Merge tag 'for-linus-4.17-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /*
55  * A few notes about the KSM scanning process,
56  * to make it easier to understand the data structures below:
57  *
58  * In order to reduce excessive scanning, KSM sorts the memory pages by their
59  * contents into a data structure that holds pointers to the pages' locations.
60  *
61  * Since the contents of the pages may change at any moment, KSM cannot just
62  * insert the pages into a normal sorted tree and expect it to find anything.
63  * Therefore KSM uses two data structures - the stable and the unstable tree.
64  *
65  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66  * by their contents.  Because each such page is write-protected, searching on
67  * this tree is fully assured to be working (except when pages are unmapped),
68  * and therefore this tree is called the stable tree.
69  *
70  * In addition to the stable tree, KSM uses a second data structure called the
71  * unstable tree: this tree holds pointers to pages which have been found to
72  * be "unchanged for a period of time".  The unstable tree sorts these pages
73  * by their contents, but since they are not write-protected, KSM cannot rely
74  * upon the unstable tree to work correctly - the unstable tree is liable to
75  * be corrupted as its contents are modified, and so it is called unstable.
76  *
77  * KSM solves this problem by several techniques:
78  *
79  * 1) The unstable tree is flushed every time KSM completes scanning all
80  *    memory areas, and then the tree is rebuilt again from the beginning.
81  * 2) KSM will only insert into the unstable tree, pages whose hash value
82  *    has not changed since the previous scan of all memory areas.
83  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84  *    colors of the nodes and not on their contents, assuring that even when
85  *    the tree gets "corrupted" it won't get out of balance, so scanning time
86  *    remains the same (also, searching and inserting nodes in an rbtree uses
87  *    the same algorithm, so we have no overhead when we flush and rebuild).
88  * 4) KSM never flushes the stable tree, which means that even if it were to
89  *    take 10 attempts to find a page in the unstable tree, once it is found,
90  *    it is secured in the stable tree.  (When we scan a new page, we first
91  *    compare it against the stable tree, and then against the unstable tree.)
92  *
93  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94  * stable trees and multiple unstable trees: one of each for each NUMA node.
95  */
96
97 /**
98  * struct mm_slot - ksm information per mm that is being scanned
99  * @link: link to the mm_slots hash list
100  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102  * @mm: the mm that this information is valid for
103  */
104 struct mm_slot {
105         struct hlist_node link;
106         struct list_head mm_list;
107         struct rmap_item *rmap_list;
108         struct mm_struct *mm;
109 };
110
111 /**
112  * struct ksm_scan - cursor for scanning
113  * @mm_slot: the current mm_slot we are scanning
114  * @address: the next address inside that to be scanned
115  * @rmap_list: link to the next rmap to be scanned in the rmap_list
116  * @seqnr: count of completed full scans (needed when removing unstable node)
117  *
118  * There is only the one ksm_scan instance of this cursor structure.
119  */
120 struct ksm_scan {
121         struct mm_slot *mm_slot;
122         unsigned long address;
123         struct rmap_item **rmap_list;
124         unsigned long seqnr;
125 };
126
127 /**
128  * struct stable_node - node of the stable rbtree
129  * @node: rb node of this ksm page in the stable tree
130  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132  * @list: linked into migrate_nodes, pending placement in the proper node tree
133  * @hlist: hlist head of rmap_items using this ksm page
134  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135  * @chain_prune_time: time of the last full garbage collection
136  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138  */
139 struct stable_node {
140         union {
141                 struct rb_node node;    /* when node of stable tree */
142                 struct {                /* when listed for migration */
143                         struct list_head *head;
144                         struct {
145                                 struct hlist_node hlist_dup;
146                                 struct list_head list;
147                         };
148                 };
149         };
150         struct hlist_head hlist;
151         union {
152                 unsigned long kpfn;
153                 unsigned long chain_prune_time;
154         };
155         /*
156          * STABLE_NODE_CHAIN can be any negative number in
157          * rmap_hlist_len negative range, but better not -1 to be able
158          * to reliably detect underflows.
159          */
160 #define STABLE_NODE_CHAIN -1024
161         int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163         int nid;
164 #endif
165 };
166
167 /**
168  * struct rmap_item - reverse mapping item for virtual addresses
169  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171  * @nid: NUMA node id of unstable tree in which linked (may not match page)
172  * @mm: the memory structure this rmap_item is pointing into
173  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174  * @oldchecksum: previous checksum of the page at that virtual address
175  * @node: rb node of this rmap_item in the unstable tree
176  * @head: pointer to stable_node heading this list in the stable tree
177  * @hlist: link into hlist of rmap_items hanging off that stable_node
178  */
179 struct rmap_item {
180         struct rmap_item *rmap_list;
181         union {
182                 struct anon_vma *anon_vma;      /* when stable */
183 #ifdef CONFIG_NUMA
184                 int nid;                /* when node of unstable tree */
185 #endif
186         };
187         struct mm_struct *mm;
188         unsigned long address;          /* + low bits used for flags below */
189         unsigned int oldchecksum;       /* when unstable */
190         union {
191                 struct rb_node node;    /* when node of unstable tree */
192                 struct {                /* when listed from stable tree */
193                         struct stable_node *head;
194                         struct hlist_node hlist;
195                 };
196         };
197 };
198
199 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
201 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
202
203 /* The stable and unstable tree heads */
204 static struct rb_root one_stable_tree[1] = { RB_ROOT };
205 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206 static struct rb_root *root_stable_tree = one_stable_tree;
207 static struct rb_root *root_unstable_tree = one_unstable_tree;
208
209 /* Recently migrated nodes of stable tree, pending proper placement */
210 static LIST_HEAD(migrate_nodes);
211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
212
213 #define MM_SLOTS_HASH_BITS 10
214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
215
216 static struct mm_slot ksm_mm_head = {
217         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
218 };
219 static struct ksm_scan ksm_scan = {
220         .mm_slot = &ksm_mm_head,
221 };
222
223 static struct kmem_cache *rmap_item_cache;
224 static struct kmem_cache *stable_node_cache;
225 static struct kmem_cache *mm_slot_cache;
226
227 /* The number of nodes in the stable tree */
228 static unsigned long ksm_pages_shared;
229
230 /* The number of page slots additionally sharing those nodes */
231 static unsigned long ksm_pages_sharing;
232
233 /* The number of nodes in the unstable tree */
234 static unsigned long ksm_pages_unshared;
235
236 /* The number of rmap_items in use: to calculate pages_volatile */
237 static unsigned long ksm_rmap_items;
238
239 /* The number of stable_node chains */
240 static unsigned long ksm_stable_node_chains;
241
242 /* The number of stable_node dups linked to the stable_node chains */
243 static unsigned long ksm_stable_node_dups;
244
245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
246 static int ksm_stable_node_chains_prune_millisecs = 2000;
247
248 /* Maximum number of page slots sharing a stable node */
249 static int ksm_max_page_sharing = 256;
250
251 /* Number of pages ksmd should scan in one batch */
252 static unsigned int ksm_thread_pages_to_scan = 100;
253
254 /* Milliseconds ksmd should sleep between batches */
255 static unsigned int ksm_thread_sleep_millisecs = 20;
256
257 /* Checksum of an empty (zeroed) page */
258 static unsigned int zero_checksum __read_mostly;
259
260 /* Whether to merge empty (zeroed) pages with actual zero pages */
261 static bool ksm_use_zero_pages __read_mostly;
262
263 #ifdef CONFIG_NUMA
264 /* Zeroed when merging across nodes is not allowed */
265 static unsigned int ksm_merge_across_nodes = 1;
266 static int ksm_nr_node_ids = 1;
267 #else
268 #define ksm_merge_across_nodes  1U
269 #define ksm_nr_node_ids         1
270 #endif
271
272 #define KSM_RUN_STOP    0
273 #define KSM_RUN_MERGE   1
274 #define KSM_RUN_UNMERGE 2
275 #define KSM_RUN_OFFLINE 4
276 static unsigned long ksm_run = KSM_RUN_STOP;
277 static void wait_while_offlining(void);
278
279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280 static DEFINE_MUTEX(ksm_thread_mutex);
281 static DEFINE_SPINLOCK(ksm_mmlist_lock);
282
283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284                 sizeof(struct __struct), __alignof__(struct __struct),\
285                 (__flags), NULL)
286
287 static int __init ksm_slab_init(void)
288 {
289         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290         if (!rmap_item_cache)
291                 goto out;
292
293         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294         if (!stable_node_cache)
295                 goto out_free1;
296
297         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298         if (!mm_slot_cache)
299                 goto out_free2;
300
301         return 0;
302
303 out_free2:
304         kmem_cache_destroy(stable_node_cache);
305 out_free1:
306         kmem_cache_destroy(rmap_item_cache);
307 out:
308         return -ENOMEM;
309 }
310
311 static void __init ksm_slab_free(void)
312 {
313         kmem_cache_destroy(mm_slot_cache);
314         kmem_cache_destroy(stable_node_cache);
315         kmem_cache_destroy(rmap_item_cache);
316         mm_slot_cache = NULL;
317 }
318
319 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
320 {
321         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
322 }
323
324 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
325 {
326         return dup->head == STABLE_NODE_DUP_HEAD;
327 }
328
329 static inline void stable_node_chain_add_dup(struct stable_node *dup,
330                                              struct stable_node *chain)
331 {
332         VM_BUG_ON(is_stable_node_dup(dup));
333         dup->head = STABLE_NODE_DUP_HEAD;
334         VM_BUG_ON(!is_stable_node_chain(chain));
335         hlist_add_head(&dup->hlist_dup, &chain->hlist);
336         ksm_stable_node_dups++;
337 }
338
339 static inline void __stable_node_dup_del(struct stable_node *dup)
340 {
341         VM_BUG_ON(!is_stable_node_dup(dup));
342         hlist_del(&dup->hlist_dup);
343         ksm_stable_node_dups--;
344 }
345
346 static inline void stable_node_dup_del(struct stable_node *dup)
347 {
348         VM_BUG_ON(is_stable_node_chain(dup));
349         if (is_stable_node_dup(dup))
350                 __stable_node_dup_del(dup);
351         else
352                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353 #ifdef CONFIG_DEBUG_VM
354         dup->head = NULL;
355 #endif
356 }
357
358 static inline struct rmap_item *alloc_rmap_item(void)
359 {
360         struct rmap_item *rmap_item;
361
362         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363                                                 __GFP_NORETRY | __GFP_NOWARN);
364         if (rmap_item)
365                 ksm_rmap_items++;
366         return rmap_item;
367 }
368
369 static inline void free_rmap_item(struct rmap_item *rmap_item)
370 {
371         ksm_rmap_items--;
372         rmap_item->mm = NULL;   /* debug safety */
373         kmem_cache_free(rmap_item_cache, rmap_item);
374 }
375
376 static inline struct stable_node *alloc_stable_node(void)
377 {
378         /*
379          * The allocation can take too long with GFP_KERNEL when memory is under
380          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
381          * grants access to memory reserves, helping to avoid this problem.
382          */
383         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
384 }
385
386 static inline void free_stable_node(struct stable_node *stable_node)
387 {
388         VM_BUG_ON(stable_node->rmap_hlist_len &&
389                   !is_stable_node_chain(stable_node));
390         kmem_cache_free(stable_node_cache, stable_node);
391 }
392
393 static inline struct mm_slot *alloc_mm_slot(void)
394 {
395         if (!mm_slot_cache)     /* initialization failed */
396                 return NULL;
397         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
398 }
399
400 static inline void free_mm_slot(struct mm_slot *mm_slot)
401 {
402         kmem_cache_free(mm_slot_cache, mm_slot);
403 }
404
405 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
406 {
407         struct mm_slot *slot;
408
409         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
410                 if (slot->mm == mm)
411                         return slot;
412
413         return NULL;
414 }
415
416 static void insert_to_mm_slots_hash(struct mm_struct *mm,
417                                     struct mm_slot *mm_slot)
418 {
419         mm_slot->mm = mm;
420         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
421 }
422
423 /*
424  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425  * page tables after it has passed through ksm_exit() - which, if necessary,
426  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
427  * a special flag: they can just back out as soon as mm_users goes to zero.
428  * ksm_test_exit() is used throughout to make this test for exit: in some
429  * places for correctness, in some places just to avoid unnecessary work.
430  */
431 static inline bool ksm_test_exit(struct mm_struct *mm)
432 {
433         return atomic_read(&mm->mm_users) == 0;
434 }
435
436 /*
437  * We use break_ksm to break COW on a ksm page: it's a stripped down
438  *
439  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
440  *              put_page(page);
441  *
442  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443  * in case the application has unmapped and remapped mm,addr meanwhile.
444  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
445  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
446  *
447  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448  * of the process that owns 'vma'.  We also do not want to enforce
449  * protection keys here anyway.
450  */
451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
452 {
453         struct page *page;
454         int ret = 0;
455
456         do {
457                 cond_resched();
458                 page = follow_page(vma, addr,
459                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
460                 if (IS_ERR_OR_NULL(page))
461                         break;
462                 if (PageKsm(page))
463                         ret = handle_mm_fault(vma, addr,
464                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
465                 else
466                         ret = VM_FAULT_WRITE;
467                 put_page(page);
468         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
469         /*
470          * We must loop because handle_mm_fault() may back out if there's
471          * any difficulty e.g. if pte accessed bit gets updated concurrently.
472          *
473          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474          * COW has been broken, even if the vma does not permit VM_WRITE;
475          * but note that a concurrent fault might break PageKsm for us.
476          *
477          * VM_FAULT_SIGBUS could occur if we race with truncation of the
478          * backing file, which also invalidates anonymous pages: that's
479          * okay, that truncation will have unmapped the PageKsm for us.
480          *
481          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483          * current task has TIF_MEMDIE set, and will be OOM killed on return
484          * to user; and ksmd, having no mm, would never be chosen for that.
485          *
486          * But if the mm is in a limited mem_cgroup, then the fault may fail
487          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488          * even ksmd can fail in this way - though it's usually breaking ksm
489          * just to undo a merge it made a moment before, so unlikely to oom.
490          *
491          * That's a pity: we might therefore have more kernel pages allocated
492          * than we're counting as nodes in the stable tree; but ksm_do_scan
493          * will retry to break_cow on each pass, so should recover the page
494          * in due course.  The important thing is to not let VM_MERGEABLE
495          * be cleared while any such pages might remain in the area.
496          */
497         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
498 }
499
500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501                 unsigned long addr)
502 {
503         struct vm_area_struct *vma;
504         if (ksm_test_exit(mm))
505                 return NULL;
506         vma = find_vma(mm, addr);
507         if (!vma || vma->vm_start > addr)
508                 return NULL;
509         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510                 return NULL;
511         return vma;
512 }
513
514 static void break_cow(struct rmap_item *rmap_item)
515 {
516         struct mm_struct *mm = rmap_item->mm;
517         unsigned long addr = rmap_item->address;
518         struct vm_area_struct *vma;
519
520         /*
521          * It is not an accident that whenever we want to break COW
522          * to undo, we also need to drop a reference to the anon_vma.
523          */
524         put_anon_vma(rmap_item->anon_vma);
525
526         down_read(&mm->mmap_sem);
527         vma = find_mergeable_vma(mm, addr);
528         if (vma)
529                 break_ksm(vma, addr);
530         up_read(&mm->mmap_sem);
531 }
532
533 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
534 {
535         struct mm_struct *mm = rmap_item->mm;
536         unsigned long addr = rmap_item->address;
537         struct vm_area_struct *vma;
538         struct page *page;
539
540         down_read(&mm->mmap_sem);
541         vma = find_mergeable_vma(mm, addr);
542         if (!vma)
543                 goto out;
544
545         page = follow_page(vma, addr, FOLL_GET);
546         if (IS_ERR_OR_NULL(page))
547                 goto out;
548         if (PageAnon(page)) {
549                 flush_anon_page(vma, page, addr);
550                 flush_dcache_page(page);
551         } else {
552                 put_page(page);
553 out:
554                 page = NULL;
555         }
556         up_read(&mm->mmap_sem);
557         return page;
558 }
559
560 /*
561  * This helper is used for getting right index into array of tree roots.
562  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564  * every node has its own stable and unstable tree.
565  */
566 static inline int get_kpfn_nid(unsigned long kpfn)
567 {
568         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
569 }
570
571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572                                                    struct rb_root *root)
573 {
574         struct stable_node *chain = alloc_stable_node();
575         VM_BUG_ON(is_stable_node_chain(dup));
576         if (likely(chain)) {
577                 INIT_HLIST_HEAD(&chain->hlist);
578                 chain->chain_prune_time = jiffies;
579                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581                 chain->nid = -1; /* debug */
582 #endif
583                 ksm_stable_node_chains++;
584
585                 /*
586                  * Put the stable node chain in the first dimension of
587                  * the stable tree and at the same time remove the old
588                  * stable node.
589                  */
590                 rb_replace_node(&dup->node, &chain->node, root);
591
592                 /*
593                  * Move the old stable node to the second dimension
594                  * queued in the hlist_dup. The invariant is that all
595                  * dup stable_nodes in the chain->hlist point to pages
596                  * that are wrprotected and have the exact same
597                  * content.
598                  */
599                 stable_node_chain_add_dup(dup, chain);
600         }
601         return chain;
602 }
603
604 static inline void free_stable_node_chain(struct stable_node *chain,
605                                           struct rb_root *root)
606 {
607         rb_erase(&chain->node, root);
608         free_stable_node(chain);
609         ksm_stable_node_chains--;
610 }
611
612 static void remove_node_from_stable_tree(struct stable_node *stable_node)
613 {
614         struct rmap_item *rmap_item;
615
616         /* check it's not STABLE_NODE_CHAIN or negative */
617         BUG_ON(stable_node->rmap_hlist_len < 0);
618
619         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
620                 if (rmap_item->hlist.next)
621                         ksm_pages_sharing--;
622                 else
623                         ksm_pages_shared--;
624                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625                 stable_node->rmap_hlist_len--;
626                 put_anon_vma(rmap_item->anon_vma);
627                 rmap_item->address &= PAGE_MASK;
628                 cond_resched();
629         }
630
631         /*
632          * We need the second aligned pointer of the migrate_nodes
633          * list_head to stay clear from the rb_parent_color union
634          * (aligned and different than any node) and also different
635          * from &migrate_nodes. This will verify that future list.h changes
636          * don't break STABLE_NODE_DUP_HEAD.
637          */
638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641 #endif
642
643         if (stable_node->head == &migrate_nodes)
644                 list_del(&stable_node->list);
645         else
646                 stable_node_dup_del(stable_node);
647         free_stable_node(stable_node);
648 }
649
650 /*
651  * get_ksm_page: checks if the page indicated by the stable node
652  * is still its ksm page, despite having held no reference to it.
653  * In which case we can trust the content of the page, and it
654  * returns the gotten page; but if the page has now been zapped,
655  * remove the stale node from the stable tree and return NULL.
656  * But beware, the stable node's page might be being migrated.
657  *
658  * You would expect the stable_node to hold a reference to the ksm page.
659  * But if it increments the page's count, swapping out has to wait for
660  * ksmd to come around again before it can free the page, which may take
661  * seconds or even minutes: much too unresponsive.  So instead we use a
662  * "keyhole reference": access to the ksm page from the stable node peeps
663  * out through its keyhole to see if that page still holds the right key,
664  * pointing back to this stable node.  This relies on freeing a PageAnon
665  * page to reset its page->mapping to NULL, and relies on no other use of
666  * a page to put something that might look like our key in page->mapping.
667  * is on its way to being freed; but it is an anomaly to bear in mind.
668  */
669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
670 {
671         struct page *page;
672         void *expected_mapping;
673         unsigned long kpfn;
674
675         expected_mapping = (void *)((unsigned long)stable_node |
676                                         PAGE_MAPPING_KSM);
677 again:
678         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
679         page = pfn_to_page(kpfn);
680         if (READ_ONCE(page->mapping) != expected_mapping)
681                 goto stale;
682
683         /*
684          * We cannot do anything with the page while its refcount is 0.
685          * Usually 0 means free, or tail of a higher-order page: in which
686          * case this node is no longer referenced, and should be freed;
687          * however, it might mean that the page is under page_freeze_refs().
688          * The __remove_mapping() case is easy, again the node is now stale;
689          * but if page is swapcache in migrate_page_move_mapping(), it might
690          * still be our page, in which case it's essential to keep the node.
691          */
692         while (!get_page_unless_zero(page)) {
693                 /*
694                  * Another check for page->mapping != expected_mapping would
695                  * work here too.  We have chosen the !PageSwapCache test to
696                  * optimize the common case, when the page is or is about to
697                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
698                  * in the freeze_refs section of __remove_mapping(); but Anon
699                  * page->mapping reset to NULL later, in free_pages_prepare().
700                  */
701                 if (!PageSwapCache(page))
702                         goto stale;
703                 cpu_relax();
704         }
705
706         if (READ_ONCE(page->mapping) != expected_mapping) {
707                 put_page(page);
708                 goto stale;
709         }
710
711         if (lock_it) {
712                 lock_page(page);
713                 if (READ_ONCE(page->mapping) != expected_mapping) {
714                         unlock_page(page);
715                         put_page(page);
716                         goto stale;
717                 }
718         }
719         return page;
720
721 stale:
722         /*
723          * We come here from above when page->mapping or !PageSwapCache
724          * suggests that the node is stale; but it might be under migration.
725          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
726          * before checking whether node->kpfn has been changed.
727          */
728         smp_rmb();
729         if (READ_ONCE(stable_node->kpfn) != kpfn)
730                 goto again;
731         remove_node_from_stable_tree(stable_node);
732         return NULL;
733 }
734
735 /*
736  * Removing rmap_item from stable or unstable tree.
737  * This function will clean the information from the stable/unstable tree.
738  */
739 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
740 {
741         if (rmap_item->address & STABLE_FLAG) {
742                 struct stable_node *stable_node;
743                 struct page *page;
744
745                 stable_node = rmap_item->head;
746                 page = get_ksm_page(stable_node, true);
747                 if (!page)
748                         goto out;
749
750                 hlist_del(&rmap_item->hlist);
751                 unlock_page(page);
752                 put_page(page);
753
754                 if (!hlist_empty(&stable_node->hlist))
755                         ksm_pages_sharing--;
756                 else
757                         ksm_pages_shared--;
758                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
759                 stable_node->rmap_hlist_len--;
760
761                 put_anon_vma(rmap_item->anon_vma);
762                 rmap_item->address &= PAGE_MASK;
763
764         } else if (rmap_item->address & UNSTABLE_FLAG) {
765                 unsigned char age;
766                 /*
767                  * Usually ksmd can and must skip the rb_erase, because
768                  * root_unstable_tree was already reset to RB_ROOT.
769                  * But be careful when an mm is exiting: do the rb_erase
770                  * if this rmap_item was inserted by this scan, rather
771                  * than left over from before.
772                  */
773                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
774                 BUG_ON(age > 1);
775                 if (!age)
776                         rb_erase(&rmap_item->node,
777                                  root_unstable_tree + NUMA(rmap_item->nid));
778                 ksm_pages_unshared--;
779                 rmap_item->address &= PAGE_MASK;
780         }
781 out:
782         cond_resched();         /* we're called from many long loops */
783 }
784
785 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
786                                        struct rmap_item **rmap_list)
787 {
788         while (*rmap_list) {
789                 struct rmap_item *rmap_item = *rmap_list;
790                 *rmap_list = rmap_item->rmap_list;
791                 remove_rmap_item_from_tree(rmap_item);
792                 free_rmap_item(rmap_item);
793         }
794 }
795
796 /*
797  * Though it's very tempting to unmerge rmap_items from stable tree rather
798  * than check every pte of a given vma, the locking doesn't quite work for
799  * that - an rmap_item is assigned to the stable tree after inserting ksm
800  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
801  * rmap_items from parent to child at fork time (so as not to waste time
802  * if exit comes before the next scan reaches it).
803  *
804  * Similarly, although we'd like to remove rmap_items (so updating counts
805  * and freeing memory) when unmerging an area, it's easier to leave that
806  * to the next pass of ksmd - consider, for example, how ksmd might be
807  * in cmp_and_merge_page on one of the rmap_items we would be removing.
808  */
809 static int unmerge_ksm_pages(struct vm_area_struct *vma,
810                              unsigned long start, unsigned long end)
811 {
812         unsigned long addr;
813         int err = 0;
814
815         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
816                 if (ksm_test_exit(vma->vm_mm))
817                         break;
818                 if (signal_pending(current))
819                         err = -ERESTARTSYS;
820                 else
821                         err = break_ksm(vma, addr);
822         }
823         return err;
824 }
825
826 #ifdef CONFIG_SYSFS
827 /*
828  * Only called through the sysfs control interface:
829  */
830 static int remove_stable_node(struct stable_node *stable_node)
831 {
832         struct page *page;
833         int err;
834
835         page = get_ksm_page(stable_node, true);
836         if (!page) {
837                 /*
838                  * get_ksm_page did remove_node_from_stable_tree itself.
839                  */
840                 return 0;
841         }
842
843         if (WARN_ON_ONCE(page_mapped(page))) {
844                 /*
845                  * This should not happen: but if it does, just refuse to let
846                  * merge_across_nodes be switched - there is no need to panic.
847                  */
848                 err = -EBUSY;
849         } else {
850                 /*
851                  * The stable node did not yet appear stale to get_ksm_page(),
852                  * since that allows for an unmapped ksm page to be recognized
853                  * right up until it is freed; but the node is safe to remove.
854                  * This page might be in a pagevec waiting to be freed,
855                  * or it might be PageSwapCache (perhaps under writeback),
856                  * or it might have been removed from swapcache a moment ago.
857                  */
858                 set_page_stable_node(page, NULL);
859                 remove_node_from_stable_tree(stable_node);
860                 err = 0;
861         }
862
863         unlock_page(page);
864         put_page(page);
865         return err;
866 }
867
868 static int remove_stable_node_chain(struct stable_node *stable_node,
869                                     struct rb_root *root)
870 {
871         struct stable_node *dup;
872         struct hlist_node *hlist_safe;
873
874         if (!is_stable_node_chain(stable_node)) {
875                 VM_BUG_ON(is_stable_node_dup(stable_node));
876                 if (remove_stable_node(stable_node))
877                         return true;
878                 else
879                         return false;
880         }
881
882         hlist_for_each_entry_safe(dup, hlist_safe,
883                                   &stable_node->hlist, hlist_dup) {
884                 VM_BUG_ON(!is_stable_node_dup(dup));
885                 if (remove_stable_node(dup))
886                         return true;
887         }
888         BUG_ON(!hlist_empty(&stable_node->hlist));
889         free_stable_node_chain(stable_node, root);
890         return false;
891 }
892
893 static int remove_all_stable_nodes(void)
894 {
895         struct stable_node *stable_node, *next;
896         int nid;
897         int err = 0;
898
899         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
900                 while (root_stable_tree[nid].rb_node) {
901                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
902                                                 struct stable_node, node);
903                         if (remove_stable_node_chain(stable_node,
904                                                      root_stable_tree + nid)) {
905                                 err = -EBUSY;
906                                 break;  /* proceed to next nid */
907                         }
908                         cond_resched();
909                 }
910         }
911         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
912                 if (remove_stable_node(stable_node))
913                         err = -EBUSY;
914                 cond_resched();
915         }
916         return err;
917 }
918
919 static int unmerge_and_remove_all_rmap_items(void)
920 {
921         struct mm_slot *mm_slot;
922         struct mm_struct *mm;
923         struct vm_area_struct *vma;
924         int err = 0;
925
926         spin_lock(&ksm_mmlist_lock);
927         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
928                                                 struct mm_slot, mm_list);
929         spin_unlock(&ksm_mmlist_lock);
930
931         for (mm_slot = ksm_scan.mm_slot;
932                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
933                 mm = mm_slot->mm;
934                 down_read(&mm->mmap_sem);
935                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
936                         if (ksm_test_exit(mm))
937                                 break;
938                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
939                                 continue;
940                         err = unmerge_ksm_pages(vma,
941                                                 vma->vm_start, vma->vm_end);
942                         if (err)
943                                 goto error;
944                 }
945
946                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
947                 up_read(&mm->mmap_sem);
948
949                 spin_lock(&ksm_mmlist_lock);
950                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
951                                                 struct mm_slot, mm_list);
952                 if (ksm_test_exit(mm)) {
953                         hash_del(&mm_slot->link);
954                         list_del(&mm_slot->mm_list);
955                         spin_unlock(&ksm_mmlist_lock);
956
957                         free_mm_slot(mm_slot);
958                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
959                         mmdrop(mm);
960                 } else
961                         spin_unlock(&ksm_mmlist_lock);
962         }
963
964         /* Clean up stable nodes, but don't worry if some are still busy */
965         remove_all_stable_nodes();
966         ksm_scan.seqnr = 0;
967         return 0;
968
969 error:
970         up_read(&mm->mmap_sem);
971         spin_lock(&ksm_mmlist_lock);
972         ksm_scan.mm_slot = &ksm_mm_head;
973         spin_unlock(&ksm_mmlist_lock);
974         return err;
975 }
976 #endif /* CONFIG_SYSFS */
977
978 static u32 calc_checksum(struct page *page)
979 {
980         u32 checksum;
981         void *addr = kmap_atomic(page);
982         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
983         kunmap_atomic(addr);
984         return checksum;
985 }
986
987 static int memcmp_pages(struct page *page1, struct page *page2)
988 {
989         char *addr1, *addr2;
990         int ret;
991
992         addr1 = kmap_atomic(page1);
993         addr2 = kmap_atomic(page2);
994         ret = memcmp(addr1, addr2, PAGE_SIZE);
995         kunmap_atomic(addr2);
996         kunmap_atomic(addr1);
997         return ret;
998 }
999
1000 static inline int pages_identical(struct page *page1, struct page *page2)
1001 {
1002         return !memcmp_pages(page1, page2);
1003 }
1004
1005 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1006                               pte_t *orig_pte)
1007 {
1008         struct mm_struct *mm = vma->vm_mm;
1009         struct page_vma_mapped_walk pvmw = {
1010                 .page = page,
1011                 .vma = vma,
1012         };
1013         int swapped;
1014         int err = -EFAULT;
1015         unsigned long mmun_start;       /* For mmu_notifiers */
1016         unsigned long mmun_end;         /* For mmu_notifiers */
1017
1018         pvmw.address = page_address_in_vma(page, vma);
1019         if (pvmw.address == -EFAULT)
1020                 goto out;
1021
1022         BUG_ON(PageTransCompound(page));
1023
1024         mmun_start = pvmw.address;
1025         mmun_end   = pvmw.address + PAGE_SIZE;
1026         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1027
1028         if (!page_vma_mapped_walk(&pvmw))
1029                 goto out_mn;
1030         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1031                 goto out_unlock;
1032
1033         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1034             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1035                                                 mm_tlb_flush_pending(mm)) {
1036                 pte_t entry;
1037
1038                 swapped = PageSwapCache(page);
1039                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1040                 /*
1041                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1042                  * take any lock, therefore the check that we are going to make
1043                  * with the pagecount against the mapcount is racey and
1044                  * O_DIRECT can happen right after the check.
1045                  * So we clear the pte and flush the tlb before the check
1046                  * this assure us that no O_DIRECT can happen after the check
1047                  * or in the middle of the check.
1048                  *
1049                  * No need to notify as we are downgrading page table to read
1050                  * only not changing it to point to a new page.
1051                  *
1052                  * See Documentation/vm/mmu_notifier.txt
1053                  */
1054                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1055                 /*
1056                  * Check that no O_DIRECT or similar I/O is in progress on the
1057                  * page
1058                  */
1059                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1060                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1061                         goto out_unlock;
1062                 }
1063                 if (pte_dirty(entry))
1064                         set_page_dirty(page);
1065
1066                 if (pte_protnone(entry))
1067                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1068                 else
1069                         entry = pte_mkclean(pte_wrprotect(entry));
1070                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1071         }
1072         *orig_pte = *pvmw.pte;
1073         err = 0;
1074
1075 out_unlock:
1076         page_vma_mapped_walk_done(&pvmw);
1077 out_mn:
1078         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1079 out:
1080         return err;
1081 }
1082
1083 /**
1084  * replace_page - replace page in vma by new ksm page
1085  * @vma:      vma that holds the pte pointing to page
1086  * @page:     the page we are replacing by kpage
1087  * @kpage:    the ksm page we replace page by
1088  * @orig_pte: the original value of the pte
1089  *
1090  * Returns 0 on success, -EFAULT on failure.
1091  */
1092 static int replace_page(struct vm_area_struct *vma, struct page *page,
1093                         struct page *kpage, pte_t orig_pte)
1094 {
1095         struct mm_struct *mm = vma->vm_mm;
1096         pmd_t *pmd;
1097         pte_t *ptep;
1098         pte_t newpte;
1099         spinlock_t *ptl;
1100         unsigned long addr;
1101         int err = -EFAULT;
1102         unsigned long mmun_start;       /* For mmu_notifiers */
1103         unsigned long mmun_end;         /* For mmu_notifiers */
1104
1105         addr = page_address_in_vma(page, vma);
1106         if (addr == -EFAULT)
1107                 goto out;
1108
1109         pmd = mm_find_pmd(mm, addr);
1110         if (!pmd)
1111                 goto out;
1112
1113         mmun_start = addr;
1114         mmun_end   = addr + PAGE_SIZE;
1115         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1116
1117         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1118         if (!pte_same(*ptep, orig_pte)) {
1119                 pte_unmap_unlock(ptep, ptl);
1120                 goto out_mn;
1121         }
1122
1123         /*
1124          * No need to check ksm_use_zero_pages here: we can only have a
1125          * zero_page here if ksm_use_zero_pages was enabled alreaady.
1126          */
1127         if (!is_zero_pfn(page_to_pfn(kpage))) {
1128                 get_page(kpage);
1129                 page_add_anon_rmap(kpage, vma, addr, false);
1130                 newpte = mk_pte(kpage, vma->vm_page_prot);
1131         } else {
1132                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1133                                                vma->vm_page_prot));
1134                 /*
1135                  * We're replacing an anonymous page with a zero page, which is
1136                  * not anonymous. We need to do proper accounting otherwise we
1137                  * will get wrong values in /proc, and a BUG message in dmesg
1138                  * when tearing down the mm.
1139                  */
1140                 dec_mm_counter(mm, MM_ANONPAGES);
1141         }
1142
1143         flush_cache_page(vma, addr, pte_pfn(*ptep));
1144         /*
1145          * No need to notify as we are replacing a read only page with another
1146          * read only page with the same content.
1147          *
1148          * See Documentation/vm/mmu_notifier.txt
1149          */
1150         ptep_clear_flush(vma, addr, ptep);
1151         set_pte_at_notify(mm, addr, ptep, newpte);
1152
1153         page_remove_rmap(page, false);
1154         if (!page_mapped(page))
1155                 try_to_free_swap(page);
1156         put_page(page);
1157
1158         pte_unmap_unlock(ptep, ptl);
1159         err = 0;
1160 out_mn:
1161         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1162 out:
1163         return err;
1164 }
1165
1166 /*
1167  * try_to_merge_one_page - take two pages and merge them into one
1168  * @vma: the vma that holds the pte pointing to page
1169  * @page: the PageAnon page that we want to replace with kpage
1170  * @kpage: the PageKsm page that we want to map instead of page,
1171  *         or NULL the first time when we want to use page as kpage.
1172  *
1173  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1174  */
1175 static int try_to_merge_one_page(struct vm_area_struct *vma,
1176                                  struct page *page, struct page *kpage)
1177 {
1178         pte_t orig_pte = __pte(0);
1179         int err = -EFAULT;
1180
1181         if (page == kpage)                      /* ksm page forked */
1182                 return 0;
1183
1184         if (!PageAnon(page))
1185                 goto out;
1186
1187         /*
1188          * We need the page lock to read a stable PageSwapCache in
1189          * write_protect_page().  We use trylock_page() instead of
1190          * lock_page() because we don't want to wait here - we
1191          * prefer to continue scanning and merging different pages,
1192          * then come back to this page when it is unlocked.
1193          */
1194         if (!trylock_page(page))
1195                 goto out;
1196
1197         if (PageTransCompound(page)) {
1198                 if (split_huge_page(page))
1199                         goto out_unlock;
1200         }
1201
1202         /*
1203          * If this anonymous page is mapped only here, its pte may need
1204          * to be write-protected.  If it's mapped elsewhere, all of its
1205          * ptes are necessarily already write-protected.  But in either
1206          * case, we need to lock and check page_count is not raised.
1207          */
1208         if (write_protect_page(vma, page, &orig_pte) == 0) {
1209                 if (!kpage) {
1210                         /*
1211                          * While we hold page lock, upgrade page from
1212                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1213                          * stable_tree_insert() will update stable_node.
1214                          */
1215                         set_page_stable_node(page, NULL);
1216                         mark_page_accessed(page);
1217                         /*
1218                          * Page reclaim just frees a clean page with no dirty
1219                          * ptes: make sure that the ksm page would be swapped.
1220                          */
1221                         if (!PageDirty(page))
1222                                 SetPageDirty(page);
1223                         err = 0;
1224                 } else if (pages_identical(page, kpage))
1225                         err = replace_page(vma, page, kpage, orig_pte);
1226         }
1227
1228         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1229                 munlock_vma_page(page);
1230                 if (!PageMlocked(kpage)) {
1231                         unlock_page(page);
1232                         lock_page(kpage);
1233                         mlock_vma_page(kpage);
1234                         page = kpage;           /* for final unlock */
1235                 }
1236         }
1237
1238 out_unlock:
1239         unlock_page(page);
1240 out:
1241         return err;
1242 }
1243
1244 /*
1245  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1246  * but no new kernel page is allocated: kpage must already be a ksm page.
1247  *
1248  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1249  */
1250 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1251                                       struct page *page, struct page *kpage)
1252 {
1253         struct mm_struct *mm = rmap_item->mm;
1254         struct vm_area_struct *vma;
1255         int err = -EFAULT;
1256
1257         down_read(&mm->mmap_sem);
1258         vma = find_mergeable_vma(mm, rmap_item->address);
1259         if (!vma)
1260                 goto out;
1261
1262         err = try_to_merge_one_page(vma, page, kpage);
1263         if (err)
1264                 goto out;
1265
1266         /* Unstable nid is in union with stable anon_vma: remove first */
1267         remove_rmap_item_from_tree(rmap_item);
1268
1269         /* Must get reference to anon_vma while still holding mmap_sem */
1270         rmap_item->anon_vma = vma->anon_vma;
1271         get_anon_vma(vma->anon_vma);
1272 out:
1273         up_read(&mm->mmap_sem);
1274         return err;
1275 }
1276
1277 /*
1278  * try_to_merge_two_pages - take two identical pages and prepare them
1279  * to be merged into one page.
1280  *
1281  * This function returns the kpage if we successfully merged two identical
1282  * pages into one ksm page, NULL otherwise.
1283  *
1284  * Note that this function upgrades page to ksm page: if one of the pages
1285  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1286  */
1287 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1288                                            struct page *page,
1289                                            struct rmap_item *tree_rmap_item,
1290                                            struct page *tree_page)
1291 {
1292         int err;
1293
1294         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1295         if (!err) {
1296                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1297                                                         tree_page, page);
1298                 /*
1299                  * If that fails, we have a ksm page with only one pte
1300                  * pointing to it: so break it.
1301                  */
1302                 if (err)
1303                         break_cow(rmap_item);
1304         }
1305         return err ? NULL : page;
1306 }
1307
1308 static __always_inline
1309 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1310 {
1311         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1312         /*
1313          * Check that at least one mapping still exists, otherwise
1314          * there's no much point to merge and share with this
1315          * stable_node, as the underlying tree_page of the other
1316          * sharer is going to be freed soon.
1317          */
1318         return stable_node->rmap_hlist_len &&
1319                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1320 }
1321
1322 static __always_inline
1323 bool is_page_sharing_candidate(struct stable_node *stable_node)
1324 {
1325         return __is_page_sharing_candidate(stable_node, 0);
1326 }
1327
1328 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1329                                     struct stable_node **_stable_node,
1330                                     struct rb_root *root,
1331                                     bool prune_stale_stable_nodes)
1332 {
1333         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1334         struct hlist_node *hlist_safe;
1335         struct page *_tree_page, *tree_page = NULL;
1336         int nr = 0;
1337         int found_rmap_hlist_len;
1338
1339         if (!prune_stale_stable_nodes ||
1340             time_before(jiffies, stable_node->chain_prune_time +
1341                         msecs_to_jiffies(
1342                                 ksm_stable_node_chains_prune_millisecs)))
1343                 prune_stale_stable_nodes = false;
1344         else
1345                 stable_node->chain_prune_time = jiffies;
1346
1347         hlist_for_each_entry_safe(dup, hlist_safe,
1348                                   &stable_node->hlist, hlist_dup) {
1349                 cond_resched();
1350                 /*
1351                  * We must walk all stable_node_dup to prune the stale
1352                  * stable nodes during lookup.
1353                  *
1354                  * get_ksm_page can drop the nodes from the
1355                  * stable_node->hlist if they point to freed pages
1356                  * (that's why we do a _safe walk). The "dup"
1357                  * stable_node parameter itself will be freed from
1358                  * under us if it returns NULL.
1359                  */
1360                 _tree_page = get_ksm_page(dup, false);
1361                 if (!_tree_page)
1362                         continue;
1363                 nr += 1;
1364                 if (is_page_sharing_candidate(dup)) {
1365                         if (!found ||
1366                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1367                                 if (found)
1368                                         put_page(tree_page);
1369                                 found = dup;
1370                                 found_rmap_hlist_len = found->rmap_hlist_len;
1371                                 tree_page = _tree_page;
1372
1373                                 /* skip put_page for found dup */
1374                                 if (!prune_stale_stable_nodes)
1375                                         break;
1376                                 continue;
1377                         }
1378                 }
1379                 put_page(_tree_page);
1380         }
1381
1382         if (found) {
1383                 /*
1384                  * nr is counting all dups in the chain only if
1385                  * prune_stale_stable_nodes is true, otherwise we may
1386                  * break the loop at nr == 1 even if there are
1387                  * multiple entries.
1388                  */
1389                 if (prune_stale_stable_nodes && nr == 1) {
1390                         /*
1391                          * If there's not just one entry it would
1392                          * corrupt memory, better BUG_ON. In KSM
1393                          * context with no lock held it's not even
1394                          * fatal.
1395                          */
1396                         BUG_ON(stable_node->hlist.first->next);
1397
1398                         /*
1399                          * There's just one entry and it is below the
1400                          * deduplication limit so drop the chain.
1401                          */
1402                         rb_replace_node(&stable_node->node, &found->node,
1403                                         root);
1404                         free_stable_node(stable_node);
1405                         ksm_stable_node_chains--;
1406                         ksm_stable_node_dups--;
1407                         /*
1408                          * NOTE: the caller depends on the stable_node
1409                          * to be equal to stable_node_dup if the chain
1410                          * was collapsed.
1411                          */
1412                         *_stable_node = found;
1413                         /*
1414                          * Just for robustneess as stable_node is
1415                          * otherwise left as a stable pointer, the
1416                          * compiler shall optimize it away at build
1417                          * time.
1418                          */
1419                         stable_node = NULL;
1420                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1421                            __is_page_sharing_candidate(found, 1)) {
1422                         /*
1423                          * If the found stable_node dup can accept one
1424                          * more future merge (in addition to the one
1425                          * that is underway) and is not at the head of
1426                          * the chain, put it there so next search will
1427                          * be quicker in the !prune_stale_stable_nodes
1428                          * case.
1429                          *
1430                          * NOTE: it would be inaccurate to use nr > 1
1431                          * instead of checking the hlist.first pointer
1432                          * directly, because in the
1433                          * prune_stale_stable_nodes case "nr" isn't
1434                          * the position of the found dup in the chain,
1435                          * but the total number of dups in the chain.
1436                          */
1437                         hlist_del(&found->hlist_dup);
1438                         hlist_add_head(&found->hlist_dup,
1439                                        &stable_node->hlist);
1440                 }
1441         }
1442
1443         *_stable_node_dup = found;
1444         return tree_page;
1445 }
1446
1447 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1448                                                struct rb_root *root)
1449 {
1450         if (!is_stable_node_chain(stable_node))
1451                 return stable_node;
1452         if (hlist_empty(&stable_node->hlist)) {
1453                 free_stable_node_chain(stable_node, root);
1454                 return NULL;
1455         }
1456         return hlist_entry(stable_node->hlist.first,
1457                            typeof(*stable_node), hlist_dup);
1458 }
1459
1460 /*
1461  * Like for get_ksm_page, this function can free the *_stable_node and
1462  * *_stable_node_dup if the returned tree_page is NULL.
1463  *
1464  * It can also free and overwrite *_stable_node with the found
1465  * stable_node_dup if the chain is collapsed (in which case
1466  * *_stable_node will be equal to *_stable_node_dup like if the chain
1467  * never existed). It's up to the caller to verify tree_page is not
1468  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1469  *
1470  * *_stable_node_dup is really a second output parameter of this
1471  * function and will be overwritten in all cases, the caller doesn't
1472  * need to initialize it.
1473  */
1474 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1475                                         struct stable_node **_stable_node,
1476                                         struct rb_root *root,
1477                                         bool prune_stale_stable_nodes)
1478 {
1479         struct stable_node *stable_node = *_stable_node;
1480         if (!is_stable_node_chain(stable_node)) {
1481                 if (is_page_sharing_candidate(stable_node)) {
1482                         *_stable_node_dup = stable_node;
1483                         return get_ksm_page(stable_node, false);
1484                 }
1485                 /*
1486                  * _stable_node_dup set to NULL means the stable_node
1487                  * reached the ksm_max_page_sharing limit.
1488                  */
1489                 *_stable_node_dup = NULL;
1490                 return NULL;
1491         }
1492         return stable_node_dup(_stable_node_dup, _stable_node, root,
1493                                prune_stale_stable_nodes);
1494 }
1495
1496 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1497                                                 struct stable_node **s_n,
1498                                                 struct rb_root *root)
1499 {
1500         return __stable_node_chain(s_n_d, s_n, root, true);
1501 }
1502
1503 static __always_inline struct page *chain(struct stable_node **s_n_d,
1504                                           struct stable_node *s_n,
1505                                           struct rb_root *root)
1506 {
1507         struct stable_node *old_stable_node = s_n;
1508         struct page *tree_page;
1509
1510         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1511         /* not pruning dups so s_n cannot have changed */
1512         VM_BUG_ON(s_n != old_stable_node);
1513         return tree_page;
1514 }
1515
1516 /*
1517  * stable_tree_search - search for page inside the stable tree
1518  *
1519  * This function checks if there is a page inside the stable tree
1520  * with identical content to the page that we are scanning right now.
1521  *
1522  * This function returns the stable tree node of identical content if found,
1523  * NULL otherwise.
1524  */
1525 static struct page *stable_tree_search(struct page *page)
1526 {
1527         int nid;
1528         struct rb_root *root;
1529         struct rb_node **new;
1530         struct rb_node *parent;
1531         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1532         struct stable_node *page_node;
1533
1534         page_node = page_stable_node(page);
1535         if (page_node && page_node->head != &migrate_nodes) {
1536                 /* ksm page forked */
1537                 get_page(page);
1538                 return page;
1539         }
1540
1541         nid = get_kpfn_nid(page_to_pfn(page));
1542         root = root_stable_tree + nid;
1543 again:
1544         new = &root->rb_node;
1545         parent = NULL;
1546
1547         while (*new) {
1548                 struct page *tree_page;
1549                 int ret;
1550
1551                 cond_resched();
1552                 stable_node = rb_entry(*new, struct stable_node, node);
1553                 stable_node_any = NULL;
1554                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1555                 /*
1556                  * NOTE: stable_node may have been freed by
1557                  * chain_prune() if the returned stable_node_dup is
1558                  * not NULL. stable_node_dup may have been inserted in
1559                  * the rbtree instead as a regular stable_node (in
1560                  * order to collapse the stable_node chain if a single
1561                  * stable_node dup was found in it). In such case the
1562                  * stable_node is overwritten by the calleee to point
1563                  * to the stable_node_dup that was collapsed in the
1564                  * stable rbtree and stable_node will be equal to
1565                  * stable_node_dup like if the chain never existed.
1566                  */
1567                 if (!stable_node_dup) {
1568                         /*
1569                          * Either all stable_node dups were full in
1570                          * this stable_node chain, or this chain was
1571                          * empty and should be rb_erased.
1572                          */
1573                         stable_node_any = stable_node_dup_any(stable_node,
1574                                                               root);
1575                         if (!stable_node_any) {
1576                                 /* rb_erase just run */
1577                                 goto again;
1578                         }
1579                         /*
1580                          * Take any of the stable_node dups page of
1581                          * this stable_node chain to let the tree walk
1582                          * continue. All KSM pages belonging to the
1583                          * stable_node dups in a stable_node chain
1584                          * have the same content and they're
1585                          * wrprotected at all times. Any will work
1586                          * fine to continue the walk.
1587                          */
1588                         tree_page = get_ksm_page(stable_node_any, false);
1589                 }
1590                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1591                 if (!tree_page) {
1592                         /*
1593                          * If we walked over a stale stable_node,
1594                          * get_ksm_page() will call rb_erase() and it
1595                          * may rebalance the tree from under us. So
1596                          * restart the search from scratch. Returning
1597                          * NULL would be safe too, but we'd generate
1598                          * false negative insertions just because some
1599                          * stable_node was stale.
1600                          */
1601                         goto again;
1602                 }
1603
1604                 ret = memcmp_pages(page, tree_page);
1605                 put_page(tree_page);
1606
1607                 parent = *new;
1608                 if (ret < 0)
1609                         new = &parent->rb_left;
1610                 else if (ret > 0)
1611                         new = &parent->rb_right;
1612                 else {
1613                         if (page_node) {
1614                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1615                                 /*
1616                                  * Test if the migrated page should be merged
1617                                  * into a stable node dup. If the mapcount is
1618                                  * 1 we can migrate it with another KSM page
1619                                  * without adding it to the chain.
1620                                  */
1621                                 if (page_mapcount(page) > 1)
1622                                         goto chain_append;
1623                         }
1624
1625                         if (!stable_node_dup) {
1626                                 /*
1627                                  * If the stable_node is a chain and
1628                                  * we got a payload match in memcmp
1629                                  * but we cannot merge the scanned
1630                                  * page in any of the existing
1631                                  * stable_node dups because they're
1632                                  * all full, we need to wait the
1633                                  * scanned page to find itself a match
1634                                  * in the unstable tree to create a
1635                                  * brand new KSM page to add later to
1636                                  * the dups of this stable_node.
1637                                  */
1638                                 return NULL;
1639                         }
1640
1641                         /*
1642                          * Lock and unlock the stable_node's page (which
1643                          * might already have been migrated) so that page
1644                          * migration is sure to notice its raised count.
1645                          * It would be more elegant to return stable_node
1646                          * than kpage, but that involves more changes.
1647                          */
1648                         tree_page = get_ksm_page(stable_node_dup, true);
1649                         if (unlikely(!tree_page))
1650                                 /*
1651                                  * The tree may have been rebalanced,
1652                                  * so re-evaluate parent and new.
1653                                  */
1654                                 goto again;
1655                         unlock_page(tree_page);
1656
1657                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1658                             NUMA(stable_node_dup->nid)) {
1659                                 put_page(tree_page);
1660                                 goto replace;
1661                         }
1662                         return tree_page;
1663                 }
1664         }
1665
1666         if (!page_node)
1667                 return NULL;
1668
1669         list_del(&page_node->list);
1670         DO_NUMA(page_node->nid = nid);
1671         rb_link_node(&page_node->node, parent, new);
1672         rb_insert_color(&page_node->node, root);
1673 out:
1674         if (is_page_sharing_candidate(page_node)) {
1675                 get_page(page);
1676                 return page;
1677         } else
1678                 return NULL;
1679
1680 replace:
1681         /*
1682          * If stable_node was a chain and chain_prune collapsed it,
1683          * stable_node has been updated to be the new regular
1684          * stable_node. A collapse of the chain is indistinguishable
1685          * from the case there was no chain in the stable
1686          * rbtree. Otherwise stable_node is the chain and
1687          * stable_node_dup is the dup to replace.
1688          */
1689         if (stable_node_dup == stable_node) {
1690                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1691                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1692                 /* there is no chain */
1693                 if (page_node) {
1694                         VM_BUG_ON(page_node->head != &migrate_nodes);
1695                         list_del(&page_node->list);
1696                         DO_NUMA(page_node->nid = nid);
1697                         rb_replace_node(&stable_node_dup->node,
1698                                         &page_node->node,
1699                                         root);
1700                         if (is_page_sharing_candidate(page_node))
1701                                 get_page(page);
1702                         else
1703                                 page = NULL;
1704                 } else {
1705                         rb_erase(&stable_node_dup->node, root);
1706                         page = NULL;
1707                 }
1708         } else {
1709                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1710                 __stable_node_dup_del(stable_node_dup);
1711                 if (page_node) {
1712                         VM_BUG_ON(page_node->head != &migrate_nodes);
1713                         list_del(&page_node->list);
1714                         DO_NUMA(page_node->nid = nid);
1715                         stable_node_chain_add_dup(page_node, stable_node);
1716                         if (is_page_sharing_candidate(page_node))
1717                                 get_page(page);
1718                         else
1719                                 page = NULL;
1720                 } else {
1721                         page = NULL;
1722                 }
1723         }
1724         stable_node_dup->head = &migrate_nodes;
1725         list_add(&stable_node_dup->list, stable_node_dup->head);
1726         return page;
1727
1728 chain_append:
1729         /* stable_node_dup could be null if it reached the limit */
1730         if (!stable_node_dup)
1731                 stable_node_dup = stable_node_any;
1732         /*
1733          * If stable_node was a chain and chain_prune collapsed it,
1734          * stable_node has been updated to be the new regular
1735          * stable_node. A collapse of the chain is indistinguishable
1736          * from the case there was no chain in the stable
1737          * rbtree. Otherwise stable_node is the chain and
1738          * stable_node_dup is the dup to replace.
1739          */
1740         if (stable_node_dup == stable_node) {
1741                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1742                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1743                 /* chain is missing so create it */
1744                 stable_node = alloc_stable_node_chain(stable_node_dup,
1745                                                       root);
1746                 if (!stable_node)
1747                         return NULL;
1748         }
1749         /*
1750          * Add this stable_node dup that was
1751          * migrated to the stable_node chain
1752          * of the current nid for this page
1753          * content.
1754          */
1755         VM_BUG_ON(!is_stable_node_chain(stable_node));
1756         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1757         VM_BUG_ON(page_node->head != &migrate_nodes);
1758         list_del(&page_node->list);
1759         DO_NUMA(page_node->nid = nid);
1760         stable_node_chain_add_dup(page_node, stable_node);
1761         goto out;
1762 }
1763
1764 /*
1765  * stable_tree_insert - insert stable tree node pointing to new ksm page
1766  * into the stable tree.
1767  *
1768  * This function returns the stable tree node just allocated on success,
1769  * NULL otherwise.
1770  */
1771 static struct stable_node *stable_tree_insert(struct page *kpage)
1772 {
1773         int nid;
1774         unsigned long kpfn;
1775         struct rb_root *root;
1776         struct rb_node **new;
1777         struct rb_node *parent;
1778         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1779         bool need_chain = false;
1780
1781         kpfn = page_to_pfn(kpage);
1782         nid = get_kpfn_nid(kpfn);
1783         root = root_stable_tree + nid;
1784 again:
1785         parent = NULL;
1786         new = &root->rb_node;
1787
1788         while (*new) {
1789                 struct page *tree_page;
1790                 int ret;
1791
1792                 cond_resched();
1793                 stable_node = rb_entry(*new, struct stable_node, node);
1794                 stable_node_any = NULL;
1795                 tree_page = chain(&stable_node_dup, stable_node, root);
1796                 if (!stable_node_dup) {
1797                         /*
1798                          * Either all stable_node dups were full in
1799                          * this stable_node chain, or this chain was
1800                          * empty and should be rb_erased.
1801                          */
1802                         stable_node_any = stable_node_dup_any(stable_node,
1803                                                               root);
1804                         if (!stable_node_any) {
1805                                 /* rb_erase just run */
1806                                 goto again;
1807                         }
1808                         /*
1809                          * Take any of the stable_node dups page of
1810                          * this stable_node chain to let the tree walk
1811                          * continue. All KSM pages belonging to the
1812                          * stable_node dups in a stable_node chain
1813                          * have the same content and they're
1814                          * wrprotected at all times. Any will work
1815                          * fine to continue the walk.
1816                          */
1817                         tree_page = get_ksm_page(stable_node_any, false);
1818                 }
1819                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1820                 if (!tree_page) {
1821                         /*
1822                          * If we walked over a stale stable_node,
1823                          * get_ksm_page() will call rb_erase() and it
1824                          * may rebalance the tree from under us. So
1825                          * restart the search from scratch. Returning
1826                          * NULL would be safe too, but we'd generate
1827                          * false negative insertions just because some
1828                          * stable_node was stale.
1829                          */
1830                         goto again;
1831                 }
1832
1833                 ret = memcmp_pages(kpage, tree_page);
1834                 put_page(tree_page);
1835
1836                 parent = *new;
1837                 if (ret < 0)
1838                         new = &parent->rb_left;
1839                 else if (ret > 0)
1840                         new = &parent->rb_right;
1841                 else {
1842                         need_chain = true;
1843                         break;
1844                 }
1845         }
1846
1847         stable_node_dup = alloc_stable_node();
1848         if (!stable_node_dup)
1849                 return NULL;
1850
1851         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1852         stable_node_dup->kpfn = kpfn;
1853         set_page_stable_node(kpage, stable_node_dup);
1854         stable_node_dup->rmap_hlist_len = 0;
1855         DO_NUMA(stable_node_dup->nid = nid);
1856         if (!need_chain) {
1857                 rb_link_node(&stable_node_dup->node, parent, new);
1858                 rb_insert_color(&stable_node_dup->node, root);
1859         } else {
1860                 if (!is_stable_node_chain(stable_node)) {
1861                         struct stable_node *orig = stable_node;
1862                         /* chain is missing so create it */
1863                         stable_node = alloc_stable_node_chain(orig, root);
1864                         if (!stable_node) {
1865                                 free_stable_node(stable_node_dup);
1866                                 return NULL;
1867                         }
1868                 }
1869                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1870         }
1871
1872         return stable_node_dup;
1873 }
1874
1875 /*
1876  * unstable_tree_search_insert - search for identical page,
1877  * else insert rmap_item into the unstable tree.
1878  *
1879  * This function searches for a page in the unstable tree identical to the
1880  * page currently being scanned; and if no identical page is found in the
1881  * tree, we insert rmap_item as a new object into the unstable tree.
1882  *
1883  * This function returns pointer to rmap_item found to be identical
1884  * to the currently scanned page, NULL otherwise.
1885  *
1886  * This function does both searching and inserting, because they share
1887  * the same walking algorithm in an rbtree.
1888  */
1889 static
1890 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1891                                               struct page *page,
1892                                               struct page **tree_pagep)
1893 {
1894         struct rb_node **new;
1895         struct rb_root *root;
1896         struct rb_node *parent = NULL;
1897         int nid;
1898
1899         nid = get_kpfn_nid(page_to_pfn(page));
1900         root = root_unstable_tree + nid;
1901         new = &root->rb_node;
1902
1903         while (*new) {
1904                 struct rmap_item *tree_rmap_item;
1905                 struct page *tree_page;
1906                 int ret;
1907
1908                 cond_resched();
1909                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1910                 tree_page = get_mergeable_page(tree_rmap_item);
1911                 if (!tree_page)
1912                         return NULL;
1913
1914                 /*
1915                  * Don't substitute a ksm page for a forked page.
1916                  */
1917                 if (page == tree_page) {
1918                         put_page(tree_page);
1919                         return NULL;
1920                 }
1921
1922                 ret = memcmp_pages(page, tree_page);
1923
1924                 parent = *new;
1925                 if (ret < 0) {
1926                         put_page(tree_page);
1927                         new = &parent->rb_left;
1928                 } else if (ret > 0) {
1929                         put_page(tree_page);
1930                         new = &parent->rb_right;
1931                 } else if (!ksm_merge_across_nodes &&
1932                            page_to_nid(tree_page) != nid) {
1933                         /*
1934                          * If tree_page has been migrated to another NUMA node,
1935                          * it will be flushed out and put in the right unstable
1936                          * tree next time: only merge with it when across_nodes.
1937                          */
1938                         put_page(tree_page);
1939                         return NULL;
1940                 } else {
1941                         *tree_pagep = tree_page;
1942                         return tree_rmap_item;
1943                 }
1944         }
1945
1946         rmap_item->address |= UNSTABLE_FLAG;
1947         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1948         DO_NUMA(rmap_item->nid = nid);
1949         rb_link_node(&rmap_item->node, parent, new);
1950         rb_insert_color(&rmap_item->node, root);
1951
1952         ksm_pages_unshared++;
1953         return NULL;
1954 }
1955
1956 /*
1957  * stable_tree_append - add another rmap_item to the linked list of
1958  * rmap_items hanging off a given node of the stable tree, all sharing
1959  * the same ksm page.
1960  */
1961 static void stable_tree_append(struct rmap_item *rmap_item,
1962                                struct stable_node *stable_node,
1963                                bool max_page_sharing_bypass)
1964 {
1965         /*
1966          * rmap won't find this mapping if we don't insert the
1967          * rmap_item in the right stable_node
1968          * duplicate. page_migration could break later if rmap breaks,
1969          * so we can as well crash here. We really need to check for
1970          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1971          * for other negative values as an undeflow if detected here
1972          * for the first time (and not when decreasing rmap_hlist_len)
1973          * would be sign of memory corruption in the stable_node.
1974          */
1975         BUG_ON(stable_node->rmap_hlist_len < 0);
1976
1977         stable_node->rmap_hlist_len++;
1978         if (!max_page_sharing_bypass)
1979                 /* possibly non fatal but unexpected overflow, only warn */
1980                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1981                              ksm_max_page_sharing);
1982
1983         rmap_item->head = stable_node;
1984         rmap_item->address |= STABLE_FLAG;
1985         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1986
1987         if (rmap_item->hlist.next)
1988                 ksm_pages_sharing++;
1989         else
1990                 ksm_pages_shared++;
1991 }
1992
1993 /*
1994  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1995  * if not, compare checksum to previous and if it's the same, see if page can
1996  * be inserted into the unstable tree, or merged with a page already there and
1997  * both transferred to the stable tree.
1998  *
1999  * @page: the page that we are searching identical page to.
2000  * @rmap_item: the reverse mapping into the virtual address of this page
2001  */
2002 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2003 {
2004         struct mm_struct *mm = rmap_item->mm;
2005         struct rmap_item *tree_rmap_item;
2006         struct page *tree_page = NULL;
2007         struct stable_node *stable_node;
2008         struct page *kpage;
2009         unsigned int checksum;
2010         int err;
2011         bool max_page_sharing_bypass = false;
2012
2013         stable_node = page_stable_node(page);
2014         if (stable_node) {
2015                 if (stable_node->head != &migrate_nodes &&
2016                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2017                     NUMA(stable_node->nid)) {
2018                         stable_node_dup_del(stable_node);
2019                         stable_node->head = &migrate_nodes;
2020                         list_add(&stable_node->list, stable_node->head);
2021                 }
2022                 if (stable_node->head != &migrate_nodes &&
2023                     rmap_item->head == stable_node)
2024                         return;
2025                 /*
2026                  * If it's a KSM fork, allow it to go over the sharing limit
2027                  * without warnings.
2028                  */
2029                 if (!is_page_sharing_candidate(stable_node))
2030                         max_page_sharing_bypass = true;
2031         }
2032
2033         /* We first start with searching the page inside the stable tree */
2034         kpage = stable_tree_search(page);
2035         if (kpage == page && rmap_item->head == stable_node) {
2036                 put_page(kpage);
2037                 return;
2038         }
2039
2040         remove_rmap_item_from_tree(rmap_item);
2041
2042         if (kpage) {
2043                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2044                 if (!err) {
2045                         /*
2046                          * The page was successfully merged:
2047                          * add its rmap_item to the stable tree.
2048                          */
2049                         lock_page(kpage);
2050                         stable_tree_append(rmap_item, page_stable_node(kpage),
2051                                            max_page_sharing_bypass);
2052                         unlock_page(kpage);
2053                 }
2054                 put_page(kpage);
2055                 return;
2056         }
2057
2058         /*
2059          * If the hash value of the page has changed from the last time
2060          * we calculated it, this page is changing frequently: therefore we
2061          * don't want to insert it in the unstable tree, and we don't want
2062          * to waste our time searching for something identical to it there.
2063          */
2064         checksum = calc_checksum(page);
2065         if (rmap_item->oldchecksum != checksum) {
2066                 rmap_item->oldchecksum = checksum;
2067                 return;
2068         }
2069
2070         /*
2071          * Same checksum as an empty page. We attempt to merge it with the
2072          * appropriate zero page if the user enabled this via sysfs.
2073          */
2074         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2075                 struct vm_area_struct *vma;
2076
2077                 down_read(&mm->mmap_sem);
2078                 vma = find_mergeable_vma(mm, rmap_item->address);
2079                 err = try_to_merge_one_page(vma, page,
2080                                             ZERO_PAGE(rmap_item->address));
2081                 up_read(&mm->mmap_sem);
2082                 /*
2083                  * In case of failure, the page was not really empty, so we
2084                  * need to continue. Otherwise we're done.
2085                  */
2086                 if (!err)
2087                         return;
2088         }
2089         tree_rmap_item =
2090                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2091         if (tree_rmap_item) {
2092                 bool split;
2093
2094                 kpage = try_to_merge_two_pages(rmap_item, page,
2095                                                 tree_rmap_item, tree_page);
2096                 /*
2097                  * If both pages we tried to merge belong to the same compound
2098                  * page, then we actually ended up increasing the reference
2099                  * count of the same compound page twice, and split_huge_page
2100                  * failed.
2101                  * Here we set a flag if that happened, and we use it later to
2102                  * try split_huge_page again. Since we call put_page right
2103                  * afterwards, the reference count will be correct and
2104                  * split_huge_page should succeed.
2105                  */
2106                 split = PageTransCompound(page)
2107                         && compound_head(page) == compound_head(tree_page);
2108                 put_page(tree_page);
2109                 if (kpage) {
2110                         /*
2111                          * The pages were successfully merged: insert new
2112                          * node in the stable tree and add both rmap_items.
2113                          */
2114                         lock_page(kpage);
2115                         stable_node = stable_tree_insert(kpage);
2116                         if (stable_node) {
2117                                 stable_tree_append(tree_rmap_item, stable_node,
2118                                                    false);
2119                                 stable_tree_append(rmap_item, stable_node,
2120                                                    false);
2121                         }
2122                         unlock_page(kpage);
2123
2124                         /*
2125                          * If we fail to insert the page into the stable tree,
2126                          * we will have 2 virtual addresses that are pointing
2127                          * to a ksm page left outside the stable tree,
2128                          * in which case we need to break_cow on both.
2129                          */
2130                         if (!stable_node) {
2131                                 break_cow(tree_rmap_item);
2132                                 break_cow(rmap_item);
2133                         }
2134                 } else if (split) {
2135                         /*
2136                          * We are here if we tried to merge two pages and
2137                          * failed because they both belonged to the same
2138                          * compound page. We will split the page now, but no
2139                          * merging will take place.
2140                          * We do not want to add the cost of a full lock; if
2141                          * the page is locked, it is better to skip it and
2142                          * perhaps try again later.
2143                          */
2144                         if (!trylock_page(page))
2145                                 return;
2146                         split_huge_page(page);
2147                         unlock_page(page);
2148                 }
2149         }
2150 }
2151
2152 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2153                                             struct rmap_item **rmap_list,
2154                                             unsigned long addr)
2155 {
2156         struct rmap_item *rmap_item;
2157
2158         while (*rmap_list) {
2159                 rmap_item = *rmap_list;
2160                 if ((rmap_item->address & PAGE_MASK) == addr)
2161                         return rmap_item;
2162                 if (rmap_item->address > addr)
2163                         break;
2164                 *rmap_list = rmap_item->rmap_list;
2165                 remove_rmap_item_from_tree(rmap_item);
2166                 free_rmap_item(rmap_item);
2167         }
2168
2169         rmap_item = alloc_rmap_item();
2170         if (rmap_item) {
2171                 /* It has already been zeroed */
2172                 rmap_item->mm = mm_slot->mm;
2173                 rmap_item->address = addr;
2174                 rmap_item->rmap_list = *rmap_list;
2175                 *rmap_list = rmap_item;
2176         }
2177         return rmap_item;
2178 }
2179
2180 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2181 {
2182         struct mm_struct *mm;
2183         struct mm_slot *slot;
2184         struct vm_area_struct *vma;
2185         struct rmap_item *rmap_item;
2186         int nid;
2187
2188         if (list_empty(&ksm_mm_head.mm_list))
2189                 return NULL;
2190
2191         slot = ksm_scan.mm_slot;
2192         if (slot == &ksm_mm_head) {
2193                 /*
2194                  * A number of pages can hang around indefinitely on per-cpu
2195                  * pagevecs, raised page count preventing write_protect_page
2196                  * from merging them.  Though it doesn't really matter much,
2197                  * it is puzzling to see some stuck in pages_volatile until
2198                  * other activity jostles them out, and they also prevented
2199                  * LTP's KSM test from succeeding deterministically; so drain
2200                  * them here (here rather than on entry to ksm_do_scan(),
2201                  * so we don't IPI too often when pages_to_scan is set low).
2202                  */
2203                 lru_add_drain_all();
2204
2205                 /*
2206                  * Whereas stale stable_nodes on the stable_tree itself
2207                  * get pruned in the regular course of stable_tree_search(),
2208                  * those moved out to the migrate_nodes list can accumulate:
2209                  * so prune them once before each full scan.
2210                  */
2211                 if (!ksm_merge_across_nodes) {
2212                         struct stable_node *stable_node, *next;
2213                         struct page *page;
2214
2215                         list_for_each_entry_safe(stable_node, next,
2216                                                  &migrate_nodes, list) {
2217                                 page = get_ksm_page(stable_node, false);
2218                                 if (page)
2219                                         put_page(page);
2220                                 cond_resched();
2221                         }
2222                 }
2223
2224                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2225                         root_unstable_tree[nid] = RB_ROOT;
2226
2227                 spin_lock(&ksm_mmlist_lock);
2228                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2229                 ksm_scan.mm_slot = slot;
2230                 spin_unlock(&ksm_mmlist_lock);
2231                 /*
2232                  * Although we tested list_empty() above, a racing __ksm_exit
2233                  * of the last mm on the list may have removed it since then.
2234                  */
2235                 if (slot == &ksm_mm_head)
2236                         return NULL;
2237 next_mm:
2238                 ksm_scan.address = 0;
2239                 ksm_scan.rmap_list = &slot->rmap_list;
2240         }
2241
2242         mm = slot->mm;
2243         down_read(&mm->mmap_sem);
2244         if (ksm_test_exit(mm))
2245                 vma = NULL;
2246         else
2247                 vma = find_vma(mm, ksm_scan.address);
2248
2249         for (; vma; vma = vma->vm_next) {
2250                 if (!(vma->vm_flags & VM_MERGEABLE))
2251                         continue;
2252                 if (ksm_scan.address < vma->vm_start)
2253                         ksm_scan.address = vma->vm_start;
2254                 if (!vma->anon_vma)
2255                         ksm_scan.address = vma->vm_end;
2256
2257                 while (ksm_scan.address < vma->vm_end) {
2258                         if (ksm_test_exit(mm))
2259                                 break;
2260                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2261                         if (IS_ERR_OR_NULL(*page)) {
2262                                 ksm_scan.address += PAGE_SIZE;
2263                                 cond_resched();
2264                                 continue;
2265                         }
2266                         if (PageAnon(*page)) {
2267                                 flush_anon_page(vma, *page, ksm_scan.address);
2268                                 flush_dcache_page(*page);
2269                                 rmap_item = get_next_rmap_item(slot,
2270                                         ksm_scan.rmap_list, ksm_scan.address);
2271                                 if (rmap_item) {
2272                                         ksm_scan.rmap_list =
2273                                                         &rmap_item->rmap_list;
2274                                         ksm_scan.address += PAGE_SIZE;
2275                                 } else
2276                                         put_page(*page);
2277                                 up_read(&mm->mmap_sem);
2278                                 return rmap_item;
2279                         }
2280                         put_page(*page);
2281                         ksm_scan.address += PAGE_SIZE;
2282                         cond_resched();
2283                 }
2284         }
2285
2286         if (ksm_test_exit(mm)) {
2287                 ksm_scan.address = 0;
2288                 ksm_scan.rmap_list = &slot->rmap_list;
2289         }
2290         /*
2291          * Nuke all the rmap_items that are above this current rmap:
2292          * because there were no VM_MERGEABLE vmas with such addresses.
2293          */
2294         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2295
2296         spin_lock(&ksm_mmlist_lock);
2297         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2298                                                 struct mm_slot, mm_list);
2299         if (ksm_scan.address == 0) {
2300                 /*
2301                  * We've completed a full scan of all vmas, holding mmap_sem
2302                  * throughout, and found no VM_MERGEABLE: so do the same as
2303                  * __ksm_exit does to remove this mm from all our lists now.
2304                  * This applies either when cleaning up after __ksm_exit
2305                  * (but beware: we can reach here even before __ksm_exit),
2306                  * or when all VM_MERGEABLE areas have been unmapped (and
2307                  * mmap_sem then protects against race with MADV_MERGEABLE).
2308                  */
2309                 hash_del(&slot->link);
2310                 list_del(&slot->mm_list);
2311                 spin_unlock(&ksm_mmlist_lock);
2312
2313                 free_mm_slot(slot);
2314                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2315                 up_read(&mm->mmap_sem);
2316                 mmdrop(mm);
2317         } else {
2318                 up_read(&mm->mmap_sem);
2319                 /*
2320                  * up_read(&mm->mmap_sem) first because after
2321                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2322                  * already have been freed under us by __ksm_exit()
2323                  * because the "mm_slot" is still hashed and
2324                  * ksm_scan.mm_slot doesn't point to it anymore.
2325                  */
2326                 spin_unlock(&ksm_mmlist_lock);
2327         }
2328
2329         /* Repeat until we've completed scanning the whole list */
2330         slot = ksm_scan.mm_slot;
2331         if (slot != &ksm_mm_head)
2332                 goto next_mm;
2333
2334         ksm_scan.seqnr++;
2335         return NULL;
2336 }
2337
2338 /**
2339  * ksm_do_scan  - the ksm scanner main worker function.
2340  * @scan_npages:  number of pages we want to scan before we return.
2341  */
2342 static void ksm_do_scan(unsigned int scan_npages)
2343 {
2344         struct rmap_item *rmap_item;
2345         struct page *uninitialized_var(page);
2346
2347         while (scan_npages-- && likely(!freezing(current))) {
2348                 cond_resched();
2349                 rmap_item = scan_get_next_rmap_item(&page);
2350                 if (!rmap_item)
2351                         return;
2352                 cmp_and_merge_page(page, rmap_item);
2353                 put_page(page);
2354         }
2355 }
2356
2357 static int ksmd_should_run(void)
2358 {
2359         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2360 }
2361
2362 static int ksm_scan_thread(void *nothing)
2363 {
2364         set_freezable();
2365         set_user_nice(current, 5);
2366
2367         while (!kthread_should_stop()) {
2368                 mutex_lock(&ksm_thread_mutex);
2369                 wait_while_offlining();
2370                 if (ksmd_should_run())
2371                         ksm_do_scan(ksm_thread_pages_to_scan);
2372                 mutex_unlock(&ksm_thread_mutex);
2373
2374                 try_to_freeze();
2375
2376                 if (ksmd_should_run()) {
2377                         schedule_timeout_interruptible(
2378                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2379                 } else {
2380                         wait_event_freezable(ksm_thread_wait,
2381                                 ksmd_should_run() || kthread_should_stop());
2382                 }
2383         }
2384         return 0;
2385 }
2386
2387 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2388                 unsigned long end, int advice, unsigned long *vm_flags)
2389 {
2390         struct mm_struct *mm = vma->vm_mm;
2391         int err;
2392
2393         switch (advice) {
2394         case MADV_MERGEABLE:
2395                 /*
2396                  * Be somewhat over-protective for now!
2397                  */
2398                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2399                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2400                                  VM_HUGETLB | VM_MIXEDMAP))
2401                         return 0;               /* just ignore the advice */
2402
2403 #ifdef VM_SAO
2404                 if (*vm_flags & VM_SAO)
2405                         return 0;
2406 #endif
2407 #ifdef VM_SPARC_ADI
2408                 if (*vm_flags & VM_SPARC_ADI)
2409                         return 0;
2410 #endif
2411
2412                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2413                         err = __ksm_enter(mm);
2414                         if (err)
2415                                 return err;
2416                 }
2417
2418                 *vm_flags |= VM_MERGEABLE;
2419                 break;
2420
2421         case MADV_UNMERGEABLE:
2422                 if (!(*vm_flags & VM_MERGEABLE))
2423                         return 0;               /* just ignore the advice */
2424
2425                 if (vma->anon_vma) {
2426                         err = unmerge_ksm_pages(vma, start, end);
2427                         if (err)
2428                                 return err;
2429                 }
2430
2431                 *vm_flags &= ~VM_MERGEABLE;
2432                 break;
2433         }
2434
2435         return 0;
2436 }
2437
2438 int __ksm_enter(struct mm_struct *mm)
2439 {
2440         struct mm_slot *mm_slot;
2441         int needs_wakeup;
2442
2443         mm_slot = alloc_mm_slot();
2444         if (!mm_slot)
2445                 return -ENOMEM;
2446
2447         /* Check ksm_run too?  Would need tighter locking */
2448         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2449
2450         spin_lock(&ksm_mmlist_lock);
2451         insert_to_mm_slots_hash(mm, mm_slot);
2452         /*
2453          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2454          * insert just behind the scanning cursor, to let the area settle
2455          * down a little; when fork is followed by immediate exec, we don't
2456          * want ksmd to waste time setting up and tearing down an rmap_list.
2457          *
2458          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2459          * scanning cursor, otherwise KSM pages in newly forked mms will be
2460          * missed: then we might as well insert at the end of the list.
2461          */
2462         if (ksm_run & KSM_RUN_UNMERGE)
2463                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2464         else
2465                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2466         spin_unlock(&ksm_mmlist_lock);
2467
2468         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2469         mmgrab(mm);
2470
2471         if (needs_wakeup)
2472                 wake_up_interruptible(&ksm_thread_wait);
2473
2474         return 0;
2475 }
2476
2477 void __ksm_exit(struct mm_struct *mm)
2478 {
2479         struct mm_slot *mm_slot;
2480         int easy_to_free = 0;
2481
2482         /*
2483          * This process is exiting: if it's straightforward (as is the
2484          * case when ksmd was never running), free mm_slot immediately.
2485          * But if it's at the cursor or has rmap_items linked to it, use
2486          * mmap_sem to synchronize with any break_cows before pagetables
2487          * are freed, and leave the mm_slot on the list for ksmd to free.
2488          * Beware: ksm may already have noticed it exiting and freed the slot.
2489          */
2490
2491         spin_lock(&ksm_mmlist_lock);
2492         mm_slot = get_mm_slot(mm);
2493         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2494                 if (!mm_slot->rmap_list) {
2495                         hash_del(&mm_slot->link);
2496                         list_del(&mm_slot->mm_list);
2497                         easy_to_free = 1;
2498                 } else {
2499                         list_move(&mm_slot->mm_list,
2500                                   &ksm_scan.mm_slot->mm_list);
2501                 }
2502         }
2503         spin_unlock(&ksm_mmlist_lock);
2504
2505         if (easy_to_free) {
2506                 free_mm_slot(mm_slot);
2507                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2508                 mmdrop(mm);
2509         } else if (mm_slot) {
2510                 down_write(&mm->mmap_sem);
2511                 up_write(&mm->mmap_sem);
2512         }
2513 }
2514
2515 struct page *ksm_might_need_to_copy(struct page *page,
2516                         struct vm_area_struct *vma, unsigned long address)
2517 {
2518         struct anon_vma *anon_vma = page_anon_vma(page);
2519         struct page *new_page;
2520
2521         if (PageKsm(page)) {
2522                 if (page_stable_node(page) &&
2523                     !(ksm_run & KSM_RUN_UNMERGE))
2524                         return page;    /* no need to copy it */
2525         } else if (!anon_vma) {
2526                 return page;            /* no need to copy it */
2527         } else if (anon_vma->root == vma->anon_vma->root &&
2528                  page->index == linear_page_index(vma, address)) {
2529                 return page;            /* still no need to copy it */
2530         }
2531         if (!PageUptodate(page))
2532                 return page;            /* let do_swap_page report the error */
2533
2534         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2535         if (new_page) {
2536                 copy_user_highpage(new_page, page, address, vma);
2537
2538                 SetPageDirty(new_page);
2539                 __SetPageUptodate(new_page);
2540                 __SetPageLocked(new_page);
2541         }
2542
2543         return new_page;
2544 }
2545
2546 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2547 {
2548         struct stable_node *stable_node;
2549         struct rmap_item *rmap_item;
2550         int search_new_forks = 0;
2551
2552         VM_BUG_ON_PAGE(!PageKsm(page), page);
2553
2554         /*
2555          * Rely on the page lock to protect against concurrent modifications
2556          * to that page's node of the stable tree.
2557          */
2558         VM_BUG_ON_PAGE(!PageLocked(page), page);
2559
2560         stable_node = page_stable_node(page);
2561         if (!stable_node)
2562                 return;
2563 again:
2564         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2565                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2566                 struct anon_vma_chain *vmac;
2567                 struct vm_area_struct *vma;
2568
2569                 cond_resched();
2570                 anon_vma_lock_read(anon_vma);
2571                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2572                                                0, ULONG_MAX) {
2573                         cond_resched();
2574                         vma = vmac->vma;
2575                         if (rmap_item->address < vma->vm_start ||
2576                             rmap_item->address >= vma->vm_end)
2577                                 continue;
2578                         /*
2579                          * Initially we examine only the vma which covers this
2580                          * rmap_item; but later, if there is still work to do,
2581                          * we examine covering vmas in other mms: in case they
2582                          * were forked from the original since ksmd passed.
2583                          */
2584                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2585                                 continue;
2586
2587                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2588                                 continue;
2589
2590                         if (!rwc->rmap_one(page, vma,
2591                                         rmap_item->address, rwc->arg)) {
2592                                 anon_vma_unlock_read(anon_vma);
2593                                 return;
2594                         }
2595                         if (rwc->done && rwc->done(page)) {
2596                                 anon_vma_unlock_read(anon_vma);
2597                                 return;
2598                         }
2599                 }
2600                 anon_vma_unlock_read(anon_vma);
2601         }
2602         if (!search_new_forks++)
2603                 goto again;
2604 }
2605
2606 #ifdef CONFIG_MIGRATION
2607 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2608 {
2609         struct stable_node *stable_node;
2610
2611         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2612         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2613         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2614
2615         stable_node = page_stable_node(newpage);
2616         if (stable_node) {
2617                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2618                 stable_node->kpfn = page_to_pfn(newpage);
2619                 /*
2620                  * newpage->mapping was set in advance; now we need smp_wmb()
2621                  * to make sure that the new stable_node->kpfn is visible
2622                  * to get_ksm_page() before it can see that oldpage->mapping
2623                  * has gone stale (or that PageSwapCache has been cleared).
2624                  */
2625                 smp_wmb();
2626                 set_page_stable_node(oldpage, NULL);
2627         }
2628 }
2629 #endif /* CONFIG_MIGRATION */
2630
2631 #ifdef CONFIG_MEMORY_HOTREMOVE
2632 static void wait_while_offlining(void)
2633 {
2634         while (ksm_run & KSM_RUN_OFFLINE) {
2635                 mutex_unlock(&ksm_thread_mutex);
2636                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2637                             TASK_UNINTERRUPTIBLE);
2638                 mutex_lock(&ksm_thread_mutex);
2639         }
2640 }
2641
2642 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2643                                          unsigned long start_pfn,
2644                                          unsigned long end_pfn)
2645 {
2646         if (stable_node->kpfn >= start_pfn &&
2647             stable_node->kpfn < end_pfn) {
2648                 /*
2649                  * Don't get_ksm_page, page has already gone:
2650                  * which is why we keep kpfn instead of page*
2651                  */
2652                 remove_node_from_stable_tree(stable_node);
2653                 return true;
2654         }
2655         return false;
2656 }
2657
2658 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2659                                            unsigned long start_pfn,
2660                                            unsigned long end_pfn,
2661                                            struct rb_root *root)
2662 {
2663         struct stable_node *dup;
2664         struct hlist_node *hlist_safe;
2665
2666         if (!is_stable_node_chain(stable_node)) {
2667                 VM_BUG_ON(is_stable_node_dup(stable_node));
2668                 return stable_node_dup_remove_range(stable_node, start_pfn,
2669                                                     end_pfn);
2670         }
2671
2672         hlist_for_each_entry_safe(dup, hlist_safe,
2673                                   &stable_node->hlist, hlist_dup) {
2674                 VM_BUG_ON(!is_stable_node_dup(dup));
2675                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2676         }
2677         if (hlist_empty(&stable_node->hlist)) {
2678                 free_stable_node_chain(stable_node, root);
2679                 return true; /* notify caller that tree was rebalanced */
2680         } else
2681                 return false;
2682 }
2683
2684 static void ksm_check_stable_tree(unsigned long start_pfn,
2685                                   unsigned long end_pfn)
2686 {
2687         struct stable_node *stable_node, *next;
2688         struct rb_node *node;
2689         int nid;
2690
2691         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2692                 node = rb_first(root_stable_tree + nid);
2693                 while (node) {
2694                         stable_node = rb_entry(node, struct stable_node, node);
2695                         if (stable_node_chain_remove_range(stable_node,
2696                                                            start_pfn, end_pfn,
2697                                                            root_stable_tree +
2698                                                            nid))
2699                                 node = rb_first(root_stable_tree + nid);
2700                         else
2701                                 node = rb_next(node);
2702                         cond_resched();
2703                 }
2704         }
2705         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2706                 if (stable_node->kpfn >= start_pfn &&
2707                     stable_node->kpfn < end_pfn)
2708                         remove_node_from_stable_tree(stable_node);
2709                 cond_resched();
2710         }
2711 }
2712
2713 static int ksm_memory_callback(struct notifier_block *self,
2714                                unsigned long action, void *arg)
2715 {
2716         struct memory_notify *mn = arg;
2717
2718         switch (action) {
2719         case MEM_GOING_OFFLINE:
2720                 /*
2721                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2722                  * and remove_all_stable_nodes() while memory is going offline:
2723                  * it is unsafe for them to touch the stable tree at this time.
2724                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2725                  * which do not need the ksm_thread_mutex are all safe.
2726                  */
2727                 mutex_lock(&ksm_thread_mutex);
2728                 ksm_run |= KSM_RUN_OFFLINE;
2729                 mutex_unlock(&ksm_thread_mutex);
2730                 break;
2731
2732         case MEM_OFFLINE:
2733                 /*
2734                  * Most of the work is done by page migration; but there might
2735                  * be a few stable_nodes left over, still pointing to struct
2736                  * pages which have been offlined: prune those from the tree,
2737                  * otherwise get_ksm_page() might later try to access a
2738                  * non-existent struct page.
2739                  */
2740                 ksm_check_stable_tree(mn->start_pfn,
2741                                       mn->start_pfn + mn->nr_pages);
2742                 /* fallthrough */
2743
2744         case MEM_CANCEL_OFFLINE:
2745                 mutex_lock(&ksm_thread_mutex);
2746                 ksm_run &= ~KSM_RUN_OFFLINE;
2747                 mutex_unlock(&ksm_thread_mutex);
2748
2749                 smp_mb();       /* wake_up_bit advises this */
2750                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2751                 break;
2752         }
2753         return NOTIFY_OK;
2754 }
2755 #else
2756 static void wait_while_offlining(void)
2757 {
2758 }
2759 #endif /* CONFIG_MEMORY_HOTREMOVE */
2760
2761 #ifdef CONFIG_SYSFS
2762 /*
2763  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2764  */
2765
2766 #define KSM_ATTR_RO(_name) \
2767         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2768 #define KSM_ATTR(_name) \
2769         static struct kobj_attribute _name##_attr = \
2770                 __ATTR(_name, 0644, _name##_show, _name##_store)
2771
2772 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2773                                     struct kobj_attribute *attr, char *buf)
2774 {
2775         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2776 }
2777
2778 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2779                                      struct kobj_attribute *attr,
2780                                      const char *buf, size_t count)
2781 {
2782         unsigned long msecs;
2783         int err;
2784
2785         err = kstrtoul(buf, 10, &msecs);
2786         if (err || msecs > UINT_MAX)
2787                 return -EINVAL;
2788
2789         ksm_thread_sleep_millisecs = msecs;
2790
2791         return count;
2792 }
2793 KSM_ATTR(sleep_millisecs);
2794
2795 static ssize_t pages_to_scan_show(struct kobject *kobj,
2796                                   struct kobj_attribute *attr, char *buf)
2797 {
2798         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2799 }
2800
2801 static ssize_t pages_to_scan_store(struct kobject *kobj,
2802                                    struct kobj_attribute *attr,
2803                                    const char *buf, size_t count)
2804 {
2805         int err;
2806         unsigned long nr_pages;
2807
2808         err = kstrtoul(buf, 10, &nr_pages);
2809         if (err || nr_pages > UINT_MAX)
2810                 return -EINVAL;
2811
2812         ksm_thread_pages_to_scan = nr_pages;
2813
2814         return count;
2815 }
2816 KSM_ATTR(pages_to_scan);
2817
2818 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2819                         char *buf)
2820 {
2821         return sprintf(buf, "%lu\n", ksm_run);
2822 }
2823
2824 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2825                          const char *buf, size_t count)
2826 {
2827         int err;
2828         unsigned long flags;
2829
2830         err = kstrtoul(buf, 10, &flags);
2831         if (err || flags > UINT_MAX)
2832                 return -EINVAL;
2833         if (flags > KSM_RUN_UNMERGE)
2834                 return -EINVAL;
2835
2836         /*
2837          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2838          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2839          * breaking COW to free the pages_shared (but leaves mm_slots
2840          * on the list for when ksmd may be set running again).
2841          */
2842
2843         mutex_lock(&ksm_thread_mutex);
2844         wait_while_offlining();
2845         if (ksm_run != flags) {
2846                 ksm_run = flags;
2847                 if (flags & KSM_RUN_UNMERGE) {
2848                         set_current_oom_origin();
2849                         err = unmerge_and_remove_all_rmap_items();
2850                         clear_current_oom_origin();
2851                         if (err) {
2852                                 ksm_run = KSM_RUN_STOP;
2853                                 count = err;
2854                         }
2855                 }
2856         }
2857         mutex_unlock(&ksm_thread_mutex);
2858
2859         if (flags & KSM_RUN_MERGE)
2860                 wake_up_interruptible(&ksm_thread_wait);
2861
2862         return count;
2863 }
2864 KSM_ATTR(run);
2865
2866 #ifdef CONFIG_NUMA
2867 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2868                                 struct kobj_attribute *attr, char *buf)
2869 {
2870         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2871 }
2872
2873 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2874                                    struct kobj_attribute *attr,
2875                                    const char *buf, size_t count)
2876 {
2877         int err;
2878         unsigned long knob;
2879
2880         err = kstrtoul(buf, 10, &knob);
2881         if (err)
2882                 return err;
2883         if (knob > 1)
2884                 return -EINVAL;
2885
2886         mutex_lock(&ksm_thread_mutex);
2887         wait_while_offlining();
2888         if (ksm_merge_across_nodes != knob) {
2889                 if (ksm_pages_shared || remove_all_stable_nodes())
2890                         err = -EBUSY;
2891                 else if (root_stable_tree == one_stable_tree) {
2892                         struct rb_root *buf;
2893                         /*
2894                          * This is the first time that we switch away from the
2895                          * default of merging across nodes: must now allocate
2896                          * a buffer to hold as many roots as may be needed.
2897                          * Allocate stable and unstable together:
2898                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2899                          */
2900                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2901                                       GFP_KERNEL);
2902                         /* Let us assume that RB_ROOT is NULL is zero */
2903                         if (!buf)
2904                                 err = -ENOMEM;
2905                         else {
2906                                 root_stable_tree = buf;
2907                                 root_unstable_tree = buf + nr_node_ids;
2908                                 /* Stable tree is empty but not the unstable */
2909                                 root_unstable_tree[0] = one_unstable_tree[0];
2910                         }
2911                 }
2912                 if (!err) {
2913                         ksm_merge_across_nodes = knob;
2914                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2915                 }
2916         }
2917         mutex_unlock(&ksm_thread_mutex);
2918
2919         return err ? err : count;
2920 }
2921 KSM_ATTR(merge_across_nodes);
2922 #endif
2923
2924 static ssize_t use_zero_pages_show(struct kobject *kobj,
2925                                 struct kobj_attribute *attr, char *buf)
2926 {
2927         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2928 }
2929 static ssize_t use_zero_pages_store(struct kobject *kobj,
2930                                    struct kobj_attribute *attr,
2931                                    const char *buf, size_t count)
2932 {
2933         int err;
2934         bool value;
2935
2936         err = kstrtobool(buf, &value);
2937         if (err)
2938                 return -EINVAL;
2939
2940         ksm_use_zero_pages = value;
2941
2942         return count;
2943 }
2944 KSM_ATTR(use_zero_pages);
2945
2946 static ssize_t max_page_sharing_show(struct kobject *kobj,
2947                                      struct kobj_attribute *attr, char *buf)
2948 {
2949         return sprintf(buf, "%u\n", ksm_max_page_sharing);
2950 }
2951
2952 static ssize_t max_page_sharing_store(struct kobject *kobj,
2953                                       struct kobj_attribute *attr,
2954                                       const char *buf, size_t count)
2955 {
2956         int err;
2957         int knob;
2958
2959         err = kstrtoint(buf, 10, &knob);
2960         if (err)
2961                 return err;
2962         /*
2963          * When a KSM page is created it is shared by 2 mappings. This
2964          * being a signed comparison, it implicitly verifies it's not
2965          * negative.
2966          */
2967         if (knob < 2)
2968                 return -EINVAL;
2969
2970         if (READ_ONCE(ksm_max_page_sharing) == knob)
2971                 return count;
2972
2973         mutex_lock(&ksm_thread_mutex);
2974         wait_while_offlining();
2975         if (ksm_max_page_sharing != knob) {
2976                 if (ksm_pages_shared || remove_all_stable_nodes())
2977                         err = -EBUSY;
2978                 else
2979                         ksm_max_page_sharing = knob;
2980         }
2981         mutex_unlock(&ksm_thread_mutex);
2982
2983         return err ? err : count;
2984 }
2985 KSM_ATTR(max_page_sharing);
2986
2987 static ssize_t pages_shared_show(struct kobject *kobj,
2988                                  struct kobj_attribute *attr, char *buf)
2989 {
2990         return sprintf(buf, "%lu\n", ksm_pages_shared);
2991 }
2992 KSM_ATTR_RO(pages_shared);
2993
2994 static ssize_t pages_sharing_show(struct kobject *kobj,
2995                                   struct kobj_attribute *attr, char *buf)
2996 {
2997         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2998 }
2999 KSM_ATTR_RO(pages_sharing);
3000
3001 static ssize_t pages_unshared_show(struct kobject *kobj,
3002                                    struct kobj_attribute *attr, char *buf)
3003 {
3004         return sprintf(buf, "%lu\n", ksm_pages_unshared);
3005 }
3006 KSM_ATTR_RO(pages_unshared);
3007
3008 static ssize_t pages_volatile_show(struct kobject *kobj,
3009                                    struct kobj_attribute *attr, char *buf)
3010 {
3011         long ksm_pages_volatile;
3012
3013         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3014                                 - ksm_pages_sharing - ksm_pages_unshared;
3015         /*
3016          * It was not worth any locking to calculate that statistic,
3017          * but it might therefore sometimes be negative: conceal that.
3018          */
3019         if (ksm_pages_volatile < 0)
3020                 ksm_pages_volatile = 0;
3021         return sprintf(buf, "%ld\n", ksm_pages_volatile);
3022 }
3023 KSM_ATTR_RO(pages_volatile);
3024
3025 static ssize_t stable_node_dups_show(struct kobject *kobj,
3026                                      struct kobj_attribute *attr, char *buf)
3027 {
3028         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3029 }
3030 KSM_ATTR_RO(stable_node_dups);
3031
3032 static ssize_t stable_node_chains_show(struct kobject *kobj,
3033                                        struct kobj_attribute *attr, char *buf)
3034 {
3035         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3036 }
3037 KSM_ATTR_RO(stable_node_chains);
3038
3039 static ssize_t
3040 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3041                                         struct kobj_attribute *attr,
3042                                         char *buf)
3043 {
3044         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3045 }
3046
3047 static ssize_t
3048 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3049                                          struct kobj_attribute *attr,
3050                                          const char *buf, size_t count)
3051 {
3052         unsigned long msecs;
3053         int err;
3054
3055         err = kstrtoul(buf, 10, &msecs);
3056         if (err || msecs > UINT_MAX)
3057                 return -EINVAL;
3058
3059         ksm_stable_node_chains_prune_millisecs = msecs;
3060
3061         return count;
3062 }
3063 KSM_ATTR(stable_node_chains_prune_millisecs);
3064
3065 static ssize_t full_scans_show(struct kobject *kobj,
3066                                struct kobj_attribute *attr, char *buf)
3067 {
3068         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3069 }
3070 KSM_ATTR_RO(full_scans);
3071
3072 static struct attribute *ksm_attrs[] = {
3073         &sleep_millisecs_attr.attr,
3074         &pages_to_scan_attr.attr,
3075         &run_attr.attr,
3076         &pages_shared_attr.attr,
3077         &pages_sharing_attr.attr,
3078         &pages_unshared_attr.attr,
3079         &pages_volatile_attr.attr,
3080         &full_scans_attr.attr,
3081 #ifdef CONFIG_NUMA
3082         &merge_across_nodes_attr.attr,
3083 #endif
3084         &max_page_sharing_attr.attr,
3085         &stable_node_chains_attr.attr,
3086         &stable_node_dups_attr.attr,
3087         &stable_node_chains_prune_millisecs_attr.attr,
3088         &use_zero_pages_attr.attr,
3089         NULL,
3090 };
3091
3092 static const struct attribute_group ksm_attr_group = {
3093         .attrs = ksm_attrs,
3094         .name = "ksm",
3095 };
3096 #endif /* CONFIG_SYSFS */
3097
3098 static int __init ksm_init(void)
3099 {
3100         struct task_struct *ksm_thread;
3101         int err;
3102
3103         /* The correct value depends on page size and endianness */
3104         zero_checksum = calc_checksum(ZERO_PAGE(0));
3105         /* Default to false for backwards compatibility */
3106         ksm_use_zero_pages = false;
3107
3108         err = ksm_slab_init();
3109         if (err)
3110                 goto out;
3111
3112         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3113         if (IS_ERR(ksm_thread)) {
3114                 pr_err("ksm: creating kthread failed\n");
3115                 err = PTR_ERR(ksm_thread);
3116                 goto out_free;
3117         }
3118
3119 #ifdef CONFIG_SYSFS
3120         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3121         if (err) {
3122                 pr_err("ksm: register sysfs failed\n");
3123                 kthread_stop(ksm_thread);
3124                 goto out_free;
3125         }
3126 #else
3127         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3128
3129 #endif /* CONFIG_SYSFS */
3130
3131 #ifdef CONFIG_MEMORY_HOTREMOVE
3132         /* There is no significance to this priority 100 */
3133         hotplug_memory_notifier(ksm_memory_callback, 100);
3134 #endif
3135         return 0;
3136
3137 out_free:
3138         ksm_slab_free();
3139 out:
3140         return err;
3141 }
3142 subsys_initcall(ksm_init);