page is not charged at this point,
2548          * we return here.
2549          */
2550         if (!mem)
2551                 return 0;
2552
2553         *ptr = mem;
2554         ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false);
2555         css_put(&mem->css);/* drop extra refcnt */
2556         if (ret || *ptr == NULL) {
2557                 if (PageAnon(page)) {
2558                         lock_page_cgroup(pc);
2559                         ClearPageCgroupMigration(pc);
2560                         unlock_page_cgroup(pc);
2561                         /*
2562                          * The old page may be fully unmapped while we kept it.
2563                          */
2564                         mem_cgroup_uncharge_page(page);
2565                 }
2566                 return -ENOMEM;
2567         }
2568         /*
2569          * We charge new page before it's used/mapped. So, even if unlock_page()
2570          * is called before end_migration, we can catch all events on this new
2571          * page. In the case new page is migrated but not remapped, new page's
2572          * mapcount will be finally 0 and we call uncharge in end_migration().
2573          */
2574         pc = lookup_page_cgroup(newpage);
2575         if (PageAnon(page))
2576                 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2577         else if (page_is_file_cache(page))
2578                 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2579         else
2580                 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2581         __mem_cgroup_commit_charge(mem, pc, ctype);
2582         return ret;
2583 }
2584
2585 /* remove redundant charge if migration failed*/
2586 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2587         struct page *oldpage, struct page *newpage)
2588 {
2589         struct page *used, *unused;
2590         struct page_cgroup *pc;
2591
2592         if (!mem)
2593                 return;
2594         /* blocks rmdir() */
2595         cgroup_exclude_rmdir(&mem->css);
2596         /* at migration success, oldpage->mapping is NULL. */
2597         if (oldpage->mapping) {
2598                 used = oldpage;
2599                 unused = newpage;
2600         } else {
2601                 used = newpage;
2602                 unused = oldpage;
2603         }
2604         /*
2605          * We disallowed uncharge of pages under migration because mapcount
2606          * of the page goes down to zero, temporarly.
2607          * Clear the flag and check the page should be charged.
2608          */
2609         pc = lookup_page_cgroup(oldpage);
2610         lock_page_cgroup(pc);
2611         ClearPageCgroupMigration(pc);
2612         unlock_page_cgroup(pc);
2613
2614         if (unused != oldpage)
2615                 pc = lookup_page_cgroup(unused);
2616         __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2617
2618         pc = lookup_page_cgroup(used);
2619         /*
2620          * If a page is a file cache, radix-tree replacement is very atomic
2621          * and we can skip this check. When it was an Anon page, its mapcount
2622          * goes down to 0. But because we added MIGRATION flage, it's not
2623          * uncharged yet. There are several case but page->mapcount check
2624          * and USED bit check in mem_cgroup_uncharge_page() will do enough
2625          * check. (see prepare_charge() also)
2626          */
2627         if (PageAnon(used))
2628                 mem_cgroup_uncharge_page(used);
2629         /*
2630          * At migration, we may charge account against cgroup which has no
2631          * tasks.
2632          * So, rmdir()->pre_destroy() can be called while we do this charge.
2633          * In that case, we need to call pre_destroy() again. check it here.
2634          */
2635         cgroup_release_and_wakeup_rmdir(&mem->css);
2636 }
2637
2638 /*
2639  * A call to try to shrink memory usage on charge failure at shmem's swapin.
2640  * Calling hierarchical_reclaim is not enough because we should update
2641  * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2642  * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2643  * not from the memcg which this page would be charged to.
2644  * try_charge_swapin does all of these works properly.
2645  */
2646 int mem_cgroup_shmem_charge_fallback(struct page *page,
2647                             struct mm_struct *mm,
2648                             gfp_t gfp_mask)
2649 {
2650         struct mem_cgroup *mem = NULL;
2651         int ret;
2652
2653         if (mem_cgroup_disabled())
2654                 return 0;
2655
2656         ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2657         if (!ret)
2658                 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2659
2660         return ret;
2661 }
2662
2663 static DEFINE_MUTEX(set_limit_mutex);
2664
2665 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2666                                 unsigned long long val)
2667 {
2668         int retry_count;
2669         u64 memswlimit, memlimit;
2670         int ret = 0;
2671         int children = mem_cgroup_count_children(memcg);
2672         u64 curusage, oldusage;
2673         int enlarge;
2674
2675         /*
2676          * For keeping hierarchical_reclaim simple, how long we should retry
2677          * is depends on callers. We set our retry-count to be function
2678          * of # of children which we should visit in this loop.
2679          */
2680         retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2681
2682         oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2683
2684         enlarge = 0;
2685         while (retry_count) {
2686                 if (signal_pending(current)) {
2687                         ret = -EINTR;
2688                         break;
2689                 }
2690                 /*
2691                  * Rather than hide all in some function, I do this in
2692                  * open coded manner. You see what this really does.
2693                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2694                  */
2695                 mutex_lock(&set_limit_mutex);
2696                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2697                 if (memswlimit < val) {
2698                         ret = -EINVAL;
2699                         mutex_unlock(&set_limit_mutex);
2700                         break;
2701                 }
2702
2703                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2704                 if (memlimit < val)
2705                         enlarge = 1;
2706
2707                 ret = res_counter_set_limit(&memcg->res, val);
2708                 if (!ret) {
2709                         if (memswlimit == val)
2710                                 memcg->memsw_is_minimum = true;
2711                         else
2712                                 memcg->memsw_is_minimum = false;
2713                 }
2714                 mutex_unlock(&set_limit_mutex);
2715
2716                 if (!ret)
2717                         break;
2718
2719                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2720                                                 MEM_CGROUP_RECLAIM_SHRINK);
2721                 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2722                 /* Usage is reduced ? */
2723                 if (curusage >= oldusage)
2724                         retry_count--;
2725                 else
2726                         oldusage = curusage;
2727         }
2728         if (!ret && enlarge)
2729                 memcg_oom_recover(memcg);
2730
2731         return ret;
2732 }
2733
2734 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2735                                         unsigned long long val)
2736 {
2737         int retry_count;
2738         u64 memlimit, memswlimit, oldusage, curusage;
2739         int children = mem_cgroup_count_children(memcg);
2740         int ret = -EBUSY;
2741         int enlarge = 0;
2742
2743         /* see mem_cgroup_resize_res_limit */
2744         retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2745         oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2746         while (retry_count) {
2747                 if (signal_pending(current)) {
2748                         ret = -EINTR;
2749                         break;
2750                 }
2751                 /*
2752                  * Rather than hide all in some function, I do this in
2753                  * open coded manner. You see what this really does.
2754                  * We have to guarantee mem->res.limit < mem->memsw.limit.
2755                  */
2756                 mutex_lock(&set_limit_mutex);
2757                 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2758                 if (memlimit > val) {
2759                         ret = -EINVAL;
2760                         mutex_unlock(&set_limit_mutex);
2761                         break;
2762                 }
2763                 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2764                 if (memswlimit < val)
2765                         enlarge = 1;
2766                 ret = res_counter_set_limit(&memcg->memsw, val);
2767                 if (!ret) {
2768                         if (memlimit == val)
2769                                 memcg->memsw_is_minimum = true;
2770                         else
2771                                 memcg->memsw_is_minimum = false;
2772                 }
2773                 mutex_unlock(&set_limit_mutex);
2774
2775                 if (!ret)
2776                         break;
2777
2778                 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2779                                                 MEM_CGROUP_RECLAIM_NOSWAP |
2780                                                 MEM_CGROUP_RECLAIM_SHRINK);
2781                 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2782                 /* Usage is reduced ? */
2783                 if (curusage >= oldusage)
2784                         retry_count--;
2785                 else
2786                         oldusage = curusage;
2787         }
2788         if (!ret && enlarge)
2789                 memcg_oom_recover(memcg);
2790         return ret;
2791 }
2792
2793 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2794                                                 gfp_t gfp_mask, int nid,
2795                                                 int zid)
2796 {
2797         unsigned long nr_reclaimed = 0;
2798         struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2799         unsigned long reclaimed;
2800         int loop = 0;
2801         struct mem_cgroup_tree_per_zone *mctz;
2802         unsigned long long excess;
2803
2804         if (order > 0)
2805                 return 0;
2806
2807         mctz = soft_limit_tree_node_zone(nid, zid);
2808         /*
2809          * This loop can run a while, specially if mem_cgroup's continuously
2810          * keep exceeding their soft limit and putting the system under
2811          * pressure
2812          */
2813         do {
2814                 if (next_mz)
2815                         mz = next_mz;
2816                 else
2817                         mz = mem_cgroup_largest_soft_limit_node(mctz);
2818                 if (!mz)
2819                         break;
2820
2821                 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2822                                                 gfp_mask,
2823                                                 MEM_CGROUP_RECLAIM_SOFT);
2824                 nr_reclaimed += reclaimed;
2825                 spin_lock(&mctz->lock);
2826
2827                 /*
2828                  * If we failed to reclaim anything from this memory cgroup
2829                  * it is time to move on to the next cgroup
2830                  */
2831                 next_mz = NULL;
2832                 if (!reclaimed) {
2833                         do {
2834                                 /*
2835                                  * Loop until we find yet another one.
2836                                  *
2837                                  * By the time we get the soft_limit lock
2838                                  * again, someone might have aded the
2839                                  * group back on the RB tree. Iterate to
2840                                  * make sure we get a different mem.
2841                                  * mem_cgroup_largest_soft_limit_node returns
2842                                  * NULL if no other cgroup is present on
2843                                  * the tree
2844                                  */
2845                                 next_mz =
2846                                 __mem_cgroup_largest_soft_limit_node(mctz);
2847                                 if (next_mz == mz) {
2848                                         css_put(&next_mz->mem->css);
2849                                         next_mz = NULL;
2850                                 } else /* next_mz == NULL or other memcg */
2851                                         break;
2852                         } while (1);
2853                 }
2854                 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2855                 excess = res_counter_soft_limit_excess(&mz->mem->res);
2856                 /*
2857                  * One school of thought says that we should not add
2858                  * back the node to the tree if reclaim returns 0.
2859                  * But our reclaim could return 0, simply because due
2860                  * to priority we are exposing a smaller subset of
2861                  * memory to reclaim from. Consider this as a longer
2862                  * term TODO.
2863                  */
2864                 /* If excess == 0, no tree ops */
2865                 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
2866                 spin_unlock(&mctz->lock);
2867                 css_put(&mz->mem->css);
2868                 loop++;
2869                 /*
2870                  * Could not reclaim anything and there are no more
2871                  * mem cgroups to try or we seem to be looping without
2872                  * reclaiming anything.
2873                  */
2874                 if (!nr_reclaimed &&
2875                         (next_mz == NULL ||
2876                         loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2877                         break;
2878         } while (!nr_reclaimed);
2879         if (next_mz)
2880                 css_put(&next_mz->mem->css);
2881         return nr_reclaimed;
2882 }
2883
2884 /*
2885  * This routine traverse page_cgroup in given list and drop them all.
2886  * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2887  */
2888 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2889                                 int node, int zid, enum lru_list lru)
2890 {
2891         struct zone *zone;
2892         struct mem_cgroup_per_zone *mz;
2893         struct page_cgroup *pc, *busy;
2894         unsigned long flags, loop;
2895         struct list_head *list;
2896         int ret = 0;
2897
2898         zone = &NODE_DATA(node)->node_zones[zid];
2899         mz = mem_cgroup_zoneinfo(mem, node, zid);
2900         list = &mz->lists[lru];
2901
2902         loop = MEM_CGROUP_ZSTAT(mz, lru);
2903         /* give some margin against EBUSY etc...*/
2904         loop += 256;
2905         busy = NULL;
2906         while (loop--) {
2907                 ret = 0;
2908                 spin_lock_irqsave(&zone->lru_lock, flags);
2909                 if (list_empty(list)) {
2910                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2911                         break;
2912                 }
2913                 pc = list_entry(list->prev, struct page_cgroup, lru);
2914                 if (busy == pc) {
2915                         list_move(&pc->lru, list);
2916                         busy = NULL;
2917                         spin_unlock_irqrestore(&zone->lru_lock, flags);
2918                         continue;
2919                 }
2920                 spin_unlock_irqrestore(&zone->lru_lock, flags);
2921
2922                 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2923                 if (ret == -ENOMEM)
2924                         break;
2925
2926                 if (ret == -EBUSY || ret == -EINVAL) {
2927                         /* found lock contention or "pc" is obsolete. */
2928                         busy = pc;
2929                         cond_resched();
2930                 } else
2931                         busy = NULL;
2932         }
2933
2934         if (!ret && !list_empty(list))
2935                 return -EBUSY;
2936         return ret;
2937 }
2938
2939 /*
2940  * make mem_cgroup's charge to be 0 if there is no task.
2941  * This enables deleting this mem_cgroup.
2942  */
2943 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2944 {
2945         int ret;
2946         int node, zid, shrink;
2947         int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2948         struct cgroup *cgrp = mem->css.cgroup;
2949
2950         css_get(&mem->css);
2951
2952         shrink = 0;
2953         /* should free all ? */
2954         if (free_all)
2955                 goto try_to_free;
2956 move_account:
2957         do {
2958                 ret = -EBUSY;
2959                 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2960                         goto out;
2961                 ret = -EINTR;
2962                 if (signal_pending(current))
2963                         goto out;
2964                 /* This is for making all *used* pages to be on LRU. */
2965                 lru_add_drain_all();
2966                 drain_all_stock_sync();
2967                 ret = 0;
2968                 for_each_node_state(node, N_HIGH_MEMORY) {
2969                         for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2970                                 enum lru_list l;
2971                                 for_each_lru(l) {
2972                                         ret = mem_cgroup_force_empty_list(mem,
2973                                                         node, zid, l);
2974                                         if (ret)
2975                                                 break;
2976                                 }
2977                         }
2978                         if (ret)
2979                                 break;
2980                 }
2981                 memcg_oom_recover(mem);
2982                 /* it seems parent cgroup doesn't have enough mem */
2983                 if (ret == -ENOMEM)
2984                         goto try_to_free;
2985                 cond_resched();
2986         /* "ret" should also be checked to ensure all lists are empty. */
2987         } while (mem->res.usage > 0 || ret);
2988 out:
2989         css_put(&mem->css);
2990         return ret;
2991
2992 try_to_free:
2993         /* returns EBUSY if there is a task or if we come here twice. */
2994         if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2995                 ret = -EBUSY;
2996                 goto out;
2997         }
2998         /* we call try-to-free pages for make this cgroup empty */
2999         lru_add_drain_all();
3000         /* try to free all pages in this cgroup */
3001         shrink = 1;
3002         while (nr_retries && mem->res.usage > 0) {
3003                 int progress;
3004
3005                 if (signal_pending(current)) {
3006                         ret = -EINTR;
3007                         goto out;
3008                 }
3009                 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3010                                                 false, get_swappiness(mem));
3011                 if (!progress) {
3012                         nr_retries--;
3013                         /* maybe some writeback is necessary */
3014                         congestion_wait(BLK_RW_ASYNC, HZ/10);
3015                 }
3016
3017         }
3018         lru_add_drain();
3019         /* try move_account...there may be some *locked* pages. */
3020         goto move_account;
3021 }
3022
3023 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3024 {
3025         return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3026 }
3027
3028
3029 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3030 {
3031         return mem_cgroup_from_cont(cont)->use_hierarchy;
3032 }
3033
3034 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3035                                         u64 val)
3036 {
3037         int retval = 0;
3038         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3039         struct cgroup *parent = cont->parent;
3040         struct mem_cgroup *parent_mem = NULL;
3041
3042         if (parent)
3043                 parent_mem = mem_cgroup_from_cont(parent);
3044
3045         cgroup_lock();
3046         /*
3047          * If parent's use_hierarchy is set, we can't make any modifications
3048          * in the child subtrees. If it is unset, then the change can
3049          * occur, provided the current cgroup has no children.
3050          *
3051          * For the root cgroup, parent_mem is NULL, we allow value to be
3052          * set if there are no children.
3053          */
3054         if ((!parent_mem || !parent_mem->use_hierarchy) &&
3055                                 (val == 1 || val == 0)) {
3056                 if (list_empty(&cont->children))
3057                         mem->use_hierarchy = val;
3058                 else
3059                         retval = -EBUSY;
3060         } else
3061                 retval = -EINVAL;
3062         cgroup_unlock();
3063
3064         return retval;
3065 }
3066
3067 struct mem_cgroup_idx_data {
3068         s64 val;
3069         enum mem_cgroup_stat_index idx;
3070 };
3071
3072 static int
3073 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
3074 {
3075         struct mem_cgroup_idx_data *d = data;
3076         d->val += mem_cgroup_read_stat(mem, d->idx);
3077         return 0;
3078 }
3079
3080 static void
3081 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3082                                 enum mem_cgroup_stat_index idx, s64 *val)
3083 {
3084         struct mem_cgroup_idx_data d;
3085         d.idx = idx;
3086         d.val = 0;
3087         mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
3088         *val = d.val;
3089 }
3090
3091 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3092 {
3093         u64 idx_val, val;
3094
3095         if (!mem_cgroup_is_root(mem)) {
3096                 if (!swap)
3097                         return res_counter_read_u64(&mem->res, RES_USAGE);
3098                 else
3099                         return res_counter_read_u64(&mem->memsw, RES_USAGE);
3100         }
3101
3102         mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE, &idx_val);
3103         val = idx_val;
3104         mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS, &idx_val);
3105         val += idx_val;
3106
3107         if (swap) {
3108                 mem_cgroup_get_recursive_idx_stat(mem,
3109                                 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
3110                 val += idx_val;
3111         }
3112
3113         return val << PAGE_SHIFT;
3114 }
3115
3116 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3117 {
3118         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3119         u64 val;
3120         int type, name;
3121
3122         type = MEMFILE_TYPE(cft->private);
3123         name = MEMFILE_ATTR(cft->private);
3124         switch (type) {
3125         case _MEM:
3126                 if (name == RES_USAGE)
3127                         val = mem_cgroup_usage(mem, false);
3128                 else
3129                         val = res_counter_read_u64(&mem->res, name);
3130                 break;
3131         case _MEMSWAP:
3132                 if (name == RES_USAGE)
3133                         val = mem_cgroup_usage(mem, true);
3134                 else
3135                         val = res_counter_read_u64(&mem->memsw, name);
3136                 break;
3137         default:
3138                 BUG();
3139                 break;
3140         }
3141         return val;
3142 }
3143 /*
3144  * The user of this function is...
3145  * RES_LIMIT.
3146  */
3147 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3148                             const char *buffer)
3149 {
3150         struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3151         int type, name;
3152         unsigned long long val;
3153         int ret;
3154
3155         type = MEMFILE_TYPE(cft->private);
3156         name = MEMFILE_ATTR(cft->private);
3157         switch (name) {
3158         case RES_LIMIT:
3159                 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3160                         ret = -EINVAL;
3161                         break;
3162                 }
3163                 /* This function does all necessary parse...reuse it */
3164                 ret = res_counter_memparse_write_strategy(buffer, &val);
3165                 if (ret)
3166                         break;
3167                 if (type == _MEM)
3168                         ret = mem_cgroup_resize_limit(memcg, val);
3169                 else
3170                         ret = mem_cgroup_resize_memsw_limit(memcg, val);
3171                 break;
3172         case RES_SOFT_LIMIT:
3173                 ret = res_counter_memparse_write_strategy(buffer, &val);
3174                 if (ret)
3175                         break;
3176                 /*
3177                  * For memsw, soft limits are hard to implement in terms
3178                  * of semantics, for now, we support soft limits for
3179                  * control without swap
3180                  */
3181                 if (type == _MEM)
3182                         ret = res_counter_set_soft_limit(&memcg->res, val);
3183                 else
3184                         ret = -EINVAL;
3185                 break;
3186         default:
3187                 ret = -EINVAL; /* should be BUG() ? */
3188                 break;
3189         }
3190         return ret;
3191 }
3192
3193 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3194                 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3195 {
3196         struct cgroup *cgroup;
3197         unsigned long long min_limit, min_memsw_limit, tmp;
3198
3199         min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3200         min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3201         cgroup = memcg->css.cgroup;
3202         if (!memcg->use_hierarchy)
3203                 goto out;
3204
3205         while (cgroup->parent) {
3206                 cgroup = cgroup->parent;
3207                 memcg = mem_cgroup_from_cont(cgroup);
3208                 if (!memcg->use_hierarchy)
3209                         break;
3210                 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3211                 min_limit = min(min_limit, tmp);
3212                 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3213                 min_memsw_limit = min(min_memsw_limit, tmp);
3214         }
3215 out:
3216         *mem_limit = min_limit;
3217         *memsw_limit = min_memsw_limit;
3218         return;
3219 }
3220
3221 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3222 {
3223         struct mem_cgroup *mem;
3224         int type, name;
3225
3226         mem = mem_cgroup_from_cont(cont);
3227         type = MEMFILE_TYPE(event);
3228         name = MEMFILE_ATTR(event);
3229         switch (name) {
3230         case RES_MAX_USAGE:
3231                 if (type == _MEM)
3232                         res_counter_reset_max(&mem->res);
3233                 else
3234                         res_counter_reset_max(&mem->memsw);
3235                 break;
3236         case RES_FAILCNT:
3237                 if (type == _MEM)
3238                         res_counter_reset_failcnt(&mem->res);
3239                 else
3240                         res_counter_reset_failcnt(&mem->memsw);
3241                 break;
3242         }
3243
3244         return 0;
3245 }
3246
3247 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3248                                         struct cftype *cft)
3249 {
3250         return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3251 }
3252
3253 #ifdef CONFIG_MMU
3254 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3255                                         struct cftype *cft, u64 val)
3256 {
3257         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3258
3259         if (val >= (1 << NR_MOVE_TYPE))
3260                 return -EINVAL;
3261         /*
3262          * We check this value several times in both in can_attach() and
3263          * attach(), so we need cgroup lock to prevent this value from being
3264          * inconsistent.
3265          */
3266         cgroup_lock();
3267         mem->move_charge_at_immigrate = val;
3268         cgroup_unlock();
3269
3270         return 0;
3271 }
3272 #else
3273 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3274                                         struct cftype *cft, u64 val)
3275 {
3276         return -ENOSYS;
3277 }
3278 #endif
3279
3280
3281 /* For read statistics */
3282 enum {
3283         MCS_CACHE,
3284         MCS_RSS,
3285         MCS_FILE_MAPPED,
3286         MCS_PGPGIN,
3287         MCS_PGPGOUT,
3288         MCS_SWAP,
3289         MCS_INACTIVE_ANON,
3290         MCS_ACTIVE_ANON,
3291         MCS_INACTIVE_FILE,
3292         MCS_ACTIVE_FILE,
3293         MCS_UNEVICTABLE,
3294         NR_MCS_STAT,
3295 };
3296
3297 struct mcs_total_stat {
3298         s64 stat[NR_MCS_STAT];
3299 };
3300
3301 struct {
3302         char *local_name;
3303         char *total_name;
3304 } memcg_stat_strings[NR_MCS_STAT] = {
3305         {"cache", "total_cache"},
3306         {"rss", "total_rss"},
3307         {"mapped_file", "total_mapped_file"},
3308         {"pgpgin", "total_pgpgin"},
3309         {"pgpgout", "total_pgpgout"},
3310         {"swap", "total_swap"},
3311         {"inactive_anon", "total_inactive_anon"},
3312         {"active_anon", "total_active_anon"},
3313         {"inactive_file", "total_inactive_file"},
3314         {"active_file", "total_active_file"},
3315         {"unevictable", "total_unevictable"}
3316 };
3317
3318
3319 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
3320 {
3321         struct mcs_total_stat *s = data;
3322         s64 val;
3323
3324         /* per cpu stat */
3325         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3326         s->stat[MCS_CACHE] += val * PAGE_SIZE;
3327         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3328         s->stat[MCS_RSS] += val * PAGE_SIZE;
3329         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3330         s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3331         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3332         s->stat[MCS_PGPGIN] += val;
3333         val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3334         s->stat[MCS_PGPGOUT] += val;
3335         if (do_swap_account) {
3336                 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3337                 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3338         }
3339
3340         /* per zone stat */
3341         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3342         s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3343         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3344         s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3345         val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3346         s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3347         val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3348         s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3349         val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3350         s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3351         return 0;
3352 }
3353
3354 static void
3355 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3356 {
3357         mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
3358 }
3359
3360 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3361                                  struct cgroup_map_cb *cb)
3362 {
3363         struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3364         struct mcs_total_stat mystat;
3365         int i;
3366
3367         memset(&mystat, 0, sizeof(mystat));
3368         mem_cgroup_get_local_stat(mem_cont, &mystat);
3369
3370         for (i = 0; i < NR_MCS_STAT; i++) {
3371                 if (i == MCS_SWAP && !do_swap_account)
3372                         continue;
3373                 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3374         }
3375
3376         /* Hierarchical information */
3377         {
3378                 unsigned long long limit, memsw_limit;
3379                 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3380                 cb->fill(cb, "hierarchical_memory_limit", limit);
3381                 if (do_swap_account)
3382                         cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3383         }
3384
3385         memset(&mystat, 0, sizeof(mystat));
3386         mem_cgroup_get_total_stat(mem_cont, &mystat);
3387         for (i = 0; i < NR_MCS_STAT; i++) {
3388                 if (i == MCS_SWAP && !do_swap_account)
3389                         continue;
3390                 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3391         }
3392
3393 #ifdef CONFIG_DEBUG_VM
3394         cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3395
3396         {
3397                 int nid, zid;
3398                 struct mem_cgroup_per_zone *mz;
3399                 unsigned long recent_rotated[2] = {0, 0};
3400                 unsigned long recent_scanned[2] = {0, 0};
3401
3402                 for_each_online_node(nid)
3403                         for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3404                                 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3405
3406                                 recent_rotated[0] +=
3407                                         mz->reclaim_stat.recent_rotated[0];
3408                                 recent_rotated[1] +=
3409                                         mz->reclaim_stat.recent_rotated[1];
3410                                 recent_scanned[0] +=
3411                                         mz->reclaim_stat.recent_scanned[0];
3412                                 recent_scanned[1] +=
3413                                         mz->reclaim_stat.recent_scanned[1];
3414                         }
3415                 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3416                 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3417                 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3418                 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3419         }
3420 #endif
3421
3422         return 0;
3423 }
3424
3425 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3426 {
3427         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3428
3429         return get_swappiness(memcg);
3430 }
3431
3432 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3433                                        u64 val)
3434 {
3435         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3436         struct mem_cgroup *parent;
3437
3438         if (val > 100)
3439                 return -EINVAL;
3440
3441         if (cgrp->parent == NULL)
3442                 return -EINVAL;
3443
3444         parent = mem_cgroup_from_cont(cgrp->parent);
3445
3446         cgroup_lock();
3447
3448         /* If under hierarchy, only empty-root can set this value */
3449         if ((parent->use_hierarchy) ||
3450             (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3451                 cgroup_unlock();
3452                 return -EINVAL;
3453         }
3454
3455         spin_lock(&memcg->reclaim_param_lock);
3456         memcg->swappiness = val;
3457         spin_unlock(&memcg->reclaim_param_lock);
3458
3459         cgroup_unlock();
3460
3461         return 0;
3462 }
3463
3464 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3465 {
3466         struct mem_cgroup_threshold_ary *t;
3467         u64 usage;
3468         int i;
3469
3470         rcu_read_lock();
3471         if (!swap)
3472                 t = rcu_dereference(memcg->thresholds.primary);
3473         else
3474                 t = rcu_dereference(memcg->memsw_thresholds.primary);
3475
3476         if (!t)
3477                 goto unlock;
3478
3479         usage = mem_cgroup_usage(memcg, swap);
3480
3481         /*
3482          * current_threshold points to threshold just below usage.
3483          * If it's not true, a threshold was crossed after last
3484          * call of __mem_cgroup_threshold().
3485          */
3486         i = t->current_threshold;
3487
3488         /*
3489          * Iterate backward over array of thresholds starting from
3490          * current_threshold and check if a threshold is crossed.
3491          * If none of thresholds below usage is crossed, we read
3492          * only one element of the array here.
3493          */
3494         for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3495                 eventfd_signal(t->entries[i].eventfd, 1);
3496
3497         /* i = current_threshold + 1 */
3498         i++;
3499
3500         /*
3501          * Iterate forward over array of thresholds starting from
3502          * current_threshold+1 and check if a threshold is crossed.
3503          * If none of thresholds above usage is crossed, we read
3504          * only one element of the array here.
3505          */
3506         for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3507                 eventfd_signal(t->entries[i].eventfd, 1);
3508
3509         /* Update current_threshold */
3510         t->current_threshold = i - 1;
3511 unlock:
3512         rcu_read_unlock();
3513 }
3514
3515 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3516 {
3517         __mem_cgroup_threshold(memcg, false);
3518         if (do_swap_account)
3519                 __mem_cgroup_threshold(memcg, true);
3520 }
3521
3522 static int compare_thresholds(const void *a, const void *b)
3523 {
3524         const struct mem_cgroup_threshold *_a = a;
3525         const struct mem_cgroup_threshold *_b = b;
3526
3527         return _a->threshold - _b->threshold;
3528 }
3529
3530 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem, void *data)
3531 {
3532         struct mem_cgroup_eventfd_list *ev;
3533
3534         list_for_each_entry(ev, &mem->oom_notify, list)
3535                 eventfd_signal(ev->eventfd, 1);
3536         return 0;
3537 }
3538
3539 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3540 {
3541         mem_cgroup_walk_tree(mem, NULL, mem_cgroup_oom_notify_cb);
3542 }
3543
3544 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3545         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3546 {
3547         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3548         struct mem_cgroup_thresholds *thresholds;
3549         struct mem_cgroup_threshold_ary *new;
3550         int type = MEMFILE_TYPE(cft->private);
3551         u64 threshold, usage;
3552         int i, size, ret;
3553
3554         ret = res_counter_memparse_write_strategy(args, &threshold);
3555         if (ret)
3556                 return ret;
3557
3558         mutex_lock(&memcg->thresholds_lock);
3559
3560         if (type == _MEM)
3561                 thresholds = &memcg->thresholds;
3562         else if (type == _MEMSWAP)
3563                 thresholds = &memcg->memsw_thresholds;
3564         else
3565                 BUG();
3566
3567         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3568
3569         /* Check if a threshold crossed before adding a new one */
3570         if (thresholds->primary)
3571                 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3572
3573         size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3574
3575         /* Allocate memory for new array of thresholds */
3576         new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3577                         GFP_KERNEL);
3578         if (!new) {
3579                 ret = -ENOMEM;
3580                 goto unlock;
3581         }
3582         new->size = size;
3583
3584         /* Copy thresholds (if any) to new array */
3585         if (thresholds->primary) {
3586                 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3587                                 sizeof(struct mem_cgroup_threshold));
3588         }
3589
3590         /* Add new threshold */
3591         new->entries[size - 1].eventfd = eventfd;
3592         new->entries[size - 1].threshold = threshold;
3593
3594         /* Sort thresholds. Registering of new threshold isn't time-critical */
3595         sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3596                         compare_thresholds, NULL);
3597
3598         /* Find current threshold */
3599         new->current_threshold = -1;
3600         for (i = 0; i < size; i++) {
3601                 if (new->entries[i].threshold < usage) {
3602                         /*
3603                          * new->current_threshold will not be used until
3604                          * rcu_assign_pointer(), so it's safe to increment
3605                          * it here.
3606                          */
3607                         ++new->current_threshold;
3608                 }
3609         }
3610
3611         /* Free old spare buffer and save old primary buffer as spare */
3612         kfree(thresholds->spare);
3613         thresholds->spare = thresholds->primary;
3614
3615         rcu_assign_pointer(thresholds->primary, new);
3616
3617         /* To be sure that nobody uses thresholds */
3618         synchronize_rcu();
3619
3620 unlock:
3621         mutex_unlock(&memcg->thresholds_lock);
3622
3623         return ret;
3624 }
3625
3626 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3627         struct cftype *cft, struct eventfd_ctx *eventfd)
3628 {
3629         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3630         struct mem_cgroup_thresholds *thresholds;
3631         struct mem_cgroup_threshold_ary *new;
3632         int type = MEMFILE_TYPE(cft->private);
3633         u64 usage;
3634         int i, j, size;
3635
3636         mutex_lock(&memcg->thresholds_lock);
3637         if (type == _MEM)
3638                 thresholds = &memcg->thresholds;
3639         else if (type == _MEMSWAP)
3640                 thresholds = &memcg->memsw_thresholds;
3641         else
3642                 BUG();
3643
3644         /*
3645          * Something went wrong if we trying to unregister a threshold
3646          * if we don't have thresholds
3647          */
3648         BUG_ON(!thresholds);
3649
3650         usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3651
3652         /* Check if a threshold crossed before removing */
3653         __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3654
3655         /* Calculate new number of threshold */
3656         size = 0;
3657         for (i = 0; i < thresholds->primary->size; i++) {
3658                 if (thresholds->primary->entries[i].eventfd != eventfd)
3659                         size++;
3660         }
3661
3662         new = thresholds->spare;
3663
3664         /* Set thresholds array to NULL if we don't have thresholds */
3665         if (!size) {
3666                 kfree(new);
3667                 new = NULL;
3668                 goto swap_buffers;
3669         }
3670
3671         new->size = size;
3672
3673         /* Copy thresholds and find current threshold */
3674         new->current_threshold = -1;
3675         for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3676                 if (thresholds->primary->entries[i].eventfd == eventfd)
3677                         continue;
3678
3679                 new->entries[j] = thresholds->primary->entries[i];
3680                 if (new->entries[j].threshold < usage) {
3681                         /*
3682                          * new->current_threshold will not be used
3683                          * until rcu_assign_pointer(), so it's safe to increment
3684                          * it here.
3685                          */
3686                         ++new->current_threshold;
3687                 }
3688                 j++;
3689         }
3690
3691 swap_buffers:
3692         /* Swap primary and spare array */
3693         thresholds->spare = thresholds->primary;
3694         rcu_assign_pointer(thresholds->primary, new);
3695
3696         /* To be sure that nobody uses thresholds */
3697         synchronize_rcu();
3698
3699         mutex_unlock(&memcg->thresholds_lock);
3700 }
3701
3702 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
3703         struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3704 {
3705         struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3706         struct mem_cgroup_eventfd_list *event;
3707         int type = MEMFILE_TYPE(cft->private);
3708
3709         BUG_ON(type != _OOM_TYPE);
3710         event = kmalloc(sizeof(*event), GFP_KERNEL);
3711         if (!event)
3712                 return -ENOMEM;
3713
3714         mutex_lock(&memcg_oom_mutex);
3715
3716         event->eventfd = eventfd;
3717         list_add(&event->list, &memcg->oom_notify);
3718
3719         /* already in OOM ? */
3720         if (atomic_read(&memcg->oom_lock))
3721                 eventfd_signal(eventfd, 1);
3722         mutex_unlock(&memcg_oom_mutex);
3723
3724         return 0;
3725 }
3726
3727 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
3728         struct cftype *cft, struct eventfd_ctx *eventfd)
3729 {
3730         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3731         struct mem_cgroup_eventfd_list *ev, *tmp;
3732         int type = MEMFILE_TYPE(cft->private);
3733
3734         BUG_ON(type != _OOM_TYPE);
3735
3736         mutex_lock(&memcg_oom_mutex);
3737
3738         list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
3739                 if (ev->eventfd == eventfd) {
3740                         list_del(&ev->list);
3741                         kfree(ev);
3742                 }
3743         }
3744
3745         mutex_unlock(&memcg_oom_mutex);
3746 }
3747
3748 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
3749         struct cftype *cft,  struct cgroup_map_cb *cb)
3750 {
3751         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3752
3753         cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
3754
3755         if (atomic_read(&mem->oom_lock))
3756                 cb->fill(cb, "under_oom", 1);
3757         else
3758                 cb->fill(cb, "under_oom", 0);
3759         return 0;
3760 }
3761
3762 /*
3763  */
3764 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
3765         struct cftype *cft, u64 val)
3766 {
3767         struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3768         struct mem_cgroup *parent;
3769
3770         /* cannot set to root cgroup and only 0 and 1 are allowed */
3771         if (!cgrp->parent || !((val == 0) || (val == 1)))
3772                 return -EINVAL;
3773
3774         parent = mem_cgroup_from_cont(cgrp->parent);
3775
3776         cgroup_lock();
3777         /* oom-kill-disable is a flag for subhierarchy. */
3778         if ((parent->use_hierarchy) ||
3779             (mem->use_hierarchy && !list_empty(&cgrp->children))) {
3780                 cgroup_unlock();
3781                 return -EINVAL;
3782         }
3783         mem->oom_kill_disable = val;
3784         if (!val)
3785                 memcg_oom_recover(mem);
3786         cgroup_unlock();
3787         return 0;
3788 }
3789
3790 static struct cftype mem_cgroup_files[] = {
3791         {
3792                 .name = "usage_in_bytes",
3793                 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3794                 .read_u64 = mem_cgroup_read,
3795                 .register_event = mem_cgroup_usage_register_event,
3796                 .unregister_event = mem_cgroup_usage_unregister_event,
3797         },
3798         {
3799                 .name = "max_usage_in_bytes",
3800                 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3801                 .trigger = mem_cgroup_reset,
3802                 .read_u64 = mem_cgroup_read,
3803         },
3804         {
3805                 .name = "limit_in_bytes",
3806                 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3807                 .write_string = mem_cgroup_write,
3808                 .read_u64 = mem_cgroup_read,
3809         },
3810         {
3811                 .name = "soft_limit_in_bytes",
3812                 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3813                 .write_string = mem_cgroup_write,
3814                 .read_u64 = mem_cgroup_read,
3815         },
3816         {
3817                 .name = "failcnt",
3818                 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3819                 .trigger = mem_cgroup_reset,
3820                 .read_u64 = mem_cgroup_read,
3821         },
3822         {
3823                 .name = "stat",
3824                 .read_map = mem_control_stat_show,
3825         },
3826         {
3827                 .name = "force_empty",
3828                 .trigger = mem_cgroup_force_empty_write,
3829         },
3830         {
3831                 .name = "use_hierarchy",
3832                 .write_u64 = mem_cgroup_hierarchy_write,
3833                 .read_u64 = mem_cgroup_hierarchy_read,
3834         },
3835         {
3836                 .name = "swappiness",
3837                 .read_u64 = mem_cgroup_swappiness_read,
3838                 .write_u64 = mem_cgroup_swappiness_write,
3839         },
3840         {
3841                 .name = "move_charge_at_immigrate",
3842                 .read_u64 = mem_cgroup_move_charge_read,
3843                 .write_u64 = mem_cgroup_move_charge_write,
3844         },
3845         {
3846                 .name = "oom_control",
3847                 .read_map = mem_cgroup_oom_control_read,
3848                 .write_u64 = mem_cgroup_oom_control_write,
3849                 .register_event = mem_cgroup_oom_register_event,
3850                 .unregister_event = mem_cgroup_oom_unregister_event,
3851                 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3852         },
3853 };
3854
3855 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3856 static struct cftype memsw_cgroup_files[] = {
3857         {
3858                 .name = "memsw.usage_in_bytes",
3859                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
3860                 .read_u64 = mem_cgroup_read,
3861                 .register_event = mem_cgroup_usage_register_event,
3862                 .unregister_event = mem_cgroup_usage_unregister_event,
3863         },
3864         {
3865                 .name = "memsw.max_usage_in_bytes",
3866                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
3867                 .trigger = mem_cgroup_reset,
3868                 .read_u64 = mem_cgroup_read,
3869         },
3870         {
3871                 .name = "memsw.limit_in_bytes",
3872                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
3873                 .write_string = mem_cgroup_write,
3874                 .read_u64 = mem_cgroup_read,
3875         },
3876         {
3877                 .name = "memsw.failcnt",
3878                 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
3879                 .trigger = mem_cgroup_reset,
3880                 .read_u64 = mem_cgroup_read,
3881         },
3882 };
3883
3884 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3885 {
3886         if (!do_swap_account)
3887                 return 0;
3888         return cgroup_add_files(cont, ss, memsw_cgroup_files,
3889                                 ARRAY_SIZE(memsw_cgroup_files));
3890 };
3891 #else
3892 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
3893 {
3894         return 0;
3895 }
3896 #endif
3897
3898 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3899 {
3900         struct mem_cgroup_per_node *pn;
3901         struct mem_cgroup_per_zone *mz;
3902         enum lru_list l;
3903         int zone, tmp = node;
3904         /*
3905          * This routine is called against possible nodes.
3906          * But it's BUG to call kmalloc() against offline node.
3907          *
3908          * TODO: this routine can waste much memory for nodes which will
3909          *       never be onlined. It's better to use memory hotplug callback
3910          *       function.
3911          */
3912         if (!node_state(node, N_NORMAL_MEMORY))
3913                 tmp = -1;
3914         pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
3915         if (!pn)
3916                 return 1;
3917
3918         mem->info.nodeinfo[node] = pn;
3919         memset(pn, 0, sizeof(*pn));
3920
3921         for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3922                 mz = &pn->zoneinfo[zone];
3923                 for_each_lru(l)
3924                         INIT_LIST_HEAD(&mz->lists[l]);
3925                 mz->usage_in_excess = 0;
3926                 mz->on_tree = false;
3927                 mz->mem = mem;
3928         }
3929         return 0;
3930 }
3931
3932 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
3933 {
3934         kfree(mem->info.nodeinfo[node]);
3935 }
3936
3937 static struct mem_cgroup *mem_cgroup_alloc(void)
3938 {
3939         struct mem_cgroup *mem;
3940         int size = sizeof(struct mem_cgroup);
3941
3942         /* Can be very big if MAX_NUMNODES is very big */
3943         if (size < PAGE_SIZE)
3944                 mem = kmalloc(size, GFP_KERNEL);
3945         else
3946                 mem = vmalloc(size);
3947
3948         if (!mem)
3949                 return NULL;
3950
3951         memset(mem, 0, size);
3952         mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
3953         if (!mem->stat) {
3954                 if (size < PAGE_SIZE)
3955                         kfree(mem);
3956                 else
3957                         vfree(mem);
3958                 mem = NULL;
3959         }
3960         return mem;
3961 }
3962
3963 /*
3964  * At destroying mem_cgroup, references from swap_cgroup can remain.
3965  * (scanning all at force_empty is too costly...)
3966  *
3967  * Instead of clearing all references at force_empty, we remember
3968  * the number of reference from swap_cgroup and free mem_cgroup when
3969  * it goes down to 0.
3970  *
3971  * Removal of cgroup itself succeeds regardless of refs from swap.
3972  */
3973
3974 static void __mem_cgroup_free(struct mem_cgroup *mem)
3975 {
3976         int node;
3977
3978         mem_cgroup_remove_from_trees(mem);
3979         free_css_id(&mem_cgroup_subsys, &mem->css);
3980
3981         for_each_node_state(node, N_POSSIBLE)
3982                 free_mem_cgroup_per_zone_info(mem, node);
3983
3984         free_percpu(mem->stat);
3985         if (sizeof(struct mem_cgroup) < PAGE_SIZE)
3986                 kfree(mem);
3987         else
3988                 vfree(mem);
3989 }
3990
3991 static void mem_cgroup_get(struct mem_cgroup *mem)
3992 {
3993         atomic_inc(&mem->refcnt);
3994 }
3995
3996 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
3997 {
3998         if (atomic_sub_and_test(count, &mem->refcnt)) {
3999                 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4000                 __mem_cgroup_free(mem);
4001                 if (parent)
4002                         mem_cgroup_put(parent);
4003         }
4004 }
4005
4006 static void mem_cgroup_put(struct mem_cgroup *mem)
4007 {
4008         __mem_cgroup_put(mem, 1);
4009 }
4010
4011 /*
4012  * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4013  */
4014 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4015 {
4016         if (!mem->res.parent)
4017                 return NULL;
4018         return mem_cgroup_from_res_counter(mem->res.parent, res);
4019 }
4020
4021 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4022 static void __init enable_swap_cgroup(void)
4023 {
4024         if (!mem_cgroup_disabled() && really_do_swap_account)
4025                 do_swap_account = 1;
4026 }
4027 #else
4028 static void __init enable_swap_cgroup(void)
4029 {
4030 }
4031 #endif
4032
4033 static int mem_cgroup_soft_limit_tree_init(void)
4034 {
4035         struct mem_cgroup_tree_per_node *rtpn;
4036         struct mem_cgroup_tree_per_zone *rtpz;
4037         int tmp, node, zone;
4038
4039         for_each_node_state(node, N_POSSIBLE) {
4040                 tmp = node;
4041                 if (!node_state(node, N_NORMAL_MEMORY))
4042                         tmp = -1;
4043                 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4044                 if (!rtpn)
4045                         return 1;
4046
4047                 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4048
4049                 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4050                         rtpz = &rtpn->rb_tree_per_zone[zone];
4051                         rtpz->rb_root = RB_ROOT;
4052                         spin_lock_init(&rtpz->lock);
4053                 }
4054         }
4055         return 0;
4056 }
4057
4058 static struct cgroup_subsys_state * __ref
4059 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4060 {
4061         struct mem_cgroup *mem, *parent;
4062         long error = -ENOMEM;
4063         int node;
4064
4065         mem = mem_cgroup_alloc();
4066         if (!mem)
4067                 return ERR_PTR(error);
4068
4069         for_each_node_state(node, N_POSSIBLE)
4070                 if (alloc_mem_cgroup_per_zone_info(mem, node))
4071                         goto free_out;
4072
4073         /* root ? */
4074         if (cont->parent == NULL) {
4075                 int cpu;
4076                 enable_swap_cgroup();
4077                 parent = NULL;
4078                 root_mem_cgroup = mem;
4079                 if (mem_cgroup_soft_limit_tree_init())
4080                         goto free_out;
4081                 for_each_possible_cpu(cpu) {
4082                         struct memcg_stock_pcp *stock =
4083                                                 &per_cpu(memcg_stock, cpu);
4084                         INIT_WORK(&stock->work, drain_local_stock);
4085                 }
4086                 hotcpu_notifier(memcg_stock_cpu_callback, 0);
4087         } else {
4088                 parent = mem_cgroup_from_cont(cont->parent);
4089                 mem->use_hierarchy = parent->use_hierarchy;
4090                 mem->oom_kill_disable = parent->oom_kill_disable;
4091         }
4092
4093         if (parent && parent->use_hierarchy) {
4094                 res_counter_init(&mem->res, &parent->res);
4095                 res_counter_init(&mem->memsw, &parent->memsw);
4096                 /*
4097                  * We increment refcnt of the parent to ensure that we can
4098                  * safely access it on res_counter_charge/uncharge.
4099                  * This refcnt will be decremented when freeing this
4100                  * mem_cgroup(see mem_cgroup_put).
4101                  */
4102                 mem_cgroup_get(parent);
4103         } else {
4104                 res_counter_init(&mem->res, NULL);
4105                 res_counter_init(&mem->memsw, NULL);
4106         }
4107         mem->last_scanned_child = 0;
4108         spin_lock_init(&mem->reclaim_param_lock);
4109         INIT_LIST_HEAD(&mem->oom_notify);
4110
4111         if (parent)
4112                 mem->swappiness = get_swappiness(parent);
4113         atomic_set(&mem->refcnt, 1);
4114         mem->move_charge_at_immigrate = 0;
4115         mutex_init(&mem->thresholds_lock);
4116         return &mem->css;
4117 free_out:
4118         __mem_cgroup_free(mem);
4119         root_mem_cgroup = NULL;
4120         return ERR_PTR(error);
4121 }
4122
4123 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4124                                         struct cgroup *cont)
4125 {
4126         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4127
4128         return mem_cgroup_force_empty(mem, false);
4129 }
4130
4131 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4132                                 struct cgroup *cont)
4133 {
4134         struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4135
4136         mem_cgroup_put(mem);
4137 }
4138
4139 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4140                                 struct cgroup *cont)
4141 {
4142         int ret;
4143
4144         ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4145                                 ARRAY_SIZE(mem_cgroup_files));
4146
4147         if (!ret)
4148                 ret = register_memsw_files(cont, ss);
4149         return ret;
4150 }
4151
4152 #ifdef CONFIG_MMU
4153 /* Handlers for move charge at task migration. */
4154 #define PRECHARGE_COUNT_AT_ONCE 256
4155 static int mem_cgroup_do_precharge(unsigned long count)
4156 {
4157         int ret = 0;
4158         int batch_count = PRECHARGE_COUNT_AT_ONCE;
4159         struct mem_cgroup *mem = mc.to;
4160
4161         if (mem_cgroup_is_root(mem)) {
4162                 mc.precharge += count;
4163                 /* we don't need css_get for root */
4164                 return ret;
4165         }
4166         /* try to charge at once */
4167         if (count > 1) {
4168                 struct res_counter *dummy;
4169                 /*
4170                  * "mem" cannot be under rmdir() because we've already checked
4171                  * by cgroup_lock_live_cgroup() that it is not removed and we
4172                  * are still under the same cgroup_mutex. So we can postpone
4173                  * css_get().
4174                  */
4175                 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4176                         goto one_by_one;
4177                 if (do_swap_account && res_counter_charge(&mem->memsw,
4178                                                 PAGE_SIZE * count, &dummy)) {
4179                         res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4180                         goto one_by_one;
4181                 }
4182                 mc.precharge += count;
4183                 VM_BUG_ON(test_bit(CSS_ROOT, &mem->css.flags));
4184                 WARN_ON_ONCE(count > INT_MAX);
4185                 __css_get(&mem->css, (int)count);
4186                 return ret;
4187         }
4188 one_by_one:
4189         /* fall back to one by one charge */
4190         while (count--) {
4191                 if (signal_pending(current)) {
4192                         ret = -EINTR;
4193                         break;
4194                 }
4195                 if (!batch_count--) {
4196                         batch_count = PRECHARGE_COUNT_AT_ONCE;
4197                         cond_resched();
4198                 }
4199                 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
4200                 if (ret || !mem)
4201                         /* mem_cgroup_clear_mc() will do uncharge later */
4202                         return -ENOMEM;
4203                 mc.precharge++;
4204         }
4205         return ret;
4206 }
4207
4208 /**
4209  * is_target_pte_for_mc - check a pte whether it is valid for move charge
4210  * @vma: the vma the pte to be checked belongs
4211  * @addr: the address corresponding to the pte to be checked
4212  * @ptent: the pte to be checked
4213  * @target: the pointer the target page or swap ent will be stored(can be NULL)
4214  *
4215  * Returns
4216  *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
4217  *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4218  *     move charge. if @target is not NULL, the page is stored in target->page
4219  *     with extra refcnt got(Callers should handle it).
4220  *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4221  *     target for charge migration. if @target is not NULL, the entry is stored
4222  *     in target->ent.
4223  *
4224  * Called with pte lock held.
4225  */
4226 union mc_target {
4227         struct page     *page;
4228         swp_entry_t     ent;
4229 };
4230
4231 enum mc_target_type {
4232         MC_TARGET_NONE, /* not used */
4233         MC_TARGET_PAGE,
4234         MC_TARGET_SWAP,
4235 };
4236
4237 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4238                                                 unsigned long addr, pte_t ptent)
4239 {
4240         struct page *page = vm_normal_page(vma, addr, ptent);
4241
4242         if (!page || !page_mapped(page))
4243                 return NULL;
4244         if (PageAnon(page)) {
4245                 /* we don't move shared anon */
4246                 if (!move_anon() || page_mapcount(page) > 2)
4247                         return NULL;
4248         } else if (!move_file())
4249                 /* we ignore mapcount for file pages */
4250                 return NULL;
4251         if (!get_page_unless_zero(page))
4252                 return NULL;
4253
4254         return page;
4255 }
4256
4257 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4258                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4259 {
4260         int usage_count;
4261         struct page *page = NULL;
4262         swp_entry_t ent = pte_to_swp_entry(ptent);
4263
4264         if (!move_anon() || non_swap_entry(ent))
4265                 return NULL;
4266         usage_count = mem_cgroup_count_swap_user(ent, &page);
4267         if (usage_count > 1) { /* we don't move shared anon */
4268                 if (page)
4269                         put_page(page);
4270                 return NULL;
4271         }
4272         if (do_swap_account)
4273                 entry->val = ent.val;
4274
4275         return page;
4276 }
4277
4278 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4279                         unsigned long addr, pte_t ptent, swp_entry_t *entry)
4280 {
4281         struct page *page = NULL;
4282         struct inode *inode;
4283         struct address_space *mapping;
4284         pgoff_t pgoff;
4285
4286         if (!vma->vm_file) /* anonymous vma */
4287                 return NULL;
4288         if (!move_file())
4289                 return NULL;
4290
4291         inode = vma->vm_file->f_path.dentry->d_inode;
4292         mapping = vma->vm_file->f_mapping;
4293         if (pte_none(ptent))
4294                 pgoff = linear_page_index(vma, addr);
4295         else /* pte_file(ptent) is true */
4296                 pgoff = pte_to_pgoff(ptent);
4297
4298         /* page is moved even if it's not RSS of this task(page-faulted). */
4299         if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4300                 page = find_get_page(mapping, pgoff);
4301         } else { /* shmem/tmpfs file. we should take account of swap too. */
4302                 swp_entry_t ent;
4303                 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4304                 if (do_swap_account)
4305                         entry->val = ent.val;
4306         }
4307
4308         return page;
4309 }
4310
4311 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4312                 unsigned long addr, pte_t ptent, union mc_target *target)
4313 {
4314         struct page *page = NULL;
4315         struct page_cgroup *pc;
4316         int ret = 0;
4317         swp_entry_t ent = { .val = 0 };
4318
4319         if (pte_present(ptent))
4320                 page = mc_handle_present_pte(vma, addr, ptent);
4321         else if (is_swap_pte(ptent))
4322                 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4323         else if (pte_none(ptent) || pte_file(ptent))
4324                 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4325
4326         if (!page && !ent.val)
4327                 return 0;
4328         if (page) {
4329                 pc = lookup_page_cgroup(page);
4330                 /*
4331                  * Do only loose check w/o page_cgroup lock.
4332                  * mem_cgroup_move_account() checks the pc is valid or not under
4333                  * the lock.
4334                  */
4335                 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4336                         ret = MC_TARGET_PAGE;
4337                         if (target)
4338                                 target->page = page;
4339                 }
4340                 if (!ret || !target)
4341                         put_page(page);
4342         }
4343         /* There is a swap entry and a page doesn't exist or isn't charged */
4344         if (ent.val && !ret &&
4345                         css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4346                 ret = MC_TARGET_SWAP;
4347                 if (target)
4348                         target->ent = ent;
4349         }
4350         return ret;
4351 }
4352
4353 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4354                                         unsigned long addr, unsigned long end,
4355                                         struct mm_walk *walk)
4356 {
4357         struct vm_area_struct *vma = walk->private;
4358         pte_t *pte;
4359         spinlock_t *ptl;
4360
4361         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4362         for (; addr != end; pte++, addr += PAGE_SIZE)
4363                 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4364                         mc.precharge++; /* increment precharge temporarily */
4365         pte_unmap_unlock(pte - 1, ptl);
4366         cond_resched();
4367
4368         return 0;
4369 }
4370
4371 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4372 {
4373         unsigned long precharge;
4374         struct vm_area_struct *vma;
4375
4376         down_read(&mm->mmap_sem);
4377         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4378                 struct mm_walk mem_cgroup_count_precharge_walk = {
4379                         .pmd_entry = mem_cgroup_count_precharge_pte_range,
4380                         .mm = mm,
4381                         .private = vma,
4382                 };
4383                 if (is_vm_hugetlb_page(vma))
4384                         continue;
4385                 walk_page_range(vma->vm_start, vma->vm_end,
4386                                         &mem_cgroup_count_precharge_walk);
4387         }
4388         up_read(&mm->mmap_sem);
4389
4390         precharge = mc.precharge;
4391         mc.precharge = 0;
4392
4393         return precharge;
4394 }
4395
4396 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4397 {
4398         return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4399 }
4400
4401 static void mem_cgroup_clear_mc(void)
4402 {
4403         /* we must uncharge all the leftover precharges from mc.to */
4404         if (mc.precharge) {
4405                 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4406                 mc.precharge = 0;
4407                 memcg_oom_recover(mc.to);
4408         }
4409         /*
4410          * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4411          * we must uncharge here.
4412          */
4413         if (mc.moved_charge) {
4414                 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4415                 mc.moved_charge = 0;
4416                 memcg_oom_recover(mc.from);
4417         }
4418         /* we must fixup refcnts and charges */
4419         if (mc.moved_swap) {
4420                 WARN_ON_ONCE(mc.moved_swap > INT_MAX);
4421                 /* uncharge swap account from the old cgroup */
4422                 if (!mem_cgroup_is_root(mc.from))
4423                         res_counter_uncharge(&mc.from->memsw,
4424                                                 PAGE_SIZE * mc.moved_swap);
4425                 __mem_cgroup_put(mc.from, mc.moved_swap);
4426
4427                 if (!mem_cgroup_is_root(mc.to)) {
4428                         /*
4429                          * we charged both to->res and to->memsw, so we should
4430                          * uncharge to->res.
4431                          */
4432                         res_counter_uncharge(&mc.to->res,
4433                                                 PAGE_SIZE * mc.moved_swap);
4434                         VM_BUG_ON(test_bit(CSS_ROOT, &mc.to->css.flags));
4435                         __css_put(&mc.to->css, mc.moved_swap);
4436                 }
4437                 /* we've already done mem_cgroup_get(mc.to) */
4438
4439                 mc.moved_swap = 0;
4440         }
4441         mc.from = NULL;
4442         mc.to = NULL;
4443         mc.moving_task = NULL;
4444         wake_up_all(&mc.waitq);
4445 }
4446
4447 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4448                                 struct cgroup *cgroup,
4449                                 struct task_struct *p,
4450                                 bool threadgroup)
4451 {
4452         int ret = 0;
4453         struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4454
4455         if (mem->move_charge_at_immigrate) {
4456                 struct mm_struct *mm;
4457                 struct mem_cgroup *from = mem_cgroup_from_task(p);
4458
4459                 VM_BUG_ON(from == mem);
4460
4461                 mm = get_task_mm(p);
4462                 if (!mm)
4463                         return 0;
4464                 /* We move charges only when we move a owner of the mm */
4465                 if (mm->owner == p) {
4466                         VM_BUG_ON(mc.from);
4467                         VM_BUG_ON(mc.to);
4468                         VM_BUG_ON(mc.precharge);
4469                         VM_BUG_ON(mc.moved_charge);
4470                         VM_BUG_ON(mc.moved_swap);
4471                         VM_BUG_ON(mc.moving_task);
4472                         mc.from = from;
4473                         mc.to = mem;
4474                         mc.precharge = 0;
4475                         mc.moved_charge = 0;
4476                         mc.moved_swap = 0;
4477                         mc.moving_task = current;
4478
4479                         ret = mem_cgroup_precharge_mc(mm);
4480                         if (ret)
4481                                 mem_cgroup_clear_mc();
4482                 }
4483                 mmput(mm);
4484         }
4485         return ret;
4486 }
4487
4488 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4489                                 struct cgroup *cgroup,
4490                                 struct task_struct *p,
4491                                 bool threadgroup)
4492 {
4493         mem_cgroup_clear_mc();
4494 }
4495
4496 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4497                                 unsigned long addr, unsigned long end,
4498                                 struct mm_walk *walk)
4499 {
4500         int ret = 0;
4501         struct vm_area_struct *vma = walk->private;
4502         pte_t *pte;
4503         spinlock_t *ptl;
4504
4505 retry:
4506         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4507         for (; addr != end; addr += PAGE_SIZE) {
4508                 pte_t ptent = *(pte++);
4509                 union mc_target target;
4510                 int type;
4511                 struct page *page;
4512                 struct page_cgroup *pc;
4513                 swp_entry_t ent;
4514
4515                 if (!mc.precharge)
4516                         break;
4517
4518                 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4519                 switch (type) {
4520                 case MC_TARGET_PAGE:
4521                         page = target.page;
4522                         if (isolate_lru_page(page))
4523                                 goto put;
4524                         pc = lookup_page_cgroup(page);
4525                         if (!mem_cgroup_move_account(pc,
4526                                                 mc.from, mc.to, false)) {
4527                                 mc.precharge--;
4528                                 /* we uncharge from mc.from later. */
4529                                 mc.moved_charge++;
4530                         }
4531                         putback_lru_page(page);
4532 put:                    /* is_target_pte_for_mc() gets the page */
4533                         put_page(page);
4534                         break;
4535                 case MC_TARGET_SWAP:
4536                         ent = target.ent;
4537                         if (!mem_cgroup_move_swap_account(ent,
4538                                                 mc.from, mc.to, false)) {
4539                                 mc.precharge--;
4540                                 /* we fixup refcnts and charges later. */
4541                                 mc.moved_swap++;
4542                         }
4543                         break;
4544                 default:
4545                         break;
4546                 }
4547         }
4548         pte_unmap_unlock(pte - 1, ptl);
4549         cond_resched();
4550
4551         if (addr != end) {
4552                 /*
4553                  * We have consumed all precharges we got in can_attach().
4554                  * We try charge one by one, but don't do any additional
4555                  * charges to mc.to if we have failed in charge once in attach()
4556                  * phase.
4557                  */
4558                 ret = mem_cgroup_do_precharge(1);
4559                 if (!ret)
4560                         goto retry;
4561         }
4562
4563         return ret;
4564 }
4565
4566 static void mem_cgroup_move_charge(struct mm_struct *mm)
4567 {
4568         struct vm_area_struct *vma;
4569
4570         lru_add_drain_all();
4571         down_read(&mm->mmap_sem);
4572         for (vma = mm->mmap; vma; vma = vma->vm_next) {
4573                 int ret;
4574                 struct mm_walk mem_cgroup_move_charge_walk = {
4575                         .pmd_entry = mem_cgroup_move_charge_pte_range,
4576                         .mm = mm,
4577                         .private = vma,
4578                 };
4579                 if (is_vm_hugetlb_page(vma))
4580                         continue;
4581                 ret = walk_page_range(vma->vm_start, vma->vm_end,
4582                                                 &mem_cgroup_move_charge_walk);
4583                 if (ret)
4584                         /*
4585                          * means we have consumed all precharges and failed in
4586                          * doing additional charge. Just abandon here.
4587                          */
4588                         break;
4589         }
4590         up_read(&mm->mmap_sem);
4591 }
4592
4593 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4594                                 struct cgroup *cont,
4595                                 struct cgroup *old_cont,
4596                                 struct task_struct *p,
4597                                 bool threadgroup)
4598 {
4599         struct mm_struct *mm;
4600
4601         if (!mc.to)
4602                 /* no need to move charge */
4603                 return;
4604
4605         mm = get_task_mm(p);
4606         if (mm) {
4607                 mem_cgroup_move_charge(mm);
4608                 mmput(mm);
4609         }
4610         mem_cgroup_clear_mc();
4611 }
4612 #else   /* !CONFIG_MMU */
4613 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4614                                 struct cgroup *cgroup,
4615                                 struct task_struct *p,
4616                                 bool threadgroup)
4617 {
4618         return 0;
4619 }
4620 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4621                                 struct cgroup *cgroup,
4622                                 struct task_struct *p,
4623                                 bool threadgroup)
4624 {
4625 }
4626 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4627                                 struct cgroup *cont,
4628                                 struct cgroup *old_cont,
4629                                 struct task_struct *p,
4630                                 bool threadgroup)
4631 {
4632 }
4633 #endif
4634
4635 struct cgroup_subsys mem_cgroup_subsys = {
4636         .name = "memory",
4637         .subsys_id = mem_cgroup_subsys_id,
4638         .create = mem_cgroup_create,
4639         .pre_destroy = mem_cgroup_pre_destroy,
4640         .destroy = mem_cgroup_destroy,
4641         .populate = mem_cgroup_populate,
4642         .can_attach = mem_cgroup_can_attach,
4643         .cancel_attach = mem_cgroup_cancel_attach,
4644         .attach = mem_cgroup_move_task,
4645         .early_init = 0,
4646         .use_id = 1,
4647 };
4648
4649 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4650
4651 static int __init disable_swap_account(char *s)
4652 {
4653         really_do_swap_account = 0;
4654         return 1;
4655 }
4656 __setup("noswapaccount", disable_swap_account);
4657 #endif