Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[sfrench/cifs-2.6.git] / mm / memblock.c
1 /*
2  * Procedures for maintaining information about logical memory blocks.
3  *
4  * Peter Bergner, IBM Corp.     June 2001.
5  * Copyright (C) 2001 Peter Bergner.
6  *
7  *      This program is free software; you can redistribute it and/or
8  *      modify it under the terms of the GNU General Public License
9  *      as published by the Free Software Foundation; either version
10  *      2 of the License, or (at your option) any later version.
11  */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35         .memory.regions         = memblock_memory_init_regions,
36         .memory.cnt             = 1,    /* empty dummy entry */
37         .memory.max             = INIT_MEMBLOCK_REGIONS,
38
39         .reserved.regions       = memblock_reserved_init_regions,
40         .reserved.cnt           = 1,    /* empty dummy entry */
41         .reserved.max           = INIT_MEMBLOCK_REGIONS,
42
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44         .physmem.regions        = memblock_physmem_init_regions,
45         .physmem.cnt            = 1,    /* empty dummy entry */
46         .physmem.max            = INIT_PHYSMEM_REGIONS,
47 #endif
48
49         .bottom_up              = false,
50         .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
51 };
52
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static int memblock_can_resize __initdata_memblock;
58 static int memblock_memory_in_slab __initdata_memblock = 0;
59 static int memblock_reserved_in_slab __initdata_memblock = 0;
60
61 /* inline so we don't get a warning when pr_debug is compiled out */
62 static __init_memblock const char *
63 memblock_type_name(struct memblock_type *type)
64 {
65         if (type == &memblock.memory)
66                 return "memory";
67         else if (type == &memblock.reserved)
68                 return "reserved";
69         else
70                 return "unknown";
71 }
72
73 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
74 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
75 {
76         return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
77 }
78
79 /*
80  * Address comparison utilities
81  */
82 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
83                                        phys_addr_t base2, phys_addr_t size2)
84 {
85         return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
86 }
87
88 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
89                                         phys_addr_t base, phys_addr_t size)
90 {
91         unsigned long i;
92
93         for (i = 0; i < type->cnt; i++) {
94                 phys_addr_t rgnbase = type->regions[i].base;
95                 phys_addr_t rgnsize = type->regions[i].size;
96                 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
97                         break;
98         }
99
100         return (i < type->cnt) ? i : -1;
101 }
102
103 /*
104  * __memblock_find_range_bottom_up - find free area utility in bottom-up
105  * @start: start of candidate range
106  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
107  * @size: size of free area to find
108  * @align: alignment of free area to find
109  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
110  *
111  * Utility called from memblock_find_in_range_node(), find free area bottom-up.
112  *
113  * RETURNS:
114  * Found address on success, 0 on failure.
115  */
116 static phys_addr_t __init_memblock
117 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
118                                 phys_addr_t size, phys_addr_t align, int nid)
119 {
120         phys_addr_t this_start, this_end, cand;
121         u64 i;
122
123         for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
124                 this_start = clamp(this_start, start, end);
125                 this_end = clamp(this_end, start, end);
126
127                 cand = round_up(this_start, align);
128                 if (cand < this_end && this_end - cand >= size)
129                         return cand;
130         }
131
132         return 0;
133 }
134
135 /**
136  * __memblock_find_range_top_down - find free area utility, in top-down
137  * @start: start of candidate range
138  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
139  * @size: size of free area to find
140  * @align: alignment of free area to find
141  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
142  *
143  * Utility called from memblock_find_in_range_node(), find free area top-down.
144  *
145  * RETURNS:
146  * Found address on success, 0 on failure.
147  */
148 static phys_addr_t __init_memblock
149 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
150                                phys_addr_t size, phys_addr_t align, int nid)
151 {
152         phys_addr_t this_start, this_end, cand;
153         u64 i;
154
155         for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
156                 this_start = clamp(this_start, start, end);
157                 this_end = clamp(this_end, start, end);
158
159                 if (this_end < size)
160                         continue;
161
162                 cand = round_down(this_end - size, align);
163                 if (cand >= this_start)
164                         return cand;
165         }
166
167         return 0;
168 }
169
170 /**
171  * memblock_find_in_range_node - find free area in given range and node
172  * @size: size of free area to find
173  * @align: alignment of free area to find
174  * @start: start of candidate range
175  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
176  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
177  *
178  * Find @size free area aligned to @align in the specified range and node.
179  *
180  * When allocation direction is bottom-up, the @start should be greater
181  * than the end of the kernel image. Otherwise, it will be trimmed. The
182  * reason is that we want the bottom-up allocation just near the kernel
183  * image so it is highly likely that the allocated memory and the kernel
184  * will reside in the same node.
185  *
186  * If bottom-up allocation failed, will try to allocate memory top-down.
187  *
188  * RETURNS:
189  * Found address on success, 0 on failure.
190  */
191 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
192                                         phys_addr_t align, phys_addr_t start,
193                                         phys_addr_t end, int nid)
194 {
195         phys_addr_t kernel_end, ret;
196
197         /* pump up @end */
198         if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
199                 end = memblock.current_limit;
200
201         /* avoid allocating the first page */
202         start = max_t(phys_addr_t, start, PAGE_SIZE);
203         end = max(start, end);
204         kernel_end = __pa_symbol(_end);
205
206         /*
207          * try bottom-up allocation only when bottom-up mode
208          * is set and @end is above the kernel image.
209          */
210         if (memblock_bottom_up() && end > kernel_end) {
211                 phys_addr_t bottom_up_start;
212
213                 /* make sure we will allocate above the kernel */
214                 bottom_up_start = max(start, kernel_end);
215
216                 /* ok, try bottom-up allocation first */
217                 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
218                                                       size, align, nid);
219                 if (ret)
220                         return ret;
221
222                 /*
223                  * we always limit bottom-up allocation above the kernel,
224                  * but top-down allocation doesn't have the limit, so
225                  * retrying top-down allocation may succeed when bottom-up
226                  * allocation failed.
227                  *
228                  * bottom-up allocation is expected to be fail very rarely,
229                  * so we use WARN_ONCE() here to see the stack trace if
230                  * fail happens.
231                  */
232                 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
233                              "memory hotunplug may be affected\n");
234         }
235
236         return __memblock_find_range_top_down(start, end, size, align, nid);
237 }
238
239 /**
240  * memblock_find_in_range - find free area in given range
241  * @start: start of candidate range
242  * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243  * @size: size of free area to find
244  * @align: alignment of free area to find
245  *
246  * Find @size free area aligned to @align in the specified range.
247  *
248  * RETURNS:
249  * Found address on success, 0 on failure.
250  */
251 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
252                                         phys_addr_t end, phys_addr_t size,
253                                         phys_addr_t align)
254 {
255         return memblock_find_in_range_node(size, align, start, end,
256                                             NUMA_NO_NODE);
257 }
258
259 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
260 {
261         type->total_size -= type->regions[r].size;
262         memmove(&type->regions[r], &type->regions[r + 1],
263                 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
264         type->cnt--;
265
266         /* Special case for empty arrays */
267         if (type->cnt == 0) {
268                 WARN_ON(type->total_size != 0);
269                 type->cnt = 1;
270                 type->regions[0].base = 0;
271                 type->regions[0].size = 0;
272                 type->regions[0].flags = 0;
273                 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
274         }
275 }
276
277 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
278
279 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
280                                         phys_addr_t *addr)
281 {
282         if (memblock.reserved.regions == memblock_reserved_init_regions)
283                 return 0;
284
285         *addr = __pa(memblock.reserved.regions);
286
287         return PAGE_ALIGN(sizeof(struct memblock_region) *
288                           memblock.reserved.max);
289 }
290
291 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
292                                         phys_addr_t *addr)
293 {
294         if (memblock.memory.regions == memblock_memory_init_regions)
295                 return 0;
296
297         *addr = __pa(memblock.memory.regions);
298
299         return PAGE_ALIGN(sizeof(struct memblock_region) *
300                           memblock.memory.max);
301 }
302
303 #endif
304
305 /**
306  * memblock_double_array - double the size of the memblock regions array
307  * @type: memblock type of the regions array being doubled
308  * @new_area_start: starting address of memory range to avoid overlap with
309  * @new_area_size: size of memory range to avoid overlap with
310  *
311  * Double the size of the @type regions array. If memblock is being used to
312  * allocate memory for a new reserved regions array and there is a previously
313  * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
314  * waiting to be reserved, ensure the memory used by the new array does
315  * not overlap.
316  *
317  * RETURNS:
318  * 0 on success, -1 on failure.
319  */
320 static int __init_memblock memblock_double_array(struct memblock_type *type,
321                                                 phys_addr_t new_area_start,
322                                                 phys_addr_t new_area_size)
323 {
324         struct memblock_region *new_array, *old_array;
325         phys_addr_t old_alloc_size, new_alloc_size;
326         phys_addr_t old_size, new_size, addr;
327         int use_slab = slab_is_available();
328         int *in_slab;
329
330         /* We don't allow resizing until we know about the reserved regions
331          * of memory that aren't suitable for allocation
332          */
333         if (!memblock_can_resize)
334                 return -1;
335
336         /* Calculate new doubled size */
337         old_size = type->max * sizeof(struct memblock_region);
338         new_size = old_size << 1;
339         /*
340          * We need to allocated new one align to PAGE_SIZE,
341          *   so we can free them completely later.
342          */
343         old_alloc_size = PAGE_ALIGN(old_size);
344         new_alloc_size = PAGE_ALIGN(new_size);
345
346         /* Retrieve the slab flag */
347         if (type == &memblock.memory)
348                 in_slab = &memblock_memory_in_slab;
349         else
350                 in_slab = &memblock_reserved_in_slab;
351
352         /* Try to find some space for it.
353          *
354          * WARNING: We assume that either slab_is_available() and we use it or
355          * we use MEMBLOCK for allocations. That means that this is unsafe to
356          * use when bootmem is currently active (unless bootmem itself is
357          * implemented on top of MEMBLOCK which isn't the case yet)
358          *
359          * This should however not be an issue for now, as we currently only
360          * call into MEMBLOCK while it's still active, or much later when slab
361          * is active for memory hotplug operations
362          */
363         if (use_slab) {
364                 new_array = kmalloc(new_size, GFP_KERNEL);
365                 addr = new_array ? __pa(new_array) : 0;
366         } else {
367                 /* only exclude range when trying to double reserved.regions */
368                 if (type != &memblock.reserved)
369                         new_area_start = new_area_size = 0;
370
371                 addr = memblock_find_in_range(new_area_start + new_area_size,
372                                                 memblock.current_limit,
373                                                 new_alloc_size, PAGE_SIZE);
374                 if (!addr && new_area_size)
375                         addr = memblock_find_in_range(0,
376                                 min(new_area_start, memblock.current_limit),
377                                 new_alloc_size, PAGE_SIZE);
378
379                 new_array = addr ? __va(addr) : NULL;
380         }
381         if (!addr) {
382                 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
383                        memblock_type_name(type), type->max, type->max * 2);
384                 return -1;
385         }
386
387         memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
388                         memblock_type_name(type), type->max * 2, (u64)addr,
389                         (u64)addr + new_size - 1);
390
391         /*
392          * Found space, we now need to move the array over before we add the
393          * reserved region since it may be our reserved array itself that is
394          * full.
395          */
396         memcpy(new_array, type->regions, old_size);
397         memset(new_array + type->max, 0, old_size);
398         old_array = type->regions;
399         type->regions = new_array;
400         type->max <<= 1;
401
402         /* Free old array. We needn't free it if the array is the static one */
403         if (*in_slab)
404                 kfree(old_array);
405         else if (old_array != memblock_memory_init_regions &&
406                  old_array != memblock_reserved_init_regions)
407                 memblock_free(__pa(old_array), old_alloc_size);
408
409         /*
410          * Reserve the new array if that comes from the memblock.  Otherwise, we
411          * needn't do it
412          */
413         if (!use_slab)
414                 BUG_ON(memblock_reserve(addr, new_alloc_size));
415
416         /* Update slab flag */
417         *in_slab = use_slab;
418
419         return 0;
420 }
421
422 /**
423  * memblock_merge_regions - merge neighboring compatible regions
424  * @type: memblock type to scan
425  *
426  * Scan @type and merge neighboring compatible regions.
427  */
428 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
429 {
430         int i = 0;
431
432         /* cnt never goes below 1 */
433         while (i < type->cnt - 1) {
434                 struct memblock_region *this = &type->regions[i];
435                 struct memblock_region *next = &type->regions[i + 1];
436
437                 if (this->base + this->size != next->base ||
438                     memblock_get_region_node(this) !=
439                     memblock_get_region_node(next) ||
440                     this->flags != next->flags) {
441                         BUG_ON(this->base + this->size > next->base);
442                         i++;
443                         continue;
444                 }
445
446                 this->size += next->size;
447                 /* move forward from next + 1, index of which is i + 2 */
448                 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
449                 type->cnt--;
450         }
451 }
452
453 /**
454  * memblock_insert_region - insert new memblock region
455  * @type:       memblock type to insert into
456  * @idx:        index for the insertion point
457  * @base:       base address of the new region
458  * @size:       size of the new region
459  * @nid:        node id of the new region
460  * @flags:      flags of the new region
461  *
462  * Insert new memblock region [@base,@base+@size) into @type at @idx.
463  * @type must already have extra room to accomodate the new region.
464  */
465 static void __init_memblock memblock_insert_region(struct memblock_type *type,
466                                                    int idx, phys_addr_t base,
467                                                    phys_addr_t size,
468                                                    int nid, unsigned long flags)
469 {
470         struct memblock_region *rgn = &type->regions[idx];
471
472         BUG_ON(type->cnt >= type->max);
473         memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
474         rgn->base = base;
475         rgn->size = size;
476         rgn->flags = flags;
477         memblock_set_region_node(rgn, nid);
478         type->cnt++;
479         type->total_size += size;
480 }
481
482 /**
483  * memblock_add_range - add new memblock region
484  * @type: memblock type to add new region into
485  * @base: base address of the new region
486  * @size: size of the new region
487  * @nid: nid of the new region
488  * @flags: flags of the new region
489  *
490  * Add new memblock region [@base,@base+@size) into @type.  The new region
491  * is allowed to overlap with existing ones - overlaps don't affect already
492  * existing regions.  @type is guaranteed to be minimal (all neighbouring
493  * compatible regions are merged) after the addition.
494  *
495  * RETURNS:
496  * 0 on success, -errno on failure.
497  */
498 int __init_memblock memblock_add_range(struct memblock_type *type,
499                                 phys_addr_t base, phys_addr_t size,
500                                 int nid, unsigned long flags)
501 {
502         bool insert = false;
503         phys_addr_t obase = base;
504         phys_addr_t end = base + memblock_cap_size(base, &size);
505         int i, nr_new;
506
507         if (!size)
508                 return 0;
509
510         /* special case for empty array */
511         if (type->regions[0].size == 0) {
512                 WARN_ON(type->cnt != 1 || type->total_size);
513                 type->regions[0].base = base;
514                 type->regions[0].size = size;
515                 type->regions[0].flags = flags;
516                 memblock_set_region_node(&type->regions[0], nid);
517                 type->total_size = size;
518                 return 0;
519         }
520 repeat:
521         /*
522          * The following is executed twice.  Once with %false @insert and
523          * then with %true.  The first counts the number of regions needed
524          * to accomodate the new area.  The second actually inserts them.
525          */
526         base = obase;
527         nr_new = 0;
528
529         for (i = 0; i < type->cnt; i++) {
530                 struct memblock_region *rgn = &type->regions[i];
531                 phys_addr_t rbase = rgn->base;
532                 phys_addr_t rend = rbase + rgn->size;
533
534                 if (rbase >= end)
535                         break;
536                 if (rend <= base)
537                         continue;
538                 /*
539                  * @rgn overlaps.  If it separates the lower part of new
540                  * area, insert that portion.
541                  */
542                 if (rbase > base) {
543                         nr_new++;
544                         if (insert)
545                                 memblock_insert_region(type, i++, base,
546                                                        rbase - base, nid,
547                                                        flags);
548                 }
549                 /* area below @rend is dealt with, forget about it */
550                 base = min(rend, end);
551         }
552
553         /* insert the remaining portion */
554         if (base < end) {
555                 nr_new++;
556                 if (insert)
557                         memblock_insert_region(type, i, base, end - base,
558                                                nid, flags);
559         }
560
561         /*
562          * If this was the first round, resize array and repeat for actual
563          * insertions; otherwise, merge and return.
564          */
565         if (!insert) {
566                 while (type->cnt + nr_new > type->max)
567                         if (memblock_double_array(type, obase, size) < 0)
568                                 return -ENOMEM;
569                 insert = true;
570                 goto repeat;
571         } else {
572                 memblock_merge_regions(type);
573                 return 0;
574         }
575 }
576
577 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
578                                        int nid)
579 {
580         return memblock_add_range(&memblock.memory, base, size, nid, 0);
581 }
582
583 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
584 {
585         return memblock_add_range(&memblock.memory, base, size,
586                                    MAX_NUMNODES, 0);
587 }
588
589 /**
590  * memblock_isolate_range - isolate given range into disjoint memblocks
591  * @type: memblock type to isolate range for
592  * @base: base of range to isolate
593  * @size: size of range to isolate
594  * @start_rgn: out parameter for the start of isolated region
595  * @end_rgn: out parameter for the end of isolated region
596  *
597  * Walk @type and ensure that regions don't cross the boundaries defined by
598  * [@base,@base+@size).  Crossing regions are split at the boundaries,
599  * which may create at most two more regions.  The index of the first
600  * region inside the range is returned in *@start_rgn and end in *@end_rgn.
601  *
602  * RETURNS:
603  * 0 on success, -errno on failure.
604  */
605 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
606                                         phys_addr_t base, phys_addr_t size,
607                                         int *start_rgn, int *end_rgn)
608 {
609         phys_addr_t end = base + memblock_cap_size(base, &size);
610         int i;
611
612         *start_rgn = *end_rgn = 0;
613
614         if (!size)
615                 return 0;
616
617         /* we'll create at most two more regions */
618         while (type->cnt + 2 > type->max)
619                 if (memblock_double_array(type, base, size) < 0)
620                         return -ENOMEM;
621
622         for (i = 0; i < type->cnt; i++) {
623                 struct memblock_region *rgn = &type->regions[i];
624                 phys_addr_t rbase = rgn->base;
625                 phys_addr_t rend = rbase + rgn->size;
626
627                 if (rbase >= end)
628                         break;
629                 if (rend <= base)
630                         continue;
631
632                 if (rbase < base) {
633                         /*
634                          * @rgn intersects from below.  Split and continue
635                          * to process the next region - the new top half.
636                          */
637                         rgn->base = base;
638                         rgn->size -= base - rbase;
639                         type->total_size -= base - rbase;
640                         memblock_insert_region(type, i, rbase, base - rbase,
641                                                memblock_get_region_node(rgn),
642                                                rgn->flags);
643                 } else if (rend > end) {
644                         /*
645                          * @rgn intersects from above.  Split and redo the
646                          * current region - the new bottom half.
647                          */
648                         rgn->base = end;
649                         rgn->size -= end - rbase;
650                         type->total_size -= end - rbase;
651                         memblock_insert_region(type, i--, rbase, end - rbase,
652                                                memblock_get_region_node(rgn),
653                                                rgn->flags);
654                 } else {
655                         /* @rgn is fully contained, record it */
656                         if (!*end_rgn)
657                                 *start_rgn = i;
658                         *end_rgn = i + 1;
659                 }
660         }
661
662         return 0;
663 }
664
665 int __init_memblock memblock_remove_range(struct memblock_type *type,
666                                           phys_addr_t base, phys_addr_t size)
667 {
668         int start_rgn, end_rgn;
669         int i, ret;
670
671         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
672         if (ret)
673                 return ret;
674
675         for (i = end_rgn - 1; i >= start_rgn; i--)
676                 memblock_remove_region(type, i);
677         return 0;
678 }
679
680 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
681 {
682         return memblock_remove_range(&memblock.memory, base, size);
683 }
684
685
686 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
687 {
688         memblock_dbg("   memblock_free: [%#016llx-%#016llx] %pF\n",
689                      (unsigned long long)base,
690                      (unsigned long long)base + size - 1,
691                      (void *)_RET_IP_);
692
693         kmemleak_free_part(__va(base), size);
694         return memblock_remove_range(&memblock.reserved, base, size);
695 }
696
697 static int __init_memblock memblock_reserve_region(phys_addr_t base,
698                                                    phys_addr_t size,
699                                                    int nid,
700                                                    unsigned long flags)
701 {
702         struct memblock_type *_rgn = &memblock.reserved;
703
704         memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
705                      (unsigned long long)base,
706                      (unsigned long long)base + size - 1,
707                      flags, (void *)_RET_IP_);
708
709         return memblock_add_range(_rgn, base, size, nid, flags);
710 }
711
712 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
713 {
714         return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
715 }
716
717 /**
718  * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
719  * @base: the base phys addr of the region
720  * @size: the size of the region
721  *
722  * This function isolates region [@base, @base + @size), and mark it with flag
723  * MEMBLOCK_HOTPLUG.
724  *
725  * Return 0 on succees, -errno on failure.
726  */
727 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
728 {
729         struct memblock_type *type = &memblock.memory;
730         int i, ret, start_rgn, end_rgn;
731
732         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
733         if (ret)
734                 return ret;
735
736         for (i = start_rgn; i < end_rgn; i++)
737                 memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
738
739         memblock_merge_regions(type);
740         return 0;
741 }
742
743 /**
744  * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
745  * @base: the base phys addr of the region
746  * @size: the size of the region
747  *
748  * This function isolates region [@base, @base + @size), and clear flag
749  * MEMBLOCK_HOTPLUG for the isolated regions.
750  *
751  * Return 0 on succees, -errno on failure.
752  */
753 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
754 {
755         struct memblock_type *type = &memblock.memory;
756         int i, ret, start_rgn, end_rgn;
757
758         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
759         if (ret)
760                 return ret;
761
762         for (i = start_rgn; i < end_rgn; i++)
763                 memblock_clear_region_flags(&type->regions[i],
764                                             MEMBLOCK_HOTPLUG);
765
766         memblock_merge_regions(type);
767         return 0;
768 }
769
770 /**
771  * __next__mem_range - next function for for_each_free_mem_range() etc.
772  * @idx: pointer to u64 loop variable
773  * @nid: node selector, %NUMA_NO_NODE for all nodes
774  * @type_a: pointer to memblock_type from where the range is taken
775  * @type_b: pointer to memblock_type which excludes memory from being taken
776  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
777  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
778  * @out_nid: ptr to int for nid of the range, can be %NULL
779  *
780  * Find the first area from *@idx which matches @nid, fill the out
781  * parameters, and update *@idx for the next iteration.  The lower 32bit of
782  * *@idx contains index into type_a and the upper 32bit indexes the
783  * areas before each region in type_b.  For example, if type_b regions
784  * look like the following,
785  *
786  *      0:[0-16), 1:[32-48), 2:[128-130)
787  *
788  * The upper 32bit indexes the following regions.
789  *
790  *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
791  *
792  * As both region arrays are sorted, the function advances the two indices
793  * in lockstep and returns each intersection.
794  */
795 void __init_memblock __next_mem_range(u64 *idx, int nid,
796                                       struct memblock_type *type_a,
797                                       struct memblock_type *type_b,
798                                       phys_addr_t *out_start,
799                                       phys_addr_t *out_end, int *out_nid)
800 {
801         int idx_a = *idx & 0xffffffff;
802         int idx_b = *idx >> 32;
803
804         if (WARN_ONCE(nid == MAX_NUMNODES,
805         "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
806                 nid = NUMA_NO_NODE;
807
808         for (; idx_a < type_a->cnt; idx_a++) {
809                 struct memblock_region *m = &type_a->regions[idx_a];
810
811                 phys_addr_t m_start = m->base;
812                 phys_addr_t m_end = m->base + m->size;
813                 int         m_nid = memblock_get_region_node(m);
814
815                 /* only memory regions are associated with nodes, check it */
816                 if (nid != NUMA_NO_NODE && nid != m_nid)
817                         continue;
818
819                 /* skip hotpluggable memory regions if needed */
820                 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
821                         continue;
822
823                 if (!type_b) {
824                         if (out_start)
825                                 *out_start = m_start;
826                         if (out_end)
827                                 *out_end = m_end;
828                         if (out_nid)
829                                 *out_nid = m_nid;
830                         idx_a++;
831                         *idx = (u32)idx_a | (u64)idx_b << 32;
832                         return;
833                 }
834
835                 /* scan areas before each reservation */
836                 for (; idx_b < type_b->cnt + 1; idx_b++) {
837                         struct memblock_region *r;
838                         phys_addr_t r_start;
839                         phys_addr_t r_end;
840
841                         r = &type_b->regions[idx_b];
842                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
843                         r_end = idx_b < type_b->cnt ?
844                                 r->base : ULLONG_MAX;
845
846                         /*
847                          * if idx_b advanced past idx_a,
848                          * break out to advance idx_a
849                          */
850                         if (r_start >= m_end)
851                                 break;
852                         /* if the two regions intersect, we're done */
853                         if (m_start < r_end) {
854                                 if (out_start)
855                                         *out_start =
856                                                 max(m_start, r_start);
857                                 if (out_end)
858                                         *out_end = min(m_end, r_end);
859                                 if (out_nid)
860                                         *out_nid = m_nid;
861                                 /*
862                                  * The region which ends first is
863                                  * advanced for the next iteration.
864                                  */
865                                 if (m_end <= r_end)
866                                         idx_a++;
867                                 else
868                                         idx_b++;
869                                 *idx = (u32)idx_a | (u64)idx_b << 32;
870                                 return;
871                         }
872                 }
873         }
874
875         /* signal end of iteration */
876         *idx = ULLONG_MAX;
877 }
878
879 /**
880  * __next_mem_range_rev - generic next function for for_each_*_range_rev()
881  *
882  * Finds the next range from type_a which is not marked as unsuitable
883  * in type_b.
884  *
885  * @idx: pointer to u64 loop variable
886  * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
887  * @type_a: pointer to memblock_type from where the range is taken
888  * @type_b: pointer to memblock_type which excludes memory from being taken
889  * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
890  * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
891  * @out_nid: ptr to int for nid of the range, can be %NULL
892  *
893  * Reverse of __next_mem_range().
894  */
895 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
896                                           struct memblock_type *type_a,
897                                           struct memblock_type *type_b,
898                                           phys_addr_t *out_start,
899                                           phys_addr_t *out_end, int *out_nid)
900 {
901         int idx_a = *idx & 0xffffffff;
902         int idx_b = *idx >> 32;
903
904         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
905                 nid = NUMA_NO_NODE;
906
907         if (*idx == (u64)ULLONG_MAX) {
908                 idx_a = type_a->cnt - 1;
909                 idx_b = type_b->cnt;
910         }
911
912         for (; idx_a >= 0; idx_a--) {
913                 struct memblock_region *m = &type_a->regions[idx_a];
914
915                 phys_addr_t m_start = m->base;
916                 phys_addr_t m_end = m->base + m->size;
917                 int m_nid = memblock_get_region_node(m);
918
919                 /* only memory regions are associated with nodes, check it */
920                 if (nid != NUMA_NO_NODE && nid != m_nid)
921                         continue;
922
923                 /* skip hotpluggable memory regions if needed */
924                 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
925                         continue;
926
927                 if (!type_b) {
928                         if (out_start)
929                                 *out_start = m_start;
930                         if (out_end)
931                                 *out_end = m_end;
932                         if (out_nid)
933                                 *out_nid = m_nid;
934                         idx_a++;
935                         *idx = (u32)idx_a | (u64)idx_b << 32;
936                         return;
937                 }
938
939                 /* scan areas before each reservation */
940                 for (; idx_b >= 0; idx_b--) {
941                         struct memblock_region *r;
942                         phys_addr_t r_start;
943                         phys_addr_t r_end;
944
945                         r = &type_b->regions[idx_b];
946                         r_start = idx_b ? r[-1].base + r[-1].size : 0;
947                         r_end = idx_b < type_b->cnt ?
948                                 r->base : ULLONG_MAX;
949                         /*
950                          * if idx_b advanced past idx_a,
951                          * break out to advance idx_a
952                          */
953
954                         if (r_end <= m_start)
955                                 break;
956                         /* if the two regions intersect, we're done */
957                         if (m_end > r_start) {
958                                 if (out_start)
959                                         *out_start = max(m_start, r_start);
960                                 if (out_end)
961                                         *out_end = min(m_end, r_end);
962                                 if (out_nid)
963                                         *out_nid = m_nid;
964                                 if (m_start >= r_start)
965                                         idx_a--;
966                                 else
967                                         idx_b--;
968                                 *idx = (u32)idx_a | (u64)idx_b << 32;
969                                 return;
970                         }
971                 }
972         }
973         /* signal end of iteration */
974         *idx = ULLONG_MAX;
975 }
976
977 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
978 /*
979  * Common iterator interface used to define for_each_mem_range().
980  */
981 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
982                                 unsigned long *out_start_pfn,
983                                 unsigned long *out_end_pfn, int *out_nid)
984 {
985         struct memblock_type *type = &memblock.memory;
986         struct memblock_region *r;
987
988         while (++*idx < type->cnt) {
989                 r = &type->regions[*idx];
990
991                 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
992                         continue;
993                 if (nid == MAX_NUMNODES || nid == r->nid)
994                         break;
995         }
996         if (*idx >= type->cnt) {
997                 *idx = -1;
998                 return;
999         }
1000
1001         if (out_start_pfn)
1002                 *out_start_pfn = PFN_UP(r->base);
1003         if (out_end_pfn)
1004                 *out_end_pfn = PFN_DOWN(r->base + r->size);
1005         if (out_nid)
1006                 *out_nid = r->nid;
1007 }
1008
1009 /**
1010  * memblock_set_node - set node ID on memblock regions
1011  * @base: base of area to set node ID for
1012  * @size: size of area to set node ID for
1013  * @type: memblock type to set node ID for
1014  * @nid: node ID to set
1015  *
1016  * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1017  * Regions which cross the area boundaries are split as necessary.
1018  *
1019  * RETURNS:
1020  * 0 on success, -errno on failure.
1021  */
1022 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1023                                       struct memblock_type *type, int nid)
1024 {
1025         int start_rgn, end_rgn;
1026         int i, ret;
1027
1028         ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1029         if (ret)
1030                 return ret;
1031
1032         for (i = start_rgn; i < end_rgn; i++)
1033                 memblock_set_region_node(&type->regions[i], nid);
1034
1035         memblock_merge_regions(type);
1036         return 0;
1037 }
1038 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1039
1040 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1041                                         phys_addr_t align, phys_addr_t start,
1042                                         phys_addr_t end, int nid)
1043 {
1044         phys_addr_t found;
1045
1046         if (!align)
1047                 align = SMP_CACHE_BYTES;
1048
1049         found = memblock_find_in_range_node(size, align, start, end, nid);
1050         if (found && !memblock_reserve(found, size)) {
1051                 /*
1052                  * The min_count is set to 0 so that memblock allocations are
1053                  * never reported as leaks.
1054                  */
1055                 kmemleak_alloc(__va(found), size, 0, 0);
1056                 return found;
1057         }
1058         return 0;
1059 }
1060
1061 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1062                                         phys_addr_t start, phys_addr_t end)
1063 {
1064         return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
1065 }
1066
1067 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1068                                         phys_addr_t align, phys_addr_t max_addr,
1069                                         int nid)
1070 {
1071         return memblock_alloc_range_nid(size, align, 0, max_addr, nid);
1072 }
1073
1074 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1075 {
1076         return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1077 }
1078
1079 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1080 {
1081         return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1082 }
1083
1084 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1085 {
1086         phys_addr_t alloc;
1087
1088         alloc = __memblock_alloc_base(size, align, max_addr);
1089
1090         if (alloc == 0)
1091                 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1092                       (unsigned long long) size, (unsigned long long) max_addr);
1093
1094         return alloc;
1095 }
1096
1097 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1098 {
1099         return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1100 }
1101
1102 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1103 {
1104         phys_addr_t res = memblock_alloc_nid(size, align, nid);
1105
1106         if (res)
1107                 return res;
1108         return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1109 }
1110
1111 /**
1112  * memblock_virt_alloc_internal - allocate boot memory block
1113  * @size: size of memory block to be allocated in bytes
1114  * @align: alignment of the region and block's size
1115  * @min_addr: the lower bound of the memory region to allocate (phys address)
1116  * @max_addr: the upper bound of the memory region to allocate (phys address)
1117  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1118  *
1119  * The @min_addr limit is dropped if it can not be satisfied and the allocation
1120  * will fall back to memory below @min_addr. Also, allocation may fall back
1121  * to any node in the system if the specified node can not
1122  * hold the requested memory.
1123  *
1124  * The allocation is performed from memory region limited by
1125  * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1126  *
1127  * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1128  *
1129  * The phys address of allocated boot memory block is converted to virtual and
1130  * allocated memory is reset to 0.
1131  *
1132  * In addition, function sets the min_count to 0 using kmemleak_alloc for
1133  * allocated boot memory block, so that it is never reported as leaks.
1134  *
1135  * RETURNS:
1136  * Virtual address of allocated memory block on success, NULL on failure.
1137  */
1138 static void * __init memblock_virt_alloc_internal(
1139                                 phys_addr_t size, phys_addr_t align,
1140                                 phys_addr_t min_addr, phys_addr_t max_addr,
1141                                 int nid)
1142 {
1143         phys_addr_t alloc;
1144         void *ptr;
1145
1146         if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1147                 nid = NUMA_NO_NODE;
1148
1149         /*
1150          * Detect any accidental use of these APIs after slab is ready, as at
1151          * this moment memblock may be deinitialized already and its
1152          * internal data may be destroyed (after execution of free_all_bootmem)
1153          */
1154         if (WARN_ON_ONCE(slab_is_available()))
1155                 return kzalloc_node(size, GFP_NOWAIT, nid);
1156
1157         if (!align)
1158                 align = SMP_CACHE_BYTES;
1159
1160         if (max_addr > memblock.current_limit)
1161                 max_addr = memblock.current_limit;
1162
1163 again:
1164         alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1165                                             nid);
1166         if (alloc)
1167                 goto done;
1168
1169         if (nid != NUMA_NO_NODE) {
1170                 alloc = memblock_find_in_range_node(size, align, min_addr,
1171                                                     max_addr,  NUMA_NO_NODE);
1172                 if (alloc)
1173                         goto done;
1174         }
1175
1176         if (min_addr) {
1177                 min_addr = 0;
1178                 goto again;
1179         } else {
1180                 goto error;
1181         }
1182
1183 done:
1184         memblock_reserve(alloc, size);
1185         ptr = phys_to_virt(alloc);
1186         memset(ptr, 0, size);
1187
1188         /*
1189          * The min_count is set to 0 so that bootmem allocated blocks
1190          * are never reported as leaks. This is because many of these blocks
1191          * are only referred via the physical address which is not
1192          * looked up by kmemleak.
1193          */
1194         kmemleak_alloc(ptr, size, 0, 0);
1195
1196         return ptr;
1197
1198 error:
1199         return NULL;
1200 }
1201
1202 /**
1203  * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1204  * @size: size of memory block to be allocated in bytes
1205  * @align: alignment of the region and block's size
1206  * @min_addr: the lower bound of the memory region from where the allocation
1207  *        is preferred (phys address)
1208  * @max_addr: the upper bound of the memory region from where the allocation
1209  *            is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1210  *            allocate only from memory limited by memblock.current_limit value
1211  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1212  *
1213  * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1214  * additional debug information (including caller info), if enabled.
1215  *
1216  * RETURNS:
1217  * Virtual address of allocated memory block on success, NULL on failure.
1218  */
1219 void * __init memblock_virt_alloc_try_nid_nopanic(
1220                                 phys_addr_t size, phys_addr_t align,
1221                                 phys_addr_t min_addr, phys_addr_t max_addr,
1222                                 int nid)
1223 {
1224         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1225                      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1226                      (u64)max_addr, (void *)_RET_IP_);
1227         return memblock_virt_alloc_internal(size, align, min_addr,
1228                                              max_addr, nid);
1229 }
1230
1231 /**
1232  * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1233  * @size: size of memory block to be allocated in bytes
1234  * @align: alignment of the region and block's size
1235  * @min_addr: the lower bound of the memory region from where the allocation
1236  *        is preferred (phys address)
1237  * @max_addr: the upper bound of the memory region from where the allocation
1238  *            is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1239  *            allocate only from memory limited by memblock.current_limit value
1240  * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1241  *
1242  * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1243  * which provides debug information (including caller info), if enabled,
1244  * and panics if the request can not be satisfied.
1245  *
1246  * RETURNS:
1247  * Virtual address of allocated memory block on success, NULL on failure.
1248  */
1249 void * __init memblock_virt_alloc_try_nid(
1250                         phys_addr_t size, phys_addr_t align,
1251                         phys_addr_t min_addr, phys_addr_t max_addr,
1252                         int nid)
1253 {
1254         void *ptr;
1255
1256         memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1257                      __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1258                      (u64)max_addr, (void *)_RET_IP_);
1259         ptr = memblock_virt_alloc_internal(size, align,
1260                                            min_addr, max_addr, nid);
1261         if (ptr)
1262                 return ptr;
1263
1264         panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1265               __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1266               (u64)max_addr);
1267         return NULL;
1268 }
1269
1270 /**
1271  * __memblock_free_early - free boot memory block
1272  * @base: phys starting address of the  boot memory block
1273  * @size: size of the boot memory block in bytes
1274  *
1275  * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1276  * The freeing memory will not be released to the buddy allocator.
1277  */
1278 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1279 {
1280         memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1281                      __func__, (u64)base, (u64)base + size - 1,
1282                      (void *)_RET_IP_);
1283         kmemleak_free_part(__va(base), size);
1284         memblock_remove_range(&memblock.reserved, base, size);
1285 }
1286
1287 /*
1288  * __memblock_free_late - free bootmem block pages directly to buddy allocator
1289  * @addr: phys starting address of the  boot memory block
1290  * @size: size of the boot memory block in bytes
1291  *
1292  * This is only useful when the bootmem allocator has already been torn
1293  * down, but we are still initializing the system.  Pages are released directly
1294  * to the buddy allocator, no bootmem metadata is updated because it is gone.
1295  */
1296 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1297 {
1298         u64 cursor, end;
1299
1300         memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1301                      __func__, (u64)base, (u64)base + size - 1,
1302                      (void *)_RET_IP_);
1303         kmemleak_free_part(__va(base), size);
1304         cursor = PFN_UP(base);
1305         end = PFN_DOWN(base + size);
1306
1307         for (; cursor < end; cursor++) {
1308                 __free_pages_bootmem(pfn_to_page(cursor), 0);
1309                 totalram_pages++;
1310         }
1311 }
1312
1313 /*
1314  * Remaining API functions
1315  */
1316
1317 phys_addr_t __init memblock_phys_mem_size(void)
1318 {
1319         return memblock.memory.total_size;
1320 }
1321
1322 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1323 {
1324         unsigned long pages = 0;
1325         struct memblock_region *r;
1326         unsigned long start_pfn, end_pfn;
1327
1328         for_each_memblock(memory, r) {
1329                 start_pfn = memblock_region_memory_base_pfn(r);
1330                 end_pfn = memblock_region_memory_end_pfn(r);
1331                 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1332                 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1333                 pages += end_pfn - start_pfn;
1334         }
1335
1336         return PFN_PHYS(pages);
1337 }
1338
1339 /* lowest address */
1340 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1341 {
1342         return memblock.memory.regions[0].base;
1343 }
1344
1345 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1346 {
1347         int idx = memblock.memory.cnt - 1;
1348
1349         return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1350 }
1351
1352 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1353 {
1354         phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1355         struct memblock_region *r;
1356
1357         if (!limit)
1358                 return;
1359
1360         /* find out max address */
1361         for_each_memblock(memory, r) {
1362                 if (limit <= r->size) {
1363                         max_addr = r->base + limit;
1364                         break;
1365                 }
1366                 limit -= r->size;
1367         }
1368
1369         /* truncate both memory and reserved regions */
1370         memblock_remove_range(&memblock.memory, max_addr,
1371                               (phys_addr_t)ULLONG_MAX);
1372         memblock_remove_range(&memblock.reserved, max_addr,
1373                               (phys_addr_t)ULLONG_MAX);
1374 }
1375
1376 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1377 {
1378         unsigned int left = 0, right = type->cnt;
1379
1380         do {
1381                 unsigned int mid = (right + left) / 2;
1382
1383                 if (addr < type->regions[mid].base)
1384                         right = mid;
1385                 else if (addr >= (type->regions[mid].base +
1386                                   type->regions[mid].size))
1387                         left = mid + 1;
1388                 else
1389                         return mid;
1390         } while (left < right);
1391         return -1;
1392 }
1393
1394 int __init memblock_is_reserved(phys_addr_t addr)
1395 {
1396         return memblock_search(&memblock.reserved, addr) != -1;
1397 }
1398
1399 int __init_memblock memblock_is_memory(phys_addr_t addr)
1400 {
1401         return memblock_search(&memblock.memory, addr) != -1;
1402 }
1403
1404 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1405 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1406                          unsigned long *start_pfn, unsigned long *end_pfn)
1407 {
1408         struct memblock_type *type = &memblock.memory;
1409         int mid = memblock_search(type, PFN_PHYS(pfn));
1410
1411         if (mid == -1)
1412                 return -1;
1413
1414         *start_pfn = PFN_DOWN(type->regions[mid].base);
1415         *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1416
1417         return type->regions[mid].nid;
1418 }
1419 #endif
1420
1421 /**
1422  * memblock_is_region_memory - check if a region is a subset of memory
1423  * @base: base of region to check
1424  * @size: size of region to check
1425  *
1426  * Check if the region [@base, @base+@size) is a subset of a memory block.
1427  *
1428  * RETURNS:
1429  * 0 if false, non-zero if true
1430  */
1431 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1432 {
1433         int idx = memblock_search(&memblock.memory, base);
1434         phys_addr_t end = base + memblock_cap_size(base, &size);
1435
1436         if (idx == -1)
1437                 return 0;
1438         return memblock.memory.regions[idx].base <= base &&
1439                 (memblock.memory.regions[idx].base +
1440                  memblock.memory.regions[idx].size) >= end;
1441 }
1442
1443 /**
1444  * memblock_is_region_reserved - check if a region intersects reserved memory
1445  * @base: base of region to check
1446  * @size: size of region to check
1447  *
1448  * Check if the region [@base, @base+@size) intersects a reserved memory block.
1449  *
1450  * RETURNS:
1451  * 0 if false, non-zero if true
1452  */
1453 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1454 {
1455         memblock_cap_size(base, &size);
1456         return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1457 }
1458
1459 void __init_memblock memblock_trim_memory(phys_addr_t align)
1460 {
1461         phys_addr_t start, end, orig_start, orig_end;
1462         struct memblock_region *r;
1463
1464         for_each_memblock(memory, r) {
1465                 orig_start = r->base;
1466                 orig_end = r->base + r->size;
1467                 start = round_up(orig_start, align);
1468                 end = round_down(orig_end, align);
1469
1470                 if (start == orig_start && end == orig_end)
1471                         continue;
1472
1473                 if (start < end) {
1474                         r->base = start;
1475                         r->size = end - start;
1476                 } else {
1477                         memblock_remove_region(&memblock.memory,
1478                                                r - memblock.memory.regions);
1479                         r--;
1480                 }
1481         }
1482 }
1483
1484 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1485 {
1486         memblock.current_limit = limit;
1487 }
1488
1489 phys_addr_t __init_memblock memblock_get_current_limit(void)
1490 {
1491         return memblock.current_limit;
1492 }
1493
1494 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1495 {
1496         unsigned long long base, size;
1497         unsigned long flags;
1498         int i;
1499
1500         pr_info(" %s.cnt  = 0x%lx\n", name, type->cnt);
1501
1502         for (i = 0; i < type->cnt; i++) {
1503                 struct memblock_region *rgn = &type->regions[i];
1504                 char nid_buf[32] = "";
1505
1506                 base = rgn->base;
1507                 size = rgn->size;
1508                 flags = rgn->flags;
1509 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1510                 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1511                         snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1512                                  memblock_get_region_node(rgn));
1513 #endif
1514                 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1515                         name, i, base, base + size - 1, size, nid_buf, flags);
1516         }
1517 }
1518
1519 void __init_memblock __memblock_dump_all(void)
1520 {
1521         pr_info("MEMBLOCK configuration:\n");
1522         pr_info(" memory size = %#llx reserved size = %#llx\n",
1523                 (unsigned long long)memblock.memory.total_size,
1524                 (unsigned long long)memblock.reserved.total_size);
1525
1526         memblock_dump(&memblock.memory, "memory");
1527         memblock_dump(&memblock.reserved, "reserved");
1528 }
1529
1530 void __init memblock_allow_resize(void)
1531 {
1532         memblock_can_resize = 1;
1533 }
1534
1535 static int __init early_memblock(char *p)
1536 {
1537         if (p && strstr(p, "debug"))
1538                 memblock_debug = 1;
1539         return 0;
1540 }
1541 early_param("memblock", early_memblock);
1542
1543 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1544
1545 static int memblock_debug_show(struct seq_file *m, void *private)
1546 {
1547         struct memblock_type *type = m->private;
1548         struct memblock_region *reg;
1549         int i;
1550
1551         for (i = 0; i < type->cnt; i++) {
1552                 reg = &type->regions[i];
1553                 seq_printf(m, "%4d: ", i);
1554                 if (sizeof(phys_addr_t) == 4)
1555                         seq_printf(m, "0x%08lx..0x%08lx\n",
1556                                    (unsigned long)reg->base,
1557                                    (unsigned long)(reg->base + reg->size - 1));
1558                 else
1559                         seq_printf(m, "0x%016llx..0x%016llx\n",
1560                                    (unsigned long long)reg->base,
1561                                    (unsigned long long)(reg->base + reg->size - 1));
1562
1563         }
1564         return 0;
1565 }
1566
1567 static int memblock_debug_open(struct inode *inode, struct file *file)
1568 {
1569         return single_open(file, memblock_debug_show, inode->i_private);
1570 }
1571
1572 static const struct file_operations memblock_debug_fops = {
1573         .open = memblock_debug_open,
1574         .read = seq_read,
1575         .llseek = seq_lseek,
1576         .release = single_release,
1577 };
1578
1579 static int __init memblock_init_debugfs(void)
1580 {
1581         struct dentry *root = debugfs_create_dir("memblock", NULL);
1582         if (!root)
1583                 return -ENXIO;
1584         debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1585         debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1586 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1587         debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1588 #endif
1589
1590         return 0;
1591 }
1592 __initcall(memblock_init_debugfs);
1593
1594 #endif /* CONFIG_DEBUG_FS */